xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision bc586359b7d9a851391f04b06254a9ead6109d47)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2018 Joyent, Inc.
17  */
18 
19 /*
20  * blkdev driver for NVMe compliant storage devices
21  *
22  * This driver was written to conform to version 1.2.1 of the NVMe
23  * specification.  It may work with newer versions, but that is completely
24  * untested and disabled by default.
25  *
26  * The driver has only been tested on x86 systems and will not work on big-
27  * endian systems without changes to the code accessing registers and data
28  * structures used by the hardware.
29  *
30  *
31  * Interrupt Usage:
32  *
33  * The driver will use a single interrupt while configuring the device as the
34  * specification requires, but contrary to the specification it will try to use
35  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36  * will switch to multiple-message MSI(-X) if supported. The driver wants to
37  * have one interrupt vector per CPU, but it will work correctly if less are
38  * available. Interrupts can be shared by queues, the interrupt handler will
39  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40  * the admin queue will share an interrupt with one I/O queue. The interrupt
41  * handler will retrieve completed commands from all queues sharing an interrupt
42  * vector and will post them to a taskq for completion processing.
43  *
44  *
45  * Command Processing:
46  *
47  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48  * to 65536 I/O commands. The driver will configure one I/O queue pair per
49  * available interrupt vector, with the queue length usually much smaller than
50  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51  * interrupt vectors will be used.
52  *
53  * Additionally the hardware provides a single special admin queue pair that can
54  * hold up to 4096 admin commands.
55  *
56  * From the hardware perspective both queues of a queue pair are independent,
57  * but they share some driver state: the command array (holding pointers to
58  * commands currently being processed by the hardware) and the active command
59  * counter. Access to a queue pair and the shared state is protected by
60  * nq_mutex.
61  *
62  * When a command is submitted to a queue pair the active command counter is
63  * incremented and a pointer to the command is stored in the command array. The
64  * array index is used as command identifier (CID) in the submission queue
65  * entry. Some commands may take a very long time to complete, and if the queue
66  * wraps around in that time a submission may find the next array slot to still
67  * be used by a long-running command. In this case the array is sequentially
68  * searched for the next free slot. The length of the command array is the same
69  * as the configured queue length. Queue overrun is prevented by the semaphore,
70  * so a command submission may block if the queue is full.
71  *
72  *
73  * Polled I/O Support:
74  *
75  * For kernel core dump support the driver can do polled I/O. As interrupts are
76  * turned off while dumping the driver will just submit a command in the regular
77  * way, and then repeatedly attempt a command retrieval until it gets the
78  * command back.
79  *
80  *
81  * Namespace Support:
82  *
83  * NVMe devices can have multiple namespaces, each being a independent data
84  * store. The driver supports multiple namespaces and creates a blkdev interface
85  * for each namespace found. Namespaces can have various attributes to support
86  * protection information. This driver does not support any of this and ignores
87  * namespaces that have these attributes.
88  *
89  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90  * (EUI64). This driver uses the EUI64 if present to generate the devid and
91  * passes it to blkdev to use it in the device node names. As this is currently
92  * untested namespaces with EUI64 are ignored by default.
93  *
94  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95  * single controller. This is an artificial limit imposed by the driver to be
96  * able to address a reasonable number of controllers and namespaces using a
97  * 32bit minor node number.
98  *
99  *
100  * Minor nodes:
101  *
102  * For each NVMe device the driver exposes one minor node for the controller and
103  * one minor node for each namespace. The only operations supported by those
104  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105  * interface for the nvmeadm(1M) utility.
106  *
107  *
108  * Blkdev Interface:
109  *
110  * This driver uses blkdev to do all the heavy lifting involved with presenting
111  * a disk device to the system. As a result, the processing of I/O requests is
112  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113  * setup, and splitting of transfers into manageable chunks.
114  *
115  * I/O requests coming in from blkdev are turned into NVM commands and posted to
116  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117  * queues. There is currently no timeout handling of I/O commands.
118  *
119  * Blkdev also supports querying device/media information and generating a
120  * devid. The driver reports the best block size as determined by the namespace
121  * format back to blkdev as physical block size to support partition and block
122  * alignment. The devid is either based on the namespace EUI64, if present, or
123  * composed using the device vendor ID, model number, serial number, and the
124  * namespace ID.
125  *
126  *
127  * Error Handling:
128  *
129  * Error handling is currently limited to detecting fatal hardware errors,
130  * either by asynchronous events, or synchronously through command status or
131  * admin command timeouts. In case of severe errors the device is fenced off,
132  * all further requests will return EIO. FMA is then called to fault the device.
133  *
134  * The hardware has a limit for outstanding asynchronous event requests. Before
135  * this limit is known the driver assumes it is at least 1 and posts a single
136  * asynchronous request. Later when the limit is known more asynchronous event
137  * requests are posted to allow quicker reception of error information. When an
138  * asynchronous event is posted by the hardware the driver will parse the error
139  * status fields and log information or fault the device, depending on the
140  * severity of the asynchronous event. The asynchronous event request is then
141  * reused and posted to the admin queue again.
142  *
143  * On command completion the command status is checked for errors. In case of
144  * errors indicating a driver bug the driver panics. Almost all other error
145  * status values just cause EIO to be returned.
146  *
147  * Command timeouts are currently detected for all admin commands except
148  * asynchronous event requests. If a command times out and the hardware appears
149  * to be healthy the driver attempts to abort the command. The original command
150  * timeout is also applied to the abort command. If the abort times out too the
151  * driver assumes the device to be dead, fences it off, and calls FMA to retire
152  * it. In all other cases the aborted command should return immediately with a
153  * status indicating it was aborted, and the driver will wait indefinitely for
154  * that to happen. No timeout handling of normal I/O commands is presently done.
155  *
156  * Any command that times out due to the controller dropping dead will be put on
157  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158  * memory being reused by the system and later be written to by a "dead" NVMe
159  * controller.
160  *
161  *
162  * Locking:
163  *
164  * Each queue pair has its own nq_mutex, which must be held when accessing the
165  * associated queue registers or the shared state of the queue pair. Callers of
166  * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168  * themselves.
169  *
170  * Each command also has its own nc_mutex, which is associated with the
171  * condition variable nc_cv. It is only used on admin commands which are run
172  * synchronously. In that case it must be held across calls to
173  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174  * nvme_admin_cmd(). It must also be held whenever the completion state of the
175  * command is changed or while a admin command timeout is handled.
176  *
177  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178  * More than one nc_mutex may only be held when aborting commands. In this case,
179  * the nc_mutex of the command to be aborted must be held across the call to
180  * nvme_abort_cmd() to prevent the command from completing while the abort is in
181  * progress.
182  *
183  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184  * and exclusive-open flag nm_oexcl.
185  *
186  *
187  * Quiesce / Fast Reboot:
188  *
189  * The driver currently does not support fast reboot. A quiesce(9E) entry point
190  * is still provided which is used to send a shutdown notification to the
191  * device.
192  *
193  *
194  * Driver Configuration:
195  *
196  * The following driver properties can be changed to control some aspects of the
197  * drivers operation:
198  * - strict-version: can be set to 0 to allow devices conforming to newer
199  *   major versions to be used
200  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201  *   specific command status as a fatal error leading device faulting
202  * - admin-queue-len: the maximum length of the admin queue (16-4096)
203  * - io-queue-len: the maximum length of the I/O queues (16-65536)
204  * - async-event-limit: the maximum number of asynchronous event requests to be
205  *   posted by the driver
206  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207  *   cache
208  * - min-phys-block-size: the minimum physical block size to report to blkdev,
209  *   which is among other things the basis for ZFS vdev ashift
210  *
211  *
212  * TODO:
213  * - figure out sane default for I/O queue depth reported to blkdev
214  * - FMA handling of media errors
215  * - support for devices supporting very large I/O requests using chained PRPs
216  * - support for configuring hardware parameters like interrupt coalescing
217  * - support for media formatting and hard partitioning into namespaces
218  * - support for big-endian systems
219  * - support for fast reboot
220  * - support for firmware updates
221  * - support for NVMe Subsystem Reset (1.1)
222  * - support for Scatter/Gather lists (1.1)
223  * - support for Reservations (1.1)
224  * - support for power management
225  */
226 
227 #include <sys/byteorder.h>
228 #ifdef _BIG_ENDIAN
229 #error nvme driver needs porting for big-endian platforms
230 #endif
231 
232 #include <sys/modctl.h>
233 #include <sys/conf.h>
234 #include <sys/devops.h>
235 #include <sys/ddi.h>
236 #include <sys/sunddi.h>
237 #include <sys/sunndi.h>
238 #include <sys/bitmap.h>
239 #include <sys/sysmacros.h>
240 #include <sys/param.h>
241 #include <sys/varargs.h>
242 #include <sys/cpuvar.h>
243 #include <sys/disp.h>
244 #include <sys/blkdev.h>
245 #include <sys/atomic.h>
246 #include <sys/archsystm.h>
247 #include <sys/sata/sata_hba.h>
248 #include <sys/stat.h>
249 #include <sys/policy.h>
250 #include <sys/list.h>
251 
252 #include <sys/nvme.h>
253 
254 #ifdef __x86
255 #include <sys/x86_archext.h>
256 #endif
257 
258 #include "nvme_reg.h"
259 #include "nvme_var.h"
260 
261 /*
262  * Assertions to make sure that we've properly captured various aspects of the
263  * packed structures and haven't broken them during updates.
264  */
265 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
266 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
267 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
268 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
269 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
270 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
271 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
272 
273 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
274 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
275 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
276 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
277 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
278 
279 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
280 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
281 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
282 
283 
284 /* NVMe spec version supported */
285 static const int nvme_version_major = 1;
286 
287 /* tunable for admin command timeout in seconds, default is 1s */
288 int nvme_admin_cmd_timeout = 1;
289 
290 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
291 int nvme_format_cmd_timeout = 600;
292 
293 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
294 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
295 static int nvme_quiesce(dev_info_t *);
296 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
297 static int nvme_setup_interrupts(nvme_t *, int, int);
298 static void nvme_release_interrupts(nvme_t *);
299 static uint_t nvme_intr(caddr_t, caddr_t);
300 
301 static void nvme_shutdown(nvme_t *, int, boolean_t);
302 static boolean_t nvme_reset(nvme_t *, boolean_t);
303 static int nvme_init(nvme_t *);
304 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
305 static void nvme_free_cmd(nvme_cmd_t *);
306 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
307     bd_xfer_t *);
308 static void nvme_admin_cmd(nvme_cmd_t *, int);
309 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
310 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
311 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
312 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
313 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
314 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
315 static void nvme_wakeup_cmd(void *);
316 static void nvme_async_event_task(void *);
317 
318 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
319 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
320 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
321 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
322 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
323 static inline int nvme_check_cmd_status(nvme_cmd_t *);
324 
325 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
326 static void nvme_async_event(nvme_t *);
327 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
328     uint8_t, boolean_t, uint8_t);
329 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
330     ...);
331 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
332 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
333     uint32_t *);
334 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
335     void **, size_t *);
336 static int nvme_write_cache_set(nvme_t *, boolean_t);
337 static int nvme_set_nqueues(nvme_t *, uint16_t *);
338 
339 static void nvme_free_dma(nvme_dma_t *);
340 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
341     nvme_dma_t **);
342 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
343     nvme_dma_t **);
344 static void nvme_free_qpair(nvme_qpair_t *);
345 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
346 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
347 
348 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
349 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
350 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
351 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
352 
353 static boolean_t nvme_check_regs_hdl(nvme_t *);
354 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
355 
356 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
357 
358 static void nvme_bd_xfer_done(void *);
359 static void nvme_bd_driveinfo(void *, bd_drive_t *);
360 static int nvme_bd_mediainfo(void *, bd_media_t *);
361 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
362 static int nvme_bd_read(void *, bd_xfer_t *);
363 static int nvme_bd_write(void *, bd_xfer_t *);
364 static int nvme_bd_sync(void *, bd_xfer_t *);
365 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
366 
367 static int nvme_prp_dma_constructor(void *, void *, int);
368 static void nvme_prp_dma_destructor(void *, void *);
369 
370 static void nvme_prepare_devid(nvme_t *, uint32_t);
371 
372 static int nvme_open(dev_t *, int, int, cred_t *);
373 static int nvme_close(dev_t, int, int, cred_t *);
374 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
375 
376 #define	NVME_MINOR_INST_SHIFT	9
377 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
378 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
379 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
380 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
381 
382 static void *nvme_state;
383 static kmem_cache_t *nvme_cmd_cache;
384 
385 /*
386  * DMA attributes for queue DMA memory
387  *
388  * Queue DMA memory must be page aligned. The maximum length of a queue is
389  * 65536 entries, and an entry can be 64 bytes long.
390  */
391 static ddi_dma_attr_t nvme_queue_dma_attr = {
392 	.dma_attr_version	= DMA_ATTR_V0,
393 	.dma_attr_addr_lo	= 0,
394 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
395 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
396 	.dma_attr_align		= 0x1000,
397 	.dma_attr_burstsizes	= 0x7ff,
398 	.dma_attr_minxfer	= 0x1000,
399 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
400 	.dma_attr_seg		= 0xffffffffffffffffULL,
401 	.dma_attr_sgllen	= 1,
402 	.dma_attr_granular	= 1,
403 	.dma_attr_flags		= 0,
404 };
405 
406 /*
407  * DMA attributes for transfers using Physical Region Page (PRP) entries
408  *
409  * A PRP entry describes one page of DMA memory using the page size specified
410  * in the controller configuration's memory page size register (CC.MPS). It uses
411  * a 64bit base address aligned to this page size. There is no limitation on
412  * chaining PRPs together for arbitrarily large DMA transfers.
413  */
414 static ddi_dma_attr_t nvme_prp_dma_attr = {
415 	.dma_attr_version	= DMA_ATTR_V0,
416 	.dma_attr_addr_lo	= 0,
417 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
418 	.dma_attr_count_max	= 0xfff,
419 	.dma_attr_align		= 0x1000,
420 	.dma_attr_burstsizes	= 0x7ff,
421 	.dma_attr_minxfer	= 0x1000,
422 	.dma_attr_maxxfer	= 0x1000,
423 	.dma_attr_seg		= 0xfff,
424 	.dma_attr_sgllen	= -1,
425 	.dma_attr_granular	= 1,
426 	.dma_attr_flags		= 0,
427 };
428 
429 /*
430  * DMA attributes for transfers using scatter/gather lists
431  *
432  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
433  * 32bit length field. SGL Segment and SGL Last Segment entries require the
434  * length to be a multiple of 16 bytes.
435  */
436 static ddi_dma_attr_t nvme_sgl_dma_attr = {
437 	.dma_attr_version	= DMA_ATTR_V0,
438 	.dma_attr_addr_lo	= 0,
439 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
440 	.dma_attr_count_max	= 0xffffffffUL,
441 	.dma_attr_align		= 1,
442 	.dma_attr_burstsizes	= 0x7ff,
443 	.dma_attr_minxfer	= 0x10,
444 	.dma_attr_maxxfer	= 0xfffffffffULL,
445 	.dma_attr_seg		= 0xffffffffffffffffULL,
446 	.dma_attr_sgllen	= -1,
447 	.dma_attr_granular	= 0x10,
448 	.dma_attr_flags		= 0
449 };
450 
451 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
452 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
453 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
454 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
455 };
456 
457 static struct cb_ops nvme_cb_ops = {
458 	.cb_open	= nvme_open,
459 	.cb_close	= nvme_close,
460 	.cb_strategy	= nodev,
461 	.cb_print	= nodev,
462 	.cb_dump	= nodev,
463 	.cb_read	= nodev,
464 	.cb_write	= nodev,
465 	.cb_ioctl	= nvme_ioctl,
466 	.cb_devmap	= nodev,
467 	.cb_mmap	= nodev,
468 	.cb_segmap	= nodev,
469 	.cb_chpoll	= nochpoll,
470 	.cb_prop_op	= ddi_prop_op,
471 	.cb_str		= 0,
472 	.cb_flag	= D_NEW | D_MP,
473 	.cb_rev		= CB_REV,
474 	.cb_aread	= nodev,
475 	.cb_awrite	= nodev
476 };
477 
478 static struct dev_ops nvme_dev_ops = {
479 	.devo_rev	= DEVO_REV,
480 	.devo_refcnt	= 0,
481 	.devo_getinfo	= ddi_no_info,
482 	.devo_identify	= nulldev,
483 	.devo_probe	= nulldev,
484 	.devo_attach	= nvme_attach,
485 	.devo_detach	= nvme_detach,
486 	.devo_reset	= nodev,
487 	.devo_cb_ops	= &nvme_cb_ops,
488 	.devo_bus_ops	= NULL,
489 	.devo_power	= NULL,
490 	.devo_quiesce	= nvme_quiesce,
491 };
492 
493 static struct modldrv nvme_modldrv = {
494 	.drv_modops	= &mod_driverops,
495 	.drv_linkinfo	= "NVMe v1.1b",
496 	.drv_dev_ops	= &nvme_dev_ops
497 };
498 
499 static struct modlinkage nvme_modlinkage = {
500 	.ml_rev		= MODREV_1,
501 	.ml_linkage	= { &nvme_modldrv, NULL }
502 };
503 
504 static bd_ops_t nvme_bd_ops = {
505 	.o_version	= BD_OPS_VERSION_0,
506 	.o_drive_info	= nvme_bd_driveinfo,
507 	.o_media_info	= nvme_bd_mediainfo,
508 	.o_devid_init	= nvme_bd_devid,
509 	.o_sync_cache	= nvme_bd_sync,
510 	.o_read		= nvme_bd_read,
511 	.o_write	= nvme_bd_write,
512 };
513 
514 /*
515  * This list will hold commands that have timed out and couldn't be aborted.
516  * As we don't know what the hardware may still do with the DMA memory we can't
517  * free them, so we'll keep them forever on this list where we can easily look
518  * at them with mdb.
519  */
520 static struct list nvme_lost_cmds;
521 static kmutex_t nvme_lc_mutex;
522 
523 int
524 _init(void)
525 {
526 	int error;
527 
528 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
529 	if (error != DDI_SUCCESS)
530 		return (error);
531 
532 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
533 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
534 
535 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
536 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
537 	    offsetof(nvme_cmd_t, nc_list));
538 
539 	bd_mod_init(&nvme_dev_ops);
540 
541 	error = mod_install(&nvme_modlinkage);
542 	if (error != DDI_SUCCESS) {
543 		ddi_soft_state_fini(&nvme_state);
544 		mutex_destroy(&nvme_lc_mutex);
545 		list_destroy(&nvme_lost_cmds);
546 		bd_mod_fini(&nvme_dev_ops);
547 	}
548 
549 	return (error);
550 }
551 
552 int
553 _fini(void)
554 {
555 	int error;
556 
557 	if (!list_is_empty(&nvme_lost_cmds))
558 		return (DDI_FAILURE);
559 
560 	error = mod_remove(&nvme_modlinkage);
561 	if (error == DDI_SUCCESS) {
562 		ddi_soft_state_fini(&nvme_state);
563 		kmem_cache_destroy(nvme_cmd_cache);
564 		mutex_destroy(&nvme_lc_mutex);
565 		list_destroy(&nvme_lost_cmds);
566 		bd_mod_fini(&nvme_dev_ops);
567 	}
568 
569 	return (error);
570 }
571 
572 int
573 _info(struct modinfo *modinfop)
574 {
575 	return (mod_info(&nvme_modlinkage, modinfop));
576 }
577 
578 static inline void
579 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
580 {
581 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
582 
583 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
584 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
585 }
586 
587 static inline void
588 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
589 {
590 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
591 
592 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
593 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
594 }
595 
596 static inline uint64_t
597 nvme_get64(nvme_t *nvme, uintptr_t reg)
598 {
599 	uint64_t val;
600 
601 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
602 
603 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
604 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
605 
606 	return (val);
607 }
608 
609 static inline uint32_t
610 nvme_get32(nvme_t *nvme, uintptr_t reg)
611 {
612 	uint32_t val;
613 
614 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
615 
616 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
617 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
618 
619 	return (val);
620 }
621 
622 static boolean_t
623 nvme_check_regs_hdl(nvme_t *nvme)
624 {
625 	ddi_fm_error_t error;
626 
627 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
628 
629 	if (error.fme_status != DDI_FM_OK)
630 		return (B_TRUE);
631 
632 	return (B_FALSE);
633 }
634 
635 static boolean_t
636 nvme_check_dma_hdl(nvme_dma_t *dma)
637 {
638 	ddi_fm_error_t error;
639 
640 	if (dma == NULL)
641 		return (B_FALSE);
642 
643 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
644 
645 	if (error.fme_status != DDI_FM_OK)
646 		return (B_TRUE);
647 
648 	return (B_FALSE);
649 }
650 
651 static void
652 nvme_free_dma_common(nvme_dma_t *dma)
653 {
654 	if (dma->nd_dmah != NULL)
655 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
656 	if (dma->nd_acch != NULL)
657 		ddi_dma_mem_free(&dma->nd_acch);
658 	if (dma->nd_dmah != NULL)
659 		ddi_dma_free_handle(&dma->nd_dmah);
660 }
661 
662 static void
663 nvme_free_dma(nvme_dma_t *dma)
664 {
665 	nvme_free_dma_common(dma);
666 	kmem_free(dma, sizeof (*dma));
667 }
668 
669 /* ARGSUSED */
670 static void
671 nvme_prp_dma_destructor(void *buf, void *private)
672 {
673 	nvme_dma_t *dma = (nvme_dma_t *)buf;
674 
675 	nvme_free_dma_common(dma);
676 }
677 
678 static int
679 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
680     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
681 {
682 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
683 	    &dma->nd_dmah) != DDI_SUCCESS) {
684 		/*
685 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
686 		 * the only other possible error is DDI_DMA_BADATTR which
687 		 * indicates a driver bug which should cause a panic.
688 		 */
689 		dev_err(nvme->n_dip, CE_PANIC,
690 		    "!failed to get DMA handle, check DMA attributes");
691 		return (DDI_FAILURE);
692 	}
693 
694 	/*
695 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
696 	 * or the flags are conflicting, which isn't the case here.
697 	 */
698 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
699 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
700 	    &dma->nd_len, &dma->nd_acch);
701 
702 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
703 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
704 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
705 		dev_err(nvme->n_dip, CE_WARN,
706 		    "!failed to bind DMA memory");
707 		atomic_inc_32(&nvme->n_dma_bind_err);
708 		nvme_free_dma_common(dma);
709 		return (DDI_FAILURE);
710 	}
711 
712 	return (DDI_SUCCESS);
713 }
714 
715 static int
716 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
717     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
718 {
719 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
720 
721 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
722 	    DDI_SUCCESS) {
723 		*ret = NULL;
724 		kmem_free(dma, sizeof (nvme_dma_t));
725 		return (DDI_FAILURE);
726 	}
727 
728 	bzero(dma->nd_memp, dma->nd_len);
729 
730 	*ret = dma;
731 	return (DDI_SUCCESS);
732 }
733 
734 /* ARGSUSED */
735 static int
736 nvme_prp_dma_constructor(void *buf, void *private, int flags)
737 {
738 	nvme_dma_t *dma = (nvme_dma_t *)buf;
739 	nvme_t *nvme = (nvme_t *)private;
740 
741 	dma->nd_dmah = NULL;
742 	dma->nd_acch = NULL;
743 
744 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
745 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
746 		return (-1);
747 	}
748 
749 	ASSERT(dma->nd_ncookie == 1);
750 
751 	dma->nd_cached = B_TRUE;
752 
753 	return (0);
754 }
755 
756 static int
757 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
758     uint_t flags, nvme_dma_t **dma)
759 {
760 	uint32_t len = nentry * qe_len;
761 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
762 
763 	len = roundup(len, nvme->n_pagesize);
764 
765 	q_dma_attr.dma_attr_minxfer = len;
766 
767 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
768 	    != DDI_SUCCESS) {
769 		dev_err(nvme->n_dip, CE_WARN,
770 		    "!failed to get DMA memory for queue");
771 		goto fail;
772 	}
773 
774 	if ((*dma)->nd_ncookie != 1) {
775 		dev_err(nvme->n_dip, CE_WARN,
776 		    "!got too many cookies for queue DMA");
777 		goto fail;
778 	}
779 
780 	return (DDI_SUCCESS);
781 
782 fail:
783 	if (*dma) {
784 		nvme_free_dma(*dma);
785 		*dma = NULL;
786 	}
787 
788 	return (DDI_FAILURE);
789 }
790 
791 static void
792 nvme_free_qpair(nvme_qpair_t *qp)
793 {
794 	int i;
795 
796 	mutex_destroy(&qp->nq_mutex);
797 	sema_destroy(&qp->nq_sema);
798 
799 	if (qp->nq_sqdma != NULL)
800 		nvme_free_dma(qp->nq_sqdma);
801 	if (qp->nq_cqdma != NULL)
802 		nvme_free_dma(qp->nq_cqdma);
803 
804 	if (qp->nq_active_cmds > 0)
805 		for (i = 0; i != qp->nq_nentry; i++)
806 			if (qp->nq_cmd[i] != NULL)
807 				nvme_free_cmd(qp->nq_cmd[i]);
808 
809 	if (qp->nq_cmd != NULL)
810 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
811 
812 	kmem_free(qp, sizeof (nvme_qpair_t));
813 }
814 
815 static int
816 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
817     int idx)
818 {
819 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
820 
821 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
822 	    DDI_INTR_PRI(nvme->n_intr_pri));
823 	sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
824 
825 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
826 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
827 		goto fail;
828 
829 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
830 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
831 		goto fail;
832 
833 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
834 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
835 	qp->nq_nentry = nentry;
836 
837 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
838 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
839 
840 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
841 	qp->nq_next_cmd = 0;
842 
843 	*nqp = qp;
844 	return (DDI_SUCCESS);
845 
846 fail:
847 	nvme_free_qpair(qp);
848 	*nqp = NULL;
849 
850 	return (DDI_FAILURE);
851 }
852 
853 static nvme_cmd_t *
854 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
855 {
856 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
857 
858 	if (cmd == NULL)
859 		return (cmd);
860 
861 	bzero(cmd, sizeof (nvme_cmd_t));
862 
863 	cmd->nc_nvme = nvme;
864 
865 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
866 	    DDI_INTR_PRI(nvme->n_intr_pri));
867 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
868 
869 	return (cmd);
870 }
871 
872 static void
873 nvme_free_cmd(nvme_cmd_t *cmd)
874 {
875 	/* Don't free commands on the lost commands list. */
876 	if (list_link_active(&cmd->nc_list))
877 		return;
878 
879 	if (cmd->nc_dma) {
880 		if (cmd->nc_dma->nd_cached)
881 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
882 			    cmd->nc_dma);
883 		else
884 			nvme_free_dma(cmd->nc_dma);
885 		cmd->nc_dma = NULL;
886 	}
887 
888 	cv_destroy(&cmd->nc_cv);
889 	mutex_destroy(&cmd->nc_mutex);
890 
891 	kmem_cache_free(nvme_cmd_cache, cmd);
892 }
893 
894 static void
895 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
896 {
897 	sema_p(&qp->nq_sema);
898 	nvme_submit_cmd_common(qp, cmd);
899 }
900 
901 static int
902 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
903 {
904 	if (sema_tryp(&qp->nq_sema) == 0)
905 		return (EAGAIN);
906 
907 	nvme_submit_cmd_common(qp, cmd);
908 	return (0);
909 }
910 
911 static void
912 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
913 {
914 	nvme_reg_sqtdbl_t tail = { 0 };
915 
916 	mutex_enter(&qp->nq_mutex);
917 	cmd->nc_completed = B_FALSE;
918 
919 	/*
920 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
921 	 * slot. If the slot is already occupied advance to the next slot and
922 	 * try again. This can happen for long running commands like async event
923 	 * requests.
924 	 */
925 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
926 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
927 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
928 
929 	qp->nq_active_cmds++;
930 
931 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
932 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
933 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
934 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
935 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
936 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
937 
938 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
939 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
940 
941 	mutex_exit(&qp->nq_mutex);
942 }
943 
944 static nvme_cmd_t *
945 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
946 {
947 	nvme_cmd_t *cmd;
948 
949 	ASSERT(mutex_owned(&qp->nq_mutex));
950 	ASSERT3S(cid, <, qp->nq_nentry);
951 
952 	cmd = qp->nq_cmd[cid];
953 	qp->nq_cmd[cid] = NULL;
954 	ASSERT3U(qp->nq_active_cmds, >, 0);
955 	qp->nq_active_cmds--;
956 	sema_v(&qp->nq_sema);
957 
958 	ASSERT3P(cmd, !=, NULL);
959 	ASSERT3P(cmd->nc_nvme, ==, nvme);
960 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
961 
962 	return (cmd);
963 }
964 
965 static nvme_cmd_t *
966 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
967 {
968 	nvme_reg_cqhdbl_t head = { 0 };
969 
970 	nvme_cqe_t *cqe;
971 	nvme_cmd_t *cmd;
972 
973 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
974 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
975 
976 	mutex_enter(&qp->nq_mutex);
977 	cqe = &qp->nq_cq[qp->nq_cqhead];
978 
979 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
980 	if (cqe->cqe_sf.sf_p == qp->nq_phase) {
981 		mutex_exit(&qp->nq_mutex);
982 		return (NULL);
983 	}
984 
985 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
986 
987 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
988 
989 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
990 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
991 
992 	qp->nq_sqhead = cqe->cqe_sqhd;
993 
994 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
995 
996 	/* Toggle phase on wrap-around. */
997 	if (qp->nq_cqhead == 0)
998 		qp->nq_phase = qp->nq_phase ? 0 : 1;
999 
1000 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
1001 	mutex_exit(&qp->nq_mutex);
1002 
1003 	return (cmd);
1004 }
1005 
1006 static int
1007 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1008 {
1009 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 
1011 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 
1017 	if (cmd->nc_xfer != NULL)
1018 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1019 
1020 	if (cmd->nc_nvme->n_strict_version) {
1021 		cmd->nc_nvme->n_dead = B_TRUE;
1022 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1023 	}
1024 
1025 	return (EIO);
1026 }
1027 
1028 static int
1029 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1030 {
1031 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1032 
1033 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1034 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1035 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1036 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1037 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1038 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1039 		cmd->nc_nvme->n_dead = B_TRUE;
1040 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1041 	}
1042 
1043 	return (EIO);
1044 }
1045 
1046 static int
1047 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1048 {
1049 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1050 
1051 	switch (cqe->cqe_sf.sf_sc) {
1052 	case NVME_CQE_SC_INT_NVM_WRITE:
1053 		/* write fail */
1054 		/* TODO: post ereport */
1055 		if (cmd->nc_xfer != NULL)
1056 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1057 		return (EIO);
1058 
1059 	case NVME_CQE_SC_INT_NVM_READ:
1060 		/* read fail */
1061 		/* TODO: post ereport */
1062 		if (cmd->nc_xfer != NULL)
1063 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1064 		return (EIO);
1065 
1066 	default:
1067 		return (nvme_check_unknown_cmd_status(cmd));
1068 	}
1069 }
1070 
1071 static int
1072 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1073 {
1074 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1075 
1076 	switch (cqe->cqe_sf.sf_sc) {
1077 	case NVME_CQE_SC_GEN_SUCCESS:
1078 		return (0);
1079 
1080 	/*
1081 	 * Errors indicating a bug in the driver should cause a panic.
1082 	 */
1083 	case NVME_CQE_SC_GEN_INV_OPC:
1084 		/* Invalid Command Opcode */
1085 		if (!cmd->nc_dontpanic)
1086 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087 			    "programming error: invalid opcode in cmd %p",
1088 			    (void *)cmd);
1089 		return (EINVAL);
1090 
1091 	case NVME_CQE_SC_GEN_INV_FLD:
1092 		/* Invalid Field in Command */
1093 		if (!cmd->nc_dontpanic)
1094 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1095 			    "programming error: invalid field in cmd %p",
1096 			    (void *)cmd);
1097 		return (EIO);
1098 
1099 	case NVME_CQE_SC_GEN_ID_CNFL:
1100 		/* Command ID Conflict */
1101 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1102 		    "cmd ID conflict in cmd %p", (void *)cmd);
1103 		return (0);
1104 
1105 	case NVME_CQE_SC_GEN_INV_NS:
1106 		/* Invalid Namespace or Format */
1107 		if (!cmd->nc_dontpanic)
1108 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1109 			    "programming error: invalid NS/format in cmd %p",
1110 			    (void *)cmd);
1111 		return (EINVAL);
1112 
1113 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1114 		/* LBA Out Of Range */
1115 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1116 		    "LBA out of range in cmd %p", (void *)cmd);
1117 		return (0);
1118 
1119 	/*
1120 	 * Non-fatal errors, handle gracefully.
1121 	 */
1122 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1123 		/* Data Transfer Error (DMA) */
1124 		/* TODO: post ereport */
1125 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1126 		if (cmd->nc_xfer != NULL)
1127 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1128 		return (EIO);
1129 
1130 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1131 		/*
1132 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1133 		 * detailed error information is returned as async event,
1134 		 * so we pretty much ignore the error here and handle it
1135 		 * in the async event handler.
1136 		 */
1137 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1138 		if (cmd->nc_xfer != NULL)
1139 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1140 		return (EIO);
1141 
1142 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1143 		/*
1144 		 * Command Abort Requested. This normally happens only when a
1145 		 * command times out.
1146 		 */
1147 		/* TODO: post ereport or change blkdev to handle this? */
1148 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1149 		return (ECANCELED);
1150 
1151 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1152 		/* Command Aborted due to Power Loss Notification */
1153 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1154 		cmd->nc_nvme->n_dead = B_TRUE;
1155 		return (EIO);
1156 
1157 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1158 		/* Command Aborted due to SQ Deletion */
1159 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1160 		return (EIO);
1161 
1162 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1163 		/* Capacity Exceeded */
1164 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1165 		if (cmd->nc_xfer != NULL)
1166 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1167 		return (EIO);
1168 
1169 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1170 		/* Namespace Not Ready */
1171 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1172 		if (cmd->nc_xfer != NULL)
1173 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1174 		return (EIO);
1175 
1176 	default:
1177 		return (nvme_check_unknown_cmd_status(cmd));
1178 	}
1179 }
1180 
1181 static int
1182 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1183 {
1184 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1185 
1186 	switch (cqe->cqe_sf.sf_sc) {
1187 	case NVME_CQE_SC_SPC_INV_CQ:
1188 		/* Completion Queue Invalid */
1189 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1190 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1191 		return (EINVAL);
1192 
1193 	case NVME_CQE_SC_SPC_INV_QID:
1194 		/* Invalid Queue Identifier */
1195 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1196 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1197 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1198 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1199 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1200 		return (EINVAL);
1201 
1202 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1203 		/* Max Queue Size Exceeded */
1204 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1205 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1206 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1207 		return (EINVAL);
1208 
1209 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1210 		/* Abort Command Limit Exceeded */
1211 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1212 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1213 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1214 		return (0);
1215 
1216 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1217 		/* Async Event Request Limit Exceeded */
1218 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1219 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1220 		    "async event request limit exceeded in cmd %p",
1221 		    (void *)cmd);
1222 		return (0);
1223 
1224 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1225 		/* Invalid Interrupt Vector */
1226 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1227 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1228 		return (EINVAL);
1229 
1230 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1231 		/* Invalid Log Page */
1232 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1233 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1234 		return (EINVAL);
1235 
1236 	case NVME_CQE_SC_SPC_INV_FORMAT:
1237 		/* Invalid Format */
1238 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1239 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1240 		if (cmd->nc_xfer != NULL)
1241 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1242 		return (EINVAL);
1243 
1244 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1245 		/* Invalid Queue Deletion */
1246 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1247 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1248 		return (EINVAL);
1249 
1250 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1251 		/* Conflicting Attributes */
1252 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1253 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1254 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1255 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1256 		if (cmd->nc_xfer != NULL)
1257 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1258 		return (EINVAL);
1259 
1260 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1261 		/* Invalid Protection Information */
1262 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1263 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1264 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1265 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1266 		if (cmd->nc_xfer != NULL)
1267 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1268 		return (EINVAL);
1269 
1270 	case NVME_CQE_SC_SPC_NVM_READONLY:
1271 		/* Write to Read Only Range */
1272 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1273 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1274 		if (cmd->nc_xfer != NULL)
1275 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1276 		return (EROFS);
1277 
1278 	default:
1279 		return (nvme_check_unknown_cmd_status(cmd));
1280 	}
1281 }
1282 
1283 static inline int
1284 nvme_check_cmd_status(nvme_cmd_t *cmd)
1285 {
1286 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1287 
1288 	/*
1289 	 * Take a shortcut if the controller is dead, or if
1290 	 * command status indicates no error.
1291 	 */
1292 	if (cmd->nc_nvme->n_dead)
1293 		return (EIO);
1294 
1295 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1296 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1297 		return (0);
1298 
1299 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1300 		return (nvme_check_generic_cmd_status(cmd));
1301 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1302 		return (nvme_check_specific_cmd_status(cmd));
1303 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1304 		return (nvme_check_integrity_cmd_status(cmd));
1305 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1306 		return (nvme_check_vendor_cmd_status(cmd));
1307 
1308 	return (nvme_check_unknown_cmd_status(cmd));
1309 }
1310 
1311 static int
1312 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1313 {
1314 	nvme_t *nvme = abort_cmd->nc_nvme;
1315 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1316 	nvme_abort_cmd_t ac = { 0 };
1317 	int ret = 0;
1318 
1319 	sema_p(&nvme->n_abort_sema);
1320 
1321 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1322 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1323 
1324 	cmd->nc_sqid = 0;
1325 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1326 	cmd->nc_callback = nvme_wakeup_cmd;
1327 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1328 
1329 	/*
1330 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1331 	 * the aborted command has completed (aborted or otherwise), but since
1332 	 * we still hold the aborted command's mutex its callback hasn't been
1333 	 * processed yet.
1334 	 */
1335 	nvme_admin_cmd(cmd, sec);
1336 	sema_v(&nvme->n_abort_sema);
1337 
1338 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1339 		dev_err(nvme->n_dip, CE_WARN,
1340 		    "!ABORT failed with sct = %x, sc = %x",
1341 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1342 		atomic_inc_32(&nvme->n_abort_failed);
1343 	} else {
1344 		dev_err(nvme->n_dip, CE_WARN,
1345 		    "!ABORT of command %d/%d %ssuccessful",
1346 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1347 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1348 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1349 			atomic_inc_32(&nvme->n_cmd_aborted);
1350 	}
1351 
1352 	nvme_free_cmd(cmd);
1353 	return (ret);
1354 }
1355 
1356 /*
1357  * nvme_wait_cmd -- wait for command completion or timeout
1358  *
1359  * In case of a serious error or a timeout of the abort command the hardware
1360  * will be declared dead and FMA will be notified.
1361  */
1362 static void
1363 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1364 {
1365 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1366 	nvme_t *nvme = cmd->nc_nvme;
1367 	nvme_reg_csts_t csts;
1368 	nvme_qpair_t *qp;
1369 
1370 	ASSERT(mutex_owned(&cmd->nc_mutex));
1371 
1372 	while (!cmd->nc_completed) {
1373 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1374 			break;
1375 	}
1376 
1377 	if (cmd->nc_completed)
1378 		return;
1379 
1380 	/*
1381 	 * The command timed out.
1382 	 *
1383 	 * Check controller for fatal status, any errors associated with the
1384 	 * register or DMA handle, or for a double timeout (abort command timed
1385 	 * out). If necessary log a warning and call FMA.
1386 	 */
1387 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1388 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1389 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1390 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1391 	atomic_inc_32(&nvme->n_cmd_timeout);
1392 
1393 	if (csts.b.csts_cfs ||
1394 	    nvme_check_regs_hdl(nvme) ||
1395 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1396 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1397 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1398 		nvme->n_dead = B_TRUE;
1399 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1400 		/*
1401 		 * If the abort succeeded the command should complete
1402 		 * immediately with an appropriate status.
1403 		 */
1404 		while (!cmd->nc_completed)
1405 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1406 
1407 		return;
1408 	}
1409 
1410 	qp = nvme->n_ioq[cmd->nc_sqid];
1411 
1412 	mutex_enter(&qp->nq_mutex);
1413 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1414 	mutex_exit(&qp->nq_mutex);
1415 
1416 	/*
1417 	 * As we don't know what the presumed dead hardware might still do with
1418 	 * the DMA memory, we'll put the command on the lost commands list if it
1419 	 * has any DMA memory.
1420 	 */
1421 	if (cmd->nc_dma != NULL) {
1422 		mutex_enter(&nvme_lc_mutex);
1423 		list_insert_head(&nvme_lost_cmds, cmd);
1424 		mutex_exit(&nvme_lc_mutex);
1425 	}
1426 }
1427 
1428 static void
1429 nvme_wakeup_cmd(void *arg)
1430 {
1431 	nvme_cmd_t *cmd = arg;
1432 
1433 	mutex_enter(&cmd->nc_mutex);
1434 	cmd->nc_completed = B_TRUE;
1435 	cv_signal(&cmd->nc_cv);
1436 	mutex_exit(&cmd->nc_mutex);
1437 }
1438 
1439 static void
1440 nvme_async_event_task(void *arg)
1441 {
1442 	nvme_cmd_t *cmd = arg;
1443 	nvme_t *nvme = cmd->nc_nvme;
1444 	nvme_error_log_entry_t *error_log = NULL;
1445 	nvme_health_log_t *health_log = NULL;
1446 	size_t logsize = 0;
1447 	nvme_async_event_t event;
1448 
1449 	/*
1450 	 * Check for errors associated with the async request itself. The only
1451 	 * command-specific error is "async event limit exceeded", which
1452 	 * indicates a programming error in the driver and causes a panic in
1453 	 * nvme_check_cmd_status().
1454 	 *
1455 	 * Other possible errors are various scenarios where the async request
1456 	 * was aborted, or internal errors in the device. Internal errors are
1457 	 * reported to FMA, the command aborts need no special handling here.
1458 	 *
1459 	 * And finally, at least qemu nvme does not support async events,
1460 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1461 	 * will avoid posting async events.
1462 	 */
1463 
1464 	if (nvme_check_cmd_status(cmd) != 0) {
1465 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1466 		    "!async event request returned failure, sct = %x, "
1467 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1468 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1469 		    cmd->nc_cqe.cqe_sf.sf_m);
1470 
1471 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1472 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1473 			cmd->nc_nvme->n_dead = B_TRUE;
1474 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1475 			    DDI_SERVICE_LOST);
1476 		}
1477 
1478 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1479 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1480 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1481 			nvme->n_async_event_supported = B_FALSE;
1482 		}
1483 
1484 		nvme_free_cmd(cmd);
1485 		return;
1486 	}
1487 
1488 
1489 	event.r = cmd->nc_cqe.cqe_dw0;
1490 
1491 	/* Clear CQE and re-submit the async request. */
1492 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1493 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1494 
1495 	switch (event.b.ae_type) {
1496 	case NVME_ASYNC_TYPE_ERROR:
1497 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1498 			(void) nvme_get_logpage(nvme, B_FALSE,
1499 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1500 		} else {
1501 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1502 			    "async event reply: %d", event.b.ae_logpage);
1503 			atomic_inc_32(&nvme->n_wrong_logpage);
1504 		}
1505 
1506 		switch (event.b.ae_info) {
1507 		case NVME_ASYNC_ERROR_INV_SQ:
1508 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1509 			    "invalid submission queue");
1510 			return;
1511 
1512 		case NVME_ASYNC_ERROR_INV_DBL:
1513 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1514 			    "invalid doorbell write value");
1515 			return;
1516 
1517 		case NVME_ASYNC_ERROR_DIAGFAIL:
1518 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1519 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1520 			nvme->n_dead = B_TRUE;
1521 			atomic_inc_32(&nvme->n_diagfail_event);
1522 			break;
1523 
1524 		case NVME_ASYNC_ERROR_PERSISTENT:
1525 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1526 			    "device error");
1527 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1528 			nvme->n_dead = B_TRUE;
1529 			atomic_inc_32(&nvme->n_persistent_event);
1530 			break;
1531 
1532 		case NVME_ASYNC_ERROR_TRANSIENT:
1533 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1534 			    "device error");
1535 			/* TODO: send ereport */
1536 			atomic_inc_32(&nvme->n_transient_event);
1537 			break;
1538 
1539 		case NVME_ASYNC_ERROR_FW_LOAD:
1540 			dev_err(nvme->n_dip, CE_WARN,
1541 			    "!firmware image load error");
1542 			atomic_inc_32(&nvme->n_fw_load_event);
1543 			break;
1544 		}
1545 		break;
1546 
1547 	case NVME_ASYNC_TYPE_HEALTH:
1548 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1549 			(void) nvme_get_logpage(nvme, B_FALSE,
1550 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1551 			    -1);
1552 		} else {
1553 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1554 			    "async event reply: %d", event.b.ae_logpage);
1555 			atomic_inc_32(&nvme->n_wrong_logpage);
1556 		}
1557 
1558 		switch (event.b.ae_info) {
1559 		case NVME_ASYNC_HEALTH_RELIABILITY:
1560 			dev_err(nvme->n_dip, CE_WARN,
1561 			    "!device reliability compromised");
1562 			/* TODO: send ereport */
1563 			atomic_inc_32(&nvme->n_reliability_event);
1564 			break;
1565 
1566 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1567 			dev_err(nvme->n_dip, CE_WARN,
1568 			    "!temperature above threshold");
1569 			/* TODO: send ereport */
1570 			atomic_inc_32(&nvme->n_temperature_event);
1571 			break;
1572 
1573 		case NVME_ASYNC_HEALTH_SPARE:
1574 			dev_err(nvme->n_dip, CE_WARN,
1575 			    "!spare space below threshold");
1576 			/* TODO: send ereport */
1577 			atomic_inc_32(&nvme->n_spare_event);
1578 			break;
1579 		}
1580 		break;
1581 
1582 	case NVME_ASYNC_TYPE_VENDOR:
1583 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1584 		    "received, info = %x, logpage = %x", event.b.ae_info,
1585 		    event.b.ae_logpage);
1586 		atomic_inc_32(&nvme->n_vendor_event);
1587 		break;
1588 
1589 	default:
1590 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1591 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1592 		    event.b.ae_info, event.b.ae_logpage);
1593 		atomic_inc_32(&nvme->n_unknown_event);
1594 		break;
1595 	}
1596 
1597 	if (error_log)
1598 		kmem_free(error_log, logsize);
1599 
1600 	if (health_log)
1601 		kmem_free(health_log, logsize);
1602 }
1603 
1604 static void
1605 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1606 {
1607 	mutex_enter(&cmd->nc_mutex);
1608 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1609 	nvme_wait_cmd(cmd, sec);
1610 	mutex_exit(&cmd->nc_mutex);
1611 }
1612 
1613 static void
1614 nvme_async_event(nvme_t *nvme)
1615 {
1616 	nvme_cmd_t *cmd;
1617 
1618 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1619 	cmd->nc_sqid = 0;
1620 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1621 	cmd->nc_callback = nvme_async_event_task;
1622 	cmd->nc_dontpanic = B_TRUE;
1623 
1624 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1625 }
1626 
1627 static int
1628 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1629     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1630 {
1631 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1632 	nvme_format_nvm_t format_nvm = { 0 };
1633 	int ret;
1634 
1635 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1636 	format_nvm.b.fm_ms = ms ? 1 : 0;
1637 	format_nvm.b.fm_pi = pi & 0x7;
1638 	format_nvm.b.fm_pil = pil ? 1 : 0;
1639 	format_nvm.b.fm_ses = ses & 0x7;
1640 
1641 	cmd->nc_sqid = 0;
1642 	cmd->nc_callback = nvme_wakeup_cmd;
1643 	cmd->nc_sqe.sqe_nsid = nsid;
1644 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1645 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1646 
1647 	/*
1648 	 * Some devices like Samsung SM951 don't allow formatting of all
1649 	 * namespaces in one command. Handle that gracefully.
1650 	 */
1651 	if (nsid == (uint32_t)-1)
1652 		cmd->nc_dontpanic = B_TRUE;
1653 	/*
1654 	 * If this format request was initiated by the user, then don't allow a
1655 	 * programmer error to panic the system.
1656 	 */
1657 	if (user)
1658 		cmd->nc_dontpanic = B_TRUE;
1659 
1660 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1661 
1662 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1663 		dev_err(nvme->n_dip, CE_WARN,
1664 		    "!FORMAT failed with sct = %x, sc = %x",
1665 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1666 	}
1667 
1668 	nvme_free_cmd(cmd);
1669 	return (ret);
1670 }
1671 
1672 static int
1673 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1674     uint8_t logpage, ...)
1675 {
1676 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1677 	nvme_getlogpage_t getlogpage = { 0 };
1678 	va_list ap;
1679 	int ret;
1680 
1681 	va_start(ap, logpage);
1682 
1683 	cmd->nc_sqid = 0;
1684 	cmd->nc_callback = nvme_wakeup_cmd;
1685 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1686 
1687 	if (user)
1688 		cmd->nc_dontpanic = B_TRUE;
1689 
1690 	getlogpage.b.lp_lid = logpage;
1691 
1692 	switch (logpage) {
1693 	case NVME_LOGPAGE_ERROR:
1694 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1695 		/*
1696 		 * The GET LOG PAGE command can use at most 2 pages to return
1697 		 * data, PRP lists are not supported.
1698 		 */
1699 		*bufsize = MIN(2 * nvme->n_pagesize,
1700 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1701 		break;
1702 
1703 	case NVME_LOGPAGE_HEALTH:
1704 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1705 		*bufsize = sizeof (nvme_health_log_t);
1706 		break;
1707 
1708 	case NVME_LOGPAGE_FWSLOT:
1709 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1710 		*bufsize = sizeof (nvme_fwslot_log_t);
1711 		break;
1712 
1713 	default:
1714 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1715 		    logpage);
1716 		atomic_inc_32(&nvme->n_unknown_logpage);
1717 		ret = EINVAL;
1718 		goto fail;
1719 	}
1720 
1721 	va_end(ap);
1722 
1723 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1724 
1725 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1726 
1727 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1728 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1729 		dev_err(nvme->n_dip, CE_WARN,
1730 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1731 		ret = ENOMEM;
1732 		goto fail;
1733 	}
1734 
1735 	if (cmd->nc_dma->nd_ncookie > 2) {
1736 		dev_err(nvme->n_dip, CE_WARN,
1737 		    "!too many DMA cookies for GET LOG PAGE");
1738 		atomic_inc_32(&nvme->n_too_many_cookies);
1739 		ret = ENOMEM;
1740 		goto fail;
1741 	}
1742 
1743 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1744 	if (cmd->nc_dma->nd_ncookie > 1) {
1745 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1746 		    &cmd->nc_dma->nd_cookie);
1747 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1748 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1749 	}
1750 
1751 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1752 
1753 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1754 		dev_err(nvme->n_dip, CE_WARN,
1755 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1756 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1757 		goto fail;
1758 	}
1759 
1760 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1761 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1762 
1763 fail:
1764 	nvme_free_cmd(cmd);
1765 
1766 	return (ret);
1767 }
1768 
1769 static int
1770 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
1771 {
1772 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1773 	int ret;
1774 
1775 	if (buf == NULL)
1776 		return (EINVAL);
1777 
1778 	cmd->nc_sqid = 0;
1779 	cmd->nc_callback = nvme_wakeup_cmd;
1780 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1781 	cmd->nc_sqe.sqe_nsid = nsid;
1782 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1783 
1784 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1785 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1786 		dev_err(nvme->n_dip, CE_WARN,
1787 		    "!nvme_zalloc_dma failed for IDENTIFY");
1788 		ret = ENOMEM;
1789 		goto fail;
1790 	}
1791 
1792 	if (cmd->nc_dma->nd_ncookie > 2) {
1793 		dev_err(nvme->n_dip, CE_WARN,
1794 		    "!too many DMA cookies for IDENTIFY");
1795 		atomic_inc_32(&nvme->n_too_many_cookies);
1796 		ret = ENOMEM;
1797 		goto fail;
1798 	}
1799 
1800 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1801 	if (cmd->nc_dma->nd_ncookie > 1) {
1802 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1803 		    &cmd->nc_dma->nd_cookie);
1804 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1805 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1806 	}
1807 
1808 	if (user)
1809 		cmd->nc_dontpanic = B_TRUE;
1810 
1811 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1812 
1813 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1814 		dev_err(nvme->n_dip, CE_WARN,
1815 		    "!IDENTIFY failed with sct = %x, sc = %x",
1816 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1817 		goto fail;
1818 	}
1819 
1820 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1821 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1822 
1823 fail:
1824 	nvme_free_cmd(cmd);
1825 
1826 	return (ret);
1827 }
1828 
1829 static int
1830 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
1831     uint32_t val, uint32_t *res)
1832 {
1833 	_NOTE(ARGUNUSED(nsid));
1834 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1835 	int ret = EINVAL;
1836 
1837 	ASSERT(res != NULL);
1838 
1839 	cmd->nc_sqid = 0;
1840 	cmd->nc_callback = nvme_wakeup_cmd;
1841 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1842 	cmd->nc_sqe.sqe_cdw10 = feature;
1843 	cmd->nc_sqe.sqe_cdw11 = val;
1844 
1845 	if (user)
1846 		cmd->nc_dontpanic = B_TRUE;
1847 
1848 	switch (feature) {
1849 	case NVME_FEAT_WRITE_CACHE:
1850 		if (!nvme->n_write_cache_present)
1851 			goto fail;
1852 		break;
1853 
1854 	case NVME_FEAT_NQUEUES:
1855 		break;
1856 
1857 	default:
1858 		goto fail;
1859 	}
1860 
1861 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1862 
1863 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1864 		dev_err(nvme->n_dip, CE_WARN,
1865 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
1866 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1867 		    cmd->nc_cqe.cqe_sf.sf_sc);
1868 		goto fail;
1869 	}
1870 
1871 	*res = cmd->nc_cqe.cqe_dw0;
1872 
1873 fail:
1874 	nvme_free_cmd(cmd);
1875 	return (ret);
1876 }
1877 
1878 static int
1879 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
1880     uint32_t *res, void **buf, size_t *bufsize)
1881 {
1882 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1883 	int ret = EINVAL;
1884 
1885 	ASSERT(res != NULL);
1886 
1887 	if (bufsize != NULL)
1888 		*bufsize = 0;
1889 
1890 	cmd->nc_sqid = 0;
1891 	cmd->nc_callback = nvme_wakeup_cmd;
1892 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1893 	cmd->nc_sqe.sqe_cdw10 = feature;
1894 	cmd->nc_sqe.sqe_cdw11 = *res;
1895 
1896 	/*
1897 	 * For some of the optional features there doesn't seem to be a method
1898 	 * of detecting whether it is supported other than using it.  This will
1899 	 * cause "Invalid Field in Command" error, which is normally considered
1900 	 * a programming error.  Set the nc_dontpanic flag to override the panic
1901 	 * in nvme_check_generic_cmd_status().
1902 	 */
1903 	switch (feature) {
1904 	case NVME_FEAT_ARBITRATION:
1905 	case NVME_FEAT_POWER_MGMT:
1906 	case NVME_FEAT_TEMPERATURE:
1907 	case NVME_FEAT_ERROR:
1908 	case NVME_FEAT_NQUEUES:
1909 	case NVME_FEAT_INTR_COAL:
1910 	case NVME_FEAT_INTR_VECT:
1911 	case NVME_FEAT_WRITE_ATOM:
1912 	case NVME_FEAT_ASYNC_EVENT:
1913 		break;
1914 
1915 	case NVME_FEAT_WRITE_CACHE:
1916 		if (!nvme->n_write_cache_present)
1917 			goto fail;
1918 		break;
1919 
1920 	case NVME_FEAT_LBA_RANGE:
1921 		if (!nvme->n_lba_range_supported)
1922 			goto fail;
1923 
1924 		cmd->nc_dontpanic = B_TRUE;
1925 		cmd->nc_sqe.sqe_nsid = nsid;
1926 		ASSERT(bufsize != NULL);
1927 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
1928 		break;
1929 
1930 	case NVME_FEAT_AUTO_PST:
1931 		if (!nvme->n_auto_pst_supported)
1932 			goto fail;
1933 
1934 		ASSERT(bufsize != NULL);
1935 		*bufsize = NVME_AUTO_PST_BUFSIZE;
1936 		break;
1937 
1938 	case NVME_FEAT_PROGRESS:
1939 		if (!nvme->n_progress_supported)
1940 			goto fail;
1941 
1942 		cmd->nc_dontpanic = B_TRUE;
1943 		break;
1944 
1945 	default:
1946 		goto fail;
1947 	}
1948 
1949 	if (user)
1950 		cmd->nc_dontpanic = B_TRUE;
1951 
1952 	if (bufsize != NULL && *bufsize != 0) {
1953 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1954 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1955 			dev_err(nvme->n_dip, CE_WARN,
1956 			    "!nvme_zalloc_dma failed for GET FEATURES");
1957 			ret = ENOMEM;
1958 			goto fail;
1959 		}
1960 
1961 		if (cmd->nc_dma->nd_ncookie > 2) {
1962 			dev_err(nvme->n_dip, CE_WARN,
1963 			    "!too many DMA cookies for GET FEATURES");
1964 			atomic_inc_32(&nvme->n_too_many_cookies);
1965 			ret = ENOMEM;
1966 			goto fail;
1967 		}
1968 
1969 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
1970 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1971 		if (cmd->nc_dma->nd_ncookie > 1) {
1972 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1973 			    &cmd->nc_dma->nd_cookie);
1974 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
1975 			    cmd->nc_dma->nd_cookie.dmac_laddress;
1976 		}
1977 	}
1978 
1979 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1980 
1981 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1982 		boolean_t known = B_TRUE;
1983 
1984 		/* Check if this is unsupported optional feature */
1985 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1986 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
1987 			switch (feature) {
1988 			case NVME_FEAT_LBA_RANGE:
1989 				nvme->n_lba_range_supported = B_FALSE;
1990 				break;
1991 			case NVME_FEAT_PROGRESS:
1992 				nvme->n_progress_supported = B_FALSE;
1993 				break;
1994 			default:
1995 				known = B_FALSE;
1996 				break;
1997 			}
1998 		} else {
1999 			known = B_FALSE;
2000 		}
2001 
2002 		/* Report the error otherwise */
2003 		if (!known) {
2004 			dev_err(nvme->n_dip, CE_WARN,
2005 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2006 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2007 			    cmd->nc_cqe.cqe_sf.sf_sc);
2008 		}
2009 
2010 		goto fail;
2011 	}
2012 
2013 	if (bufsize != NULL && *bufsize != 0) {
2014 		ASSERT(buf != NULL);
2015 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2016 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2017 	}
2018 
2019 	*res = cmd->nc_cqe.cqe_dw0;
2020 
2021 fail:
2022 	nvme_free_cmd(cmd);
2023 	return (ret);
2024 }
2025 
2026 static int
2027 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2028 {
2029 	nvme_write_cache_t nwc = { 0 };
2030 
2031 	if (enable)
2032 		nwc.b.wc_wce = 1;
2033 
2034 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2035 	    nwc.r, &nwc.r));
2036 }
2037 
2038 static int
2039 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
2040 {
2041 	nvme_nqueues_t nq = { 0 };
2042 	int ret;
2043 
2044 	nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
2045 
2046 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2047 	    &nq.r);
2048 
2049 	if (ret == 0) {
2050 		/*
2051 		 * Always use the same number of submission and completion
2052 		 * queues, and never use more than the requested number of
2053 		 * queues.
2054 		 */
2055 		*nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
2056 	}
2057 
2058 	return (ret);
2059 }
2060 
2061 static int
2062 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2063 {
2064 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2065 	nvme_create_queue_dw10_t dw10 = { 0 };
2066 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2067 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2068 	int ret;
2069 
2070 	dw10.b.q_qid = idx;
2071 	dw10.b.q_qsize = qp->nq_nentry - 1;
2072 
2073 	c_dw11.b.cq_pc = 1;
2074 	c_dw11.b.cq_ien = 1;
2075 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2076 
2077 	cmd->nc_sqid = 0;
2078 	cmd->nc_callback = nvme_wakeup_cmd;
2079 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2080 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2081 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2082 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2083 
2084 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2085 
2086 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2087 		dev_err(nvme->n_dip, CE_WARN,
2088 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2089 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2090 		goto fail;
2091 	}
2092 
2093 	nvme_free_cmd(cmd);
2094 
2095 	s_dw11.b.sq_pc = 1;
2096 	s_dw11.b.sq_cqid = idx;
2097 
2098 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2099 	cmd->nc_sqid = 0;
2100 	cmd->nc_callback = nvme_wakeup_cmd;
2101 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2102 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2103 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2104 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2105 
2106 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2107 
2108 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2109 		dev_err(nvme->n_dip, CE_WARN,
2110 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2111 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2112 		goto fail;
2113 	}
2114 
2115 fail:
2116 	nvme_free_cmd(cmd);
2117 
2118 	return (ret);
2119 }
2120 
2121 static boolean_t
2122 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2123 {
2124 	nvme_reg_csts_t csts;
2125 	int i;
2126 
2127 	nvme_put32(nvme, NVME_REG_CC, 0);
2128 
2129 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2130 	if (csts.b.csts_rdy == 1) {
2131 		nvme_put32(nvme, NVME_REG_CC, 0);
2132 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2133 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2134 			if (csts.b.csts_rdy == 0)
2135 				break;
2136 
2137 			if (quiesce)
2138 				drv_usecwait(50000);
2139 			else
2140 				delay(drv_usectohz(50000));
2141 		}
2142 	}
2143 
2144 	nvme_put32(nvme, NVME_REG_AQA, 0);
2145 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2146 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2147 
2148 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2149 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2150 }
2151 
2152 static void
2153 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2154 {
2155 	nvme_reg_cc_t cc;
2156 	nvme_reg_csts_t csts;
2157 	int i;
2158 
2159 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2160 
2161 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2162 	cc.b.cc_shn = mode & 0x3;
2163 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2164 
2165 	for (i = 0; i != 10; i++) {
2166 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2167 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2168 			break;
2169 
2170 		if (quiesce)
2171 			drv_usecwait(100000);
2172 		else
2173 			delay(drv_usectohz(100000));
2174 	}
2175 }
2176 
2177 
2178 static void
2179 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2180 {
2181 	/*
2182 	 * Section 7.7 of the spec describes how to get a unique ID for
2183 	 * the controller: the vendor ID, the model name and the serial
2184 	 * number shall be unique when combined.
2185 	 *
2186 	 * If a namespace has no EUI64 we use the above and add the hex
2187 	 * namespace ID to get a unique ID for the namespace.
2188 	 */
2189 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2190 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2191 
2192 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2193 	bcopy(nvme->n_idctl->id_serial, serial,
2194 	    sizeof (nvme->n_idctl->id_serial));
2195 
2196 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2197 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2198 
2199 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2200 	    nvme->n_idctl->id_vid, model, serial, nsid);
2201 }
2202 
2203 static int
2204 nvme_init_ns(nvme_t *nvme, int nsid)
2205 {
2206 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2207 	nvme_identify_nsid_t *idns;
2208 	int last_rp;
2209 
2210 	ns->ns_nvme = nvme;
2211 
2212 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2213 		dev_err(nvme->n_dip, CE_WARN,
2214 		    "!failed to identify namespace %d", nsid);
2215 		return (DDI_FAILURE);
2216 	}
2217 
2218 	ns->ns_idns = idns;
2219 	ns->ns_id = nsid;
2220 	ns->ns_block_count = idns->id_nsize;
2221 	ns->ns_block_size =
2222 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2223 	ns->ns_best_block_size = ns->ns_block_size;
2224 
2225 	/*
2226 	 * Get the EUI64 if present. Use it for devid and device node names.
2227 	 */
2228 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2229 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2230 
2231 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2232 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2233 		uint8_t *eui64 = ns->ns_eui64;
2234 
2235 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2236 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2237 		    eui64[0], eui64[1], eui64[2], eui64[3],
2238 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2239 	} else {
2240 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2241 		    ns->ns_id);
2242 
2243 		nvme_prepare_devid(nvme, ns->ns_id);
2244 	}
2245 
2246 	/*
2247 	 * Find the LBA format with no metadata and the best relative
2248 	 * performance. A value of 3 means "degraded", 0 is best.
2249 	 */
2250 	last_rp = 3;
2251 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2252 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2253 			break;
2254 		if (idns->id_lbaf[j].lbaf_ms != 0)
2255 			continue;
2256 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2257 			continue;
2258 		last_rp = idns->id_lbaf[j].lbaf_rp;
2259 		ns->ns_best_block_size =
2260 		    1 << idns->id_lbaf[j].lbaf_lbads;
2261 	}
2262 
2263 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2264 		ns->ns_best_block_size = nvme->n_min_block_size;
2265 
2266 	/*
2267 	 * We currently don't support namespaces that use either:
2268 	 * - protection information
2269 	 * - illegal block size (< 512)
2270 	 */
2271 	if (idns->id_dps.dp_pinfo) {
2272 		dev_err(nvme->n_dip, CE_WARN,
2273 		    "!ignoring namespace %d, unsupported feature: "
2274 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2275 		ns->ns_ignore = B_TRUE;
2276 	} else if (ns->ns_block_size < 512) {
2277 		dev_err(nvme->n_dip, CE_WARN,
2278 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2279 		    nsid, (uint64_t)ns->ns_block_size);
2280 		ns->ns_ignore = B_TRUE;
2281 	} else {
2282 		ns->ns_ignore = B_FALSE;
2283 	}
2284 
2285 	return (DDI_SUCCESS);
2286 }
2287 
2288 static int
2289 nvme_init(nvme_t *nvme)
2290 {
2291 	nvme_reg_cc_t cc = { 0 };
2292 	nvme_reg_aqa_t aqa = { 0 };
2293 	nvme_reg_asq_t asq = { 0 };
2294 	nvme_reg_acq_t acq = { 0 };
2295 	nvme_reg_cap_t cap;
2296 	nvme_reg_vs_t vs;
2297 	nvme_reg_csts_t csts;
2298 	int i = 0;
2299 	uint16_t nqueues;
2300 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2301 	char *vendor, *product;
2302 
2303 	/* Check controller version */
2304 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2305 	nvme->n_version.v_major = vs.b.vs_mjr;
2306 	nvme->n_version.v_minor = vs.b.vs_mnr;
2307 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2308 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2309 
2310 	if (nvme->n_version.v_major > nvme_version_major) {
2311 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2312 		    nvme_version_major);
2313 		if (nvme->n_strict_version)
2314 			goto fail;
2315 	}
2316 
2317 	/* retrieve controller configuration */
2318 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2319 
2320 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2321 		dev_err(nvme->n_dip, CE_WARN,
2322 		    "!NVM command set not supported by hardware");
2323 		goto fail;
2324 	}
2325 
2326 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2327 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2328 	nvme->n_timeout = cap.b.cap_to;
2329 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2330 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2331 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2332 
2333 	/*
2334 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2335 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2336 	 * page size value.
2337 	 */
2338 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2339 	    cap.b.cap_mpsmax + 12);
2340 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2341 
2342 	/*
2343 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2344 	 */
2345 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2346 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2347 
2348 	/*
2349 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2350 	 * Maxxfer may be increased after we identified the controller limits.
2351 	 */
2352 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2353 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2354 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2355 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2356 
2357 	/*
2358 	 * Reset controller if it's still in ready state.
2359 	 */
2360 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2361 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2362 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2363 		nvme->n_dead = B_TRUE;
2364 		goto fail;
2365 	}
2366 
2367 	/*
2368 	 * Create the admin queue pair.
2369 	 */
2370 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2371 	    != DDI_SUCCESS) {
2372 		dev_err(nvme->n_dip, CE_WARN,
2373 		    "!unable to allocate admin qpair");
2374 		goto fail;
2375 	}
2376 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2377 	nvme->n_ioq[0] = nvme->n_adminq;
2378 
2379 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2380 
2381 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2382 	    "admin-queue-len", nvme->n_admin_queue_len);
2383 
2384 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2385 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2386 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2387 
2388 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2389 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2390 
2391 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2392 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2393 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2394 
2395 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2396 	cc.b.cc_css = 0;	/* use NVM command set */
2397 	cc.b.cc_mps = nvme->n_pageshift - 12;
2398 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2399 	cc.b.cc_en = 1;		/* enable controller */
2400 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2401 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2402 
2403 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2404 
2405 	/*
2406 	 * Wait for the controller to become ready.
2407 	 */
2408 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2409 	if (csts.b.csts_rdy == 0) {
2410 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2411 			delay(drv_usectohz(50000));
2412 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2413 
2414 			if (csts.b.csts_cfs == 1) {
2415 				dev_err(nvme->n_dip, CE_WARN,
2416 				    "!controller fatal status at init");
2417 				ddi_fm_service_impact(nvme->n_dip,
2418 				    DDI_SERVICE_LOST);
2419 				nvme->n_dead = B_TRUE;
2420 				goto fail;
2421 			}
2422 
2423 			if (csts.b.csts_rdy == 1)
2424 				break;
2425 		}
2426 	}
2427 
2428 	if (csts.b.csts_rdy == 0) {
2429 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2430 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2431 		nvme->n_dead = B_TRUE;
2432 		goto fail;
2433 	}
2434 
2435 	/*
2436 	 * Assume an abort command limit of 1. We'll destroy and re-init
2437 	 * that later when we know the true abort command limit.
2438 	 */
2439 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2440 
2441 	/*
2442 	 * Setup initial interrupt for admin queue.
2443 	 */
2444 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2445 	    != DDI_SUCCESS) &&
2446 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2447 	    != DDI_SUCCESS) &&
2448 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2449 	    != DDI_SUCCESS)) {
2450 		dev_err(nvme->n_dip, CE_WARN,
2451 		    "!failed to setup initial interrupt");
2452 		goto fail;
2453 	}
2454 
2455 	/*
2456 	 * Post an asynchronous event command to catch errors.
2457 	 * We assume the asynchronous events are supported as required by
2458 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2459 	 * However, since at least qemu does not follow the specification,
2460 	 * we need a mechanism to protect ourselves.
2461 	 */
2462 	nvme->n_async_event_supported = B_TRUE;
2463 	nvme_async_event(nvme);
2464 
2465 	/*
2466 	 * Identify Controller
2467 	 */
2468 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2469 		dev_err(nvme->n_dip, CE_WARN,
2470 		    "!failed to identify controller");
2471 		goto fail;
2472 	}
2473 
2474 	/*
2475 	 * Get Vendor & Product ID
2476 	 */
2477 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2478 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2479 	sata_split_model(model, &vendor, &product);
2480 
2481 	if (vendor == NULL)
2482 		nvme->n_vendor = strdup("NVMe");
2483 	else
2484 		nvme->n_vendor = strdup(vendor);
2485 
2486 	nvme->n_product = strdup(product);
2487 
2488 	/*
2489 	 * Get controller limits.
2490 	 */
2491 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2492 	    MIN(nvme->n_admin_queue_len / 10,
2493 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2494 
2495 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2496 	    "async-event-limit", nvme->n_async_event_limit);
2497 
2498 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2499 
2500 	/*
2501 	 * Reinitialize the semaphore with the true abort command limit
2502 	 * supported by the hardware. It's not necessary to disable interrupts
2503 	 * as only command aborts use the semaphore, and no commands are
2504 	 * executed or aborted while we're here.
2505 	 */
2506 	sema_destroy(&nvme->n_abort_sema);
2507 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2508 	    SEMA_DRIVER, NULL);
2509 
2510 	nvme->n_progress |= NVME_CTRL_LIMITS;
2511 
2512 	if (nvme->n_idctl->id_mdts == 0)
2513 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2514 	else
2515 		nvme->n_max_data_transfer_size =
2516 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2517 
2518 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2519 
2520 	/*
2521 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2522 	 * Chained PRPs are currently unsupported.
2523 	 *
2524 	 * This is a no-op on hardware which doesn't support a transfer size
2525 	 * big enough to require chained PRPs.
2526 	 */
2527 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2528 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2529 
2530 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2531 
2532 	/*
2533 	 * Make sure the minimum/maximum queue entry sizes are not
2534 	 * larger/smaller than the default.
2535 	 */
2536 
2537 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2538 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2539 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2540 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2541 		goto fail;
2542 
2543 	/*
2544 	 * Check for the presence of a Volatile Write Cache. If present,
2545 	 * enable or disable based on the value of the property
2546 	 * volatile-write-cache-enable (default is enabled).
2547 	 */
2548 	nvme->n_write_cache_present =
2549 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2550 
2551 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2552 	    "volatile-write-cache-present",
2553 	    nvme->n_write_cache_present ? 1 : 0);
2554 
2555 	if (!nvme->n_write_cache_present) {
2556 		nvme->n_write_cache_enabled = B_FALSE;
2557 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2558 	    != 0) {
2559 		dev_err(nvme->n_dip, CE_WARN,
2560 		    "!failed to %sable volatile write cache",
2561 		    nvme->n_write_cache_enabled ? "en" : "dis");
2562 		/*
2563 		 * Assume the cache is (still) enabled.
2564 		 */
2565 		nvme->n_write_cache_enabled = B_TRUE;
2566 	}
2567 
2568 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2569 	    "volatile-write-cache-enable",
2570 	    nvme->n_write_cache_enabled ? 1 : 0);
2571 
2572 	/*
2573 	 * Assume LBA Range Type feature is supported. If it isn't this
2574 	 * will be set to B_FALSE by nvme_get_features().
2575 	 */
2576 	nvme->n_lba_range_supported = B_TRUE;
2577 
2578 	/*
2579 	 * Check support for Autonomous Power State Transition.
2580 	 */
2581 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2582 		nvme->n_auto_pst_supported =
2583 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2584 
2585 	/*
2586 	 * Assume Software Progress Marker feature is supported.  If it isn't
2587 	 * this will be set to B_FALSE by nvme_get_features().
2588 	 */
2589 	nvme->n_progress_supported = B_TRUE;
2590 
2591 	/*
2592 	 * Identify Namespaces
2593 	 */
2594 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2595 
2596 	if (nvme->n_namespace_count == 0) {
2597 		dev_err(nvme->n_dip, CE_WARN,
2598 		    "!controllers without namespaces are not supported");
2599 		goto fail;
2600 	}
2601 
2602 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2603 		dev_err(nvme->n_dip, CE_WARN,
2604 		    "!too many namespaces: %d, limiting to %d\n",
2605 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2606 		nvme->n_namespace_count = NVME_MINOR_MAX;
2607 	}
2608 
2609 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2610 	    nvme->n_namespace_count, KM_SLEEP);
2611 
2612 	for (i = 0; i != nvme->n_namespace_count; i++) {
2613 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2614 		    NULL);
2615 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2616 			goto fail;
2617 	}
2618 
2619 	/*
2620 	 * Try to set up MSI/MSI-X interrupts.
2621 	 */
2622 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2623 	    != 0) {
2624 		nvme_release_interrupts(nvme);
2625 
2626 		nqueues = MIN(UINT16_MAX, ncpus);
2627 
2628 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2629 		    nqueues) != DDI_SUCCESS) &&
2630 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2631 		    nqueues) != DDI_SUCCESS)) {
2632 			dev_err(nvme->n_dip, CE_WARN,
2633 			    "!failed to setup MSI/MSI-X interrupts");
2634 			goto fail;
2635 		}
2636 	}
2637 
2638 	nqueues = nvme->n_intr_cnt;
2639 
2640 	/*
2641 	 * Create I/O queue pairs.
2642 	 */
2643 
2644 	if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2645 		dev_err(nvme->n_dip, CE_WARN,
2646 		    "!failed to set number of I/O queues to %d",
2647 		    nvme->n_intr_cnt);
2648 		goto fail;
2649 	}
2650 
2651 	/*
2652 	 * Reallocate I/O queue array
2653 	 */
2654 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2655 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2656 	    (nqueues + 1), KM_SLEEP);
2657 	nvme->n_ioq[0] = nvme->n_adminq;
2658 
2659 	nvme->n_ioq_count = nqueues;
2660 
2661 	/*
2662 	 * If we got less queues than we asked for we might as well give
2663 	 * some of the interrupt vectors back to the system.
2664 	 */
2665 	if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2666 		nvme_release_interrupts(nvme);
2667 
2668 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2669 		    nvme->n_ioq_count) != DDI_SUCCESS) {
2670 			dev_err(nvme->n_dip, CE_WARN,
2671 			    "!failed to reduce number of interrupts");
2672 			goto fail;
2673 		}
2674 	}
2675 
2676 	/*
2677 	 * Alloc & register I/O queue pairs
2678 	 */
2679 	nvme->n_io_queue_len =
2680 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2681 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2682 	    nvme->n_io_queue_len);
2683 
2684 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2685 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2686 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2687 			dev_err(nvme->n_dip, CE_WARN,
2688 			    "!unable to allocate I/O qpair %d", i);
2689 			goto fail;
2690 		}
2691 
2692 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2693 			dev_err(nvme->n_dip, CE_WARN,
2694 			    "!unable to create I/O qpair %d", i);
2695 			goto fail;
2696 		}
2697 	}
2698 
2699 	/*
2700 	 * Post more asynchronous events commands to reduce event reporting
2701 	 * latency as suggested by the spec.
2702 	 */
2703 	if (nvme->n_async_event_supported) {
2704 		for (i = 1; i != nvme->n_async_event_limit; i++)
2705 			nvme_async_event(nvme);
2706 	}
2707 
2708 	return (DDI_SUCCESS);
2709 
2710 fail:
2711 	(void) nvme_reset(nvme, B_FALSE);
2712 	return (DDI_FAILURE);
2713 }
2714 
2715 static uint_t
2716 nvme_intr(caddr_t arg1, caddr_t arg2)
2717 {
2718 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2719 	nvme_t *nvme = (nvme_t *)arg1;
2720 	int inum = (int)(uintptr_t)arg2;
2721 	int ccnt = 0;
2722 	int qnum;
2723 	nvme_cmd_t *cmd;
2724 
2725 	if (inum >= nvme->n_intr_cnt)
2726 		return (DDI_INTR_UNCLAIMED);
2727 
2728 	if (nvme->n_dead)
2729 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2730 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2731 
2732 	/*
2733 	 * The interrupt vector a queue uses is calculated as queue_idx %
2734 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2735 	 * in steps of n_intr_cnt to process all queues using this vector.
2736 	 */
2737 	for (qnum = inum;
2738 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2739 	    qnum += nvme->n_intr_cnt) {
2740 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2741 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2742 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2743 			ccnt++;
2744 		}
2745 	}
2746 
2747 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2748 }
2749 
2750 static void
2751 nvme_release_interrupts(nvme_t *nvme)
2752 {
2753 	int i;
2754 
2755 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2756 		if (nvme->n_inth[i] == NULL)
2757 			break;
2758 
2759 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2760 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2761 		else
2762 			(void) ddi_intr_disable(nvme->n_inth[i]);
2763 
2764 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2765 		(void) ddi_intr_free(nvme->n_inth[i]);
2766 	}
2767 
2768 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2769 	nvme->n_inth = NULL;
2770 	nvme->n_inth_sz = 0;
2771 
2772 	nvme->n_progress &= ~NVME_INTERRUPTS;
2773 }
2774 
2775 static int
2776 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2777 {
2778 	int nintrs, navail, count;
2779 	int ret;
2780 	int i;
2781 
2782 	if (nvme->n_intr_types == 0) {
2783 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2784 		    &nvme->n_intr_types);
2785 		if (ret != DDI_SUCCESS) {
2786 			dev_err(nvme->n_dip, CE_WARN,
2787 			    "!%s: ddi_intr_get_supported types failed",
2788 			    __func__);
2789 			return (ret);
2790 		}
2791 #ifdef __x86
2792 		if (get_hwenv() == HW_VMWARE)
2793 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2794 #endif
2795 	}
2796 
2797 	if ((nvme->n_intr_types & intr_type) == 0)
2798 		return (DDI_FAILURE);
2799 
2800 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2801 	if (ret != DDI_SUCCESS) {
2802 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2803 		    __func__);
2804 		return (ret);
2805 	}
2806 
2807 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2808 	if (ret != DDI_SUCCESS) {
2809 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2810 		    __func__);
2811 		return (ret);
2812 	}
2813 
2814 	/* We want at most one interrupt per queue pair. */
2815 	if (navail > nqpairs)
2816 		navail = nqpairs;
2817 
2818 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2819 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2820 
2821 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2822 	    &count, 0);
2823 	if (ret != DDI_SUCCESS) {
2824 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2825 		    __func__);
2826 		goto fail;
2827 	}
2828 
2829 	nvme->n_intr_cnt = count;
2830 
2831 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2832 	if (ret != DDI_SUCCESS) {
2833 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2834 		    __func__);
2835 		goto fail;
2836 	}
2837 
2838 	for (i = 0; i < count; i++) {
2839 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2840 		    (void *)nvme, (void *)(uintptr_t)i);
2841 		if (ret != DDI_SUCCESS) {
2842 			dev_err(nvme->n_dip, CE_WARN,
2843 			    "!%s: ddi_intr_add_handler failed", __func__);
2844 			goto fail;
2845 		}
2846 	}
2847 
2848 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2849 
2850 	for (i = 0; i < count; i++) {
2851 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2852 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2853 		else
2854 			ret = ddi_intr_enable(nvme->n_inth[i]);
2855 
2856 		if (ret != DDI_SUCCESS) {
2857 			dev_err(nvme->n_dip, CE_WARN,
2858 			    "!%s: enabling interrupt %d failed", __func__, i);
2859 			goto fail;
2860 		}
2861 	}
2862 
2863 	nvme->n_intr_type = intr_type;
2864 
2865 	nvme->n_progress |= NVME_INTERRUPTS;
2866 
2867 	return (DDI_SUCCESS);
2868 
2869 fail:
2870 	nvme_release_interrupts(nvme);
2871 
2872 	return (ret);
2873 }
2874 
2875 static int
2876 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2877 {
2878 	_NOTE(ARGUNUSED(arg));
2879 
2880 	pci_ereport_post(dip, fm_error, NULL);
2881 	return (fm_error->fme_status);
2882 }
2883 
2884 static int
2885 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2886 {
2887 	nvme_t *nvme;
2888 	int instance;
2889 	int nregs;
2890 	off_t regsize;
2891 	int i;
2892 	char name[32];
2893 
2894 	if (cmd != DDI_ATTACH)
2895 		return (DDI_FAILURE);
2896 
2897 	instance = ddi_get_instance(dip);
2898 
2899 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2900 		return (DDI_FAILURE);
2901 
2902 	nvme = ddi_get_soft_state(nvme_state, instance);
2903 	ddi_set_driver_private(dip, nvme);
2904 	nvme->n_dip = dip;
2905 
2906 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2907 
2908 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2909 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2910 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2911 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2912 	    B_TRUE : B_FALSE;
2913 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2914 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2915 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2916 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2917 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2918 	    DDI_PROP_DONTPASS, "async-event-limit",
2919 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2920 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2921 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2922 	    B_TRUE : B_FALSE;
2923 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2924 	    DDI_PROP_DONTPASS, "min-phys-block-size",
2925 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
2926 
2927 	if (!ISP2(nvme->n_min_block_size) ||
2928 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2929 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2930 		    "using default %d", ISP2(nvme->n_min_block_size) ?
2931 		    "too low" : "not a power of 2",
2932 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
2933 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2934 	}
2935 
2936 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2937 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2938 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2939 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2940 
2941 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2942 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2943 
2944 	if (nvme->n_async_event_limit < 1)
2945 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2946 
2947 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2948 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2949 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2950 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2951 
2952 	/*
2953 	 * Setup FMA support.
2954 	 */
2955 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2956 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2957 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2958 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2959 
2960 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2961 
2962 	if (nvme->n_fm_cap) {
2963 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2964 			nvme->n_reg_acc_attr.devacc_attr_access =
2965 			    DDI_FLAGERR_ACC;
2966 
2967 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2968 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2969 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2970 		}
2971 
2972 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2973 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2974 			pci_ereport_setup(dip);
2975 
2976 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2977 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2978 			    (void *)nvme);
2979 	}
2980 
2981 	nvme->n_progress |= NVME_FMA_INIT;
2982 
2983 	/*
2984 	 * The spec defines several register sets. Only the controller
2985 	 * registers (set 1) are currently used.
2986 	 */
2987 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2988 	    nregs < 2 ||
2989 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2990 		goto fail;
2991 
2992 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2993 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2994 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2995 		goto fail;
2996 	}
2997 
2998 	nvme->n_progress |= NVME_REGS_MAPPED;
2999 
3000 	/*
3001 	 * Create taskq for command completion.
3002 	 */
3003 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
3004 	    ddi_driver_name(dip), ddi_get_instance(dip));
3005 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
3006 	    TASKQ_DEFAULTPRI, 0);
3007 	if (nvme->n_cmd_taskq == NULL) {
3008 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
3009 		goto fail;
3010 	}
3011 
3012 	/*
3013 	 * Create PRP DMA cache
3014 	 */
3015 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3016 	    ddi_driver_name(dip), ddi_get_instance(dip));
3017 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3018 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3019 	    NULL, (void *)nvme, NULL, 0);
3020 
3021 	if (nvme_init(nvme) != DDI_SUCCESS)
3022 		goto fail;
3023 
3024 	/*
3025 	 * Attach the blkdev driver for each namespace.
3026 	 */
3027 	for (i = 0; i != nvme->n_namespace_count; i++) {
3028 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3029 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3030 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3031 			dev_err(dip, CE_WARN,
3032 			    "!failed to create minor node for namespace %d", i);
3033 			goto fail;
3034 		}
3035 
3036 		if (nvme->n_ns[i].ns_ignore)
3037 			continue;
3038 
3039 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3040 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3041 
3042 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3043 			dev_err(dip, CE_WARN,
3044 			    "!failed to get blkdev handle for namespace %d", i);
3045 			goto fail;
3046 		}
3047 
3048 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3049 		    != DDI_SUCCESS) {
3050 			dev_err(dip, CE_WARN,
3051 			    "!failed to attach blkdev handle for namespace %d",
3052 			    i);
3053 			goto fail;
3054 		}
3055 	}
3056 
3057 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3058 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3059 	    != DDI_SUCCESS) {
3060 		dev_err(dip, CE_WARN, "nvme_attach: "
3061 		    "cannot create devctl minor node");
3062 		goto fail;
3063 	}
3064 
3065 	return (DDI_SUCCESS);
3066 
3067 fail:
3068 	/* attach successful anyway so that FMA can retire the device */
3069 	if (nvme->n_dead)
3070 		return (DDI_SUCCESS);
3071 
3072 	(void) nvme_detach(dip, DDI_DETACH);
3073 
3074 	return (DDI_FAILURE);
3075 }
3076 
3077 static int
3078 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3079 {
3080 	int instance, i;
3081 	nvme_t *nvme;
3082 
3083 	if (cmd != DDI_DETACH)
3084 		return (DDI_FAILURE);
3085 
3086 	instance = ddi_get_instance(dip);
3087 
3088 	nvme = ddi_get_soft_state(nvme_state, instance);
3089 
3090 	if (nvme == NULL)
3091 		return (DDI_FAILURE);
3092 
3093 	ddi_remove_minor_node(dip, "devctl");
3094 	mutex_destroy(&nvme->n_minor.nm_mutex);
3095 
3096 	if (nvme->n_ns) {
3097 		for (i = 0; i != nvme->n_namespace_count; i++) {
3098 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3099 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3100 
3101 			if (nvme->n_ns[i].ns_bd_hdl) {
3102 				(void) bd_detach_handle(
3103 				    nvme->n_ns[i].ns_bd_hdl);
3104 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3105 			}
3106 
3107 			if (nvme->n_ns[i].ns_idns)
3108 				kmem_free(nvme->n_ns[i].ns_idns,
3109 				    sizeof (nvme_identify_nsid_t));
3110 			if (nvme->n_ns[i].ns_devid)
3111 				strfree(nvme->n_ns[i].ns_devid);
3112 		}
3113 
3114 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3115 		    nvme->n_namespace_count);
3116 	}
3117 
3118 	if (nvme->n_progress & NVME_INTERRUPTS)
3119 		nvme_release_interrupts(nvme);
3120 
3121 	if (nvme->n_cmd_taskq)
3122 		ddi_taskq_wait(nvme->n_cmd_taskq);
3123 
3124 	if (nvme->n_ioq_count > 0) {
3125 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3126 			if (nvme->n_ioq[i] != NULL) {
3127 				/* TODO: send destroy queue commands */
3128 				nvme_free_qpair(nvme->n_ioq[i]);
3129 			}
3130 		}
3131 
3132 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3133 		    (nvme->n_ioq_count + 1));
3134 	}
3135 
3136 	if (nvme->n_prp_cache != NULL) {
3137 		kmem_cache_destroy(nvme->n_prp_cache);
3138 	}
3139 
3140 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3141 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3142 		(void) nvme_reset(nvme, B_FALSE);
3143 	}
3144 
3145 	if (nvme->n_cmd_taskq)
3146 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3147 
3148 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3149 		sema_destroy(&nvme->n_abort_sema);
3150 
3151 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3152 		nvme_free_qpair(nvme->n_adminq);
3153 
3154 	if (nvme->n_idctl)
3155 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3156 
3157 	if (nvme->n_progress & NVME_REGS_MAPPED)
3158 		ddi_regs_map_free(&nvme->n_regh);
3159 
3160 	if (nvme->n_progress & NVME_FMA_INIT) {
3161 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3162 			ddi_fm_handler_unregister(nvme->n_dip);
3163 
3164 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3165 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3166 			pci_ereport_teardown(nvme->n_dip);
3167 
3168 		ddi_fm_fini(nvme->n_dip);
3169 	}
3170 
3171 	if (nvme->n_vendor != NULL)
3172 		strfree(nvme->n_vendor);
3173 
3174 	if (nvme->n_product != NULL)
3175 		strfree(nvme->n_product);
3176 
3177 	ddi_soft_state_free(nvme_state, instance);
3178 
3179 	return (DDI_SUCCESS);
3180 }
3181 
3182 static int
3183 nvme_quiesce(dev_info_t *dip)
3184 {
3185 	int instance;
3186 	nvme_t *nvme;
3187 
3188 	instance = ddi_get_instance(dip);
3189 
3190 	nvme = ddi_get_soft_state(nvme_state, instance);
3191 
3192 	if (nvme == NULL)
3193 		return (DDI_FAILURE);
3194 
3195 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3196 
3197 	(void) nvme_reset(nvme, B_TRUE);
3198 
3199 	return (DDI_FAILURE);
3200 }
3201 
3202 static int
3203 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3204 {
3205 	nvme_t *nvme = cmd->nc_nvme;
3206 	int nprp_page, nprp;
3207 	uint64_t *prp;
3208 
3209 	if (xfer->x_ndmac == 0)
3210 		return (DDI_FAILURE);
3211 
3212 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3213 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3214 
3215 	if (xfer->x_ndmac == 1) {
3216 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3217 		return (DDI_SUCCESS);
3218 	} else if (xfer->x_ndmac == 2) {
3219 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3220 		return (DDI_SUCCESS);
3221 	}
3222 
3223 	xfer->x_ndmac--;
3224 
3225 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3226 	ASSERT(nprp_page > 0);
3227 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3228 
3229 	/*
3230 	 * We currently don't support chained PRPs and set up our DMA
3231 	 * attributes to reflect that. If we still get an I/O request
3232 	 * that needs a chained PRP something is very wrong.
3233 	 */
3234 	VERIFY(nprp == 1);
3235 
3236 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3237 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3238 
3239 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3240 
3241 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3242 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3243 	    xfer->x_ndmac > 0;
3244 	    prp++, xfer->x_ndmac--) {
3245 		*prp = xfer->x_dmac.dmac_laddress;
3246 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3247 	}
3248 
3249 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3250 	    DDI_DMA_SYNC_FORDEV);
3251 	return (DDI_SUCCESS);
3252 }
3253 
3254 static nvme_cmd_t *
3255 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3256 {
3257 	nvme_t *nvme = ns->ns_nvme;
3258 	nvme_cmd_t *cmd;
3259 
3260 	/*
3261 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3262 	 */
3263 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3264 	    KM_NOSLEEP : KM_SLEEP);
3265 
3266 	if (cmd == NULL)
3267 		return (NULL);
3268 
3269 	cmd->nc_sqe.sqe_opc = opc;
3270 	cmd->nc_callback = nvme_bd_xfer_done;
3271 	cmd->nc_xfer = xfer;
3272 
3273 	switch (opc) {
3274 	case NVME_OPC_NVM_WRITE:
3275 	case NVME_OPC_NVM_READ:
3276 		VERIFY(xfer->x_nblks <= 0x10000);
3277 
3278 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3279 
3280 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3281 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3282 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3283 
3284 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3285 			goto fail;
3286 		break;
3287 
3288 	case NVME_OPC_NVM_FLUSH:
3289 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3290 		break;
3291 
3292 	default:
3293 		goto fail;
3294 	}
3295 
3296 	return (cmd);
3297 
3298 fail:
3299 	nvme_free_cmd(cmd);
3300 	return (NULL);
3301 }
3302 
3303 static void
3304 nvme_bd_xfer_done(void *arg)
3305 {
3306 	nvme_cmd_t *cmd = arg;
3307 	bd_xfer_t *xfer = cmd->nc_xfer;
3308 	int error = 0;
3309 
3310 	error = nvme_check_cmd_status(cmd);
3311 	nvme_free_cmd(cmd);
3312 
3313 	bd_xfer_done(xfer, error);
3314 }
3315 
3316 static void
3317 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3318 {
3319 	nvme_namespace_t *ns = arg;
3320 	nvme_t *nvme = ns->ns_nvme;
3321 
3322 	/*
3323 	 * blkdev maintains one queue size per instance (namespace),
3324 	 * but all namespace share the I/O queues.
3325 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3326 	 * or change blkdev to handle EAGAIN
3327 	 */
3328 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3329 	    / nvme->n_namespace_count;
3330 
3331 	/*
3332 	 * d_maxxfer is not set, which means the value is taken from the DMA
3333 	 * attributes specified to bd_alloc_handle.
3334 	 */
3335 
3336 	drive->d_removable = B_FALSE;
3337 	drive->d_hotpluggable = B_FALSE;
3338 
3339 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3340 	drive->d_target = ns->ns_id;
3341 	drive->d_lun = 0;
3342 
3343 	drive->d_model = nvme->n_idctl->id_model;
3344 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3345 	drive->d_vendor = nvme->n_vendor;
3346 	drive->d_vendor_len = strlen(nvme->n_vendor);
3347 	drive->d_product = nvme->n_product;
3348 	drive->d_product_len = strlen(nvme->n_product);
3349 	drive->d_serial = nvme->n_idctl->id_serial;
3350 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3351 	drive->d_revision = nvme->n_idctl->id_fwrev;
3352 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3353 }
3354 
3355 static int
3356 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3357 {
3358 	nvme_namespace_t *ns = arg;
3359 
3360 	media->m_nblks = ns->ns_block_count;
3361 	media->m_blksize = ns->ns_block_size;
3362 	media->m_readonly = B_FALSE;
3363 	media->m_solidstate = B_TRUE;
3364 
3365 	media->m_pblksize = ns->ns_best_block_size;
3366 
3367 	return (0);
3368 }
3369 
3370 static int
3371 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3372 {
3373 	nvme_t *nvme = ns->ns_nvme;
3374 	nvme_cmd_t *cmd;
3375 	nvme_qpair_t *ioq;
3376 	boolean_t poll;
3377 	int ret;
3378 
3379 	if (nvme->n_dead)
3380 		return (EIO);
3381 
3382 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3383 	if (cmd == NULL)
3384 		return (ENOMEM);
3385 
3386 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3387 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3388 	ioq = nvme->n_ioq[cmd->nc_sqid];
3389 
3390 	/*
3391 	 * Get the polling flag before submitting the command. The command may
3392 	 * complete immediately after it was submitted, which means we must
3393 	 * treat both cmd and xfer as if they have been freed already.
3394 	 */
3395 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3396 
3397 	ret = nvme_submit_io_cmd(ioq, cmd);
3398 
3399 	if (ret != 0)
3400 		return (ret);
3401 
3402 	if (!poll)
3403 		return (0);
3404 
3405 	do {
3406 		cmd = nvme_retrieve_cmd(nvme, ioq);
3407 		if (cmd != NULL)
3408 			nvme_bd_xfer_done(cmd);
3409 		else
3410 			drv_usecwait(10);
3411 	} while (ioq->nq_active_cmds != 0);
3412 
3413 	return (0);
3414 }
3415 
3416 static int
3417 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3418 {
3419 	nvme_namespace_t *ns = arg;
3420 
3421 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3422 }
3423 
3424 static int
3425 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3426 {
3427 	nvme_namespace_t *ns = arg;
3428 
3429 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3430 }
3431 
3432 static int
3433 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3434 {
3435 	nvme_namespace_t *ns = arg;
3436 
3437 	if (ns->ns_nvme->n_dead)
3438 		return (EIO);
3439 
3440 	/*
3441 	 * If the volatile write cache is not present or not enabled the FLUSH
3442 	 * command is a no-op, so we can take a shortcut here.
3443 	 */
3444 	if (!ns->ns_nvme->n_write_cache_present) {
3445 		bd_xfer_done(xfer, ENOTSUP);
3446 		return (0);
3447 	}
3448 
3449 	if (!ns->ns_nvme->n_write_cache_enabled) {
3450 		bd_xfer_done(xfer, 0);
3451 		return (0);
3452 	}
3453 
3454 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3455 }
3456 
3457 static int
3458 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3459 {
3460 	nvme_namespace_t *ns = arg;
3461 
3462 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3463 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3464 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3465 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3466 	} else {
3467 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3468 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3469 	}
3470 }
3471 
3472 static int
3473 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3474 {
3475 #ifndef __lock_lint
3476 	_NOTE(ARGUNUSED(cred_p));
3477 #endif
3478 	minor_t minor = getminor(*devp);
3479 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3480 	int nsid = NVME_MINOR_NSID(minor);
3481 	nvme_minor_state_t *nm;
3482 	int rv = 0;
3483 
3484 	if (otyp != OTYP_CHR)
3485 		return (EINVAL);
3486 
3487 	if (nvme == NULL)
3488 		return (ENXIO);
3489 
3490 	if (nsid > nvme->n_namespace_count)
3491 		return (ENXIO);
3492 
3493 	if (nvme->n_dead)
3494 		return (EIO);
3495 
3496 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3497 
3498 	mutex_enter(&nm->nm_mutex);
3499 	if (nm->nm_oexcl) {
3500 		rv = EBUSY;
3501 		goto out;
3502 	}
3503 
3504 	if (flag & FEXCL) {
3505 		if (nm->nm_ocnt != 0) {
3506 			rv = EBUSY;
3507 			goto out;
3508 		}
3509 		nm->nm_oexcl = B_TRUE;
3510 	}
3511 
3512 	nm->nm_ocnt++;
3513 
3514 out:
3515 	mutex_exit(&nm->nm_mutex);
3516 	return (rv);
3517 
3518 }
3519 
3520 static int
3521 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3522 {
3523 #ifndef __lock_lint
3524 	_NOTE(ARGUNUSED(cred_p));
3525 	_NOTE(ARGUNUSED(flag));
3526 #endif
3527 	minor_t minor = getminor(dev);
3528 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3529 	int nsid = NVME_MINOR_NSID(minor);
3530 	nvme_minor_state_t *nm;
3531 
3532 	if (otyp != OTYP_CHR)
3533 		return (ENXIO);
3534 
3535 	if (nvme == NULL)
3536 		return (ENXIO);
3537 
3538 	if (nsid > nvme->n_namespace_count)
3539 		return (ENXIO);
3540 
3541 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3542 
3543 	mutex_enter(&nm->nm_mutex);
3544 	if (nm->nm_oexcl)
3545 		nm->nm_oexcl = B_FALSE;
3546 
3547 	ASSERT(nm->nm_ocnt > 0);
3548 	nm->nm_ocnt--;
3549 	mutex_exit(&nm->nm_mutex);
3550 
3551 	return (0);
3552 }
3553 
3554 static int
3555 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3556     cred_t *cred_p)
3557 {
3558 	_NOTE(ARGUNUSED(cred_p));
3559 	int rv = 0;
3560 	void *idctl;
3561 
3562 	if ((mode & FREAD) == 0)
3563 		return (EPERM);
3564 
3565 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3566 		return (EINVAL);
3567 
3568 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
3569 		return (rv);
3570 
3571 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3572 	    != 0)
3573 		rv = EFAULT;
3574 
3575 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3576 
3577 	return (rv);
3578 }
3579 
3580 static int
3581 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3582     int mode, cred_t *cred_p)
3583 {
3584 	_NOTE(ARGUNUSED(nsid, cred_p));
3585 	int rv = 0;
3586 	nvme_reg_cap_t cap = { 0 };
3587 	nvme_capabilities_t nc;
3588 
3589 	if ((mode & FREAD) == 0)
3590 		return (EPERM);
3591 
3592 	if (nioc->n_len < sizeof (nc))
3593 		return (EINVAL);
3594 
3595 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3596 
3597 	/*
3598 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3599 	 * specify the base page size of 4k (1<<12), so add 12 here to
3600 	 * get the real page size value.
3601 	 */
3602 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3603 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3604 
3605 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3606 		rv = EFAULT;
3607 
3608 	return (rv);
3609 }
3610 
3611 static int
3612 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3613     int mode, cred_t *cred_p)
3614 {
3615 	_NOTE(ARGUNUSED(cred_p));
3616 	void *log = NULL;
3617 	size_t bufsize = 0;
3618 	int rv = 0;
3619 
3620 	if ((mode & FREAD) == 0)
3621 		return (EPERM);
3622 
3623 	switch (nioc->n_arg) {
3624 	case NVME_LOGPAGE_ERROR:
3625 		if (nsid != 0)
3626 			return (EINVAL);
3627 		break;
3628 	case NVME_LOGPAGE_HEALTH:
3629 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3630 			return (EINVAL);
3631 
3632 		if (nsid == 0)
3633 			nsid = (uint32_t)-1;
3634 
3635 		break;
3636 	case NVME_LOGPAGE_FWSLOT:
3637 		if (nsid != 0)
3638 			return (EINVAL);
3639 		break;
3640 	default:
3641 		return (EINVAL);
3642 	}
3643 
3644 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
3645 	    != DDI_SUCCESS)
3646 		return (EIO);
3647 
3648 	if (nioc->n_len < bufsize) {
3649 		kmem_free(log, bufsize);
3650 		return (EINVAL);
3651 	}
3652 
3653 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3654 		rv = EFAULT;
3655 
3656 	nioc->n_len = bufsize;
3657 	kmem_free(log, bufsize);
3658 
3659 	return (rv);
3660 }
3661 
3662 static int
3663 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3664     int mode, cred_t *cred_p)
3665 {
3666 	_NOTE(ARGUNUSED(cred_p));
3667 	void *buf = NULL;
3668 	size_t bufsize = 0;
3669 	uint32_t res = 0;
3670 	uint8_t feature;
3671 	int rv = 0;
3672 
3673 	if ((mode & FREAD) == 0)
3674 		return (EPERM);
3675 
3676 	if ((nioc->n_arg >> 32) > 0xff)
3677 		return (EINVAL);
3678 
3679 	feature = (uint8_t)(nioc->n_arg >> 32);
3680 
3681 	switch (feature) {
3682 	case NVME_FEAT_ARBITRATION:
3683 	case NVME_FEAT_POWER_MGMT:
3684 	case NVME_FEAT_TEMPERATURE:
3685 	case NVME_FEAT_ERROR:
3686 	case NVME_FEAT_NQUEUES:
3687 	case NVME_FEAT_INTR_COAL:
3688 	case NVME_FEAT_WRITE_ATOM:
3689 	case NVME_FEAT_ASYNC_EVENT:
3690 	case NVME_FEAT_PROGRESS:
3691 		if (nsid != 0)
3692 			return (EINVAL);
3693 		break;
3694 
3695 	case NVME_FEAT_INTR_VECT:
3696 		if (nsid != 0)
3697 			return (EINVAL);
3698 
3699 		res = nioc->n_arg & 0xffffffffUL;
3700 		if (res >= nvme->n_intr_cnt)
3701 			return (EINVAL);
3702 		break;
3703 
3704 	case NVME_FEAT_LBA_RANGE:
3705 		if (nvme->n_lba_range_supported == B_FALSE)
3706 			return (EINVAL);
3707 
3708 		if (nsid == 0 ||
3709 		    nsid > nvme->n_namespace_count)
3710 			return (EINVAL);
3711 
3712 		break;
3713 
3714 	case NVME_FEAT_WRITE_CACHE:
3715 		if (nsid != 0)
3716 			return (EINVAL);
3717 
3718 		if (!nvme->n_write_cache_present)
3719 			return (EINVAL);
3720 
3721 		break;
3722 
3723 	case NVME_FEAT_AUTO_PST:
3724 		if (nsid != 0)
3725 			return (EINVAL);
3726 
3727 		if (!nvme->n_auto_pst_supported)
3728 			return (EINVAL);
3729 
3730 		break;
3731 
3732 	default:
3733 		return (EINVAL);
3734 	}
3735 
3736 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
3737 	    &bufsize);
3738 	if (rv != 0)
3739 		return (rv);
3740 
3741 	if (nioc->n_len < bufsize) {
3742 		kmem_free(buf, bufsize);
3743 		return (EINVAL);
3744 	}
3745 
3746 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3747 		rv = EFAULT;
3748 
3749 	kmem_free(buf, bufsize);
3750 	nioc->n_arg = res;
3751 	nioc->n_len = bufsize;
3752 
3753 	return (rv);
3754 }
3755 
3756 static int
3757 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3758     cred_t *cred_p)
3759 {
3760 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
3761 
3762 	if ((mode & FREAD) == 0)
3763 		return (EPERM);
3764 
3765 	nioc->n_arg = nvme->n_intr_cnt;
3766 	return (0);
3767 }
3768 
3769 static int
3770 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771     cred_t *cred_p)
3772 {
3773 	_NOTE(ARGUNUSED(nsid, cred_p));
3774 	int rv = 0;
3775 
3776 	if ((mode & FREAD) == 0)
3777 		return (EPERM);
3778 
3779 	if (nioc->n_len < sizeof (nvme->n_version))
3780 		return (ENOMEM);
3781 
3782 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3783 	    sizeof (nvme->n_version), mode) != 0)
3784 		rv = EFAULT;
3785 
3786 	return (rv);
3787 }
3788 
3789 static int
3790 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3791     cred_t *cred_p)
3792 {
3793 	_NOTE(ARGUNUSED(mode));
3794 	nvme_format_nvm_t frmt = { 0 };
3795 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
3796 
3797 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3798 		return (EPERM);
3799 
3800 	frmt.r = nioc->n_arg & 0xffffffff;
3801 
3802 	/*
3803 	 * Check whether the FORMAT NVM command is supported.
3804 	 */
3805 	if (nvme->n_idctl->id_oacs.oa_format == 0)
3806 		return (EINVAL);
3807 
3808 	/*
3809 	 * Don't allow format or secure erase of individual namespace if that
3810 	 * would cause a format or secure erase of all namespaces.
3811 	 */
3812 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3813 		return (EINVAL);
3814 
3815 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3816 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
3817 		return (EINVAL);
3818 
3819 	/*
3820 	 * Don't allow formatting with Protection Information.
3821 	 */
3822 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3823 		return (EINVAL);
3824 
3825 	/*
3826 	 * Don't allow formatting using an illegal LBA format, or any LBA format
3827 	 * that uses metadata.
3828 	 */
3829 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3830 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3831 		return (EINVAL);
3832 
3833 	/*
3834 	 * Don't allow formatting using an illegal Secure Erase setting.
3835 	 */
3836 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3837 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3838 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3839 		return (EINVAL);
3840 
3841 	if (nsid == 0)
3842 		nsid = (uint32_t)-1;
3843 
3844 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
3845 	    B_FALSE, frmt.b.fm_ses));
3846 }
3847 
3848 static int
3849 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3850     cred_t *cred_p)
3851 {
3852 	_NOTE(ARGUNUSED(nioc, mode));
3853 	int rv = 0;
3854 
3855 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3856 		return (EPERM);
3857 
3858 	if (nsid == 0)
3859 		return (EINVAL);
3860 
3861 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3862 	if (rv != DDI_SUCCESS)
3863 		rv = EBUSY;
3864 
3865 	return (rv);
3866 }
3867 
3868 static int
3869 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3870     cred_t *cred_p)
3871 {
3872 	_NOTE(ARGUNUSED(nioc, mode));
3873 	nvme_identify_nsid_t *idns;
3874 	int rv = 0;
3875 
3876 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3877 		return (EPERM);
3878 
3879 	if (nsid == 0)
3880 		return (EINVAL);
3881 
3882 	/*
3883 	 * Identify namespace again, free old identify data.
3884 	 */
3885 	idns = nvme->n_ns[nsid - 1].ns_idns;
3886 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3887 		return (EIO);
3888 
3889 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
3890 
3891 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3892 	if (rv != DDI_SUCCESS)
3893 		rv = EBUSY;
3894 
3895 	return (rv);
3896 }
3897 
3898 static int
3899 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3900     int *rval_p)
3901 {
3902 #ifndef __lock_lint
3903 	_NOTE(ARGUNUSED(rval_p));
3904 #endif
3905 	minor_t minor = getminor(dev);
3906 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3907 	int nsid = NVME_MINOR_NSID(minor);
3908 	int rv = 0;
3909 	nvme_ioctl_t nioc;
3910 
3911 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3912 		NULL,
3913 		nvme_ioctl_identify,
3914 		nvme_ioctl_identify,
3915 		nvme_ioctl_capabilities,
3916 		nvme_ioctl_get_logpage,
3917 		nvme_ioctl_get_features,
3918 		nvme_ioctl_intr_cnt,
3919 		nvme_ioctl_version,
3920 		nvme_ioctl_format,
3921 		nvme_ioctl_detach,
3922 		nvme_ioctl_attach
3923 	};
3924 
3925 	if (nvme == NULL)
3926 		return (ENXIO);
3927 
3928 	if (nsid > nvme->n_namespace_count)
3929 		return (ENXIO);
3930 
3931 	if (IS_DEVCTL(cmd))
3932 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3933 
3934 #ifdef _MULTI_DATAMODEL
3935 	switch (ddi_model_convert_from(mode & FMODELS)) {
3936 	case DDI_MODEL_ILP32: {
3937 		nvme_ioctl32_t nioc32;
3938 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3939 		    mode) != 0)
3940 			return (EFAULT);
3941 		nioc.n_len = nioc32.n_len;
3942 		nioc.n_buf = nioc32.n_buf;
3943 		nioc.n_arg = nioc32.n_arg;
3944 		break;
3945 	}
3946 	case DDI_MODEL_NONE:
3947 #endif
3948 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3949 		    != 0)
3950 			return (EFAULT);
3951 #ifdef _MULTI_DATAMODEL
3952 		break;
3953 	}
3954 #endif
3955 
3956 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3957 		return (EIO);
3958 
3959 
3960 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3961 		/*
3962 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3963 		 * attachment point nodes.
3964 		 */
3965 		nsid = 0;
3966 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3967 		/*
3968 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3969 		 * will always return identify data for namespace 1.
3970 		 */
3971 		nsid = 1;
3972 	}
3973 
3974 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3975 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3976 		    cred_p);
3977 	else
3978 		rv = EINVAL;
3979 
3980 #ifdef _MULTI_DATAMODEL
3981 	switch (ddi_model_convert_from(mode & FMODELS)) {
3982 	case DDI_MODEL_ILP32: {
3983 		nvme_ioctl32_t nioc32;
3984 
3985 		nioc32.n_len = (size32_t)nioc.n_len;
3986 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3987 		nioc32.n_arg = nioc.n_arg;
3988 
3989 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3990 		    mode) != 0)
3991 			return (EFAULT);
3992 		break;
3993 	}
3994 	case DDI_MODEL_NONE:
3995 #endif
3996 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3997 		    != 0)
3998 			return (EFAULT);
3999 #ifdef _MULTI_DATAMODEL
4000 		break;
4001 	}
4002 #endif
4003 
4004 	return (rv);
4005 }
4006