1 /*
2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Updated from zlib-1.0.4 to zlib-1.1.3 by James Carlson.
8  *
9  * This file is derived from various .h and .c files from the zlib-1.0.4
10  * distribution by Jean-loup Gailly and Mark Adler, with some additions
11  * by Paul Mackerras to aid in implementing Deflate compression and
12  * decompression for PPP packets.  See zlib.h for conditions of
13  * distribution and use.
14  *
15  * Changes that have been made include:
16  * - added Z_PACKET_FLUSH (see zlib.h for details)
17  * - added inflateIncomp and deflateOutputPending
18  * - allow strm->next_out to be NULL, meaning discard the output
19  *
20  * $Id: zlib.c,v 1.11 1998/09/13 23:37:12 paulus Exp $
21  */
22 
23 /*
24  *  ==FILEVERSION 971210==
25  *
26  * This marker is used by the Linux installation script to determine
27  * whether an up-to-date version of this file is already installed.
28  */
29 
30 #define	NO_DUMMY_DECL
31 #define	NO_ZCFUNCS
32 #define	MY_ZCALLOC
33 
34 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
35 #define	inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
36 #endif
37 
38 
39 /* +++ zutil.h */
40 /*
41  *
42  * zutil.h -- internal interface and configuration of the compression library
43  * Copyright (C) 1995-1998 Jean-loup Gailly.
44  * For conditions of distribution and use, see copyright notice in zlib.h
45  */
46 
47 /*
48  * WARNING: this file should *not* be used by applications. It is part
49  * of the implementation of the compression library and is subject to
50  * change. Applications should only use zlib.h.
51  */
52 
53 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
54 
55 #ifndef _Z_UTIL_H
56 #define	_Z_UTIL_H
57 
58 #include "zlib.h"
59 
60 #if defined(KERNEL) || defined(_KERNEL)
61 /* Assume this is a *BSD or SVR4 kernel */
62 #include <sys/types.h>
63 #include <sys/time.h>
64 #include <sys/systm.h>
65 #ifdef SOL2
66 #include <sys/cmn_err.h>
67 #endif
68 #define	HAVE_MEMCPY
69 #define	memcmp		bcmp
70 
71 #else
72 #if defined(__KERNEL__)
73 /* Assume this is a Linux kernel */
74 #include <linux/string.h>
75 #define	HAVE_MEMCPY
76 
77 #else /* not kernel */
78 
79 #include <stddef.h>
80 #ifdef NO_ERRNO_H
81 extern int errno;
82 #else
83 #include <errno.h>
84 #endif
85 #ifdef STDC
86 #include <string.h>
87 #include <stdlib.h>
88 #endif
89 #endif /* __KERNEL__ */
90 #endif /* _KERNEL || KERNEL */
91 
92 #ifndef local
93 #define	local static
94 #endif
95 /* compile with -Dlocal if your debugger can't find static symbols */
96 
97 typedef unsigned char  uch;
98 typedef uch FAR uchf;
99 typedef unsigned short ush;
100 typedef ush FAR ushf;
101 typedef unsigned long  ulg;
102 
103 static const char *z_errmsg[10]; /* indexed by 2-zlib_error */
104 /* (size given to avoid silly warnings with Visual C++) */
105 
106 #define	ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
107 
108 #define	ERR_RETURN(strm, err) \
109 	return (strm->msg = ERR_MSG(err), (err))
110 /* To be used only when the state is known to be valid */
111 
112 	/* common constants */
113 
114 #ifndef DEF_WBITS
115 #define	DEF_WBITS MAX_WBITS
116 #endif
117 /* default windowBits for decompression. MAX_WBITS is for compression only */
118 
119 #if MAX_MEM_LEVEL >= 8
120 #define	DEF_MEM_LEVEL 8
121 #else
122 #define	DEF_MEM_LEVEL  MAX_MEM_LEVEL
123 #endif
124 /* default memLevel */
125 
126 #define	STORED_BLOCK 0
127 #define	STATIC_TREES 1
128 #define	DYN_TREES    2
129 /* The three kinds of block type */
130 
131 #define	MIN_MATCH  3
132 #define	MAX_MATCH  258
133 /* The minimum and maximum match lengths */
134 
135 #define	PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
136 
137 	/* target dependencies */
138 
139 #ifdef MSDOS
140 #define	OS_CODE  0x00
141 #ifdef __TURBOC__
142 #include <alloc.h>
143 #else /* MSC or DJGPP */
144 #include <malloc.h>
145 #endif
146 #endif
147 
148 #ifdef OS2
149 #define	OS_CODE  0x06
150 #endif
151 
152 #ifdef WIN32 /* Window 95 & Windows NT */
153 #define	OS_CODE  0x0b
154 #endif
155 
156 #if defined(VAXC) || defined(VMS)
157 #define	OS_CODE  0x02
158 #define	F_OPEN(name, mode) \
159 	fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
160 #endif
161 
162 #ifdef AMIGA
163 #define	OS_CODE  0x01
164 #endif
165 
166 #if defined(ATARI) || defined(atarist)
167 #define	OS_CODE  0x05
168 #endif
169 
170 #ifdef MACOS
171 #define	OS_CODE  0x07
172 #endif
173 
174 #ifdef __50SERIES /* Prime/PRIMOS */
175 #define	OS_CODE  0x0F
176 #endif
177 
178 #ifdef TOPS20
179 #define	OS_CODE  0x0a
180 #endif
181 
182 #if defined(_BEOS_) || defined(RISCOS)
183 #define	fdopen(fd, mode) NULL /* No fdopen() */
184 #endif
185 
186 	/* Common defaults */
187 
188 #ifndef OS_CODE
189 #define	OS_CODE  0x03  /* assume Unix */
190 #endif
191 
192 #ifndef F_OPEN
193 #define	F_OPEN(name, mode) fopen((name), (mode))
194 #endif
195 
196 	/* functions */
197 
198 #ifdef HAVE_STRERROR
199 extern char *strerror OF((int));
200 #define	zstrerror(errnum) strerror(errnum)
201 #else
202 #define	zstrerror(errnum) ""
203 #endif
204 
205 #if defined(pyr)
206 #define	NO_MEMCPY
207 #endif
208 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
209 /*
210  * Use our own functions for small and medium model with MSC <= 5.0.
211  * You may have to use the same strategy for Borland C (untested).
212  */
213 #define	NO_MEMCPY
214 #endif
215 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
216 #define	HAVE_MEMCPY
217 #endif
218 #ifdef HAVE_MEMCPY
219 #ifdef SMALL_MEDIUM /* MSDOS small or medium model */
220 #define	zmemcpy _fmemcpy
221 #define	zmemcmp _fmemcmp
222 #define	zmemzero(dest, len) _fmemset(dest, 0, len)
223 #else
224 #define	zmemcpy (void) memcpy
225 #define	zmemcmp memcmp
226 #define	zmemzero(dest, len) (void) memset(dest, 0, len)
227 #endif
228 #else
229 extern void zmemcpy  OF((Bytef* dest, const Bytef* source, uInt len));
230 extern int  zmemcmp  OF((const Bytef* s1, const Bytef* s2, uInt len));
231 extern void zmemzero OF((Bytef* dest, uInt len));
232 #endif
233 
234 /* Diagnostic functions */
235 #ifdef DEBUG_ZLIB
236 #include <stdio.h>
237 #ifndef verbose
238 #define	verbose 0
239 #endif
240 extern void z_error    OF((char *m));
241 #define	Assert(cond, msg) { if (!(cond)) z_error(msg); }
242 #define	Trace(x) {if (z_verbose >= 0) fprintf x; }
243 #define	Tracev(x) {if (z_verbose > 0) fprintf x; }
244 #define	Tracevv(x) {if (z_verbose > 1) fprintf x; }
245 #define	Tracec(c, x) {if (z_verbose > 0 && (c)) fprintf x; }
246 #define	Tracecv(c, x) {if (z_verbose > 1 && (c)) fprintf x; }
247 #else
248 #if defined(SOL2) && defined(DEBUG)
249 #define	Assert(cond, msg)	((cond) ? ((void)0) : panic(msg))
250 #else
251 #define	Assert(cond, msg)	((void)0)
252 #endif
253 #define	Trace(x)	((void)0)
254 #define	Tracev(x)	((void)0)
255 #define	Tracevv(x)	((void)0)
256 #define	Tracec(c, x)	((void)0)
257 #define	Tracecv(c, x)	((void)0)
258 #endif
259 
260 
261 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
262 
263 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
264 /* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
265 
266 #define	ZALLOC(strm, items, size) \
267 	(*((strm)->zalloc))((strm)->opaque, (items), (size))
268 #define	ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
269 #define	TRY_FREE(s, p) {if (p) ZFREE(s, p); }
270 
271 #endif /* _Z_UTIL_H */
272 /* --- zutil.h */
273 
274 /* +++ deflate.h */
275 /*
276  * deflate.h -- internal compression state
277  * Copyright (C) 1995-1998 Jean-loup Gailly
278  * For conditions of distribution and use, see copyright notice in zlib.h
279  */
280 
281 /*
282  * WARNING: this file should *not* be used by applications. It is part
283  * of the implementation of the compression library and is subject to
284  * change. Applications should only use zlib.h.
285  */
286 
287 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
288 
289 #ifndef _DEFLATE_H
290 #define	_DEFLATE_H
291 
292 /* #include "zutil.h" */
293 
294 /*
295  * ===========================================================================
296  * Internal compression state.
297  */
298 
299 #define	LENGTH_CODES 29
300 /* number of length codes, not counting the special END_BLOCK code */
301 
302 #define	LITERALS  256
303 /* number of literal bytes 0..255 */
304 
305 #define	L_CODES (LITERALS+1+LENGTH_CODES)
306 /* number of Literal or Length codes, including the END_BLOCK code */
307 
308 #define	D_CODES   30
309 /* number of distance codes */
310 
311 #define	BL_CODES  19
312 /* number of codes used to transfer the bit lengths */
313 
314 #define	HEAP_SIZE (2*L_CODES+1)
315 /* maximum heap size */
316 
317 #define	MAX_BITS 15
318 /* All codes must not exceed MAX_BITS bits */
319 
320 #define	INIT_STATE    42
321 #define	BUSY_STATE   113
322 #define	FINISH_STATE 666
323 /* Stream status */
324 
325 
326 /* Data structure describing a single value and its code string. */
327 typedef struct ct_data_s {
328 	union {
329 		ush freq;	/* frequency count */
330 		ush code;	/* bit string */
331 	} fc;
332 	union {
333 		ush dad;	/* father node in Huffman tree */
334 		ush len;	/* length of bit string */
335 	} dl;
336 } FAR ct_data;
337 
338 #define	Freq fc.freq
339 #define	Code fc.code
340 #define	Dad  dl.dad
341 #define	Len  dl.len
342 
343 typedef struct static_tree_desc_s  static_tree_desc;
344 
345 typedef struct tree_desc_s {
346 	ct_data *dyn_tree;	/* the dynamic tree */
347 	int	max_code;	/* largest code with non zero frequency */
348 	static_tree_desc *stat_desc;	/* the corresponding static tree */
349 } FAR tree_desc;
350 
351 typedef ush Pos;
352 typedef Pos FAR Posf;
353 typedef unsigned IPos;
354 
355 /*
356  * A Pos is an index in the character window. We use short instead of
357  * int to save space in the various tables. IPos is used only for
358  * parameter passing.
359  */
360 
361 typedef struct deflate_state {
362 	z_streamp strm;	/* pointer back to this zlib stream */
363 	int   status;	/* as the name implies */
364 	Bytef *pending_buf;	/* output still pending */
365 	ulg   pending_buf_size;	/* size of pending_buf */
366 	Bytef *pending_out;	/* next pending byte to output to the stream */
367 	int   pending;	/* nb of bytes in the pending buffer */
368 	int   noheader;	/* suppress zlib header and adler32 */
369 	Byte  data_type;	/* UNKNOWN, BINARY or ASCII */
370 	Byte  method;	/* STORED (for zip only) or DEFLATED */
371 	/* value of flush param for previous deflate call */
372 	int   last_flush;
373 
374 	/* used by deflate.c: */
375 
376 	uInt  w_size;	/* LZ77 window size (32K by default) */
377 	uInt  w_bits;	/* log2(w_size)  (8..16) */
378 	uInt  w_mask;	/* w_size - 1 */
379 
380 	Bytef *window;
381 	/*
382 	 * Sliding window. Input bytes are read into the second half
383 	 * of the window, and move to the first half later to keep a
384 	 * dictionary of at least wSize bytes. With this organization,
385 	 * matches are limited to a distance of wSize-MAX_MATCH bytes,
386 	 * but this ensures that IO is always performed with a length
387 	 * multiple of the block size. Also, it limits the window size
388 	 * to 64K, which is quite useful on MSDOS.  To do: use the
389 	 * user input buffer as sliding window.
390 	 */
391 
392 	ulg window_size;
393 	/*
394 	 * Actual size of window: 2*wSize, except when the user input
395 	 * buffer is directly used as sliding window.
396 	 */
397 
398 	Posf *prev;
399 	/*
400 	 * Link to older string with same hash index. To limit the
401 	 * size of this array to 64K, this link is maintained only for
402 	 * the last 32K strings.  An index in this array is thus a
403 	 * window index modulo 32K.
404 	 */
405 
406 	Posf *head;	/* Heads of the hash chains or NIL. */
407 
408 	uInt  ins_h;	/* hash index of string to be inserted */
409 	uInt  hash_size;	/* number of elements in hash table */
410 	uInt  hash_bits;	/* log2(hash_size) */
411 	uInt  hash_mask;	/* hash_size-1 */
412 
413 	uInt  hash_shift;
414 	/*
415 	 * Number of bits by which ins_h must be shifted at each input
416 	 * step. It must be such that after MIN_MATCH steps, the
417 	 * oldest byte no longer takes part in the hash key, that is:
418 	 * hash_shift * MIN_MATCH >= hash_bits
419 	 */
420 
421 	long block_start;
422 	/*
423 	 * Window position at the beginning of the current output
424 	 * block. Gets negative when the window is moved backwards.
425 	 */
426 
427 	uInt match_length;	/* length of best match */
428 	IPos prev_match;	/* previous match */
429 	int match_available;	/* set if previous match exists */
430 	uInt strstart;	/* start of string to insert */
431 	uInt match_start;	/* start of matching string */
432 	uInt lookahead;	/* number of valid bytes ahead in window */
433 
434 	uInt prev_length;
435 	/*
436 	 * Length of the best match at previous step. Matches not
437 	 * greater than this are discarded. This is used in the lazy
438 	 * match evaluation.
439 	 */
440 
441 	uInt max_chain_length;
442 	/*
443 	 * To speed up deflation, hash chains are never searched
444 	 * beyond *this length.  A higher limit improves compression
445 	 * ratio but *degrades the speed.
446 	 */
447 
448 	uInt max_lazy_match;
449 	/*
450 	 * Attempt to find a better match only when the current match
451 	 * is strictly smaller than this value. This mechanism is used
452 	 * only for compression levels >= 4.
453 	 */
454 #define	max_insert_length  max_lazy_match
455 	/*
456 	 * Insert new strings in the hash table only if the match
457 	 * length is not greater than this length. This saves time but
458 	 * degrades compression.  max_insert_length is used only for
459 	 * compression levels <= 3.
460 	 */
461 
462 	int level;	/* compression level (1..9) */
463 	int strategy;	/* favor or force Huffman coding */
464 
465 	uInt good_match;
466 	/* Use a faster search when the previous match is longer than this */
467 
468 	int nice_match;	/* Stop searching when current match exceeds this */
469 
470 	/* used by trees.c: */
471 	/* Didn't use ct_data typedef below to supress compiler warning */
472 	struct ct_data_s dyn_ltree[HEAP_SIZE];	/* literal and length tree */
473 	struct ct_data_s dyn_dtree[2*D_CODES+1];	/* distance tree */
474 	/* Huffman tree for bit lengths */
475 	struct ct_data_s bl_tree[2*BL_CODES+1];
476 
477 	struct tree_desc_s l_desc;	/* desc. for literal tree */
478 	struct tree_desc_s d_desc;	/* desc. for distance tree */
479 	struct tree_desc_s bl_desc;	/* desc. for bit length tree */
480 
481 	ush bl_count[MAX_BITS+1];
482 	/* number of codes at each bit length for an optimal tree */
483 
484 	int heap[2*L_CODES+1];	/* heap used to build the Huffman trees */
485 	int heap_len;	/* number of elements in the heap */
486 	int heap_max;	/* element of largest frequency */
487 	/*
488 	 * The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0]
489 	 * is not used.  The same heap array is used to build all
490 	 * trees.
491 	 */
492 
493 	uch depth[2*L_CODES+1];
494 	/*
495 	 * Depth of each subtree used as tie breaker for trees of
496 	 * equal frequency
497 	 */
498 
499 	uchf *l_buf;	/* buffer for literals or lengths */
500 
501 	uInt lit_bufsize;
502 	/*
503 	 * Size of match buffer for literals/lengths.  There are 4
504 	 * reasons for limiting lit_bufsize to 64K:
505 	 *
506 	 *   - frequencies can be kept in 16 bit counters
507 	 *
508 	 *   - if compression is not successful for the first block,
509 	 *   all input data is still in the window so we can still
510 	 *   emit a stored block even when input comes from standard
511 	 *   input.  (This can also be done for all blocks if
512 	 *   lit_bufsize is not greater than 32K.)
513 	 *
514 	 *   - if compression is not successful for a file smaller
515 	 *   than 64K, we can even emit a stored file instead of a
516 	 *   stored block (saving 5 bytes).  This is applicable only
517 	 *   for zip (not gzip or zlib).
518 	 *
519 	 *   - creating new Huffman trees less frequently may not
520 	 *   provide fast adaptation to changes in the input data
521 	 *   statistics. (Take for example a binary file with poorly
522 	 *   compressible code followed by a highly compressible
523 	 *   string table.) Smaller buffer sizes give fast adaptation
524 	 *   but have of course the overhead of transmitting trees
525 	 *   more frequently.
526 	 *
527 	 *   - I can't count above 4
528 	 */
529 
530 	uInt last_lit;	/* running index in l_buf */
531 
532 	ushf *d_buf;
533 	/*
534 	 * Buffer for distances. To simplify the code, d_buf and l_buf
535 	 * have the same number of elements. To use different lengths,
536 	 * an extra flag array would be necessary.
537 	 */
538 
539 	ulg opt_len;	/* bit length of current block with optimal trees */
540 	ulg static_len;	/* bit length of current block with static trees */
541 	uInt matches;	/* number of string matches in current block */
542 	int last_eob_len;	/* bit length of EOB code for last block */
543 
544 	ulg compressed_len;	/* total bit length of compressed file PPP */
545 #ifdef DEBUG_ZLIB
546 	ulg bits_sent;	/* bit length of the compressed data */
547 #endif
548 
549 	ush bi_buf;
550 	/*
551 	 * Output buffer. bits are inserted starting at the bottom
552 	 * (least significant bits).
553 	 */
554 	int bi_valid;
555 	/*
556 	 * Number of valid bits in bi_buf.  All bits above the last
557 	 * valid bit are always zero.
558 	 */
559 
560 } FAR deflate_state;
561 
562 /*
563  * Output a byte on the stream.  IN assertion: there is enough room in
564  * pending_buf.
565  */
566 #define	put_byte(s, c) {s->pending_buf[s->pending++] = (c); }
567 
568 
569 #define	MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
570 /*
571  * Minimum amount of lookahead, except at the end of the input file.
572  * See deflate.c for comments about the MIN_MATCH+1.
573  */
574 
575 #define	MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
576 /*
577  * In order to simplify the code, particularly on 16 bit machines,
578  * match distances are limited to MAX_DIST instead of WSIZE.
579  */
580 
581 	/* in trees.c */
582 void _tr_init		OF((deflate_state *s));
583 int  _tr_tally		OF((deflate_state *s, unsigned dist, unsigned lc));
584 void  _tr_flush_block	OF((deflate_state *s, charf *buf, ulg stored_len,
585     int eof));
586 void _tr_align		OF((deflate_state *s));
587 void _tr_stored_block	OF((deflate_state *s, charf *buf, ulg stored_len,
588     int eof));
589 void _tr_stored_type_only OF((deflate_state *));	/* PPP */
590 
591 #define	d_code(dist) \
592 	((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
593 /*
594  * Mapping from a distance to a distance code. dist is the distance - 1 and
595  * must not have side effects. _dist_code[256] and _dist_code[257] are never
596  * used.
597  */
598 
599 #ifndef DEBUG_ZLIB
600 /* Inline versions of _tr_tally for speed: */
601 
602 local uch _length_code[];
603 local uch _dist_code[];
604 
605 #define	_tr_tally_lit(s, c, flush) \
606 	{	uch cc = (c); \
607 		s->d_buf[s->last_lit] = 0; \
608 		s->l_buf[s->last_lit++] = cc; \
609 		s->dyn_ltree[cc].Freq++; \
610 		flush = (s->last_lit == s->lit_bufsize-1); \
611 	}
612 #define	_tr_tally_dist(s, distance, length, flush) \
613 	{	uch len = (length); \
614 		ush dist = (distance); \
615 		s->d_buf[s->last_lit] = dist; \
616 		s->l_buf[s->last_lit++] = len; \
617 		dist--; \
618 		s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
619 		s->dyn_dtree[d_code(dist)].Freq++; \
620 		flush = (s->last_lit == s->lit_bufsize-1); \
621 	}
622 #else
623 #define	_tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
624 #define	_tr_tally_dist(s, distance, length, flush) \
625 		flush = _tr_tally(s, distance, length)
626 #endif
627 
628 #endif
629 /* --- deflate.h */
630 
631 /* +++ deflate.c */
632 /*
633  * deflate.c -- compress data using the deflation algorithm
634  * Copyright (C) 1995-1998 Jean-loup Gailly.
635  * For conditions of distribution and use, see copyright notice in zlib.h
636  */
637 
638 /*
639  *  ALGORITHM
640  *
641  *      The "deflation" process depends on being able to identify portions
642  *      of the input text which are identical to earlier input (within a
643  *      sliding window trailing behind the input currently being processed).
644  *
645  *      The most straightforward technique turns out to be the fastest for
646  *      most input files: try all possible matches and select the longest.
647  *      The key feature of this algorithm is that insertions into the string
648  *      dictionary are very simple and thus fast, and deletions are avoided
649  *      completely. Insertions are performed at each input character, whereas
650  *      string matches are performed only when the previous match ends. So it
651  *      is preferable to spend more time in matches to allow very fast string
652  *      insertions and avoid deletions. The matching algorithm for small
653  *      strings is inspired from that of Rabin & Karp. A brute force approach
654  *      is used to find longer strings when a small match has been found.
655  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
656  *      (by Leonid Broukhis).
657  *         A previous version of this file used a more sophisticated algorithm
658  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
659  *      time, but has a larger average cost, uses more memory and is patented.
660  *      However the F&G algorithm may be faster for some highly redundant
661  *      files if the parameter max_chain_length (described below) is too large.
662  *
663  *  ACKNOWLEDGEMENTS
664  *
665  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
666  *      I found it in 'freeze' written by Leonid Broukhis.
667  *      Thanks to many people for bug reports and testing.
668  *
669  *  REFERENCES
670  *
671  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
672  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
673  *
674  *      A description of the Rabin and Karp algorithm is given in the book
675  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
676  *
677  *      Fiala,E.R., and Greene,D.H.
678  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
679  *
680  */
681 
682 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
683 
684 /* #include "deflate.h" */
685 
686 const char deflate_copyright[] =
687 " deflate 1.1.3 Copyright 1995-1998 Jean-loup Gailly ";
688 /*
689  * If you use the zlib library in a product, an acknowledgment is
690  * welcome in the documentation of your product. If for some reason
691  * you cannot include such an acknowledgment, I would appreciate that
692  * you keep this copyright string in the executable of your product.
693  */
694 
695 /*
696  * ===========================================================================
697  *  Function prototypes.
698  */
699 typedef enum {
700 	/* block not completed, need more input or more output */
701 	need_more,
702 	block_done,	/* block flush performed */
703 	/* finish started, need only more output at next deflate */
704 	finish_started,
705 	finish_done	/* finish done, accept no more input or output */
706 } block_state;
707 
708 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
709 /* Compression function. Returns the block state after the call. */
710 
711 local void fill_window	OF((deflate_state *s));
712 local block_state deflate_stored OF((deflate_state *s, int flush));
713 local block_state deflate_fast	OF((deflate_state *s, int flush));
714 local block_state deflate_slow	OF((deflate_state *s, int flush));
715 local void lm_init	OF((deflate_state *s));
716 local void putShortMSB	OF((deflate_state *s, uInt b));
717 local void flush_pending	OF((z_streamp strm));
718 local int read_buf	OF((z_streamp strm, Bytef *buf, unsigned size));
719 #ifdef ASMV
720 void match_init	OF((void));	/* asm code initialization */
721 uInt longest_match	OF((deflate_state *s, IPos cur_match));
722 #else
723 local uInt longest_match	OF((deflate_state *s, IPos cur_match));
724 #endif
725 
726 #ifdef DEBUG_ZLIB
727 local void check_match OF((deflate_state *s, IPos start, IPos match,
728     int length));
729 #endif
730 
731 /*
732  * ===========================================================================
733  * Local data
734  */
735 
736 #define	NIL 0
737 /* Tail of hash chains */
738 
739 #ifndef TOO_FAR
740 #define	TOO_FAR 4096
741 #endif
742 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
743 
744 #define	MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
745 /*
746  * Minimum amount of lookahead, except at the end of the input file.
747  * See deflate.c for comments about the MIN_MATCH+1.
748  */
749 
750 /*
751  * Values for max_lazy_match, good_match and max_chain_length,
752  * depending on the desired pack level (0..9). The values given below
753  * have been tuned to exclude worst case performance for pathological
754  * files. Better values may be found for specific files.
755  */
756 typedef struct config_s {
757 	ush good_length;	/* reduce lazy search above this match length */
758 	ush max_lazy;	/* do not perform lazy search above this match length */
759 	ush nice_length;	/* quit search above this match length */
760 	ush max_chain;
761 	compress_func func;
762 } config;
763 
764 local const config configuration_table[10] = {
765 /*	good lazy nice chain */
766 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
767 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
768 /* 2 */ {4,    5, 16,    8, deflate_fast},
769 /* 3 */ {4,    6, 32,   32, deflate_fast},
770 
771 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
772 /* 5 */ {8,   16, 32,   32, deflate_slow},
773 /* 6 */ {8,   16, 128, 128, deflate_slow},
774 /* 7 */ {8,   32, 128, 256, deflate_slow},
775 /* 8 */ {32, 128, 258, 1024, deflate_slow},
776 /* 9 */ {32, 258, 258, 4096, deflate_slow}};	/* maximum compression */
777 
778 /*
779  * Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
780  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
781  * meaning.
782  */
783 
784 #define	EQUAL 0
785 /* result of memcmp for equal strings */
786 
787 #ifndef NO_DUMMY_DECL
788 struct static_tree_desc_s {int dummy; };	/* for buggy compilers */
789 #endif
790 
791 /*
792  * ===========================================================================
793  * Update a hash value with the given input byte
794  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
795  *    input characters, so that a running hash key can be computed from the
796  *    previous key instead of complete recalculation each time.
797  */
798 #define	UPDATE_HASH(s, h, c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
799 
800 
801 /*
802  * ===========================================================================
803  * Insert string str in the dictionary and set match_head to the previous head
804  * of the hash chain (the most recent string with same hash key). Return
805  * the previous length of the hash chain.
806  * If this file is compiled with -DFASTEST, the compression level is forced
807  * to 1, and no hash chains are maintained.
808  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
809  *    input characters and the first MIN_MATCH bytes of str are valid
810  *    (except for the last MIN_MATCH-1 bytes of the input file).
811  */
812 #ifdef FASTEST
813 #define	INSERT_STRING(s, str, match_head) \
814 	(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
815 	match_head = s->head[s->ins_h], \
816 	s->head[s->ins_h] = (Pos)(str))
817 #else
818 #define	INSERT_STRING(s, str, match_head) \
819 	(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
820 	s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
821 	s->head[s->ins_h] = (Pos)(str))
822 #endif
823 
824 /*
825  * ===========================================================================
826  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
827  * prev[] will be initialized on the fly.
828  */
829 #define	CLEAR_HASH(s) \
830     s->head[s->hash_size-1] = NIL; \
831     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof (*s->head));
832 
833 /* ========================================================================= */
834 int
deflateInit_(strm,level,version,stream_size)835 deflateInit_(strm, level, version, stream_size)
836     z_streamp strm;
837     int level;
838     const char *version;
839     int stream_size;
840 {
841 	(void) deflate_copyright;
842 	return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
843 	    Z_DEFAULT_STRATEGY, version, stream_size);
844 	/* To do: ignore strm->next_in if we use it as window */
845 }
846 
847 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)848 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
849     version, stream_size)
850     z_streamp strm;
851     int  level;
852     int  method;
853     int  windowBits;
854     int  memLevel;
855     int  strategy;
856     const char *version;
857     int stream_size;
858 {
859 	deflate_state *s;
860 	int noheader = 0;
861 	static const char *my_version = ZLIB_VERSION;
862 
863 	ushf *overlay;
864 	/*
865 	 * We overlay pending_buf and d_buf+l_buf. This works since
866 	 * the average output size for (length, distance) codes is <=
867 	 * 24 bits.
868 	 */
869 
870 	if (version == Z_NULL || version[0] != my_version[0] ||
871 	    stream_size != sizeof (z_stream)) {
872 		return (Z_VERSION_ERROR);
873 	}
874 	if (strm == Z_NULL)
875 		return (Z_STREAM_ERROR);
876 
877 	strm->msg = Z_NULL;
878 #ifndef NO_ZCFUNCS
879 	if (strm->zalloc == Z_NULL) {
880 		strm->zalloc = zcalloc;
881 		strm->opaque = (voidpf)0;
882 	}
883 	if (strm->zfree == Z_NULL) strm->zfree = zcfree;
884 #endif
885 
886 	if (level == Z_DEFAULT_COMPRESSION) level = 6;
887 #ifdef FASTEST
888 	level = 1;
889 #endif
890 
891 	if (windowBits < 0) { /* undocumented feature: suppress zlib header */
892 		noheader = 1;
893 		windowBits = -windowBits;
894 	}
895 	if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
896 	    windowBits <= 8 || windowBits > 15 || level < 0 || level > 9 ||
897 	    strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
898 		return (Z_STREAM_ERROR);
899 	}
900 	s = (deflate_state *) ZALLOC(strm, 1, sizeof (deflate_state));
901 	if (s == Z_NULL)
902 		return (Z_MEM_ERROR);
903 	strm->state = (struct internal_state FAR *)s;
904 	s->strm = strm;
905 
906 	s->noheader = noheader;
907 	s->w_bits = windowBits;
908 	s->w_size = 1 << s->w_bits;
909 	s->w_mask = s->w_size - 1;
910 
911 	s->hash_bits = memLevel + 7;
912 	s->hash_size = 1 << s->hash_bits;
913 	s->hash_mask = s->hash_size - 1;
914 	s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
915 
916 	s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof (Byte));
917 	s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof (Pos));
918 	s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof (Pos));
919 
920 	s->lit_bufsize = 1 << (memLevel + 6);	/* 16K elements by default */
921 
922 	overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof (ush)+2);
923 	s->pending_buf = (uchf *) overlay;
924 	s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof (ush)+2L);
925 
926 	if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
927 	    s->pending_buf == Z_NULL) {
928 		strm->msg = ERR_MSG(Z_MEM_ERROR);
929 		s->status = INIT_STATE;
930 		(void) deflateEnd(strm);
931 		return (Z_MEM_ERROR);
932 	}
933 	s->d_buf = overlay + s->lit_bufsize/sizeof (ush);
934 	s->l_buf = s->pending_buf + (1+sizeof (ush))*s->lit_bufsize;
935 
936 	s->level = level;
937 	s->strategy = strategy;
938 	s->method = (Byte)method;
939 
940 	return (deflateReset(strm));
941 }
942 
943 /* ========================================================================= */
944 int
deflateSetDictionary(strm,dictionary,dictLength)945 deflateSetDictionary(strm, dictionary, dictLength)
946     z_streamp strm;
947     const Bytef *dictionary;
948     uInt  dictLength;
949 {
950 	deflate_state *s;
951 	uInt length = dictLength;
952 	uInt n;
953 	IPos hash_head = 0;
954 
955 	if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
956 		return (Z_STREAM_ERROR);
957 
958 	s = (deflate_state *) strm->state;
959 	if (s->status != INIT_STATE)
960 		return (Z_STREAM_ERROR);
961 
962 	strm->adler = adler32(strm->adler, dictionary, dictLength);
963 
964 	if (length < MIN_MATCH)
965 		return (Z_OK);
966 	if (length > MAX_DIST(s)) {
967 		length = MAX_DIST(s);
968 #ifndef USE_DICT_HEAD
969 		/* use the tail of the dictionary */
970 		dictionary += dictLength - length;
971 #endif
972 	}
973 	Assert(length <= s->window_size, "dict copy");
974 	zmemcpy(s->window, dictionary, length);
975 	s->strstart = length;
976 	s->block_start = (long)length;
977 
978 	/*
979 	 * Insert all strings in the hash table (except for the last
980 	 * two bytes).  s->lookahead stays null, so s->ins_h will be
981 	 * recomputed at the next call of fill_window.
982 	 */
983 	s->ins_h = s->window[0];
984 	UPDATE_HASH(s, s->ins_h, s->window[1]);
985 	for (n = 0; n <= length - MIN_MATCH; n++) {
986 		INSERT_STRING(s, n, hash_head);
987 	}
988 	if (hash_head) hash_head = 0;	/* to make compiler happy */
989 	return (Z_OK);
990 }
991 
992 /* ========================================================================= */
993 int
deflateReset(strm)994 deflateReset(strm)
995     z_streamp strm;
996 {
997 	deflate_state *s;
998 
999 	if (strm == Z_NULL || strm->state == Z_NULL ||
1000 	    strm->zalloc == Z_NULL || strm->zfree == Z_NULL)
1001 		return (Z_STREAM_ERROR);
1002 
1003 	strm->total_in = strm->total_out = 0;
1004 	/* use zfree if we ever allocate msg dynamically */
1005 	strm->msg = Z_NULL;
1006 	strm->data_type = Z_UNKNOWN;
1007 
1008 	s = (deflate_state *)strm->state;
1009 	s->pending = 0;
1010 	s->pending_out = s->pending_buf;
1011 
1012 	if (s->noheader < 0) {
1013 		/* was set to -1 by deflate(..., Z_FINISH); */
1014 		s->noheader = 0;
1015 	}
1016 	s->status = s->noheader ? BUSY_STATE : INIT_STATE;
1017 	strm->adler = 1;
1018 	s->last_flush = Z_NO_FLUSH;
1019 
1020 	_tr_init(s);
1021 	lm_init(s);
1022 
1023 	return (Z_OK);
1024 }
1025 
1026 /* ========================================================================= */
1027 int
deflateParams(strm,level,strategy)1028 deflateParams(strm, level, strategy)
1029     z_streamp strm;
1030     int level;
1031     int strategy;
1032 {
1033 	deflate_state *s;
1034 	compress_func func;
1035 	int err = Z_OK;
1036 
1037 	if (strm == Z_NULL || strm->state == Z_NULL)
1038 		return (Z_STREAM_ERROR);
1039 	s = (deflate_state *) strm->state;
1040 
1041 	if (level == Z_DEFAULT_COMPRESSION) {
1042 		level = 6;
1043 	}
1044 	if (level < 0 || level > 9 || strategy < 0 ||
1045 	    strategy > Z_HUFFMAN_ONLY) {
1046 		return (Z_STREAM_ERROR);
1047 	}
1048 	func = configuration_table[s->level].func;
1049 
1050 	if (func != configuration_table[level].func && strm->total_in != 0) {
1051 		/* Flush the last buffer: */
1052 		err = deflate(strm, Z_PARTIAL_FLUSH);
1053 	}
1054 	if (s->level != level) {
1055 		s->level = level;
1056 		s->max_lazy_match   = configuration_table[level].max_lazy;
1057 		s->good_match	= configuration_table[level].good_length;
1058 		s->nice_match	= configuration_table[level].nice_length;
1059 		s->max_chain_length = configuration_table[level].max_chain;
1060 	}
1061 	s->strategy = strategy;
1062 	return (err);
1063 }
1064 
1065 /*
1066  * =========================================================================
1067  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1068  * IN assertion: the stream state is correct and there is enough room in
1069  * pending_buf.
1070  */
1071 local void
putShortMSB(s,b)1072 putShortMSB(s, b)
1073     deflate_state *s;
1074     uInt b;
1075 {
1076 	put_byte(s, (Byte)(b >> 8));
1077 	put_byte(s, (Byte)(b & 0xff));
1078 }
1079 
1080 /*
1081  * =========================================================================
1082  * Flush as much pending output as possible. All deflate() output goes
1083  * through this function so some applications may wish to modify it
1084  * to avoid allocating a large strm->next_out buffer and copying into it.
1085  * (See also read_buf()).
1086  */
1087 local void
flush_pending(strm)1088 flush_pending(strm)
1089     z_streamp strm;
1090 {
1091 	deflate_state *s = (deflate_state *) strm->state;
1092 	unsigned len = s->pending;
1093 
1094 	if (len > strm->avail_out) len = strm->avail_out;
1095 	if (len == 0)
1096 		return;
1097 
1098 	if (strm->next_out != Z_NULL) {		/* PPP */
1099 		zmemcpy(strm->next_out, s->pending_out, len);
1100 		strm->next_out += len;
1101 	}					/* PPP */
1102 	s->pending_out += len;
1103 	strm->total_out += len;
1104 	strm->avail_out  -= len;
1105 	s->pending -= len;
1106 	if (s->pending == 0) {
1107 		s->pending_out = s->pending_buf;
1108 	}
1109 }
1110 
1111 /* ========================================================================= */
1112 int
deflate(strm,flush)1113 deflate(strm, flush)
1114     z_streamp strm;
1115     int flush;
1116 {
1117 	int old_flush;	/* value of flush param for previous deflate call */
1118 	deflate_state *s;
1119 
1120 	if (strm == Z_NULL || strm->state == Z_NULL ||
1121 	    flush > Z_FINISH || flush < 0) {
1122 		return (Z_STREAM_ERROR);
1123 	}
1124 	s = (deflate_state *) strm->state;
1125 
1126 	if (/* strm->next_out == Z_NULL || --- we allow null --- PPP */
1127 		(strm->next_in == Z_NULL && strm->avail_in != 0) ||
1128 	    (s->status == FINISH_STATE && flush != Z_FINISH)) {
1129 		ERR_RETURN(strm, Z_STREAM_ERROR);
1130 	}
1131 	if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1132 
1133 	s->strm = strm;	/* just in case */
1134 	old_flush = s->last_flush;
1135 	s->last_flush = flush;
1136 
1137 	/* Write the zlib header */
1138 	if (s->status == INIT_STATE) {
1139 
1140 		uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1141 		uInt level_flags = (s->level-1) >> 1;
1142 
1143 		if (level_flags > 3) level_flags = 3;
1144 		header |= (level_flags << 6);
1145 		if (s->strstart != 0) header |= PRESET_DICT;
1146 		header += 31 - (header % 31);
1147 
1148 		s->status = BUSY_STATE;
1149 		putShortMSB(s, header);
1150 
1151 		/* Save the adler32 of the preset dictionary: */
1152 		if (s->strstart != 0) {
1153 			putShortMSB(s, (uInt)(strm->adler >> 16));
1154 			putShortMSB(s, (uInt)(strm->adler & 0xffff));
1155 		}
1156 		strm->adler = 1L;
1157 	}
1158 
1159 	/* Flush as much pending output as possible */
1160 	if (s->pending != 0) {
1161 		flush_pending(strm);
1162 		if (strm->avail_out == 0) {
1163 			/*
1164 			 * Since avail_out is 0, deflate will be
1165 			 * called again with more output space, but
1166 			 * possibly with both pending and avail_in
1167 			 * equal to zero. There won't be anything to
1168 			 * do, but this is not an error situation so
1169 			 * make sure we return OK instead of BUF_ERROR
1170 			 * at next call of deflate:
1171 			 */
1172 			s->last_flush = -1;
1173 			return (Z_OK);
1174 		}
1175 
1176 		/*
1177 		 * Make sure there is something to do and avoid
1178 		 * duplicate consecutive flushes. For repeated and
1179 		 * useless calls with Z_FINISH, we keep returning
1180 		 * Z_STREAM_END instead of Z_BUFF_ERROR.
1181 		 */
1182 	} else if (strm->avail_in == 0 && flush <= old_flush &&
1183 	    flush != Z_FINISH) {
1184 		ERR_RETURN(strm, Z_BUF_ERROR);
1185 	}
1186 
1187 	/* User must not provide more input after the first FINISH: */
1188 	if (s->status == FINISH_STATE && strm->avail_in != 0) {
1189 		ERR_RETURN(strm, Z_BUF_ERROR);
1190 	}
1191 
1192 	/* Start a new block or continue the current one. */
1193 	if (strm->avail_in != 0 || s->lookahead != 0 ||
1194 	    (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1195 		block_state bstate;
1196 
1197 		bstate = (*(configuration_table[s->level].func))(s, flush);
1198 
1199 		if (bstate == finish_started || bstate == finish_done) {
1200 			s->status = FINISH_STATE;
1201 		}
1202 		if (bstate == need_more || bstate == finish_started) {
1203 			if (strm->avail_out == 0) {
1204 				/* avoid BUF_ERROR next call, see above */
1205 				s->last_flush = -1;
1206 			}
1207 			return (Z_OK);
1208 			/*
1209 			 * If flush != Z_NO_FLUSH && avail_out == 0,
1210 			 * the next call of deflate should use the
1211 			 * same flush parameter to make sure that the
1212 			 * flush is complete. So we don't have to
1213 			 * output an empty block here, this will be
1214 			 * done at next call. This also ensures that
1215 			 * for a very small output buffer, we emit at
1216 			 * most one empty block.
1217 			 */
1218 		}
1219 		if (bstate == block_done) {
1220 			if (flush == Z_PARTIAL_FLUSH) {
1221 				_tr_align(s);
1222 			} else if (flush == Z_PACKET_FLUSH) {	/* PPP */
1223 				/*
1224 				 * Output just the 3-bit `stored'
1225 				 * block type value, but not a zero
1226 				 * length.  Added for PPP.
1227 				 */
1228 				_tr_stored_type_only(s);	/* PPP */
1229 			} else { /* FULL_FLUSH or SYNC_FLUSH */
1230 				_tr_stored_block(s, (char *)0, 0L, 0);
1231 				/*
1232 				 * For a full flush, this empty block
1233 				 * will be recognized as a special
1234 				 * marker by inflate_sync().
1235 				 */
1236 				if (flush == Z_FULL_FLUSH) {
1237 					CLEAR_HASH(s);	/* forget history */
1238 				}
1239 			}
1240 			flush_pending(strm);
1241 			if (strm->avail_out == 0) {
1242 				/* avoid BUF_ERROR at next call, see above */
1243 				s->last_flush = -1;
1244 				return (Z_OK);
1245 			}
1246 		}
1247 	}
1248 	Assert(strm->avail_out > 0, "bug2");
1249 
1250 	if (flush != Z_FINISH)
1251 		return (Z_OK);
1252 	if (s->noheader)
1253 		return (Z_STREAM_END);
1254 
1255 	/* Write the zlib trailer (adler32) */
1256 	putShortMSB(s, (uInt)(strm->adler >> 16));
1257 	putShortMSB(s, (uInt)(strm->adler & 0xffff));
1258 	flush_pending(strm);
1259 	/*
1260 	 * If avail_out is zero, the application will call deflate
1261 	 * again to flush the rest.
1262 	 */
1263 	s->noheader = -1;	/* write the trailer only once! */
1264 	return (s->pending != 0 ? Z_OK : Z_STREAM_END);
1265 }
1266 
1267 /* ========================================================================= */
1268 int
deflateEnd(strm)1269 deflateEnd(strm)
1270     z_streamp strm;
1271 {
1272 	int status;
1273 	deflate_state *s;
1274 
1275 	if (strm == Z_NULL || strm->state == Z_NULL)
1276 		return (Z_STREAM_ERROR);
1277 	s = (deflate_state *) strm->state;
1278 
1279 	status = s->status;
1280 	if (status != INIT_STATE && status != BUSY_STATE &&
1281 	    status != FINISH_STATE) {
1282 		return (Z_STREAM_ERROR);
1283 	}
1284 
1285 	/* Deallocate in reverse order of allocations: */
1286 	TRY_FREE(strm, s->pending_buf);
1287 	TRY_FREE(strm, s->head);
1288 	TRY_FREE(strm, s->prev);
1289 	TRY_FREE(strm, s->window);
1290 
1291 	ZFREE(strm, s);
1292 	strm->state = Z_NULL;
1293 
1294 	return (status == BUSY_STATE ? Z_DATA_ERROR : Z_OK);
1295 }
1296 
1297 /*
1298  * =========================================================================
1299  * Copy the source state to the destination state.
1300  * To simplify the source, this is not supported for 16-bit MSDOS (which
1301  * doesn't have enough memory anyway to duplicate compression states).
1302  */
1303 int
deflateCopy(dest,source)1304 deflateCopy(dest, source)
1305     z_streamp dest;
1306     z_streamp source;
1307 {
1308 #ifdef MAXSEG_64K
1309 	return (Z_STREAM_ERROR);
1310 #else
1311 	deflate_state *ds;
1312 	deflate_state *ss;
1313 	ushf *overlay;
1314 
1315 	if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1316 		return (Z_STREAM_ERROR);
1317 	ss = (deflate_state *) source->state;
1318 
1319 	zmemcpy(dest, source, sizeof (*dest));
1320 
1321 	ds = (deflate_state *) ZALLOC(dest, 1, sizeof (deflate_state));
1322 	if (ds == Z_NULL)
1323 		return (Z_MEM_ERROR);
1324 	dest->state = (struct internal_state FAR *) ds;
1325 	zmemcpy(ds, ss, sizeof (*ds));
1326 	ds->strm = dest;
1327 
1328 	ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof (Byte));
1329 	ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof (Pos));
1330 	ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof (Pos));
1331 	overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof (ush)+2);
1332 	ds->pending_buf = (uchf *) overlay;
1333 
1334 	if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1335 	    ds->pending_buf == Z_NULL) {
1336 		ds->status = INIT_STATE;
1337 		(void) deflateEnd(dest);
1338 		return (Z_MEM_ERROR);
1339 	}
1340 	/* following zmemcpy doesn't work for 16-bit MSDOS */
1341 	zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof (Byte));
1342 	zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof (Pos));
1343 	zmemcpy(ds->head, ss->head, ds->hash_size * sizeof (Pos));
1344 	zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1345 
1346 	ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1347 	ds->d_buf = overlay + ds->lit_bufsize/sizeof (ush);
1348 	ds->l_buf = ds->pending_buf + (1+sizeof (ush))*ds->lit_bufsize;
1349 
1350 	ds->l_desc.dyn_tree = ds->dyn_ltree;
1351 	ds->d_desc.dyn_tree = ds->dyn_dtree;
1352 	ds->bl_desc.dyn_tree = ds->bl_tree;
1353 
1354 	return (Z_OK);
1355 #endif
1356 }
1357 
1358 /*
1359  * ===========================================================================
1360  * Return the number of bytes of output which are immediately available
1361  * for output from the decompressor.		---PPP---
1362  */
1363 int
deflateOutputPending(strm)1364 deflateOutputPending(strm)
1365     z_streamp strm;
1366 {
1367 	if (strm == Z_NULL || strm->state == Z_NULL)
1368 		return (0);
1369 
1370 	return (((deflate_state *)(strm->state))->pending);
1371 }
1372 
1373 /*
1374  * ===========================================================================
1375  * Read a new buffer from the current input stream, update the adler32
1376  * and total number of bytes read.  All deflate() input goes through
1377  * this function so some applications may wish to modify it to avoid
1378  * allocating a large strm->next_in buffer and copying from it.
1379  * (See also flush_pending()).
1380  */
1381 local int
read_buf(strm,buf,size)1382 read_buf(strm, buf, size)
1383     z_streamp strm;
1384     Bytef *buf;
1385     unsigned size;
1386 {
1387 	unsigned len = strm->avail_in;
1388 
1389 	if (len > size) len = size;
1390 	if (len == 0)
1391 		return (0);
1392 
1393 	strm->avail_in  -= len;
1394 
1395 	if (!((deflate_state *)(strm->state))->noheader) {
1396 		strm->adler = adler32(strm->adler, strm->next_in, len);
1397 	}
1398 	zmemcpy(buf, strm->next_in, len);
1399 	strm->next_in  += len;
1400 	strm->total_in += len;
1401 
1402 	return ((int)len);
1403 }
1404 
1405 /*
1406  * ===========================================================================
1407  * Initialize the "longest match" routines for a new zlib stream
1408  */
1409 local void
lm_init(s)1410 lm_init(s)
1411     deflate_state *s;
1412 {
1413 	s->window_size = (ulg)2L*s->w_size;
1414 
1415 	CLEAR_HASH(s);
1416 
1417 	/* Set the default configuration parameters: */
1418 	s->max_lazy_match   = configuration_table[s->level].max_lazy;
1419 	s->good_match	= configuration_table[s->level].good_length;
1420 	s->nice_match	= configuration_table[s->level].nice_length;
1421 	s->max_chain_length = configuration_table[s->level].max_chain;
1422 
1423 	s->strstart = 0;
1424 	s->block_start = 0L;
1425 	s->lookahead = 0;
1426 	s->match_length = s->prev_length = MIN_MATCH-1;
1427 	s->match_available = 0;
1428 	s->ins_h = 0;
1429 #ifdef ASMV
1430 	match_init();	/* initialize the asm code */
1431 #endif
1432 }
1433 
1434 /*
1435  * ===========================================================================
1436  * Set match_start to the longest match starting at the given string and
1437  * return its length. Matches shorter or equal to prev_length are discarded,
1438  * in which case the result is equal to prev_length and match_start is
1439  * garbage.
1440  * IN assertions: cur_match is the head of the hash chain for the current
1441  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1442  * OUT assertion: the match length is not greater than s->lookahead.
1443  */
1444 #ifndef ASMV
1445 /*
1446  * For 80x86 and 680x0, an optimized version will be provided in
1447  * match.asm or match.S. The code will be functionally equivalent.
1448  */
1449 #ifndef FASTEST
1450 local uInt
longest_match(s,cur_match)1451 longest_match(s, cur_match)
1452     deflate_state *s;
1453     IPos cur_match;	/* current match */
1454 {
1455 	/* max hash chain length */
1456 	unsigned chain_length = s->max_chain_length;
1457 	register Bytef *scan = s->window + s->strstart;	/* current string */
1458 	register Bytef *match;	/* matched string */
1459 	register int len;	/* length of current match */
1460 	int best_len = s->prev_length;	/* best match length so far */
1461 	int nice_match = s->nice_match;	/* stop if match long enough */
1462 	IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1463 	    s->strstart - (IPos)MAX_DIST(s) : NIL;
1464 	/*
1465 	 * Stop when cur_match becomes <= limit. To simplify the code,
1466 	 * we prevent matches with the string of window index 0.
1467 	 */
1468 	Posf *prev = s->prev;
1469 	uInt wmask = s->w_mask;
1470 
1471 #ifdef UNALIGNED_OK
1472 	/*
1473 	 * Compare two bytes at a time. Note: this is not always
1474 	 * beneficial.  Try with and without -DUNALIGNED_OK to check.
1475 	 */
1476 	register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1477 	register ush scan_start = *(ushf*)scan;
1478 	register ush scan_end   = *(ushf*)(scan+best_len-1);
1479 #else
1480 	register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1481 	register Byte scan_end1  = scan[best_len-1];
1482 	register Byte scan_end   = scan[best_len];
1483 #endif
1484 
1485 	/*
1486 	 * The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2
1487 	 * multiple of 16.  It is easy to get rid of this optimization
1488 	 * if necessary.
1489 	 */
1490 	Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1491 
1492 	/* Do not waste too much time if we already have a good match: */
1493 	if (s->prev_length >= s->good_match) {
1494 		chain_length >>= 2;
1495 	}
1496 	/*
1497 	 * Do not look for matches beyond the end of the input. This
1498 	 * is necessary to make deflate deterministic.
1499 	 */
1500 	if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1501 
1502 	Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD,
1503 	    "need lookahead");
1504 
1505 	do {
1506 		Assert(cur_match <= s->strstart, "no future");
1507 		match = s->window + cur_match;
1508 
1509 		/*
1510 		 * Skip to next match if the match length cannot
1511 		 * increase or if the match length is less than 2:
1512 		 */
1513 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1514 		/*
1515 		 * This code assumes sizeof (unsigned short) == 2. Do
1516 		 * not use UNALIGNED_OK if your compiler uses a
1517 		 * different size.
1518 		 */
1519 		if (*(ushf*)(match+best_len-1) != scan_end ||
1520 		    *(ushf*)match != scan_start) continue;
1521 
1522 		/*
1523 		 * It is not necessary to compare scan[2] and match[2]
1524 		 * since they are always equal when the other bytes
1525 		 * match, given that the hash keys are equal and that
1526 		 * HASH_BITS >= 8. Compare 2 bytes at a time at
1527 		 * strstart+3, +5, ... up to strstart+257. We check
1528 		 * for insufficient lookahead only every 4th
1529 		 * comparison; the 128th check will be made at
1530 		 * strstart+257. If MAX_MATCH-2 is not a multiple of
1531 		 * 8, it is necessary to put more guard bytes at the
1532 		 * end of the window, or to check more often for
1533 		 * insufficient lookahead.
1534 		 */
1535 		Assert(scan[2] == match[2], "scan[2]?");
1536 		scan++, match++;
1537 		do {
1538 		} while (*(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1539 		    *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1540 		    *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1541 		    *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1542 		    scan < strend);
1543 		/* The funny "do {}" generates better code on most compilers */
1544 
1545 		/* Here, scan <= window+strstart+257 */
1546 		Assert(scan <= s->window+(unsigned)(s->window_size-1),
1547 		    "wild scan");
1548 		if (*scan == *match) scan++;
1549 
1550 		len = (MAX_MATCH - 1) - (int)(strend-scan);
1551 		scan = strend - (MAX_MATCH-1);
1552 
1553 #else /* UNALIGNED_OK */
1554 
1555 		if (match[best_len]	!= scan_end	||
1556 		    match[best_len-1]	!= scan_end1	||
1557 		    *match		!= *scan	||
1558 		    *++match		!= scan[1])
1559 			continue;
1560 
1561 		/*
1562 		 * The check at best_len-1 can be removed because it
1563 		 * will be made again later. (This heuristic is not
1564 		 * always a win.)  It is not necessary to compare
1565 		 * scan[2] and match[2] since they are always equal
1566 		 * when the other bytes match, given that the hash
1567 		 * keys are equal and that HASH_BITS >= 8.
1568 		 */
1569 		scan += 2, match++;
1570 		Assert(*scan == *match, "match[2]?");
1571 
1572 		/*
1573 		 * We check for insufficient lookahead only every 8th
1574 		 * comparison; the 256th check will be made at
1575 		 * strstart+258.
1576 		 */
1577 		do {
1578 		} while (*++scan == *++match && *++scan == *++match &&
1579 		    *++scan == *++match && *++scan == *++match &&
1580 		    *++scan == *++match && *++scan == *++match &&
1581 		    *++scan == *++match && *++scan == *++match &&
1582 		    scan < strend);
1583 
1584 		Assert(scan <= s->window+(unsigned)(s->window_size-1),
1585 		    "wild scan");
1586 
1587 		len = MAX_MATCH - (int)(strend - scan);
1588 		scan = strend - MAX_MATCH;
1589 
1590 #endif /* UNALIGNED_OK */
1591 
1592 		if (len > best_len) {
1593 			s->match_start = cur_match;
1594 			best_len = len;
1595 			if (len >= nice_match) break;
1596 #ifdef UNALIGNED_OK
1597 			scan_end = *(ushf*)(scan+best_len-1);
1598 #else
1599 			scan_end1  = scan[best_len-1];
1600 			scan_end   = scan[best_len];
1601 #endif
1602 		}
1603 	} while ((cur_match = prev[cur_match & wmask]) > limit &&
1604 	    --chain_length != 0);
1605 
1606 	if ((uInt)best_len <= s->lookahead)
1607 		return (best_len);
1608 	return (s->lookahead);
1609 }
1610 #else /* FASTEST */
1611 /*
1612  * ---------------------------------------------------------------------------
1613  * Optimized version for level == 1 only
1614  */
1615 local uInt
longest_match(s,cur_match)1616 longest_match(s, cur_match)
1617 deflate_state *s;
1618 IPos cur_match;		/* current match */
1619 {
1620 	register Bytef *scan = s->window + s->strstart; /* current string */
1621 	register Bytef *match;		/* matched string */
1622 	register int len;			/* length of current match */
1623 	register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1624 
1625 	/*
1626 	 * The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2
1627 	 * multiple of 16.  It is easy to get rid of this optimization
1628 	 * if necessary.
1629 	 */
1630 	Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1631 
1632 	Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD,
1633 	    "need lookahead");
1634 
1635 	Assert(cur_match <= s->strstart, "no future");
1636 
1637 	match = s->window + cur_match;
1638 
1639 	/* Return failure if the match length is less than 2: */
1640 	if (match[0] != scan[0] || match[1] != scan[1])
1641 		return (MIN_MATCH-1);
1642 
1643 	/*
1644 	 * The check at best_len-1 can be removed because it will be
1645 	 * made again later. (This heuristic is not always a win.)  It
1646 	 * is not necessary to compare scan[2] and match[2] since they
1647 	 * are always equal when the other bytes match, given that the
1648 	 * hash keys are equal and that HASH_BITS >= 8.
1649 	 */
1650 	scan += 2, match += 2;
1651 	Assert(*scan == *match, "match[2]?");
1652 
1653 	/*
1654 	 * We check for insufficient lookahead only every 8th comparison;
1655 	 * the 256th check will be made at strstart+258.
1656 	 */
1657 	do {
1658 	} while (*++scan == *++match && *++scan == *++match &&
1659 	    *++scan == *++match && *++scan == *++match &&
1660 	    *++scan == *++match && *++scan == *++match &&
1661 	    *++scan == *++match && *++scan == *++match &&
1662 	    scan < strend);
1663 
1664 	Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1665 
1666 	len = MAX_MATCH - (int)(strend - scan);
1667 
1668 	if (len < MIN_MATCH)
1669 		return (MIN_MATCH - 1);
1670 
1671 	s->match_start = cur_match;
1672 	return (len <= s->lookahead ? len : s->lookahead);
1673 }
1674 #endif /* FASTEST */
1675 #endif /* ASMV */
1676 
1677 #ifdef DEBUG_ZLIB
1678 /*
1679  * ===========================================================================
1680  * Check that the match at match_start is indeed a match.
1681  */
1682 local void
check_match(s,start,match,length)1683 check_match(s, start, match, length)
1684     deflate_state *s;
1685     IPos start, match;
1686     int length;
1687 {
1688 	/* check that the match is indeed a match */
1689 	if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) {
1690 		fprintf(stderr, " start %u, match %u, length %d\n",
1691 		    start, match, length);
1692 		do {
1693 			fprintf(stderr, "%c%c", s->window[match++],
1694 			    s->window[start++]);
1695 		} while (--length != 0);
1696 		z_error("invalid match");
1697 	}
1698 	if (z_verbose > 1) {
1699 		fprintf(stderr, "\\[%d,%d]", start-match, length);
1700 		do { putc(s->window[start++], stderr); } while (--length != 0);
1701 	}
1702 }
1703 #else
1704 #define	check_match(s, start, match, length)
1705 #endif
1706 
1707 /*
1708  * ===========================================================================
1709  * Fill the window when the lookahead becomes insufficient.
1710  * Updates strstart and lookahead.
1711  *
1712  * IN assertion: lookahead < MIN_LOOKAHEAD
1713  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1714  *    At least one byte has been read, or avail_in == 0; reads are
1715  *    performed for at least two bytes (required for the zip translate_eol
1716  *    option -- not supported here).
1717  */
1718 local void
fill_window(s)1719 fill_window(s)
1720     deflate_state *s;
1721 {
1722 	register unsigned n, m;
1723 	register Posf *p;
1724 	unsigned more;	/* Amount of free space at the end of the window. */
1725 	uInt wsize = s->w_size;
1726 
1727 	do {
1728 		more = (unsigned)(s->window_size -(ulg)s->lookahead -
1729 		    (ulg)s->strstart);
1730 
1731 		/* Deal with !@#$% 64K limit: */
1732 		if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1733 			more = wsize;
1734 
1735 		} else if (more == (unsigned)(-1)) {
1736 			/*
1737 			 * Very unlikely, but possible on 16 bit
1738 			 * machine if strstart == 0 and lookahead == 1
1739 			 * (input done one byte at time)
1740 			 */
1741 			more--;
1742 
1743 			/*
1744 			 * If the window is almost full and there is
1745 			 * insufficient lookahead, move the upper half
1746 			 * to the lower one to make room in the upper
1747 			 * half.
1748 			 */
1749 		} else if (s->strstart >= wsize+MAX_DIST(s)) {
1750 
1751 			Assert(wsize+wsize <= s->window_size, "wsize*2");
1752 			zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1753 			s->match_start -= wsize;
1754 			/* we now have strstart >= MAX_DIST */
1755 			s->strstart    -= wsize;
1756 			s->block_start -= (long)wsize;
1757 
1758 			/*
1759 			 * Slide the hash table (could be avoided with
1760 			 * 32 bit values at the expense of memory
1761 			 * usage). We slide even when level == 0 to
1762 			 * keep the hash table consistent if we switch
1763 			 * back to level > 0 later. (Using level 0
1764 			 * permanently is not an optimal usage of
1765 			 * zlib, so we don't care about this
1766 			 * pathological case.)
1767 			 */
1768 			n = s->hash_size;
1769 			p = &s->head[n];
1770 			do {
1771 				m = *--p;
1772 				*p = (Pos)(m >= wsize ? m-wsize : NIL);
1773 			} while (--n);
1774 
1775 			n = wsize;
1776 #ifndef FASTEST
1777 			p = &s->prev[n];
1778 			do {
1779 				m = *--p;
1780 				*p = (Pos)(m >= wsize ? m-wsize : NIL);
1781 				/*
1782 				 * If n is not on any hash chain,
1783 				 * prev[n] is garbage but its value
1784 				 * will never be used.
1785 				 */
1786 			} while (--n);
1787 #endif
1788 			more += wsize;
1789 		}
1790 		if (s->strm->avail_in == 0)
1791 			return;
1792 
1793 		/*
1794 		 * If there was no sliding:
1795 		 *    strstart <= WSIZE+MAX_DIST-1 &&
1796 		 *	lookahead <= MIN_LOOKAHEAD - 1 &&
1797 		 *    more == window_size - lookahead - strstart
1798 		 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE +
1799 		 *	MAX_DIST-1)
1800 		 * => more >= window_size - 2*WSIZE + 2
1801 		 * In the BIG_MEM or MMAP case (not yet supported),
1802 		 *   window_size == input_size + MIN_LOOKAHEAD  &&
1803 		 *   strstart + s->lookahead <= input_size =>
1804 		 *	more >= MIN_LOOKAHEAD.
1805 		 * Otherwise, window_size == 2*WSIZE so more >= 2.
1806 		 * If there was sliding, more >= WSIZE. So in all cases,
1807 		 * more >= 2.
1808 		 */
1809 		Assert(more >= 2, "more < 2");
1810 		Assert(s->strstart + s->lookahead + more <= s->window_size,
1811 		    "read too much");
1812 
1813 		n = read_buf(s->strm, s->window + s->strstart + s->lookahead,
1814 		    more);
1815 		s->lookahead += n;
1816 
1817 		/* Initialize the hash value now that we have some input: */
1818 		if (s->lookahead >= MIN_MATCH) {
1819 			s->ins_h = s->window[s->strstart];
1820 			UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1821 #if MIN_MATCH != 3
1822 			Call UPDATE_HASH() MIN_MATCH-3 more times
1823 #endif
1824 			    }
1825 		/*
1826 		 * If the whole input has less than MIN_MATCH bytes,
1827 		 * ins_h is garbage, but this is not important since
1828 		 * only literal bytes will be emitted.
1829 		 */
1830 
1831 	} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1832 }
1833 
1834 /*
1835  * ===========================================================================
1836  * Flush the current block, with given end-of-file flag.
1837  * IN assertion: strstart is set to the end of the current match.
1838  */
1839 #define	FLUSH_BLOCK_ONLY(s, eof) { \
1840 	_tr_flush_block(s, (s->block_start >= 0L ? \
1841 		(charf *)&s->window[(unsigned)s->block_start] : \
1842 		(charf *)Z_NULL), \
1843 		(ulg)((long)s->strstart - s->block_start), \
1844 		(eof)); \
1845 	s->block_start = s->strstart; \
1846 	flush_pending(s->strm); \
1847 	Tracev((stderr, "[FLUSH]")); \
1848 }
1849 
1850 /* Same but force premature exit if necessary. */
1851 #define	FLUSH_BLOCK(s, eof) { \
1852 	FLUSH_BLOCK_ONLY(s, eof); \
1853 	if (s->strm->avail_out == 0) \
1854 		return ((eof) ? finish_started : need_more); \
1855 }
1856 
1857 /*
1858  * ===========================================================================
1859  * Copy without compression as much as possible from the input stream, return
1860  * the current block state.
1861  * This function does not insert new strings in the dictionary since
1862  * uncompressible data is probably not useful. This function is used
1863  * only for the level=0 compression option.
1864  * NOTE: this function should be optimized to avoid extra copying from
1865  * window to pending_buf.
1866  */
1867 local block_state
deflate_stored(s,flush)1868 deflate_stored(s, flush)
1869     deflate_state *s;
1870     int flush;
1871 {
1872 	/*
1873 	 * Stored blocks are limited to 0xffff bytes, pending_buf is
1874 	 * limited to pending_buf_size, and each stored block has a 5
1875 	 * byte header:
1876 	 */
1877 	ulg max_block_size = 0xffff;
1878 	ulg max_start;
1879 
1880 	if (max_block_size > s->pending_buf_size - 5) {
1881 		max_block_size = s->pending_buf_size - 5;
1882 	}
1883 
1884 	/* Copy as much as possible from input to output: */
1885 	for (;;) {
1886 		/* Fill the window as much as possible: */
1887 		if (s->lookahead <= 1) {
1888 
1889 			Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1890 			    s->block_start >= (long)s->w_size,
1891 			    "slide too late");
1892 
1893 			fill_window(s);
1894 			if (s->lookahead == 0 && flush == Z_NO_FLUSH)
1895 				return (need_more);
1896 
1897 			if (s->lookahead == 0)
1898 				break;	/* flush the current block */
1899 		}
1900 		Assert(s->block_start >= 0L, "block gone");
1901 
1902 		s->strstart += s->lookahead;
1903 		s->lookahead = 0;
1904 
1905 		/* Emit a stored block if pending_buf will be full: */
1906 		max_start = s->block_start + max_block_size;
1907 		if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1908 			/*
1909 			 * strstart == 0 is possible when wraparound
1910 			 * on 16-bit machine
1911 			 */
1912 			s->lookahead = (uInt)(s->strstart - max_start);
1913 			s->strstart = (uInt)max_start;
1914 			FLUSH_BLOCK(s, 0);
1915 		}
1916 		/*
1917 		 * Flush if we may have to slide, otherwise
1918 		 * block_start may become negative and the data will
1919 		 * be gone:
1920 		 */
1921 		if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1922 			FLUSH_BLOCK(s, 0);
1923 		}
1924 	}
1925 	FLUSH_BLOCK(s, flush == Z_FINISH);
1926 	return (flush == Z_FINISH ? finish_done : block_done);
1927 }
1928 
1929 /*
1930  * ===========================================================================
1931  * Compress as much as possible from the input stream, return the current
1932  * block state.
1933  * This function does not perform lazy evaluation of matches and inserts
1934  * new strings in the dictionary only for unmatched strings or for short
1935  * matches. It is used only for the fast compression options.
1936  */
1937 local block_state
deflate_fast(s,flush)1938 deflate_fast(s, flush)
1939     deflate_state *s;
1940     int flush;
1941 {
1942 	IPos hash_head = NIL;	/* head of the hash chain */
1943 	int bflush;	/* set if current block must be flushed */
1944 
1945 	for (;;) {
1946 		/*
1947 		 * Make sure that we always have enough lookahead,
1948 		 * except at the end of the input file. We need
1949 		 * MAX_MATCH bytes for the next match, plus MIN_MATCH
1950 		 * bytes to insert the string following the next
1951 		 * match.
1952 		 */
1953 		if (s->lookahead < MIN_LOOKAHEAD) {
1954 			fill_window(s);
1955 			if (s->lookahead < MIN_LOOKAHEAD &&
1956 			    flush == Z_NO_FLUSH) {
1957 				return (need_more);
1958 			}
1959 			if (s->lookahead == 0)
1960 				break;	/* flush the current block */
1961 		}
1962 
1963 		/*
1964 		 * Insert the string window[strstart .. strstart+2] in
1965 		 * the dictionary, and set hash_head to the head of
1966 		 * the hash chain:
1967 		 */
1968 		if (s->lookahead >= MIN_MATCH) {
1969 			INSERT_STRING(s, s->strstart, hash_head);
1970 		}
1971 
1972 		/*
1973 		 * Find the longest match, discarding those <=
1974 		 * prev_length.  At this point we have always
1975 		 * match_length < MIN_MATCH
1976 		 */
1977 		if (hash_head != NIL && s->strstart - hash_head <=
1978 		    MAX_DIST(s)) {
1979 			/*
1980 			 * To simplify the code, we prevent matches
1981 			 * with the string of window index 0 (in
1982 			 * particular we have to avoid a match of the
1983 			 * string with itself at the start of the
1984 			 * input file).
1985 			 */
1986 			if (s->strategy != Z_HUFFMAN_ONLY) {
1987 				s->match_length = longest_match(s, hash_head);
1988 			}
1989 			/* longest_match() sets match_start */
1990 		}
1991 		if (s->match_length >= MIN_MATCH) {
1992 			check_match(s, s->strstart, s->match_start,
1993 			    s->match_length);
1994 
1995 			_tr_tally_dist(s, s->strstart - s->match_start,
1996 			    s->match_length - MIN_MATCH, bflush);
1997 
1998 			s->lookahead -= s->match_length;
1999 
2000 			/*
2001 			 * Insert new strings in the hash table only
2002 			 * if the match length is not too large. This
2003 			 * saves time but degrades compression.
2004 			 */
2005 #ifndef FASTEST
2006 			if (s->match_length <= s->max_insert_length &&
2007 			    s->lookahead >= MIN_MATCH) {
2008 				/* string at strstart already in hash table */
2009 				s->match_length--;
2010 				do {
2011 					s->strstart++;
2012 					INSERT_STRING(s, s->strstart,
2013 					    hash_head);
2014 					/*
2015 					 * strstart never exceeds
2016 					 * WSIZE-MAX_MATCH, so there
2017 					 * are always MIN_MATCH bytes
2018 					 * ahead.
2019 					 */
2020 				} while (--s->match_length != 0);
2021 				s->strstart++;
2022 			} else
2023 #endif
2024 			{
2025 				s->strstart += s->match_length;
2026 				s->match_length = 0;
2027 				s->ins_h = s->window[s->strstart];
2028 				UPDATE_HASH(s, s->ins_h,
2029 				    s->window[s->strstart+1]);
2030 #if MIN_MATCH != 3
2031 				Call UPDATE_HASH() MIN_MATCH-3 more times
2032 #endif
2033 				/*
2034 				 * If lookahead < MIN_MATCH, ins_h is
2035 				 * garbage, but it does not matter
2036 				 * since it will be recomputed at next
2037 				 * deflate call.
2038 				 */
2039 			}
2040 		} else {
2041 			/* No match, output a literal byte */
2042 			Tracevv((stderr, "%c", s->window[s->strstart]));
2043 			_tr_tally_lit(s, s->window[s->strstart], bflush);
2044 			s->lookahead--;
2045 			s->strstart++;
2046 		}
2047 		if (bflush) FLUSH_BLOCK(s, 0);
2048 	}
2049 	FLUSH_BLOCK(s, flush == Z_FINISH);
2050 	return (flush == Z_FINISH ? finish_done : block_done);
2051 }
2052 
2053 /*
2054  * ===========================================================================
2055  * Same as above, but achieves better compression. We use a lazy
2056  * evaluation for matches: a match is finally adopted only if there is
2057  * no better match at the next window position.
2058  */
2059 local block_state
deflate_slow(s,flush)2060 deflate_slow(s, flush)
2061     deflate_state *s;
2062     int flush;
2063 {
2064 	IPos hash_head = NIL;	/* head of hash chain */
2065 	int bflush;	/* set if current block must be flushed */
2066 
2067 	/* Process the input block. */
2068 	for (;;) {
2069 		/*
2070 		 * Make sure that we always have enough lookahead,
2071 		 * except at the end of the input file. We need
2072 		 * MAX_MATCH bytes for the next match, plus MIN_MATCH
2073 		 * bytes to insert the string following the next
2074 		 * match.
2075 		 */
2076 		if (s->lookahead < MIN_LOOKAHEAD) {
2077 			fill_window(s);
2078 			if (s->lookahead < MIN_LOOKAHEAD &&
2079 			    flush == Z_NO_FLUSH) {
2080 				return (need_more);
2081 			}
2082 			/* flush the current block */
2083 			if (s->lookahead == 0)
2084 				break;
2085 		}
2086 
2087 		/*
2088 		 * Insert the string window[strstart .. strstart+2] in
2089 		 * the dictionary, and set hash_head to the head of
2090 		 * the hash chain:
2091 		 */
2092 		if (s->lookahead >= MIN_MATCH) {
2093 			INSERT_STRING(s, s->strstart, hash_head);
2094 		}
2095 
2096 		/*
2097 		 * Find the longest match, discarding those <=
2098 		 * prev_length.
2099 		 */
2100 		s->prev_length = s->match_length;
2101 		s->prev_match = s->match_start;
2102 		s->match_length = MIN_MATCH-1;
2103 
2104 		if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2105 		    s->strstart - hash_head <= MAX_DIST(s)) {
2106 			/*
2107 			 * To simplify the code, we prevent matches
2108 			 * with the string of window index 0 (in
2109 			 * particular we have to avoid a match of the
2110 			 * string with itself at the start of the
2111 			 * input file).
2112 			 */
2113 			if (s->strategy != Z_HUFFMAN_ONLY) {
2114 				s->match_length = longest_match(s, hash_head);
2115 			}
2116 			/* longest_match() sets match_start */
2117 
2118 			if (s->match_length <= 5 &&
2119 			    (s->strategy == Z_FILTERED ||
2120 				(s->match_length == MIN_MATCH &&
2121 				    s->strstart - s->match_start > TOO_FAR))) {
2122 
2123 				/*
2124 				 * If prev_match is also MIN_MATCH,
2125 				 * match_start is garbage but we will
2126 				 * ignore the current match anyway.
2127 				 */
2128 				s->match_length = MIN_MATCH-1;
2129 			}
2130 		}
2131 		/*
2132 		 * If there was a match at the previous step and the
2133 		 * current match is not better, output the previous
2134 		 * match:
2135 		 */
2136 		if (s->prev_length >= MIN_MATCH &&
2137 		    s->match_length <= s->prev_length) {
2138 			uInt max_insert = s->strstart + s->lookahead -
2139 			    MIN_MATCH;
2140 			/* Do not insert strings in hash table beyond this. */
2141 
2142 			check_match(s, s->strstart-1, s->prev_match,
2143 			    s->prev_length);
2144 
2145 			_tr_tally_dist(s, s->strstart -1 - s->prev_match,
2146 			    s->prev_length - MIN_MATCH, bflush);
2147 
2148 			/*
2149 			 * Insert in hash table all strings up to the
2150 			 * end of the match.  strstart-1 and strstart
2151 			 * are already inserted. If there is not
2152 			 * enough lookahead, the last two strings are
2153 			 * not inserted in the hash table.
2154 			 */
2155 			s->lookahead -= s->prev_length-1;
2156 			s->prev_length -= 2;
2157 			do {
2158 				if (++s->strstart <= max_insert) {
2159 					INSERT_STRING(s, s->strstart,
2160 					    hash_head);
2161 				}
2162 			} while (--s->prev_length != 0);
2163 			s->match_available = 0;
2164 			s->match_length = MIN_MATCH-1;
2165 			s->strstart++;
2166 
2167 			if (bflush) FLUSH_BLOCK(s, 0);
2168 
2169 		} else if (s->match_available) {
2170 			/*
2171 			 * If there was no match at the previous
2172 			 * position, output a single literal. If there
2173 			 * was a match but the current match is
2174 			 * longer, truncate the previous match to a
2175 			 * single literal.
2176 			 */
2177 			Tracevv((stderr, "%c", s->window[s->strstart-1]));
2178 			_tr_tally_lit(s, s->window[s->strstart-1], bflush);
2179 			if (bflush) {
2180 				FLUSH_BLOCK_ONLY(s, 0);
2181 			}
2182 			s->strstart++;
2183 			s->lookahead--;
2184 			if (s->strm->avail_out == 0)
2185 				return (need_more);
2186 		} else {
2187 			/*
2188 			 * There is no previous match to compare with,
2189 			 * wait for the next step to decide.
2190 			 */
2191 			s->match_available = 1;
2192 			s->strstart++;
2193 			s->lookahead--;
2194 		}
2195 	}
2196 	Assert(flush != Z_NO_FLUSH, "no flush?");
2197 	if (s->match_available) {
2198 		Tracevv((stderr, "%c", s->window[s->strstart-1]));
2199 		_tr_tally_lit(s, s->window[s->strstart-1], bflush);
2200 		s->match_available = 0;
2201 	}
2202 	FLUSH_BLOCK(s, flush == Z_FINISH);
2203 	return (flush == Z_FINISH ? finish_done : block_done);
2204 }
2205 /* --- deflate.c */
2206 
2207 /* +++ trees.c */
2208 /*
2209  * trees.c -- output deflated data using Huffman coding
2210  * Copyright (C) 1995-1998 Jean-loup Gailly
2211  * For conditions of distribution and use, see copyright notice in zlib.h
2212  */
2213 
2214 /*
2215  *  ALGORITHM
2216  *
2217  *      The "deflation" process uses several Huffman trees. The more
2218  *      common source values are represented by shorter bit sequences.
2219  *
2220  *      Each code tree is stored in a compressed form which is itself
2221  * a Huffman encoding of the lengths of all the code strings (in
2222  * ascending order by source values).  The actual code strings are
2223  * reconstructed from the lengths in the inflate process, as described
2224  * in the deflate specification.
2225  *
2226  *  REFERENCES
2227  *
2228  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2229  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2230  *
2231  *      Storer, James A.
2232  *          Data Compression:  Methods and Theory, pp. 49-50.
2233  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
2234  *
2235  *      Sedgewick, R.
2236  *          Algorithms, p290.
2237  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
2238  */
2239 
2240 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
2241 
2242 /* #include "deflate.h" */
2243 
2244 #ifdef DEBUG_ZLIB
2245 #include <ctype.h>
2246 #endif
2247 
2248 /*
2249  * ===========================================================================
2250  * Constants
2251  */
2252 
2253 #define	MAX_BL_BITS 7
2254 /* Bit length codes must not exceed MAX_BL_BITS bits */
2255 
2256 #define	END_BLOCK 256
2257 /* end of block literal code */
2258 
2259 #define	REP_3_6		16
2260 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2261 
2262 #define	REPZ_3_10	17
2263 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
2264 
2265 #define	REPZ_11_138	18
2266 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
2267 
2268 /* extra bits for each length code */
2269 local const int extra_lbits[LENGTH_CODES] = {
2270 	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4,
2271 	4, 4, 4, 5, 5, 5, 5, 0};
2272 
2273 /* extra bits for each distance code */
2274 local const int extra_dbits[D_CODES] = {
2275 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9,
2276 	9, 10, 10, 11, 11, 12, 12, 13, 13};
2277 
2278 /* extra bits for each bit length code */
2279 local const int extra_blbits[BL_CODES] = {
2280 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7};
2281 
2282 local const uch bl_order[BL_CODES] = {
2283 	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
2284 
2285 /*
2286  * The lengths of the bit length codes are sent in order of decreasing
2287  * probability, to avoid transmitting the lengths for unused bit
2288  * length codes.
2289  */
2290 
2291 #define	Buf_size (8 * 2*sizeof (char))
2292 /*
2293  * Number of bits used within bi_buf. (bi_buf might be implemented on
2294  * more than 16 bits on some systems.)
2295  */
2296 
2297 /*
2298  * ===========================================================================
2299  * Local data. These are initialized only once.
2300  */
2301 #define	DIST_CODE_LEN  512 /* see definition of array dist_code below */
2302 
2303 local ct_data static_ltree[L_CODES+2];
2304 /*
2305  * The static literal tree. Since the bit lengths are imposed, there
2306  * is no need for the L_CODES extra codes used during heap
2307  * construction. However The codes 286 and 287 are needed to build a
2308  * canonical tree (see _tr_init below).
2309  */
2310 
2311 local ct_data static_dtree[D_CODES];
2312 /*
2313  * The static distance tree. (Actually a trivial tree since all codes
2314  * use 5 bits.)
2315  */
2316 
2317 local uch _dist_code[512];
2318 /*
2319  * distance codes. The first 256 values correspond to the distances 3
2320  * .. 258, the last 256 values correspond to the top 8 bits of the 15
2321  * bit distances.
2322  */
2323 
2324 local uch _length_code[MAX_MATCH-MIN_MATCH+1];
2325 /* length code for each normalized match length (0 == MIN_MATCH) */
2326 
2327 local int base_length[LENGTH_CODES];
2328 /* First normalized length for each code (0 = MIN_MATCH) */
2329 
2330 local int base_dist[D_CODES];
2331 /* First normalized distance for each code (0 = distance of 1) */
2332 
2333 struct static_tree_desc_s {
2334 	const ct_data *static_tree;	/* static tree or NULL */
2335 	const intf    *extra_bits;	/* extra bits for each code or NULL */
2336 	int	extra_base;	/* base index for extra_bits */
2337 	int	elems;	/* max number of elements in the tree */
2338 	int	max_length;	/* max bit length for the codes */
2339 };
2340 
2341 local static_tree_desc  static_l_desc = {
2342 	static_ltree, extra_lbits, LITERALS+1,	L_CODES, MAX_BITS};
2343 
2344 local static_tree_desc  static_d_desc = {
2345 	static_dtree, extra_dbits, 0,		D_CODES, MAX_BITS};
2346 
2347 local static_tree_desc  static_bl_desc = {
2348 	(const ct_data *)0, extra_blbits, 0,		BL_CODES, MAX_BL_BITS};
2349 
2350 /*
2351  * ===========================================================================
2352  * Local (static) routines in this file.
2353  */
2354 
2355 local void tr_static_init OF((void));
2356 local void init_block	OF((deflate_state *s));
2357 local void pqdownheap	OF((deflate_state *s, ct_data *tree, int k));
2358 local void gen_bitlen	OF((deflate_state *s, tree_desc *desc));
2359 local void gen_codes	OF((ct_data *tree, int max_code, ushf *bl_count));
2360 local void build_tree	OF((deflate_state *s, tree_desc *desc));
2361 local void scan_tree	OF((deflate_state *s, ct_data *tree, int max_code));
2362 local void send_tree	OF((deflate_state *s, ct_data *tree, int max_code));
2363 local int  build_bl_tree	OF((deflate_state *s));
2364 local void send_all_trees	OF((deflate_state *s, int lcodes, int dcodes,
2365     int blcodes));
2366 local void compress_block OF((deflate_state *s, ct_data *ltree,
2367     ct_data *dtree));
2368 local void set_data_type	OF((deflate_state *s));
2369 local unsigned bi_reverse	OF((unsigned value, int length));
2370 local void bi_windup	OF((deflate_state *s));
2371 local void bi_flush	OF((deflate_state *s));
2372 local void copy_block	OF((deflate_state *s, charf *buf, unsigned len,
2373     int header));
2374 
2375 #ifndef DEBUG_ZLIB
2376 #define	send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2377 /* Send a code of the given tree. c and tree must not have side effects */
2378 
2379 #else /* DEBUG_ZLIB */
2380 #define	send_code(s, c, tree) \
2381 	{ if (z_verbose > 2) fprintf(stderr, "\ncd %3d ", (c)); \
2382 	send_bits(s, tree[c].Code, tree[c].Len); }
2383 #endif
2384 
2385 /*
2386  * ===========================================================================
2387  * Output a short LSB first on the stream.
2388  * IN assertion: there is enough room in pendingBuf.
2389  */
2390 #define	put_short(s, w) { \
2391 	put_byte(s, (uch)((w) & 0xff)); \
2392 	put_byte(s, (uch)((ush)(w) >> 8)); \
2393 }
2394 
2395 /*
2396  * ===========================================================================
2397  * Send a value on a given number of bits.
2398  * IN assertion: length <= 16 and value fits in length bits.
2399  */
2400 #ifdef DEBUG_ZLIB
2401 local void send_bits	OF((deflate_state *s, int value, int length));
2402 
2403 local void
send_bits(s,value,length)2404 send_bits(s, value, length)
2405     deflate_state *s;
2406     int value;	/* value to send */
2407     int length;	/* number of bits */
2408 {
2409 	Tracevv((stderr, " l %2d v %4x ", length, value));
2410 	Assert(length > 0 && length <= 15, "invalid length");
2411 	s->bits_sent += (ulg)length;
2412 
2413 	/*
2414 	 * If not enough room in bi_buf, use (valid) bits from bi_buf
2415 	 * and (16 - bi_valid) bits from value, leaving (width -
2416 	 * (16-bi_valid)) unused bits in value.
2417 	 */
2418 	if (s->bi_valid > (int)Buf_size - length) {
2419 		s->bi_buf |= (value << s->bi_valid);
2420 		put_short(s, s->bi_buf);
2421 		s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2422 		s->bi_valid += length - Buf_size;
2423 	} else {
2424 		s->bi_buf |= value << s->bi_valid;
2425 		s->bi_valid += length;
2426 	}
2427 }
2428 #else /* !DEBUG_ZLIB */
2429 
2430 #define	send_bits(s, value, length) \
2431 {	int len = length; \
2432 	if (s->bi_valid > (int)Buf_size - len) {\
2433 		int val = value; \
2434 		s->bi_buf |= (val << s->bi_valid); \
2435 		put_short(s, s->bi_buf); \
2436 		s->bi_buf = (ush)val >> (Buf_size - s->bi_valid); \
2437 		s->bi_valid += len - Buf_size; \
2438 	} else {\
2439 		s->bi_buf |= (value) << s->bi_valid; \
2440 		s->bi_valid += len; \
2441 	}\
2442 }
2443 #endif /* DEBUG_ZLIB */
2444 
2445 
2446 #define	MAX(a, b) (a >= b ? a : b)
2447 /* the arguments must not have side effects */
2448 
2449 /*
2450  * ===========================================================================
2451  * Initialize the various 'constant' tables. In a multi-threaded environment,
2452  * this function may be called by two threads concurrently, but this is
2453  * harmless since both invocations do exactly the same thing.
2454  */
2455 local void
tr_static_init()2456 tr_static_init()
2457 {
2458 	static int static_init_done = 0;
2459 	int n;	/* iterates over tree elements */
2460 	int bits;	/* bit counter */
2461 	int length;	/* length value */
2462 	int code;	/* code value */
2463 	int dist;	/* distance index */
2464 	ush bl_count[MAX_BITS+1];
2465 	/* number of codes at each bit length for an optimal tree */
2466 
2467 	if (static_init_done)
2468 		return;
2469 
2470 	/* For some embedded targets, global variables are not initialized: */
2471 	static_l_desc.static_tree = static_ltree;
2472 	static_l_desc.extra_bits = extra_lbits;
2473 	static_d_desc.static_tree = static_dtree;
2474 	static_d_desc.extra_bits = extra_dbits;
2475 	static_bl_desc.extra_bits = extra_blbits;
2476 
2477 	/* Initialize the mapping length (0..255) -> length code (0..28) */
2478 	length = 0;
2479 	for (code = 0; code < LENGTH_CODES-1; code++) {
2480 		base_length[code] = length;
2481 		for (n = 0; n < (1<<extra_lbits[code]); n++) {
2482 			_length_code[length++] = (uch)code;
2483 		}
2484 	}
2485 	Assert(length == 256, "tr_static_init: length != 256");
2486 	/*
2487 	 * Note that the length 255 (match length 258) can be
2488 	 * represented in two different ways: code 284 + 5 bits or
2489 	 * code 285, so we overwrite _length_code[255] to use the best
2490 	 * encoding:
2491 	 */
2492 	_length_code[length-1] = (uch)code;
2493 
2494 	/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2495 	dist = 0;
2496 	for (code = 0; code < 16; code++) {
2497 		base_dist[code] = dist;
2498 		for (n = 0; n < (1<<extra_dbits[code]); n++) {
2499 			_dist_code[dist++] = (uch)code;
2500 		}
2501 	}
2502 	Assert(dist == 256, "tr_static_init: dist != 256");
2503 	dist >>= 7;	/* from now on, all distances are divided by 128 */
2504 	for (; code < D_CODES; code++) {
2505 		base_dist[code] = dist << 7;
2506 		for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2507 			_dist_code[256 + dist++] = (uch)code;
2508 		}
2509 	}
2510 	Assert(dist == 256, "tr_static_init: 256+dist != 512");
2511 
2512 	/* Construct the codes of the static literal tree */
2513 	for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2514 	n = 0;
2515 	while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2516 	while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2517 	while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2518 	while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2519 	/*
2520 	 * Codes 286 and 287 do not exist, but we must include them in the
2521 	 * tree construction to get a canonical Huffman tree (longest code
2522 	 * all ones)
2523 	 */
2524 	gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2525 
2526 	/* The static distance tree is trivial: */
2527 	for (n = 0; n < D_CODES; n++) {
2528 		static_dtree[n].Len = 5;
2529 		static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2530 	}
2531 	static_init_done = 1;
2532 }
2533 
2534 /*
2535  * ===========================================================================
2536  * Initialize the tree data structures for a new zlib stream.
2537  */
2538 void
_tr_init(s)2539 _tr_init(s)
2540     deflate_state *s;
2541 {
2542 	tr_static_init();
2543 
2544 	s->l_desc.dyn_tree = s->dyn_ltree;
2545 	s->l_desc.stat_desc = &static_l_desc;
2546 
2547 	s->d_desc.dyn_tree = s->dyn_dtree;
2548 	s->d_desc.stat_desc = &static_d_desc;
2549 
2550 	s->bl_desc.dyn_tree = s->bl_tree;
2551 	s->bl_desc.stat_desc = &static_bl_desc;
2552 
2553 	s->bi_buf = 0;
2554 	s->bi_valid = 0;
2555 	s->last_eob_len = 8;	/* enough lookahead for inflate */
2556 	s->compressed_len = 0L;		/* PPP */
2557 #ifdef DEBUG_ZLIB
2558 	s->bits_sent = 0L;
2559 #endif
2560 
2561 	/* Initialize the first block of the first file: */
2562 	init_block(s);
2563 }
2564 
2565 /*
2566  * ===========================================================================
2567  * Initialize a new block.
2568  */
2569 local void
init_block(s)2570 init_block(s)
2571     deflate_state *s;
2572 {
2573 	int n;	/* iterates over tree elements */
2574 
2575 	/* Initialize the trees. */
2576 	for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2577 	for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2578 	for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2579 
2580 	s->dyn_ltree[END_BLOCK].Freq = 1;
2581 	s->opt_len = s->static_len = 0L;
2582 	s->last_lit = s->matches = 0;
2583 }
2584 
2585 #define	SMALLEST 1
2586 /* Index within the heap array of least frequent node in the Huffman tree */
2587 
2588 
2589 /*
2590  * ===========================================================================
2591  * Remove the smallest element from the heap and recreate the heap with
2592  * one less element. Updates heap and heap_len.
2593  */
2594 #define	pqremove(s, tree, top) \
2595 {\
2596 	top = s->heap[SMALLEST]; \
2597 	s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2598 	pqdownheap(s, tree, SMALLEST); \
2599 }
2600 
2601 /*
2602  * ===========================================================================
2603  * Compares to subtrees, using the tree depth as tie breaker when
2604  * the subtrees have equal frequency. This minimizes the worst case length.
2605  */
2606 #define	smaller(tree, n, m, depth) \
2607 	(tree[n].Freq < tree[m].Freq || \
2608 	(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2609 /*
2610  * ===========================================================================
2611  * Restore the heap property by moving down the tree starting at node k,
2612  * exchanging a node with the smallest of its two sons if necessary, stopping
2613  * when the heap property is re-established (each father smaller than its
2614  * two sons).
2615  */
2616 local void
pqdownheap(s,tree,k)2617 pqdownheap(s, tree, k)
2618     deflate_state *s;
2619     ct_data *tree;	/* the tree to restore */
2620     int k;	/* node to move down */
2621 {
2622 	int v = s->heap[k];
2623 	int j = k << 1;	/* left son of k */
2624 	while (j <= s->heap_len) {
2625 		/* Set j to the smallest of the two sons: */
2626 		if (j < s->heap_len &&
2627 		    smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2628 			j++;
2629 		}
2630 		/* Exit if v is smaller than both sons */
2631 		if (smaller(tree, v, s->heap[j], s->depth)) break;
2632 
2633 		/* Exchange v with the smallest son */
2634 		s->heap[k] = s->heap[j];  k = j;
2635 
2636 		/* And continue down the tree, setting j to the left son of k */
2637 		j <<= 1;
2638 	}
2639 	s->heap[k] = v;
2640 }
2641 
2642 /*
2643  * ===========================================================================
2644  * Compute the optimal bit lengths for a tree and update the total bit length
2645  * for the current block.
2646  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2647  *    above are the tree nodes sorted by increasing frequency.
2648  * OUT assertions: the field len is set to the optimal bit length, the
2649  *     array bl_count contains the frequencies for each bit length.
2650  *     The length opt_len is updated; static_len is also updated if stree is
2651  *     not null.
2652  */
2653 local void
gen_bitlen(s,desc)2654 gen_bitlen(s, desc)
2655     deflate_state *s;
2656     tree_desc *desc;	/* the tree descriptor */
2657 {
2658 	ct_data *tree  = desc->dyn_tree;
2659 	int max_code   = desc->max_code;
2660 	const ct_data *stree = desc->stat_desc->static_tree;
2661 	const intf *extra    = desc->stat_desc->extra_bits;
2662 	int base	= desc->stat_desc->extra_base;
2663 	int max_length = desc->stat_desc->max_length;
2664 	int h;	/* heap index */
2665 	int n, m;	/* iterate over the tree elements */
2666 	int bits;	/* bit length */
2667 	int xbits;	/* extra bits */
2668 	ush f;	/* frequency */
2669 	/* number of elements with bit length too large */
2670 	int overflow = 0;
2671 
2672 	for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2673 
2674 	/*
2675 	 * In a first pass, compute the optimal bit lengths (which may
2676 	 * overflow in the case of the bit length tree).
2677 	 */
2678 	tree[s->heap[s->heap_max]].Len = 0;	/* root of the heap */
2679 
2680 	for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2681 		n = s->heap[h];
2682 		bits = tree[tree[n].Dad].Len + 1;
2683 		if (bits > max_length) bits = max_length, overflow++;
2684 		tree[n].Len = (ush)bits;
2685 		/* We overwrite tree[n].Dad which is no longer needed */
2686 
2687 		if (n > max_code) continue;	/* not a leaf node */
2688 
2689 		s->bl_count[bits]++;
2690 		xbits = 0;
2691 		if (n >= base) xbits = extra[n-base];
2692 		f = tree[n].Freq;
2693 		s->opt_len += (ulg)f * (bits + xbits);
2694 		if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2695 	}
2696 	if (overflow == 0)
2697 		return;
2698 
2699 	Trace((stderr, "\nbit length overflow\n"));
2700 	/* This happens for example on obj2 and pic of the Calgary corpus */
2701 
2702 	/* Find the first bit length which could increase: */
2703 	do {
2704 		bits = max_length-1;
2705 		while (s->bl_count[bits] == 0) bits--;
2706 		s->bl_count[bits]--;	/* move one leaf down the tree */
2707 		/* move one overflow item as its brother */
2708 		s->bl_count[bits+1] += 2;
2709 		s->bl_count[max_length]--;
2710 		/*
2711 		 * The brother of the overflow item also moves one
2712 		 * step up, but this does not affect
2713 		 * bl_count[max_length]
2714 		 */
2715 		overflow -= 2;
2716 	} while (overflow > 0);
2717 
2718 	/*
2719 	 * Now recompute all bit lengths, scanning in increasing
2720 	 * frequency.  h is still equal to HEAP_SIZE. (It is simpler
2721 	 * to reconstruct all lengths instead of fixing only the wrong
2722 	 * ones. This idea is taken from 'ar' written by Haruhiko
2723 	 * Okumura.)
2724 	 */
2725 	for (bits = max_length; bits != 0; bits--) {
2726 		n = s->bl_count[bits];
2727 		while (n != 0) {
2728 			m = s->heap[--h];
2729 			if (m > max_code) continue;
2730 			if (tree[m].Len != (unsigned)bits) {
2731 				Trace((stderr, "code %d bits %d->%d\n", m,
2732 				    tree[m].Len, bits));
2733 				s->opt_len += ((long)bits - (long)tree[m].Len)
2734 				    *(long)tree[m].Freq;
2735 				tree[m].Len = (ush)bits;
2736 			}
2737 			n--;
2738 		}
2739 	}
2740 }
2741 
2742 /*
2743  * ===========================================================================
2744  * Generate the codes for a given tree and bit counts (which need not be
2745  * optimal).
2746  * IN assertion: the array bl_count contains the bit length statistics for
2747  * the given tree and the field len is set for all tree elements.
2748  * OUT assertion: the field code is set for all tree elements of non
2749  *     zero code length.
2750  */
2751 local void
gen_codes(tree,max_code,bl_count)2752 gen_codes(tree, max_code, bl_count)
2753     ct_data *tree;	/* the tree to decorate */
2754     int max_code;	/* largest code with non zero frequency */
2755     ushf *bl_count;	/* number of codes at each bit length */
2756 {
2757 	/* next code value for each bit length */
2758 	ush next_code[MAX_BITS+1];
2759 	ush code = 0;	/* running code value */
2760 	int bits;	/* bit index */
2761 	int n;	/* code index */
2762 
2763 	/*
2764 	 * The distribution counts are first used to generate the code
2765 	 * values without bit reversal.
2766 	 */
2767 	for (bits = 1; bits <= MAX_BITS; bits++) {
2768 		next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2769 	}
2770 	/*
2771 	 * Check that the bit counts in bl_count are consistent. The
2772 	 * last code must be all ones.
2773 	 */
2774 	Assert(code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2775 	    "inconsistent bit counts");
2776 	Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
2777 
2778 	for (n = 0;  n <= max_code; n++) {
2779 		int len = tree[n].Len;
2780 		if (len == 0) continue;
2781 		/* Now reverse the bits */
2782 		tree[n].Code = bi_reverse(next_code[len]++, len);
2783 
2784 		Tracecv(tree != static_ltree,
2785 		    (stderr, "\nn %3d %c l %2d c %4x (%x) ",
2786 		    n, (isgraph(n) ? n : ' '), len, tree[n].Code,
2787 			next_code[len]-1));
2788 	}
2789 }
2790 
2791 /*
2792  * ===========================================================================
2793  * Construct one Huffman tree and assigns the code bit strings and lengths.
2794  * Update the total bit length for the current block.
2795  * IN assertion: the field freq is set for all tree elements.
2796  * OUT assertions: the fields len and code are set to the optimal bit length
2797  *     and corresponding code. The length opt_len is updated; static_len is
2798  *     also updated if stree is not null. The field max_code is set.
2799  */
2800 local void
build_tree(s,desc)2801 build_tree(s, desc)
2802     deflate_state *s;
2803     tree_desc *desc;	/* the tree descriptor */
2804 {
2805 	ct_data *tree   = desc->dyn_tree;
2806 	const ct_data *stree  = desc->stat_desc->static_tree;
2807 	int elems	= desc->stat_desc->elems;
2808 	int n, m;	/* iterate over heap elements */
2809 	int max_code = -1;	/* largest code with non zero frequency */
2810 	int node;	/* new node being created */
2811 
2812 	/*
2813 	 * Construct the initial heap, with least frequent element in
2814 	 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and
2815 	 * heap[2*n+1].  heap[0] is not used.
2816 	 */
2817 	s->heap_len = 0, s->heap_max = HEAP_SIZE;
2818 
2819 	for (n = 0; n < elems; n++) {
2820 		if (tree[n].Freq != 0) {
2821 			s->heap[++(s->heap_len)] = max_code = n;
2822 			s->depth[n] = 0;
2823 		} else {
2824 			tree[n].Len = 0;
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * The pkzip format requires that at least one distance code
2830 	 * exists, and that at least one bit should be sent even if
2831 	 * there is only one possible code. So to avoid special checks
2832 	 * later on we force at least two codes of non zero frequency.
2833 	 */
2834 	while (s->heap_len < 2) {
2835 		node = s->heap[++(s->heap_len)] = (max_code < 2 ?
2836 		    ++max_code : 0);
2837 		tree[node].Freq = 1;
2838 		s->depth[node] = 0;
2839 		s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2840 		/* node is 0 or 1 so it does not have extra bits */
2841 	}
2842 	desc->max_code = max_code;
2843 
2844 	/*
2845 	 * The elements heap[heap_len/2+1 .. heap_len] are leaves of
2846 	 * the tree, establish sub-heaps of increasing lengths:
2847 	 */
2848 	for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2849 
2850 	/*
2851 	 * Construct the Huffman tree by repeatedly combining the
2852 	 * least two frequent nodes.
2853 	 */
2854 	node = elems;	/* next internal node of the tree */
2855 	do {
2856 		pqremove(s, tree, n);	/* n = node of least frequency */
2857 		m = s->heap[SMALLEST];	/* m = node of next least frequency */
2858 
2859 		/* keep the nodes sorted by frequency */
2860 		s->heap[--(s->heap_max)] = n;
2861 		s->heap[--(s->heap_max)] = m;
2862 
2863 		/* Create a new node father of n and m */
2864 		tree[node].Freq = tree[n].Freq + tree[m].Freq;
2865 		s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2866 		tree[n].Dad = tree[m].Dad = (ush)node;
2867 #ifdef DUMP_BL_TREE
2868 		if (tree == s->bl_tree) {
2869 			fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
2870 			    node, tree[node].Freq, n, tree[n].Freq, m,
2871 			    tree[m].Freq);
2872 		}
2873 #endif
2874 		/* and insert the new node in the heap */
2875 		s->heap[SMALLEST] = node++;
2876 		pqdownheap(s, tree, SMALLEST);
2877 
2878 	} while (s->heap_len >= 2);
2879 
2880 	s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2881 
2882 	/*
2883 	 * At this point, the fields freq and dad are set. We can now
2884 	 * generate the bit lengths.
2885 	 */
2886 	gen_bitlen(s, (tree_desc *)desc);
2887 
2888 	/* The field len is now set, we can generate the bit codes */
2889 	gen_codes((ct_data *)tree, max_code, s->bl_count);
2890 }
2891 
2892 /*
2893  * ===========================================================================
2894  * Scan a literal or distance tree to determine the frequencies of the codes
2895  * in the bit length tree.
2896  */
2897 local void
scan_tree(s,tree,max_code)2898 scan_tree(s, tree, max_code)
2899     deflate_state *s;
2900     ct_data *tree;	/* the tree to be scanned */
2901     int max_code;	/* and its largest code of non zero frequency */
2902 {
2903 	int n;	/* iterates over all tree elements */
2904 	int prevlen = -1;	/* last emitted length */
2905 	int curlen;	/* length of current code */
2906 	int nextlen = tree[0].Len;	/* length of next code */
2907 	int count = 0;	/* repeat count of the current code */
2908 	int max_count = 7;	/* max repeat count */
2909 	int min_count = 4;	/* min repeat count */
2910 
2911 	if (nextlen == 0) max_count = 138, min_count = 3;
2912 	tree[max_code+1].Len = (ush)0xffff;	/* guard */
2913 
2914 	for (n = 0; n <= max_code; n++) {
2915 		curlen = nextlen; nextlen = tree[n+1].Len;
2916 		if (++count < max_count && curlen == nextlen) {
2917 			continue;
2918 		} else if (count < min_count) {
2919 			s->bl_tree[curlen].Freq += count;
2920 		} else if (curlen != 0) {
2921 			if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2922 			s->bl_tree[REP_3_6].Freq++;
2923 		} else if (count <= 10) {
2924 			s->bl_tree[REPZ_3_10].Freq++;
2925 		} else {
2926 			s->bl_tree[REPZ_11_138].Freq++;
2927 		}
2928 		count = 0; prevlen = curlen;
2929 		if (nextlen == 0) {
2930 			max_count = 138, min_count = 3;
2931 		} else if (curlen == nextlen) {
2932 			max_count = 6, min_count = 3;
2933 		} else {
2934 			max_count = 7, min_count = 4;
2935 		}
2936 	}
2937 }
2938 
2939 /*
2940  * ===========================================================================
2941  * Send a literal or distance tree in compressed form, using the codes in
2942  * bl_tree.
2943  */
2944 local void
send_tree(s,tree,max_code)2945 send_tree(s, tree, max_code)
2946     deflate_state *s;
2947     ct_data *tree;	/* the tree to be scanned */
2948     int max_code;	/* and its largest code of non zero frequency */
2949 {
2950 	int n;	/* iterates over all tree elements */
2951 	int prevlen = -1;	/* last emitted length */
2952 	int curlen;	/* length of current code */
2953 	int nextlen = tree[0].Len;	/* length of next code */
2954 	int count = 0;	/* repeat count of the current code */
2955 	int max_count = 7;	/* max repeat count */
2956 	int min_count = 4;	/* min repeat count */
2957 
2958 	/* tree[max_code+1].Len = -1; */  /* guard already set */
2959 	if (nextlen == 0) max_count = 138, min_count = 3;
2960 
2961 	for (n = 0; n <= max_code; n++) {
2962 		curlen = nextlen; nextlen = tree[n+1].Len;
2963 		if (++count < max_count && curlen == nextlen) {
2964 			continue;
2965 		} else if (count < min_count) {
2966 			do { send_code(s, curlen, s->bl_tree); }
2967 			while (--count != 0);
2968 
2969 		} else if (curlen != 0) {
2970 			if (curlen != prevlen) {
2971 				send_code(s, curlen, s->bl_tree); count--;
2972 			}
2973 			Assert(count >= 3 && count <= 6, " 3_6?");
2974 			send_code(s, REP_3_6, s->bl_tree);
2975 			send_bits(s, count-3, 2);
2976 
2977 		} else if (count <= 10) {
2978 			send_code(s, REPZ_3_10, s->bl_tree);
2979 			send_bits(s, count-3, 3);
2980 
2981 		} else {
2982 			send_code(s, REPZ_11_138, s->bl_tree);
2983 			send_bits(s, count-11, 7);
2984 		}
2985 		count = 0; prevlen = curlen;
2986 		if (nextlen == 0) {
2987 			max_count = 138, min_count = 3;
2988 		} else if (curlen == nextlen) {
2989 			max_count = 6, min_count = 3;
2990 		} else {
2991 			max_count = 7, min_count = 4;
2992 		}
2993 	}
2994 }
2995 
2996 /*
2997  * ===========================================================================
2998  * Construct the Huffman tree for the bit lengths and return the index in
2999  * bl_order of the last bit length code to send.
3000  */
3001 local int
build_bl_tree(s)3002 build_bl_tree(s)
3003     deflate_state *s;
3004 {
3005 	/* index of last bit length code of non zero freq */
3006 	int max_blindex;
3007 
3008 	/*
3009 	 * Determine the bit length frequencies for literal and
3010 	 * distance trees
3011 	 */
3012 	scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
3013 	scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
3014 
3015 	/* Build the bit length tree: */
3016 	build_tree(s, (tree_desc *)(&(s->bl_desc)));
3017 	/*
3018 	 * opt_len now includes the length of the tree
3019 	 * representations, except the lengths of the bit lengths
3020 	 * codes and the 5+5+4 bits for the counts.
3021 	 */
3022 
3023 	/*
3024 	 * Determine the number of bit length codes to send. The pkzip
3025 	 * format requires that at least 4 bit length codes be
3026 	 * sent. (appnote.txt says 3 but the actual value used is 4.)
3027 	 */
3028 	for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
3029 		if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
3030 	}
3031 	/* Update opt_len to include the bit length tree and counts */
3032 	s->opt_len += 3*(max_blindex+1) + 5+5+4;
3033 	Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
3034 	    s->opt_len, s->static_len));
3035 
3036 	return (max_blindex);
3037 }
3038 
3039 /*
3040  * ===========================================================================
3041  * Send the header for a block using dynamic Huffman trees: the counts, the
3042  * lengths of the bit length codes, the literal tree and the distance tree.
3043  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
3044  */
3045 local void
send_all_trees(s,lcodes,dcodes,blcodes)3046 send_all_trees(s, lcodes, dcodes, blcodes)
3047     deflate_state *s;
3048     int lcodes, dcodes, blcodes;	/* number of codes for each tree */
3049 {
3050 	int rank;	/* index in bl_order */
3051 
3052 	Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4,
3053 	    "not enough codes");
3054 	Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
3055 	    "too many codes");
3056 	Tracev((stderr, "\nbl counts: "));
3057 	send_bits(s, lcodes-257, 5);	/* not +255 as stated in appnote.txt */
3058 	send_bits(s, dcodes-1,   5);
3059 	send_bits(s, blcodes-4,  4);	/* not -3 as stated in appnote.txt */
3060 	for (rank = 0; rank < blcodes; rank++) {
3061 		Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
3062 		send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
3063 	}
3064 #ifdef DEBUG_ZLIB
3065 	Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
3066 #endif
3067 
3068 	/* literal tree */
3069 	send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1);
3070 #ifdef DEBUG_ZLIB
3071 	Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
3072 #endif
3073 
3074 	/* distance tree */
3075 	send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1);
3076 #ifdef DEBUG_ZLIB
3077 	Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
3078 #endif
3079 }
3080 
3081 /*
3082  * ===========================================================================
3083  * Send a stored block
3084  */
3085 void
_tr_stored_block(s,buf,stored_len,eof)3086 _tr_stored_block(s, buf, stored_len, eof)
3087     deflate_state *s;
3088     charf *buf;	/* input block */
3089     ulg stored_len;	/* length of input block */
3090     int eof;	/* true if this is the last block for a file */
3091 {
3092 	send_bits(s, (STORED_BLOCK<<1)+eof, 3);	/* send block type */
3093 	s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; /* PPP */
3094 	s->compressed_len += (stored_len + 4) << 3;	/* PPP */
3095 
3096 	copy_block(s, buf, (unsigned)stored_len, 1);	/* with header */
3097 }
3098 
3099 /*
3100  * Send just the `stored block' type code without any length bytes or data.
3101  * ---PPP---
3102  */
3103 void
_tr_stored_type_only(s)3104 _tr_stored_type_only(s)
3105     deflate_state *s;
3106 {
3107 	send_bits(s, (STORED_BLOCK << 1), 3);
3108 	bi_windup(s);
3109 	s->compressed_len = (s->compressed_len + 3) & ~7L;	/* PPP */
3110 }
3111 
3112 
3113 /*
3114  * ===========================================================================
3115  * Send one empty static block to give enough lookahead for inflate.
3116  * This takes 10 bits, of which 7 may remain in the bit buffer.
3117  * The current inflate code requires 9 bits of lookahead. If the
3118  * last two codes for the previous block (real code plus EOB) were coded
3119  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3120  * the last real code. In this case we send two empty static blocks instead
3121  * of one. (There are no problems if the previous block is stored or fixed.)
3122  * To simplify the code, we assume the worst case of last real code encoded
3123  * on one bit only.
3124  */
3125 void
_tr_align(s)3126 _tr_align(s)
3127     deflate_state *s;
3128 {
3129 	send_bits(s, STATIC_TREES<<1, 3);
3130 	send_code(s, END_BLOCK, static_ltree);
3131 	s->compressed_len += 10L;	/* 3 for block type, 7 for EOB */
3132 	bi_flush(s);
3133 	/*
3134 	 * Of the 10 bits for the empty block, we have already sent
3135 	 * (10 - bi_valid) bits. The lookahead for the last real code
3136 	 * (before the EOB of the previous block) was thus at least
3137 	 * one plus the length of the EOB plus what we have just sent
3138 	 * of the empty static block.
3139 	 */
3140 	if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3141 		send_bits(s, STATIC_TREES<<1, 3);
3142 		send_code(s, END_BLOCK, static_ltree);
3143 		s->compressed_len += 10L;
3144 		bi_flush(s);
3145 	}
3146 	s->last_eob_len = 7;
3147 }
3148 
3149 /*
3150  * ===========================================================================
3151  * Determine the best encoding for the current block: dynamic trees, static
3152  * trees or store, and output the encoded block to the zip file.
3153  */
3154 void
_tr_flush_block(s,buf,stored_len,eof)3155 _tr_flush_block(s, buf, stored_len, eof)
3156     deflate_state *s;
3157     charf *buf;	/* input block, or NULL if too old */
3158     ulg stored_len;	/* length of input block */
3159     int eof;	/* true if this is the last block for a file */
3160 {
3161 	ulg opt_lenb, static_lenb;	/* opt_len and static_len in bytes */
3162 	/* index of last bit length code of non zero freq */
3163 	int max_blindex = 0;
3164 
3165 	/* Build the Huffman trees unless a stored block is forced */
3166 	if (s->level > 0) {
3167 
3168 		/* Check if the file is ascii or binary */
3169 		if (s->data_type == Z_UNKNOWN) set_data_type(s);
3170 
3171 		/* Construct the literal and distance trees */
3172 		build_tree(s, (tree_desc *)(&(s->l_desc)));
3173 		Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3174 		    s->static_len));
3175 
3176 		build_tree(s, (tree_desc *)(&(s->d_desc)));
3177 		Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3178 		    s->static_len));
3179 		/*
3180 		 * At this point, opt_len and static_len are the total
3181 		 * bit lengths of the compressed block data, excluding
3182 		 * the tree representations.
3183 		 */
3184 
3185 		/*
3186 		 * Build the bit length tree for the above two trees,
3187 		 * and get the index in bl_order of the last bit
3188 		 * length code to send.
3189 		 */
3190 		max_blindex = build_bl_tree(s);
3191 
3192 		/*
3193 		 * Determine the best encoding. Compute first the
3194 		 * block length in bytes
3195 		 */
3196 		opt_lenb = (s->opt_len+3+7)>>3;
3197 		static_lenb = (s->static_len+3+7)>>3;
3198 
3199 		Tracev((stderr,
3200 		    "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3201 		    opt_lenb, s->opt_len, static_lenb, s->static_len,
3202 		    stored_len, s->last_lit));
3203 
3204 		if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3205 
3206 	} else {
3207 		Assert(buf != (char *)0, "lost buf");
3208 		/* force a stored block */
3209 		opt_lenb = static_lenb = stored_len + 5;
3210 	}
3211 
3212 	/*
3213 	 * If compression failed and this is the first and last block,
3214 	 * and if the .zip file can be seeked (to rewrite the local
3215 	 * header), the whole file is transformed into a stored file:
3216 	 */
3217 #ifdef STORED_FILE_OK
3218 #ifdef FORCE_STORED_FILE
3219 #define	FRC_STR_COND	eof && s->compressed_len == 0L /* force stored file */
3220 #else
3221 #define	FRC_STR_COND	stored_len <= opt_lenb && eof && \
3222 			s->compressed_len == 0L && seekable()
3223 #endif
3224 	if (FRC_STR_COND) {
3225 #undef FRC_STR_COND
3226 		/*
3227 		 * Since LIT_BUFSIZE <= 2*WSIZE, the input data must
3228 		 * be there:
3229 		 */
3230 		if (buf == (charf*)0) error("block vanished");
3231 
3232 		/* without header */
3233 		copy_block(s, buf, (unsigned)stored_len, 0);
3234 		s->compressed_len = stored_len << 3;
3235 		s->method = STORED;
3236 	} else
3237 #endif /* STORED_FILE_OK */
3238 
3239 #ifdef FORCE_STORED
3240 #define	FRC_STR_COND	buf != (char *)0	/* force stored block */
3241 #else
3242 			/* 4: two words for the lengths */
3243 #define	FRC_STR_COND	stored_len+4 <= opt_lenb && buf != (char *)0
3244 #endif
3245 		if (FRC_STR_COND) {
3246 #undef FRC_STR_COND
3247 			/*
3248 			 * The test buf != NULL is only necessary if
3249 			 * LIT_BUFSIZE > WSIZE.  Otherwise we can't
3250 			 * have processed more than WSIZE input bytes
3251 			 * since the last block flush, because
3252 			 * compression would have been successful. If
3253 			 * LIT_BUFSIZE <= WSIZE, it is never too late
3254 			 * to transform a block into a stored block.
3255 			 */
3256 			_tr_stored_block(s, buf, stored_len, eof);
3257 #ifdef FORCE_STATIC
3258 #define	FRC_STAT_COND	static_lenb >= 0 /* force static trees */
3259 #else
3260 #define	FRC_STAT_COND	static_lenb == opt_lenb
3261 #endif
3262 		} else if (FRC_STAT_COND) {
3263 #undef FRC_STAT_COND
3264 			send_bits(s, (STATIC_TREES<<1)+eof, 3);
3265 			compress_block(s, (ct_data *)static_ltree,
3266 			    (ct_data *)static_dtree);
3267 			s->compressed_len += 3 + s->static_len;	/* PPP */
3268 		} else {
3269 			send_bits(s, (DYN_TREES<<1)+eof, 3);
3270 			send_all_trees(s, s->l_desc.max_code+1,
3271 			    s->d_desc.max_code+1,
3272 			    max_blindex+1);
3273 			compress_block(s, (ct_data *)s->dyn_ltree,
3274 			    (ct_data *)s->dyn_dtree);
3275 			s->compressed_len += 3 + s->opt_len;	/* PPP */
3276 		}
3277 #ifdef DEBUG_ZLIB
3278 	Assert(s->compressed_len == s->bits_sent, "bad compressed size");
3279 #endif
3280 	/*
3281 	 * The above check is made mod 2^32, for files larger than 512
3282 	 * MB and uLong implemented on 32 bits.
3283 	 */
3284 	init_block(s);
3285 
3286 	if (eof) {
3287 		bi_windup(s);
3288 		s->compressed_len += 7;	/* align on byte boundary PPP */
3289 	}
3290 	Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3291 	    s->compressed_len-7*eof));
3292 
3293 	/* return (s->compressed_len >> 3); */
3294 }
3295 
3296 /*
3297  * ===========================================================================
3298  * Save the match info and tally the frequency counts. Return true if
3299  * the current block must be flushed.
3300  */
3301 int
_tr_tally(s,dist,lc)3302 _tr_tally(s, dist, lc)
3303     deflate_state *s;
3304     unsigned dist;	/* distance of matched string */
3305 	/* match length-MIN_MATCH or unmatched char (if dist==0) */
3306     unsigned lc;
3307 {
3308 	s->d_buf[s->last_lit] = (ush)dist;
3309 	s->l_buf[s->last_lit++] = (uch)lc;
3310 	if (dist == 0) {
3311 		/* lc is the unmatched char */
3312 		s->dyn_ltree[lc].Freq++;
3313 	} else {
3314 		s->matches++;
3315 		/* Here, lc is the match length - MIN_MATCH */
3316 		dist--;	/* dist = match distance - 1 */
3317 		Assert((ush)dist < (ush)MAX_DIST(s) &&
3318 		    (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3319 		    (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
3320 
3321 		s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3322 		s->dyn_dtree[d_code(dist)].Freq++;
3323 	}
3324 
3325 #ifdef TRUNCATE_BLOCK
3326 	/* Try to guess if it is profitable to stop the current block here */
3327 	if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3328 		/* Compute an upper bound for the compressed length */
3329 		ulg out_length = (ulg)s->last_lit*8L;
3330 		ulg in_length = (ulg)((long)s->strstart - s->block_start);
3331 		int dcode;
3332 		for (dcode = 0; dcode < D_CODES; dcode++) {
3333 			out_length += (ulg)s->dyn_dtree[dcode].Freq *
3334 			    (5L+extra_dbits[dcode]);
3335 		}
3336 		out_length >>= 3;
3337 		Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3338 		    s->last_lit, in_length, out_length,
3339 		    100L - out_length*100L/in_length));
3340 		if (s->matches < s->last_lit/2 && out_length < in_length/2)
3341 			return (1);
3342 	}
3343 #endif
3344 	return (s->last_lit == s->lit_bufsize-1);
3345 	/*
3346 	 * We avoid equality with lit_bufsize because of wraparound at 64K
3347 	 * on 16 bit machines and because stored blocks are restricted to
3348 	 * 64K-1 bytes.
3349 	 */
3350 }
3351 
3352 /*
3353  * ===========================================================================
3354  * Send the block data compressed using the given Huffman trees
3355  */
3356 local void
compress_block(s,ltree,dtree)3357 compress_block(s, ltree, dtree)
3358     deflate_state *s;
3359     ct_data *ltree;	/* literal tree */
3360     ct_data *dtree;	/* distance tree */
3361 {
3362 	unsigned dist;	/* distance of matched string */
3363 	int lc;	/* match length or unmatched char (if dist == 0) */
3364 	unsigned lx = 0;	/* running index in l_buf */
3365 	unsigned code;	/* the code to send */
3366 	int extra;	/* number of extra bits to send */
3367 
3368 	if (s->last_lit != 0) do {
3369 		dist = s->d_buf[lx];
3370 		lc = s->l_buf[lx++];
3371 		if (dist == 0) {
3372 			/* send a literal byte */
3373 			send_code(s, lc, ltree);
3374 			Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
3375 		} else {
3376 			/* Here, lc is the match length - MIN_MATCH */
3377 			code = _length_code[lc];
3378 			/* send the length code */
3379 			send_code(s, code+LITERALS+1, ltree);
3380 			extra = extra_lbits[code];
3381 			if (extra != 0) {
3382 				lc -= base_length[code];
3383 				/* send the extra length bits */
3384 				send_bits(s, lc, extra);
3385 			}
3386 			/* dist is now the match distance - 1 */
3387 			dist--;
3388 			code = d_code(dist);
3389 			Assert(code < D_CODES, "bad d_code");
3390 
3391 			/* send the distance code */
3392 			send_code(s, code, dtree);
3393 			extra = extra_dbits[code];
3394 			if (extra != 0) {
3395 				dist -= base_dist[code];
3396 				/* send the extra distance bits */
3397 				send_bits(s, dist, extra);
3398 			}
3399 		} /* literal or match pair ? */
3400 
3401 		/*
3402 		 * Check that the overlay between pending_buf and
3403 		 * d_buf+l_buf is ok:
3404 		 */
3405 		Assert(s->pending < s->lit_bufsize + 2*lx,
3406 		    "pendingBuf overflow");
3407 
3408 	} while (lx < s->last_lit);
3409 
3410 	send_code(s, END_BLOCK, ltree);
3411 	s->last_eob_len = ltree[END_BLOCK].Len;
3412 }
3413 
3414 /*
3415  * ===========================================================================
3416  * Set the data type to ASCII or BINARY, using a crude approximation:
3417  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3418  * IN assertion: the fields freq of dyn_ltree are set and the total of all
3419  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3420  */
3421 local void
set_data_type(s)3422 set_data_type(s)
3423     deflate_state *s;
3424 {
3425 	int n = 0;
3426 	unsigned ascii_freq = 0;
3427 	unsigned bin_freq = 0;
3428 	while (n < 7)	bin_freq	+= s->dyn_ltree[n++].Freq;
3429 	while (n < 128)	ascii_freq	+= s->dyn_ltree[n++].Freq;
3430 	while (n < LITERALS) bin_freq	+= s->dyn_ltree[n++].Freq;
3431 	s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ?
3432 	    Z_BINARY : Z_ASCII);
3433 }
3434 
3435 /*
3436  * ===========================================================================
3437  * Reverse the first len bits of a code, using straightforward code (a faster
3438  * method would use a table)
3439  * IN assertion: 1 <= len <= 15
3440  */
3441 local unsigned
bi_reverse(code,len)3442 bi_reverse(code, len)
3443     unsigned code;	/* the value to invert */
3444     int len;	/* its bit length */
3445 {
3446 	register unsigned res = 0;
3447 	do {
3448 		res |= code & 1;
3449 		code >>= 1, res <<= 1;
3450 	} while (--len > 0);
3451 	return (res >> 1);
3452 }
3453 
3454 /*
3455  * ===========================================================================
3456  * Flush the bit buffer, keeping at most 7 bits in it.
3457  */
3458 local void
bi_flush(s)3459 bi_flush(s)
3460     deflate_state *s;
3461 {
3462 	if (s->bi_valid == 16) {
3463 		put_short(s, s->bi_buf);
3464 		s->bi_buf = 0;
3465 		s->bi_valid = 0;
3466 	} else if (s->bi_valid >= 8) {
3467 		put_byte(s, (Byte)s->bi_buf);
3468 		s->bi_buf >>= 8;
3469 		s->bi_valid -= 8;
3470 	}
3471 }
3472 
3473 /*
3474  * ===========================================================================
3475  * Flush the bit buffer and align the output on a byte boundary
3476  */
3477 local void
bi_windup(s)3478 bi_windup(s)
3479     deflate_state *s;
3480 {
3481 	if (s->bi_valid > 8) {
3482 		put_short(s, s->bi_buf);
3483 	} else if (s->bi_valid > 0) {
3484 		put_byte(s, (Byte)s->bi_buf);
3485 	}
3486 	s->bi_buf = 0;
3487 	s->bi_valid = 0;
3488 #ifdef DEBUG_ZLIB
3489 	s->bits_sent = (s->bits_sent+7) & ~7;
3490 #endif
3491 }
3492 
3493 /*
3494  * ===========================================================================
3495  * Copy a stored block, storing first the length and its
3496  * one's complement if requested.
3497  */
3498 local void
copy_block(s,buf,len,header)3499 copy_block(s, buf, len, header)
3500     deflate_state *s;
3501     charf    *buf;	/* the input data */
3502     unsigned len;	/* its length */
3503     int	header;	/* true if block header must be written */
3504 {
3505 	bi_windup(s);	/* align on byte boundary */
3506 	s->last_eob_len = 8;	/* enough lookahead for inflate */
3507 
3508 	if (header) {
3509 		put_short(s, (ush)len);
3510 		put_short(s, (ush)~len);
3511 #ifdef DEBUG_ZLIB
3512 		s->bits_sent += 2*16;
3513 #endif
3514 	}
3515 #ifdef DEBUG_ZLIB
3516 	s->bits_sent += (ulg)len<<3;
3517 #endif
3518 	/* bundle up the put_byte(s, *buf++) calls PPP */
3519 	Assert(s->pending + len < s->pending_buf_size, "pending_buf overrun");
3520 	zmemcpy(&s->pending_buf[s->pending], buf, len);	/* PPP */
3521 	s->pending += len;				/* PPP */
3522 }
3523 /* --- trees.c */
3524 
3525 /* +++ inflate.c */
3526 /*
3527  * inflate.c -- zlib interface to inflate modules
3528  * Copyright (C) 1995-1998 Mark Adler
3529  * For conditions of distribution and use, see copyright notice in zlib.h
3530  */
3531 
3532 /* #include "zutil.h" */
3533 
3534 /* +++ infblock.h */
3535 /*
3536  * infblock.h -- header to use infblock.c
3537  * Copyright (C) 1995-1998 Mark Adler
3538  * For conditions of distribution and use, see copyright notice in zlib.h
3539  */
3540 
3541 /*
3542  * WARNING: this file should *not* be used by applications. It is part
3543  * of the implementation of the compression library and is subject to
3544  * change. Applications should only use zlib.h.
3545  */
3546 
3547 struct inflate_blocks_state;
3548 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3549 
3550 extern inflate_blocks_statef * inflate_blocks_new OF((
3551     z_streamp z,
3552     check_func c,	/* check function */
3553     uInt w));	/* window size */
3554 
3555 extern int inflate_blocks OF((
3556     inflate_blocks_statef *,
3557     z_streamp,
3558     int));	/* initial return code */
3559 
3560 extern void inflate_blocks_reset OF((
3561     inflate_blocks_statef *,
3562     z_streamp,
3563     uLongf *));	/* check value on output */
3564 
3565 extern int inflate_blocks_free OF((
3566     inflate_blocks_statef *,
3567     z_streamp));
3568 
3569 extern void inflate_set_dictionary OF((
3570     inflate_blocks_statef *s,
3571     const Bytef *d,  /* dictionary */
3572     uInt  n));	/* dictionary length */
3573 
3574 extern int inflate_blocks_sync_point OF((
3575     inflate_blocks_statef *s));
3576 
3577 /* PPP -- added function */
3578 extern int inflate_addhistory OF((
3579     inflate_blocks_statef *,
3580     z_streamp));
3581 
3582 /* PPP -- added function */
3583 extern int inflate_packet_flush OF((
3584     inflate_blocks_statef *));
3585 /* --- infblock.h */
3586 
3587 #ifndef NO_DUMMY_DECL
3588 struct inflate_blocks_state {int dummy; };	/* for buggy compilers */
3589 #endif
3590 
3591 /* inflate private state */
3592 struct internal_state {
3593 
3594 	/* mode */
3595 	enum {
3596 		METHOD,	/* waiting for method byte */
3597 		FLAG,	/* waiting for flag byte */
3598 		DICT4,	/* four dictionary check bytes to go */
3599 		DICT3,	/* three dictionary check bytes to go */
3600 		DICT2,	/* two dictionary check bytes to go */
3601 		DICT1,	/* one dictionary check byte to go */
3602 		DICT0,	/* waiting for inflateSetDictionary */
3603 		BLOCKS,	/* decompressing blocks */
3604 		CHECK4,	/* four check bytes to go */
3605 		CHECK3,	/* three check bytes to go */
3606 		CHECK2,	/* two check bytes to go */
3607 		CHECK1,	/* one check byte to go */
3608 		DONE,	/* finished check, done */
3609 		BAD}	/* got an error--stay here */
3610 	mode;	/* current inflate mode */
3611 
3612 	/* mode dependent information */
3613 	union {
3614 		uInt method;	/* if FLAGS, method byte */
3615 		struct {
3616 			uLong was;	/* computed check value */
3617 			uLong need;	/* stream check value */
3618 		} check;	/* if CHECK, check values to compare */
3619 		uInt marker;	/* if BAD, inflateSync's marker bytes count */
3620 	} sub;	/* submode */
3621 
3622 	/* mode independent information */
3623 	int  nowrap;	/* flag for no wrapper */
3624 	uInt wbits;	/* log2(window size)  (8..15, defaults to 15) */
3625 	/* current inflate_blocks state */
3626 	inflate_blocks_statef *blocks;
3627 };
3628 
3629 
3630 int
inflateReset(z)3631 inflateReset(z)
3632 z_streamp z;
3633 {
3634 	if (z == Z_NULL || z->state == Z_NULL)
3635 		return (Z_STREAM_ERROR);
3636 	z->total_in = z->total_out = 0;
3637 	z->msg = Z_NULL;
3638 	z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3639 	inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3640 	Trace((stderr, "inflate: reset\n"));
3641 	return (Z_OK);
3642 }
3643 
3644 
3645 int
inflateEnd(z)3646 inflateEnd(z)
3647 z_streamp z;
3648 {
3649 	if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3650 		return (Z_STREAM_ERROR);
3651 	if (z->state->blocks != Z_NULL) {
3652 		(void) inflate_blocks_free(z->state->blocks, z);
3653 		z->state->blocks = Z_NULL;
3654 	}
3655 	ZFREE(z, z->state);
3656 	z->state = Z_NULL;
3657 	Trace((stderr, "inflate: end\n"));
3658 	return (Z_OK);
3659 }
3660 
3661 
3662 int
inflateInit2_(z,w,version,stream_size)3663 inflateInit2_(z, w, version, stream_size)
3664 z_streamp z;
3665 int w;
3666 const char *version;
3667 int stream_size;
3668 {
3669 	if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3670 	    stream_size != sizeof (z_stream))
3671 		return (Z_VERSION_ERROR);
3672 
3673 	/* initialize state */
3674 	if (z == Z_NULL)
3675 		return (Z_STREAM_ERROR);
3676 	z->msg = Z_NULL;
3677 #ifndef NO_ZCFUNCS
3678 	if (z->zalloc == Z_NULL)
3679 	{
3680 		z->zalloc = zcalloc;
3681 		z->opaque = (voidpf)0;
3682 	}
3683 	if (z->zfree == Z_NULL) z->zfree = zcfree;
3684 #endif
3685 	if ((z->state = (struct internal_state FAR *)
3686 	    ZALLOC(z, 1, sizeof (struct internal_state))) == Z_NULL)
3687 		return (Z_MEM_ERROR);
3688 	z->state->blocks = Z_NULL;
3689 
3690 	/* handle undocumented nowrap option (no zlib header or check) */
3691 	z->state->nowrap = 0;
3692 	if (w < 0)
3693 	{
3694 		w = - w;
3695 		z->state->nowrap = 1;
3696 	}
3697 
3698 	/* set window size */
3699 	if (w < 8 || w > 15)
3700 	{
3701 		(void) inflateEnd(z);
3702 		return (Z_STREAM_ERROR);
3703 	}
3704 	z->state->wbits = (uInt)w;
3705 
3706 	/* create inflate_blocks state */
3707 	if ((z->state->blocks =
3708 	    inflate_blocks_new(z, z->state->nowrap ?
3709 		Z_NULL : adler32, (uInt)1 << w))
3710 	    == Z_NULL)
3711 	{
3712 		(void) inflateEnd(z);
3713 		return (Z_MEM_ERROR);
3714 	}
3715 	Trace((stderr, "inflate: allocated\n"));
3716 
3717 	/* reset state */
3718 	(void) inflateReset(z);
3719 	return (Z_OK);
3720 }
3721 
3722 
3723 int
inflateInit_(z,version,stream_size)3724 inflateInit_(z, version, stream_size)
3725 z_streamp z;
3726 const char *version;
3727 int stream_size;
3728 {
3729 	return (inflateInit2_(z, DEF_WBITS, version, stream_size));
3730 }
3731 
3732 /* PPP -- added "empty" label and changed f to Z_OK */
3733 #define	NEEDBYTE {if (z->avail_in == 0) goto empty; r = Z_OK; } ((void)0)
3734 #define	NEXTBYTE (z->avail_in--, z->total_in++, *z->next_in++)
3735 
3736 int
inflate(z,f)3737 inflate(z, f)
3738 z_streamp z;
3739 int f;
3740 {
3741 	int r;
3742 	uInt b;
3743 
3744 	if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3745 		return (Z_STREAM_ERROR);
3746 	/* f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK; -- PPP; Z_FINISH unused */
3747 	r = Z_BUF_ERROR;
3748 	/* CONSTCOND */
3749 	while (1)
3750 		switch (z->state->mode)
3751 	{
3752 	case METHOD:
3753 		NEEDBYTE;
3754 		if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3755 		{
3756 			z->state->mode = BAD;
3757 			z->msg = "unknown compression method";
3758 			/* can't try inflateSync */
3759 			z->state->sub.marker = 5;
3760 			break;
3761 		}
3762 		if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3763 		{
3764 			z->state->mode = BAD;
3765 			z->msg = "invalid window size";
3766 			/* can't try inflateSync */
3767 			z->state->sub.marker = 5;
3768 			break;
3769 		}
3770 		z->state->mode = FLAG;
3771 		/* FALLTHRU */
3772 	case FLAG:
3773 		NEEDBYTE;
3774 		b = NEXTBYTE;
3775 		if (((z->state->sub.method << 8) + b) % 31)
3776 		{
3777 			z->state->mode = BAD;
3778 			z->msg = "incorrect header check";
3779 			/* can't try inflateSync */
3780 			z->state->sub.marker = 5;
3781 			break;
3782 		}
3783 		Trace((stderr, "inflate: zlib header ok\n"));
3784 		if (!(b & PRESET_DICT))
3785 		{
3786 			z->state->mode = BLOCKS;
3787 			break;
3788 		}
3789 		z->state->mode = DICT4;
3790 		/* FALLTHRU */
3791 	case DICT4:
3792 		NEEDBYTE;
3793 		z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3794 		z->state->mode = DICT3;
3795 		/* FALLTHRU */
3796 	case DICT3:
3797 		NEEDBYTE;
3798 		z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3799 		z->state->mode = DICT2;
3800 		/* FALLTHRU */
3801 	case DICT2:
3802 		NEEDBYTE;
3803 		z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3804 		z->state->mode = DICT1;
3805 		/* FALLTHRU */
3806 	case DICT1:
3807 		NEEDBYTE;
3808 		z->state->sub.check.need += (uLong)NEXTBYTE;
3809 		z->adler = z->state->sub.check.need;
3810 		z->state->mode = DICT0;
3811 		return (Z_NEED_DICT);
3812 	case DICT0:
3813 		z->state->mode = BAD;
3814 		z->msg = "need dictionary";
3815 		z->state->sub.marker = 0;	/* can try inflateSync */
3816 		return (Z_STREAM_ERROR);
3817 	case BLOCKS:
3818 		r = inflate_blocks(z->state->blocks, z, r);
3819 		if (f == Z_PACKET_FLUSH && z->avail_in == 0 &&	/* PPP */
3820 		    z->avail_out != 0)				/* PPP */
3821 			r = inflate_packet_flush(z->state->blocks); /* PPP */
3822 		if (r == Z_DATA_ERROR)
3823 		{
3824 			z->state->mode = BAD;
3825 			/* can try inflateSync */
3826 			z->state->sub.marker = 0;
3827 			break;
3828 		}
3829 		/* PPP */
3830 		if (r != Z_STREAM_END)
3831 			return (r);
3832 		r = Z_OK;	/* PPP */
3833 		inflate_blocks_reset(z->state->blocks, z,
3834 		    &z->state->sub.check.was);
3835 		if (z->state->nowrap)
3836 		{
3837 			z->state->mode = DONE;
3838 			break;
3839 		}
3840 		z->state->mode = CHECK4;
3841 		/* FALLTHRU */
3842 	case CHECK4:
3843 		NEEDBYTE;
3844 		z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3845 		z->state->mode = CHECK3;
3846 		/* FALLTHRU */
3847 	case CHECK3:
3848 		NEEDBYTE;
3849 		z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3850 		z->state->mode = CHECK2;
3851 		/* FALLTHRU */
3852 	case CHECK2:
3853 		NEEDBYTE;
3854 		z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3855 		z->state->mode = CHECK1;
3856 		/* FALLTHRU */
3857 	case CHECK1:
3858 		NEEDBYTE;
3859 		z->state->sub.check.need += (uLong)NEXTBYTE;
3860 
3861 		if (z->state->sub.check.was != z->state->sub.check.need)
3862 		{
3863 			z->state->mode = BAD;
3864 			z->msg = "incorrect data check";
3865 			/* can't try inflateSync */
3866 			z->state->sub.marker = 5;
3867 			break;
3868 		}
3869 		Trace((stderr, "inflate: zlib check ok\n"));
3870 		z->state->mode = DONE;
3871 		/* FALLTHRU */
3872 	case DONE:
3873 		return (Z_STREAM_END);
3874 	case BAD:
3875 		return (Z_DATA_ERROR);
3876 	default:
3877 		return (Z_STREAM_ERROR);
3878 	}
3879 
3880 /* PPP -- packet flush handling */
3881 empty:
3882 	if (f != Z_PACKET_FLUSH)
3883 		return (r);
3884 	z->state->mode = BAD;
3885 	z->msg = "need more for packet flush";
3886 	z->state->sub.marker = 0;	/* can try inflateSync */
3887 	return (Z_DATA_ERROR);
3888 }
3889 
3890 
3891 int
inflateSetDictionary(z,dictionary,dictLength)3892 inflateSetDictionary(z, dictionary, dictLength)
3893 z_streamp z;
3894 const Bytef *dictionary;
3895 uInt  dictLength;
3896 {
3897 	uInt length = dictLength;
3898 
3899 	if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3900 		return (Z_STREAM_ERROR);
3901 
3902 	if (adler32(1L, dictionary, dictLength) != z->adler)
3903 		return (Z_DATA_ERROR);
3904 	z->adler = 1L;
3905 
3906 	if (length >= ((uInt)1<<z->state->wbits))
3907 	{
3908 		length = (1<<z->state->wbits)-1;
3909 		dictionary += dictLength - length;
3910 	}
3911 	inflate_set_dictionary(z->state->blocks, dictionary, length);
3912 	z->state->mode = BLOCKS;
3913 	return (Z_OK);
3914 }
3915 
3916 /*
3917  * This subroutine adds the data at next_in/avail_in to the output history
3918  * without performing any output.  The output buffer must be "caught up";
3919  * i.e. no pending output (hence s->read equals s->write), and the state must
3920  * be BLOCKS (i.e. we should be willing to see the start of a series of
3921  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3922  * will have been updated if need be.
3923  *
3924  * Added for PPP.
3925  */
3926 
3927 int
inflateIncomp(z)3928 inflateIncomp(z)
3929 z_stream *z;
3930 {
3931 	if (z->state->mode != BLOCKS)
3932 		return (Z_DATA_ERROR);
3933 	return (inflate_addhistory(z->state->blocks, z));
3934 }
3935 
3936 
3937 int
inflateSync(z)3938 inflateSync(z)
3939 z_streamp z;
3940 {
3941 	uInt n;	/* number of bytes to look at */
3942 	Bytef *p;	/* pointer to bytes */
3943 	uInt m;	/* number of marker bytes found in a row */
3944 	uLong r, w;	/* temporaries to save total_in and total_out */
3945 
3946 	/* set up */
3947 	if (z == Z_NULL || z->state == Z_NULL)
3948 		return (Z_STREAM_ERROR);
3949 	if (z->state->mode != BAD)
3950 	{
3951 		z->state->mode = BAD;
3952 		z->state->sub.marker = 0;
3953 	}
3954 	if ((n = z->avail_in) == 0)
3955 		return (Z_BUF_ERROR);
3956 	p = z->next_in;
3957 	m = z->state->sub.marker;
3958 
3959 	/* search */
3960 	while (n && m < 4)
3961 	{
3962 		static const Byte mark[4] = { 0, 0, 0xff, 0xff };
3963 		if (*p == mark[m])
3964 			m++;
3965 		else if (*p)
3966 			m = 0;
3967 		else
3968 			/*
3969 			 * This statement maps 2->2 and 3->1 because a
3970 			 * mismatch with input byte 0x00 on the first
3971 			 * 0xFF in the pattern means that we still
3972 			 * have two contiguous zeros matched (thus
3973 			 * offset 2 is kept), but a mismatch on the
3974 			 * second 0xFF means that only one 0x00 byte
3975 			 * has been matched.  (Boyer-Moore like
3976 			 * search.)
3977 			 */
3978 			m = 4 - m;
3979 		p++, n--;
3980 	}
3981 
3982 	/* restore */
3983 	z->total_in += p - z->next_in;
3984 	z->next_in = p;
3985 	z->avail_in = n;
3986 	z->state->sub.marker = m;
3987 
3988 	/* return no joy or set up to restart on a new block */
3989 	if (m != 4)
3990 		return (Z_DATA_ERROR);
3991 	r = z->total_in;  w = z->total_out;
3992 	(void) inflateReset(z);
3993 	z->total_in = r;  z->total_out = w;
3994 	z->state->mode = BLOCKS;
3995 	return (Z_OK);
3996 }
3997 
3998 /*
3999  * Returns true if inflate is currently at the end of a block
4000  * generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by
4001  * one PPP implementation to provide an additional safety check. PPP
4002  * uses Z_SYNC_FLUSH but removes the length bytes of the resulting
4003  * empty stored block. When decompressing, PPP checks that at the end
4004  * of input packet, inflate is waiting for these length bytes.
4005  */
4006 int
inflateSyncPoint(z)4007 inflateSyncPoint(z)
4008 z_streamp z;
4009 {
4010 	if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
4011 		return (Z_STREAM_ERROR);
4012 	return (inflate_blocks_sync_point(z->state->blocks));
4013 }
4014 
4015 #undef NEEDBYTE
4016 #undef NEXTBYTE
4017 /* --- inflate.c */
4018 
4019 /* +++ infblock.c */
4020 /*
4021  * infblock.c -- interpret and process block types to last block
4022  * Copyright (C) 1995-1998 Mark Adler
4023  * For conditions of distribution and use, see copyright notice in zlib.h
4024  */
4025 
4026 /* #include "zutil.h" */
4027 /* #include "infblock.h" */
4028 
4029 /* +++ inftrees.h */
4030 /*
4031  * inftrees.h -- header to use inftrees.c
4032  * Copyright (C) 1995-1998 Mark Adler
4033  * For conditions of distribution and use, see copyright notice in zlib.h
4034  */
4035 
4036 /*
4037  * WARNING: this file should *not* be used by applications. It is part
4038  * of the implementation of the compression library and is subject to
4039  * change. Applications should only use zlib.h.
4040  */
4041 
4042 /*
4043  * Huffman code lookup table entry--this entry is four bytes for
4044  * machines that have 16-bit pointers (e.g. PC's in the small or
4045  * medium model).
4046  */
4047 
4048 typedef struct inflate_huft_s FAR inflate_huft;
4049 
4050 struct inflate_huft_s {
4051 	union {
4052 		struct {
4053 			Byte Exop;	/* number of extra bits or operation */
4054 			/* number of bits in this code or subcode */
4055 			Byte Bits;
4056 		} what;
4057 		Bytef *pad;	/* pad structure to a power of 2 (4 bytes for */
4058 	} word;	/*  16-bit, 8 bytes for 32-bit machines) */
4059 	/* literal, length base, distance base, or table offset */
4060 	uInt base;
4061 };
4062 
4063 /*
4064  * Maximum size of dynamic tree.  The maximum found in a long but non-
4065  * exhaustive search was 1004 huft structures (850 for length/literals
4066  * and 154 for distances, the latter actually the result of an
4067  * exhaustive search).  The actual maximum is not known, but the value
4068  * below is more than safe.
4069  */
4070 #define	MANY 1440
4071 
4072 extern int inflate_trees_bits OF((
4073     uIntf *,			/* 19 code lengths */
4074     uIntf *,			/* bits tree desired/actual depth */
4075     inflate_huft * FAR *,	/* bits tree result */
4076     inflate_huft *,		/* space for trees */
4077     z_streamp));	/* for zalloc, zfree functions */
4078 
4079 extern int inflate_trees_dynamic OF((
4080     uInt,	/* number of literal/length codes */
4081     uInt,	/* number of distance codes */
4082     uIntf *,	/* that many (total) code lengths */
4083     uIntf *,	/* literal desired/actual bit depth */
4084     uIntf *,	/* distance desired/actual bit depth */
4085     inflate_huft * FAR *,	/* literal/length tree result */
4086     inflate_huft * FAR *,	/* distance tree result */
4087     inflate_huft *,		/* space for trees */
4088     z_streamp));	/* for zalloc, zfree functions */
4089 
4090 extern int inflate_trees_fixed OF((
4091     uIntf *,	/* literal desired/actual bit depth */
4092     uIntf *,	/* distance desired/actual bit depth */
4093     const inflate_huft * FAR *,	/* literal/length tree result */
4094     const inflate_huft * FAR *,	/* distance tree result */
4095     z_streamp));
4096 
4097 /* --- inftrees.h */
4098 
4099 /* +++ infcodes.h */
4100 /*
4101  * infcodes.h -- header to use infcodes.c
4102  * Copyright (C) 1995-1998 Mark Adler
4103  * For conditions of distribution and use, see copyright notice in zlib.h
4104  */
4105 
4106 /*
4107  * WARNING: this file should *not* be used by applications. It is part
4108  * of the implementation of the compression library and is subject to
4109  * change. Applications should only use zlib.h.
4110  */
4111 
4112 struct inflate_codes_state;
4113 typedef struct inflate_codes_state FAR inflate_codes_statef;
4114 
4115 extern inflate_codes_statef *inflate_codes_new OF((
4116     uInt, uInt,
4117     const inflate_huft *, const inflate_huft *,
4118     z_streamp));
4119 
4120 extern int inflate_codes OF((
4121     inflate_blocks_statef *,
4122     z_streamp,
4123     int));
4124 
4125 extern void inflate_codes_free OF((
4126     inflate_codes_statef *,
4127     z_streamp));
4128 
4129 /* --- infcodes.h */
4130 
4131 /* +++ infutil.h */
4132 /*
4133  * infutil.h -- types and macros common to blocks and codes
4134  * Copyright (C) 1995-1998 Mark Adler
4135  * For conditions of distribution and use, see copyright notice in zlib.h
4136  */
4137 
4138 /*
4139  * WARNING: this file should *not* be used by applications. It is part
4140  * of the implementation of the compression library and is subject to
4141  * change. Applications should only use zlib.h.
4142  */
4143 
4144 #ifndef _INFUTIL_H
4145 #define	_INFUTIL_H
4146 
4147 typedef enum {
4148 	TYPE,	/* get type bits (3, including end bit) */
4149 	LENS,	/* get lengths for stored */
4150 	STORED,	/* processing stored block */
4151 	TABLE,	/* get table lengths */
4152 	BTREE,	/* get bit lengths tree for a dynamic block */
4153 	DTREE,	/* get length, distance trees for a dynamic block */
4154 	CODES,	/* processing fixed or dynamic block */
4155 	DRY,	/* output remaining window bytes */
4156 	DONEB,	/* finished last block, done */
4157 	BADB}	/* got a data error--stuck here */
4158 inflate_block_mode;
4159 
4160 /* inflate blocks semi-private state */
4161 struct inflate_blocks_state {
4162 
4163 	/* mode */
4164 	inflate_block_mode  mode;	/* current inflate_block mode */
4165 
4166 	/* mode dependent information */
4167 	union {
4168 		uInt left;	/* if STORED, bytes left to copy */
4169 		struct {
4170 			uInt table;	/* table lengths (14 bits) */
4171 			uInt index;	/* index into blens (or border) */
4172 			uIntf *blens;	/* bit lengths of codes */
4173 			uInt bb;	/* bit length tree depth */
4174 			inflate_huft *tb;	/* bit length decoding tree */
4175 		} trees;	/* if DTREE, decoding info for trees */
4176 		struct {
4177 			inflate_codes_statef *codes;
4178 		} decode;	/* if CODES, current state */
4179 	} sub;	/* submode */
4180 	uInt last;	/* true if this block is the last block */
4181 
4182 	/* mode independent information */
4183 	uInt bitk;	/* bits in bit buffer */
4184 	uLong bitb;	/* bit buffer */
4185 	inflate_huft *hufts;  /* single malloc for tree space */
4186 	Bytef *window;	/* sliding window */
4187 	Bytef *end;	/* one byte after sliding window */
4188 	Bytef *read;	/* window read pointer */
4189 	Bytef *write;	/* window write pointer */
4190 	check_func checkfn;	/* check function */
4191 	uLong check;	/* check on output */
4192 
4193 };
4194 
4195 
4196 /* defines for inflate input/output */
4197 /*   update pointers and return */
4198 #define	UPDBITS {s->bitb = b; s->bitk = k; }
4199 #define	UPDIN {z->avail_in = n; z->total_in += p-z->next_in; z->next_in = p; }
4200 #define	UPDOUT {s->write = q; }
4201 #define	UPDATE {UPDBITS UPDIN UPDOUT}
4202 #define	LEAVE {UPDATE return (inflate_flush(s, z, r)); }
4203 /*   get bytes and bits */
4204 #define	LOADIN {p = z->next_in; n = z->avail_in; b = s->bitb; k = s->bitk; }
4205 #define	NEEDBYTE { if (n) r = Z_OK; else LEAVE }
4206 #define	NEXTBYTE (n--, *p++)
4207 #define	NEEDBITS(j) { while (k < (j)) { NEEDBYTE; b |= ((uLong)NEXTBYTE)<<k; \
4208 	k += 8; }}
4209 #define	DUMPBITS(j) {b >>= (j); k -= (j); }
4210 /*   output bytes */
4211 #define	WAVAIL (uInt)(q < s->read ? s->read-q-1 : s->end-q)
4212 #define	LOADOUT {q = s->write; m = (uInt)WAVAIL; }
4213 #define	WWRAP {if (q == s->end && s->read != s->window) {q = s->window; \
4214 	m = (uInt)WAVAIL; }}
4215 #define	FLUSH {UPDOUT r = inflate_flush(s, z, r); LOADOUT}
4216 #define	NEEDOUT {if (m == 0) {WWRAP if (m == 0) { FLUSH WWRAP \
4217 	if (m == 0) LEAVE }} r = Z_OK; }
4218 #define	OUTBYTE(a) {*q++ = (Byte)(a); m--; }
4219 /*   load local pointers */
4220 #define	LOAD {LOADIN LOADOUT}
4221 
4222 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
4223 extern uInt inflate_mask[17];
4224 
4225 /* copy as much as possible from the sliding window to the output area */
4226 extern int inflate_flush OF((
4227     inflate_blocks_statef *,
4228     z_streamp,
4229     int));
4230 
4231 #ifndef NO_DUMMY_DECL
4232 struct internal_state {int dummy; };	/* for buggy compilers */
4233 #endif
4234 
4235 #endif
4236 /* --- infutil.h */
4237 
4238 #ifndef NO_DUMMY_DECL
4239 struct inflate_codes_state {int dummy; };	/* for buggy compilers */
4240 #endif
4241 
4242 /* Table for deflate from PKZIP's appnote.txt. */
4243 local const uInt border[] = { /* Order of the bit length code lengths */
4244 	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4245 
4246 /*
4247  * Notes beyond the 1.93a appnote.txt:
4248  *
4249  *   1. Distance pointers never point before the beginning of the output
4250  *      stream.
4251  *   2. Distance pointers can point back across blocks, up to 32k away.
4252  *   3. There is an implied maximum of 7 bits for the bit length table and
4253  *      15 bits for the actual data.
4254  *   4. If only one code exists, then it is encoded using one bit.  (Zero
4255  *      would be more efficient, but perhaps a little confusing.)  If two
4256  *      codes exist, they are coded using one bit each (0 and 1).
4257  *   5. There is no way of sending zero distance codes--a dummy must be
4258  *      sent if there are none.  (History: a pre 2.0 version of PKZIP would
4259  *      store blocks with no distance codes, but this was discovered to be
4260  *      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
4261  *      zero distance codes, which is sent as one code of zero bits in
4262  *      length.
4263  *   6. There are up to 286 literal/length codes.  Code 256 represents the
4264  *      end-of-block.  Note however that the static length tree defines
4265  *      288 codes just to fill out the Huffman codes.  Codes 286 and 287
4266  *      cannot be used though, since there is no length base or extra bits
4267  *      defined for them.  Similarily, there are up to 30 distance codes.
4268  *      However, static trees define 32 codes (all 5 bits) to fill out the
4269  *      Huffman codes, but the last two had better not show up in the data.
4270  *   7. Unzip can check dynamic Huffman blocks for complete code sets.
4271  *      The exception is that a single code would not be complete (see #4).
4272  *   8. The five bits following the block type is really the number of
4273  *      literal codes sent minus 257.
4274  *   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4275  *      (1+6+6).  Therefore, to output three times the length, you output
4276  *      three codes (1+1+1), whereas to output four times the same length,
4277  *      you only need two codes (1+3).  Hmm.
4278  *  10. In the tree reconstruction algorithm, Code = Code + Increment
4279  *      only if BitLength(i) is not zero.  (Pretty obvious.)
4280  *  11. Correction: 4 Bits: #of Bit Length codes - 4     (4 - 19)
4281  *  12. Note: length code 284 can represent 227-258, but length code 285
4282  *      really is 258.  The last length deserves its own, short code
4283  *      since it gets used a lot in very redundant files.  The length
4284  *      258 is special since 258 - 3 (the min match length) is 255.
4285  *  13. The literal/length and distance code bit lengths are read as a
4286  *      single stream of lengths.  It is possible (and advantageous) for
4287  *      a repeat code (16, 17, or 18) to go across the boundary between
4288  *      the two sets of lengths.
4289  */
4290 
4291 
4292 void
inflate_blocks_reset(s,z,c)4293 inflate_blocks_reset(s, z, c)
4294 inflate_blocks_statef *s;
4295 z_streamp z;
4296 uLongf *c;
4297 {
4298 	if (c != Z_NULL)
4299 		*c = s->check;
4300 	if ((s->mode == BTREE || s->mode == DTREE) &&
4301 	    s->sub.trees.blens != Z_NULL) {
4302 		ZFREE(z, s->sub.trees.blens);
4303 		s->sub.trees.blens = Z_NULL;
4304 	}
4305 	if (s->mode == CODES && s->sub.decode.codes != Z_NULL) {
4306 		(void) inflate_codes_free(s->sub.decode.codes, z);
4307 		s->sub.decode.codes = Z_NULL;
4308 	}
4309 	s->mode = TYPE;
4310 	s->bitk = 0;
4311 	s->bitb = 0;
4312 	s->read = s->write = s->window;
4313 	if (s->checkfn != Z_NULL)
4314 		z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
4315 	Trace((stderr, "inflate:   blocks reset\n"));
4316 }
4317 
4318 inflate_blocks_statef *
inflate_blocks_new(z,c,w)4319 inflate_blocks_new(z, c, w)
4320 z_streamp z;
4321 check_func c;
4322 uInt w;
4323 {
4324 	inflate_blocks_statef *s;
4325 
4326 	if ((s = (inflate_blocks_statef *)ZALLOC
4327 	    (z, 1, sizeof (struct inflate_blocks_state))) == Z_NULL)
4328 		return (s);
4329 	s->hufts = (inflate_huft *)ZALLOC(z, MANY, sizeof (inflate_huft));
4330 	if (s->hufts == Z_NULL) {
4331 		ZFREE(z, s);
4332 		return (Z_NULL);
4333 	}
4334 	if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4335 	{
4336 		ZFREE(z, s->hufts);
4337 		ZFREE(z, s);
4338 		return (Z_NULL);
4339 	}
4340 	s->end = s->window + w;
4341 	s->checkfn = c;
4342 	s->mode = TYPE;
4343 	Trace((stderr, "inflate:   blocks allocated\n"));
4344 	inflate_blocks_reset(s, z, Z_NULL);
4345 	return (s);
4346 }
4347 
4348 
4349 int
inflate_blocks(s,z,r)4350 inflate_blocks(s, z, r)
4351 inflate_blocks_statef *s;
4352 z_streamp z;
4353 int r;
4354 {
4355 	uInt t;	/* temporary storage */
4356 	uLong b;	/* bit buffer */
4357 	uInt k;	/* bits in bit buffer */
4358 	Bytef *p;	/* input data pointer */
4359 	uInt n;	/* bytes available there */
4360 	Bytef *q;	/* output window write pointer */
4361 	uInt m;	/* bytes to end of window or read pointer */
4362 
4363 	/* copy input/output information to locals (UPDATE macro restores) */
4364 	LOAD;
4365 
4366 	/* process input based on current state */
4367 	/* CONSTCOND */
4368 	while (1)
4369 		switch (s->mode)
4370 	{
4371 	case TYPE:
4372 		NEEDBITS(3);
4373 		t = (uInt)b & 7;
4374 		s->last = t & 1;
4375 		switch (t >> 1)
4376 		{
4377 		case 0:			/* stored */
4378 			Trace((stderr, "inflate:     stored block%s\n",
4379 			    s->last ? " (last)" : ""));
4380 			DUMPBITS(3);
4381 			t = k & 7;	/* go to byte boundary */
4382 			DUMPBITS(t);
4383 			s->mode = LENS;	/* get length of stored block */
4384 			break;
4385 		case 1:			/* fixed */
4386 			Trace((stderr, "inflate:     fixed codes block%s\n",
4387 			    s->last ? " (last)" : ""));
4388 			{
4389 				uInt bl, bd;
4390 				const inflate_huft *tl, *td;
4391 
4392 				(void) inflate_trees_fixed(&bl, &bd, &tl, &td,
4393 				    z);
4394 				s->sub.decode.codes = inflate_codes_new(bl,
4395 				    bd, tl, td, z);
4396 				if (s->sub.decode.codes == Z_NULL)
4397 				{
4398 					r = Z_MEM_ERROR;
4399 					LEAVE
4400 				}
4401 			}
4402 			DUMPBITS(3);
4403 			s->mode = CODES;
4404 			break;
4405 		case 2:			/* dynamic */
4406 			Trace((stderr, "inflate:     dynamic codes block%s\n",
4407 			    s->last ? " (last)" : ""));
4408 			DUMPBITS(3);
4409 			s->mode = TABLE;
4410 			break;
4411 		case 3:			/* illegal */
4412 			DUMPBITS(3);
4413 			s->mode = BADB;
4414 			z->msg = "invalid block type";
4415 			r = Z_DATA_ERROR;
4416 			LEAVE
4417 		}
4418 		break;
4419 	case LENS:
4420 		NEEDBITS(32);
4421 		if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4422 		{
4423 			s->mode = BADB;
4424 			z->msg = "invalid stored block lengths";
4425 			r = Z_DATA_ERROR;
4426 			LEAVE
4427 		}
4428 		s->sub.left = (uInt)b & 0xffff;
4429 		b = k = 0;	/* dump bits */
4430 		Tracev((stderr, "inflate:       stored length %u\n",
4431 		    s->sub.left));
4432 		s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4433 		break;
4434 	case STORED:
4435 		if (n == 0)
4436 			LEAVE
4437 		NEEDOUT;
4438 		t = s->sub.left;
4439 		if (t > n) t = n;
4440 		if (t > m) t = m;
4441 		zmemcpy(q, p, t);
4442 		p += t;  n -= t;
4443 		q += t;  m -= t;
4444 		if ((s->sub.left -= t) != 0)
4445 			break;
4446 		Tracev((stderr,
4447 		    "inflate:       stored end, %lu total out\n",
4448 		    z->total_out + (q >= s->read ? q - s->read :
4449 			(s->end - s->read) + (q - s->window))));
4450 		s->mode = s->last ? DRY : TYPE;
4451 		break;
4452 	case TABLE:
4453 		NEEDBITS(14);
4454 		s->sub.trees.table = t = (uInt)b & 0x3fff;
4455 #ifndef PKZIP_BUG_WORKAROUND
4456 		if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4457 		{
4458 			s->mode = BADB;
4459 			z->msg =
4460 			    (char *)"too many length or distance symbols";
4461 			r = Z_DATA_ERROR;
4462 			LEAVE
4463 		}
4464 #endif
4465 		t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4466 		/* if (t < 19) t = 19; */
4467 		if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t,
4468 		    sizeof (uInt))) == Z_NULL)
4469 		{
4470 			r = Z_MEM_ERROR;
4471 			LEAVE
4472 		}
4473 		DUMPBITS(14);
4474 		s->sub.trees.index = 0;
4475 		Tracev((stderr, "inflate:       table sizes ok\n"));
4476 		s->mode = BTREE;
4477 		/* FALLTHRU */
4478 	case BTREE:
4479 		while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4480 		{
4481 			NEEDBITS(3);
4482 			s->sub.trees.blens[border[s->sub.trees.index++]] =
4483 			    (uInt)b & 7;
4484 			DUMPBITS(3);
4485 		}
4486 		while (s->sub.trees.index < 19)
4487 			s->sub.trees.blens[border[s->sub.trees.index++]] =
4488 			    0;
4489 		s->sub.trees.bb = 7;
4490 		t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4491 		    &s->sub.trees.tb, s->hufts, z);
4492 		if (t != Z_OK)
4493 		{
4494 			ZFREE(z, s->sub.trees.blens);
4495 			s->sub.trees.blens = Z_NULL;
4496 			r = t;
4497 			if (r == Z_DATA_ERROR)
4498 				s->mode = BADB;
4499 			LEAVE
4500 		}
4501 		s->sub.trees.index = 0;
4502 		Tracev((stderr, "inflate:       bits tree ok\n"));
4503 		s->mode = DTREE;
4504 		/* FALLTHRU */
4505 	case DTREE:
4506 		while (t = s->sub.trees.table,
4507 		    s->sub.trees.index < 258 + (t & 0x1f) +
4508 		    ((t >> 5) & 0x1f))
4509 		{
4510 			inflate_huft *h;
4511 			uInt i, j, c;
4512 
4513 			t = s->sub.trees.bb;
4514 			NEEDBITS(t);
4515 			h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4516 			t = h->word.what.Bits;
4517 			c = h->base;
4518 			if (c < 16)
4519 			{
4520 				DUMPBITS(t);
4521 				s->sub.trees.blens[s->sub.trees.index++] =
4522 				    c;
4523 			} else { /* c == 16..18 */
4524 				i = c == 18 ? 7 : c - 14;
4525 				j = c == 18 ? 11 : 3;
4526 				NEEDBITS(t + i);
4527 				DUMPBITS(t);
4528 				j += (uInt)b & inflate_mask[i];
4529 				DUMPBITS(i);
4530 				i = s->sub.trees.index;
4531 				t = s->sub.trees.table;
4532 				if (i + j > 258 + (t & 0x1f) +
4533 				    ((t >> 5) & 0x1f) ||
4534 				    (c == 16 && i < 1))
4535 				{
4536 					ZFREE(z, s->sub.trees.blens);
4537 					s->sub.trees.blens = Z_NULL;
4538 					s->mode = BADB;
4539 					z->msg = "invalid bit length repeat";
4540 					r = Z_DATA_ERROR;
4541 					LEAVE
4542 				}
4543 				c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4544 				do {
4545 					s->sub.trees.blens[i++] = c;
4546 				} while (--j);
4547 				s->sub.trees.index = i;
4548 			}
4549 		}
4550 		s->sub.trees.tb = Z_NULL;
4551 		{
4552 			uInt bl, bd;
4553 			inflate_huft *tl, *td;
4554 			inflate_codes_statef *c;
4555 
4556 				/* must be <= 9 for lookahead assumptions */
4557 			bl = 9;
4558 				/* must be <= 9 for lookahead assumptions */
4559 			bd = 6;
4560 			t = s->sub.trees.table;
4561 			t = inflate_trees_dynamic(257 + (t & 0x1f),
4562 			    1 + ((t >> 5) & 0x1f),
4563 			    s->sub.trees.blens, &bl, &bd, &tl, &td,
4564 			    s->hufts, z);
4565 			ZFREE(z, s->sub.trees.blens);
4566 			s->sub.trees.blens = Z_NULL;
4567 			if (t != Z_OK)
4568 			{
4569 				if (t == (uInt)Z_DATA_ERROR)
4570 					s->mode = BADB;
4571 				r = t;
4572 				LEAVE
4573 			}
4574 			Tracev((stderr, "inflate:       trees ok\n"));
4575 			if ((c = inflate_codes_new(bl, bd, tl, td, z)) ==
4576 			    Z_NULL)
4577 			{
4578 				r = Z_MEM_ERROR;
4579 				LEAVE
4580 			}
4581 			s->sub.decode.codes = c;
4582 		}
4583 		s->mode = CODES;
4584 		/* FALLTHRU */
4585 	case CODES:
4586 		UPDATE;
4587 		if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4588 			return (inflate_flush(s, z, r));
4589 		r = Z_OK;
4590 		(void) inflate_codes_free(s->sub.decode.codes, z);
4591 		LOAD;
4592 		Tracev((stderr, "inflate:       codes end, %lu total out\n",
4593 		    z->total_out + (q >= s->read ? q - s->read :
4594 			(s->end - s->read) + (q - s->window))));
4595 		if (!s->last)
4596 		{
4597 			s->mode = TYPE;
4598 			break;
4599 		}
4600 		s->mode = DRY;
4601 		/* FALLTHRU */
4602 	case DRY:
4603 		FLUSH;
4604 		if (s->read != s->write)
4605 			LEAVE
4606 		s->mode = DONEB;
4607 		/* FALLTHRU */
4608 	case DONEB:
4609 		r = Z_STREAM_END;
4610 		LEAVE
4611 	case BADB:
4612 		r = Z_DATA_ERROR;
4613 		LEAVE
4614 	default:
4615 		r = Z_STREAM_ERROR;
4616 		LEAVE
4617 	}
4618 	/* NOTREACHED */
4619 	/* otherwise lint complains */
4620 }
4621 
4622 
4623 int
inflate_blocks_free(s,z)4624 inflate_blocks_free(s, z)
4625 inflate_blocks_statef *s;
4626 z_streamp z;
4627 {
4628 	inflate_blocks_reset(s, z, Z_NULL);
4629 	ZFREE(z, s->window);
4630 	s->window = Z_NULL;
4631 	ZFREE(z, s->hufts);
4632 	s->hufts = Z_NULL;
4633 	ZFREE(z, s);
4634 	Trace((stderr, "inflate:   blocks freed\n"));
4635 	return (Z_OK);
4636 }
4637 
4638 
4639 void
inflate_set_dictionary(s,d,n)4640 inflate_set_dictionary(s, d, n)
4641 inflate_blocks_statef *s;
4642 const Bytef *d;
4643 uInt  n;
4644 {
4645 	Assert(s->window + n <= s->end, "set dict");
4646 	zmemcpy((charf *)s->window, d, n);
4647 	s->read = s->write = s->window + n;
4648 }
4649 
4650 /*
4651  * Returns true if inflate is currently at the end of a block
4652  * generated by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4653  * IN assertion: s != Z_NULL
4654  */
4655 int
inflate_blocks_sync_point(s)4656 inflate_blocks_sync_point(s)
4657 inflate_blocks_statef *s;
4658 {
4659 	return (s->mode == LENS);
4660 }
4661 
4662 /*
4663  * This subroutine adds the data at next_in/avail_in to the output history
4664  * without performing any output.  The output buffer must be "caught up";
4665  * i.e. no pending output (hence s->read equals s->write), and the state must
4666  * be BLOCKS (i.e. we should be willing to see the start of a series of
4667  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4668  * will have been updated if need be.
4669  */
4670 int
inflate_addhistory(s,z)4671 inflate_addhistory(s, z)
4672 inflate_blocks_statef *s;
4673 z_stream *z;
4674 {
4675 	uLong b;	/* bit buffer */  /* NOT USED HERE */
4676 	uInt k;	/* bits in bit buffer */ /* NOT USED HERE */
4677 	uInt t;	/* temporary storage */
4678 	Bytef *p;	/* input data pointer */
4679 	uInt n;	/* bytes available there */
4680 	Bytef *q;	/* output window write pointer */
4681 	uInt m;	/* bytes to end of window or read pointer */
4682 
4683 	if (s->read != s->write)
4684 		return (Z_STREAM_ERROR);
4685 	if (s->mode != TYPE)
4686 		return (Z_DATA_ERROR);
4687 
4688 	/* we're ready to rock */
4689 	LOAD;
4690 	/*
4691 	 * while there is input ready, copy to output buffer, moving
4692 	 * pointers as needed.
4693 	 */
4694 	while (n) {
4695 		t = n;	/* how many to do */
4696 		/* is there room until end of buffer? */
4697 		if (t > m) t = m;
4698 		/* update check information */
4699 		if (s->checkfn != Z_NULL)
4700 			s->check = (*s->checkfn)(s->check, q, t);
4701 		zmemcpy(q, p, t);
4702 		q += t;
4703 		p += t;
4704 		n -= t;
4705 		z->total_out += t;
4706 		s->read = q;	/* drag read pointer forward */
4707 /* WWRAP */	/* expand WWRAP macro by hand to handle s->read */
4708 		if (q == s->end) {
4709 			s->read = q = s->window;
4710 			m = WAVAIL;
4711 		}
4712 	}
4713 	UPDATE;
4714 	return (Z_OK);
4715 }
4716 
4717 
4718 /*
4719  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4720  * a `stored' block type value but not the (zero) length bytes.
4721  */
4722 int
inflate_packet_flush(s)4723 inflate_packet_flush(s)
4724     inflate_blocks_statef *s;
4725 {
4726 	if (s->mode != LENS)
4727 		return (Z_DATA_ERROR);
4728 	s->mode = TYPE;
4729 	return (Z_OK);
4730 }
4731 /* --- infblock.c */
4732 
4733 /* +++ inftrees.c */
4734 /*
4735  * inftrees.c -- generate Huffman trees for efficient decoding
4736  * Copyright (C) 1995-1998 Mark Adler
4737  * For conditions of distribution and use, see copyright notice in zlib.h
4738  */
4739 
4740 /* #include "zutil.h" */
4741 /* #include "inftrees.h" */
4742 
4743 const char inflate_copyright[] =
4744 " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
4745 /*
4746  * If you use the zlib library in a product, an acknowledgment is
4747  * welcome in the documentation of your product. If for some reason
4748  * you cannot include such an acknowledgment, I would appreciate that
4749  * you keep this copyright string in the executable of your product.
4750  */
4751 
4752 #ifndef NO_DUMMY_DECL
4753 struct internal_state  {int dummy; };	/* for buggy compilers */
4754 #endif
4755 
4756 /* simplify the use of the inflate_huft type with some defines */
4757 #define	exop word.what.Exop
4758 #define	bits word.what.Bits
4759 
4760 
4761 local int huft_build OF((
4762 	uIntf *,	/* code lengths in bits */
4763 	uInt,		/* number of codes */
4764 	uInt,		/* number of "simple" codes */
4765 	const uIntf *,	/* list of base values for non-simple codes */
4766 	const uIntf *,	/* list of extra bits for non-simple codes */
4767 	inflate_huft * FAR*, /* result: starting table */
4768 	uIntf *,	/* maximum lookup bits (returns actual) */
4769 	inflate_huft *hp,	/* space for trees */
4770 	uInt *hn,	/* hufts used in space */
4771 	uIntf *v));	/* working area: values in order of bit length */
4772 
4773 /* Tables for deflate from PKZIP's appnote.txt. */
4774 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4775 	3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4776 	35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4777 	/* see note #13 above about 258 */
4778 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4779 	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4780 	3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112};
4781 	/* 112==invalid */
4782 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4783 	1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4784 	257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4785 	8193, 12289, 16385, 24577};
4786 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4787 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4788 	7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4789 	12, 12, 13, 13};
4790 
4791 /*
4792  * Huffman code decoding is performed using a multi-level table
4793  * lookup.  The fastest way to decode is to simply build a lookup
4794  * table whose size is determined by the longest code.  However, the
4795  * time it takes to build this table can also be a factor if the data
4796  * being decoded is not very long.  The most common codes are
4797  * necessarily the shortest codes, so those codes dominate the
4798  * decoding time, and hence the speed.  The idea is you can have a
4799  * shorter table that decodes the shorter, more probable codes, and
4800  * then point to subsidiary tables for the longer codes.  The time it
4801  * costs to decode the longer codes is then traded against the time it
4802  * takes to make longer tables.
4803  *
4804  * This results of this trade are in the variables lbits and dbits
4805  * below.  lbits is the number of bits the first level table for
4806  * literal/ length codes can decode in one step, and dbits is the same
4807  * thing for the distance codes.  Subsequent tables are also less than
4808  * or equal to those sizes.  These values may be adjusted either when
4809  * all of the codes are shorter than that, in which case the longest
4810  * code length in bits is used, or when the shortest code is *longer*
4811  * than the requested table size, in which case the length of the
4812  * shortest code in bits is used.
4813  *
4814  * There are two different values for the two tables, since they code
4815  * a different number of possibilities each.  The literal/length table
4816  * codes 286 possible values, or in a flat code, a little over eight
4817  * bits.  The distance table codes 30 possible values, or a little
4818  * less than five bits, flat.  The optimum values for speed end up
4819  * being about one bit more than those, so lbits is 8+1 and dbits is
4820  * 5+1.  The optimum values may differ though from machine to machine,
4821  * and possibly even between compilers.  Your mileage may vary.
4822  */
4823 
4824 
4825 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4826 #define	BMAX 15		/* maximum bit length of any code */
4827 
4828 
4829 local int
huft_build(b,n,s,d,e,t,m,hp,hn,v)4830 huft_build(b, n, s, d, e, t, m, hp, hn, v)
4831 uIntf *b;	/* code lengths in bits (all assumed <= BMAX) */
4832 uInt n;	/* number of codes (assumed <= 288) */
4833 uInt s;	/* number of simple-valued codes (0..s-1) */
4834 const uIntf *d;	/* list of base values for non-simple codes */
4835 const uIntf *e;	/* list of extra bits for non-simple codes */
4836 inflate_huft * FAR *t;	/* result: starting table */
4837 uIntf *m;	/* maximum lookup bits, returns actual */
4838 inflate_huft *hp;	/* space for trees */
4839 uInt *hn;		/* hufts used in space */
4840 uIntf *v;		/* working area: values in order of bit length */
4841 /*
4842  * Given a list of code lengths and a maximum table size, make a set
4843  * of tables to decode that set of codes.  Return Z_OK on success,
4844  * Z_BUF_ERROR if the given code set is incomplete (the tables are
4845  * still built in this case), Z_DATA_ERROR if the input is invalid (an
4846  * over-subscribed set of lengths), or Z_MEM_ERROR if not enough
4847  * memory.
4848  */
4849 {
4850 
4851 	uInt a;	/* counter for codes of length k */
4852 	uInt c[BMAX+1];	/* bit length count table */
4853 	uInt f;	/* i repeats in table every f entries */
4854 	int g;	/* maximum code length */
4855 	int h;	/* table level */
4856 	register uInt i;	/* counter, current code */
4857 	register uInt j;	/* counter */
4858 	register int k;	/* number of bits in current code */
4859 	int l;	/* bits per table (returned in m) */
4860 	register uIntf *p;	/* pointer into c[], b[], or v[] */
4861 	inflate_huft *q;	/* points to current table */
4862 	struct inflate_huft_s r; /* table entry for structure assignment */
4863 	inflate_huft *u[BMAX];	/* table stack */
4864 	uInt mask;	/* (1 << w) - 1, to avoid cc -O bug on HP */
4865 	register int w;	/* bits before this table == (l * h) */
4866 	uInt x[BMAX+1];	/* bit offsets, then code stack */
4867 	uIntf *xp;	/* pointer into x */
4868 	int y;	/* number of dummy codes added */
4869 	uInt z;	/* number of entries in current table */
4870 
4871 	(void) inflate_copyright;
4872 	/* Generate counts for each bit length */
4873 	p = c;
4874 #define	C0 *p++ = 0;
4875 #define	C2 C0 C0 C0 C0
4876 #define	C4 C2 C2 C2 C2
4877 	C4	/* clear c[]--assume BMAX+1 is 16 */
4878 	    p = b;  i = n;
4879 	do {
4880 		c[*p++]++;	/* assume all entries <= BMAX */
4881 	} while (--i);
4882 	if (c[0] == n)		/* null input--all zero length codes */
4883 	{
4884 		*t = (inflate_huft *)Z_NULL;
4885 		*m = 0;
4886 		return (Z_OK);
4887 	}
4888 
4889 
4890 	/* Find minimum and maximum length, bound *m by those */
4891 	l = *m;
4892 	for (j = 1; j <= BMAX; j++)
4893 		if (c[j])
4894 			break;
4895 	k = j;	/* minimum code length */
4896 	if ((uInt)l < j)
4897 		l = j;
4898 	for (i = BMAX; i; i--)
4899 		if (c[i])
4900 			break;
4901 	g = i;	/* maximum code length */
4902 	if ((uInt)l > i)
4903 		l = i;
4904 	*m = l;
4905 
4906 
4907 	/* Adjust last length count to fill out codes, if needed */
4908 	for (y = 1 << j; j < i; j++, y <<= 1)
4909 		if ((y -= c[j]) < 0)
4910 			return (Z_DATA_ERROR);
4911 	if ((y -= c[i]) < 0)
4912 		return (Z_DATA_ERROR);
4913 	c[i] += y;
4914 
4915 
4916 	/* Generate starting offsets into the value table for each length */
4917 	x[1] = j = 0;
4918 	p = c + 1;  xp = x + 2;
4919 	while (--i) {		/* note that i == g from above */
4920 		*xp++ = (j += *p++);
4921 	}
4922 
4923 
4924 	/* Make a table of values in order of bit lengths */
4925 	p = b;  i = 0;
4926 	do {
4927 		if ((j = *p++) != 0)
4928 			v[x[j]++] = i;
4929 	} while (++i < n);
4930 	n = x[g];	/* set n to length of v */
4931 
4932 
4933 	/* Generate the Huffman codes and for each, make the table entries */
4934 	x[0] = i = 0;	/* first Huffman code is zero */
4935 	p = v;	/* grab values in bit order */
4936 	h = -1;	/* no tables yet--level -1 */
4937 	w = -l;	/* bits decoded == (l * h) */
4938 	u[0] = (inflate_huft *)Z_NULL;	/* just to keep compilers happy */
4939 	q = (inflate_huft *)Z_NULL;	/* ditto */
4940 	z = 0;	/* ditto */
4941 
4942 	/* go through the bit lengths (k already is bits in shortest code) */
4943 	for (; k <= g; k++) {
4944 		a = c[k];
4945 		while (a--) {
4946 			/*
4947 			 * here i is the Huffman code of length k bits
4948 			 * for value *p.  make tables up to required
4949 			 * level.
4950 			 */
4951 			while (k > w + l) {
4952 				h++;
4953 				w += l;	/* previous table always l bits */
4954 
4955 				/*
4956 				 * compute minimum size table less
4957 				 * than or equal to l bits
4958 				 */
4959 				z = g - w;
4960 				/* table size upper limit */
4961 				z = z > (uInt)l ? l : z;
4962 				/* try a k-w bit table */
4963 				if ((f = 1 << (j = k - w)) > a + 1) {
4964 					/* too few codes for k-w bit table */
4965 					/* deduct codes from patterns left */
4966 					f -= a + 1;
4967 					xp = c + k;
4968 					if (j < z)
4969 						/*
4970 						 * try smaller tables
4971 						 * up to z bits
4972 						 */
4973 						while (++j < z) {
4974 							/*
4975 							 * enough
4976 							 * codes to
4977 							 * use up j
4978 							 * bits
4979 							 */
4980 							if ((f <<= 1) <= *++xp)
4981 								break;
4982 							f -= *xp;
4983 							/*
4984 							 * else deduct
4985 							 * codes from
4986 							 * patterns
4987 							 */
4988 						}
4989 				}
4990 				/* table entries for j-bit table */
4991 				z = 1 << j;
4992 
4993 				/* allocate new table */
4994 				/* (note: doesn't matter for fixed) */
4995 				/* not enough memory */
4996 				if (*hn + z > MANY)
4997 					return (Z_MEM_ERROR);
4998 				u[h] = q = hp + *hn;
4999 				*hn += z;
5000 
5001 				/* connect to last table, if there is one */
5002 				if (h) {
5003 					/* save pattern for backing up */
5004 					x[h] = i;
5005 					/* bits to dump before this table */
5006 					r.bits = (Byte)l;
5007 					/* bits in this table */
5008 					r.exop = (Byte)j;
5009 					j = i >> (w - l);
5010 					/* offset to this table */
5011 					r.base = (uInt)(q - u[h-1] - j);
5012 					/* connect to last table */
5013 					u[h-1][j] = r;
5014 				} else
5015 					/* first table is returned result */
5016 					*t = q;
5017 			}
5018 
5019 			/* set up table entry in r */
5020 			r.bits = (Byte)(k - w);
5021 			if (p >= v + n)
5022 				/* out of values--invalid code */
5023 				r.exop = 128 + 64;
5024 			else if (*p < s)
5025 			{
5026 				/* 256 is end-of-block */
5027 				r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);
5028 				/* simple code is just the value */
5029 				r.base = *p++;
5030 			}
5031 			else
5032 			{
5033 				/* non-simple--look up in lists */
5034 				r.exop = (Byte)(e[*p - s] + 16 + 64);
5035 				r.base = d[*p++ - s];
5036 			}
5037 
5038 			/* fill code-like entries with r */
5039 			f = 1 << (k - w);
5040 			for (j = i >> w; j < z; j += f)
5041 				q[j] = r;
5042 
5043 			/* backwards increment the k-bit code i */
5044 			for (j = 1 << (k - 1); i & j; j >>= 1)
5045 				i ^= j;
5046 			i ^= j;
5047 
5048 			/* backup over finished tables */
5049 			mask = (1 << w) - 1;	/* needed on HP, cc -O bug */
5050 			while ((i & mask) != x[h])
5051 			{
5052 				h--;	/* don't need to update q */
5053 				w -= l;
5054 				mask = (1 << w) - 1;
5055 			}
5056 		}
5057 	}
5058 
5059 
5060 	/* Return Z_BUF_ERROR if we were given an incomplete table */
5061 	return (y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK);
5062 }
5063 
5064 
5065 int
inflate_trees_bits(c,bb,tb,hp,z)5066 inflate_trees_bits(c, bb, tb, hp, z)
5067 uIntf *c;	/* 19 code lengths */
5068 uIntf *bb;	/* bits tree desired/actual depth */
5069 inflate_huft * FAR *tb;	/* bits tree result */
5070 inflate_huft *hp;	/* space for trees */
5071 z_streamp z;	/* for zfree function */
5072 {
5073 	int r;
5074 	uInt hn = 0;		/* hufts used in space */
5075 	uIntf v[19];		/* work area for huft_build */
5076 
5077 	r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb,
5078 	    hp, &hn, v);
5079 	if (r == Z_DATA_ERROR)
5080 		z->msg = "oversubscribed dynamic bit lengths tree";
5081 	else if (r == Z_BUF_ERROR || *bb == 0)
5082 	{
5083 		z->msg = "incomplete dynamic bit lengths tree";
5084 		r = Z_DATA_ERROR;
5085 	}
5086 	return (r);
5087 }
5088 
5089 
5090 int
inflate_trees_dynamic(nl,nd,c,bl,bd,tl,td,hp,z)5091 inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
5092 uInt nl;	/* number of literal/length codes */
5093 uInt nd;	/* number of distance codes */
5094 uIntf *c;	/* that many (total) code lengths */
5095 uIntf *bl;	/* literal desired/actual bit depth */
5096 uIntf *bd;	/* distance desired/actual bit depth */
5097 inflate_huft * FAR *tl;	/* literal/length tree result */
5098 inflate_huft * FAR *td;	/* distance tree result */
5099 inflate_huft *hp;	/* space for trees */
5100 z_streamp z;	/* for zfree function */
5101 {
5102 	int r;
5103 	uInt hn = 0;		/* hufts used in space */
5104 	uIntf v[288];		/* work area for huft_build */
5105 
5106 	/* build literal/length tree */
5107 	r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
5108 	if (r != Z_OK || *bl == 0)
5109 	{
5110 		if (r == Z_DATA_ERROR)
5111 			z->msg = "oversubscribed literal/length tree";
5112 		else if (r != Z_MEM_ERROR)
5113 		{
5114 			z->msg = "incomplete literal/length tree";
5115 			r = Z_DATA_ERROR;
5116 		}
5117 		return (r);
5118 	}
5119 
5120 	/* build distance tree */
5121 	r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
5122 	if (r != Z_OK || (*bd == 0 && nl > 257))
5123 	{
5124 		if (r == Z_DATA_ERROR)
5125 			z->msg = "oversubscribed distance tree";
5126 		else if (r == Z_BUF_ERROR) {
5127 #ifdef PKZIP_BUG_WORKAROUND
5128 			r = Z_OK;
5129 #else
5130 			z->msg = "incomplete distance tree";
5131 			r = Z_DATA_ERROR;
5132 		} else if (r != Z_MEM_ERROR) {
5133 			z->msg = "empty distance tree with lengths";
5134 			r = Z_DATA_ERROR;
5135 #endif
5136 		}
5137 		return (r);
5138 	}
5139 
5140 /* done */
5141 	return (Z_OK);
5142 }
5143 
5144 
5145 /* build fixed tables only once--keep them here */
5146 /* #define	BUILDFIXED */
5147 #ifdef BUILDFIXED
5148 local int fixed_built = 0;
5149 #define	FIXEDH 544	/* number of hufts used by fixed tables */
5150 local inflate_huft fixed_mem[FIXEDH];
5151 local uInt fixed_bl;
5152 local uInt fixed_bd;
5153 local inflate_huft *fixed_tl;
5154 local inflate_huft *fixed_td;
5155 #else
5156 #include "inffixed.h"
5157 #endif
5158 
5159 /*ARGSUSED*/
5160 int
inflate_trees_fixed(bl,bd,tl,td,z)5161 inflate_trees_fixed(bl, bd, tl, td, z)
5162 uIntf *bl;	/* literal desired/actual bit depth */
5163 uIntf *bd;	/* distance desired/actual bit depth */
5164 const inflate_huft * FAR *tl;	/* literal/length tree result */
5165 const inflate_huft * FAR *td;	/* distance tree result */
5166 z_streamp z;	/* for memory allocation */
5167 {
5168 #ifdef BUILDFIXED
5169 	/*
5170 	 * build fixed tables if not already (multiple overlapped
5171 	 * executions ok)
5172 	 */
5173 	if (!fixed_built)
5174 	{
5175 		int k;	/* temporary variable */
5176 		uInt f = 0;	/* number of hufts used in fixed_mem */
5177 		uIntf *c;	/* length list for huft_build */
5178 		uIntf *v;
5179 
5180 		/* allocate memory */
5181 		if ((c = (uIntf*)ZALLOC(z, 288, sizeof (uInt))) == Z_NULL)
5182 			return (Z_MEM_ERROR);
5183 		if ((v = (uIntf*)ZALLOC(z, 288, sizeof (uInt))) == Z_NULL)
5184 		{
5185 			ZFREE(z, c);
5186 			return (Z_MEM_ERROR);
5187 		}
5188 		/* literal table */
5189 		for (k = 0; k < 144; k++)
5190 			c[k] = 8;
5191 		for (; k < 256; k++)
5192 			c[k] = 9;
5193 		for (; k < 280; k++)
5194 			c[k] = 7;
5195 		for (; k < 288; k++)
5196 			c[k] = 8;
5197 		fixed_bl = 9;
5198 		(void) huft_build(c, 288, 257, cplens, cplext, &fixed_tl,
5199 		    &fixed_bl, fixed_mem, &f, v);
5200 
5201 		/* distance table */
5202 		for (k = 0; k < 30; k++)
5203 			c[k] = 5;
5204 		fixed_bd = 5;
5205 		(void) huft_build(c, 30, 0, cpdist, cpdext, &fixed_td,
5206 		    &fixed_bd, fixed_mem, &f, v);
5207 
5208 		/* done */
5209 		ZFREE(z, v);
5210 		ZFREE(z, c);
5211 		fixed_built = 1;
5212 	}
5213 #endif
5214 	*bl = fixed_bl;
5215 	*bd = fixed_bd;
5216 	*tl = fixed_tl;
5217 	*td = fixed_td;
5218 	return (Z_OK);
5219 }
5220 /* --- inftrees.c */
5221 
5222 /* +++ infcodes.c */
5223 /*
5224  * infcodes.c -- process literals and length/distance pairs
5225  * Copyright (C) 1995-1998 Mark Adler
5226  * For conditions of distribution and use, see copyright notice in zlib.h
5227  */
5228 
5229 /* #include "zutil.h" */
5230 /* #include "inftrees.h" */
5231 /* #include "infblock.h" */
5232 /* #include "infcodes.h" */
5233 /* #include "infutil.h" */
5234 
5235 /* +++ inffast.h */
5236 /*
5237  * inffast.h -- header to use inffast.c
5238  * Copyright (C) 1995-1998 Mark Adler
5239  * For conditions of distribution and use, see copyright notice in zlib.h
5240  */
5241 
5242 /*
5243  * WARNING: this file should *not* be used by applications. It is part
5244  * of the implementation of the compression library and is subject to
5245  * change. Applications should only use zlib.h.
5246  */
5247 
5248 extern int inflate_fast OF((
5249     uInt,
5250     uInt,
5251     const inflate_huft *,
5252     const inflate_huft *,
5253     inflate_blocks_statef *,
5254     z_streamp));
5255 /* --- inffast.h */
5256 
5257 /* simplify the use of the inflate_huft type with some defines */
5258 #define	exop word.what.Exop
5259 #define	bits word.what.Bits
5260 
5261 /* inflate codes private state */
5262 struct inflate_codes_state {
5263 
5264 	/* mode */
5265 	enum {	/* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5266 		START,	/* x: set up for LEN */
5267 		LEN,	/* i: get length/literal/eob next */
5268 		LENEXT,	/* i: getting length extra (have base) */
5269 		DIST,	/* i: get distance next */
5270 		DISTEXT,	/* i: getting distance extra */
5271 		COPY,	/* o: copying bytes in window, waiting for space */
5272 		LIT,	/* o: got literal, waiting for output space */
5273 		WASH,	/* o: got eob, possibly still output waiting */
5274 		END,	/* x: got eob and all data flushed */
5275 		BADCODE}	/* x: got error */
5276 	mode;	/* current inflate_codes mode */
5277 
5278 	/* mode dependent information */
5279 	uInt len;
5280 	union {
5281 		struct {
5282 			const inflate_huft *tree;	/* pointer into tree */
5283 			uInt need;	/* bits needed */
5284 		} code;	/* if LEN or DIST, where in tree */
5285 		uInt lit;	/* if LIT, literal */
5286 		struct {
5287 			uInt get;	/* bits to get for extra */
5288 			uInt dist;	/* distance back to copy from */
5289 		} copy;	/* if EXT or COPY, where and how much */
5290 	} sub;	/* submode */
5291 
5292 	/* mode independent information */
5293 	Byte lbits;	/* ltree bits decoded per branch */
5294 	Byte dbits;	/* dtree bits decoder per branch */
5295 	const inflate_huft *ltree;	/* literal/length/eob tree */
5296 	const inflate_huft *dtree;	/* distance tree */
5297 
5298 };
5299 
5300 
5301 inflate_codes_statef *
inflate_codes_new(bl,bd,tl,td,z)5302 inflate_codes_new(bl, bd, tl, td, z)
5303 uInt bl, bd;
5304 const inflate_huft *tl;
5305 const inflate_huft *td;	/* need separate declaration for Borland C++ */
5306 z_streamp z;
5307 {
5308 	inflate_codes_statef *c;
5309 
5310 	if ((c = (inflate_codes_statef *)
5311 	    ZALLOC(z, 1, sizeof (struct inflate_codes_state))) != Z_NULL)
5312 	{
5313 		c->mode = START;
5314 		c->lbits = (Byte)bl;
5315 		c->dbits = (Byte)bd;
5316 		c->ltree = tl;
5317 		c->dtree = td;
5318 		Tracev((stderr, "inflate:       codes new\n"));
5319 	}
5320 	return (c);
5321 }
5322 
5323 
5324 int
inflate_codes(s,z,r)5325 inflate_codes(s, z, r)
5326 inflate_blocks_statef *s;
5327 z_streamp z;
5328 int r;
5329 {
5330 	uInt j;	/* temporary storage */
5331 	const inflate_huft *t;	/* temporary pointer */
5332 	uInt e;	/* extra bits or operation */
5333 	uLong b;	/* bit buffer */
5334 	uInt k;	/* bits in bit buffer */
5335 	Bytef *p;	/* input data pointer */
5336 	uInt n;	/* bytes available there */
5337 	Bytef *q;	/* output window write pointer */
5338 	uInt m;	/* bytes to end of window or read pointer */
5339 	Bytef *f;	/* pointer to copy strings from */
5340 	inflate_codes_statef *c = s->sub.decode.codes;	/* codes state */
5341 
5342 	/* copy input/output information to locals (UPDATE macro restores) */
5343 	LOAD;
5344 
5345 	/* process input and output based on current state */
5346 	/* CONSTCOND */
5347 	while (1)
5348 		/* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5349 		switch (c->mode) {
5350 		case START:	/* x: set up for LEN */
5351 #ifndef SLOW
5352 			if (m >= 258 && n >= 10)
5353 			{
5354 				UPDATE;
5355 				r = inflate_fast(c->lbits, c->dbits,
5356 				    c->ltree, c->dtree, s, z);
5357 				LOAD;
5358 				if (r != Z_OK) {
5359 					c->mode = r == Z_STREAM_END ?
5360 					    WASH : BADCODE;
5361 					break;
5362 				}
5363 			}
5364 #endif /* !SLOW */
5365 			c->sub.code.need = c->lbits;
5366 			c->sub.code.tree = c->ltree;
5367 			c->mode = LEN;
5368 			/* FALLTHRU */
5369 		case LEN:	/* i: get length/literal/eob next */
5370 			j = c->sub.code.need;
5371 			NEEDBITS(j);
5372 			t = c->sub.code.tree +
5373 			    ((uInt)b & inflate_mask[j]);
5374 			DUMPBITS(t->bits);
5375 			e = (uInt)(t->exop);
5376 			if (e == 0) {	/* literal */
5377 				c->sub.lit = t->base;
5378 				Tracevv((stderr, t->base >= 0x20 &&
5379 				    t->base < 0x7f ?
5380 				    "inflate:         literal '%c'\n" :
5381 				    "inflate:         literal 0x%02x\n",
5382 				    t->base));
5383 				c->mode = LIT;
5384 				break;
5385 			}
5386 			if (e & 16) {	/* length */
5387 				c->sub.copy.get = e & 15;
5388 				c->len = t->base;
5389 				c->mode = LENEXT;
5390 				break;
5391 			}
5392 			if ((e & 64) == 0) {	/* next table */
5393 				c->sub.code.need = e;
5394 				c->sub.code.tree = t + t->base;
5395 				break;
5396 			}
5397 			if (e & 32) {	/* end of block */
5398 				Tracevv((stderr,
5399 				    "inflate:         end of block\n"));
5400 				c->mode = WASH;
5401 				break;
5402 			}
5403 			c->mode = BADCODE;	/* invalid code */
5404 			z->msg = "invalid literal/length code";
5405 			r = Z_DATA_ERROR;
5406 			LEAVE
5407 		case LENEXT:	/* i: getting length extra (have base) */
5408 			j = c->sub.copy.get;
5409 			NEEDBITS(j);
5410 			c->len += (uInt)b & inflate_mask[j];
5411 			DUMPBITS(j);
5412 			c->sub.code.need = c->dbits;
5413 			c->sub.code.tree = c->dtree;
5414 			Tracevv((stderr,
5415 			    "inflate:         length %u\n", c->len));
5416 			c->mode = DIST;
5417 			/* FALLTHRU */
5418 		case DIST:	/* i: get distance next */
5419 			j = c->sub.code.need;
5420 			NEEDBITS(j);
5421 			t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5422 			DUMPBITS(t->bits);
5423 			e = (uInt)(t->exop);
5424 			if (e & 16) {	/* distance */
5425 				c->sub.copy.get = e & 15;
5426 				c->sub.copy.dist = t->base;
5427 				c->mode = DISTEXT;
5428 				break;
5429 			}
5430 			if ((e & 64) == 0) {	/* next table */
5431 				c->sub.code.need = e;
5432 				c->sub.code.tree = t + t->base;
5433 				break;
5434 			}
5435 			c->mode = BADCODE;	/* invalid code */
5436 			z->msg = "invalid distance code";
5437 			r = Z_DATA_ERROR;
5438 			LEAVE
5439 		case DISTEXT:	/* i: getting distance extra */
5440 			j = c->sub.copy.get;
5441 			NEEDBITS(j);
5442 			c->sub.copy.dist += (uInt)b & inflate_mask[j];
5443 			DUMPBITS(j);
5444 			Tracevv((stderr,
5445 			    "inflate:         distance %u\n",
5446 			    c->sub.copy.dist));
5447 			c->mode = COPY;
5448 			/* FALLTHRU */
5449 		case COPY:
5450 			/* o: copying bytes in window, waiting for space */
5451 #ifndef __TURBOC__ /* Turbo C bug for following expression */
5452 			f = (uInt)(q - s->window) < c->sub.copy.dist ?
5453 			    s->end - (c->sub.copy.dist - (q - s->window)) :
5454 				q - c->sub.copy.dist;
5455 #else
5456 			f = q - c->sub.copy.dist;
5457 			if ((uInt)(q - s->window) < c->sub.copy.dist)
5458 				f = s->end - (c->sub.copy.dist -
5459 				    (uInt)(q - s->window));
5460 #endif
5461 			while (c->len)
5462 			{
5463 				NEEDOUT;
5464 				OUTBYTE(*f++);
5465 				if (f == s->end)
5466 					f = s->window;
5467 				c->len--;
5468 			}
5469 			c->mode = START;
5470 			break;
5471 		case LIT:	/* o: got literal, waiting for output space */
5472 			NEEDOUT;
5473 			OUTBYTE(c->sub.lit);
5474 			c->mode = START;
5475 			break;
5476 		case WASH:	/* o: got eob, possibly more output */
5477 			if (k > 7) {	/* return unused byte, if any */
5478 				Assert(k < 16,
5479 				    "inflate_codes grabbed too many bytes");
5480 				k -= 8;
5481 				n++;
5482 				p--;	/* can always return one */
5483 			}
5484 			FLUSH;
5485 			if (s->read != s->write)
5486 				LEAVE
5487 			c->mode = END;
5488 			/* FALLTHRU */
5489 		case END:
5490 			r = Z_STREAM_END;
5491 			LEAVE
5492 		case BADCODE:	/* x: got error */
5493 			r = Z_DATA_ERROR;
5494 			LEAVE
5495 		default:
5496 			r = Z_STREAM_ERROR;
5497 			LEAVE
5498 		}
5499 	/* NOTREACHED */
5500 	/* otherwise lint complains */
5501 }
5502 
5503 
5504 void
inflate_codes_free(c,z)5505 inflate_codes_free(c, z)
5506 inflate_codes_statef *c;
5507 z_streamp z;
5508 {
5509 	ZFREE(z, c);
5510 	Tracev((stderr, "inflate:       codes free\n"));
5511 }
5512 /* --- infcodes.c */
5513 
5514 /* +++ infutil.c */
5515 /*
5516  * inflate_util.c -- data and routines common to blocks and codes
5517  * Copyright (C) 1995-1998 Mark Adler
5518  * For conditions of distribution and use, see copyright notice in zlib.h
5519  */
5520 
5521 /* #include "zutil.h" */
5522 /* #include "infblock.h" */
5523 /* #include "inftrees.h" */
5524 /* #include "infcodes.h" */
5525 /* #include "infutil.h" */
5526 
5527 #ifndef NO_DUMMY_DECL
5528 struct inflate_codes_state {int dummy; };	/* for buggy compilers */
5529 #endif
5530 
5531 /* And'ing with mask[n] masks the lower n bits */
5532 uInt inflate_mask[17] = {
5533 	0x0000,
5534 	0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5535 	0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5536 };
5537 
5538 
5539 /* copy as much as possible from the sliding window to the output area */
5540 int
inflate_flush(s,z,r)5541 inflate_flush(s, z, r)
5542 inflate_blocks_statef *s;
5543 z_streamp z;
5544 int r;
5545 {
5546 	uInt n;
5547 	Bytef *p;
5548 	Bytef *q;
5549 
5550 	/* local copies of source and destination pointers */
5551 	p = z->next_out;
5552 	q = s->read;
5553 
5554 	/* compute number of bytes to copy as far as end of window */
5555 	n = (uInt)((q <= s->write ? s->write : s->end) - q);
5556 	if (n > z->avail_out) n = z->avail_out;
5557 	if (n && r == Z_BUF_ERROR) r = Z_OK;
5558 
5559 	/* update counters */
5560 	z->avail_out -= n;
5561 	z->total_out += n;
5562 
5563 	/* update check information */
5564 	if (s->checkfn != Z_NULL)
5565 		z->adler = s->check = (*s->checkfn)(s->check, q, n);
5566 
5567 	/* copy as far as end of window */
5568 	if (p != Z_NULL) {	/* PPP */
5569 		zmemcpy(p, q, n);
5570 		p += n;
5571 	}	/* PPP */
5572 	q += n;
5573 
5574 	/* see if more to copy at beginning of window */
5575 	if (q == s->end)
5576 	{
5577 		/* wrap pointers */
5578 		q = s->window;
5579 		if (s->write == s->end)
5580 			s->write = s->window;
5581 
5582 		/* compute bytes to copy */
5583 		n = (uInt)(s->write - q);
5584 		if (n > z->avail_out) n = z->avail_out;
5585 		if (n && r == Z_BUF_ERROR) r = Z_OK;
5586 
5587 		/* update counters */
5588 		z->avail_out -= n;
5589 		z->total_out += n;
5590 
5591 		/* update check information */
5592 		if (s->checkfn != Z_NULL)
5593 			z->adler = s->check = (*s->checkfn)(s->check, q, n);
5594 
5595 		/* copy */
5596 		if (p != Z_NULL) {	/* PPP */
5597 			zmemcpy(p, q, n);
5598 			p += n;
5599 		}	/* PPP */
5600 		q += n;
5601 	}
5602 
5603 	/* update pointers */
5604 	z->next_out = p;
5605 	s->read = q;
5606 
5607 	/* done */
5608 	return (r);
5609 }
5610 /* --- infutil.c */
5611 
5612 /* +++ inffast.c */
5613 /*
5614  * inffast.c -- process literals and length/distance pairs fast
5615  * Copyright (C) 1995-1998 Mark Adler
5616  * For conditions of distribution and use, see copyright notice in zlib.h
5617  */
5618 
5619 /* #include "zutil.h" */
5620 /* #include "inftrees.h" */
5621 /* #include "infblock.h" */
5622 /* #include "infcodes.h" */
5623 /* #include "infutil.h" */
5624 /* #include "inffast.h" */
5625 
5626 #ifndef NO_DUMMY_DECL
5627 struct inflate_codes_state {int dummy; };	/* for buggy compilers */
5628 #endif
5629 
5630 /* simplify the use of the inflate_huft type with some defines */
5631 #define	exop word.what.Exop
5632 #define	bits word.what.Bits
5633 
5634 /* macros for bit input with no checking and for returning unused bytes */
5635 #define	GRABBITS(j) { while (k < (j)) {b |= ((uLong)NEXTBYTE)<<k; k += 8; }}
5636 #define	UNGRAB {c = z->avail_in-n; c = (k>>3) < c?k>>3:c; n += c; p -= c; \
5637 	k -= c<<3; }
5638 
5639 /*
5640  * Called with number of bytes left to write in window at least 258
5641  * (the maximum string length) and number of input bytes available at
5642  * least ten.  The ten bytes are six bytes for the longest length/
5643  * distance pair plus four bytes for overloading the bit buffer.
5644  */
5645 
5646 int
inflate_fast(bl,bd,tl,td,s,z)5647 inflate_fast(bl, bd, tl, td, s, z)
5648 uInt bl, bd;
5649 const inflate_huft *tl;
5650 const inflate_huft *td;	/* need separate declaration for Borland C++ */
5651 inflate_blocks_statef *s;
5652 z_streamp z;
5653 {
5654 	const inflate_huft *t;	/* temporary pointer */
5655 	uInt e;	/* extra bits or operation */
5656 	uLong b;	/* bit buffer */
5657 	uInt k;	/* bits in bit buffer */
5658 	Bytef *p;	/* input data pointer */
5659 	uInt n;	/* bytes available there */
5660 	Bytef *q;	/* output window write pointer */
5661 	uInt m;	/* bytes to end of window or read pointer */
5662 	uInt ml;	/* mask for literal/length tree */
5663 	uInt md;	/* mask for distance tree */
5664 	uInt c;	/* bytes to copy */
5665 	uInt d;	/* distance back to copy from */
5666 	Bytef *r;	/* copy source pointer */
5667 
5668 	/* load input, output, bit values */
5669 	LOAD;
5670 
5671 	/* initialize masks */
5672 	ml = inflate_mask[bl];
5673 	md = inflate_mask[bd];
5674 
5675 	/* do until not enough input or output space for fast loop */
5676 	do {	/* assume called with m >= 258 && n >= 10 */
5677 		/* get literal/length code */
5678 		/* max bits for literal/length code */
5679 		GRABBITS(20);
5680 		if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) {
5681 			DUMPBITS(t->bits);
5682 			Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5683 			    "inflate:         * literal '%c'\n" :
5684 			    "inflate:         * literal 0x%02x\n", t->base));
5685 			*q++ = (Byte)t->base;
5686 			m--;
5687 			continue;
5688 		}
5689 		do {
5690 			DUMPBITS(t->bits);
5691 			if (e & 16) {
5692 				/* get extra bits for length */
5693 				e &= 15;
5694 				c = t->base + ((uInt)b & inflate_mask[e]);
5695 				DUMPBITS(e);
5696 				Tracevv((stderr,
5697 				    "inflate:         * length %u\n", c));
5698 
5699 				/* decode distance base of block to copy */
5700 				GRABBITS(15);	/* max bits for distance code */
5701 				e = (t = td + ((uInt)b & md))->exop;
5702 				do {
5703 					DUMPBITS(t->bits);
5704 					if (e & 16) {
5705 						/*
5706 						 * get extra bits to
5707 						 * add to distance
5708 						 * base
5709 						 */
5710 						e &= 15;
5711 						/* get extra bits (up to 13) */
5712 						GRABBITS(e);
5713 						d = t->base + ((uInt)b &
5714 						    inflate_mask[e]);
5715 						DUMPBITS(e);
5716 						Tracevv((stderr,
5717 						    "inflate:         * "
5718 						    "distance %u\n", d));
5719 
5720 						/* do the copy */
5721 						m -= c;
5722 						/* offset before dest */
5723 						if ((uInt)(q - s->window) >= d)
5724 							/*  just copy */
5725 						{
5726 							r = q - d;
5727 							/*
5728 							 * minimum
5729 							 * count is
5730 							 * three, so
5731 							 * unroll loop
5732 							 * a little
5733 							 */
5734 							*q++ = *r++;  c--;
5735 							*q++ = *r++;  c--;
5736 						}
5737 					/* else offset after destination */
5738 						else {
5739 	/* bytes from offset to end */
5740 							e = d - (uInt)(q -
5741 							    s->window);
5742 	/* pointer to offset */
5743 							r = s->end - e;
5744 							/* if source crosses */
5745 							if (c > e) {
5746 	/* copy to end of window */
5747 								c -= e;
5748 								do {
5749 									*q++ =
5750 									    *r
5751 									    ++;
5752 								} while (--e);
5753 	/* copy rest from start of window */
5754 								r = s->window;
5755 							}
5756 						}
5757 						/* copy all or what's left */
5758 						do {
5759 							*q++ = *r++;
5760 						} while (--c);
5761 						break;
5762 					} else if ((e & 64) == 0) {
5763 						t += t->base;
5764 						e = (t += ((uInt)b &
5765 						    inflate_mask[e]))->exop;
5766 					} else {
5767 						z->msg =
5768 						    "invalid distance code";
5769 						UNGRAB;
5770 						UPDATE;
5771 						return (Z_DATA_ERROR);
5772 					}
5773 					/* CONSTCOND */
5774 				} while (1);
5775 				break;
5776 			}
5777 			if ((e & 64) == 0)
5778 			{
5779 				t += t->base;
5780 				if ((e = (t += ((uInt)b &
5781 				    inflate_mask[e]))->exop) == 0)
5782 				{
5783 					DUMPBITS(t->bits);
5784 					Tracevv((stderr, t->base >= 0x20 &&
5785 					    t->base < 0x7f ?
5786 					    "inflate:         * literal '%c'\n"
5787 					    :
5788 					    "inflate:         * literal "
5789 					    "0x%02x\n", t->base));
5790 					*q++ = (Byte)t->base;
5791 					m--;
5792 					break;
5793 				}
5794 			} else if (e & 32) {
5795 				Tracevv((stderr,
5796 				    "inflate:         * end of block\n"));
5797 				UNGRAB;
5798 				UPDATE;
5799 				return (Z_STREAM_END);
5800 			} else {
5801 				z->msg = "invalid literal/length code";
5802 				UNGRAB;
5803 				UPDATE;
5804 				return (Z_DATA_ERROR);
5805 			}
5806 			/* CONSTCOND */
5807 		} while (1);
5808 	} while (m >= 258 && n >= 10);
5809 
5810 	/* not enough input or output--restore pointers and return */
5811 	UNGRAB;
5812 	UPDATE;
5813 	return (Z_OK);
5814 }
5815 /* --- inffast.c */
5816 
5817 /* +++ zutil.c */
5818 /*
5819  * zutil.c -- target dependent utility functions for the compression library
5820  * Copyright (C) 1995-1998 Jean-loup Gailly.
5821  * For conditions of distribution and use, see copyright notice in zlib.h
5822  */
5823 
5824 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5825 
5826 #ifdef DEBUG_ZLIB
5827 #include <stdio.h>
5828 #endif
5829 
5830 /* #include "zutil.h" */
5831 
5832 #ifndef NO_DUMMY_DECL
5833 struct internal_state	{int dummy; };	/* for buggy compilers */
5834 #endif
5835 
5836 #ifndef STDC
5837 extern void exit OF((int));
5838 #endif
5839 
5840 static const char *z_errmsg[10] = {
5841 "need dictionary",	/* Z_NEED_DICT		2 */
5842 "stream end",		/* Z_STREAM_END		1 */
5843 "",			/* Z_OK			0 */
5844 "file error",		/* Z_ERRNO		(-1) */
5845 "stream error",		/* Z_STREAM_ERROR	(-2) */
5846 "data error",		/* Z_DATA_ERROR		(-3) */
5847 "insufficient memory",	/* Z_MEM_ERROR		(-4) */
5848 "buffer error",		/* Z_BUF_ERROR		(-5) */
5849 "incompatible version",	/* Z_VERSION_ERROR	(-6) */
5850 ""};
5851 
5852 
5853 const char *
zlibVersion()5854 zlibVersion()
5855 {
5856 	return (ZLIB_VERSION);
5857 }
5858 
5859 #ifdef DEBUG_ZLIB
5860 void
z_error(m)5861 z_error(m)
5862     char *m;
5863 {
5864 	fprintf(stderr, "%s\n", m);
5865 	exit(1);
5866 }
5867 #endif
5868 
5869 #ifndef HAVE_MEMCPY
5870 
5871 void
zmemcpy(dest,source,len)5872 zmemcpy(dest, source, len)
5873     Bytef* dest;
5874     const Bytef* source;
5875     uInt  len;
5876 {
5877 	if (len == 0)
5878 		return;
5879 	do {
5880 		*dest++ = *source++;	/* ??? to be unrolled */
5881 	} while (--len != 0);
5882 }
5883 
5884 int
zmemcmp(s1,s2,len)5885 zmemcmp(s1, s2, len)
5886 const Bytef* s1;
5887 const Bytef* s2;
5888 uInt  len;
5889 {
5890 	uInt j;
5891 
5892 	for (j = 0; j < len; j++) {
5893 		if (s1[j] != s2[j])
5894 			return (2*(s1[j] > s2[j])-1);
5895 	}
5896 	return (0);
5897 }
5898 
5899 void
zmemzero(dest,len)5900 zmemzero(dest, len)
5901     Bytef* dest;
5902     uInt  len;
5903 {
5904 	if (len == 0)
5905 		return;
5906 	do {
5907 		*dest++ = 0;	/* ??? to be unrolled */
5908 	} while (--len != 0);
5909 }
5910 #endif
5911 
5912 #ifdef __TURBOC__
5913 #if (defined(__BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5914 /*
5915  * Small and medium model in Turbo C are for now limited to near
5916  * allocation with reduced MAX_WBITS and MAX_MEM_LEVEL
5917  */
5918 #define	MY_ZCALLOC
5919 
5920 /*
5921  * Turbo C malloc() does not allow dynamic allocation of 64K bytes and
5922  * farmalloc(64K) returns a pointer with an offset of 8, so we must
5923  * fix the pointer. Warning: the pointer must be put back to its
5924  * original form in order to free it, use zcfree().
5925  */
5926 
5927 #define	MAX_PTR 10
5928 /* 10*64K = 640K */
5929 
5930 local int next_ptr = 0;
5931 
5932 typedef struct ptr_table_s {
5933 	voidpf org_ptr;
5934 	voidpf new_ptr;
5935 } ptr_table;
5936 
5937 local ptr_table table[MAX_PTR];
5938 /*
5939  * This table is used to remember the original form of pointers to
5940  * large buffers (64K). Such pointers are normalized with a zero
5941  * offset.  Since MSDOS is not a preemptive multitasking OS, this
5942  * table is not protected from concurrent access. This hack doesn't
5943  * work anyway on a protected system like OS/2. Use Microsoft C
5944  * instead.
5945  */
5946 
5947 voidpf
zcalloc(voidpf opaque,unsigned items,unsigned size)5948 zcalloc(voidpf opaque, unsigned items, unsigned size)
5949 {
5950 	voidpf buf = opaque;	/* just to make some compilers happy */
5951 	ulg bsize = (ulg)items*size;
5952 
5953 	/*
5954 	 * If we allocate less than 65520 bytes, we assume that
5955 	 * farmalloc will return a usable pointer which doesn't have
5956 	 * to be normalized.
5957 	 */
5958 	if (bsize < 65520L) {
5959 		buf = farmalloc(bsize);
5960 		if (*(ush *)&buf != 0)
5961 			return (buf);
5962 	} else {
5963 		buf = farmalloc(bsize + 16L);
5964 	}
5965 	if (buf == NULL || next_ptr >= MAX_PTR)
5966 		return (NULL);
5967 	table[next_ptr].org_ptr = buf;
5968 
5969 	/* Normalize the pointer to seg:0 */
5970 	*((ush *)&buf+1) += ((ush)((uch *)buf-0) + 15) >> 4;
5971 	*(ush *)&buf = 0;
5972 	table[next_ptr++].new_ptr = buf;
5973 	return (buf);
5974 }
5975 
5976 void
zcfree(voidpf opaque,voidpf ptr)5977 zcfree(voidpf opaque, voidpf ptr)
5978 {
5979 	int n;
5980 	if (*(ush*)&ptr != 0) { /* object < 64K */
5981 		farfree(ptr);
5982 		return;
5983 	}
5984 	/* Find the original pointer */
5985 	for (n = 0; n < next_ptr; n++) {
5986 		if (ptr != table[n].new_ptr)
5987 			continue;
5988 
5989 		farfree(table[n].org_ptr);
5990 		while (++n < next_ptr) {
5991 			table[n-1] = table[n];
5992 		}
5993 		next_ptr--;
5994 		return;
5995 	}
5996 	ptr = opaque;	/* just to make some compilers happy */
5997 	Assert(0, "zcfree: ptr not found");
5998 }
5999 #endif
6000 #endif /* __TURBOC__ */
6001 
6002 
6003 #if defined(M_I86) && !defined(__32BIT__)
6004 /* Microsoft C in 16-bit mode */
6005 
6006 #define	MY_ZCALLOC
6007 
6008 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
6009 #define	_halloc  halloc
6010 #define	_hfree   hfree
6011 #endif
6012 
6013 voidpf
zcalloc(voidpf opaque,unsigned items,unsigned size)6014 zcalloc(voidpf opaque, unsigned items, unsigned size)
6015 {
6016 	if (opaque) opaque = 0;	/* to make compiler happy */
6017 	return (_halloc((long)items, size));
6018 }
6019 
6020 void
zcfree(voidpf opaque,voidpf ptr)6021 zcfree(voidpf opaque, voidpf ptr)
6022 {
6023 	if (opaque) opaque = 0;	/* to make compiler happy */
6024 	_hfree(ptr);
6025 }
6026 
6027 #endif /* MSC */
6028 
6029 
6030 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
6031 
6032 #ifndef STDC
6033 extern voidp  calloc OF((uInt items, uInt size));
6034 extern void   free   OF((voidpf ptr));
6035 #endif
6036 
6037 voidpf
zcalloc(opaque,items,size)6038 zcalloc(opaque, items, size)
6039     voidpf opaque;
6040     unsigned items;
6041     unsigned size;
6042 {
6043 	if (opaque) items += size - size;	/* make compiler happy */
6044 	return ((voidpf)calloc(items, size));
6045 }
6046 
6047 /*ARGSUSED*/
6048 void
zcfree(opaque,ptr)6049 zcfree(opaque, ptr)
6050     voidpf opaque;
6051     voidpf ptr;
6052 {
6053 	free(ptr);
6054 }
6055 
6056 #endif /* MY_ZCALLOC */
6057 /* --- zutil.c */
6058 
6059 /* +++ adler32.c */
6060 /*
6061  * adler32.c -- compute the Adler-32 checksum of a data stream
6062  * Copyright (C) 1995-1998 Mark Adler
6063  * For conditions of distribution and use, see copyright notice in zlib.h
6064  */
6065 
6066 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
6067 
6068 /* #include "zlib.h" */
6069 
6070 #define	BASE 65521L /* largest prime smaller than 65536 */
6071 #define	NMAX 5552
6072 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
6073 
6074 #define	DO1(buf, i)  {s1 += buf[i]; s2 += s1; }
6075 #define	DO2(buf, i)  DO1(buf, i); DO1(buf, i+1);
6076 #define	DO4(buf, i)  DO2(buf, i); DO2(buf, i+2);
6077 #define	DO8(buf, i)  DO4(buf, i); DO4(buf, i+4);
6078 #define	DO16(buf)   DO8(buf, 0); DO8(buf, 8);
6079 
6080 /* ========================================================================= */
6081 uLong
adler32(adler,buf,len)6082 adler32(adler, buf, len)
6083     uLong adler;
6084     const Bytef *buf;
6085     uInt len;
6086 {
6087 	unsigned long s1 = adler & 0xffff;
6088 	unsigned long s2 = (adler >> 16) & 0xffff;
6089 	int k;
6090 
6091 	if (buf == Z_NULL)
6092 		return (1L);
6093 
6094 	while (len > 0) {
6095 		k = len < NMAX ? len : NMAX;
6096 		len -= k;
6097 		while (k >= 16) {
6098 			DO16(buf);
6099 			buf += 16;
6100 			k -= 16;
6101 		}
6102 		if (k != 0) do {
6103 			s1 += *buf++;
6104 			s2 += s1;
6105 		} while (--k);
6106 		s1 %= BASE;
6107 		s2 %= BASE;
6108 	}
6109 	return ((s2 << 16) | s1);
6110 }
6111 /* --- adler32.c */
6112