xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision e89be50a407de17396dc2e87e7f9aa8160182fb6)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2018 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  */
19 
20 /*
21  * blkdev driver for NVMe compliant storage devices
22  *
23  * This driver was written to conform to version 1.2.1 of the NVMe
24  * specification.  It may work with newer versions, but that is completely
25  * untested and disabled by default.
26  *
27  * The driver has only been tested on x86 systems and will not work on big-
28  * endian systems without changes to the code accessing registers and data
29  * structures used by the hardware.
30  *
31  *
32  * Interrupt Usage:
33  *
34  * The driver will use a single interrupt while configuring the device as the
35  * specification requires, but contrary to the specification it will try to use
36  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
37  * will switch to multiple-message MSI(-X) if supported. The driver wants to
38  * have one interrupt vector per CPU, but it will work correctly if less are
39  * available. Interrupts can be shared by queues, the interrupt handler will
40  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
41  * the admin queue will share an interrupt with one I/O queue. The interrupt
42  * handler will retrieve completed commands from all queues sharing an interrupt
43  * vector and will post them to a taskq for completion processing.
44  *
45  *
46  * Command Processing:
47  *
48  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
49  * to 65536 I/O commands. The driver will configure one I/O queue pair per
50  * available interrupt vector, with the queue length usually much smaller than
51  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
52  * interrupt vectors will be used.
53  *
54  * Additionally the hardware provides a single special admin queue pair that can
55  * hold up to 4096 admin commands.
56  *
57  * From the hardware perspective both queues of a queue pair are independent,
58  * but they share some driver state: the command array (holding pointers to
59  * commands currently being processed by the hardware) and the active command
60  * counter. Access to a submission queue and the shared state is protected by
61  * nq_mutex, completion queue is protected by ncq_mutex.
62  *
63  * When a command is submitted to a queue pair the active command counter is
64  * incremented and a pointer to the command is stored in the command array. The
65  * array index is used as command identifier (CID) in the submission queue
66  * entry. Some commands may take a very long time to complete, and if the queue
67  * wraps around in that time a submission may find the next array slot to still
68  * be used by a long-running command. In this case the array is sequentially
69  * searched for the next free slot. The length of the command array is the same
70  * as the configured queue length. Queue overrun is prevented by the semaphore,
71  * so a command submission may block if the queue is full.
72  *
73  *
74  * Polled I/O Support:
75  *
76  * For kernel core dump support the driver can do polled I/O. As interrupts are
77  * turned off while dumping the driver will just submit a command in the regular
78  * way, and then repeatedly attempt a command retrieval until it gets the
79  * command back.
80  *
81  *
82  * Namespace Support:
83  *
84  * NVMe devices can have multiple namespaces, each being a independent data
85  * store. The driver supports multiple namespaces and creates a blkdev interface
86  * for each namespace found. Namespaces can have various attributes to support
87  * protection information. This driver does not support any of this and ignores
88  * namespaces that have these attributes.
89  *
90  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
91  * (EUI64). This driver uses the EUI64 if present to generate the devid and
92  * passes it to blkdev to use it in the device node names. As this is currently
93  * untested namespaces with EUI64 are ignored by default.
94  *
95  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
96  * single controller. This is an artificial limit imposed by the driver to be
97  * able to address a reasonable number of controllers and namespaces using a
98  * 32bit minor node number.
99  *
100  *
101  * Minor nodes:
102  *
103  * For each NVMe device the driver exposes one minor node for the controller and
104  * one minor node for each namespace. The only operations supported by those
105  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
106  * interface for the nvmeadm(1M) utility.
107  *
108  *
109  * Blkdev Interface:
110  *
111  * This driver uses blkdev to do all the heavy lifting involved with presenting
112  * a disk device to the system. As a result, the processing of I/O requests is
113  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
114  * setup, and splitting of transfers into manageable chunks.
115  *
116  * I/O requests coming in from blkdev are turned into NVM commands and posted to
117  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
118  * queues. There is currently no timeout handling of I/O commands.
119  *
120  * Blkdev also supports querying device/media information and generating a
121  * devid. The driver reports the best block size as determined by the namespace
122  * format back to blkdev as physical block size to support partition and block
123  * alignment. The devid is either based on the namespace EUI64, if present, or
124  * composed using the device vendor ID, model number, serial number, and the
125  * namespace ID.
126  *
127  *
128  * Error Handling:
129  *
130  * Error handling is currently limited to detecting fatal hardware errors,
131  * either by asynchronous events, or synchronously through command status or
132  * admin command timeouts. In case of severe errors the device is fenced off,
133  * all further requests will return EIO. FMA is then called to fault the device.
134  *
135  * The hardware has a limit for outstanding asynchronous event requests. Before
136  * this limit is known the driver assumes it is at least 1 and posts a single
137  * asynchronous request. Later when the limit is known more asynchronous event
138  * requests are posted to allow quicker reception of error information. When an
139  * asynchronous event is posted by the hardware the driver will parse the error
140  * status fields and log information or fault the device, depending on the
141  * severity of the asynchronous event. The asynchronous event request is then
142  * reused and posted to the admin queue again.
143  *
144  * On command completion the command status is checked for errors. In case of
145  * errors indicating a driver bug the driver panics. Almost all other error
146  * status values just cause EIO to be returned.
147  *
148  * Command timeouts are currently detected for all admin commands except
149  * asynchronous event requests. If a command times out and the hardware appears
150  * to be healthy the driver attempts to abort the command. The original command
151  * timeout is also applied to the abort command. If the abort times out too the
152  * driver assumes the device to be dead, fences it off, and calls FMA to retire
153  * it. In all other cases the aborted command should return immediately with a
154  * status indicating it was aborted, and the driver will wait indefinitely for
155  * that to happen. No timeout handling of normal I/O commands is presently done.
156  *
157  * Any command that times out due to the controller dropping dead will be put on
158  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
159  * memory being reused by the system and later be written to by a "dead" NVMe
160  * controller.
161  *
162  *
163  * Locking:
164  *
165  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
166  * when accessing shared state and submission queue registers, ncq_mutex
167  * is held when accessing completion queue state and registers.
168  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
169  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
170  * mutexes themselves.
171  *
172  * Each command also has its own nc_mutex, which is associated with the
173  * condition variable nc_cv. It is only used on admin commands which are run
174  * synchronously. In that case it must be held across calls to
175  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
176  * nvme_admin_cmd(). It must also be held whenever the completion state of the
177  * command is changed or while a admin command timeout is handled.
178  *
179  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
180  * More than one nc_mutex may only be held when aborting commands. In this case,
181  * the nc_mutex of the command to be aborted must be held across the call to
182  * nvme_abort_cmd() to prevent the command from completing while the abort is in
183  * progress.
184  *
185  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
186  * acquired first. More than one nq_mutex is never held by a single thread.
187  * The ncq_mutex is only held by nvme_retrieve_cmd() and
188  * nvme_process_iocq(). nvme_process_iocq() is only called from the
189  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
190  * mutex is non-contentious but is required for implementation completeness
191  * and safety.
192  *
193  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
194  * and exclusive-open flag nm_oexcl.
195  *
196  *
197  * Quiesce / Fast Reboot:
198  *
199  * The driver currently does not support fast reboot. A quiesce(9E) entry point
200  * is still provided which is used to send a shutdown notification to the
201  * device.
202  *
203  *
204  * DDI UFM Support
205  *
206  * The driver supports the DDI UFM framework for reporting information about
207  * the device's firmware image and slot configuration. This data can be
208  * queried by userland software via ioctls to the ufm driver. For more
209  * information, see ddi_ufm(9E).
210  *
211  *
212  * Driver Configuration:
213  *
214  * The following driver properties can be changed to control some aspects of the
215  * drivers operation:
216  * - strict-version: can be set to 0 to allow devices conforming to newer
217  *   major versions to be used
218  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
219  *   specific command status as a fatal error leading device faulting
220  * - admin-queue-len: the maximum length of the admin queue (16-4096)
221  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
222  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
223  * - async-event-limit: the maximum number of asynchronous event requests to be
224  *   posted by the driver
225  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
226  *   cache
227  * - min-phys-block-size: the minimum physical block size to report to blkdev,
228  *   which is among other things the basis for ZFS vdev ashift
229  * - max-submission-queues: the maximum number of I/O submission queues.
230  * - max-completion-queues: the maximum number of I/O completion queues,
231  *   can be less than max-submission-queues, in which case the completion
232  *   queues are shared.
233  *
234  *
235  * TODO:
236  * - figure out sane default for I/O queue depth reported to blkdev
237  * - FMA handling of media errors
238  * - support for devices supporting very large I/O requests using chained PRPs
239  * - support for configuring hardware parameters like interrupt coalescing
240  * - support for media formatting and hard partitioning into namespaces
241  * - support for big-endian systems
242  * - support for fast reboot
243  * - support for NVMe Subsystem Reset (1.1)
244  * - support for Scatter/Gather lists (1.1)
245  * - support for Reservations (1.1)
246  * - support for power management
247  */
248 
249 #include <sys/byteorder.h>
250 #ifdef _BIG_ENDIAN
251 #error nvme driver needs porting for big-endian platforms
252 #endif
253 
254 #include <sys/modctl.h>
255 #include <sys/conf.h>
256 #include <sys/devops.h>
257 #include <sys/ddi.h>
258 #include <sys/ddi_ufm.h>
259 #include <sys/sunddi.h>
260 #include <sys/sunndi.h>
261 #include <sys/bitmap.h>
262 #include <sys/sysmacros.h>
263 #include <sys/param.h>
264 #include <sys/varargs.h>
265 #include <sys/cpuvar.h>
266 #include <sys/disp.h>
267 #include <sys/blkdev.h>
268 #include <sys/atomic.h>
269 #include <sys/archsystm.h>
270 #include <sys/sata/sata_hba.h>
271 #include <sys/stat.h>
272 #include <sys/policy.h>
273 #include <sys/list.h>
274 
275 #include <sys/nvme.h>
276 
277 #ifdef __x86
278 #include <sys/x86_archext.h>
279 #endif
280 
281 #include "nvme_reg.h"
282 #include "nvme_var.h"
283 
284 /*
285  * Assertions to make sure that we've properly captured various aspects of the
286  * packed structures and haven't broken them during updates.
287  */
288 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
289 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
290 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
291 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
292 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
293 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
294 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
295 
296 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
297 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
298 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
299 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
300 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
301 
302 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
303 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
304 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
305 
306 
307 /* NVMe spec version supported */
308 static const int nvme_version_major = 1;
309 
310 /* tunable for admin command timeout in seconds, default is 1s */
311 int nvme_admin_cmd_timeout = 1;
312 
313 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
314 int nvme_format_cmd_timeout = 600;
315 
316 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
317 int nvme_commit_save_cmd_timeout = 15;
318 
319 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
320 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
321 static int nvme_quiesce(dev_info_t *);
322 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
323 static int nvme_setup_interrupts(nvme_t *, int, int);
324 static void nvme_release_interrupts(nvme_t *);
325 static uint_t nvme_intr(caddr_t, caddr_t);
326 
327 static void nvme_shutdown(nvme_t *, int, boolean_t);
328 static boolean_t nvme_reset(nvme_t *, boolean_t);
329 static int nvme_init(nvme_t *);
330 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
331 static void nvme_free_cmd(nvme_cmd_t *);
332 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
333     bd_xfer_t *);
334 static void nvme_admin_cmd(nvme_cmd_t *, int);
335 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
336 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
337 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
338 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
339 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
340 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
341 static void nvme_wakeup_cmd(void *);
342 static void nvme_async_event_task(void *);
343 
344 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
345 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
346 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
347 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
348 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
349 static inline int nvme_check_cmd_status(nvme_cmd_t *);
350 
351 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
352 static void nvme_async_event(nvme_t *);
353 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
354     uint8_t, boolean_t, uint8_t);
355 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
356     ...);
357 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
358 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
359     uint32_t *);
360 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
361     void **, size_t *);
362 static int nvme_write_cache_set(nvme_t *, boolean_t);
363 static int nvme_set_nqueues(nvme_t *);
364 
365 static void nvme_free_dma(nvme_dma_t *);
366 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
367     nvme_dma_t **);
368 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
369     nvme_dma_t **);
370 static void nvme_free_qpair(nvme_qpair_t *);
371 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
372 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
373 
374 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
375 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
376 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
377 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
378 
379 static boolean_t nvme_check_regs_hdl(nvme_t *);
380 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
381 
382 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
383 
384 static void nvme_bd_xfer_done(void *);
385 static void nvme_bd_driveinfo(void *, bd_drive_t *);
386 static int nvme_bd_mediainfo(void *, bd_media_t *);
387 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
388 static int nvme_bd_read(void *, bd_xfer_t *);
389 static int nvme_bd_write(void *, bd_xfer_t *);
390 static int nvme_bd_sync(void *, bd_xfer_t *);
391 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
392 
393 static int nvme_prp_dma_constructor(void *, void *, int);
394 static void nvme_prp_dma_destructor(void *, void *);
395 
396 static void nvme_prepare_devid(nvme_t *, uint32_t);
397 
398 /* DDI UFM callbacks */
399 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
400     ddi_ufm_image_t *);
401 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
402     ddi_ufm_slot_t *);
403 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
404 
405 static int nvme_open(dev_t *, int, int, cred_t *);
406 static int nvme_close(dev_t, int, int, cred_t *);
407 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
408 
409 static ddi_ufm_ops_t nvme_ufm_ops = {
410 	NULL,
411 	nvme_ufm_fill_image,
412 	nvme_ufm_fill_slot,
413 	nvme_ufm_getcaps
414 };
415 
416 #define	NVME_MINOR_INST_SHIFT	9
417 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
418 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
419 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
420 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
421 
422 static void *nvme_state;
423 static kmem_cache_t *nvme_cmd_cache;
424 
425 /*
426  * DMA attributes for queue DMA memory
427  *
428  * Queue DMA memory must be page aligned. The maximum length of a queue is
429  * 65536 entries, and an entry can be 64 bytes long.
430  */
431 static ddi_dma_attr_t nvme_queue_dma_attr = {
432 	.dma_attr_version	= DMA_ATTR_V0,
433 	.dma_attr_addr_lo	= 0,
434 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
435 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
436 	.dma_attr_align		= 0x1000,
437 	.dma_attr_burstsizes	= 0x7ff,
438 	.dma_attr_minxfer	= 0x1000,
439 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
440 	.dma_attr_seg		= 0xffffffffffffffffULL,
441 	.dma_attr_sgllen	= 1,
442 	.dma_attr_granular	= 1,
443 	.dma_attr_flags		= 0,
444 };
445 
446 /*
447  * DMA attributes for transfers using Physical Region Page (PRP) entries
448  *
449  * A PRP entry describes one page of DMA memory using the page size specified
450  * in the controller configuration's memory page size register (CC.MPS). It uses
451  * a 64bit base address aligned to this page size. There is no limitation on
452  * chaining PRPs together for arbitrarily large DMA transfers.
453  */
454 static ddi_dma_attr_t nvme_prp_dma_attr = {
455 	.dma_attr_version	= DMA_ATTR_V0,
456 	.dma_attr_addr_lo	= 0,
457 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
458 	.dma_attr_count_max	= 0xfff,
459 	.dma_attr_align		= 0x1000,
460 	.dma_attr_burstsizes	= 0x7ff,
461 	.dma_attr_minxfer	= 0x1000,
462 	.dma_attr_maxxfer	= 0x1000,
463 	.dma_attr_seg		= 0xfff,
464 	.dma_attr_sgllen	= -1,
465 	.dma_attr_granular	= 1,
466 	.dma_attr_flags		= 0,
467 };
468 
469 /*
470  * DMA attributes for transfers using scatter/gather lists
471  *
472  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
473  * 32bit length field. SGL Segment and SGL Last Segment entries require the
474  * length to be a multiple of 16 bytes.
475  */
476 static ddi_dma_attr_t nvme_sgl_dma_attr = {
477 	.dma_attr_version	= DMA_ATTR_V0,
478 	.dma_attr_addr_lo	= 0,
479 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
480 	.dma_attr_count_max	= 0xffffffffUL,
481 	.dma_attr_align		= 1,
482 	.dma_attr_burstsizes	= 0x7ff,
483 	.dma_attr_minxfer	= 0x10,
484 	.dma_attr_maxxfer	= 0xfffffffffULL,
485 	.dma_attr_seg		= 0xffffffffffffffffULL,
486 	.dma_attr_sgllen	= -1,
487 	.dma_attr_granular	= 0x10,
488 	.dma_attr_flags		= 0
489 };
490 
491 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
492 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
493 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
494 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
495 };
496 
497 static struct cb_ops nvme_cb_ops = {
498 	.cb_open	= nvme_open,
499 	.cb_close	= nvme_close,
500 	.cb_strategy	= nodev,
501 	.cb_print	= nodev,
502 	.cb_dump	= nodev,
503 	.cb_read	= nodev,
504 	.cb_write	= nodev,
505 	.cb_ioctl	= nvme_ioctl,
506 	.cb_devmap	= nodev,
507 	.cb_mmap	= nodev,
508 	.cb_segmap	= nodev,
509 	.cb_chpoll	= nochpoll,
510 	.cb_prop_op	= ddi_prop_op,
511 	.cb_str		= 0,
512 	.cb_flag	= D_NEW | D_MP,
513 	.cb_rev		= CB_REV,
514 	.cb_aread	= nodev,
515 	.cb_awrite	= nodev
516 };
517 
518 static struct dev_ops nvme_dev_ops = {
519 	.devo_rev	= DEVO_REV,
520 	.devo_refcnt	= 0,
521 	.devo_getinfo	= ddi_no_info,
522 	.devo_identify	= nulldev,
523 	.devo_probe	= nulldev,
524 	.devo_attach	= nvme_attach,
525 	.devo_detach	= nvme_detach,
526 	.devo_reset	= nodev,
527 	.devo_cb_ops	= &nvme_cb_ops,
528 	.devo_bus_ops	= NULL,
529 	.devo_power	= NULL,
530 	.devo_quiesce	= nvme_quiesce,
531 };
532 
533 static struct modldrv nvme_modldrv = {
534 	.drv_modops	= &mod_driverops,
535 	.drv_linkinfo	= "NVMe v1.1b",
536 	.drv_dev_ops	= &nvme_dev_ops
537 };
538 
539 static struct modlinkage nvme_modlinkage = {
540 	.ml_rev		= MODREV_1,
541 	.ml_linkage	= { &nvme_modldrv, NULL }
542 };
543 
544 static bd_ops_t nvme_bd_ops = {
545 	.o_version	= BD_OPS_VERSION_0,
546 	.o_drive_info	= nvme_bd_driveinfo,
547 	.o_media_info	= nvme_bd_mediainfo,
548 	.o_devid_init	= nvme_bd_devid,
549 	.o_sync_cache	= nvme_bd_sync,
550 	.o_read		= nvme_bd_read,
551 	.o_write	= nvme_bd_write,
552 };
553 
554 /*
555  * This list will hold commands that have timed out and couldn't be aborted.
556  * As we don't know what the hardware may still do with the DMA memory we can't
557  * free them, so we'll keep them forever on this list where we can easily look
558  * at them with mdb.
559  */
560 static struct list nvme_lost_cmds;
561 static kmutex_t nvme_lc_mutex;
562 
563 int
564 _init(void)
565 {
566 	int error;
567 
568 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
569 	if (error != DDI_SUCCESS)
570 		return (error);
571 
572 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
573 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
574 
575 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
576 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
577 	    offsetof(nvme_cmd_t, nc_list));
578 
579 	bd_mod_init(&nvme_dev_ops);
580 
581 	error = mod_install(&nvme_modlinkage);
582 	if (error != DDI_SUCCESS) {
583 		ddi_soft_state_fini(&nvme_state);
584 		mutex_destroy(&nvme_lc_mutex);
585 		list_destroy(&nvme_lost_cmds);
586 		bd_mod_fini(&nvme_dev_ops);
587 	}
588 
589 	return (error);
590 }
591 
592 int
593 _fini(void)
594 {
595 	int error;
596 
597 	if (!list_is_empty(&nvme_lost_cmds))
598 		return (DDI_FAILURE);
599 
600 	error = mod_remove(&nvme_modlinkage);
601 	if (error == DDI_SUCCESS) {
602 		ddi_soft_state_fini(&nvme_state);
603 		kmem_cache_destroy(nvme_cmd_cache);
604 		mutex_destroy(&nvme_lc_mutex);
605 		list_destroy(&nvme_lost_cmds);
606 		bd_mod_fini(&nvme_dev_ops);
607 	}
608 
609 	return (error);
610 }
611 
612 int
613 _info(struct modinfo *modinfop)
614 {
615 	return (mod_info(&nvme_modlinkage, modinfop));
616 }
617 
618 static inline void
619 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
620 {
621 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
622 
623 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
624 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
625 }
626 
627 static inline void
628 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
629 {
630 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
631 
632 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
633 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
634 }
635 
636 static inline uint64_t
637 nvme_get64(nvme_t *nvme, uintptr_t reg)
638 {
639 	uint64_t val;
640 
641 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
642 
643 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
644 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
645 
646 	return (val);
647 }
648 
649 static inline uint32_t
650 nvme_get32(nvme_t *nvme, uintptr_t reg)
651 {
652 	uint32_t val;
653 
654 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
655 
656 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
657 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
658 
659 	return (val);
660 }
661 
662 static boolean_t
663 nvme_check_regs_hdl(nvme_t *nvme)
664 {
665 	ddi_fm_error_t error;
666 
667 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
668 
669 	if (error.fme_status != DDI_FM_OK)
670 		return (B_TRUE);
671 
672 	return (B_FALSE);
673 }
674 
675 static boolean_t
676 nvme_check_dma_hdl(nvme_dma_t *dma)
677 {
678 	ddi_fm_error_t error;
679 
680 	if (dma == NULL)
681 		return (B_FALSE);
682 
683 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
684 
685 	if (error.fme_status != DDI_FM_OK)
686 		return (B_TRUE);
687 
688 	return (B_FALSE);
689 }
690 
691 static void
692 nvme_free_dma_common(nvme_dma_t *dma)
693 {
694 	if (dma->nd_dmah != NULL)
695 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
696 	if (dma->nd_acch != NULL)
697 		ddi_dma_mem_free(&dma->nd_acch);
698 	if (dma->nd_dmah != NULL)
699 		ddi_dma_free_handle(&dma->nd_dmah);
700 }
701 
702 static void
703 nvme_free_dma(nvme_dma_t *dma)
704 {
705 	nvme_free_dma_common(dma);
706 	kmem_free(dma, sizeof (*dma));
707 }
708 
709 /* ARGSUSED */
710 static void
711 nvme_prp_dma_destructor(void *buf, void *private)
712 {
713 	nvme_dma_t *dma = (nvme_dma_t *)buf;
714 
715 	nvme_free_dma_common(dma);
716 }
717 
718 static int
719 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
720     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
721 {
722 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
723 	    &dma->nd_dmah) != DDI_SUCCESS) {
724 		/*
725 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
726 		 * the only other possible error is DDI_DMA_BADATTR which
727 		 * indicates a driver bug which should cause a panic.
728 		 */
729 		dev_err(nvme->n_dip, CE_PANIC,
730 		    "!failed to get DMA handle, check DMA attributes");
731 		return (DDI_FAILURE);
732 	}
733 
734 	/*
735 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
736 	 * or the flags are conflicting, which isn't the case here.
737 	 */
738 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
739 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
740 	    &dma->nd_len, &dma->nd_acch);
741 
742 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
743 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
744 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
745 		dev_err(nvme->n_dip, CE_WARN,
746 		    "!failed to bind DMA memory");
747 		atomic_inc_32(&nvme->n_dma_bind_err);
748 		nvme_free_dma_common(dma);
749 		return (DDI_FAILURE);
750 	}
751 
752 	return (DDI_SUCCESS);
753 }
754 
755 static int
756 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
757     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
758 {
759 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
760 
761 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
762 	    DDI_SUCCESS) {
763 		*ret = NULL;
764 		kmem_free(dma, sizeof (nvme_dma_t));
765 		return (DDI_FAILURE);
766 	}
767 
768 	bzero(dma->nd_memp, dma->nd_len);
769 
770 	*ret = dma;
771 	return (DDI_SUCCESS);
772 }
773 
774 /* ARGSUSED */
775 static int
776 nvme_prp_dma_constructor(void *buf, void *private, int flags)
777 {
778 	nvme_dma_t *dma = (nvme_dma_t *)buf;
779 	nvme_t *nvme = (nvme_t *)private;
780 
781 	dma->nd_dmah = NULL;
782 	dma->nd_acch = NULL;
783 
784 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
785 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
786 		return (-1);
787 	}
788 
789 	ASSERT(dma->nd_ncookie == 1);
790 
791 	dma->nd_cached = B_TRUE;
792 
793 	return (0);
794 }
795 
796 static int
797 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
798     uint_t flags, nvme_dma_t **dma)
799 {
800 	uint32_t len = nentry * qe_len;
801 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
802 
803 	len = roundup(len, nvme->n_pagesize);
804 
805 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
806 	    != DDI_SUCCESS) {
807 		dev_err(nvme->n_dip, CE_WARN,
808 		    "!failed to get DMA memory for queue");
809 		goto fail;
810 	}
811 
812 	if ((*dma)->nd_ncookie != 1) {
813 		dev_err(nvme->n_dip, CE_WARN,
814 		    "!got too many cookies for queue DMA");
815 		goto fail;
816 	}
817 
818 	return (DDI_SUCCESS);
819 
820 fail:
821 	if (*dma) {
822 		nvme_free_dma(*dma);
823 		*dma = NULL;
824 	}
825 
826 	return (DDI_FAILURE);
827 }
828 
829 static void
830 nvme_free_cq(nvme_cq_t *cq)
831 {
832 	mutex_destroy(&cq->ncq_mutex);
833 
834 	if (cq->ncq_dma != NULL)
835 		nvme_free_dma(cq->ncq_dma);
836 
837 	kmem_free(cq, sizeof (*cq));
838 }
839 
840 static void
841 nvme_free_qpair(nvme_qpair_t *qp)
842 {
843 	int i;
844 
845 	mutex_destroy(&qp->nq_mutex);
846 	sema_destroy(&qp->nq_sema);
847 
848 	if (qp->nq_sqdma != NULL)
849 		nvme_free_dma(qp->nq_sqdma);
850 
851 	if (qp->nq_active_cmds > 0)
852 		for (i = 0; i != qp->nq_nentry; i++)
853 			if (qp->nq_cmd[i] != NULL)
854 				nvme_free_cmd(qp->nq_cmd[i]);
855 
856 	if (qp->nq_cmd != NULL)
857 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
858 
859 	kmem_free(qp, sizeof (nvme_qpair_t));
860 }
861 
862 /*
863  * Destroy the pre-allocated cq array, but only free individual completion
864  * queues from the given starting index.
865  */
866 static void
867 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
868 {
869 	uint_t i;
870 
871 	for (i = start; i < nvme->n_cq_count; i++)
872 		if (nvme->n_cq[i] != NULL)
873 			nvme_free_cq(nvme->n_cq[i]);
874 
875 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
876 }
877 
878 static int
879 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx)
880 {
881 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
882 
883 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
884 	    DDI_INTR_PRI(nvme->n_intr_pri));
885 
886 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
887 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
888 		goto fail;
889 
890 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
891 	cq->ncq_nentry = nentry;
892 	cq->ncq_id = idx;
893 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
894 
895 	*cqp = cq;
896 	return (DDI_SUCCESS);
897 
898 fail:
899 	nvme_free_cq(cq);
900 	*cqp = NULL;
901 
902 	return (DDI_FAILURE);
903 }
904 
905 /*
906  * Create the n_cq array big enough to hold "ncq" completion queues.
907  * If the array already exists it will be re-sized (but only larger).
908  * The admin queue is included in this array, which boosts the
909  * max number of entries to UINT16_MAX + 1.
910  */
911 static int
912 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry)
913 {
914 	nvme_cq_t **cq;
915 	uint_t i, cq_count;
916 
917 	ASSERT3U(ncq, >, nvme->n_cq_count);
918 
919 	cq = nvme->n_cq;
920 	cq_count = nvme->n_cq_count;
921 
922 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
923 	nvme->n_cq_count = ncq;
924 
925 	for (i = 0; i < cq_count; i++)
926 		nvme->n_cq[i] = cq[i];
927 
928 	for (; i < nvme->n_cq_count; i++)
929 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i) !=
930 		    DDI_SUCCESS)
931 			goto fail;
932 
933 	if (cq != NULL)
934 		kmem_free(cq, sizeof (*cq) * cq_count);
935 
936 	return (DDI_SUCCESS);
937 
938 fail:
939 	nvme_destroy_cq_array(nvme, cq_count);
940 	/*
941 	 * Restore the original array
942 	 */
943 	nvme->n_cq_count = cq_count;
944 	nvme->n_cq = cq;
945 
946 	return (DDI_FAILURE);
947 }
948 
949 static int
950 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
951     uint_t idx)
952 {
953 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
954 	uint_t cq_idx;
955 
956 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
957 	    DDI_INTR_PRI(nvme->n_intr_pri));
958 
959 	/*
960 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
961 	 * initialize the semaphore accordingly.
962 	 */
963 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
964 
965 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
966 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
967 		goto fail;
968 
969 	/*
970 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
971 	 */
972 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
973 	qp->nq_cq = nvme->n_cq[cq_idx];
974 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
975 	qp->nq_nentry = nentry;
976 
977 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
978 
979 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
980 	qp->nq_next_cmd = 0;
981 
982 	*nqp = qp;
983 	return (DDI_SUCCESS);
984 
985 fail:
986 	nvme_free_qpair(qp);
987 	*nqp = NULL;
988 
989 	return (DDI_FAILURE);
990 }
991 
992 static nvme_cmd_t *
993 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
994 {
995 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
996 
997 	if (cmd == NULL)
998 		return (cmd);
999 
1000 	bzero(cmd, sizeof (nvme_cmd_t));
1001 
1002 	cmd->nc_nvme = nvme;
1003 
1004 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1005 	    DDI_INTR_PRI(nvme->n_intr_pri));
1006 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1007 
1008 	return (cmd);
1009 }
1010 
1011 static void
1012 nvme_free_cmd(nvme_cmd_t *cmd)
1013 {
1014 	/* Don't free commands on the lost commands list. */
1015 	if (list_link_active(&cmd->nc_list))
1016 		return;
1017 
1018 	if (cmd->nc_dma) {
1019 		if (cmd->nc_dma->nd_cached)
1020 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
1021 			    cmd->nc_dma);
1022 		else
1023 			nvme_free_dma(cmd->nc_dma);
1024 		cmd->nc_dma = NULL;
1025 	}
1026 
1027 	cv_destroy(&cmd->nc_cv);
1028 	mutex_destroy(&cmd->nc_mutex);
1029 
1030 	kmem_cache_free(nvme_cmd_cache, cmd);
1031 }
1032 
1033 static void
1034 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1035 {
1036 	sema_p(&qp->nq_sema);
1037 	nvme_submit_cmd_common(qp, cmd);
1038 }
1039 
1040 static int
1041 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1042 {
1043 	if (sema_tryp(&qp->nq_sema) == 0)
1044 		return (EAGAIN);
1045 
1046 	nvme_submit_cmd_common(qp, cmd);
1047 	return (0);
1048 }
1049 
1050 static void
1051 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1052 {
1053 	nvme_reg_sqtdbl_t tail = { 0 };
1054 
1055 	mutex_enter(&qp->nq_mutex);
1056 	cmd->nc_completed = B_FALSE;
1057 
1058 	/*
1059 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1060 	 * slot. If the slot is already occupied advance to the next slot and
1061 	 * try again. This can happen for long running commands like async event
1062 	 * requests.
1063 	 */
1064 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1065 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1066 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1067 
1068 	qp->nq_active_cmds++;
1069 
1070 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1071 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1072 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1073 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1074 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1075 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1076 
1077 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1078 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1079 
1080 	mutex_exit(&qp->nq_mutex);
1081 }
1082 
1083 static nvme_cmd_t *
1084 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1085 {
1086 	nvme_cmd_t *cmd;
1087 
1088 	ASSERT(mutex_owned(&qp->nq_mutex));
1089 	ASSERT3S(cid, <, qp->nq_nentry);
1090 
1091 	cmd = qp->nq_cmd[cid];
1092 	qp->nq_cmd[cid] = NULL;
1093 	ASSERT3U(qp->nq_active_cmds, >, 0);
1094 	qp->nq_active_cmds--;
1095 	sema_v(&qp->nq_sema);
1096 
1097 	ASSERT3P(cmd, !=, NULL);
1098 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1099 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1100 
1101 	return (cmd);
1102 }
1103 
1104 /*
1105  * Get the command tied to the next completed cqe and bump along completion
1106  * queue head counter.
1107  */
1108 static nvme_cmd_t *
1109 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1110 {
1111 	nvme_qpair_t *qp;
1112 	nvme_cqe_t *cqe;
1113 	nvme_cmd_t *cmd;
1114 
1115 	ASSERT(mutex_owned(&cq->ncq_mutex));
1116 
1117 	cqe = &cq->ncq_cq[cq->ncq_head];
1118 
1119 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1120 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1121 		return (NULL);
1122 
1123 	qp = nvme->n_ioq[cqe->cqe_sqid];
1124 
1125 	mutex_enter(&qp->nq_mutex);
1126 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1127 	mutex_exit(&qp->nq_mutex);
1128 
1129 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1130 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1131 
1132 	qp->nq_sqhead = cqe->cqe_sqhd;
1133 
1134 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1135 
1136 	/* Toggle phase on wrap-around. */
1137 	if (cq->ncq_head == 0)
1138 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1139 
1140 	return (cmd);
1141 }
1142 
1143 /*
1144  * Process all completed commands on the io completion queue.
1145  */
1146 static uint_t
1147 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1148 {
1149 	nvme_reg_cqhdbl_t head = { 0 };
1150 	nvme_cmd_t *cmd;
1151 	uint_t completed = 0;
1152 
1153 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1154 	    DDI_SUCCESS)
1155 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1156 		    __func__);
1157 
1158 	mutex_enter(&cq->ncq_mutex);
1159 
1160 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1161 		taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
1162 		    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1163 
1164 		completed++;
1165 	}
1166 
1167 	if (completed > 0) {
1168 		/*
1169 		 * Update the completion queue head doorbell.
1170 		 */
1171 		head.b.cqhdbl_cqh = cq->ncq_head;
1172 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1173 	}
1174 
1175 	mutex_exit(&cq->ncq_mutex);
1176 
1177 	return (completed);
1178 }
1179 
1180 static nvme_cmd_t *
1181 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1182 {
1183 	nvme_cq_t *cq = qp->nq_cq;
1184 	nvme_reg_cqhdbl_t head = { 0 };
1185 	nvme_cmd_t *cmd;
1186 
1187 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1188 	    DDI_SUCCESS)
1189 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1190 		    __func__);
1191 
1192 	mutex_enter(&cq->ncq_mutex);
1193 
1194 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1195 		head.b.cqhdbl_cqh = cq->ncq_head;
1196 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1197 	}
1198 
1199 	mutex_exit(&cq->ncq_mutex);
1200 
1201 	return (cmd);
1202 }
1203 
1204 static int
1205 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1206 {
1207 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1208 
1209 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1210 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1211 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1212 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1213 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1214 
1215 	if (cmd->nc_xfer != NULL)
1216 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1217 
1218 	if (cmd->nc_nvme->n_strict_version) {
1219 		cmd->nc_nvme->n_dead = B_TRUE;
1220 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1221 	}
1222 
1223 	return (EIO);
1224 }
1225 
1226 static int
1227 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1228 {
1229 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1230 
1231 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1232 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1233 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1234 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1235 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1236 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1237 		cmd->nc_nvme->n_dead = B_TRUE;
1238 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1239 	}
1240 
1241 	return (EIO);
1242 }
1243 
1244 static int
1245 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1246 {
1247 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1248 
1249 	switch (cqe->cqe_sf.sf_sc) {
1250 	case NVME_CQE_SC_INT_NVM_WRITE:
1251 		/* write fail */
1252 		/* TODO: post ereport */
1253 		if (cmd->nc_xfer != NULL)
1254 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1255 		return (EIO);
1256 
1257 	case NVME_CQE_SC_INT_NVM_READ:
1258 		/* read fail */
1259 		/* TODO: post ereport */
1260 		if (cmd->nc_xfer != NULL)
1261 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1262 		return (EIO);
1263 
1264 	default:
1265 		return (nvme_check_unknown_cmd_status(cmd));
1266 	}
1267 }
1268 
1269 static int
1270 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1271 {
1272 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1273 
1274 	switch (cqe->cqe_sf.sf_sc) {
1275 	case NVME_CQE_SC_GEN_SUCCESS:
1276 		return (0);
1277 
1278 	/*
1279 	 * Errors indicating a bug in the driver should cause a panic.
1280 	 */
1281 	case NVME_CQE_SC_GEN_INV_OPC:
1282 		/* Invalid Command Opcode */
1283 		if (!cmd->nc_dontpanic)
1284 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1285 			    "programming error: invalid opcode in cmd %p",
1286 			    (void *)cmd);
1287 		return (EINVAL);
1288 
1289 	case NVME_CQE_SC_GEN_INV_FLD:
1290 		/* Invalid Field in Command */
1291 		if (!cmd->nc_dontpanic)
1292 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1293 			    "programming error: invalid field in cmd %p",
1294 			    (void *)cmd);
1295 		return (EIO);
1296 
1297 	case NVME_CQE_SC_GEN_ID_CNFL:
1298 		/* Command ID Conflict */
1299 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1300 		    "cmd ID conflict in cmd %p", (void *)cmd);
1301 		return (0);
1302 
1303 	case NVME_CQE_SC_GEN_INV_NS:
1304 		/* Invalid Namespace or Format */
1305 		if (!cmd->nc_dontpanic)
1306 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1307 			    "programming error: invalid NS/format in cmd %p",
1308 			    (void *)cmd);
1309 		return (EINVAL);
1310 
1311 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1312 		/* LBA Out Of Range */
1313 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1314 		    "LBA out of range in cmd %p", (void *)cmd);
1315 		return (0);
1316 
1317 	/*
1318 	 * Non-fatal errors, handle gracefully.
1319 	 */
1320 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1321 		/* Data Transfer Error (DMA) */
1322 		/* TODO: post ereport */
1323 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1324 		if (cmd->nc_xfer != NULL)
1325 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1326 		return (EIO);
1327 
1328 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1329 		/*
1330 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1331 		 * detailed error information is returned as async event,
1332 		 * so we pretty much ignore the error here and handle it
1333 		 * in the async event handler.
1334 		 */
1335 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1336 		if (cmd->nc_xfer != NULL)
1337 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1338 		return (EIO);
1339 
1340 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1341 		/*
1342 		 * Command Abort Requested. This normally happens only when a
1343 		 * command times out.
1344 		 */
1345 		/* TODO: post ereport or change blkdev to handle this? */
1346 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1347 		return (ECANCELED);
1348 
1349 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1350 		/* Command Aborted due to Power Loss Notification */
1351 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1352 		cmd->nc_nvme->n_dead = B_TRUE;
1353 		return (EIO);
1354 
1355 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1356 		/* Command Aborted due to SQ Deletion */
1357 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1358 		return (EIO);
1359 
1360 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1361 		/* Capacity Exceeded */
1362 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1363 		if (cmd->nc_xfer != NULL)
1364 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1365 		return (EIO);
1366 
1367 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1368 		/* Namespace Not Ready */
1369 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1370 		if (cmd->nc_xfer != NULL)
1371 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1372 		return (EIO);
1373 
1374 	default:
1375 		return (nvme_check_unknown_cmd_status(cmd));
1376 	}
1377 }
1378 
1379 static int
1380 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1381 {
1382 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1383 
1384 	switch (cqe->cqe_sf.sf_sc) {
1385 	case NVME_CQE_SC_SPC_INV_CQ:
1386 		/* Completion Queue Invalid */
1387 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1388 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1389 		return (EINVAL);
1390 
1391 	case NVME_CQE_SC_SPC_INV_QID:
1392 		/* Invalid Queue Identifier */
1393 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1394 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1395 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1396 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1397 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1398 		return (EINVAL);
1399 
1400 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1401 		/* Max Queue Size Exceeded */
1402 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1403 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1404 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1405 		return (EINVAL);
1406 
1407 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1408 		/* Abort Command Limit Exceeded */
1409 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1410 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1411 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1412 		return (0);
1413 
1414 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1415 		/* Async Event Request Limit Exceeded */
1416 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1417 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1418 		    "async event request limit exceeded in cmd %p",
1419 		    (void *)cmd);
1420 		return (0);
1421 
1422 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1423 		/* Invalid Interrupt Vector */
1424 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1425 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1426 		return (EINVAL);
1427 
1428 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1429 		/* Invalid Log Page */
1430 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1431 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1432 		return (EINVAL);
1433 
1434 	case NVME_CQE_SC_SPC_INV_FORMAT:
1435 		/* Invalid Format */
1436 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1437 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1438 		if (cmd->nc_xfer != NULL)
1439 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1440 		return (EINVAL);
1441 
1442 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1443 		/* Invalid Queue Deletion */
1444 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1445 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1446 		return (EINVAL);
1447 
1448 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1449 		/* Conflicting Attributes */
1450 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1451 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1452 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1453 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1454 		if (cmd->nc_xfer != NULL)
1455 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1456 		return (EINVAL);
1457 
1458 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1459 		/* Invalid Protection Information */
1460 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1461 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1462 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1463 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1464 		if (cmd->nc_xfer != NULL)
1465 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1466 		return (EINVAL);
1467 
1468 	case NVME_CQE_SC_SPC_NVM_READONLY:
1469 		/* Write to Read Only Range */
1470 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1471 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1472 		if (cmd->nc_xfer != NULL)
1473 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1474 		return (EROFS);
1475 
1476 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1477 		/* Invalid Firmware Slot */
1478 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1479 		return (EINVAL);
1480 
1481 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1482 		/* Invalid Firmware Image */
1483 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1484 		return (EINVAL);
1485 
1486 	case NVME_CQE_SC_SPC_FW_RESET:
1487 		/* Conventional Reset Required */
1488 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1489 		return (0);
1490 
1491 	case NVME_CQE_SC_SPC_FW_NSSR:
1492 		/* NVMe Subsystem Reset Required */
1493 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1494 		return (0);
1495 
1496 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1497 		/* Activation Requires Reset */
1498 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1499 		return (0);
1500 
1501 	case NVME_CQE_SC_SPC_FW_MTFA:
1502 		/* Activation Requires Maximum Time Violation */
1503 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1504 		return (EAGAIN);
1505 
1506 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1507 		/* Activation Prohibited */
1508 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1509 		return (EINVAL);
1510 
1511 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1512 		/* Overlapping Firmware Ranges */
1513 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1514 		return (EINVAL);
1515 
1516 	default:
1517 		return (nvme_check_unknown_cmd_status(cmd));
1518 	}
1519 }
1520 
1521 static inline int
1522 nvme_check_cmd_status(nvme_cmd_t *cmd)
1523 {
1524 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1525 
1526 	/*
1527 	 * Take a shortcut if the controller is dead, or if
1528 	 * command status indicates no error.
1529 	 */
1530 	if (cmd->nc_nvme->n_dead)
1531 		return (EIO);
1532 
1533 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1534 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1535 		return (0);
1536 
1537 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1538 		return (nvme_check_generic_cmd_status(cmd));
1539 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1540 		return (nvme_check_specific_cmd_status(cmd));
1541 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1542 		return (nvme_check_integrity_cmd_status(cmd));
1543 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1544 		return (nvme_check_vendor_cmd_status(cmd));
1545 
1546 	return (nvme_check_unknown_cmd_status(cmd));
1547 }
1548 
1549 static int
1550 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1551 {
1552 	nvme_t *nvme = abort_cmd->nc_nvme;
1553 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1554 	nvme_abort_cmd_t ac = { 0 };
1555 	int ret = 0;
1556 
1557 	sema_p(&nvme->n_abort_sema);
1558 
1559 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1560 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1561 
1562 	cmd->nc_sqid = 0;
1563 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1564 	cmd->nc_callback = nvme_wakeup_cmd;
1565 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1566 
1567 	/*
1568 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1569 	 * the aborted command has completed (aborted or otherwise), but since
1570 	 * we still hold the aborted command's mutex its callback hasn't been
1571 	 * processed yet.
1572 	 */
1573 	nvme_admin_cmd(cmd, sec);
1574 	sema_v(&nvme->n_abort_sema);
1575 
1576 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1577 		dev_err(nvme->n_dip, CE_WARN,
1578 		    "!ABORT failed with sct = %x, sc = %x",
1579 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1580 		atomic_inc_32(&nvme->n_abort_failed);
1581 	} else {
1582 		dev_err(nvme->n_dip, CE_WARN,
1583 		    "!ABORT of command %d/%d %ssuccessful",
1584 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1585 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1586 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1587 			atomic_inc_32(&nvme->n_cmd_aborted);
1588 	}
1589 
1590 	nvme_free_cmd(cmd);
1591 	return (ret);
1592 }
1593 
1594 /*
1595  * nvme_wait_cmd -- wait for command completion or timeout
1596  *
1597  * In case of a serious error or a timeout of the abort command the hardware
1598  * will be declared dead and FMA will be notified.
1599  */
1600 static void
1601 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1602 {
1603 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1604 	nvme_t *nvme = cmd->nc_nvme;
1605 	nvme_reg_csts_t csts;
1606 	nvme_qpair_t *qp;
1607 
1608 	ASSERT(mutex_owned(&cmd->nc_mutex));
1609 
1610 	while (!cmd->nc_completed) {
1611 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1612 			break;
1613 	}
1614 
1615 	if (cmd->nc_completed)
1616 		return;
1617 
1618 	/*
1619 	 * The command timed out.
1620 	 *
1621 	 * Check controller for fatal status, any errors associated with the
1622 	 * register or DMA handle, or for a double timeout (abort command timed
1623 	 * out). If necessary log a warning and call FMA.
1624 	 */
1625 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1626 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1627 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1628 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1629 	atomic_inc_32(&nvme->n_cmd_timeout);
1630 
1631 	if (csts.b.csts_cfs ||
1632 	    nvme_check_regs_hdl(nvme) ||
1633 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1634 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1635 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1636 		nvme->n_dead = B_TRUE;
1637 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1638 		/*
1639 		 * If the abort succeeded the command should complete
1640 		 * immediately with an appropriate status.
1641 		 */
1642 		while (!cmd->nc_completed)
1643 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1644 
1645 		return;
1646 	}
1647 
1648 	qp = nvme->n_ioq[cmd->nc_sqid];
1649 
1650 	mutex_enter(&qp->nq_mutex);
1651 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1652 	mutex_exit(&qp->nq_mutex);
1653 
1654 	/*
1655 	 * As we don't know what the presumed dead hardware might still do with
1656 	 * the DMA memory, we'll put the command on the lost commands list if it
1657 	 * has any DMA memory.
1658 	 */
1659 	if (cmd->nc_dma != NULL) {
1660 		mutex_enter(&nvme_lc_mutex);
1661 		list_insert_head(&nvme_lost_cmds, cmd);
1662 		mutex_exit(&nvme_lc_mutex);
1663 	}
1664 }
1665 
1666 static void
1667 nvme_wakeup_cmd(void *arg)
1668 {
1669 	nvme_cmd_t *cmd = arg;
1670 
1671 	mutex_enter(&cmd->nc_mutex);
1672 	cmd->nc_completed = B_TRUE;
1673 	cv_signal(&cmd->nc_cv);
1674 	mutex_exit(&cmd->nc_mutex);
1675 }
1676 
1677 static void
1678 nvme_async_event_task(void *arg)
1679 {
1680 	nvme_cmd_t *cmd = arg;
1681 	nvme_t *nvme = cmd->nc_nvme;
1682 	nvme_error_log_entry_t *error_log = NULL;
1683 	nvme_health_log_t *health_log = NULL;
1684 	size_t logsize = 0;
1685 	nvme_async_event_t event;
1686 
1687 	/*
1688 	 * Check for errors associated with the async request itself. The only
1689 	 * command-specific error is "async event limit exceeded", which
1690 	 * indicates a programming error in the driver and causes a panic in
1691 	 * nvme_check_cmd_status().
1692 	 *
1693 	 * Other possible errors are various scenarios where the async request
1694 	 * was aborted, or internal errors in the device. Internal errors are
1695 	 * reported to FMA, the command aborts need no special handling here.
1696 	 *
1697 	 * And finally, at least qemu nvme does not support async events,
1698 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1699 	 * will avoid posting async events.
1700 	 */
1701 
1702 	if (nvme_check_cmd_status(cmd) != 0) {
1703 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1704 		    "!async event request returned failure, sct = %x, "
1705 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1706 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1707 		    cmd->nc_cqe.cqe_sf.sf_m);
1708 
1709 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1710 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1711 			cmd->nc_nvme->n_dead = B_TRUE;
1712 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1713 			    DDI_SERVICE_LOST);
1714 		}
1715 
1716 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1717 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1718 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1719 			nvme->n_async_event_supported = B_FALSE;
1720 		}
1721 
1722 		nvme_free_cmd(cmd);
1723 		return;
1724 	}
1725 
1726 
1727 	event.r = cmd->nc_cqe.cqe_dw0;
1728 
1729 	/* Clear CQE and re-submit the async request. */
1730 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1731 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1732 
1733 	switch (event.b.ae_type) {
1734 	case NVME_ASYNC_TYPE_ERROR:
1735 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1736 			(void) nvme_get_logpage(nvme, B_FALSE,
1737 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1738 		} else {
1739 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1740 			    "async event reply: %d", event.b.ae_logpage);
1741 			atomic_inc_32(&nvme->n_wrong_logpage);
1742 		}
1743 
1744 		switch (event.b.ae_info) {
1745 		case NVME_ASYNC_ERROR_INV_SQ:
1746 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1747 			    "invalid submission queue");
1748 			return;
1749 
1750 		case NVME_ASYNC_ERROR_INV_DBL:
1751 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1752 			    "invalid doorbell write value");
1753 			return;
1754 
1755 		case NVME_ASYNC_ERROR_DIAGFAIL:
1756 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1757 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1758 			nvme->n_dead = B_TRUE;
1759 			atomic_inc_32(&nvme->n_diagfail_event);
1760 			break;
1761 
1762 		case NVME_ASYNC_ERROR_PERSISTENT:
1763 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1764 			    "device error");
1765 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1766 			nvme->n_dead = B_TRUE;
1767 			atomic_inc_32(&nvme->n_persistent_event);
1768 			break;
1769 
1770 		case NVME_ASYNC_ERROR_TRANSIENT:
1771 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1772 			    "device error");
1773 			/* TODO: send ereport */
1774 			atomic_inc_32(&nvme->n_transient_event);
1775 			break;
1776 
1777 		case NVME_ASYNC_ERROR_FW_LOAD:
1778 			dev_err(nvme->n_dip, CE_WARN,
1779 			    "!firmware image load error");
1780 			atomic_inc_32(&nvme->n_fw_load_event);
1781 			break;
1782 		}
1783 		break;
1784 
1785 	case NVME_ASYNC_TYPE_HEALTH:
1786 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1787 			(void) nvme_get_logpage(nvme, B_FALSE,
1788 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1789 			    -1);
1790 		} else {
1791 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1792 			    "async event reply: %d", event.b.ae_logpage);
1793 			atomic_inc_32(&nvme->n_wrong_logpage);
1794 		}
1795 
1796 		switch (event.b.ae_info) {
1797 		case NVME_ASYNC_HEALTH_RELIABILITY:
1798 			dev_err(nvme->n_dip, CE_WARN,
1799 			    "!device reliability compromised");
1800 			/* TODO: send ereport */
1801 			atomic_inc_32(&nvme->n_reliability_event);
1802 			break;
1803 
1804 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1805 			dev_err(nvme->n_dip, CE_WARN,
1806 			    "!temperature above threshold");
1807 			/* TODO: send ereport */
1808 			atomic_inc_32(&nvme->n_temperature_event);
1809 			break;
1810 
1811 		case NVME_ASYNC_HEALTH_SPARE:
1812 			dev_err(nvme->n_dip, CE_WARN,
1813 			    "!spare space below threshold");
1814 			/* TODO: send ereport */
1815 			atomic_inc_32(&nvme->n_spare_event);
1816 			break;
1817 		}
1818 		break;
1819 
1820 	case NVME_ASYNC_TYPE_VENDOR:
1821 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1822 		    "received, info = %x, logpage = %x", event.b.ae_info,
1823 		    event.b.ae_logpage);
1824 		atomic_inc_32(&nvme->n_vendor_event);
1825 		break;
1826 
1827 	default:
1828 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1829 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1830 		    event.b.ae_info, event.b.ae_logpage);
1831 		atomic_inc_32(&nvme->n_unknown_event);
1832 		break;
1833 	}
1834 
1835 	if (error_log)
1836 		kmem_free(error_log, logsize);
1837 
1838 	if (health_log)
1839 		kmem_free(health_log, logsize);
1840 }
1841 
1842 static void
1843 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1844 {
1845 	mutex_enter(&cmd->nc_mutex);
1846 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1847 	nvme_wait_cmd(cmd, sec);
1848 	mutex_exit(&cmd->nc_mutex);
1849 }
1850 
1851 static void
1852 nvme_async_event(nvme_t *nvme)
1853 {
1854 	nvme_cmd_t *cmd;
1855 
1856 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1857 	cmd->nc_sqid = 0;
1858 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1859 	cmd->nc_callback = nvme_async_event_task;
1860 	cmd->nc_dontpanic = B_TRUE;
1861 
1862 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1863 }
1864 
1865 static int
1866 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1867     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1868 {
1869 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1870 	nvme_format_nvm_t format_nvm = { 0 };
1871 	int ret;
1872 
1873 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1874 	format_nvm.b.fm_ms = ms ? 1 : 0;
1875 	format_nvm.b.fm_pi = pi & 0x7;
1876 	format_nvm.b.fm_pil = pil ? 1 : 0;
1877 	format_nvm.b.fm_ses = ses & 0x7;
1878 
1879 	cmd->nc_sqid = 0;
1880 	cmd->nc_callback = nvme_wakeup_cmd;
1881 	cmd->nc_sqe.sqe_nsid = nsid;
1882 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1883 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1884 
1885 	/*
1886 	 * Some devices like Samsung SM951 don't allow formatting of all
1887 	 * namespaces in one command. Handle that gracefully.
1888 	 */
1889 	if (nsid == (uint32_t)-1)
1890 		cmd->nc_dontpanic = B_TRUE;
1891 	/*
1892 	 * If this format request was initiated by the user, then don't allow a
1893 	 * programmer error to panic the system.
1894 	 */
1895 	if (user)
1896 		cmd->nc_dontpanic = B_TRUE;
1897 
1898 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1899 
1900 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1901 		dev_err(nvme->n_dip, CE_WARN,
1902 		    "!FORMAT failed with sct = %x, sc = %x",
1903 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1904 	}
1905 
1906 	nvme_free_cmd(cmd);
1907 	return (ret);
1908 }
1909 
1910 static int
1911 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1912     uint8_t logpage, ...)
1913 {
1914 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1915 	nvme_getlogpage_t getlogpage = { 0 };
1916 	va_list ap;
1917 	int ret;
1918 
1919 	va_start(ap, logpage);
1920 
1921 	cmd->nc_sqid = 0;
1922 	cmd->nc_callback = nvme_wakeup_cmd;
1923 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1924 
1925 	if (user)
1926 		cmd->nc_dontpanic = B_TRUE;
1927 
1928 	getlogpage.b.lp_lid = logpage;
1929 
1930 	switch (logpage) {
1931 	case NVME_LOGPAGE_ERROR:
1932 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1933 		/*
1934 		 * The GET LOG PAGE command can use at most 2 pages to return
1935 		 * data, PRP lists are not supported.
1936 		 */
1937 		*bufsize = MIN(2 * nvme->n_pagesize,
1938 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1939 		break;
1940 
1941 	case NVME_LOGPAGE_HEALTH:
1942 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1943 		*bufsize = sizeof (nvme_health_log_t);
1944 		break;
1945 
1946 	case NVME_LOGPAGE_FWSLOT:
1947 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1948 		*bufsize = sizeof (nvme_fwslot_log_t);
1949 		break;
1950 
1951 	default:
1952 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1953 		    logpage);
1954 		atomic_inc_32(&nvme->n_unknown_logpage);
1955 		ret = EINVAL;
1956 		goto fail;
1957 	}
1958 
1959 	va_end(ap);
1960 
1961 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1962 
1963 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1964 
1965 	if (nvme_zalloc_dma(nvme, *bufsize,
1966 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1967 		dev_err(nvme->n_dip, CE_WARN,
1968 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1969 		ret = ENOMEM;
1970 		goto fail;
1971 	}
1972 
1973 	if (cmd->nc_dma->nd_ncookie > 2) {
1974 		dev_err(nvme->n_dip, CE_WARN,
1975 		    "!too many DMA cookies for GET LOG PAGE");
1976 		atomic_inc_32(&nvme->n_too_many_cookies);
1977 		ret = ENOMEM;
1978 		goto fail;
1979 	}
1980 
1981 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1982 	if (cmd->nc_dma->nd_ncookie > 1) {
1983 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1984 		    &cmd->nc_dma->nd_cookie);
1985 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1986 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1987 	}
1988 
1989 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1990 
1991 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1992 		dev_err(nvme->n_dip, CE_WARN,
1993 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1994 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1995 		goto fail;
1996 	}
1997 
1998 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1999 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2000 
2001 fail:
2002 	nvme_free_cmd(cmd);
2003 
2004 	return (ret);
2005 }
2006 
2007 static int
2008 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2009 {
2010 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2011 	int ret;
2012 
2013 	if (buf == NULL)
2014 		return (EINVAL);
2015 
2016 	cmd->nc_sqid = 0;
2017 	cmd->nc_callback = nvme_wakeup_cmd;
2018 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2019 	cmd->nc_sqe.sqe_nsid = nsid;
2020 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2021 
2022 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2023 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2024 		dev_err(nvme->n_dip, CE_WARN,
2025 		    "!nvme_zalloc_dma failed for IDENTIFY");
2026 		ret = ENOMEM;
2027 		goto fail;
2028 	}
2029 
2030 	if (cmd->nc_dma->nd_ncookie > 2) {
2031 		dev_err(nvme->n_dip, CE_WARN,
2032 		    "!too many DMA cookies for IDENTIFY");
2033 		atomic_inc_32(&nvme->n_too_many_cookies);
2034 		ret = ENOMEM;
2035 		goto fail;
2036 	}
2037 
2038 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2039 	if (cmd->nc_dma->nd_ncookie > 1) {
2040 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2041 		    &cmd->nc_dma->nd_cookie);
2042 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2043 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2044 	}
2045 
2046 	if (user)
2047 		cmd->nc_dontpanic = B_TRUE;
2048 
2049 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2050 
2051 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2052 		dev_err(nvme->n_dip, CE_WARN,
2053 		    "!IDENTIFY failed with sct = %x, sc = %x",
2054 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2055 		goto fail;
2056 	}
2057 
2058 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2059 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2060 
2061 fail:
2062 	nvme_free_cmd(cmd);
2063 
2064 	return (ret);
2065 }
2066 
2067 static int
2068 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2069     uint32_t val, uint32_t *res)
2070 {
2071 	_NOTE(ARGUNUSED(nsid));
2072 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2073 	int ret = EINVAL;
2074 
2075 	ASSERT(res != NULL);
2076 
2077 	cmd->nc_sqid = 0;
2078 	cmd->nc_callback = nvme_wakeup_cmd;
2079 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2080 	cmd->nc_sqe.sqe_cdw10 = feature;
2081 	cmd->nc_sqe.sqe_cdw11 = val;
2082 
2083 	if (user)
2084 		cmd->nc_dontpanic = B_TRUE;
2085 
2086 	switch (feature) {
2087 	case NVME_FEAT_WRITE_CACHE:
2088 		if (!nvme->n_write_cache_present)
2089 			goto fail;
2090 		break;
2091 
2092 	case NVME_FEAT_NQUEUES:
2093 		break;
2094 
2095 	default:
2096 		goto fail;
2097 	}
2098 
2099 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2100 
2101 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2102 		dev_err(nvme->n_dip, CE_WARN,
2103 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2104 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2105 		    cmd->nc_cqe.cqe_sf.sf_sc);
2106 		goto fail;
2107 	}
2108 
2109 	*res = cmd->nc_cqe.cqe_dw0;
2110 
2111 fail:
2112 	nvme_free_cmd(cmd);
2113 	return (ret);
2114 }
2115 
2116 static int
2117 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2118     uint32_t *res, void **buf, size_t *bufsize)
2119 {
2120 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2121 	int ret = EINVAL;
2122 
2123 	ASSERT(res != NULL);
2124 
2125 	if (bufsize != NULL)
2126 		*bufsize = 0;
2127 
2128 	cmd->nc_sqid = 0;
2129 	cmd->nc_callback = nvme_wakeup_cmd;
2130 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2131 	cmd->nc_sqe.sqe_cdw10 = feature;
2132 	cmd->nc_sqe.sqe_cdw11 = *res;
2133 
2134 	/*
2135 	 * For some of the optional features there doesn't seem to be a method
2136 	 * of detecting whether it is supported other than using it.  This will
2137 	 * cause "Invalid Field in Command" error, which is normally considered
2138 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2139 	 * in nvme_check_generic_cmd_status().
2140 	 */
2141 	switch (feature) {
2142 	case NVME_FEAT_ARBITRATION:
2143 	case NVME_FEAT_POWER_MGMT:
2144 	case NVME_FEAT_TEMPERATURE:
2145 	case NVME_FEAT_ERROR:
2146 	case NVME_FEAT_NQUEUES:
2147 	case NVME_FEAT_INTR_COAL:
2148 	case NVME_FEAT_INTR_VECT:
2149 	case NVME_FEAT_WRITE_ATOM:
2150 	case NVME_FEAT_ASYNC_EVENT:
2151 		break;
2152 
2153 	case NVME_FEAT_WRITE_CACHE:
2154 		if (!nvme->n_write_cache_present)
2155 			goto fail;
2156 		break;
2157 
2158 	case NVME_FEAT_LBA_RANGE:
2159 		if (!nvme->n_lba_range_supported)
2160 			goto fail;
2161 
2162 		cmd->nc_dontpanic = B_TRUE;
2163 		cmd->nc_sqe.sqe_nsid = nsid;
2164 		ASSERT(bufsize != NULL);
2165 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2166 		break;
2167 
2168 	case NVME_FEAT_AUTO_PST:
2169 		if (!nvme->n_auto_pst_supported)
2170 			goto fail;
2171 
2172 		ASSERT(bufsize != NULL);
2173 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2174 		break;
2175 
2176 	case NVME_FEAT_PROGRESS:
2177 		if (!nvme->n_progress_supported)
2178 			goto fail;
2179 
2180 		cmd->nc_dontpanic = B_TRUE;
2181 		break;
2182 
2183 	default:
2184 		goto fail;
2185 	}
2186 
2187 	if (user)
2188 		cmd->nc_dontpanic = B_TRUE;
2189 
2190 	if (bufsize != NULL && *bufsize != 0) {
2191 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2192 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2193 			dev_err(nvme->n_dip, CE_WARN,
2194 			    "!nvme_zalloc_dma failed for GET FEATURES");
2195 			ret = ENOMEM;
2196 			goto fail;
2197 		}
2198 
2199 		if (cmd->nc_dma->nd_ncookie > 2) {
2200 			dev_err(nvme->n_dip, CE_WARN,
2201 			    "!too many DMA cookies for GET FEATURES");
2202 			atomic_inc_32(&nvme->n_too_many_cookies);
2203 			ret = ENOMEM;
2204 			goto fail;
2205 		}
2206 
2207 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2208 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2209 		if (cmd->nc_dma->nd_ncookie > 1) {
2210 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2211 			    &cmd->nc_dma->nd_cookie);
2212 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2213 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2214 		}
2215 	}
2216 
2217 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2218 
2219 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2220 		boolean_t known = B_TRUE;
2221 
2222 		/* Check if this is unsupported optional feature */
2223 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2224 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2225 			switch (feature) {
2226 			case NVME_FEAT_LBA_RANGE:
2227 				nvme->n_lba_range_supported = B_FALSE;
2228 				break;
2229 			case NVME_FEAT_PROGRESS:
2230 				nvme->n_progress_supported = B_FALSE;
2231 				break;
2232 			default:
2233 				known = B_FALSE;
2234 				break;
2235 			}
2236 		} else {
2237 			known = B_FALSE;
2238 		}
2239 
2240 		/* Report the error otherwise */
2241 		if (!known) {
2242 			dev_err(nvme->n_dip, CE_WARN,
2243 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2244 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2245 			    cmd->nc_cqe.cqe_sf.sf_sc);
2246 		}
2247 
2248 		goto fail;
2249 	}
2250 
2251 	if (bufsize != NULL && *bufsize != 0) {
2252 		ASSERT(buf != NULL);
2253 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2254 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2255 	}
2256 
2257 	*res = cmd->nc_cqe.cqe_dw0;
2258 
2259 fail:
2260 	nvme_free_cmd(cmd);
2261 	return (ret);
2262 }
2263 
2264 static int
2265 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2266 {
2267 	nvme_write_cache_t nwc = { 0 };
2268 
2269 	if (enable)
2270 		nwc.b.wc_wce = 1;
2271 
2272 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2273 	    nwc.r, &nwc.r));
2274 }
2275 
2276 static int
2277 nvme_set_nqueues(nvme_t *nvme)
2278 {
2279 	nvme_nqueues_t nq = { 0 };
2280 	int ret;
2281 
2282 	/*
2283 	 * The default is to allocate one completion queue per vector.
2284 	 */
2285 	if (nvme->n_completion_queues == -1)
2286 		nvme->n_completion_queues = nvme->n_intr_cnt;
2287 
2288 	/*
2289 	 * There is no point in having more compeletion queues than
2290 	 * interrupt vectors.
2291 	 */
2292 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2293 	    nvme->n_intr_cnt);
2294 
2295 	/*
2296 	 * The default is to use one submission queue per completion queue.
2297 	 */
2298 	if (nvme->n_submission_queues == -1)
2299 		nvme->n_submission_queues = nvme->n_completion_queues;
2300 
2301 	/*
2302 	 * There is no point in having more compeletion queues than
2303 	 * submission queues.
2304 	 */
2305 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2306 	    nvme->n_submission_queues);
2307 
2308 	ASSERT(nvme->n_submission_queues > 0);
2309 	ASSERT(nvme->n_completion_queues > 0);
2310 
2311 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2312 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2313 
2314 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2315 	    &nq.r);
2316 
2317 	if (ret == 0) {
2318 		/*
2319 		 * Never use more than the requested number of queues.
2320 		 */
2321 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2322 		    nq.b.nq_nsq + 1);
2323 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2324 		    nq.b.nq_ncq + 1);
2325 	}
2326 
2327 	return (ret);
2328 }
2329 
2330 static int
2331 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2332 {
2333 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2334 	nvme_create_queue_dw10_t dw10 = { 0 };
2335 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2336 	int ret;
2337 
2338 	dw10.b.q_qid = cq->ncq_id;
2339 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2340 
2341 	c_dw11.b.cq_pc = 1;
2342 	c_dw11.b.cq_ien = 1;
2343 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2344 
2345 	cmd->nc_sqid = 0;
2346 	cmd->nc_callback = nvme_wakeup_cmd;
2347 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2348 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2349 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2350 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2351 
2352 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2353 
2354 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2355 		dev_err(nvme->n_dip, CE_WARN,
2356 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2357 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2358 	}
2359 
2360 	nvme_free_cmd(cmd);
2361 
2362 	return (ret);
2363 }
2364 
2365 static int
2366 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2367 {
2368 	nvme_cq_t *cq = qp->nq_cq;
2369 	nvme_cmd_t *cmd;
2370 	nvme_create_queue_dw10_t dw10 = { 0 };
2371 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2372 	int ret;
2373 
2374 	/*
2375 	 * It is possible to have more qpairs than completion queues,
2376 	 * and when the idx > ncq_id, that completion queue is shared
2377 	 * and has already been created.
2378 	 */
2379 	if (idx <= cq->ncq_id &&
2380 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2381 		return (DDI_FAILURE);
2382 
2383 	dw10.b.q_qid = idx;
2384 	dw10.b.q_qsize = qp->nq_nentry - 1;
2385 
2386 	s_dw11.b.sq_pc = 1;
2387 	s_dw11.b.sq_cqid = cq->ncq_id;
2388 
2389 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2390 	cmd->nc_sqid = 0;
2391 	cmd->nc_callback = nvme_wakeup_cmd;
2392 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2393 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2394 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2395 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2396 
2397 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2398 
2399 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2400 		dev_err(nvme->n_dip, CE_WARN,
2401 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2402 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2403 	}
2404 
2405 	nvme_free_cmd(cmd);
2406 
2407 	return (ret);
2408 }
2409 
2410 static boolean_t
2411 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2412 {
2413 	nvme_reg_csts_t csts;
2414 	int i;
2415 
2416 	nvme_put32(nvme, NVME_REG_CC, 0);
2417 
2418 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2419 	if (csts.b.csts_rdy == 1) {
2420 		nvme_put32(nvme, NVME_REG_CC, 0);
2421 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2422 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2423 			if (csts.b.csts_rdy == 0)
2424 				break;
2425 
2426 			if (quiesce)
2427 				drv_usecwait(50000);
2428 			else
2429 				delay(drv_usectohz(50000));
2430 		}
2431 	}
2432 
2433 	nvme_put32(nvme, NVME_REG_AQA, 0);
2434 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2435 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2436 
2437 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2438 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2439 }
2440 
2441 static void
2442 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2443 {
2444 	nvme_reg_cc_t cc;
2445 	nvme_reg_csts_t csts;
2446 	int i;
2447 
2448 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2449 
2450 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2451 	cc.b.cc_shn = mode & 0x3;
2452 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2453 
2454 	for (i = 0; i != 10; i++) {
2455 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2456 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2457 			break;
2458 
2459 		if (quiesce)
2460 			drv_usecwait(100000);
2461 		else
2462 			delay(drv_usectohz(100000));
2463 	}
2464 }
2465 
2466 
2467 static void
2468 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2469 {
2470 	/*
2471 	 * Section 7.7 of the spec describes how to get a unique ID for
2472 	 * the controller: the vendor ID, the model name and the serial
2473 	 * number shall be unique when combined.
2474 	 *
2475 	 * If a namespace has no EUI64 we use the above and add the hex
2476 	 * namespace ID to get a unique ID for the namespace.
2477 	 */
2478 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2479 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2480 
2481 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2482 	bcopy(nvme->n_idctl->id_serial, serial,
2483 	    sizeof (nvme->n_idctl->id_serial));
2484 
2485 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2486 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2487 
2488 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2489 	    nvme->n_idctl->id_vid, model, serial, nsid);
2490 }
2491 
2492 static int
2493 nvme_init_ns(nvme_t *nvme, int nsid)
2494 {
2495 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2496 	nvme_identify_nsid_t *idns;
2497 	int last_rp;
2498 
2499 	ns->ns_nvme = nvme;
2500 
2501 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2502 		dev_err(nvme->n_dip, CE_WARN,
2503 		    "!failed to identify namespace %d", nsid);
2504 		return (DDI_FAILURE);
2505 	}
2506 
2507 	ns->ns_idns = idns;
2508 	ns->ns_id = nsid;
2509 	ns->ns_block_count = idns->id_nsize;
2510 	ns->ns_block_size =
2511 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2512 	ns->ns_best_block_size = ns->ns_block_size;
2513 
2514 	/*
2515 	 * Get the EUI64 if present. Use it for devid and device node names.
2516 	 */
2517 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2518 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2519 
2520 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2521 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2522 		uint8_t *eui64 = ns->ns_eui64;
2523 
2524 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2525 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2526 		    eui64[0], eui64[1], eui64[2], eui64[3],
2527 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2528 	} else {
2529 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2530 		    ns->ns_id);
2531 
2532 		nvme_prepare_devid(nvme, ns->ns_id);
2533 	}
2534 
2535 	/*
2536 	 * Find the LBA format with no metadata and the best relative
2537 	 * performance. A value of 3 means "degraded", 0 is best.
2538 	 */
2539 	last_rp = 3;
2540 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2541 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2542 			break;
2543 		if (idns->id_lbaf[j].lbaf_ms != 0)
2544 			continue;
2545 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2546 			continue;
2547 		last_rp = idns->id_lbaf[j].lbaf_rp;
2548 		ns->ns_best_block_size =
2549 		    1 << idns->id_lbaf[j].lbaf_lbads;
2550 	}
2551 
2552 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2553 		ns->ns_best_block_size = nvme->n_min_block_size;
2554 
2555 	/*
2556 	 * We currently don't support namespaces that use either:
2557 	 * - protection information
2558 	 * - illegal block size (< 512)
2559 	 */
2560 	if (idns->id_dps.dp_pinfo) {
2561 		dev_err(nvme->n_dip, CE_WARN,
2562 		    "!ignoring namespace %d, unsupported feature: "
2563 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2564 		ns->ns_ignore = B_TRUE;
2565 	} else if (ns->ns_block_size < 512) {
2566 		dev_err(nvme->n_dip, CE_WARN,
2567 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2568 		    nsid, (uint64_t)ns->ns_block_size);
2569 		ns->ns_ignore = B_TRUE;
2570 	} else {
2571 		ns->ns_ignore = B_FALSE;
2572 	}
2573 
2574 	return (DDI_SUCCESS);
2575 }
2576 
2577 static int
2578 nvme_init(nvme_t *nvme)
2579 {
2580 	nvme_reg_cc_t cc = { 0 };
2581 	nvme_reg_aqa_t aqa = { 0 };
2582 	nvme_reg_asq_t asq = { 0 };
2583 	nvme_reg_acq_t acq = { 0 };
2584 	nvme_reg_cap_t cap;
2585 	nvme_reg_vs_t vs;
2586 	nvme_reg_csts_t csts;
2587 	int i = 0;
2588 	uint16_t nqueues;
2589 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2590 	char *vendor, *product;
2591 
2592 	/* Check controller version */
2593 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2594 	nvme->n_version.v_major = vs.b.vs_mjr;
2595 	nvme->n_version.v_minor = vs.b.vs_mnr;
2596 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2597 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2598 
2599 	if (nvme->n_version.v_major > nvme_version_major) {
2600 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2601 		    nvme_version_major);
2602 		if (nvme->n_strict_version)
2603 			goto fail;
2604 	}
2605 
2606 	/* retrieve controller configuration */
2607 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2608 
2609 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2610 		dev_err(nvme->n_dip, CE_WARN,
2611 		    "!NVM command set not supported by hardware");
2612 		goto fail;
2613 	}
2614 
2615 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2616 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2617 	nvme->n_timeout = cap.b.cap_to;
2618 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2619 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2620 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2621 
2622 	/*
2623 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2624 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2625 	 * page size value.
2626 	 */
2627 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2628 	    cap.b.cap_mpsmax + 12);
2629 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2630 
2631 	/*
2632 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2633 	 */
2634 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2635 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2636 
2637 	/*
2638 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2639 	 * Maxxfer may be increased after we identified the controller limits.
2640 	 */
2641 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2642 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2643 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2644 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2645 
2646 	/*
2647 	 * Reset controller if it's still in ready state.
2648 	 */
2649 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2650 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2651 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2652 		nvme->n_dead = B_TRUE;
2653 		goto fail;
2654 	}
2655 
2656 	/*
2657 	 * Create the cq array with one completion queue to be assigned
2658 	 * to the admin queue pair.
2659 	 */
2660 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len) !=
2661 	    DDI_SUCCESS) {
2662 		dev_err(nvme->n_dip, CE_WARN,
2663 		    "!failed to pre-allocate admin completion queue");
2664 		goto fail;
2665 	}
2666 	/*
2667 	 * Create the admin queue pair.
2668 	 */
2669 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2670 	    != DDI_SUCCESS) {
2671 		dev_err(nvme->n_dip, CE_WARN,
2672 		    "!unable to allocate admin qpair");
2673 		goto fail;
2674 	}
2675 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2676 	nvme->n_ioq[0] = nvme->n_adminq;
2677 
2678 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2679 
2680 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2681 	    "admin-queue-len", nvme->n_admin_queue_len);
2682 
2683 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2684 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2685 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2686 
2687 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2688 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2689 
2690 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2691 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2692 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2693 
2694 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2695 	cc.b.cc_css = 0;	/* use NVM command set */
2696 	cc.b.cc_mps = nvme->n_pageshift - 12;
2697 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2698 	cc.b.cc_en = 1;		/* enable controller */
2699 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2700 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2701 
2702 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2703 
2704 	/*
2705 	 * Wait for the controller to become ready.
2706 	 */
2707 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2708 	if (csts.b.csts_rdy == 0) {
2709 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2710 			delay(drv_usectohz(50000));
2711 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2712 
2713 			if (csts.b.csts_cfs == 1) {
2714 				dev_err(nvme->n_dip, CE_WARN,
2715 				    "!controller fatal status at init");
2716 				ddi_fm_service_impact(nvme->n_dip,
2717 				    DDI_SERVICE_LOST);
2718 				nvme->n_dead = B_TRUE;
2719 				goto fail;
2720 			}
2721 
2722 			if (csts.b.csts_rdy == 1)
2723 				break;
2724 		}
2725 	}
2726 
2727 	if (csts.b.csts_rdy == 0) {
2728 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2729 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2730 		nvme->n_dead = B_TRUE;
2731 		goto fail;
2732 	}
2733 
2734 	/*
2735 	 * Assume an abort command limit of 1. We'll destroy and re-init
2736 	 * that later when we know the true abort command limit.
2737 	 */
2738 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2739 
2740 	/*
2741 	 * Setup initial interrupt for admin queue.
2742 	 */
2743 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2744 	    != DDI_SUCCESS) &&
2745 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2746 	    != DDI_SUCCESS) &&
2747 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2748 	    != DDI_SUCCESS)) {
2749 		dev_err(nvme->n_dip, CE_WARN,
2750 		    "!failed to setup initial interrupt");
2751 		goto fail;
2752 	}
2753 
2754 	/*
2755 	 * Post an asynchronous event command to catch errors.
2756 	 * We assume the asynchronous events are supported as required by
2757 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2758 	 * However, since at least qemu does not follow the specification,
2759 	 * we need a mechanism to protect ourselves.
2760 	 */
2761 	nvme->n_async_event_supported = B_TRUE;
2762 	nvme_async_event(nvme);
2763 
2764 	/*
2765 	 * Identify Controller
2766 	 */
2767 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2768 		dev_err(nvme->n_dip, CE_WARN,
2769 		    "!failed to identify controller");
2770 		goto fail;
2771 	}
2772 
2773 	/*
2774 	 * Get Vendor & Product ID
2775 	 */
2776 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2777 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2778 	sata_split_model(model, &vendor, &product);
2779 
2780 	if (vendor == NULL)
2781 		nvme->n_vendor = strdup("NVMe");
2782 	else
2783 		nvme->n_vendor = strdup(vendor);
2784 
2785 	nvme->n_product = strdup(product);
2786 
2787 	/*
2788 	 * Get controller limits.
2789 	 */
2790 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2791 	    MIN(nvme->n_admin_queue_len / 10,
2792 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2793 
2794 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2795 	    "async-event-limit", nvme->n_async_event_limit);
2796 
2797 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2798 
2799 	/*
2800 	 * Reinitialize the semaphore with the true abort command limit
2801 	 * supported by the hardware. It's not necessary to disable interrupts
2802 	 * as only command aborts use the semaphore, and no commands are
2803 	 * executed or aborted while we're here.
2804 	 */
2805 	sema_destroy(&nvme->n_abort_sema);
2806 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2807 	    SEMA_DRIVER, NULL);
2808 
2809 	nvme->n_progress |= NVME_CTRL_LIMITS;
2810 
2811 	if (nvme->n_idctl->id_mdts == 0)
2812 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2813 	else
2814 		nvme->n_max_data_transfer_size =
2815 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2816 
2817 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2818 
2819 	/*
2820 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2821 	 * Chained PRPs are currently unsupported.
2822 	 *
2823 	 * This is a no-op on hardware which doesn't support a transfer size
2824 	 * big enough to require chained PRPs.
2825 	 */
2826 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2827 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2828 
2829 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2830 
2831 	/*
2832 	 * Make sure the minimum/maximum queue entry sizes are not
2833 	 * larger/smaller than the default.
2834 	 */
2835 
2836 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2837 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2838 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2839 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2840 		goto fail;
2841 
2842 	/*
2843 	 * Check for the presence of a Volatile Write Cache. If present,
2844 	 * enable or disable based on the value of the property
2845 	 * volatile-write-cache-enable (default is enabled).
2846 	 */
2847 	nvme->n_write_cache_present =
2848 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2849 
2850 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2851 	    "volatile-write-cache-present",
2852 	    nvme->n_write_cache_present ? 1 : 0);
2853 
2854 	if (!nvme->n_write_cache_present) {
2855 		nvme->n_write_cache_enabled = B_FALSE;
2856 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2857 	    != 0) {
2858 		dev_err(nvme->n_dip, CE_WARN,
2859 		    "!failed to %sable volatile write cache",
2860 		    nvme->n_write_cache_enabled ? "en" : "dis");
2861 		/*
2862 		 * Assume the cache is (still) enabled.
2863 		 */
2864 		nvme->n_write_cache_enabled = B_TRUE;
2865 	}
2866 
2867 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2868 	    "volatile-write-cache-enable",
2869 	    nvme->n_write_cache_enabled ? 1 : 0);
2870 
2871 	/*
2872 	 * Assume LBA Range Type feature is supported. If it isn't this
2873 	 * will be set to B_FALSE by nvme_get_features().
2874 	 */
2875 	nvme->n_lba_range_supported = B_TRUE;
2876 
2877 	/*
2878 	 * Check support for Autonomous Power State Transition.
2879 	 */
2880 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2881 		nvme->n_auto_pst_supported =
2882 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2883 
2884 	/*
2885 	 * Assume Software Progress Marker feature is supported.  If it isn't
2886 	 * this will be set to B_FALSE by nvme_get_features().
2887 	 */
2888 	nvme->n_progress_supported = B_TRUE;
2889 
2890 	/*
2891 	 * Identify Namespaces
2892 	 */
2893 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2894 
2895 	if (nvme->n_namespace_count == 0) {
2896 		dev_err(nvme->n_dip, CE_WARN,
2897 		    "!controllers without namespaces are not supported");
2898 		goto fail;
2899 	}
2900 
2901 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2902 		dev_err(nvme->n_dip, CE_WARN,
2903 		    "!too many namespaces: %d, limiting to %d\n",
2904 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2905 		nvme->n_namespace_count = NVME_MINOR_MAX;
2906 	}
2907 
2908 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2909 	    nvme->n_namespace_count, KM_SLEEP);
2910 
2911 	for (i = 0; i != nvme->n_namespace_count; i++) {
2912 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2913 		    NULL);
2914 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2915 			goto fail;
2916 	}
2917 
2918 	/*
2919 	 * Try to set up MSI/MSI-X interrupts.
2920 	 */
2921 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2922 	    != 0) {
2923 		nvme_release_interrupts(nvme);
2924 
2925 		nqueues = MIN(UINT16_MAX, ncpus);
2926 
2927 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2928 		    nqueues) != DDI_SUCCESS) &&
2929 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2930 		    nqueues) != DDI_SUCCESS)) {
2931 			dev_err(nvme->n_dip, CE_WARN,
2932 			    "!failed to setup MSI/MSI-X interrupts");
2933 			goto fail;
2934 		}
2935 	}
2936 
2937 	/*
2938 	 * Create I/O queue pairs.
2939 	 */
2940 
2941 	if (nvme_set_nqueues(nvme) != 0) {
2942 		dev_err(nvme->n_dip, CE_WARN,
2943 		    "!failed to set number of I/O queues to %d",
2944 		    nvme->n_intr_cnt);
2945 		goto fail;
2946 	}
2947 
2948 	/*
2949 	 * Reallocate I/O queue array
2950 	 */
2951 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2952 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2953 	    (nvme->n_submission_queues + 1), KM_SLEEP);
2954 	nvme->n_ioq[0] = nvme->n_adminq;
2955 
2956 	/*
2957 	 * There should always be at least as many submission queues
2958 	 * as completion queues.
2959 	 */
2960 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
2961 
2962 	nvme->n_ioq_count = nvme->n_submission_queues;
2963 
2964 	nvme->n_io_squeue_len =
2965 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
2966 
2967 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
2968 	    nvme->n_io_squeue_len);
2969 
2970 	/*
2971 	 * Pre-allocate completion queues.
2972 	 * When there are the same number of submission and completion
2973 	 * queues there is no value in having a larger completion
2974 	 * queue length.
2975 	 */
2976 	if (nvme->n_submission_queues == nvme->n_completion_queues)
2977 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
2978 		    nvme->n_io_squeue_len);
2979 
2980 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
2981 	    nvme->n_max_queue_entries);
2982 
2983 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
2984 	    nvme->n_io_cqueue_len);
2985 
2986 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
2987 	    nvme->n_io_cqueue_len) != DDI_SUCCESS) {
2988 		dev_err(nvme->n_dip, CE_WARN,
2989 		    "!failed to pre-allocate completion queues");
2990 		goto fail;
2991 	}
2992 
2993 	/*
2994 	 * If we use less completion queues than interrupt vectors return
2995 	 * some of the interrupt vectors back to the system.
2996 	 */
2997 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
2998 		nvme_release_interrupts(nvme);
2999 
3000 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3001 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3002 			dev_err(nvme->n_dip, CE_WARN,
3003 			    "!failed to reduce number of interrupts");
3004 			goto fail;
3005 		}
3006 	}
3007 
3008 	/*
3009 	 * Alloc & register I/O queue pairs
3010 	 */
3011 
3012 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3013 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3014 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3015 			dev_err(nvme->n_dip, CE_WARN,
3016 			    "!unable to allocate I/O qpair %d", i);
3017 			goto fail;
3018 		}
3019 
3020 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3021 			dev_err(nvme->n_dip, CE_WARN,
3022 			    "!unable to create I/O qpair %d", i);
3023 			goto fail;
3024 		}
3025 	}
3026 
3027 	/*
3028 	 * Post more asynchronous events commands to reduce event reporting
3029 	 * latency as suggested by the spec.
3030 	 */
3031 	if (nvme->n_async_event_supported) {
3032 		for (i = 1; i != nvme->n_async_event_limit; i++)
3033 			nvme_async_event(nvme);
3034 	}
3035 
3036 	return (DDI_SUCCESS);
3037 
3038 fail:
3039 	(void) nvme_reset(nvme, B_FALSE);
3040 	return (DDI_FAILURE);
3041 }
3042 
3043 static uint_t
3044 nvme_intr(caddr_t arg1, caddr_t arg2)
3045 {
3046 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3047 	nvme_t *nvme = (nvme_t *)arg1;
3048 	int inum = (int)(uintptr_t)arg2;
3049 	int ccnt = 0;
3050 	int qnum;
3051 
3052 	if (inum >= nvme->n_intr_cnt)
3053 		return (DDI_INTR_UNCLAIMED);
3054 
3055 	if (nvme->n_dead)
3056 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3057 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3058 
3059 	/*
3060 	 * The interrupt vector a queue uses is calculated as queue_idx %
3061 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3062 	 * in steps of n_intr_cnt to process all queues using this vector.
3063 	 */
3064 	for (qnum = inum;
3065 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3066 	    qnum += nvme->n_intr_cnt) {
3067 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3068 	}
3069 
3070 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3071 }
3072 
3073 static void
3074 nvme_release_interrupts(nvme_t *nvme)
3075 {
3076 	int i;
3077 
3078 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3079 		if (nvme->n_inth[i] == NULL)
3080 			break;
3081 
3082 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3083 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3084 		else
3085 			(void) ddi_intr_disable(nvme->n_inth[i]);
3086 
3087 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3088 		(void) ddi_intr_free(nvme->n_inth[i]);
3089 	}
3090 
3091 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3092 	nvme->n_inth = NULL;
3093 	nvme->n_inth_sz = 0;
3094 
3095 	nvme->n_progress &= ~NVME_INTERRUPTS;
3096 }
3097 
3098 static int
3099 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3100 {
3101 	int nintrs, navail, count;
3102 	int ret;
3103 	int i;
3104 
3105 	if (nvme->n_intr_types == 0) {
3106 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3107 		    &nvme->n_intr_types);
3108 		if (ret != DDI_SUCCESS) {
3109 			dev_err(nvme->n_dip, CE_WARN,
3110 			    "!%s: ddi_intr_get_supported types failed",
3111 			    __func__);
3112 			return (ret);
3113 		}
3114 #ifdef __x86
3115 		if (get_hwenv() == HW_VMWARE)
3116 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3117 #endif
3118 	}
3119 
3120 	if ((nvme->n_intr_types & intr_type) == 0)
3121 		return (DDI_FAILURE);
3122 
3123 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3124 	if (ret != DDI_SUCCESS) {
3125 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3126 		    __func__);
3127 		return (ret);
3128 	}
3129 
3130 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3131 	if (ret != DDI_SUCCESS) {
3132 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3133 		    __func__);
3134 		return (ret);
3135 	}
3136 
3137 	/* We want at most one interrupt per queue pair. */
3138 	if (navail > nqpairs)
3139 		navail = nqpairs;
3140 
3141 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3142 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3143 
3144 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3145 	    &count, 0);
3146 	if (ret != DDI_SUCCESS) {
3147 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3148 		    __func__);
3149 		goto fail;
3150 	}
3151 
3152 	nvme->n_intr_cnt = count;
3153 
3154 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3155 	if (ret != DDI_SUCCESS) {
3156 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3157 		    __func__);
3158 		goto fail;
3159 	}
3160 
3161 	for (i = 0; i < count; i++) {
3162 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3163 		    (void *)nvme, (void *)(uintptr_t)i);
3164 		if (ret != DDI_SUCCESS) {
3165 			dev_err(nvme->n_dip, CE_WARN,
3166 			    "!%s: ddi_intr_add_handler failed", __func__);
3167 			goto fail;
3168 		}
3169 	}
3170 
3171 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3172 
3173 	for (i = 0; i < count; i++) {
3174 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3175 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3176 		else
3177 			ret = ddi_intr_enable(nvme->n_inth[i]);
3178 
3179 		if (ret != DDI_SUCCESS) {
3180 			dev_err(nvme->n_dip, CE_WARN,
3181 			    "!%s: enabling interrupt %d failed", __func__, i);
3182 			goto fail;
3183 		}
3184 	}
3185 
3186 	nvme->n_intr_type = intr_type;
3187 
3188 	nvme->n_progress |= NVME_INTERRUPTS;
3189 
3190 	return (DDI_SUCCESS);
3191 
3192 fail:
3193 	nvme_release_interrupts(nvme);
3194 
3195 	return (ret);
3196 }
3197 
3198 static int
3199 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3200 {
3201 	_NOTE(ARGUNUSED(arg));
3202 
3203 	pci_ereport_post(dip, fm_error, NULL);
3204 	return (fm_error->fme_status);
3205 }
3206 
3207 static int
3208 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3209 {
3210 	nvme_t *nvme;
3211 	int instance;
3212 	int nregs;
3213 	off_t regsize;
3214 	int i;
3215 	char name[32];
3216 
3217 	if (cmd != DDI_ATTACH)
3218 		return (DDI_FAILURE);
3219 
3220 	instance = ddi_get_instance(dip);
3221 
3222 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3223 		return (DDI_FAILURE);
3224 
3225 	nvme = ddi_get_soft_state(nvme_state, instance);
3226 	ddi_set_driver_private(dip, nvme);
3227 	nvme->n_dip = dip;
3228 
3229 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3230 
3231 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3232 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3233 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3234 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3235 	    B_TRUE : B_FALSE;
3236 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3237 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3238 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3239 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3240 	/*
3241 	 * Double up the default for completion queues in case of
3242 	 * queue sharing.
3243 	 */
3244 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3245 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3246 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3247 	    DDI_PROP_DONTPASS, "async-event-limit",
3248 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3249 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3250 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3251 	    B_TRUE : B_FALSE;
3252 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3253 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3254 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3255 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3256 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3257 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3258 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3259 
3260 	if (!ISP2(nvme->n_min_block_size) ||
3261 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3262 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3263 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3264 		    "too low" : "not a power of 2",
3265 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3266 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3267 	}
3268 
3269 	if (nvme->n_submission_queues != -1 &&
3270 	    (nvme->n_submission_queues < 1 ||
3271 	    nvme->n_submission_queues > UINT16_MAX)) {
3272 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3273 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3274 		    UINT16_MAX);
3275 		nvme->n_submission_queues = -1;
3276 	}
3277 
3278 	if (nvme->n_completion_queues != -1 &&
3279 	    (nvme->n_completion_queues < 1 ||
3280 	    nvme->n_completion_queues > UINT16_MAX)) {
3281 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3282 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3283 		    UINT16_MAX);
3284 		nvme->n_completion_queues = -1;
3285 	}
3286 
3287 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3288 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3289 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3290 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3291 
3292 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3293 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3294 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3295 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3296 
3297 	if (nvme->n_async_event_limit < 1)
3298 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3299 
3300 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3301 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3302 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3303 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3304 
3305 	/*
3306 	 * Setup FMA support.
3307 	 */
3308 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3309 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3310 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3311 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3312 
3313 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3314 
3315 	if (nvme->n_fm_cap) {
3316 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3317 			nvme->n_reg_acc_attr.devacc_attr_access =
3318 			    DDI_FLAGERR_ACC;
3319 
3320 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3321 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3322 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3323 		}
3324 
3325 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3326 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3327 			pci_ereport_setup(dip);
3328 
3329 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3330 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3331 			    (void *)nvme);
3332 	}
3333 
3334 	nvme->n_progress |= NVME_FMA_INIT;
3335 
3336 	/*
3337 	 * The spec defines several register sets. Only the controller
3338 	 * registers (set 1) are currently used.
3339 	 */
3340 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3341 	    nregs < 2 ||
3342 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3343 		goto fail;
3344 
3345 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3346 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3347 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3348 		goto fail;
3349 	}
3350 
3351 	nvme->n_progress |= NVME_REGS_MAPPED;
3352 
3353 	/*
3354 	 * Create taskq for command completion.
3355 	 */
3356 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
3357 	    ddi_driver_name(dip), ddi_get_instance(dip));
3358 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
3359 	    TASKQ_DEFAULTPRI, 0);
3360 	if (nvme->n_cmd_taskq == NULL) {
3361 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
3362 		goto fail;
3363 	}
3364 
3365 	/*
3366 	 * Create PRP DMA cache
3367 	 */
3368 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3369 	    ddi_driver_name(dip), ddi_get_instance(dip));
3370 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3371 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3372 	    NULL, (void *)nvme, NULL, 0);
3373 
3374 	if (nvme_init(nvme) != DDI_SUCCESS)
3375 		goto fail;
3376 
3377 	/*
3378 	 * Initialize the driver with the UFM subsystem
3379 	 */
3380 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3381 	    &nvme->n_ufmh, nvme) != 0) {
3382 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3383 		goto fail;
3384 	}
3385 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3386 	ddi_ufm_update(nvme->n_ufmh);
3387 	nvme->n_progress |= NVME_UFM_INIT;
3388 
3389 	/*
3390 	 * Attach the blkdev driver for each namespace.
3391 	 */
3392 	for (i = 0; i != nvme->n_namespace_count; i++) {
3393 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3394 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3395 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3396 			dev_err(dip, CE_WARN,
3397 			    "!failed to create minor node for namespace %d", i);
3398 			goto fail;
3399 		}
3400 
3401 		if (nvme->n_ns[i].ns_ignore)
3402 			continue;
3403 
3404 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3405 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3406 
3407 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3408 			dev_err(dip, CE_WARN,
3409 			    "!failed to get blkdev handle for namespace %d", i);
3410 			goto fail;
3411 		}
3412 
3413 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3414 		    != DDI_SUCCESS) {
3415 			dev_err(dip, CE_WARN,
3416 			    "!failed to attach blkdev handle for namespace %d",
3417 			    i);
3418 			goto fail;
3419 		}
3420 	}
3421 
3422 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3423 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3424 	    != DDI_SUCCESS) {
3425 		dev_err(dip, CE_WARN, "nvme_attach: "
3426 		    "cannot create devctl minor node");
3427 		goto fail;
3428 	}
3429 
3430 	return (DDI_SUCCESS);
3431 
3432 fail:
3433 	/* attach successful anyway so that FMA can retire the device */
3434 	if (nvme->n_dead)
3435 		return (DDI_SUCCESS);
3436 
3437 	(void) nvme_detach(dip, DDI_DETACH);
3438 
3439 	return (DDI_FAILURE);
3440 }
3441 
3442 static int
3443 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3444 {
3445 	int instance, i;
3446 	nvme_t *nvme;
3447 
3448 	if (cmd != DDI_DETACH)
3449 		return (DDI_FAILURE);
3450 
3451 	instance = ddi_get_instance(dip);
3452 
3453 	nvme = ddi_get_soft_state(nvme_state, instance);
3454 
3455 	if (nvme == NULL)
3456 		return (DDI_FAILURE);
3457 
3458 	ddi_remove_minor_node(dip, "devctl");
3459 	mutex_destroy(&nvme->n_minor.nm_mutex);
3460 
3461 	if (nvme->n_ns) {
3462 		for (i = 0; i != nvme->n_namespace_count; i++) {
3463 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3464 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3465 
3466 			if (nvme->n_ns[i].ns_bd_hdl) {
3467 				(void) bd_detach_handle(
3468 				    nvme->n_ns[i].ns_bd_hdl);
3469 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3470 			}
3471 
3472 			if (nvme->n_ns[i].ns_idns)
3473 				kmem_free(nvme->n_ns[i].ns_idns,
3474 				    sizeof (nvme_identify_nsid_t));
3475 			if (nvme->n_ns[i].ns_devid)
3476 				strfree(nvme->n_ns[i].ns_devid);
3477 		}
3478 
3479 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3480 		    nvme->n_namespace_count);
3481 	}
3482 	if (nvme->n_progress & NVME_UFM_INIT) {
3483 		ddi_ufm_fini(nvme->n_ufmh);
3484 		mutex_destroy(&nvme->n_fwslot_mutex);
3485 	}
3486 
3487 	if (nvme->n_progress & NVME_INTERRUPTS)
3488 		nvme_release_interrupts(nvme);
3489 
3490 	if (nvme->n_cmd_taskq)
3491 		ddi_taskq_wait(nvme->n_cmd_taskq);
3492 
3493 	if (nvme->n_ioq_count > 0) {
3494 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3495 			if (nvme->n_ioq[i] != NULL) {
3496 				/* TODO: send destroy queue commands */
3497 				nvme_free_qpair(nvme->n_ioq[i]);
3498 			}
3499 		}
3500 
3501 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3502 		    (nvme->n_ioq_count + 1));
3503 	}
3504 
3505 	if (nvme->n_prp_cache != NULL) {
3506 		kmem_cache_destroy(nvme->n_prp_cache);
3507 	}
3508 
3509 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3510 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3511 		(void) nvme_reset(nvme, B_FALSE);
3512 	}
3513 
3514 	if (nvme->n_cmd_taskq)
3515 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3516 
3517 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3518 		sema_destroy(&nvme->n_abort_sema);
3519 
3520 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3521 		nvme_free_qpair(nvme->n_adminq);
3522 
3523 	if (nvme->n_cq_count > 0) {
3524 		nvme_destroy_cq_array(nvme, 0);
3525 		nvme->n_cq = NULL;
3526 		nvme->n_cq_count = 0;
3527 	}
3528 
3529 	if (nvme->n_idctl)
3530 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3531 
3532 	if (nvme->n_progress & NVME_REGS_MAPPED)
3533 		ddi_regs_map_free(&nvme->n_regh);
3534 
3535 	if (nvme->n_progress & NVME_FMA_INIT) {
3536 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3537 			ddi_fm_handler_unregister(nvme->n_dip);
3538 
3539 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3540 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3541 			pci_ereport_teardown(nvme->n_dip);
3542 
3543 		ddi_fm_fini(nvme->n_dip);
3544 	}
3545 
3546 	if (nvme->n_vendor != NULL)
3547 		strfree(nvme->n_vendor);
3548 
3549 	if (nvme->n_product != NULL)
3550 		strfree(nvme->n_product);
3551 
3552 	ddi_soft_state_free(nvme_state, instance);
3553 
3554 	return (DDI_SUCCESS);
3555 }
3556 
3557 static int
3558 nvme_quiesce(dev_info_t *dip)
3559 {
3560 	int instance;
3561 	nvme_t *nvme;
3562 
3563 	instance = ddi_get_instance(dip);
3564 
3565 	nvme = ddi_get_soft_state(nvme_state, instance);
3566 
3567 	if (nvme == NULL)
3568 		return (DDI_FAILURE);
3569 
3570 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3571 
3572 	(void) nvme_reset(nvme, B_TRUE);
3573 
3574 	return (DDI_FAILURE);
3575 }
3576 
3577 static int
3578 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3579 {
3580 	nvme_t *nvme = cmd->nc_nvme;
3581 	int nprp_page, nprp;
3582 	uint64_t *prp;
3583 
3584 	if (xfer->x_ndmac == 0)
3585 		return (DDI_FAILURE);
3586 
3587 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3588 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3589 
3590 	if (xfer->x_ndmac == 1) {
3591 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3592 		return (DDI_SUCCESS);
3593 	} else if (xfer->x_ndmac == 2) {
3594 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3595 		return (DDI_SUCCESS);
3596 	}
3597 
3598 	xfer->x_ndmac--;
3599 
3600 	nprp_page = nvme->n_pagesize / sizeof (uint64_t);
3601 	ASSERT(nprp_page > 0);
3602 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3603 
3604 	/*
3605 	 * We currently don't support chained PRPs and set up our DMA
3606 	 * attributes to reflect that. If we still get an I/O request
3607 	 * that needs a chained PRP something is very wrong.
3608 	 */
3609 	VERIFY(nprp == 1);
3610 
3611 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3612 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3613 
3614 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3615 
3616 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3617 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3618 	    xfer->x_ndmac > 0;
3619 	    prp++, xfer->x_ndmac--) {
3620 		*prp = xfer->x_dmac.dmac_laddress;
3621 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3622 	}
3623 
3624 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3625 	    DDI_DMA_SYNC_FORDEV);
3626 	return (DDI_SUCCESS);
3627 }
3628 
3629 static nvme_cmd_t *
3630 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3631 {
3632 	nvme_t *nvme = ns->ns_nvme;
3633 	nvme_cmd_t *cmd;
3634 
3635 	/*
3636 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3637 	 */
3638 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3639 	    KM_NOSLEEP : KM_SLEEP);
3640 
3641 	if (cmd == NULL)
3642 		return (NULL);
3643 
3644 	cmd->nc_sqe.sqe_opc = opc;
3645 	cmd->nc_callback = nvme_bd_xfer_done;
3646 	cmd->nc_xfer = xfer;
3647 
3648 	switch (opc) {
3649 	case NVME_OPC_NVM_WRITE:
3650 	case NVME_OPC_NVM_READ:
3651 		VERIFY(xfer->x_nblks <= 0x10000);
3652 
3653 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3654 
3655 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3656 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3657 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3658 
3659 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3660 			goto fail;
3661 		break;
3662 
3663 	case NVME_OPC_NVM_FLUSH:
3664 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3665 		break;
3666 
3667 	default:
3668 		goto fail;
3669 	}
3670 
3671 	return (cmd);
3672 
3673 fail:
3674 	nvme_free_cmd(cmd);
3675 	return (NULL);
3676 }
3677 
3678 static void
3679 nvme_bd_xfer_done(void *arg)
3680 {
3681 	nvme_cmd_t *cmd = arg;
3682 	bd_xfer_t *xfer = cmd->nc_xfer;
3683 	int error = 0;
3684 
3685 	error = nvme_check_cmd_status(cmd);
3686 	nvme_free_cmd(cmd);
3687 
3688 	bd_xfer_done(xfer, error);
3689 }
3690 
3691 static void
3692 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3693 {
3694 	nvme_namespace_t *ns = arg;
3695 	nvme_t *nvme = ns->ns_nvme;
3696 
3697 	/*
3698 	 * blkdev maintains one queue size per instance (namespace),
3699 	 * but all namespace share the I/O queues.
3700 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3701 	 * or change blkdev to handle EAGAIN
3702 	 */
3703 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_squeue_len
3704 	    / nvme->n_namespace_count;
3705 
3706 	/*
3707 	 * d_maxxfer is not set, which means the value is taken from the DMA
3708 	 * attributes specified to bd_alloc_handle.
3709 	 */
3710 
3711 	drive->d_removable = B_FALSE;
3712 	drive->d_hotpluggable = B_FALSE;
3713 
3714 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3715 	drive->d_target = ns->ns_id;
3716 	drive->d_lun = 0;
3717 
3718 	drive->d_model = nvme->n_idctl->id_model;
3719 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3720 	drive->d_vendor = nvme->n_vendor;
3721 	drive->d_vendor_len = strlen(nvme->n_vendor);
3722 	drive->d_product = nvme->n_product;
3723 	drive->d_product_len = strlen(nvme->n_product);
3724 	drive->d_serial = nvme->n_idctl->id_serial;
3725 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3726 	drive->d_revision = nvme->n_idctl->id_fwrev;
3727 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3728 }
3729 
3730 static int
3731 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3732 {
3733 	nvme_namespace_t *ns = arg;
3734 
3735 	media->m_nblks = ns->ns_block_count;
3736 	media->m_blksize = ns->ns_block_size;
3737 	media->m_readonly = B_FALSE;
3738 	media->m_solidstate = B_TRUE;
3739 
3740 	media->m_pblksize = ns->ns_best_block_size;
3741 
3742 	return (0);
3743 }
3744 
3745 static int
3746 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3747 {
3748 	nvme_t *nvme = ns->ns_nvme;
3749 	nvme_cmd_t *cmd;
3750 	nvme_qpair_t *ioq;
3751 	boolean_t poll;
3752 	int ret;
3753 
3754 	if (nvme->n_dead)
3755 		return (EIO);
3756 
3757 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3758 	if (cmd == NULL)
3759 		return (ENOMEM);
3760 
3761 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3762 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3763 	ioq = nvme->n_ioq[cmd->nc_sqid];
3764 
3765 	/*
3766 	 * Get the polling flag before submitting the command. The command may
3767 	 * complete immediately after it was submitted, which means we must
3768 	 * treat both cmd and xfer as if they have been freed already.
3769 	 */
3770 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3771 
3772 	ret = nvme_submit_io_cmd(ioq, cmd);
3773 
3774 	if (ret != 0)
3775 		return (ret);
3776 
3777 	if (!poll)
3778 		return (0);
3779 
3780 	do {
3781 		cmd = nvme_retrieve_cmd(nvme, ioq);
3782 		if (cmd != NULL)
3783 			cmd->nc_callback(cmd);
3784 		else
3785 			drv_usecwait(10);
3786 	} while (ioq->nq_active_cmds != 0);
3787 
3788 	return (0);
3789 }
3790 
3791 static int
3792 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3793 {
3794 	nvme_namespace_t *ns = arg;
3795 
3796 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3797 }
3798 
3799 static int
3800 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3801 {
3802 	nvme_namespace_t *ns = arg;
3803 
3804 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3805 }
3806 
3807 static int
3808 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3809 {
3810 	nvme_namespace_t *ns = arg;
3811 
3812 	if (ns->ns_nvme->n_dead)
3813 		return (EIO);
3814 
3815 	/*
3816 	 * If the volatile write cache is not present or not enabled the FLUSH
3817 	 * command is a no-op, so we can take a shortcut here.
3818 	 */
3819 	if (!ns->ns_nvme->n_write_cache_present) {
3820 		bd_xfer_done(xfer, ENOTSUP);
3821 		return (0);
3822 	}
3823 
3824 	if (!ns->ns_nvme->n_write_cache_enabled) {
3825 		bd_xfer_done(xfer, 0);
3826 		return (0);
3827 	}
3828 
3829 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3830 }
3831 
3832 static int
3833 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3834 {
3835 	nvme_namespace_t *ns = arg;
3836 
3837 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3838 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3839 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3840 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3841 	} else {
3842 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3843 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3844 	}
3845 }
3846 
3847 static int
3848 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3849 {
3850 #ifndef __lock_lint
3851 	_NOTE(ARGUNUSED(cred_p));
3852 #endif
3853 	minor_t minor = getminor(*devp);
3854 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3855 	int nsid = NVME_MINOR_NSID(minor);
3856 	nvme_minor_state_t *nm;
3857 	int rv = 0;
3858 
3859 	if (otyp != OTYP_CHR)
3860 		return (EINVAL);
3861 
3862 	if (nvme == NULL)
3863 		return (ENXIO);
3864 
3865 	if (nsid > nvme->n_namespace_count)
3866 		return (ENXIO);
3867 
3868 	if (nvme->n_dead)
3869 		return (EIO);
3870 
3871 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3872 
3873 	mutex_enter(&nm->nm_mutex);
3874 	if (nm->nm_oexcl) {
3875 		rv = EBUSY;
3876 		goto out;
3877 	}
3878 
3879 	if (flag & FEXCL) {
3880 		if (nm->nm_ocnt != 0) {
3881 			rv = EBUSY;
3882 			goto out;
3883 		}
3884 		nm->nm_oexcl = B_TRUE;
3885 	}
3886 
3887 	nm->nm_ocnt++;
3888 
3889 out:
3890 	mutex_exit(&nm->nm_mutex);
3891 	return (rv);
3892 
3893 }
3894 
3895 static int
3896 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3897 {
3898 #ifndef __lock_lint
3899 	_NOTE(ARGUNUSED(cred_p));
3900 	_NOTE(ARGUNUSED(flag));
3901 #endif
3902 	minor_t minor = getminor(dev);
3903 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3904 	int nsid = NVME_MINOR_NSID(minor);
3905 	nvme_minor_state_t *nm;
3906 
3907 	if (otyp != OTYP_CHR)
3908 		return (ENXIO);
3909 
3910 	if (nvme == NULL)
3911 		return (ENXIO);
3912 
3913 	if (nsid > nvme->n_namespace_count)
3914 		return (ENXIO);
3915 
3916 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3917 
3918 	mutex_enter(&nm->nm_mutex);
3919 	if (nm->nm_oexcl)
3920 		nm->nm_oexcl = B_FALSE;
3921 
3922 	ASSERT(nm->nm_ocnt > 0);
3923 	nm->nm_ocnt--;
3924 	mutex_exit(&nm->nm_mutex);
3925 
3926 	return (0);
3927 }
3928 
3929 static int
3930 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3931     cred_t *cred_p)
3932 {
3933 	_NOTE(ARGUNUSED(cred_p));
3934 	int rv = 0;
3935 	void *idctl;
3936 
3937 	if ((mode & FREAD) == 0)
3938 		return (EPERM);
3939 
3940 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3941 		return (EINVAL);
3942 
3943 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
3944 		return (rv);
3945 
3946 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3947 	    != 0)
3948 		rv = EFAULT;
3949 
3950 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3951 
3952 	return (rv);
3953 }
3954 
3955 /*
3956  * Execute commands on behalf of the various ioctls.
3957  */
3958 static int
3959 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
3960     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
3961 {
3962 	nvme_cmd_t *cmd;
3963 	nvme_qpair_t *ioq;
3964 	int rv = 0;
3965 
3966 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
3967 	if (is_admin) {
3968 		cmd->nc_sqid = 0;
3969 		ioq = nvme->n_adminq;
3970 	} else {
3971 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3972 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3973 		ioq = nvme->n_ioq[cmd->nc_sqid];
3974 	}
3975 
3976 	cmd->nc_callback = nvme_wakeup_cmd;
3977 	cmd->nc_sqe = *sqe;
3978 
3979 	if ((rwk & (FREAD | FWRITE)) != 0) {
3980 		if (data_addr == NULL) {
3981 			rv = EINVAL;
3982 			goto free_cmd;
3983 		}
3984 
3985 		/*
3986 		 * Because we use PRPs and haven't implemented PRP
3987 		 * lists here, the maximum data size is restricted to
3988 		 * 2 pages.
3989 		 */
3990 		if (data_len > 2 * nvme->n_pagesize) {
3991 			dev_err(nvme->n_dip, CE_WARN, "!Data size %u is too "
3992 			    "large for nvme_ioc_cmd(). Limit is 2 pages "
3993 			    "(%u bytes)", data_len,  2 * nvme->n_pagesize);
3994 
3995 			rv = EINVAL;
3996 			goto free_cmd;
3997 		}
3998 
3999 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4000 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4001 			dev_err(nvme->n_dip, CE_WARN,
4002 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4003 
4004 			rv = ENOMEM;
4005 			goto free_cmd;
4006 		}
4007 
4008 		if (cmd->nc_dma->nd_ncookie > 2) {
4009 			dev_err(nvme->n_dip, CE_WARN,
4010 			    "!too many DMA cookies for nvme_ioc_cmd()");
4011 			atomic_inc_32(&nvme->n_too_many_cookies);
4012 
4013 			rv = E2BIG;
4014 			goto free_cmd;
4015 		}
4016 
4017 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
4018 		    cmd->nc_dma->nd_cookie.dmac_laddress;
4019 
4020 		if (cmd->nc_dma->nd_ncookie > 1) {
4021 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
4022 			    &cmd->nc_dma->nd_cookie);
4023 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
4024 			    cmd->nc_dma->nd_cookie.dmac_laddress;
4025 		}
4026 
4027 		if ((rwk & FWRITE) != 0) {
4028 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4029 			    data_len, rwk & FKIOCTL) != 0) {
4030 				rv = EFAULT;
4031 				goto free_cmd;
4032 			}
4033 		}
4034 	}
4035 
4036 	if (is_admin) {
4037 		nvme_admin_cmd(cmd, timeout);
4038 	} else {
4039 		mutex_enter(&cmd->nc_mutex);
4040 
4041 		rv = nvme_submit_io_cmd(ioq, cmd);
4042 
4043 		if (rv == EAGAIN) {
4044 			mutex_exit(&cmd->nc_mutex);
4045 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4046 			    "!nvme_ioc_cmd() failed, I/O Q full");
4047 			goto free_cmd;
4048 		}
4049 
4050 		nvme_wait_cmd(cmd, timeout);
4051 
4052 		mutex_exit(&cmd->nc_mutex);
4053 	}
4054 
4055 	if (cqe != NULL)
4056 		*cqe = cmd->nc_cqe;
4057 
4058 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4059 		dev_err(nvme->n_dip, CE_WARN,
4060 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4061 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4062 
4063 		goto free_cmd;
4064 	}
4065 
4066 	if ((rwk & FREAD) != 0) {
4067 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4068 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4069 			rv = EFAULT;
4070 	}
4071 
4072 free_cmd:
4073 	nvme_free_cmd(cmd);
4074 
4075 	return (rv);
4076 }
4077 
4078 static int
4079 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4080     int mode, cred_t *cred_p)
4081 {
4082 	_NOTE(ARGUNUSED(nsid, cred_p));
4083 	int rv = 0;
4084 	nvme_reg_cap_t cap = { 0 };
4085 	nvme_capabilities_t nc;
4086 
4087 	if ((mode & FREAD) == 0)
4088 		return (EPERM);
4089 
4090 	if (nioc->n_len < sizeof (nc))
4091 		return (EINVAL);
4092 
4093 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4094 
4095 	/*
4096 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4097 	 * specify the base page size of 4k (1<<12), so add 12 here to
4098 	 * get the real page size value.
4099 	 */
4100 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4101 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4102 
4103 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4104 		rv = EFAULT;
4105 
4106 	return (rv);
4107 }
4108 
4109 static int
4110 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4111     int mode, cred_t *cred_p)
4112 {
4113 	_NOTE(ARGUNUSED(cred_p));
4114 	void *log = NULL;
4115 	size_t bufsize = 0;
4116 	int rv = 0;
4117 
4118 	if ((mode & FREAD) == 0)
4119 		return (EPERM);
4120 
4121 	switch (nioc->n_arg) {
4122 	case NVME_LOGPAGE_ERROR:
4123 		if (nsid != 0)
4124 			return (EINVAL);
4125 		break;
4126 	case NVME_LOGPAGE_HEALTH:
4127 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4128 			return (EINVAL);
4129 
4130 		if (nsid == 0)
4131 			nsid = (uint32_t)-1;
4132 
4133 		break;
4134 	case NVME_LOGPAGE_FWSLOT:
4135 		if (nsid != 0)
4136 			return (EINVAL);
4137 		break;
4138 	default:
4139 		return (EINVAL);
4140 	}
4141 
4142 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4143 	    != DDI_SUCCESS)
4144 		return (EIO);
4145 
4146 	if (nioc->n_len < bufsize) {
4147 		kmem_free(log, bufsize);
4148 		return (EINVAL);
4149 	}
4150 
4151 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4152 		rv = EFAULT;
4153 
4154 	nioc->n_len = bufsize;
4155 	kmem_free(log, bufsize);
4156 
4157 	return (rv);
4158 }
4159 
4160 static int
4161 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4162     int mode, cred_t *cred_p)
4163 {
4164 	_NOTE(ARGUNUSED(cred_p));
4165 	void *buf = NULL;
4166 	size_t bufsize = 0;
4167 	uint32_t res = 0;
4168 	uint8_t feature;
4169 	int rv = 0;
4170 
4171 	if ((mode & FREAD) == 0)
4172 		return (EPERM);
4173 
4174 	if ((nioc->n_arg >> 32) > 0xff)
4175 		return (EINVAL);
4176 
4177 	feature = (uint8_t)(nioc->n_arg >> 32);
4178 
4179 	switch (feature) {
4180 	case NVME_FEAT_ARBITRATION:
4181 	case NVME_FEAT_POWER_MGMT:
4182 	case NVME_FEAT_TEMPERATURE:
4183 	case NVME_FEAT_ERROR:
4184 	case NVME_FEAT_NQUEUES:
4185 	case NVME_FEAT_INTR_COAL:
4186 	case NVME_FEAT_WRITE_ATOM:
4187 	case NVME_FEAT_ASYNC_EVENT:
4188 	case NVME_FEAT_PROGRESS:
4189 		if (nsid != 0)
4190 			return (EINVAL);
4191 		break;
4192 
4193 	case NVME_FEAT_INTR_VECT:
4194 		if (nsid != 0)
4195 			return (EINVAL);
4196 
4197 		res = nioc->n_arg & 0xffffffffUL;
4198 		if (res >= nvme->n_intr_cnt)
4199 			return (EINVAL);
4200 		break;
4201 
4202 	case NVME_FEAT_LBA_RANGE:
4203 		if (nvme->n_lba_range_supported == B_FALSE)
4204 			return (EINVAL);
4205 
4206 		if (nsid == 0 ||
4207 		    nsid > nvme->n_namespace_count)
4208 			return (EINVAL);
4209 
4210 		break;
4211 
4212 	case NVME_FEAT_WRITE_CACHE:
4213 		if (nsid != 0)
4214 			return (EINVAL);
4215 
4216 		if (!nvme->n_write_cache_present)
4217 			return (EINVAL);
4218 
4219 		break;
4220 
4221 	case NVME_FEAT_AUTO_PST:
4222 		if (nsid != 0)
4223 			return (EINVAL);
4224 
4225 		if (!nvme->n_auto_pst_supported)
4226 			return (EINVAL);
4227 
4228 		break;
4229 
4230 	default:
4231 		return (EINVAL);
4232 	}
4233 
4234 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4235 	    &bufsize);
4236 	if (rv != 0)
4237 		return (rv);
4238 
4239 	if (nioc->n_len < bufsize) {
4240 		kmem_free(buf, bufsize);
4241 		return (EINVAL);
4242 	}
4243 
4244 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4245 		rv = EFAULT;
4246 
4247 	kmem_free(buf, bufsize);
4248 	nioc->n_arg = res;
4249 	nioc->n_len = bufsize;
4250 
4251 	return (rv);
4252 }
4253 
4254 static int
4255 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4256     cred_t *cred_p)
4257 {
4258 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4259 
4260 	if ((mode & FREAD) == 0)
4261 		return (EPERM);
4262 
4263 	nioc->n_arg = nvme->n_intr_cnt;
4264 	return (0);
4265 }
4266 
4267 static int
4268 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4269     cred_t *cred_p)
4270 {
4271 	_NOTE(ARGUNUSED(nsid, cred_p));
4272 	int rv = 0;
4273 
4274 	if ((mode & FREAD) == 0)
4275 		return (EPERM);
4276 
4277 	if (nioc->n_len < sizeof (nvme->n_version))
4278 		return (ENOMEM);
4279 
4280 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4281 	    sizeof (nvme->n_version), mode) != 0)
4282 		rv = EFAULT;
4283 
4284 	return (rv);
4285 }
4286 
4287 static int
4288 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4289     cred_t *cred_p)
4290 {
4291 	_NOTE(ARGUNUSED(mode));
4292 	nvme_format_nvm_t frmt = { 0 };
4293 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4294 
4295 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4296 		return (EPERM);
4297 
4298 	frmt.r = nioc->n_arg & 0xffffffff;
4299 
4300 	/*
4301 	 * Check whether the FORMAT NVM command is supported.
4302 	 */
4303 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4304 		return (EINVAL);
4305 
4306 	/*
4307 	 * Don't allow format or secure erase of individual namespace if that
4308 	 * would cause a format or secure erase of all namespaces.
4309 	 */
4310 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4311 		return (EINVAL);
4312 
4313 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4314 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4315 		return (EINVAL);
4316 
4317 	/*
4318 	 * Don't allow formatting with Protection Information.
4319 	 */
4320 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4321 		return (EINVAL);
4322 
4323 	/*
4324 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4325 	 * that uses metadata.
4326 	 */
4327 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4328 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4329 		return (EINVAL);
4330 
4331 	/*
4332 	 * Don't allow formatting using an illegal Secure Erase setting.
4333 	 */
4334 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4335 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4336 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4337 		return (EINVAL);
4338 
4339 	if (nsid == 0)
4340 		nsid = (uint32_t)-1;
4341 
4342 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4343 	    B_FALSE, frmt.b.fm_ses));
4344 }
4345 
4346 static int
4347 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4348     cred_t *cred_p)
4349 {
4350 	_NOTE(ARGUNUSED(nioc, mode));
4351 	int rv = 0;
4352 
4353 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4354 		return (EPERM);
4355 
4356 	if (nsid == 0)
4357 		return (EINVAL);
4358 
4359 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4360 	if (rv != DDI_SUCCESS)
4361 		rv = EBUSY;
4362 
4363 	return (rv);
4364 }
4365 
4366 static int
4367 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4368     cred_t *cred_p)
4369 {
4370 	_NOTE(ARGUNUSED(nioc, mode));
4371 	nvme_identify_nsid_t *idns;
4372 	int rv = 0;
4373 
4374 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4375 		return (EPERM);
4376 
4377 	if (nsid == 0)
4378 		return (EINVAL);
4379 
4380 	/*
4381 	 * Identify namespace again, free old identify data.
4382 	 */
4383 	idns = nvme->n_ns[nsid - 1].ns_idns;
4384 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4385 		return (EIO);
4386 
4387 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4388 
4389 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4390 	if (rv != DDI_SUCCESS)
4391 		rv = EBUSY;
4392 
4393 	return (rv);
4394 }
4395 
4396 static void
4397 nvme_ufm_update(nvme_t *nvme)
4398 {
4399 	mutex_enter(&nvme->n_fwslot_mutex);
4400 	ddi_ufm_update(nvme->n_ufmh);
4401 	if (nvme->n_fwslot != NULL) {
4402 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4403 		nvme->n_fwslot = NULL;
4404 	}
4405 	mutex_exit(&nvme->n_fwslot_mutex);
4406 }
4407 
4408 static int
4409 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4410     int mode, cred_t *cred_p)
4411 {
4412 	int rv = 0;
4413 	size_t len, copylen;
4414 	offset_t offset;
4415 	uintptr_t buf;
4416 	nvme_sqe_t sqe = {
4417 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4418 	};
4419 
4420 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4421 		return (EPERM);
4422 
4423 	if (nsid != 0)
4424 		return (EINVAL);
4425 
4426 	/*
4427 	 * The offset (in n_len) is restricted to the number of DWORDs in
4428 	 * 32 bits.
4429 	 */
4430 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4431 		return (EINVAL);
4432 
4433 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4434 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4435 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4436 		return (EINVAL);
4437 
4438 	len = nioc->n_len;
4439 	offset = nioc->n_arg;
4440 	buf = (uintptr_t)nioc->n_buf;
4441 	while (len > 0 && rv == 0) {
4442 		/*
4443 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4444 		 * It is limited to 2 PRPs per NVM command, so limit
4445 		 * the size of the data to 2 pages.
4446 		 */
4447 		copylen = MIN(2 * nvme->n_pagesize, len);
4448 
4449 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4450 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4451 
4452 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4453 		    FWRITE, NULL, nvme_admin_cmd_timeout);
4454 
4455 		buf += copylen;
4456 		offset += copylen;
4457 		len -= copylen;
4458 	}
4459 
4460 	/*
4461 	 * Let the DDI UFM subsystem know that the firmware information for
4462 	 * this device has changed.
4463 	 */
4464 	nvme_ufm_update(nvme);
4465 
4466 	return (rv);
4467 }
4468 
4469 static int
4470 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4471     int mode, cred_t *cred_p)
4472 {
4473 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4474 	uint32_t slot = nioc->n_arg & 0xffffffff;
4475 	uint32_t action = nioc->n_arg >> 32;
4476 	nvme_cqe_t cqe = { 0 };
4477 	nvme_sqe_t sqe = {
4478 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
4479 	};
4480 	int timeout;
4481 	int rv;
4482 
4483 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4484 		return (EPERM);
4485 
4486 	if (nsid != 0)
4487 		return (EINVAL);
4488 
4489 	/* Validate slot is in range. */
4490 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4491 		return (EINVAL);
4492 
4493 	switch (action) {
4494 	case NVME_FWC_SAVE:
4495 	case NVME_FWC_SAVE_ACTIVATE:
4496 		timeout = nvme_commit_save_cmd_timeout;
4497 		break;
4498 	case NVME_FWC_ACTIVATE:
4499 	case NVME_FWC_ACTIVATE_IMMED:
4500 		timeout = nvme_admin_cmd_timeout;
4501 		break;
4502 	default:
4503 		return (EINVAL);
4504 	}
4505 
4506 	fc_dw10.b.fc_slot = slot;
4507 	fc_dw10.b.fc_action = action;
4508 	sqe.sqe_cdw10 = fc_dw10.r;
4509 
4510 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4511 
4512 	nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4513 
4514 	/*
4515 	 * Let the DDI UFM subsystem know that the firmware information for
4516 	 * this device has changed.
4517 	 */
4518 	nvme_ufm_update(nvme);
4519 
4520 	return (rv);
4521 }
4522 
4523 static int
4524 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
4525     int *rval_p)
4526 {
4527 #ifndef __lock_lint
4528 	_NOTE(ARGUNUSED(rval_p));
4529 #endif
4530 	minor_t minor = getminor(dev);
4531 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4532 	int nsid = NVME_MINOR_NSID(minor);
4533 	int rv = 0;
4534 	nvme_ioctl_t nioc;
4535 
4536 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
4537 		NULL,
4538 		nvme_ioctl_identify,
4539 		nvme_ioctl_identify,
4540 		nvme_ioctl_capabilities,
4541 		nvme_ioctl_get_logpage,
4542 		nvme_ioctl_get_features,
4543 		nvme_ioctl_intr_cnt,
4544 		nvme_ioctl_version,
4545 		nvme_ioctl_format,
4546 		nvme_ioctl_detach,
4547 		nvme_ioctl_attach,
4548 		nvme_ioctl_firmware_download,
4549 		nvme_ioctl_firmware_commit
4550 	};
4551 
4552 	if (nvme == NULL)
4553 		return (ENXIO);
4554 
4555 	if (nsid > nvme->n_namespace_count)
4556 		return (ENXIO);
4557 
4558 	if (IS_DEVCTL(cmd))
4559 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
4560 
4561 #ifdef _MULTI_DATAMODEL
4562 	switch (ddi_model_convert_from(mode & FMODELS)) {
4563 	case DDI_MODEL_ILP32: {
4564 		nvme_ioctl32_t nioc32;
4565 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
4566 		    mode) != 0)
4567 			return (EFAULT);
4568 		nioc.n_len = nioc32.n_len;
4569 		nioc.n_buf = nioc32.n_buf;
4570 		nioc.n_arg = nioc32.n_arg;
4571 		break;
4572 	}
4573 	case DDI_MODEL_NONE:
4574 #endif
4575 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
4576 		    != 0)
4577 			return (EFAULT);
4578 #ifdef _MULTI_DATAMODEL
4579 		break;
4580 	}
4581 #endif
4582 
4583 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
4584 		return (EIO);
4585 
4586 
4587 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
4588 		/*
4589 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
4590 		 * attachment point nodes.
4591 		 */
4592 		nsid = 0;
4593 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
4594 		/*
4595 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
4596 		 * will always return identify data for namespace 1.
4597 		 */
4598 		nsid = 1;
4599 	}
4600 
4601 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
4602 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
4603 		    cred_p);
4604 	else
4605 		rv = EINVAL;
4606 
4607 #ifdef _MULTI_DATAMODEL
4608 	switch (ddi_model_convert_from(mode & FMODELS)) {
4609 	case DDI_MODEL_ILP32: {
4610 		nvme_ioctl32_t nioc32;
4611 
4612 		nioc32.n_len = (size32_t)nioc.n_len;
4613 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
4614 		nioc32.n_arg = nioc.n_arg;
4615 
4616 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
4617 		    mode) != 0)
4618 			return (EFAULT);
4619 		break;
4620 	}
4621 	case DDI_MODEL_NONE:
4622 #endif
4623 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
4624 		    != 0)
4625 			return (EFAULT);
4626 #ifdef _MULTI_DATAMODEL
4627 		break;
4628 	}
4629 #endif
4630 
4631 	return (rv);
4632 }
4633 
4634 /*
4635  * DDI UFM Callbacks
4636  */
4637 static int
4638 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4639     ddi_ufm_image_t *img)
4640 {
4641 	nvme_t *nvme = arg;
4642 
4643 	if (imgno != 0)
4644 		return (EINVAL);
4645 
4646 	ddi_ufm_image_set_desc(img, "Firmware");
4647 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
4648 
4649 	return (0);
4650 }
4651 
4652 /*
4653  * Fill out firmware slot information for the requested slot.  The firmware
4654  * slot information is gathered by requesting the Firmware Slot Information log
4655  * page.  The format of the page is described in section 5.10.1.3.
4656  *
4657  * We lazily cache the log page on the first call and then invalidate the cache
4658  * data after a successful firmware download or firmware commit command.
4659  * The cached data is protected by a mutex as the state can change
4660  * asynchronous to this callback.
4661  */
4662 static int
4663 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4664     uint_t slotno, ddi_ufm_slot_t *slot)
4665 {
4666 	nvme_t *nvme = arg;
4667 	void *log = NULL;
4668 	size_t bufsize;
4669 	ddi_ufm_attr_t attr = 0;
4670 	char fw_ver[NVME_FWVER_SZ + 1];
4671 	int ret;
4672 
4673 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
4674 		return (EINVAL);
4675 
4676 	mutex_enter(&nvme->n_fwslot_mutex);
4677 	if (nvme->n_fwslot == NULL) {
4678 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
4679 		    NVME_LOGPAGE_FWSLOT, 0);
4680 		if (ret != DDI_SUCCESS ||
4681 		    bufsize != sizeof (nvme_fwslot_log_t)) {
4682 			if (log != NULL)
4683 				kmem_free(log, bufsize);
4684 			mutex_exit(&nvme->n_fwslot_mutex);
4685 			return (EIO);
4686 		}
4687 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
4688 	}
4689 
4690 	/*
4691 	 * NVMe numbers firmware slots starting at 1
4692 	 */
4693 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
4694 		attr |= DDI_UFM_ATTR_ACTIVE;
4695 
4696 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
4697 		attr |= DDI_UFM_ATTR_WRITEABLE;
4698 
4699 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
4700 		attr |= DDI_UFM_ATTR_EMPTY;
4701 	} else {
4702 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
4703 		    NVME_FWVER_SZ);
4704 		fw_ver[NVME_FWVER_SZ] = '\0';
4705 		ddi_ufm_slot_set_version(slot, fw_ver);
4706 	}
4707 	mutex_exit(&nvme->n_fwslot_mutex);
4708 
4709 	ddi_ufm_slot_set_attrs(slot, attr);
4710 
4711 	return (0);
4712 }
4713 
4714 static int
4715 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
4716 {
4717 	*caps = DDI_UFM_CAP_REPORT;
4718 	return (0);
4719 }
4720