xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 3d9b1a2a543845425f021c3f896a07b1deff87c9)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  */
17 
18 /*
19  * blkdev driver for NVMe compliant storage devices
20  *
21  * This driver was written to conform to version 1.2.1 of the NVMe
22  * specification.  It may work with newer versions, but that is completely
23  * untested and disabled by default.
24  *
25  * The driver has only been tested on x86 systems and will not work on big-
26  * endian systems without changes to the code accessing registers and data
27  * structures used by the hardware.
28  *
29  *
30  * Interrupt Usage:
31  *
32  * The driver will use a FIXED interrupt while configuring the device as the
33  * specification requires. Later in the attach process it will switch to MSI-X
34  * or MSI if supported. The driver wants to have one interrupt vector per CPU,
35  * but it will work correctly if less are available. Interrupts can be shared
36  * by queues, the interrupt handler will iterate through the I/O queue array by
37  * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
38  * with one I/O queue. The interrupt handler will retrieve completed commands
39  * from all queues sharing an interrupt vector and will post them to a taskq
40  * for completion processing.
41  *
42  *
43  * Command Processing:
44  *
45  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
46  * to 65536 I/O commands. The driver will configure one I/O queue pair per
47  * available interrupt vector, with the queue length usually much smaller than
48  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
49  * interrupt vectors will be used.
50  *
51  * Additionally the hardware provides a single special admin queue pair that can
52  * hold up to 4096 admin commands.
53  *
54  * From the hardware perspective both queues of a queue pair are independent,
55  * but they share some driver state: the command array (holding pointers to
56  * commands currently being processed by the hardware) and the active command
57  * counter. Access to the submission side of a queue pair and the shared state
58  * is protected by nq_mutex. The completion side of a queue pair does not need
59  * that protection apart from its access to the shared state; it is called only
60  * in the interrupt handler which does not run concurrently for the same
61  * interrupt vector.
62  *
63  * When a command is submitted to a queue pair the active command counter is
64  * incremented and a pointer to the command is stored in the command array. The
65  * array index is used as command identifier (CID) in the submission queue
66  * entry. Some commands may take a very long time to complete, and if the queue
67  * wraps around in that time a submission may find the next array slot to still
68  * be used by a long-running command. In this case the array is sequentially
69  * searched for the next free slot. The length of the command array is the same
70  * as the configured queue length.
71  *
72  *
73  * Namespace Support:
74  *
75  * NVMe devices can have multiple namespaces, each being a independent data
76  * store. The driver supports multiple namespaces and creates a blkdev interface
77  * for each namespace found. Namespaces can have various attributes to support
78  * thin provisioning and protection information. This driver does not support
79  * any of this and ignores namespaces that have these attributes.
80  *
81  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
82  * (EUI64). This driver uses the EUI64 if present to generate the devid and
83  * passes it to blkdev to use it in the device node names. As this is currently
84  * untested namespaces with EUI64 are ignored by default.
85  *
86  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
87  * single controller. This is an artificial limit imposed by the driver to be
88  * able to address a reasonable number of controllers and namespaces using a
89  * 32bit minor node number.
90  *
91  *
92  * Minor nodes:
93  *
94  * For each NVMe device the driver exposes one minor node for the controller and
95  * one minor node for each namespace. The only operations supported by those
96  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
97  * interface for the nvmeadm(1M) utility.
98  *
99  *
100  * Blkdev Interface:
101  *
102  * This driver uses blkdev to do all the heavy lifting involved with presenting
103  * a disk device to the system. As a result, the processing of I/O requests is
104  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
105  * setup, and splitting of transfers into manageable chunks.
106  *
107  * I/O requests coming in from blkdev are turned into NVM commands and posted to
108  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
109  * queues. There is currently no timeout handling of I/O commands.
110  *
111  * Blkdev also supports querying device/media information and generating a
112  * devid. The driver reports the best block size as determined by the namespace
113  * format back to blkdev as physical block size to support partition and block
114  * alignment. The devid is either based on the namespace EUI64, if present, or
115  * composed using the device vendor ID, model number, serial number, and the
116  * namespace ID.
117  *
118  *
119  * Error Handling:
120  *
121  * Error handling is currently limited to detecting fatal hardware errors,
122  * either by asynchronous events, or synchronously through command status or
123  * admin command timeouts. In case of severe errors the device is fenced off,
124  * all further requests will return EIO. FMA is then called to fault the device.
125  *
126  * The hardware has a limit for outstanding asynchronous event requests. Before
127  * this limit is known the driver assumes it is at least 1 and posts a single
128  * asynchronous request. Later when the limit is known more asynchronous event
129  * requests are posted to allow quicker reception of error information. When an
130  * asynchronous event is posted by the hardware the driver will parse the error
131  * status fields and log information or fault the device, depending on the
132  * severity of the asynchronous event. The asynchronous event request is then
133  * reused and posted to the admin queue again.
134  *
135  * On command completion the command status is checked for errors. In case of
136  * errors indicating a driver bug the driver panics. Almost all other error
137  * status values just cause EIO to be returned.
138  *
139  * Command timeouts are currently detected for all admin commands except
140  * asynchronous event requests. If a command times out and the hardware appears
141  * to be healthy the driver attempts to abort the command. If this fails the
142  * driver assumes the device to be dead, fences it off, and calls FMA to retire
143  * it. In general admin commands are issued at attach time only. No timeout
144  * handling of normal I/O commands is presently done.
145  *
146  * In some cases it may be possible that the ABORT command times out, too. In
147  * that case the device is also declared dead and fenced off.
148  *
149  *
150  * Quiesce / Fast Reboot:
151  *
152  * The driver currently does not support fast reboot. A quiesce(9E) entry point
153  * is still provided which is used to send a shutdown notification to the
154  * device.
155  *
156  *
157  * Driver Configuration:
158  *
159  * The following driver properties can be changed to control some aspects of the
160  * drivers operation:
161  * - strict-version: can be set to 0 to allow devices conforming to newer
162  *   versions or namespaces with EUI64 to be used
163  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
164  *   specific command status as a fatal error leading device faulting
165  * - admin-queue-len: the maximum length of the admin queue (16-4096)
166  * - io-queue-len: the maximum length of the I/O queues (16-65536)
167  * - async-event-limit: the maximum number of asynchronous event requests to be
168  *   posted by the driver
169  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
170  *   cache
171  * - min-phys-block-size: the minimum physical block size to report to blkdev,
172  *   which is among other things the basis for ZFS vdev ashift
173  *
174  *
175  * TODO:
176  * - figure out sane default for I/O queue depth reported to blkdev
177  * - polled I/O support to support kernel core dumping
178  * - FMA handling of media errors
179  * - support for devices supporting very large I/O requests using chained PRPs
180  * - support for configuring hardware parameters like interrupt coalescing
181  * - support for media formatting and hard partitioning into namespaces
182  * - support for big-endian systems
183  * - support for fast reboot
184  * - support for firmware updates
185  * - support for NVMe Subsystem Reset (1.1)
186  * - support for Scatter/Gather lists (1.1)
187  * - support for Reservations (1.1)
188  * - support for power management
189  */
190 
191 #include <sys/byteorder.h>
192 #ifdef _BIG_ENDIAN
193 #error nvme driver needs porting for big-endian platforms
194 #endif
195 
196 #include <sys/modctl.h>
197 #include <sys/conf.h>
198 #include <sys/devops.h>
199 #include <sys/ddi.h>
200 #include <sys/sunddi.h>
201 #include <sys/sunndi.h>
202 #include <sys/bitmap.h>
203 #include <sys/sysmacros.h>
204 #include <sys/param.h>
205 #include <sys/varargs.h>
206 #include <sys/cpuvar.h>
207 #include <sys/disp.h>
208 #include <sys/blkdev.h>
209 #include <sys/atomic.h>
210 #include <sys/archsystm.h>
211 #include <sys/sata/sata_hba.h>
212 #include <sys/stat.h>
213 #include <sys/policy.h>
214 
215 #include <sys/nvme.h>
216 
217 #ifdef __x86
218 #include <sys/x86_archext.h>
219 #endif
220 
221 #include "nvme_reg.h"
222 #include "nvme_var.h"
223 
224 
225 /* NVMe spec version supported */
226 static const int nvme_version_major = 1;
227 static const int nvme_version_minor = 2;
228 
229 /* tunable for admin command timeout in seconds, default is 1s */
230 int nvme_admin_cmd_timeout = 1;
231 
232 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
233 int nvme_format_cmd_timeout = 600;
234 
235 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
236 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
237 static int nvme_quiesce(dev_info_t *);
238 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
239 static int nvme_setup_interrupts(nvme_t *, int, int);
240 static void nvme_release_interrupts(nvme_t *);
241 static uint_t nvme_intr(caddr_t, caddr_t);
242 
243 static void nvme_shutdown(nvme_t *, int, boolean_t);
244 static boolean_t nvme_reset(nvme_t *, boolean_t);
245 static int nvme_init(nvme_t *);
246 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
247 static void nvme_free_cmd(nvme_cmd_t *);
248 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
249     bd_xfer_t *);
250 static int nvme_admin_cmd(nvme_cmd_t *, int);
251 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
252 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
253 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
254 static void nvme_wakeup_cmd(void *);
255 static void nvme_async_event_task(void *);
256 
257 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
258 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
259 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
260 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
261 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
262 static inline int nvme_check_cmd_status(nvme_cmd_t *);
263 
264 static void nvme_abort_cmd(nvme_cmd_t *);
265 static int nvme_async_event(nvme_t *);
266 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
267     boolean_t, uint8_t);
268 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
269 static void *nvme_identify(nvme_t *, uint32_t);
270 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
271     uint32_t *);
272 static boolean_t nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
273     void **, size_t *);
274 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t);
275 static int nvme_set_nqueues(nvme_t *, uint16_t);
276 
277 static void nvme_free_dma(nvme_dma_t *);
278 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
279     nvme_dma_t **);
280 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
281     nvme_dma_t **);
282 static void nvme_free_qpair(nvme_qpair_t *);
283 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
284 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
285 
286 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
287 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
288 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
289 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
290 
291 static boolean_t nvme_check_regs_hdl(nvme_t *);
292 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
293 
294 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
295 
296 static void nvme_bd_xfer_done(void *);
297 static void nvme_bd_driveinfo(void *, bd_drive_t *);
298 static int nvme_bd_mediainfo(void *, bd_media_t *);
299 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
300 static int nvme_bd_read(void *, bd_xfer_t *);
301 static int nvme_bd_write(void *, bd_xfer_t *);
302 static int nvme_bd_sync(void *, bd_xfer_t *);
303 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
304 
305 static int nvme_prp_dma_constructor(void *, void *, int);
306 static void nvme_prp_dma_destructor(void *, void *);
307 
308 static void nvme_prepare_devid(nvme_t *, uint32_t);
309 
310 static int nvme_open(dev_t *, int, int, cred_t *);
311 static int nvme_close(dev_t, int, int, cred_t *);
312 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
313 
314 #define	NVME_MINOR_INST_SHIFT	14
315 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
316 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
317 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
318 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
319 
320 static void *nvme_state;
321 static kmem_cache_t *nvme_cmd_cache;
322 
323 /*
324  * DMA attributes for queue DMA memory
325  *
326  * Queue DMA memory must be page aligned. The maximum length of a queue is
327  * 65536 entries, and an entry can be 64 bytes long.
328  */
329 static ddi_dma_attr_t nvme_queue_dma_attr = {
330 	.dma_attr_version	= DMA_ATTR_V0,
331 	.dma_attr_addr_lo	= 0,
332 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
333 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
334 	.dma_attr_align		= 0x1000,
335 	.dma_attr_burstsizes	= 0x7ff,
336 	.dma_attr_minxfer	= 0x1000,
337 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
338 	.dma_attr_seg		= 0xffffffffffffffffULL,
339 	.dma_attr_sgllen	= 1,
340 	.dma_attr_granular	= 1,
341 	.dma_attr_flags		= 0,
342 };
343 
344 /*
345  * DMA attributes for transfers using Physical Region Page (PRP) entries
346  *
347  * A PRP entry describes one page of DMA memory using the page size specified
348  * in the controller configuration's memory page size register (CC.MPS). It uses
349  * a 64bit base address aligned to this page size. There is no limitation on
350  * chaining PRPs together for arbitrarily large DMA transfers.
351  */
352 static ddi_dma_attr_t nvme_prp_dma_attr = {
353 	.dma_attr_version	= DMA_ATTR_V0,
354 	.dma_attr_addr_lo	= 0,
355 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
356 	.dma_attr_count_max	= 0xfff,
357 	.dma_attr_align		= 0x1000,
358 	.dma_attr_burstsizes	= 0x7ff,
359 	.dma_attr_minxfer	= 0x1000,
360 	.dma_attr_maxxfer	= 0x1000,
361 	.dma_attr_seg		= 0xfff,
362 	.dma_attr_sgllen	= -1,
363 	.dma_attr_granular	= 1,
364 	.dma_attr_flags		= 0,
365 };
366 
367 /*
368  * DMA attributes for transfers using scatter/gather lists
369  *
370  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
371  * 32bit length field. SGL Segment and SGL Last Segment entries require the
372  * length to be a multiple of 16 bytes.
373  */
374 static ddi_dma_attr_t nvme_sgl_dma_attr = {
375 	.dma_attr_version	= DMA_ATTR_V0,
376 	.dma_attr_addr_lo	= 0,
377 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
378 	.dma_attr_count_max	= 0xffffffffUL,
379 	.dma_attr_align		= 1,
380 	.dma_attr_burstsizes	= 0x7ff,
381 	.dma_attr_minxfer	= 0x10,
382 	.dma_attr_maxxfer	= 0xfffffffffULL,
383 	.dma_attr_seg		= 0xffffffffffffffffULL,
384 	.dma_attr_sgllen	= -1,
385 	.dma_attr_granular	= 0x10,
386 	.dma_attr_flags		= 0
387 };
388 
389 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
390 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
391 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
392 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
393 };
394 
395 static struct cb_ops nvme_cb_ops = {
396 	.cb_open	= nvme_open,
397 	.cb_close	= nvme_close,
398 	.cb_strategy	= nodev,
399 	.cb_print	= nodev,
400 	.cb_dump	= nodev,
401 	.cb_read	= nodev,
402 	.cb_write	= nodev,
403 	.cb_ioctl	= nvme_ioctl,
404 	.cb_devmap	= nodev,
405 	.cb_mmap	= nodev,
406 	.cb_segmap	= nodev,
407 	.cb_chpoll	= nochpoll,
408 	.cb_prop_op	= ddi_prop_op,
409 	.cb_str		= 0,
410 	.cb_flag	= D_NEW | D_MP,
411 	.cb_rev		= CB_REV,
412 	.cb_aread	= nodev,
413 	.cb_awrite	= nodev
414 };
415 
416 static struct dev_ops nvme_dev_ops = {
417 	.devo_rev	= DEVO_REV,
418 	.devo_refcnt	= 0,
419 	.devo_getinfo	= ddi_no_info,
420 	.devo_identify	= nulldev,
421 	.devo_probe	= nulldev,
422 	.devo_attach	= nvme_attach,
423 	.devo_detach	= nvme_detach,
424 	.devo_reset	= nodev,
425 	.devo_cb_ops	= &nvme_cb_ops,
426 	.devo_bus_ops	= NULL,
427 	.devo_power	= NULL,
428 	.devo_quiesce	= nvme_quiesce,
429 };
430 
431 static struct modldrv nvme_modldrv = {
432 	.drv_modops	= &mod_driverops,
433 	.drv_linkinfo	= "NVMe v1.1b",
434 	.drv_dev_ops	= &nvme_dev_ops
435 };
436 
437 static struct modlinkage nvme_modlinkage = {
438 	.ml_rev		= MODREV_1,
439 	.ml_linkage	= { &nvme_modldrv, NULL }
440 };
441 
442 static bd_ops_t nvme_bd_ops = {
443 	.o_version	= BD_OPS_VERSION_0,
444 	.o_drive_info	= nvme_bd_driveinfo,
445 	.o_media_info	= nvme_bd_mediainfo,
446 	.o_devid_init	= nvme_bd_devid,
447 	.o_sync_cache	= nvme_bd_sync,
448 	.o_read		= nvme_bd_read,
449 	.o_write	= nvme_bd_write,
450 };
451 
452 int
453 _init(void)
454 {
455 	int error;
456 
457 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
458 	if (error != DDI_SUCCESS)
459 		return (error);
460 
461 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
462 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
463 
464 	bd_mod_init(&nvme_dev_ops);
465 
466 	error = mod_install(&nvme_modlinkage);
467 	if (error != DDI_SUCCESS) {
468 		ddi_soft_state_fini(&nvme_state);
469 		bd_mod_fini(&nvme_dev_ops);
470 	}
471 
472 	return (error);
473 }
474 
475 int
476 _fini(void)
477 {
478 	int error;
479 
480 	error = mod_remove(&nvme_modlinkage);
481 	if (error == DDI_SUCCESS) {
482 		ddi_soft_state_fini(&nvme_state);
483 		kmem_cache_destroy(nvme_cmd_cache);
484 		bd_mod_fini(&nvme_dev_ops);
485 	}
486 
487 	return (error);
488 }
489 
490 int
491 _info(struct modinfo *modinfop)
492 {
493 	return (mod_info(&nvme_modlinkage, modinfop));
494 }
495 
496 static inline void
497 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
498 {
499 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
500 
501 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
502 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
503 }
504 
505 static inline void
506 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
507 {
508 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
509 
510 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
511 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
512 }
513 
514 static inline uint64_t
515 nvme_get64(nvme_t *nvme, uintptr_t reg)
516 {
517 	uint64_t val;
518 
519 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
520 
521 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
522 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
523 
524 	return (val);
525 }
526 
527 static inline uint32_t
528 nvme_get32(nvme_t *nvme, uintptr_t reg)
529 {
530 	uint32_t val;
531 
532 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
533 
534 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
535 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
536 
537 	return (val);
538 }
539 
540 static boolean_t
541 nvme_check_regs_hdl(nvme_t *nvme)
542 {
543 	ddi_fm_error_t error;
544 
545 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
546 
547 	if (error.fme_status != DDI_FM_OK)
548 		return (B_TRUE);
549 
550 	return (B_FALSE);
551 }
552 
553 static boolean_t
554 nvme_check_dma_hdl(nvme_dma_t *dma)
555 {
556 	ddi_fm_error_t error;
557 
558 	if (dma == NULL)
559 		return (B_FALSE);
560 
561 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
562 
563 	if (error.fme_status != DDI_FM_OK)
564 		return (B_TRUE);
565 
566 	return (B_FALSE);
567 }
568 
569 static void
570 nvme_free_dma_common(nvme_dma_t *dma)
571 {
572 	if (dma->nd_dmah != NULL)
573 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
574 	if (dma->nd_acch != NULL)
575 		ddi_dma_mem_free(&dma->nd_acch);
576 	if (dma->nd_dmah != NULL)
577 		ddi_dma_free_handle(&dma->nd_dmah);
578 }
579 
580 static void
581 nvme_free_dma(nvme_dma_t *dma)
582 {
583 	nvme_free_dma_common(dma);
584 	kmem_free(dma, sizeof (*dma));
585 }
586 
587 /* ARGSUSED */
588 static void
589 nvme_prp_dma_destructor(void *buf, void *private)
590 {
591 	nvme_dma_t *dma = (nvme_dma_t *)buf;
592 
593 	nvme_free_dma_common(dma);
594 }
595 
596 static int
597 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
598     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
599 {
600 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
601 	    &dma->nd_dmah) != DDI_SUCCESS) {
602 		/*
603 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
604 		 * the only other possible error is DDI_DMA_BADATTR which
605 		 * indicates a driver bug which should cause a panic.
606 		 */
607 		dev_err(nvme->n_dip, CE_PANIC,
608 		    "!failed to get DMA handle, check DMA attributes");
609 		return (DDI_FAILURE);
610 	}
611 
612 	/*
613 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
614 	 * or the flags are conflicting, which isn't the case here.
615 	 */
616 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
617 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
618 	    &dma->nd_len, &dma->nd_acch);
619 
620 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
621 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
622 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
623 		dev_err(nvme->n_dip, CE_WARN,
624 		    "!failed to bind DMA memory");
625 		atomic_inc_32(&nvme->n_dma_bind_err);
626 		nvme_free_dma_common(dma);
627 		return (DDI_FAILURE);
628 	}
629 
630 	return (DDI_SUCCESS);
631 }
632 
633 static int
634 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
635     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
636 {
637 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
638 
639 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
640 	    DDI_SUCCESS) {
641 		*ret = NULL;
642 		kmem_free(dma, sizeof (nvme_dma_t));
643 		return (DDI_FAILURE);
644 	}
645 
646 	bzero(dma->nd_memp, dma->nd_len);
647 
648 	*ret = dma;
649 	return (DDI_SUCCESS);
650 }
651 
652 /* ARGSUSED */
653 static int
654 nvme_prp_dma_constructor(void *buf, void *private, int flags)
655 {
656 	nvme_dma_t *dma = (nvme_dma_t *)buf;
657 	nvme_t *nvme = (nvme_t *)private;
658 
659 	dma->nd_dmah = NULL;
660 	dma->nd_acch = NULL;
661 
662 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
663 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
664 		return (-1);
665 	}
666 
667 	ASSERT(dma->nd_ncookie == 1);
668 
669 	dma->nd_cached = B_TRUE;
670 
671 	return (0);
672 }
673 
674 static int
675 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
676     uint_t flags, nvme_dma_t **dma)
677 {
678 	uint32_t len = nentry * qe_len;
679 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
680 
681 	len = roundup(len, nvme->n_pagesize);
682 
683 	q_dma_attr.dma_attr_minxfer = len;
684 
685 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
686 	    != DDI_SUCCESS) {
687 		dev_err(nvme->n_dip, CE_WARN,
688 		    "!failed to get DMA memory for queue");
689 		goto fail;
690 	}
691 
692 	if ((*dma)->nd_ncookie != 1) {
693 		dev_err(nvme->n_dip, CE_WARN,
694 		    "!got too many cookies for queue DMA");
695 		goto fail;
696 	}
697 
698 	return (DDI_SUCCESS);
699 
700 fail:
701 	if (*dma) {
702 		nvme_free_dma(*dma);
703 		*dma = NULL;
704 	}
705 
706 	return (DDI_FAILURE);
707 }
708 
709 static void
710 nvme_free_qpair(nvme_qpair_t *qp)
711 {
712 	int i;
713 
714 	mutex_destroy(&qp->nq_mutex);
715 
716 	if (qp->nq_sqdma != NULL)
717 		nvme_free_dma(qp->nq_sqdma);
718 	if (qp->nq_cqdma != NULL)
719 		nvme_free_dma(qp->nq_cqdma);
720 
721 	if (qp->nq_active_cmds > 0)
722 		for (i = 0; i != qp->nq_nentry; i++)
723 			if (qp->nq_cmd[i] != NULL)
724 				nvme_free_cmd(qp->nq_cmd[i]);
725 
726 	if (qp->nq_cmd != NULL)
727 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
728 
729 	kmem_free(qp, sizeof (nvme_qpair_t));
730 }
731 
732 static int
733 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
734     int idx)
735 {
736 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
737 
738 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
739 	    DDI_INTR_PRI(nvme->n_intr_pri));
740 
741 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
742 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
743 		goto fail;
744 
745 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
746 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
747 		goto fail;
748 
749 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
750 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
751 	qp->nq_nentry = nentry;
752 
753 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
754 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
755 
756 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
757 	qp->nq_next_cmd = 0;
758 
759 	*nqp = qp;
760 	return (DDI_SUCCESS);
761 
762 fail:
763 	nvme_free_qpair(qp);
764 	*nqp = NULL;
765 
766 	return (DDI_FAILURE);
767 }
768 
769 static nvme_cmd_t *
770 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
771 {
772 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
773 
774 	if (cmd == NULL)
775 		return (cmd);
776 
777 	bzero(cmd, sizeof (nvme_cmd_t));
778 
779 	cmd->nc_nvme = nvme;
780 
781 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
782 	    DDI_INTR_PRI(nvme->n_intr_pri));
783 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
784 
785 	return (cmd);
786 }
787 
788 static void
789 nvme_free_cmd(nvme_cmd_t *cmd)
790 {
791 	if (cmd->nc_dma) {
792 		if (cmd->nc_dma->nd_cached)
793 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
794 			    cmd->nc_dma);
795 		else
796 			nvme_free_dma(cmd->nc_dma);
797 		cmd->nc_dma = NULL;
798 	}
799 
800 	cv_destroy(&cmd->nc_cv);
801 	mutex_destroy(&cmd->nc_mutex);
802 
803 	kmem_cache_free(nvme_cmd_cache, cmd);
804 }
805 
806 static int
807 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
808 {
809 	nvme_reg_sqtdbl_t tail = { 0 };
810 
811 	mutex_enter(&qp->nq_mutex);
812 
813 	if (qp->nq_active_cmds == qp->nq_nentry) {
814 		mutex_exit(&qp->nq_mutex);
815 		return (DDI_FAILURE);
816 	}
817 
818 	cmd->nc_completed = B_FALSE;
819 
820 	/*
821 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
822 	 * slot. If the slot is already occupied advance to the next slot and
823 	 * try again. This can happen for long running commands like async event
824 	 * requests.
825 	 */
826 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
827 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
828 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
829 
830 	qp->nq_active_cmds++;
831 
832 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
833 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
834 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
835 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
836 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
837 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
838 
839 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
840 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
841 
842 	mutex_exit(&qp->nq_mutex);
843 	return (DDI_SUCCESS);
844 }
845 
846 static nvme_cmd_t *
847 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
848 {
849 	nvme_reg_cqhdbl_t head = { 0 };
850 
851 	nvme_cqe_t *cqe;
852 	nvme_cmd_t *cmd;
853 
854 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
855 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
856 
857 	cqe = &qp->nq_cq[qp->nq_cqhead];
858 
859 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
860 	if (cqe->cqe_sf.sf_p == qp->nq_phase)
861 		return (NULL);
862 
863 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
864 	ASSERT(cqe->cqe_cid < qp->nq_nentry);
865 
866 	mutex_enter(&qp->nq_mutex);
867 	cmd = qp->nq_cmd[cqe->cqe_cid];
868 	qp->nq_cmd[cqe->cqe_cid] = NULL;
869 	qp->nq_active_cmds--;
870 	mutex_exit(&qp->nq_mutex);
871 
872 	ASSERT(cmd != NULL);
873 	ASSERT(cmd->nc_nvme == nvme);
874 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
875 	ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
876 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
877 
878 	qp->nq_sqhead = cqe->cqe_sqhd;
879 
880 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
881 
882 	/* Toggle phase on wrap-around. */
883 	if (qp->nq_cqhead == 0)
884 		qp->nq_phase = qp->nq_phase ? 0 : 1;
885 
886 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
887 
888 	return (cmd);
889 }
890 
891 static int
892 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
893 {
894 	nvme_cqe_t *cqe = &cmd->nc_cqe;
895 
896 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
897 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
898 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
899 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
900 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
901 
902 	if (cmd->nc_xfer != NULL)
903 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
904 
905 	if (cmd->nc_nvme->n_strict_version) {
906 		cmd->nc_nvme->n_dead = B_TRUE;
907 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
908 	}
909 
910 	return (EIO);
911 }
912 
913 static int
914 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
915 {
916 	nvme_cqe_t *cqe = &cmd->nc_cqe;
917 
918 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
919 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
920 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
921 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
922 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
923 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
924 		cmd->nc_nvme->n_dead = B_TRUE;
925 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
926 	}
927 
928 	return (EIO);
929 }
930 
931 static int
932 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
933 {
934 	nvme_cqe_t *cqe = &cmd->nc_cqe;
935 
936 	switch (cqe->cqe_sf.sf_sc) {
937 	case NVME_CQE_SC_INT_NVM_WRITE:
938 		/* write fail */
939 		/* TODO: post ereport */
940 		if (cmd->nc_xfer != NULL)
941 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
942 		return (EIO);
943 
944 	case NVME_CQE_SC_INT_NVM_READ:
945 		/* read fail */
946 		/* TODO: post ereport */
947 		if (cmd->nc_xfer != NULL)
948 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
949 		return (EIO);
950 
951 	default:
952 		return (nvme_check_unknown_cmd_status(cmd));
953 	}
954 }
955 
956 static int
957 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
958 {
959 	nvme_cqe_t *cqe = &cmd->nc_cqe;
960 
961 	switch (cqe->cqe_sf.sf_sc) {
962 	case NVME_CQE_SC_GEN_SUCCESS:
963 		return (0);
964 
965 	/*
966 	 * Errors indicating a bug in the driver should cause a panic.
967 	 */
968 	case NVME_CQE_SC_GEN_INV_OPC:
969 		/* Invalid Command Opcode */
970 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
971 		    "invalid opcode in cmd %p", (void *)cmd);
972 		return (0);
973 
974 	case NVME_CQE_SC_GEN_INV_FLD:
975 		/* Invalid Field in Command */
976 		if (!cmd->nc_dontpanic)
977 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
978 			    "programming error: invalid field in cmd %p",
979 			    (void *)cmd);
980 		return (EIO);
981 
982 	case NVME_CQE_SC_GEN_ID_CNFL:
983 		/* Command ID Conflict */
984 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
985 		    "cmd ID conflict in cmd %p", (void *)cmd);
986 		return (0);
987 
988 	case NVME_CQE_SC_GEN_INV_NS:
989 		/* Invalid Namespace or Format */
990 		if (!cmd->nc_dontpanic)
991 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
992 			    "programming error: " "invalid NS/format in cmd %p",
993 			    (void *)cmd);
994 		return (EINVAL);
995 
996 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
997 		/* LBA Out Of Range */
998 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
999 		    "LBA out of range in cmd %p", (void *)cmd);
1000 		return (0);
1001 
1002 	/*
1003 	 * Non-fatal errors, handle gracefully.
1004 	 */
1005 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1006 		/* Data Transfer Error (DMA) */
1007 		/* TODO: post ereport */
1008 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1009 		if (cmd->nc_xfer != NULL)
1010 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1011 		return (EIO);
1012 
1013 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1014 		/*
1015 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1016 		 * detailed error information is returned as async event,
1017 		 * so we pretty much ignore the error here and handle it
1018 		 * in the async event handler.
1019 		 */
1020 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1021 		if (cmd->nc_xfer != NULL)
1022 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1023 		return (EIO);
1024 
1025 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1026 		/*
1027 		 * Command Abort Requested. This normally happens only when a
1028 		 * command times out.
1029 		 */
1030 		/* TODO: post ereport or change blkdev to handle this? */
1031 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1032 		return (ECANCELED);
1033 
1034 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1035 		/* Command Aborted due to Power Loss Notification */
1036 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1037 		cmd->nc_nvme->n_dead = B_TRUE;
1038 		return (EIO);
1039 
1040 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1041 		/* Command Aborted due to SQ Deletion */
1042 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1043 		return (EIO);
1044 
1045 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1046 		/* Capacity Exceeded */
1047 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1048 		if (cmd->nc_xfer != NULL)
1049 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1050 		return (EIO);
1051 
1052 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1053 		/* Namespace Not Ready */
1054 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1055 		if (cmd->nc_xfer != NULL)
1056 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1057 		return (EIO);
1058 
1059 	default:
1060 		return (nvme_check_unknown_cmd_status(cmd));
1061 	}
1062 }
1063 
1064 static int
1065 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1066 {
1067 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1068 
1069 	switch (cqe->cqe_sf.sf_sc) {
1070 	case NVME_CQE_SC_SPC_INV_CQ:
1071 		/* Completion Queue Invalid */
1072 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1073 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1074 		return (EINVAL);
1075 
1076 	case NVME_CQE_SC_SPC_INV_QID:
1077 		/* Invalid Queue Identifier */
1078 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1079 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1080 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1081 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1082 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1083 		return (EINVAL);
1084 
1085 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1086 		/* Max Queue Size Exceeded */
1087 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1088 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1089 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1090 		return (EINVAL);
1091 
1092 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1093 		/* Abort Command Limit Exceeded */
1094 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1095 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1096 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1097 		return (0);
1098 
1099 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1100 		/* Async Event Request Limit Exceeded */
1101 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1102 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1103 		    "async event request limit exceeded in cmd %p",
1104 		    (void *)cmd);
1105 		return (0);
1106 
1107 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1108 		/* Invalid Interrupt Vector */
1109 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1110 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1111 		return (EINVAL);
1112 
1113 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1114 		/* Invalid Log Page */
1115 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1116 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1117 		return (EINVAL);
1118 
1119 	case NVME_CQE_SC_SPC_INV_FORMAT:
1120 		/* Invalid Format */
1121 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1122 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1123 		if (cmd->nc_xfer != NULL)
1124 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1125 		return (EINVAL);
1126 
1127 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1128 		/* Invalid Queue Deletion */
1129 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1130 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1131 		return (EINVAL);
1132 
1133 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1134 		/* Conflicting Attributes */
1135 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1136 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1137 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1138 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1139 		if (cmd->nc_xfer != NULL)
1140 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1141 		return (EINVAL);
1142 
1143 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1144 		/* Invalid Protection Information */
1145 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1146 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1147 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1148 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1149 		if (cmd->nc_xfer != NULL)
1150 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1151 		return (EINVAL);
1152 
1153 	case NVME_CQE_SC_SPC_NVM_READONLY:
1154 		/* Write to Read Only Range */
1155 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1156 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1157 		if (cmd->nc_xfer != NULL)
1158 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1159 		return (EROFS);
1160 
1161 	default:
1162 		return (nvme_check_unknown_cmd_status(cmd));
1163 	}
1164 }
1165 
1166 static inline int
1167 nvme_check_cmd_status(nvme_cmd_t *cmd)
1168 {
1169 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1170 
1171 	/* take a shortcut if everything is alright */
1172 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1173 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1174 		return (0);
1175 
1176 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1177 		return (nvme_check_generic_cmd_status(cmd));
1178 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1179 		return (nvme_check_specific_cmd_status(cmd));
1180 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1181 		return (nvme_check_integrity_cmd_status(cmd));
1182 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1183 		return (nvme_check_vendor_cmd_status(cmd));
1184 
1185 	return (nvme_check_unknown_cmd_status(cmd));
1186 }
1187 
1188 /*
1189  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1190  *
1191  * This functions takes care of cleaning up aborted commands. The command
1192  * status is checked to catch any fatal errors.
1193  */
1194 static void
1195 nvme_abort_cmd_cb(void *arg)
1196 {
1197 	nvme_cmd_t *cmd = arg;
1198 
1199 	/*
1200 	 * Grab the command mutex. Once we have it we hold the last reference
1201 	 * to the command and can safely free it.
1202 	 */
1203 	mutex_enter(&cmd->nc_mutex);
1204 	(void) nvme_check_cmd_status(cmd);
1205 	mutex_exit(&cmd->nc_mutex);
1206 
1207 	nvme_free_cmd(cmd);
1208 }
1209 
1210 static void
1211 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1212 {
1213 	nvme_t *nvme = abort_cmd->nc_nvme;
1214 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1215 	nvme_abort_cmd_t ac = { 0 };
1216 
1217 	sema_p(&nvme->n_abort_sema);
1218 
1219 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1220 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1221 
1222 	/*
1223 	 * Drop the mutex of the aborted command. From this point on
1224 	 * we must assume that the abort callback has freed the command.
1225 	 */
1226 	mutex_exit(&abort_cmd->nc_mutex);
1227 
1228 	cmd->nc_sqid = 0;
1229 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1230 	cmd->nc_callback = nvme_wakeup_cmd;
1231 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1232 
1233 	/*
1234 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1235 	 * the aborted command has completed (aborted or otherwise).
1236 	 */
1237 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1238 		sema_v(&nvme->n_abort_sema);
1239 		dev_err(nvme->n_dip, CE_WARN,
1240 		    "!nvme_admin_cmd failed for ABORT");
1241 		atomic_inc_32(&nvme->n_abort_failed);
1242 		return;
1243 	}
1244 	sema_v(&nvme->n_abort_sema);
1245 
1246 	if (nvme_check_cmd_status(cmd)) {
1247 		dev_err(nvme->n_dip, CE_WARN,
1248 		    "!ABORT failed with sct = %x, sc = %x",
1249 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1250 		atomic_inc_32(&nvme->n_abort_failed);
1251 	} else {
1252 		atomic_inc_32(&nvme->n_cmd_aborted);
1253 	}
1254 
1255 	nvme_free_cmd(cmd);
1256 }
1257 
1258 /*
1259  * nvme_wait_cmd -- wait for command completion or timeout
1260  *
1261  * Returns B_TRUE if the command completed normally.
1262  *
1263  * Returns B_FALSE if the command timed out and an abort was attempted. The
1264  * command mutex will be dropped and the command must be considered freed. The
1265  * freeing of the command is normally done by the abort command callback.
1266  *
1267  * In case of a serious error or a timeout of the abort command the hardware
1268  * will be declared dead and FMA will be notified.
1269  */
1270 static boolean_t
1271 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1272 {
1273 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1274 	nvme_t *nvme = cmd->nc_nvme;
1275 	nvme_reg_csts_t csts;
1276 
1277 	ASSERT(mutex_owned(&cmd->nc_mutex));
1278 
1279 	while (!cmd->nc_completed) {
1280 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1281 			break;
1282 	}
1283 
1284 	if (cmd->nc_completed)
1285 		return (B_TRUE);
1286 
1287 	/*
1288 	 * The command timed out. Change the callback to the cleanup function.
1289 	 */
1290 	cmd->nc_callback = nvme_abort_cmd_cb;
1291 
1292 	/*
1293 	 * Check controller for fatal status, any errors associated with the
1294 	 * register or DMA handle, or for a double timeout (abort command timed
1295 	 * out). If necessary log a warning and call FMA.
1296 	 */
1297 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1298 	dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1299 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1300 	atomic_inc_32(&nvme->n_cmd_timeout);
1301 
1302 	if (csts.b.csts_cfs ||
1303 	    nvme_check_regs_hdl(nvme) ||
1304 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1305 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1306 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1307 		nvme->n_dead = B_TRUE;
1308 		mutex_exit(&cmd->nc_mutex);
1309 	} else {
1310 		/*
1311 		 * Try to abort the command. The command mutex is released by
1312 		 * nvme_abort_cmd().
1313 		 * If the abort succeeds it will have freed the aborted command.
1314 		 * If the abort fails for other reasons we must assume that the
1315 		 * command may complete at any time, and the callback will free
1316 		 * it for us.
1317 		 */
1318 		nvme_abort_cmd(cmd);
1319 	}
1320 
1321 	return (B_FALSE);
1322 }
1323 
1324 static void
1325 nvme_wakeup_cmd(void *arg)
1326 {
1327 	nvme_cmd_t *cmd = arg;
1328 
1329 	mutex_enter(&cmd->nc_mutex);
1330 	/*
1331 	 * There is a slight chance that this command completed shortly after
1332 	 * the timeout was hit in nvme_wait_cmd() but before the callback was
1333 	 * changed. Catch that case here and clean up accordingly.
1334 	 */
1335 	if (cmd->nc_callback == nvme_abort_cmd_cb) {
1336 		mutex_exit(&cmd->nc_mutex);
1337 		nvme_abort_cmd_cb(cmd);
1338 		return;
1339 	}
1340 
1341 	cmd->nc_completed = B_TRUE;
1342 	cv_signal(&cmd->nc_cv);
1343 	mutex_exit(&cmd->nc_mutex);
1344 }
1345 
1346 static void
1347 nvme_async_event_task(void *arg)
1348 {
1349 	nvme_cmd_t *cmd = arg;
1350 	nvme_t *nvme = cmd->nc_nvme;
1351 	nvme_error_log_entry_t *error_log = NULL;
1352 	nvme_health_log_t *health_log = NULL;
1353 	size_t logsize = 0;
1354 	nvme_async_event_t event;
1355 	int ret;
1356 
1357 	/*
1358 	 * Check for errors associated with the async request itself. The only
1359 	 * command-specific error is "async event limit exceeded", which
1360 	 * indicates a programming error in the driver and causes a panic in
1361 	 * nvme_check_cmd_status().
1362 	 *
1363 	 * Other possible errors are various scenarios where the async request
1364 	 * was aborted, or internal errors in the device. Internal errors are
1365 	 * reported to FMA, the command aborts need no special handling here.
1366 	 */
1367 	if (nvme_check_cmd_status(cmd)) {
1368 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1369 		    "!async event request returned failure, sct = %x, "
1370 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1371 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1372 		    cmd->nc_cqe.cqe_sf.sf_m);
1373 
1374 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1375 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1376 			cmd->nc_nvme->n_dead = B_TRUE;
1377 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1378 			    DDI_SERVICE_LOST);
1379 		}
1380 		nvme_free_cmd(cmd);
1381 		return;
1382 	}
1383 
1384 
1385 	event.r = cmd->nc_cqe.cqe_dw0;
1386 
1387 	/* Clear CQE and re-submit the async request. */
1388 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1389 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1390 
1391 	if (ret != DDI_SUCCESS) {
1392 		dev_err(nvme->n_dip, CE_WARN,
1393 		    "!failed to resubmit async event request");
1394 		atomic_inc_32(&nvme->n_async_resubmit_failed);
1395 		nvme_free_cmd(cmd);
1396 	}
1397 
1398 	switch (event.b.ae_type) {
1399 	case NVME_ASYNC_TYPE_ERROR:
1400 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1401 			(void) nvme_get_logpage(nvme, (void **)&error_log,
1402 			    &logsize, event.b.ae_logpage);
1403 		} else {
1404 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1405 			    "async event reply: %d", event.b.ae_logpage);
1406 			atomic_inc_32(&nvme->n_wrong_logpage);
1407 		}
1408 
1409 		switch (event.b.ae_info) {
1410 		case NVME_ASYNC_ERROR_INV_SQ:
1411 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1412 			    "invalid submission queue");
1413 			return;
1414 
1415 		case NVME_ASYNC_ERROR_INV_DBL:
1416 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1417 			    "invalid doorbell write value");
1418 			return;
1419 
1420 		case NVME_ASYNC_ERROR_DIAGFAIL:
1421 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1422 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1423 			nvme->n_dead = B_TRUE;
1424 			atomic_inc_32(&nvme->n_diagfail_event);
1425 			break;
1426 
1427 		case NVME_ASYNC_ERROR_PERSISTENT:
1428 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1429 			    "device error");
1430 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1431 			nvme->n_dead = B_TRUE;
1432 			atomic_inc_32(&nvme->n_persistent_event);
1433 			break;
1434 
1435 		case NVME_ASYNC_ERROR_TRANSIENT:
1436 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1437 			    "device error");
1438 			/* TODO: send ereport */
1439 			atomic_inc_32(&nvme->n_transient_event);
1440 			break;
1441 
1442 		case NVME_ASYNC_ERROR_FW_LOAD:
1443 			dev_err(nvme->n_dip, CE_WARN,
1444 			    "!firmware image load error");
1445 			atomic_inc_32(&nvme->n_fw_load_event);
1446 			break;
1447 		}
1448 		break;
1449 
1450 	case NVME_ASYNC_TYPE_HEALTH:
1451 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1452 			(void) nvme_get_logpage(nvme, (void **)&health_log,
1453 			    &logsize, event.b.ae_logpage, -1);
1454 		} else {
1455 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1456 			    "async event reply: %d", event.b.ae_logpage);
1457 			atomic_inc_32(&nvme->n_wrong_logpage);
1458 		}
1459 
1460 		switch (event.b.ae_info) {
1461 		case NVME_ASYNC_HEALTH_RELIABILITY:
1462 			dev_err(nvme->n_dip, CE_WARN,
1463 			    "!device reliability compromised");
1464 			/* TODO: send ereport */
1465 			atomic_inc_32(&nvme->n_reliability_event);
1466 			break;
1467 
1468 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1469 			dev_err(nvme->n_dip, CE_WARN,
1470 			    "!temperature above threshold");
1471 			/* TODO: send ereport */
1472 			atomic_inc_32(&nvme->n_temperature_event);
1473 			break;
1474 
1475 		case NVME_ASYNC_HEALTH_SPARE:
1476 			dev_err(nvme->n_dip, CE_WARN,
1477 			    "!spare space below threshold");
1478 			/* TODO: send ereport */
1479 			atomic_inc_32(&nvme->n_spare_event);
1480 			break;
1481 		}
1482 		break;
1483 
1484 	case NVME_ASYNC_TYPE_VENDOR:
1485 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1486 		    "received, info = %x, logpage = %x", event.b.ae_info,
1487 		    event.b.ae_logpage);
1488 		atomic_inc_32(&nvme->n_vendor_event);
1489 		break;
1490 
1491 	default:
1492 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1493 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1494 		    event.b.ae_info, event.b.ae_logpage);
1495 		atomic_inc_32(&nvme->n_unknown_event);
1496 		break;
1497 	}
1498 
1499 	if (error_log)
1500 		kmem_free(error_log, logsize);
1501 
1502 	if (health_log)
1503 		kmem_free(health_log, logsize);
1504 }
1505 
1506 static int
1507 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1508 {
1509 	int ret;
1510 
1511 	mutex_enter(&cmd->nc_mutex);
1512 	ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1513 
1514 	if (ret != DDI_SUCCESS) {
1515 		mutex_exit(&cmd->nc_mutex);
1516 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1517 		    "!nvme_submit_cmd failed");
1518 		atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1519 		nvme_free_cmd(cmd);
1520 		return (DDI_FAILURE);
1521 	}
1522 
1523 	if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1524 		/*
1525 		 * The command timed out. An abort command was posted that
1526 		 * will take care of the cleanup.
1527 		 */
1528 		return (DDI_FAILURE);
1529 	}
1530 	mutex_exit(&cmd->nc_mutex);
1531 
1532 	return (DDI_SUCCESS);
1533 }
1534 
1535 static int
1536 nvme_async_event(nvme_t *nvme)
1537 {
1538 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1539 	int ret;
1540 
1541 	cmd->nc_sqid = 0;
1542 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1543 	cmd->nc_callback = nvme_async_event_task;
1544 
1545 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1546 
1547 	if (ret != DDI_SUCCESS) {
1548 		dev_err(nvme->n_dip, CE_WARN,
1549 		    "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1550 		nvme_free_cmd(cmd);
1551 		return (DDI_FAILURE);
1552 	}
1553 
1554 	return (DDI_SUCCESS);
1555 }
1556 
1557 static int
1558 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1559     uint8_t pi, boolean_t pil, uint8_t ses)
1560 {
1561 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1562 	nvme_format_nvm_t format_nvm = { 0 };
1563 	int ret;
1564 
1565 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1566 	format_nvm.b.fm_ms = ms ? 1 : 0;
1567 	format_nvm.b.fm_pi = pi & 0x7;
1568 	format_nvm.b.fm_pil = pil ? 1 : 0;
1569 	format_nvm.b.fm_ses = ses & 0x7;
1570 
1571 	cmd->nc_sqid = 0;
1572 	cmd->nc_callback = nvme_wakeup_cmd;
1573 	cmd->nc_sqe.sqe_nsid = nsid;
1574 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1575 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1576 
1577 	/*
1578 	 * Some devices like Samsung SM951 don't allow formatting of all
1579 	 * namespaces in one command. Handle that gracefully.
1580 	 */
1581 	if (nsid == (uint32_t)-1)
1582 		cmd->nc_dontpanic = B_TRUE;
1583 
1584 	if ((ret = nvme_admin_cmd(cmd, nvme_format_cmd_timeout))
1585 	    != DDI_SUCCESS) {
1586 		dev_err(nvme->n_dip, CE_WARN,
1587 		    "!nvme_admin_cmd failed for FORMAT NVM");
1588 		return (EIO);
1589 	}
1590 
1591 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1592 		dev_err(nvme->n_dip, CE_WARN,
1593 		    "!FORMAT failed with sct = %x, sc = %x",
1594 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1595 	}
1596 
1597 	nvme_free_cmd(cmd);
1598 	return (ret);
1599 }
1600 
1601 static int
1602 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1603     ...)
1604 {
1605 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1606 	nvme_getlogpage_t getlogpage = { 0 };
1607 	va_list ap;
1608 	int ret = DDI_FAILURE;
1609 
1610 	va_start(ap, logpage);
1611 
1612 	cmd->nc_sqid = 0;
1613 	cmd->nc_callback = nvme_wakeup_cmd;
1614 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1615 
1616 	getlogpage.b.lp_lid = logpage;
1617 
1618 	switch (logpage) {
1619 	case NVME_LOGPAGE_ERROR:
1620 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1621 		/*
1622 		 * The GET LOG PAGE command can use at most 2 pages to return
1623 		 * data, PRP lists are not supported.
1624 		 */
1625 		*bufsize = MIN(2 * nvme->n_pagesize,
1626 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1627 		break;
1628 
1629 	case NVME_LOGPAGE_HEALTH:
1630 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1631 		*bufsize = sizeof (nvme_health_log_t);
1632 		break;
1633 
1634 	case NVME_LOGPAGE_FWSLOT:
1635 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1636 		*bufsize = sizeof (nvme_fwslot_log_t);
1637 		break;
1638 
1639 	default:
1640 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1641 		    logpage);
1642 		atomic_inc_32(&nvme->n_unknown_logpage);
1643 		goto fail;
1644 	}
1645 
1646 	va_end(ap);
1647 
1648 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1649 
1650 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1651 
1652 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1653 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1654 		dev_err(nvme->n_dip, CE_WARN,
1655 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1656 		goto fail;
1657 	}
1658 
1659 	if (cmd->nc_dma->nd_ncookie > 2) {
1660 		dev_err(nvme->n_dip, CE_WARN,
1661 		    "!too many DMA cookies for GET LOG PAGE");
1662 		atomic_inc_32(&nvme->n_too_many_cookies);
1663 		goto fail;
1664 	}
1665 
1666 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1667 	if (cmd->nc_dma->nd_ncookie > 1) {
1668 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1669 		    &cmd->nc_dma->nd_cookie);
1670 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1671 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1672 	}
1673 
1674 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1675 		dev_err(nvme->n_dip, CE_WARN,
1676 		    "!nvme_admin_cmd failed for GET LOG PAGE");
1677 		return (ret);
1678 	}
1679 
1680 	if (nvme_check_cmd_status(cmd)) {
1681 		dev_err(nvme->n_dip, CE_WARN,
1682 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1683 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1684 		goto fail;
1685 	}
1686 
1687 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1688 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1689 
1690 	ret = DDI_SUCCESS;
1691 
1692 fail:
1693 	nvme_free_cmd(cmd);
1694 
1695 	return (ret);
1696 }
1697 
1698 static void *
1699 nvme_identify(nvme_t *nvme, uint32_t nsid)
1700 {
1701 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1702 	void *buf = NULL;
1703 
1704 	cmd->nc_sqid = 0;
1705 	cmd->nc_callback = nvme_wakeup_cmd;
1706 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1707 	cmd->nc_sqe.sqe_nsid = nsid;
1708 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1709 
1710 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1711 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1712 		dev_err(nvme->n_dip, CE_WARN,
1713 		    "!nvme_zalloc_dma failed for IDENTIFY");
1714 		goto fail;
1715 	}
1716 
1717 	if (cmd->nc_dma->nd_ncookie > 2) {
1718 		dev_err(nvme->n_dip, CE_WARN,
1719 		    "!too many DMA cookies for IDENTIFY");
1720 		atomic_inc_32(&nvme->n_too_many_cookies);
1721 		goto fail;
1722 	}
1723 
1724 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1725 	if (cmd->nc_dma->nd_ncookie > 1) {
1726 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1727 		    &cmd->nc_dma->nd_cookie);
1728 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1729 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1730 	}
1731 
1732 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1733 		dev_err(nvme->n_dip, CE_WARN,
1734 		    "!nvme_admin_cmd failed for IDENTIFY");
1735 		return (NULL);
1736 	}
1737 
1738 	if (nvme_check_cmd_status(cmd)) {
1739 		dev_err(nvme->n_dip, CE_WARN,
1740 		    "!IDENTIFY failed with sct = %x, sc = %x",
1741 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1742 		goto fail;
1743 	}
1744 
1745 	buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1746 	bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1747 
1748 fail:
1749 	nvme_free_cmd(cmd);
1750 
1751 	return (buf);
1752 }
1753 
1754 static boolean_t
1755 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1756     uint32_t *res)
1757 {
1758 	_NOTE(ARGUNUSED(nsid));
1759 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1760 	boolean_t ret = B_FALSE;
1761 
1762 	ASSERT(res != NULL);
1763 
1764 	cmd->nc_sqid = 0;
1765 	cmd->nc_callback = nvme_wakeup_cmd;
1766 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1767 	cmd->nc_sqe.sqe_cdw10 = feature;
1768 	cmd->nc_sqe.sqe_cdw11 = val;
1769 
1770 	switch (feature) {
1771 	case NVME_FEAT_WRITE_CACHE:
1772 		if (!nvme->n_write_cache_present)
1773 			goto fail;
1774 		break;
1775 
1776 	case NVME_FEAT_NQUEUES:
1777 		break;
1778 
1779 	default:
1780 		goto fail;
1781 	}
1782 
1783 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1784 		dev_err(nvme->n_dip, CE_WARN,
1785 		    "!nvme_admin_cmd failed for SET FEATURES");
1786 		return (ret);
1787 	}
1788 
1789 	if (nvme_check_cmd_status(cmd)) {
1790 		dev_err(nvme->n_dip, CE_WARN,
1791 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
1792 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1793 		    cmd->nc_cqe.cqe_sf.sf_sc);
1794 		goto fail;
1795 	}
1796 
1797 	*res = cmd->nc_cqe.cqe_dw0;
1798 	ret = B_TRUE;
1799 
1800 fail:
1801 	nvme_free_cmd(cmd);
1802 	return (ret);
1803 }
1804 
1805 static boolean_t
1806 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1807     void **buf, size_t *bufsize)
1808 {
1809 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1810 	boolean_t ret = B_FALSE;
1811 
1812 	ASSERT(res != NULL);
1813 
1814 	if (bufsize != NULL)
1815 		*bufsize = 0;
1816 
1817 	cmd->nc_sqid = 0;
1818 	cmd->nc_callback = nvme_wakeup_cmd;
1819 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1820 	cmd->nc_sqe.sqe_cdw10 = feature;
1821 	cmd->nc_sqe.sqe_cdw11 = *res;
1822 
1823 	switch (feature) {
1824 	case NVME_FEAT_ARBITRATION:
1825 	case NVME_FEAT_POWER_MGMT:
1826 	case NVME_FEAT_TEMPERATURE:
1827 	case NVME_FEAT_ERROR:
1828 	case NVME_FEAT_NQUEUES:
1829 	case NVME_FEAT_INTR_COAL:
1830 	case NVME_FEAT_INTR_VECT:
1831 	case NVME_FEAT_WRITE_ATOM:
1832 	case NVME_FEAT_ASYNC_EVENT:
1833 	case NVME_FEAT_PROGRESS:
1834 		break;
1835 
1836 	case NVME_FEAT_WRITE_CACHE:
1837 		if (!nvme->n_write_cache_present)
1838 			goto fail;
1839 		break;
1840 
1841 	case NVME_FEAT_LBA_RANGE:
1842 		if (!nvme->n_lba_range_supported)
1843 			goto fail;
1844 
1845 		/*
1846 		 * The LBA Range Type feature is optional. There doesn't seem
1847 		 * be a method of detecting whether it is supported other than
1848 		 * using it. This will cause a "invalid field in command" error,
1849 		 * which is normally considered a programming error and causes
1850 		 * panic in nvme_check_generic_cmd_status().
1851 		 */
1852 		cmd->nc_dontpanic = B_TRUE;
1853 		cmd->nc_sqe.sqe_nsid = nsid;
1854 		ASSERT(bufsize != NULL);
1855 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
1856 
1857 		break;
1858 
1859 	case NVME_FEAT_AUTO_PST:
1860 		if (!nvme->n_auto_pst_supported)
1861 			goto fail;
1862 
1863 		ASSERT(bufsize != NULL);
1864 		*bufsize = NVME_AUTO_PST_BUFSIZE;
1865 		break;
1866 
1867 	default:
1868 		goto fail;
1869 	}
1870 
1871 	if (bufsize != NULL && *bufsize != 0) {
1872 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1873 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1874 			dev_err(nvme->n_dip, CE_WARN,
1875 			    "!nvme_zalloc_dma failed for GET FEATURES");
1876 			goto fail;
1877 		}
1878 
1879 		if (cmd->nc_dma->nd_ncookie > 2) {
1880 			dev_err(nvme->n_dip, CE_WARN,
1881 			    "!too many DMA cookies for GET FEATURES");
1882 			atomic_inc_32(&nvme->n_too_many_cookies);
1883 			goto fail;
1884 		}
1885 
1886 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
1887 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1888 		if (cmd->nc_dma->nd_ncookie > 1) {
1889 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1890 			    &cmd->nc_dma->nd_cookie);
1891 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
1892 			    cmd->nc_dma->nd_cookie.dmac_laddress;
1893 		}
1894 	}
1895 
1896 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1897 		dev_err(nvme->n_dip, CE_WARN,
1898 		    "!nvme_admin_cmd failed for GET FEATURES");
1899 		return (ret);
1900 	}
1901 
1902 	if (nvme_check_cmd_status(cmd)) {
1903 		if (feature == NVME_FEAT_LBA_RANGE &&
1904 		    cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1905 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1906 			nvme->n_lba_range_supported = B_FALSE;
1907 		else
1908 			dev_err(nvme->n_dip, CE_WARN,
1909 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
1910 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1911 			    cmd->nc_cqe.cqe_sf.sf_sc);
1912 		goto fail;
1913 	}
1914 
1915 	if (bufsize != NULL && *bufsize != 0) {
1916 		ASSERT(buf != NULL);
1917 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
1918 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1919 	}
1920 
1921 	*res = cmd->nc_cqe.cqe_dw0;
1922 	ret = B_TRUE;
1923 
1924 fail:
1925 	nvme_free_cmd(cmd);
1926 	return (ret);
1927 }
1928 
1929 static boolean_t
1930 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1931 {
1932 	nvme_write_cache_t nwc = { 0 };
1933 
1934 	if (enable)
1935 		nwc.b.wc_wce = 1;
1936 
1937 	if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r))
1938 		return (B_FALSE);
1939 
1940 	return (B_TRUE);
1941 }
1942 
1943 static int
1944 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1945 {
1946 	nvme_nqueues_t nq = { 0 };
1947 
1948 	nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1949 
1950 	if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) {
1951 		return (0);
1952 	}
1953 
1954 	/*
1955 	 * Always use the same number of submission and completion queues, and
1956 	 * never use more than the requested number of queues.
1957 	 */
1958 	return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1959 }
1960 
1961 static int
1962 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1963 {
1964 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1965 	nvme_create_queue_dw10_t dw10 = { 0 };
1966 	nvme_create_cq_dw11_t c_dw11 = { 0 };
1967 	nvme_create_sq_dw11_t s_dw11 = { 0 };
1968 
1969 	dw10.b.q_qid = idx;
1970 	dw10.b.q_qsize = qp->nq_nentry - 1;
1971 
1972 	c_dw11.b.cq_pc = 1;
1973 	c_dw11.b.cq_ien = 1;
1974 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1975 
1976 	cmd->nc_sqid = 0;
1977 	cmd->nc_callback = nvme_wakeup_cmd;
1978 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1979 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1980 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1981 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1982 
1983 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1984 		dev_err(nvme->n_dip, CE_WARN,
1985 		    "!nvme_admin_cmd failed for CREATE CQUEUE");
1986 		return (DDI_FAILURE);
1987 	}
1988 
1989 	if (nvme_check_cmd_status(cmd)) {
1990 		dev_err(nvme->n_dip, CE_WARN,
1991 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
1992 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1993 		nvme_free_cmd(cmd);
1994 		return (DDI_FAILURE);
1995 	}
1996 
1997 	nvme_free_cmd(cmd);
1998 
1999 	s_dw11.b.sq_pc = 1;
2000 	s_dw11.b.sq_cqid = idx;
2001 
2002 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2003 	cmd->nc_sqid = 0;
2004 	cmd->nc_callback = nvme_wakeup_cmd;
2005 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2006 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2007 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2008 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2009 
2010 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
2011 		dev_err(nvme->n_dip, CE_WARN,
2012 		    "!nvme_admin_cmd failed for CREATE SQUEUE");
2013 		return (DDI_FAILURE);
2014 	}
2015 
2016 	if (nvme_check_cmd_status(cmd)) {
2017 		dev_err(nvme->n_dip, CE_WARN,
2018 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2019 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2020 		nvme_free_cmd(cmd);
2021 		return (DDI_FAILURE);
2022 	}
2023 
2024 	nvme_free_cmd(cmd);
2025 
2026 	return (DDI_SUCCESS);
2027 }
2028 
2029 static boolean_t
2030 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2031 {
2032 	nvme_reg_csts_t csts;
2033 	int i;
2034 
2035 	nvme_put32(nvme, NVME_REG_CC, 0);
2036 
2037 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2038 	if (csts.b.csts_rdy == 1) {
2039 		nvme_put32(nvme, NVME_REG_CC, 0);
2040 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2041 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2042 			if (csts.b.csts_rdy == 0)
2043 				break;
2044 
2045 			if (quiesce)
2046 				drv_usecwait(50000);
2047 			else
2048 				delay(drv_usectohz(50000));
2049 		}
2050 	}
2051 
2052 	nvme_put32(nvme, NVME_REG_AQA, 0);
2053 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2054 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2055 
2056 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2057 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2058 }
2059 
2060 static void
2061 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2062 {
2063 	nvme_reg_cc_t cc;
2064 	nvme_reg_csts_t csts;
2065 	int i;
2066 
2067 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2068 
2069 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2070 	cc.b.cc_shn = mode & 0x3;
2071 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2072 
2073 	for (i = 0; i != 10; i++) {
2074 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2075 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2076 			break;
2077 
2078 		if (quiesce)
2079 			drv_usecwait(100000);
2080 		else
2081 			delay(drv_usectohz(100000));
2082 	}
2083 }
2084 
2085 
2086 static void
2087 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2088 {
2089 	/*
2090 	 * Section 7.7 of the spec describes how to get a unique ID for
2091 	 * the controller: the vendor ID, the model name and the serial
2092 	 * number shall be unique when combined.
2093 	 *
2094 	 * If a namespace has no EUI64 we use the above and add the hex
2095 	 * namespace ID to get a unique ID for the namespace.
2096 	 */
2097 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2098 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2099 
2100 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2101 	bcopy(nvme->n_idctl->id_serial, serial,
2102 	    sizeof (nvme->n_idctl->id_serial));
2103 
2104 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2105 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2106 
2107 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2108 	    nvme->n_idctl->id_vid, model, serial, nsid);
2109 }
2110 
2111 static int
2112 nvme_init_ns(nvme_t *nvme, int nsid)
2113 {
2114 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2115 	nvme_identify_nsid_t *idns;
2116 	int last_rp;
2117 
2118 	ns->ns_nvme = nvme;
2119 	idns = nvme_identify(nvme, nsid);
2120 
2121 	if (idns == NULL) {
2122 		dev_err(nvme->n_dip, CE_WARN,
2123 		    "!failed to identify namespace %d", nsid);
2124 		return (DDI_FAILURE);
2125 	}
2126 
2127 	ns->ns_idns = idns;
2128 	ns->ns_id = nsid;
2129 	ns->ns_block_count = idns->id_nsize;
2130 	ns->ns_block_size =
2131 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2132 	ns->ns_best_block_size = ns->ns_block_size;
2133 
2134 	/*
2135 	 * Get the EUI64 if present. Use it for devid and device node names.
2136 	 */
2137 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2138 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2139 
2140 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2141 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2142 		uint8_t *eui64 = ns->ns_eui64;
2143 
2144 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2145 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2146 		    eui64[0], eui64[1], eui64[2], eui64[3],
2147 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2148 	} else {
2149 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2150 		    ns->ns_id);
2151 
2152 		nvme_prepare_devid(nvme, ns->ns_id);
2153 	}
2154 
2155 	/*
2156 	 * Find the LBA format with no metadata and the best relative
2157 	 * performance. A value of 3 means "degraded", 0 is best.
2158 	 */
2159 	last_rp = 3;
2160 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2161 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2162 			break;
2163 		if (idns->id_lbaf[j].lbaf_ms != 0)
2164 			continue;
2165 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2166 			continue;
2167 		last_rp = idns->id_lbaf[j].lbaf_rp;
2168 		ns->ns_best_block_size =
2169 		    1 << idns->id_lbaf[j].lbaf_lbads;
2170 	}
2171 
2172 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2173 		ns->ns_best_block_size = nvme->n_min_block_size;
2174 
2175 	/*
2176 	 * We currently don't support namespaces that use either:
2177 	 * - thin provisioning
2178 	 * - protection information
2179 	 */
2180 	if (idns->id_nsfeat.f_thin ||
2181 	    idns->id_dps.dp_pinfo) {
2182 		dev_err(nvme->n_dip, CE_WARN,
2183 		    "!ignoring namespace %d, unsupported features: "
2184 		    "thin = %d, pinfo = %d", nsid,
2185 		    idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2186 		ns->ns_ignore = B_TRUE;
2187 	} else {
2188 		ns->ns_ignore = B_FALSE;
2189 	}
2190 
2191 	return (DDI_SUCCESS);
2192 }
2193 
2194 static int
2195 nvme_init(nvme_t *nvme)
2196 {
2197 	nvme_reg_cc_t cc = { 0 };
2198 	nvme_reg_aqa_t aqa = { 0 };
2199 	nvme_reg_asq_t asq = { 0 };
2200 	nvme_reg_acq_t acq = { 0 };
2201 	nvme_reg_cap_t cap;
2202 	nvme_reg_vs_t vs;
2203 	nvme_reg_csts_t csts;
2204 	int i = 0;
2205 	int nqueues;
2206 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2207 	char *vendor, *product;
2208 
2209 	/* Check controller version */
2210 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2211 	nvme->n_version.v_major = vs.b.vs_mjr;
2212 	nvme->n_version.v_minor = vs.b.vs_mnr;
2213 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2214 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2215 
2216 	if (NVME_VERSION_HIGHER(&nvme->n_version,
2217 	    nvme_version_major, nvme_version_minor)) {
2218 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2219 		    nvme_version_major, nvme_version_minor);
2220 		if (nvme->n_strict_version)
2221 			goto fail;
2222 	}
2223 
2224 	/* retrieve controller configuration */
2225 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2226 
2227 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2228 		dev_err(nvme->n_dip, CE_WARN,
2229 		    "!NVM command set not supported by hardware");
2230 		goto fail;
2231 	}
2232 
2233 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2234 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2235 	nvme->n_timeout = cap.b.cap_to;
2236 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2237 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2238 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2239 
2240 	/*
2241 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2242 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2243 	 * page size value.
2244 	 */
2245 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2246 	    cap.b.cap_mpsmax + 12);
2247 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2248 
2249 	/*
2250 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2251 	 */
2252 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2253 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2254 
2255 	/*
2256 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2257 	 * Maxxfer may be increased after we identified the controller limits.
2258 	 */
2259 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2260 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2261 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2262 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2263 
2264 	/*
2265 	 * Reset controller if it's still in ready state.
2266 	 */
2267 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2268 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2269 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2270 		nvme->n_dead = B_TRUE;
2271 		goto fail;
2272 	}
2273 
2274 	/*
2275 	 * Create the admin queue pair.
2276 	 */
2277 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2278 	    != DDI_SUCCESS) {
2279 		dev_err(nvme->n_dip, CE_WARN,
2280 		    "!unable to allocate admin qpair");
2281 		goto fail;
2282 	}
2283 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2284 	nvme->n_ioq[0] = nvme->n_adminq;
2285 
2286 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2287 
2288 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2289 	    "admin-queue-len", nvme->n_admin_queue_len);
2290 
2291 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2292 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2293 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2294 
2295 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2296 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2297 
2298 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2299 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2300 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2301 
2302 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2303 	cc.b.cc_css = 0;	/* use NVM command set */
2304 	cc.b.cc_mps = nvme->n_pageshift - 12;
2305 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2306 	cc.b.cc_en = 1;		/* enable controller */
2307 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2308 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2309 
2310 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2311 
2312 	/*
2313 	 * Wait for the controller to become ready.
2314 	 */
2315 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2316 	if (csts.b.csts_rdy == 0) {
2317 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2318 			delay(drv_usectohz(50000));
2319 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2320 
2321 			if (csts.b.csts_cfs == 1) {
2322 				dev_err(nvme->n_dip, CE_WARN,
2323 				    "!controller fatal status at init");
2324 				ddi_fm_service_impact(nvme->n_dip,
2325 				    DDI_SERVICE_LOST);
2326 				nvme->n_dead = B_TRUE;
2327 				goto fail;
2328 			}
2329 
2330 			if (csts.b.csts_rdy == 1)
2331 				break;
2332 		}
2333 	}
2334 
2335 	if (csts.b.csts_rdy == 0) {
2336 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2337 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2338 		nvme->n_dead = B_TRUE;
2339 		goto fail;
2340 	}
2341 
2342 	/*
2343 	 * Assume an abort command limit of 1. We'll destroy and re-init
2344 	 * that later when we know the true abort command limit.
2345 	 */
2346 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2347 
2348 	/*
2349 	 * Setup initial interrupt for admin queue.
2350 	 */
2351 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2352 	    != DDI_SUCCESS) &&
2353 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2354 	    != DDI_SUCCESS) &&
2355 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2356 	    != DDI_SUCCESS)) {
2357 		dev_err(nvme->n_dip, CE_WARN,
2358 		    "!failed to setup initial interrupt");
2359 		goto fail;
2360 	}
2361 
2362 	/*
2363 	 * Post an asynchronous event command to catch errors.
2364 	 */
2365 	if (nvme_async_event(nvme) != DDI_SUCCESS) {
2366 		dev_err(nvme->n_dip, CE_WARN,
2367 		    "!failed to post async event");
2368 		goto fail;
2369 	}
2370 
2371 	/*
2372 	 * Identify Controller
2373 	 */
2374 	nvme->n_idctl = nvme_identify(nvme, 0);
2375 	if (nvme->n_idctl == NULL) {
2376 		dev_err(nvme->n_dip, CE_WARN,
2377 		    "!failed to identify controller");
2378 		goto fail;
2379 	}
2380 
2381 	/*
2382 	 * Get Vendor & Product ID
2383 	 */
2384 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2385 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2386 	sata_split_model(model, &vendor, &product);
2387 
2388 	if (vendor == NULL)
2389 		nvme->n_vendor = strdup("NVMe");
2390 	else
2391 		nvme->n_vendor = strdup(vendor);
2392 
2393 	nvme->n_product = strdup(product);
2394 
2395 	/*
2396 	 * Get controller limits.
2397 	 */
2398 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2399 	    MIN(nvme->n_admin_queue_len / 10,
2400 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2401 
2402 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2403 	    "async-event-limit", nvme->n_async_event_limit);
2404 
2405 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2406 
2407 	/*
2408 	 * Reinitialize the semaphore with the true abort command limit
2409 	 * supported by the hardware. It's not necessary to disable interrupts
2410 	 * as only command aborts use the semaphore, and no commands are
2411 	 * executed or aborted while we're here.
2412 	 */
2413 	sema_destroy(&nvme->n_abort_sema);
2414 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2415 	    SEMA_DRIVER, NULL);
2416 
2417 	nvme->n_progress |= NVME_CTRL_LIMITS;
2418 
2419 	if (nvme->n_idctl->id_mdts == 0)
2420 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2421 	else
2422 		nvme->n_max_data_transfer_size =
2423 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2424 
2425 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2426 
2427 	/*
2428 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2429 	 * Chained PRPs are currently unsupported.
2430 	 *
2431 	 * This is a no-op on hardware which doesn't support a transfer size
2432 	 * big enough to require chained PRPs.
2433 	 */
2434 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2435 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2436 
2437 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2438 
2439 	/*
2440 	 * Make sure the minimum/maximum queue entry sizes are not
2441 	 * larger/smaller than the default.
2442 	 */
2443 
2444 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2445 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2446 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2447 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2448 		goto fail;
2449 
2450 	/*
2451 	 * Check for the presence of a Volatile Write Cache. If present,
2452 	 * enable or disable based on the value of the property
2453 	 * volatile-write-cache-enable (default is enabled).
2454 	 */
2455 	nvme->n_write_cache_present =
2456 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2457 
2458 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2459 	    "volatile-write-cache-present",
2460 	    nvme->n_write_cache_present ? 1 : 0);
2461 
2462 	if (!nvme->n_write_cache_present) {
2463 		nvme->n_write_cache_enabled = B_FALSE;
2464 	} else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) {
2465 		dev_err(nvme->n_dip, CE_WARN,
2466 		    "!failed to %sable volatile write cache",
2467 		    nvme->n_write_cache_enabled ? "en" : "dis");
2468 		/*
2469 		 * Assume the cache is (still) enabled.
2470 		 */
2471 		nvme->n_write_cache_enabled = B_TRUE;
2472 	}
2473 
2474 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2475 	    "volatile-write-cache-enable",
2476 	    nvme->n_write_cache_enabled ? 1 : 0);
2477 
2478 	/*
2479 	 * Assume LBA Range Type feature is supported. If it isn't this
2480 	 * will be set to B_FALSE by nvme_get_features().
2481 	 */
2482 	nvme->n_lba_range_supported = B_TRUE;
2483 
2484 	/*
2485 	 * Check support for Autonomous Power State Transition.
2486 	 */
2487 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2488 		nvme->n_auto_pst_supported =
2489 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2490 
2491 	/*
2492 	 * Identify Namespaces
2493 	 */
2494 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2495 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2496 		dev_err(nvme->n_dip, CE_WARN,
2497 		    "!too many namespaces: %d, limiting to %d\n",
2498 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2499 		nvme->n_namespace_count = NVME_MINOR_MAX;
2500 	}
2501 
2502 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2503 	    nvme->n_namespace_count, KM_SLEEP);
2504 
2505 	for (i = 0; i != nvme->n_namespace_count; i++) {
2506 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2507 		    NULL);
2508 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2509 			goto fail;
2510 	}
2511 
2512 	/*
2513 	 * Try to set up MSI/MSI-X interrupts.
2514 	 */
2515 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2516 	    != 0) {
2517 		nvme_release_interrupts(nvme);
2518 
2519 		nqueues = MIN(UINT16_MAX, ncpus);
2520 
2521 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2522 		    nqueues) != DDI_SUCCESS) &&
2523 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2524 		    nqueues) != DDI_SUCCESS)) {
2525 			dev_err(nvme->n_dip, CE_WARN,
2526 			    "!failed to setup MSI/MSI-X interrupts");
2527 			goto fail;
2528 		}
2529 	}
2530 
2531 	nqueues = nvme->n_intr_cnt;
2532 
2533 	/*
2534 	 * Create I/O queue pairs.
2535 	 */
2536 	nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2537 	if (nvme->n_ioq_count == 0) {
2538 		dev_err(nvme->n_dip, CE_WARN,
2539 		    "!failed to set number of I/O queues to %d", nqueues);
2540 		goto fail;
2541 	}
2542 
2543 	/*
2544 	 * Reallocate I/O queue array
2545 	 */
2546 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2547 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2548 	    (nvme->n_ioq_count + 1), KM_SLEEP);
2549 	nvme->n_ioq[0] = nvme->n_adminq;
2550 
2551 	/*
2552 	 * If we got less queues than we asked for we might as well give
2553 	 * some of the interrupt vectors back to the system.
2554 	 */
2555 	if (nvme->n_ioq_count < nqueues) {
2556 		nvme_release_interrupts(nvme);
2557 
2558 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2559 		    nvme->n_ioq_count) != DDI_SUCCESS) {
2560 			dev_err(nvme->n_dip, CE_WARN,
2561 			    "!failed to reduce number of interrupts");
2562 			goto fail;
2563 		}
2564 	}
2565 
2566 	/*
2567 	 * Alloc & register I/O queue pairs
2568 	 */
2569 	nvme->n_io_queue_len =
2570 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2571 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2572 	    nvme->n_io_queue_len);
2573 
2574 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2575 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2576 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2577 			dev_err(nvme->n_dip, CE_WARN,
2578 			    "!unable to allocate I/O qpair %d", i);
2579 			goto fail;
2580 		}
2581 
2582 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2583 		    != DDI_SUCCESS) {
2584 			dev_err(nvme->n_dip, CE_WARN,
2585 			    "!unable to create I/O qpair %d", i);
2586 			goto fail;
2587 		}
2588 	}
2589 
2590 	/*
2591 	 * Post more asynchronous events commands to reduce event reporting
2592 	 * latency as suggested by the spec.
2593 	 */
2594 	for (i = 1; i != nvme->n_async_event_limit; i++) {
2595 		if (nvme_async_event(nvme) != DDI_SUCCESS) {
2596 			dev_err(nvme->n_dip, CE_WARN,
2597 			    "!failed to post async event %d", i);
2598 			goto fail;
2599 		}
2600 	}
2601 
2602 	return (DDI_SUCCESS);
2603 
2604 fail:
2605 	(void) nvme_reset(nvme, B_FALSE);
2606 	return (DDI_FAILURE);
2607 }
2608 
2609 static uint_t
2610 nvme_intr(caddr_t arg1, caddr_t arg2)
2611 {
2612 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2613 	nvme_t *nvme = (nvme_t *)arg1;
2614 	int inum = (int)(uintptr_t)arg2;
2615 	int ccnt = 0;
2616 	int qnum;
2617 	nvme_cmd_t *cmd;
2618 
2619 	if (inum >= nvme->n_intr_cnt)
2620 		return (DDI_INTR_UNCLAIMED);
2621 
2622 	/*
2623 	 * The interrupt vector a queue uses is calculated as queue_idx %
2624 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2625 	 * in steps of n_intr_cnt to process all queues using this vector.
2626 	 */
2627 	for (qnum = inum;
2628 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2629 	    qnum += nvme->n_intr_cnt) {
2630 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2631 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2632 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2633 			ccnt++;
2634 		}
2635 	}
2636 
2637 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2638 }
2639 
2640 static void
2641 nvme_release_interrupts(nvme_t *nvme)
2642 {
2643 	int i;
2644 
2645 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2646 		if (nvme->n_inth[i] == NULL)
2647 			break;
2648 
2649 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2650 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2651 		else
2652 			(void) ddi_intr_disable(nvme->n_inth[i]);
2653 
2654 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2655 		(void) ddi_intr_free(nvme->n_inth[i]);
2656 	}
2657 
2658 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2659 	nvme->n_inth = NULL;
2660 	nvme->n_inth_sz = 0;
2661 
2662 	nvme->n_progress &= ~NVME_INTERRUPTS;
2663 }
2664 
2665 static int
2666 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2667 {
2668 	int nintrs, navail, count;
2669 	int ret;
2670 	int i;
2671 
2672 	if (nvme->n_intr_types == 0) {
2673 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2674 		    &nvme->n_intr_types);
2675 		if (ret != DDI_SUCCESS) {
2676 			dev_err(nvme->n_dip, CE_WARN,
2677 			    "!%s: ddi_intr_get_supported types failed",
2678 			    __func__);
2679 			return (ret);
2680 		}
2681 #ifdef __x86
2682 		if (get_hwenv() == HW_VMWARE)
2683 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2684 #endif
2685 	}
2686 
2687 	if ((nvme->n_intr_types & intr_type) == 0)
2688 		return (DDI_FAILURE);
2689 
2690 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2691 	if (ret != DDI_SUCCESS) {
2692 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2693 		    __func__);
2694 		return (ret);
2695 	}
2696 
2697 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2698 	if (ret != DDI_SUCCESS) {
2699 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2700 		    __func__);
2701 		return (ret);
2702 	}
2703 
2704 	/* We want at most one interrupt per queue pair. */
2705 	if (navail > nqpairs)
2706 		navail = nqpairs;
2707 
2708 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2709 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2710 
2711 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2712 	    &count, 0);
2713 	if (ret != DDI_SUCCESS) {
2714 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2715 		    __func__);
2716 		goto fail;
2717 	}
2718 
2719 	nvme->n_intr_cnt = count;
2720 
2721 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2722 	if (ret != DDI_SUCCESS) {
2723 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2724 		    __func__);
2725 		goto fail;
2726 	}
2727 
2728 	for (i = 0; i < count; i++) {
2729 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2730 		    (void *)nvme, (void *)(uintptr_t)i);
2731 		if (ret != DDI_SUCCESS) {
2732 			dev_err(nvme->n_dip, CE_WARN,
2733 			    "!%s: ddi_intr_add_handler failed", __func__);
2734 			goto fail;
2735 		}
2736 	}
2737 
2738 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2739 
2740 	for (i = 0; i < count; i++) {
2741 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2742 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2743 		else
2744 			ret = ddi_intr_enable(nvme->n_inth[i]);
2745 
2746 		if (ret != DDI_SUCCESS) {
2747 			dev_err(nvme->n_dip, CE_WARN,
2748 			    "!%s: enabling interrupt %d failed", __func__, i);
2749 			goto fail;
2750 		}
2751 	}
2752 
2753 	nvme->n_intr_type = intr_type;
2754 
2755 	nvme->n_progress |= NVME_INTERRUPTS;
2756 
2757 	return (DDI_SUCCESS);
2758 
2759 fail:
2760 	nvme_release_interrupts(nvme);
2761 
2762 	return (ret);
2763 }
2764 
2765 static int
2766 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2767 {
2768 	_NOTE(ARGUNUSED(arg));
2769 
2770 	pci_ereport_post(dip, fm_error, NULL);
2771 	return (fm_error->fme_status);
2772 }
2773 
2774 static int
2775 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2776 {
2777 	nvme_t *nvme;
2778 	int instance;
2779 	int nregs;
2780 	off_t regsize;
2781 	int i;
2782 	char name[32];
2783 
2784 	if (cmd != DDI_ATTACH)
2785 		return (DDI_FAILURE);
2786 
2787 	instance = ddi_get_instance(dip);
2788 
2789 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2790 		return (DDI_FAILURE);
2791 
2792 	nvme = ddi_get_soft_state(nvme_state, instance);
2793 	ddi_set_driver_private(dip, nvme);
2794 	nvme->n_dip = dip;
2795 
2796 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2797 
2798 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2799 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2800 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2801 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2802 	    B_TRUE : B_FALSE;
2803 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2804 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2805 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2806 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2807 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2808 	    DDI_PROP_DONTPASS, "async-event-limit",
2809 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2810 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2811 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2812 	    B_TRUE : B_FALSE;
2813 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2814 	    DDI_PROP_DONTPASS, "min-phys-block-size",
2815 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
2816 
2817 	if (!ISP2(nvme->n_min_block_size) ||
2818 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2819 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2820 		    "using default %d", ISP2(nvme->n_min_block_size) ?
2821 		    "too low" : "not a power of 2",
2822 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
2823 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2824 	}
2825 
2826 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2827 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2828 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2829 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2830 
2831 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2832 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2833 
2834 	if (nvme->n_async_event_limit < 1)
2835 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2836 
2837 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2838 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2839 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2840 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2841 
2842 	/*
2843 	 * Setup FMA support.
2844 	 */
2845 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2846 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2847 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2848 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2849 
2850 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2851 
2852 	if (nvme->n_fm_cap) {
2853 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2854 			nvme->n_reg_acc_attr.devacc_attr_access =
2855 			    DDI_FLAGERR_ACC;
2856 
2857 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2858 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2859 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2860 		}
2861 
2862 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2863 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2864 			pci_ereport_setup(dip);
2865 
2866 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2867 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2868 			    (void *)nvme);
2869 	}
2870 
2871 	nvme->n_progress |= NVME_FMA_INIT;
2872 
2873 	/*
2874 	 * The spec defines several register sets. Only the controller
2875 	 * registers (set 1) are currently used.
2876 	 */
2877 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2878 	    nregs < 2 ||
2879 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2880 		goto fail;
2881 
2882 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2883 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2884 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2885 		goto fail;
2886 	}
2887 
2888 	nvme->n_progress |= NVME_REGS_MAPPED;
2889 
2890 	/*
2891 	 * Create taskq for command completion.
2892 	 */
2893 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2894 	    ddi_driver_name(dip), ddi_get_instance(dip));
2895 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2896 	    TASKQ_DEFAULTPRI, 0);
2897 	if (nvme->n_cmd_taskq == NULL) {
2898 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2899 		goto fail;
2900 	}
2901 
2902 	/*
2903 	 * Create PRP DMA cache
2904 	 */
2905 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2906 	    ddi_driver_name(dip), ddi_get_instance(dip));
2907 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2908 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2909 	    NULL, (void *)nvme, NULL, 0);
2910 
2911 	if (nvme_init(nvme) != DDI_SUCCESS)
2912 		goto fail;
2913 
2914 	/*
2915 	 * Attach the blkdev driver for each namespace.
2916 	 */
2917 	for (i = 0; i != nvme->n_namespace_count; i++) {
2918 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2919 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2920 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2921 			dev_err(dip, CE_WARN,
2922 			    "!failed to create minor node for namespace %d", i);
2923 			goto fail;
2924 		}
2925 
2926 		if (nvme->n_ns[i].ns_ignore)
2927 			continue;
2928 
2929 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2930 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2931 
2932 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2933 			dev_err(dip, CE_WARN,
2934 			    "!failed to get blkdev handle for namespace %d", i);
2935 			goto fail;
2936 		}
2937 
2938 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2939 		    != DDI_SUCCESS) {
2940 			dev_err(dip, CE_WARN,
2941 			    "!failed to attach blkdev handle for namespace %d",
2942 			    i);
2943 			goto fail;
2944 		}
2945 	}
2946 
2947 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2948 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2949 	    != DDI_SUCCESS) {
2950 		dev_err(dip, CE_WARN, "nvme_attach: "
2951 		    "cannot create devctl minor node");
2952 		goto fail;
2953 	}
2954 
2955 	return (DDI_SUCCESS);
2956 
2957 fail:
2958 	/* attach successful anyway so that FMA can retire the device */
2959 	if (nvme->n_dead)
2960 		return (DDI_SUCCESS);
2961 
2962 	(void) nvme_detach(dip, DDI_DETACH);
2963 
2964 	return (DDI_FAILURE);
2965 }
2966 
2967 static int
2968 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2969 {
2970 	int instance, i;
2971 	nvme_t *nvme;
2972 
2973 	if (cmd != DDI_DETACH)
2974 		return (DDI_FAILURE);
2975 
2976 	instance = ddi_get_instance(dip);
2977 
2978 	nvme = ddi_get_soft_state(nvme_state, instance);
2979 
2980 	if (nvme == NULL)
2981 		return (DDI_FAILURE);
2982 
2983 	ddi_remove_minor_node(dip, "devctl");
2984 	mutex_destroy(&nvme->n_minor.nm_mutex);
2985 
2986 	if (nvme->n_ns) {
2987 		for (i = 0; i != nvme->n_namespace_count; i++) {
2988 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
2989 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
2990 
2991 			if (nvme->n_ns[i].ns_bd_hdl) {
2992 				(void) bd_detach_handle(
2993 				    nvme->n_ns[i].ns_bd_hdl);
2994 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2995 			}
2996 
2997 			if (nvme->n_ns[i].ns_idns)
2998 				kmem_free(nvme->n_ns[i].ns_idns,
2999 				    sizeof (nvme_identify_nsid_t));
3000 			if (nvme->n_ns[i].ns_devid)
3001 				strfree(nvme->n_ns[i].ns_devid);
3002 		}
3003 
3004 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3005 		    nvme->n_namespace_count);
3006 	}
3007 
3008 	if (nvme->n_progress & NVME_INTERRUPTS)
3009 		nvme_release_interrupts(nvme);
3010 
3011 	if (nvme->n_cmd_taskq)
3012 		ddi_taskq_wait(nvme->n_cmd_taskq);
3013 
3014 	if (nvme->n_ioq_count > 0) {
3015 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3016 			if (nvme->n_ioq[i] != NULL) {
3017 				/* TODO: send destroy queue commands */
3018 				nvme_free_qpair(nvme->n_ioq[i]);
3019 			}
3020 		}
3021 
3022 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3023 		    (nvme->n_ioq_count + 1));
3024 	}
3025 
3026 	if (nvme->n_prp_cache != NULL) {
3027 		kmem_cache_destroy(nvme->n_prp_cache);
3028 	}
3029 
3030 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3031 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3032 		(void) nvme_reset(nvme, B_FALSE);
3033 	}
3034 
3035 	if (nvme->n_cmd_taskq)
3036 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3037 
3038 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3039 		sema_destroy(&nvme->n_abort_sema);
3040 
3041 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3042 		nvme_free_qpair(nvme->n_adminq);
3043 
3044 	if (nvme->n_idctl)
3045 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3046 
3047 	if (nvme->n_progress & NVME_REGS_MAPPED)
3048 		ddi_regs_map_free(&nvme->n_regh);
3049 
3050 	if (nvme->n_progress & NVME_FMA_INIT) {
3051 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3052 			ddi_fm_handler_unregister(nvme->n_dip);
3053 
3054 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3055 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3056 			pci_ereport_teardown(nvme->n_dip);
3057 
3058 		ddi_fm_fini(nvme->n_dip);
3059 	}
3060 
3061 	if (nvme->n_vendor != NULL)
3062 		strfree(nvme->n_vendor);
3063 
3064 	if (nvme->n_product != NULL)
3065 		strfree(nvme->n_product);
3066 
3067 	ddi_soft_state_free(nvme_state, instance);
3068 
3069 	return (DDI_SUCCESS);
3070 }
3071 
3072 static int
3073 nvme_quiesce(dev_info_t *dip)
3074 {
3075 	int instance;
3076 	nvme_t *nvme;
3077 
3078 	instance = ddi_get_instance(dip);
3079 
3080 	nvme = ddi_get_soft_state(nvme_state, instance);
3081 
3082 	if (nvme == NULL)
3083 		return (DDI_FAILURE);
3084 
3085 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3086 
3087 	(void) nvme_reset(nvme, B_TRUE);
3088 
3089 	return (DDI_FAILURE);
3090 }
3091 
3092 static int
3093 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3094 {
3095 	nvme_t *nvme = cmd->nc_nvme;
3096 	int nprp_page, nprp;
3097 	uint64_t *prp;
3098 
3099 	if (xfer->x_ndmac == 0)
3100 		return (DDI_FAILURE);
3101 
3102 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3103 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3104 
3105 	if (xfer->x_ndmac == 1) {
3106 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3107 		return (DDI_SUCCESS);
3108 	} else if (xfer->x_ndmac == 2) {
3109 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3110 		return (DDI_SUCCESS);
3111 	}
3112 
3113 	xfer->x_ndmac--;
3114 
3115 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3116 	ASSERT(nprp_page > 0);
3117 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3118 
3119 	/*
3120 	 * We currently don't support chained PRPs and set up our DMA
3121 	 * attributes to reflect that. If we still get an I/O request
3122 	 * that needs a chained PRP something is very wrong.
3123 	 */
3124 	VERIFY(nprp == 1);
3125 
3126 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3127 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3128 
3129 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3130 
3131 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3132 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3133 	    xfer->x_ndmac > 0;
3134 	    prp++, xfer->x_ndmac--) {
3135 		*prp = xfer->x_dmac.dmac_laddress;
3136 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3137 	}
3138 
3139 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3140 	    DDI_DMA_SYNC_FORDEV);
3141 	return (DDI_SUCCESS);
3142 }
3143 
3144 static nvme_cmd_t *
3145 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3146 {
3147 	nvme_t *nvme = ns->ns_nvme;
3148 	nvme_cmd_t *cmd;
3149 
3150 	/*
3151 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3152 	 */
3153 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3154 	    KM_NOSLEEP : KM_SLEEP);
3155 
3156 	if (cmd == NULL)
3157 		return (NULL);
3158 
3159 	cmd->nc_sqe.sqe_opc = opc;
3160 	cmd->nc_callback = nvme_bd_xfer_done;
3161 	cmd->nc_xfer = xfer;
3162 
3163 	switch (opc) {
3164 	case NVME_OPC_NVM_WRITE:
3165 	case NVME_OPC_NVM_READ:
3166 		VERIFY(xfer->x_nblks <= 0x10000);
3167 
3168 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3169 
3170 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3171 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3172 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3173 
3174 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3175 			goto fail;
3176 		break;
3177 
3178 	case NVME_OPC_NVM_FLUSH:
3179 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3180 		break;
3181 
3182 	default:
3183 		goto fail;
3184 	}
3185 
3186 	return (cmd);
3187 
3188 fail:
3189 	nvme_free_cmd(cmd);
3190 	return (NULL);
3191 }
3192 
3193 static void
3194 nvme_bd_xfer_done(void *arg)
3195 {
3196 	nvme_cmd_t *cmd = arg;
3197 	bd_xfer_t *xfer = cmd->nc_xfer;
3198 	int error = 0;
3199 
3200 	error = nvme_check_cmd_status(cmd);
3201 	nvme_free_cmd(cmd);
3202 
3203 	bd_xfer_done(xfer, error);
3204 }
3205 
3206 static void
3207 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3208 {
3209 	nvme_namespace_t *ns = arg;
3210 	nvme_t *nvme = ns->ns_nvme;
3211 
3212 	/*
3213 	 * blkdev maintains one queue size per instance (namespace),
3214 	 * but all namespace share the I/O queues.
3215 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3216 	 * or change blkdev to handle EAGAIN
3217 	 */
3218 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3219 	    / nvme->n_namespace_count;
3220 
3221 	/*
3222 	 * d_maxxfer is not set, which means the value is taken from the DMA
3223 	 * attributes specified to bd_alloc_handle.
3224 	 */
3225 
3226 	drive->d_removable = B_FALSE;
3227 	drive->d_hotpluggable = B_FALSE;
3228 
3229 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3230 	drive->d_target = ns->ns_id;
3231 	drive->d_lun = 0;
3232 
3233 	drive->d_model = nvme->n_idctl->id_model;
3234 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3235 	drive->d_vendor = nvme->n_vendor;
3236 	drive->d_vendor_len = strlen(nvme->n_vendor);
3237 	drive->d_product = nvme->n_product;
3238 	drive->d_product_len = strlen(nvme->n_product);
3239 	drive->d_serial = nvme->n_idctl->id_serial;
3240 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3241 	drive->d_revision = nvme->n_idctl->id_fwrev;
3242 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3243 }
3244 
3245 static int
3246 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3247 {
3248 	nvme_namespace_t *ns = arg;
3249 
3250 	media->m_nblks = ns->ns_block_count;
3251 	media->m_blksize = ns->ns_block_size;
3252 	media->m_readonly = B_FALSE;
3253 	media->m_solidstate = B_TRUE;
3254 
3255 	media->m_pblksize = ns->ns_best_block_size;
3256 
3257 	return (0);
3258 }
3259 
3260 static int
3261 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3262 {
3263 	nvme_t *nvme = ns->ns_nvme;
3264 	nvme_cmd_t *cmd;
3265 
3266 	if (nvme->n_dead)
3267 		return (EIO);
3268 
3269 	/* No polling for now */
3270 	if (xfer->x_flags & BD_XFER_POLL)
3271 		return (EIO);
3272 
3273 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3274 	if (cmd == NULL)
3275 		return (ENOMEM);
3276 
3277 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3278 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3279 
3280 	if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
3281 	    != DDI_SUCCESS)
3282 		return (EAGAIN);
3283 
3284 	return (0);
3285 }
3286 
3287 static int
3288 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3289 {
3290 	nvme_namespace_t *ns = arg;
3291 
3292 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3293 }
3294 
3295 static int
3296 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3297 {
3298 	nvme_namespace_t *ns = arg;
3299 
3300 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3301 }
3302 
3303 static int
3304 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3305 {
3306 	nvme_namespace_t *ns = arg;
3307 
3308 	if (ns->ns_nvme->n_dead)
3309 		return (EIO);
3310 
3311 	/*
3312 	 * If the volatile write cache is not present or not enabled the FLUSH
3313 	 * command is a no-op, so we can take a shortcut here.
3314 	 */
3315 	if (!ns->ns_nvme->n_write_cache_present) {
3316 		bd_xfer_done(xfer, ENOTSUP);
3317 		return (0);
3318 	}
3319 
3320 	if (!ns->ns_nvme->n_write_cache_enabled) {
3321 		bd_xfer_done(xfer, 0);
3322 		return (0);
3323 	}
3324 
3325 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3326 }
3327 
3328 static int
3329 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3330 {
3331 	nvme_namespace_t *ns = arg;
3332 
3333 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3334 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3335 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3336 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3337 	} else {
3338 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3339 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3340 	}
3341 }
3342 
3343 static int
3344 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3345 {
3346 #ifndef __lock_lint
3347 	_NOTE(ARGUNUSED(cred_p));
3348 #endif
3349 	minor_t minor = getminor(*devp);
3350 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3351 	int nsid = NVME_MINOR_NSID(minor);
3352 	nvme_minor_state_t *nm;
3353 	int rv = 0;
3354 
3355 	if (otyp != OTYP_CHR)
3356 		return (EINVAL);
3357 
3358 	if (nvme == NULL)
3359 		return (ENXIO);
3360 
3361 	if (nsid > nvme->n_namespace_count)
3362 		return (ENXIO);
3363 
3364 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3365 
3366 	mutex_enter(&nm->nm_mutex);
3367 	if (nm->nm_oexcl) {
3368 		rv = EBUSY;
3369 		goto out;
3370 	}
3371 
3372 	if (flag & FEXCL) {
3373 		if (nm->nm_ocnt != 0) {
3374 			rv = EBUSY;
3375 			goto out;
3376 		}
3377 		nm->nm_oexcl = B_TRUE;
3378 	}
3379 
3380 	nm->nm_ocnt++;
3381 
3382 out:
3383 	mutex_exit(&nm->nm_mutex);
3384 	return (rv);
3385 
3386 }
3387 
3388 static int
3389 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3390 {
3391 #ifndef __lock_lint
3392 	_NOTE(ARGUNUSED(cred_p));
3393 	_NOTE(ARGUNUSED(flag));
3394 #endif
3395 	minor_t minor = getminor(dev);
3396 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3397 	int nsid = NVME_MINOR_NSID(minor);
3398 	nvme_minor_state_t *nm;
3399 
3400 	if (otyp != OTYP_CHR)
3401 		return (ENXIO);
3402 
3403 	if (nvme == NULL)
3404 		return (ENXIO);
3405 
3406 	if (nsid > nvme->n_namespace_count)
3407 		return (ENXIO);
3408 
3409 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3410 
3411 	mutex_enter(&nm->nm_mutex);
3412 	if (nm->nm_oexcl)
3413 		nm->nm_oexcl = B_FALSE;
3414 
3415 	ASSERT(nm->nm_ocnt > 0);
3416 	nm->nm_ocnt--;
3417 	mutex_exit(&nm->nm_mutex);
3418 
3419 	return (0);
3420 }
3421 
3422 static int
3423 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3424     cred_t *cred_p)
3425 {
3426 	_NOTE(ARGUNUSED(cred_p));
3427 	int rv = 0;
3428 	void *idctl;
3429 
3430 	if ((mode & FREAD) == 0)
3431 		return (EPERM);
3432 
3433 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3434 		return (EINVAL);
3435 
3436 	idctl = nvme_identify(nvme, nsid);
3437 	if (idctl == NULL)
3438 		return (EIO);
3439 
3440 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3441 	    != 0)
3442 		rv = EFAULT;
3443 
3444 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3445 
3446 	return (rv);
3447 }
3448 
3449 static int
3450 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3451     int mode, cred_t *cred_p)
3452 {
3453 	_NOTE(ARGUNUSED(nsid, cred_p));
3454 	int rv = 0;
3455 	nvme_reg_cap_t cap = { 0 };
3456 	nvme_capabilities_t nc;
3457 
3458 	if ((mode & FREAD) == 0)
3459 		return (EPERM);
3460 
3461 	if (nioc->n_len < sizeof (nc))
3462 		return (EINVAL);
3463 
3464 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3465 
3466 	/*
3467 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3468 	 * specify the base page size of 4k (1<<12), so add 12 here to
3469 	 * get the real page size value.
3470 	 */
3471 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3472 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3473 
3474 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3475 		rv = EFAULT;
3476 
3477 	return (rv);
3478 }
3479 
3480 static int
3481 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3482     int mode, cred_t *cred_p)
3483 {
3484 	_NOTE(ARGUNUSED(cred_p));
3485 	void *log = NULL;
3486 	size_t bufsize = 0;
3487 	int rv = 0;
3488 
3489 	if ((mode & FREAD) == 0)
3490 		return (EPERM);
3491 
3492 	switch (nioc->n_arg) {
3493 	case NVME_LOGPAGE_ERROR:
3494 		if (nsid != 0)
3495 			return (EINVAL);
3496 		break;
3497 	case NVME_LOGPAGE_HEALTH:
3498 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3499 			return (EINVAL);
3500 
3501 		if (nsid == 0)
3502 			nsid = (uint32_t)-1;
3503 
3504 		break;
3505 	case NVME_LOGPAGE_FWSLOT:
3506 		if (nsid != 0)
3507 			return (EINVAL);
3508 		break;
3509 	default:
3510 		return (EINVAL);
3511 	}
3512 
3513 	if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3514 	    != DDI_SUCCESS)
3515 		return (EIO);
3516 
3517 	if (nioc->n_len < bufsize) {
3518 		kmem_free(log, bufsize);
3519 		return (EINVAL);
3520 	}
3521 
3522 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3523 		rv = EFAULT;
3524 
3525 	nioc->n_len = bufsize;
3526 	kmem_free(log, bufsize);
3527 
3528 	return (rv);
3529 }
3530 
3531 static int
3532 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3533     int mode, cred_t *cred_p)
3534 {
3535 	_NOTE(ARGUNUSED(cred_p));
3536 	void *buf = NULL;
3537 	size_t bufsize = 0;
3538 	uint32_t res = 0;
3539 	uint8_t feature;
3540 	int rv = 0;
3541 
3542 	if ((mode & FREAD) == 0)
3543 		return (EPERM);
3544 
3545 	if ((nioc->n_arg >> 32) > 0xff)
3546 		return (EINVAL);
3547 
3548 	feature = (uint8_t)(nioc->n_arg >> 32);
3549 
3550 	switch (feature) {
3551 	case NVME_FEAT_ARBITRATION:
3552 	case NVME_FEAT_POWER_MGMT:
3553 	case NVME_FEAT_TEMPERATURE:
3554 	case NVME_FEAT_ERROR:
3555 	case NVME_FEAT_NQUEUES:
3556 	case NVME_FEAT_INTR_COAL:
3557 	case NVME_FEAT_WRITE_ATOM:
3558 	case NVME_FEAT_ASYNC_EVENT:
3559 	case NVME_FEAT_PROGRESS:
3560 		if (nsid != 0)
3561 			return (EINVAL);
3562 		break;
3563 
3564 	case NVME_FEAT_INTR_VECT:
3565 		if (nsid != 0)
3566 			return (EINVAL);
3567 
3568 		res = nioc->n_arg & 0xffffffffUL;
3569 		if (res >= nvme->n_intr_cnt)
3570 			return (EINVAL);
3571 		break;
3572 
3573 	case NVME_FEAT_LBA_RANGE:
3574 		if (nvme->n_lba_range_supported == B_FALSE)
3575 			return (EINVAL);
3576 
3577 		if (nsid == 0 ||
3578 		    nsid > nvme->n_namespace_count)
3579 			return (EINVAL);
3580 
3581 		break;
3582 
3583 	case NVME_FEAT_WRITE_CACHE:
3584 		if (nsid != 0)
3585 			return (EINVAL);
3586 
3587 		if (!nvme->n_write_cache_present)
3588 			return (EINVAL);
3589 
3590 		break;
3591 
3592 	case NVME_FEAT_AUTO_PST:
3593 		if (nsid != 0)
3594 			return (EINVAL);
3595 
3596 		if (!nvme->n_auto_pst_supported)
3597 			return (EINVAL);
3598 
3599 		break;
3600 
3601 	default:
3602 		return (EINVAL);
3603 	}
3604 
3605 	if (nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize) ==
3606 	    B_FALSE)
3607 		return (EIO);
3608 
3609 	if (nioc->n_len < bufsize) {
3610 		kmem_free(buf, bufsize);
3611 		return (EINVAL);
3612 	}
3613 
3614 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3615 		rv = EFAULT;
3616 
3617 	kmem_free(buf, bufsize);
3618 	nioc->n_arg = res;
3619 	nioc->n_len = bufsize;
3620 
3621 	return (rv);
3622 }
3623 
3624 static int
3625 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3626     cred_t *cred_p)
3627 {
3628 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
3629 
3630 	if ((mode & FREAD) == 0)
3631 		return (EPERM);
3632 
3633 	nioc->n_arg = nvme->n_intr_cnt;
3634 	return (0);
3635 }
3636 
3637 static int
3638 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3639     cred_t *cred_p)
3640 {
3641 	_NOTE(ARGUNUSED(nsid, cred_p));
3642 	int rv = 0;
3643 
3644 	if ((mode & FREAD) == 0)
3645 		return (EPERM);
3646 
3647 	if (nioc->n_len < sizeof (nvme->n_version))
3648 		return (ENOMEM);
3649 
3650 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3651 	    sizeof (nvme->n_version), mode) != 0)
3652 		rv = EFAULT;
3653 
3654 	return (rv);
3655 }
3656 
3657 static int
3658 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3659     cred_t *cred_p)
3660 {
3661 	_NOTE(ARGUNUSED(mode));
3662 	nvme_format_nvm_t frmt = { 0 };
3663 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
3664 
3665 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3666 		return (EPERM);
3667 
3668 	frmt.r = nioc->n_arg & 0xffffffff;
3669 
3670 	/*
3671 	 * Check whether the FORMAT NVM command is supported.
3672 	 */
3673 	if (nvme->n_idctl->id_oacs.oa_format == 0)
3674 		return (EINVAL);
3675 
3676 	/*
3677 	 * Don't allow format or secure erase of individual namespace if that
3678 	 * would cause a format or secure erase of all namespaces.
3679 	 */
3680 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3681 		return (EINVAL);
3682 
3683 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3684 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
3685 		return (EINVAL);
3686 
3687 	/*
3688 	 * Don't allow formatting with Protection Information.
3689 	 */
3690 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3691 		return (EINVAL);
3692 
3693 	/*
3694 	 * Don't allow formatting using an illegal LBA format, or any LBA format
3695 	 * that uses metadata.
3696 	 */
3697 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3698 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3699 		return (EINVAL);
3700 
3701 	/*
3702 	 * Don't allow formatting using an illegal Secure Erase setting.
3703 	 */
3704 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3705 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3706 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3707 		return (EINVAL);
3708 
3709 	if (nsid == 0)
3710 		nsid = (uint32_t)-1;
3711 
3712 	return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3713 	    frmt.b.fm_ses));
3714 }
3715 
3716 static int
3717 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3718     cred_t *cred_p)
3719 {
3720 	_NOTE(ARGUNUSED(nioc, mode));
3721 	int rv = 0;
3722 
3723 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3724 		return (EPERM);
3725 
3726 	if (nsid == 0)
3727 		return (EINVAL);
3728 
3729 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3730 	if (rv != DDI_SUCCESS)
3731 		rv = EBUSY;
3732 
3733 	return (rv);
3734 }
3735 
3736 static int
3737 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3738     cred_t *cred_p)
3739 {
3740 	_NOTE(ARGUNUSED(nioc, mode));
3741 	nvme_identify_nsid_t *idns;
3742 	int rv = 0;
3743 
3744 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3745 		return (EPERM);
3746 
3747 	if (nsid == 0)
3748 		return (EINVAL);
3749 
3750 	/*
3751 	 * Identify namespace again, free old identify data.
3752 	 */
3753 	idns = nvme->n_ns[nsid - 1].ns_idns;
3754 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3755 		return (EIO);
3756 
3757 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
3758 
3759 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3760 	if (rv != DDI_SUCCESS)
3761 		rv = EBUSY;
3762 
3763 	return (rv);
3764 }
3765 
3766 static int
3767 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3768     int *rval_p)
3769 {
3770 #ifndef __lock_lint
3771 	_NOTE(ARGUNUSED(rval_p));
3772 #endif
3773 	minor_t minor = getminor(dev);
3774 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3775 	int nsid = NVME_MINOR_NSID(minor);
3776 	int rv = 0;
3777 	nvme_ioctl_t nioc;
3778 
3779 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3780 		NULL,
3781 		nvme_ioctl_identify,
3782 		nvme_ioctl_identify,
3783 		nvme_ioctl_capabilities,
3784 		nvme_ioctl_get_logpage,
3785 		nvme_ioctl_get_features,
3786 		nvme_ioctl_intr_cnt,
3787 		nvme_ioctl_version,
3788 		nvme_ioctl_format,
3789 		nvme_ioctl_detach,
3790 		nvme_ioctl_attach
3791 	};
3792 
3793 	if (nvme == NULL)
3794 		return (ENXIO);
3795 
3796 	if (nsid > nvme->n_namespace_count)
3797 		return (ENXIO);
3798 
3799 	if (IS_DEVCTL(cmd))
3800 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3801 
3802 #ifdef _MULTI_DATAMODEL
3803 	switch (ddi_model_convert_from(mode & FMODELS)) {
3804 	case DDI_MODEL_ILP32: {
3805 		nvme_ioctl32_t nioc32;
3806 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3807 		    mode) != 0)
3808 			return (EFAULT);
3809 		nioc.n_len = nioc32.n_len;
3810 		nioc.n_buf = nioc32.n_buf;
3811 		nioc.n_arg = nioc32.n_arg;
3812 		break;
3813 	}
3814 	case DDI_MODEL_NONE:
3815 #endif
3816 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3817 		    != 0)
3818 			return (EFAULT);
3819 #ifdef _MULTI_DATAMODEL
3820 		break;
3821 	}
3822 #endif
3823 
3824 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3825 		/*
3826 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3827 		 * attachment point nodes.
3828 		 */
3829 		nsid = 0;
3830 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3831 		/*
3832 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3833 		 * will always return identify data for namespace 1.
3834 		 */
3835 		nsid = 1;
3836 	}
3837 
3838 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3839 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3840 		    cred_p);
3841 	else
3842 		rv = EINVAL;
3843 
3844 #ifdef _MULTI_DATAMODEL
3845 	switch (ddi_model_convert_from(mode & FMODELS)) {
3846 	case DDI_MODEL_ILP32: {
3847 		nvme_ioctl32_t nioc32;
3848 
3849 		nioc32.n_len = (size32_t)nioc.n_len;
3850 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3851 		nioc32.n_arg = nioc.n_arg;
3852 
3853 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3854 		    mode) != 0)
3855 			return (EFAULT);
3856 		break;
3857 	}
3858 	case DDI_MODEL_NONE:
3859 #endif
3860 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3861 		    != 0)
3862 			return (EFAULT);
3863 #ifdef _MULTI_DATAMODEL
3864 		break;
3865 	}
3866 #endif
3867 
3868 	return (rv);
3869 }
3870