xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 34c938c74e6f278ee870d39330b571ffea1b808e)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  */
16 
17 /*
18  * blkdev driver for NVMe compliant storage devices
19  *
20  * This driver was written to conform to version 1.0e of the NVMe specification.
21  * It may work with newer versions, but that is completely untested and disabled
22  * by default.
23  *
24  * The driver has only been tested on x86 systems and will not work on big-
25  * endian systems without changes to the code accessing registers and data
26  * structures used by the hardware.
27  *
28  *
29  * Interrupt Usage:
30  *
31  * The driver will use a FIXED interrupt while configuring the device as the
32  * specification requires. Later in the attach process it will switch to MSI-X
33  * or MSI if supported. The driver wants to have one interrupt vector per CPU,
34  * but it will work correctly if less are available. Interrupts can be shared
35  * by queues, the interrupt handler will iterate through the I/O queue array by
36  * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
37  * with one I/O queue. The interrupt handler will retrieve completed commands
38  * from all queues sharing an interrupt vector and will post them to a taskq
39  * for completion processing.
40  *
41  *
42  * Command Processing:
43  *
44  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
45  * to 65536 I/O commands. The driver will configure one I/O queue pair per
46  * available interrupt vector, with the queue length usually much smaller than
47  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
48  * interrupt vectors will be used.
49  *
50  * Additionally the hardware provides a single special admin queue pair that can
51  * hold up to 4096 admin commands.
52  *
53  * From the hardware perspective both queues of a queue pair are independent,
54  * but they share some driver state: the command array (holding pointers to
55  * commands currently being processed by the hardware) and the active command
56  * counter. Access to the submission side of a queue pair and the shared state
57  * is protected by nq_mutex. The completion side of a queue pair does not need
58  * that protection apart from its access to the shared state; it is called only
59  * in the interrupt handler which does not run concurrently for the same
60  * interrupt vector.
61  *
62  * When a command is submitted to a queue pair the active command counter is
63  * incremented and a pointer to the command is stored in the command array. The
64  * array index is used as command identifier (CID) in the submission queue
65  * entry. Some commands may take a very long time to complete, and if the queue
66  * wraps around in that time a submission may find the next array slot to still
67  * be used by a long-running command. In this case the array is sequentially
68  * searched for the next free slot. The length of the command array is the same
69  * as the configured queue length.
70  *
71  *
72  * Namespace Support:
73  *
74  * NVMe devices can have multiple namespaces, each being a independent data
75  * store. The driver supports multiple namespaces and creates a blkdev interface
76  * for each namespace found. Namespaces can have various attributes to support
77  * thin provisioning, extended LBAs, and protection information. This driver
78  * does not support any of this and ignores namespaces that have these
79  * attributes.
80  *
81  *
82  * Blkdev Interface:
83  *
84  * This driver uses blkdev to do all the heavy lifting involved with presenting
85  * a disk device to the system. As a result, the processing of I/O requests is
86  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
87  * setup, and splitting of transfers into manageable chunks.
88  *
89  * I/O requests coming in from blkdev are turned into NVM commands and posted to
90  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
91  * queues. There is currently no timeout handling of I/O commands.
92  *
93  * Blkdev also supports querying device/media information and generating a
94  * devid. The driver reports the best block size as determined by the namespace
95  * format back to blkdev as physical block size to support partition and block
96  * alignment. The devid is composed using the device vendor ID, model number,
97  * serial number, and the namespace ID.
98  *
99  *
100  * Error Handling:
101  *
102  * Error handling is currently limited to detecting fatal hardware errors,
103  * either by asynchronous events, or synchronously through command status or
104  * admin command timeouts. In case of severe errors the device is fenced off,
105  * all further requests will return EIO. FMA is then called to fault the device.
106  *
107  * The hardware has a limit for outstanding asynchronous event requests. Before
108  * this limit is known the driver assumes it is at least 1 and posts a single
109  * asynchronous request. Later when the limit is known more asynchronous event
110  * requests are posted to allow quicker reception of error information. When an
111  * asynchronous event is posted by the hardware the driver will parse the error
112  * status fields and log information or fault the device, depending on the
113  * severity of the asynchronous event. The asynchronous event request is then
114  * reused and posted to the admin queue again.
115  *
116  * On command completion the command status is checked for errors. In case of
117  * errors indicating a driver bug the driver panics. Almost all other error
118  * status values just cause EIO to be returned.
119  *
120  * Command timeouts are currently detected for all admin commands except
121  * asynchronous event requests. If a command times out and the hardware appears
122  * to be healthy the driver attempts to abort the command. If this fails the
123  * driver assumes the device to be dead, fences it off, and calls FMA to retire
124  * it. In general admin commands are issued at attach time only. No timeout
125  * handling of normal I/O commands is presently done.
126  *
127  * In some cases it may be possible that the ABORT command times out, too. In
128  * that case the device is also declared dead and fenced off.
129  *
130  *
131  * Quiesce / Fast Reboot:
132  *
133  * The driver currently does not support fast reboot. A quiesce(9E) entry point
134  * is still provided which is used to send a shutdown notification to the
135  * device.
136  *
137  *
138  * Driver Configuration:
139  *
140  * The following driver properties can be changed to control some aspects of the
141  * drivers operation:
142  * - strict-version: can be set to 0 to allow devices conforming to newer
143  *   versions to be used
144  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
145  *   specific command status as a fatal error leading device faulting
146  * - admin-queue-len: the maximum length of the admin queue (16-4096)
147  * - io-queue-len: the maximum length of the I/O queues (16-65536)
148  * - async-event-limit: the maximum number of asynchronous event requests to be
149  *   posted by the driver
150  *
151  *
152  * TODO:
153  * - figure out sane default for I/O queue depth reported to blkdev
154  * - polled I/O support to support kernel core dumping
155  * - FMA handling of media errors
156  * - support for the Volatile Write Cache
157  * - support for devices supporting very large I/O requests using chained PRPs
158  * - support for querying log pages from user space
159  * - support for configuring hardware parameters like interrupt coalescing
160  * - support for media formatting and hard partitioning into namespaces
161  * - support for big-endian systems
162  * - support for fast reboot
163  */
164 
165 #include <sys/byteorder.h>
166 #ifdef _BIG_ENDIAN
167 #error nvme driver needs porting for big-endian platforms
168 #endif
169 
170 #include <sys/modctl.h>
171 #include <sys/conf.h>
172 #include <sys/devops.h>
173 #include <sys/ddi.h>
174 #include <sys/sunddi.h>
175 #include <sys/bitmap.h>
176 #include <sys/sysmacros.h>
177 #include <sys/param.h>
178 #include <sys/varargs.h>
179 #include <sys/cpuvar.h>
180 #include <sys/disp.h>
181 #include <sys/blkdev.h>
182 #include <sys/atomic.h>
183 #include <sys/archsystm.h>
184 #include <sys/sata/sata_hba.h>
185 
186 #include "nvme_reg.h"
187 #include "nvme_var.h"
188 
189 
190 /* NVMe spec version supported */
191 static const int nvme_version_major = 1;
192 static const int nvme_version_minor = 0;
193 
194 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
195 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
196 static int nvme_quiesce(dev_info_t *);
197 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
198 static int nvme_setup_interrupts(nvme_t *, int, int);
199 static void nvme_release_interrupts(nvme_t *);
200 static uint_t nvme_intr(caddr_t, caddr_t);
201 
202 static void nvme_shutdown(nvme_t *, int, boolean_t);
203 static boolean_t nvme_reset(nvme_t *, boolean_t);
204 static int nvme_init(nvme_t *);
205 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
206 static void nvme_free_cmd(nvme_cmd_t *);
207 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
208     bd_xfer_t *);
209 static int nvme_admin_cmd(nvme_cmd_t *, int);
210 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
211 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
212 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
213 static void nvme_wakeup_cmd(void *);
214 static void nvme_async_event_task(void *);
215 
216 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
217 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
218 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
219 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
220 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
221 static inline int nvme_check_cmd_status(nvme_cmd_t *);
222 
223 static void nvme_abort_cmd(nvme_cmd_t *);
224 static int nvme_async_event(nvme_t *);
225 static void *nvme_get_logpage(nvme_t *, uint8_t, ...);
226 static void *nvme_identify(nvme_t *, uint32_t);
227 static int nvme_set_nqueues(nvme_t *, uint16_t);
228 
229 static void nvme_free_dma(nvme_dma_t *);
230 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
231     nvme_dma_t **);
232 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
233     nvme_dma_t **);
234 static void nvme_free_qpair(nvme_qpair_t *);
235 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
236 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
237 
238 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
239 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
240 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
241 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
242 
243 static boolean_t nvme_check_regs_hdl(nvme_t *);
244 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
245 
246 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
247 
248 static void nvme_bd_xfer_done(void *);
249 static void nvme_bd_driveinfo(void *, bd_drive_t *);
250 static int nvme_bd_mediainfo(void *, bd_media_t *);
251 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
252 static int nvme_bd_read(void *, bd_xfer_t *);
253 static int nvme_bd_write(void *, bd_xfer_t *);
254 static int nvme_bd_sync(void *, bd_xfer_t *);
255 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
256 
257 static void nvme_prepare_devid(nvme_t *, uint32_t);
258 
259 static void *nvme_state;
260 static kmem_cache_t *nvme_cmd_cache;
261 
262 /*
263  * DMA attributes for queue DMA memory
264  *
265  * Queue DMA memory must be page aligned. The maximum length of a queue is
266  * 65536 entries, and an entry can be 64 bytes long.
267  */
268 static ddi_dma_attr_t nvme_queue_dma_attr = {
269 	.dma_attr_version	= DMA_ATTR_V0,
270 	.dma_attr_addr_lo	= 0,
271 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
272 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
273 	.dma_attr_align		= 0x1000,
274 	.dma_attr_burstsizes	= 0x7ff,
275 	.dma_attr_minxfer	= 0x1000,
276 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
277 	.dma_attr_seg		= 0xffffffffffffffffULL,
278 	.dma_attr_sgllen	= 1,
279 	.dma_attr_granular	= 1,
280 	.dma_attr_flags		= 0,
281 };
282 
283 /*
284  * DMA attributes for transfers using Physical Region Page (PRP) entries
285  *
286  * A PRP entry describes one page of DMA memory using the page size specified
287  * in the controller configuration's memory page size register (CC.MPS). It uses
288  * a 64bit base address aligned to this page size. There is no limitation on
289  * chaining PRPs together for arbitrarily large DMA transfers.
290  */
291 static ddi_dma_attr_t nvme_prp_dma_attr = {
292 	.dma_attr_version	= DMA_ATTR_V0,
293 	.dma_attr_addr_lo	= 0,
294 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
295 	.dma_attr_count_max	= 0xfff,
296 	.dma_attr_align		= 0x1000,
297 	.dma_attr_burstsizes	= 0x7ff,
298 	.dma_attr_minxfer	= 0x1000,
299 	.dma_attr_maxxfer	= 0x1000,
300 	.dma_attr_seg		= 0xffffffffffffffffULL,
301 	.dma_attr_sgllen	= -1,
302 	.dma_attr_granular	= 1,
303 	.dma_attr_flags		= 0,
304 };
305 
306 /*
307  * DMA attributes for transfers using scatter/gather lists
308  *
309  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
310  * 32bit length field. SGL Segment and SGL Last Segment entries require the
311  * length to be a multiple of 16 bytes.
312  */
313 static ddi_dma_attr_t nvme_sgl_dma_attr = {
314 	.dma_attr_version	= DMA_ATTR_V0,
315 	.dma_attr_addr_lo	= 0,
316 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
317 	.dma_attr_count_max	= 0xffffffffUL,
318 	.dma_attr_align		= 1,
319 	.dma_attr_burstsizes	= 0x7ff,
320 	.dma_attr_minxfer	= 0x10,
321 	.dma_attr_maxxfer	= 0xfffffffffULL,
322 	.dma_attr_seg		= 0xffffffffffffffffULL,
323 	.dma_attr_sgllen	= -1,
324 	.dma_attr_granular	= 0x10,
325 	.dma_attr_flags		= 0
326 };
327 
328 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
329 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
330 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
331 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
332 };
333 
334 static struct dev_ops nvme_dev_ops = {
335 	.devo_rev	= DEVO_REV,
336 	.devo_refcnt	= 0,
337 	.devo_getinfo	= ddi_no_info,
338 	.devo_identify	= nulldev,
339 	.devo_probe	= nulldev,
340 	.devo_attach	= nvme_attach,
341 	.devo_detach	= nvme_detach,
342 	.devo_reset	= nodev,
343 	.devo_cb_ops	= NULL,
344 	.devo_bus_ops	= NULL,
345 	.devo_power	= NULL,
346 	.devo_quiesce	= nvme_quiesce,
347 };
348 
349 static struct modldrv nvme_modldrv = {
350 	.drv_modops	= &mod_driverops,
351 	.drv_linkinfo	= "NVMe v1.0e",
352 	.drv_dev_ops	= &nvme_dev_ops
353 };
354 
355 static struct modlinkage nvme_modlinkage = {
356 	.ml_rev		= MODREV_1,
357 	.ml_linkage	= { &nvme_modldrv, NULL }
358 };
359 
360 static bd_ops_t nvme_bd_ops = {
361 	.o_version	= BD_OPS_VERSION_0,
362 	.o_drive_info	= nvme_bd_driveinfo,
363 	.o_media_info	= nvme_bd_mediainfo,
364 	.o_devid_init	= nvme_bd_devid,
365 	.o_sync_cache	= nvme_bd_sync,
366 	.o_read		= nvme_bd_read,
367 	.o_write	= nvme_bd_write,
368 };
369 
370 int
371 _init(void)
372 {
373 	int error;
374 
375 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
376 	if (error != DDI_SUCCESS)
377 		return (error);
378 
379 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
380 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
381 
382 	bd_mod_init(&nvme_dev_ops);
383 
384 	error = mod_install(&nvme_modlinkage);
385 	if (error != DDI_SUCCESS) {
386 		ddi_soft_state_fini(&nvme_state);
387 		bd_mod_fini(&nvme_dev_ops);
388 	}
389 
390 	return (error);
391 }
392 
393 int
394 _fini(void)
395 {
396 	int error;
397 
398 	error = mod_remove(&nvme_modlinkage);
399 	if (error == DDI_SUCCESS) {
400 		ddi_soft_state_fini(&nvme_state);
401 		kmem_cache_destroy(nvme_cmd_cache);
402 		bd_mod_fini(&nvme_dev_ops);
403 	}
404 
405 	return (error);
406 }
407 
408 int
409 _info(struct modinfo *modinfop)
410 {
411 	return (mod_info(&nvme_modlinkage, modinfop));
412 }
413 
414 static inline void
415 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
416 {
417 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
418 
419 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
420 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
421 }
422 
423 static inline void
424 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
425 {
426 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
427 
428 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
429 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
430 }
431 
432 static inline uint64_t
433 nvme_get64(nvme_t *nvme, uintptr_t reg)
434 {
435 	uint64_t val;
436 
437 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
438 
439 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
440 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
441 
442 	return (val);
443 }
444 
445 static inline uint32_t
446 nvme_get32(nvme_t *nvme, uintptr_t reg)
447 {
448 	uint32_t val;
449 
450 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
451 
452 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
453 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
454 
455 	return (val);
456 }
457 
458 static boolean_t
459 nvme_check_regs_hdl(nvme_t *nvme)
460 {
461 	ddi_fm_error_t error;
462 
463 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
464 
465 	if (error.fme_status != DDI_FM_OK)
466 		return (B_TRUE);
467 
468 	return (B_FALSE);
469 }
470 
471 static boolean_t
472 nvme_check_dma_hdl(nvme_dma_t *dma)
473 {
474 	ddi_fm_error_t error;
475 
476 	if (dma == NULL)
477 		return (B_FALSE);
478 
479 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
480 
481 	if (error.fme_status != DDI_FM_OK)
482 		return (B_TRUE);
483 
484 	return (B_FALSE);
485 }
486 
487 static void
488 nvme_free_dma(nvme_dma_t *dma)
489 {
490 	if (dma->nd_dmah != NULL)
491 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
492 	if (dma->nd_acch != NULL)
493 		ddi_dma_mem_free(&dma->nd_acch);
494 	if (dma->nd_dmah != NULL)
495 		ddi_dma_free_handle(&dma->nd_dmah);
496 	kmem_free(dma, sizeof (nvme_dma_t));
497 }
498 
499 static int
500 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
501     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
502 {
503 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
504 
505 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
506 	    &dma->nd_dmah) != DDI_SUCCESS) {
507 		/*
508 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
509 		 * the only other possible error is DDI_DMA_BADATTR which
510 		 * indicates a driver bug which should cause a panic.
511 		 */
512 		dev_err(nvme->n_dip, CE_PANIC,
513 		    "!failed to get DMA handle, check DMA attributes");
514 		return (DDI_FAILURE);
515 	}
516 
517 	/*
518 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
519 	 * or the flags are conflicting, which isn't the case here.
520 	 */
521 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
522 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
523 	    &dma->nd_len, &dma->nd_acch);
524 
525 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
526 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
527 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
528 		dev_err(nvme->n_dip, CE_WARN,
529 		    "!failed to bind DMA memory");
530 		atomic_inc_32(&nvme->n_dma_bind_err);
531 		*ret = NULL;
532 		nvme_free_dma(dma);
533 		return (DDI_FAILURE);
534 	}
535 
536 	bzero(dma->nd_memp, dma->nd_len);
537 
538 	*ret = dma;
539 	return (DDI_SUCCESS);
540 }
541 
542 static int
543 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
544     uint_t flags, nvme_dma_t **dma)
545 {
546 	uint32_t len = nentry * qe_len;
547 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
548 
549 	len = roundup(len, nvme->n_pagesize);
550 
551 	q_dma_attr.dma_attr_minxfer = len;
552 
553 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
554 	    != DDI_SUCCESS) {
555 		dev_err(nvme->n_dip, CE_WARN,
556 		    "!failed to get DMA memory for queue");
557 		goto fail;
558 	}
559 
560 	if ((*dma)->nd_ncookie != 1) {
561 		dev_err(nvme->n_dip, CE_WARN,
562 		    "!got too many cookies for queue DMA");
563 		goto fail;
564 	}
565 
566 	return (DDI_SUCCESS);
567 
568 fail:
569 	if (*dma) {
570 		nvme_free_dma(*dma);
571 		*dma = NULL;
572 	}
573 
574 	return (DDI_FAILURE);
575 }
576 
577 static void
578 nvme_free_qpair(nvme_qpair_t *qp)
579 {
580 	int i;
581 
582 	mutex_destroy(&qp->nq_mutex);
583 
584 	if (qp->nq_sqdma != NULL)
585 		nvme_free_dma(qp->nq_sqdma);
586 	if (qp->nq_cqdma != NULL)
587 		nvme_free_dma(qp->nq_cqdma);
588 
589 	if (qp->nq_active_cmds > 0)
590 		for (i = 0; i != qp->nq_nentry; i++)
591 			if (qp->nq_cmd[i] != NULL)
592 				nvme_free_cmd(qp->nq_cmd[i]);
593 
594 	if (qp->nq_cmd != NULL)
595 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
596 
597 	kmem_free(qp, sizeof (nvme_qpair_t));
598 }
599 
600 static int
601 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
602     int idx)
603 {
604 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
605 
606 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
607 	    DDI_INTR_PRI(nvme->n_intr_pri));
608 
609 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
610 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
611 		goto fail;
612 
613 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
614 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
615 		goto fail;
616 
617 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
618 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
619 	qp->nq_nentry = nentry;
620 
621 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
622 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
623 
624 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
625 	qp->nq_next_cmd = 0;
626 
627 	*nqp = qp;
628 	return (DDI_SUCCESS);
629 
630 fail:
631 	nvme_free_qpair(qp);
632 	*nqp = NULL;
633 
634 	return (DDI_FAILURE);
635 }
636 
637 static nvme_cmd_t *
638 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
639 {
640 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
641 
642 	if (cmd == NULL)
643 		return (cmd);
644 
645 	bzero(cmd, sizeof (nvme_cmd_t));
646 
647 	cmd->nc_nvme = nvme;
648 
649 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
650 	    DDI_INTR_PRI(nvme->n_intr_pri));
651 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
652 
653 	return (cmd);
654 }
655 
656 static void
657 nvme_free_cmd(nvme_cmd_t *cmd)
658 {
659 	if (cmd->nc_dma) {
660 		nvme_free_dma(cmd->nc_dma);
661 		cmd->nc_dma = NULL;
662 	}
663 
664 	cv_destroy(&cmd->nc_cv);
665 	mutex_destroy(&cmd->nc_mutex);
666 
667 	kmem_cache_free(nvme_cmd_cache, cmd);
668 }
669 
670 static int
671 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
672 {
673 	nvme_reg_sqtdbl_t tail = { 0 };
674 
675 	mutex_enter(&qp->nq_mutex);
676 
677 	if (qp->nq_active_cmds == qp->nq_nentry) {
678 		mutex_exit(&qp->nq_mutex);
679 		return (DDI_FAILURE);
680 	}
681 
682 	cmd->nc_completed = B_FALSE;
683 
684 	/*
685 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
686 	 * slot. If the slot is already occupied advance to the next slot and
687 	 * try again. This can happen for long running commands like async event
688 	 * requests.
689 	 */
690 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
691 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
692 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
693 
694 	qp->nq_active_cmds++;
695 
696 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
697 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
698 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
699 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
700 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
701 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
702 
703 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
704 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
705 
706 	mutex_exit(&qp->nq_mutex);
707 	return (DDI_SUCCESS);
708 }
709 
710 static nvme_cmd_t *
711 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
712 {
713 	nvme_reg_cqhdbl_t head = { 0 };
714 
715 	nvme_cqe_t *cqe;
716 	nvme_cmd_t *cmd;
717 
718 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
719 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
720 
721 	cqe = &qp->nq_cq[qp->nq_cqhead];
722 
723 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
724 	if (cqe->cqe_sf.sf_p == qp->nq_phase)
725 		return (NULL);
726 
727 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
728 	ASSERT(cqe->cqe_cid < qp->nq_nentry);
729 
730 	mutex_enter(&qp->nq_mutex);
731 	cmd = qp->nq_cmd[cqe->cqe_cid];
732 	qp->nq_cmd[cqe->cqe_cid] = NULL;
733 	qp->nq_active_cmds--;
734 	mutex_exit(&qp->nq_mutex);
735 
736 	ASSERT(cmd != NULL);
737 	ASSERT(cmd->nc_nvme == nvme);
738 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
739 	ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
740 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
741 
742 	qp->nq_sqhead = cqe->cqe_sqhd;
743 
744 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
745 
746 	/* Toggle phase on wrap-around. */
747 	if (qp->nq_cqhead == 0)
748 		qp->nq_phase = qp->nq_phase ? 0 : 1;
749 
750 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
751 
752 	return (cmd);
753 }
754 
755 static int
756 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
757 {
758 	nvme_cqe_t *cqe = &cmd->nc_cqe;
759 
760 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
761 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
762 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
763 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
764 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
765 
766 	bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
767 
768 	if (cmd->nc_nvme->n_strict_version) {
769 		cmd->nc_nvme->n_dead = B_TRUE;
770 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
771 	}
772 
773 	return (EIO);
774 }
775 
776 static int
777 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
778 {
779 	nvme_cqe_t *cqe = &cmd->nc_cqe;
780 
781 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
782 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
783 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
784 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
785 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
786 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
787 		cmd->nc_nvme->n_dead = B_TRUE;
788 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
789 	}
790 
791 	return (EIO);
792 }
793 
794 static int
795 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
796 {
797 	nvme_cqe_t *cqe = &cmd->nc_cqe;
798 
799 	switch (cqe->cqe_sf.sf_sc) {
800 	case NVME_CQE_SC_INT_NVM_WRITE:
801 		/* write fail */
802 		/* TODO: post ereport */
803 		bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
804 		return (EIO);
805 
806 	case NVME_CQE_SC_INT_NVM_READ:
807 		/* read fail */
808 		/* TODO: post ereport */
809 		bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
810 		return (EIO);
811 
812 	default:
813 		return (nvme_check_unknown_cmd_status(cmd));
814 	}
815 }
816 
817 static int
818 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
819 {
820 	nvme_cqe_t *cqe = &cmd->nc_cqe;
821 
822 	switch (cqe->cqe_sf.sf_sc) {
823 	case NVME_CQE_SC_GEN_SUCCESS:
824 		return (0);
825 
826 	/*
827 	 * Errors indicating a bug in the driver should cause a panic.
828 	 */
829 	case NVME_CQE_SC_GEN_INV_OPC:
830 		/* Invalid Command Opcode */
831 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
832 		    "invalid opcode in cmd %p", (void *)cmd);
833 		return (0);
834 
835 	case NVME_CQE_SC_GEN_INV_FLD:
836 		/* Invalid Field in Command */
837 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
838 		    "invalid field in cmd %p", (void *)cmd);
839 		return (0);
840 
841 	case NVME_CQE_SC_GEN_ID_CNFL:
842 		/* Command ID Conflict */
843 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
844 		    "cmd ID conflict in cmd %p", (void *)cmd);
845 		return (0);
846 
847 	case NVME_CQE_SC_GEN_INV_NS:
848 		/* Invalid Namespace or Format */
849 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
850 		    "invalid NS/format in cmd %p", (void *)cmd);
851 		return (0);
852 
853 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
854 		/* LBA Out Of Range */
855 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
856 		    "LBA out of range in cmd %p", (void *)cmd);
857 		return (0);
858 
859 	/*
860 	 * Non-fatal errors, handle gracefully.
861 	 */
862 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
863 		/* Data Transfer Error (DMA) */
864 		/* TODO: post ereport */
865 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
866 		bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
867 		return (EIO);
868 
869 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
870 		/*
871 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
872 		 * detailed error information is returned as async event,
873 		 * so we pretty much ignore the error here and handle it
874 		 * in the async event handler.
875 		 */
876 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
877 		bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
878 		return (EIO);
879 
880 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
881 		/*
882 		 * Command Abort Requested. This normally happens only when a
883 		 * command times out.
884 		 */
885 		/* TODO: post ereport or change blkdev to handle this? */
886 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
887 		return (ECANCELED);
888 
889 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
890 		/* Command Aborted due to Power Loss Notification */
891 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
892 		cmd->nc_nvme->n_dead = B_TRUE;
893 		return (EIO);
894 
895 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
896 		/* Command Aborted due to SQ Deletion */
897 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
898 		return (EIO);
899 
900 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
901 		/* Capacity Exceeded */
902 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
903 		bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
904 		return (EIO);
905 
906 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
907 		/* Namespace Not Ready */
908 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
909 		bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
910 		return (EIO);
911 
912 	default:
913 		return (nvme_check_unknown_cmd_status(cmd));
914 	}
915 }
916 
917 static int
918 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
919 {
920 	nvme_cqe_t *cqe = &cmd->nc_cqe;
921 
922 	switch (cqe->cqe_sf.sf_sc) {
923 	case NVME_CQE_SC_SPC_INV_CQ:
924 		/* Completion Queue Invalid */
925 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
926 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
927 		return (EINVAL);
928 
929 	case NVME_CQE_SC_SPC_INV_QID:
930 		/* Invalid Queue Identifier */
931 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
932 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
933 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
934 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
935 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
936 		return (EINVAL);
937 
938 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
939 		/* Max Queue Size Exceeded */
940 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
941 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
942 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
943 		return (EINVAL);
944 
945 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
946 		/* Abort Command Limit Exceeded */
947 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
948 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
949 		    "abort command limit exceeded in cmd %p", (void *)cmd);
950 		return (0);
951 
952 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
953 		/* Async Event Request Limit Exceeded */
954 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
955 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
956 		    "async event request limit exceeded in cmd %p",
957 		    (void *)cmd);
958 		return (0);
959 
960 	case NVME_CQE_SC_SPC_INV_INT_VECT:
961 		/* Invalid Interrupt Vector */
962 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
963 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
964 		return (EINVAL);
965 
966 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
967 		/* Invalid Log Page */
968 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
969 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
970 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
971 		return (EINVAL);
972 
973 	case NVME_CQE_SC_SPC_INV_FORMAT:
974 		/* Invalid Format */
975 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
976 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
977 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
978 		return (EINVAL);
979 
980 	case NVME_CQE_SC_SPC_INV_Q_DEL:
981 		/* Invalid Queue Deletion */
982 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
983 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
984 		return (EINVAL);
985 
986 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
987 		/* Conflicting Attributes */
988 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
989 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
990 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
991 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
992 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
993 		return (EINVAL);
994 
995 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
996 		/* Invalid Protection Information */
997 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
998 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
999 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1000 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1001 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1002 		return (EINVAL);
1003 
1004 	case NVME_CQE_SC_SPC_NVM_READONLY:
1005 		/* Write to Read Only Range */
1006 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1007 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1008 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1009 		return (EROFS);
1010 
1011 	default:
1012 		return (nvme_check_unknown_cmd_status(cmd));
1013 	}
1014 }
1015 
1016 static inline int
1017 nvme_check_cmd_status(nvme_cmd_t *cmd)
1018 {
1019 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1020 
1021 	/* take a shortcut if everything is alright */
1022 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1023 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1024 		return (0);
1025 
1026 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1027 		return (nvme_check_generic_cmd_status(cmd));
1028 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1029 		return (nvme_check_specific_cmd_status(cmd));
1030 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1031 		return (nvme_check_integrity_cmd_status(cmd));
1032 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1033 		return (nvme_check_vendor_cmd_status(cmd));
1034 
1035 	return (nvme_check_unknown_cmd_status(cmd));
1036 }
1037 
1038 /*
1039  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1040  *
1041  * This functions takes care of cleaning up aborted commands. The command
1042  * status is checked to catch any fatal errors.
1043  */
1044 static void
1045 nvme_abort_cmd_cb(void *arg)
1046 {
1047 	nvme_cmd_t *cmd = arg;
1048 
1049 	/*
1050 	 * Grab the command mutex. Once we have it we hold the last reference
1051 	 * to the command and can safely free it.
1052 	 */
1053 	mutex_enter(&cmd->nc_mutex);
1054 	(void) nvme_check_cmd_status(cmd);
1055 	mutex_exit(&cmd->nc_mutex);
1056 
1057 	nvme_free_cmd(cmd);
1058 }
1059 
1060 static void
1061 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1062 {
1063 	nvme_t *nvme = abort_cmd->nc_nvme;
1064 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1065 	nvme_abort_cmd_t ac = { 0 };
1066 
1067 	sema_p(&nvme->n_abort_sema);
1068 
1069 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1070 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1071 
1072 	/*
1073 	 * Drop the mutex of the aborted command. From this point on
1074 	 * we must assume that the abort callback has freed the command.
1075 	 */
1076 	mutex_exit(&abort_cmd->nc_mutex);
1077 
1078 	cmd->nc_sqid = 0;
1079 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1080 	cmd->nc_callback = nvme_wakeup_cmd;
1081 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1082 
1083 	/*
1084 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1085 	 * the aborted command has completed (aborted or otherwise).
1086 	 */
1087 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1088 		sema_v(&nvme->n_abort_sema);
1089 		dev_err(nvme->n_dip, CE_WARN,
1090 		    "!nvme_admin_cmd failed for ABORT");
1091 		atomic_inc_32(&nvme->n_abort_failed);
1092 		return;
1093 	}
1094 	sema_v(&nvme->n_abort_sema);
1095 
1096 	if (nvme_check_cmd_status(cmd)) {
1097 		dev_err(nvme->n_dip, CE_WARN,
1098 		    "!ABORT failed with sct = %x, sc = %x",
1099 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1100 		atomic_inc_32(&nvme->n_abort_failed);
1101 	} else {
1102 		atomic_inc_32(&nvme->n_cmd_aborted);
1103 	}
1104 
1105 	nvme_free_cmd(cmd);
1106 }
1107 
1108 /*
1109  * nvme_wait_cmd -- wait for command completion or timeout
1110  *
1111  * Returns B_TRUE if the command completed normally.
1112  *
1113  * Returns B_FALSE if the command timed out and an abort was attempted. The
1114  * command mutex will be dropped and the command must be considered freed. The
1115  * freeing of the command is normally done by the abort command callback.
1116  *
1117  * In case of a serious error or a timeout of the abort command the hardware
1118  * will be declared dead and FMA will be notified.
1119  */
1120 static boolean_t
1121 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t usec)
1122 {
1123 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(usec);
1124 	nvme_t *nvme = cmd->nc_nvme;
1125 	nvme_reg_csts_t csts;
1126 
1127 	ASSERT(mutex_owned(&cmd->nc_mutex));
1128 
1129 	while (!cmd->nc_completed) {
1130 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1131 			break;
1132 	}
1133 
1134 	if (cmd->nc_completed)
1135 		return (B_TRUE);
1136 
1137 	/*
1138 	 * The command timed out. Change the callback to the cleanup function.
1139 	 */
1140 	cmd->nc_callback = nvme_abort_cmd_cb;
1141 
1142 	/*
1143 	 * Check controller for fatal status, any errors associated with the
1144 	 * register or DMA handle, or for a double timeout (abort command timed
1145 	 * out). If necessary log a warning and call FMA.
1146 	 */
1147 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1148 	dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1149 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1150 	atomic_inc_32(&nvme->n_cmd_timeout);
1151 
1152 	if (csts.b.csts_cfs ||
1153 	    nvme_check_regs_hdl(nvme) ||
1154 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1155 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1156 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1157 		nvme->n_dead = B_TRUE;
1158 		mutex_exit(&cmd->nc_mutex);
1159 	} else {
1160 		/*
1161 		 * Try to abort the command. The command mutex is released by
1162 		 * nvme_abort_cmd().
1163 		 * If the abort succeeds it will have freed the aborted command.
1164 		 * If the abort fails for other reasons we must assume that the
1165 		 * command may complete at any time, and the callback will free
1166 		 * it for us.
1167 		 */
1168 		nvme_abort_cmd(cmd);
1169 	}
1170 
1171 	return (B_FALSE);
1172 }
1173 
1174 static void
1175 nvme_wakeup_cmd(void *arg)
1176 {
1177 	nvme_cmd_t *cmd = arg;
1178 
1179 	mutex_enter(&cmd->nc_mutex);
1180 	/*
1181 	 * There is a slight chance that this command completed shortly after
1182 	 * the timeout was hit in nvme_wait_cmd() but before the callback was
1183 	 * changed. Catch that case here and clean up accordingly.
1184 	 */
1185 	if (cmd->nc_callback == nvme_abort_cmd_cb) {
1186 		mutex_exit(&cmd->nc_mutex);
1187 		nvme_abort_cmd_cb(cmd);
1188 		return;
1189 	}
1190 
1191 	cmd->nc_completed = B_TRUE;
1192 	cv_signal(&cmd->nc_cv);
1193 	mutex_exit(&cmd->nc_mutex);
1194 }
1195 
1196 static void
1197 nvme_async_event_task(void *arg)
1198 {
1199 	nvme_cmd_t *cmd = arg;
1200 	nvme_t *nvme = cmd->nc_nvme;
1201 	nvme_error_log_entry_t *error_log = NULL;
1202 	nvme_health_log_t *health_log = NULL;
1203 	nvme_async_event_t event;
1204 	int ret;
1205 
1206 	/*
1207 	 * Check for errors associated with the async request itself. The only
1208 	 * command-specific error is "async event limit exceeded", which
1209 	 * indicates a programming error in the driver and causes a panic in
1210 	 * nvme_check_cmd_status().
1211 	 *
1212 	 * Other possible errors are various scenarios where the async request
1213 	 * was aborted, or internal errors in the device. Internal errors are
1214 	 * reported to FMA, the command aborts need no special handling here.
1215 	 */
1216 	if (nvme_check_cmd_status(cmd)) {
1217 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1218 		    "!async event request returned failure, sct = %x, "
1219 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1220 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1221 		    cmd->nc_cqe.cqe_sf.sf_m);
1222 
1223 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1224 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1225 			cmd->nc_nvme->n_dead = B_TRUE;
1226 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1227 			    DDI_SERVICE_LOST);
1228 		}
1229 		nvme_free_cmd(cmd);
1230 		return;
1231 	}
1232 
1233 
1234 	event.r = cmd->nc_cqe.cqe_dw0;
1235 
1236 	/* Clear CQE and re-submit the async request. */
1237 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1238 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1239 
1240 	if (ret != DDI_SUCCESS) {
1241 		dev_err(nvme->n_dip, CE_WARN,
1242 		    "!failed to resubmit async event request");
1243 		atomic_inc_32(&nvme->n_async_resubmit_failed);
1244 		nvme_free_cmd(cmd);
1245 	}
1246 
1247 	switch (event.b.ae_type) {
1248 	case NVME_ASYNC_TYPE_ERROR:
1249 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1250 			error_log = (nvme_error_log_entry_t *)
1251 			    nvme_get_logpage(nvme, event.b.ae_logpage);
1252 		} else {
1253 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1254 			    "async event reply: %d", event.b.ae_logpage);
1255 			atomic_inc_32(&nvme->n_wrong_logpage);
1256 		}
1257 
1258 		switch (event.b.ae_info) {
1259 		case NVME_ASYNC_ERROR_INV_SQ:
1260 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1261 			    "invalid submission queue");
1262 			return;
1263 
1264 		case NVME_ASYNC_ERROR_INV_DBL:
1265 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1266 			    "invalid doorbell write value");
1267 			return;
1268 
1269 		case NVME_ASYNC_ERROR_DIAGFAIL:
1270 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1271 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1272 			nvme->n_dead = B_TRUE;
1273 			atomic_inc_32(&nvme->n_diagfail_event);
1274 			break;
1275 
1276 		case NVME_ASYNC_ERROR_PERSISTENT:
1277 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1278 			    "device error");
1279 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1280 			nvme->n_dead = B_TRUE;
1281 			atomic_inc_32(&nvme->n_persistent_event);
1282 			break;
1283 
1284 		case NVME_ASYNC_ERROR_TRANSIENT:
1285 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1286 			    "device error");
1287 			/* TODO: send ereport */
1288 			atomic_inc_32(&nvme->n_transient_event);
1289 			break;
1290 
1291 		case NVME_ASYNC_ERROR_FW_LOAD:
1292 			dev_err(nvme->n_dip, CE_WARN,
1293 			    "!firmware image load error");
1294 			atomic_inc_32(&nvme->n_fw_load_event);
1295 			break;
1296 		}
1297 		break;
1298 
1299 	case NVME_ASYNC_TYPE_HEALTH:
1300 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1301 			health_log = (nvme_health_log_t *)
1302 			    nvme_get_logpage(nvme, event.b.ae_logpage, -1);
1303 		} else {
1304 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1305 			    "async event reply: %d", event.b.ae_logpage);
1306 			atomic_inc_32(&nvme->n_wrong_logpage);
1307 		}
1308 
1309 		switch (event.b.ae_info) {
1310 		case NVME_ASYNC_HEALTH_RELIABILITY:
1311 			dev_err(nvme->n_dip, CE_WARN,
1312 			    "!device reliability compromised");
1313 			/* TODO: send ereport */
1314 			atomic_inc_32(&nvme->n_reliability_event);
1315 			break;
1316 
1317 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1318 			dev_err(nvme->n_dip, CE_WARN,
1319 			    "!temperature above threshold");
1320 			/* TODO: send ereport */
1321 			atomic_inc_32(&nvme->n_temperature_event);
1322 			break;
1323 
1324 		case NVME_ASYNC_HEALTH_SPARE:
1325 			dev_err(nvme->n_dip, CE_WARN,
1326 			    "!spare space below threshold");
1327 			/* TODO: send ereport */
1328 			atomic_inc_32(&nvme->n_spare_event);
1329 			break;
1330 		}
1331 		break;
1332 
1333 	case NVME_ASYNC_TYPE_VENDOR:
1334 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1335 		    "received, info = %x, logpage = %x", event.b.ae_info,
1336 		    event.b.ae_logpage);
1337 		atomic_inc_32(&nvme->n_vendor_event);
1338 		break;
1339 
1340 	default:
1341 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1342 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1343 		    event.b.ae_info, event.b.ae_logpage);
1344 		atomic_inc_32(&nvme->n_unknown_event);
1345 		break;
1346 	}
1347 
1348 	if (error_log)
1349 		kmem_free(error_log, sizeof (nvme_error_log_entry_t) *
1350 		    nvme->n_error_log_len);
1351 
1352 	if (health_log)
1353 		kmem_free(health_log, sizeof (nvme_health_log_t));
1354 }
1355 
1356 static int
1357 nvme_admin_cmd(nvme_cmd_t *cmd, int usec)
1358 {
1359 	int ret;
1360 
1361 	mutex_enter(&cmd->nc_mutex);
1362 	ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1363 
1364 	if (ret != DDI_SUCCESS) {
1365 		mutex_exit(&cmd->nc_mutex);
1366 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1367 		    "!nvme_submit_cmd failed");
1368 		atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1369 		nvme_free_cmd(cmd);
1370 		return (DDI_FAILURE);
1371 	}
1372 
1373 	if (nvme_wait_cmd(cmd, usec) == B_FALSE) {
1374 		/*
1375 		 * The command timed out. An abort command was posted that
1376 		 * will take care of the cleanup.
1377 		 */
1378 		return (DDI_FAILURE);
1379 	}
1380 	mutex_exit(&cmd->nc_mutex);
1381 
1382 	return (DDI_SUCCESS);
1383 }
1384 
1385 static int
1386 nvme_async_event(nvme_t *nvme)
1387 {
1388 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1389 	int ret;
1390 
1391 	cmd->nc_sqid = 0;
1392 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1393 	cmd->nc_callback = nvme_async_event_task;
1394 
1395 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1396 
1397 	if (ret != DDI_SUCCESS) {
1398 		dev_err(nvme->n_dip, CE_WARN,
1399 		    "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1400 		nvme_free_cmd(cmd);
1401 		return (DDI_FAILURE);
1402 	}
1403 
1404 	return (DDI_SUCCESS);
1405 }
1406 
1407 static void *
1408 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...)
1409 {
1410 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1411 	void *buf = NULL;
1412 	nvme_getlogpage_t getlogpage = { 0 };
1413 	size_t bufsize;
1414 	va_list ap;
1415 
1416 	va_start(ap, logpage);
1417 
1418 	cmd->nc_sqid = 0;
1419 	cmd->nc_callback = nvme_wakeup_cmd;
1420 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1421 
1422 	getlogpage.b.lp_lid = logpage;
1423 
1424 	switch (logpage) {
1425 	case NVME_LOGPAGE_ERROR:
1426 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1427 		bufsize = nvme->n_error_log_len *
1428 		    sizeof (nvme_error_log_entry_t);
1429 		break;
1430 
1431 	case NVME_LOGPAGE_HEALTH:
1432 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1433 		bufsize = sizeof (nvme_health_log_t);
1434 		break;
1435 
1436 	case NVME_LOGPAGE_FWSLOT:
1437 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1438 		bufsize = sizeof (nvme_fwslot_log_t);
1439 		break;
1440 
1441 	default:
1442 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1443 		    logpage);
1444 		atomic_inc_32(&nvme->n_unknown_logpage);
1445 		goto fail;
1446 	}
1447 
1448 	va_end(ap);
1449 
1450 	getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1;
1451 
1452 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1453 
1454 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1455 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1456 		dev_err(nvme->n_dip, CE_WARN,
1457 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1458 		goto fail;
1459 	}
1460 
1461 	if (cmd->nc_dma->nd_ncookie > 2) {
1462 		dev_err(nvme->n_dip, CE_WARN,
1463 		    "!too many DMA cookies for GET LOG PAGE");
1464 		atomic_inc_32(&nvme->n_too_many_cookies);
1465 		goto fail;
1466 	}
1467 
1468 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1469 	if (cmd->nc_dma->nd_ncookie > 1) {
1470 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1471 		    &cmd->nc_dma->nd_cookie);
1472 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1473 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1474 	}
1475 
1476 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1477 		dev_err(nvme->n_dip, CE_WARN,
1478 		    "!nvme_admin_cmd failed for GET LOG PAGE");
1479 		return (NULL);
1480 	}
1481 
1482 	if (nvme_check_cmd_status(cmd)) {
1483 		dev_err(nvme->n_dip, CE_WARN,
1484 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1485 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1486 		goto fail;
1487 	}
1488 
1489 	buf = kmem_alloc(bufsize, KM_SLEEP);
1490 	bcopy(cmd->nc_dma->nd_memp, buf, bufsize);
1491 
1492 fail:
1493 	nvme_free_cmd(cmd);
1494 
1495 	return (buf);
1496 }
1497 
1498 static void *
1499 nvme_identify(nvme_t *nvme, uint32_t nsid)
1500 {
1501 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1502 	void *buf = NULL;
1503 
1504 	cmd->nc_sqid = 0;
1505 	cmd->nc_callback = nvme_wakeup_cmd;
1506 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1507 	cmd->nc_sqe.sqe_nsid = nsid;
1508 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1509 
1510 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1511 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1512 		dev_err(nvme->n_dip, CE_WARN,
1513 		    "!nvme_zalloc_dma failed for IDENTIFY");
1514 		goto fail;
1515 	}
1516 
1517 	if (cmd->nc_dma->nd_ncookie > 2) {
1518 		dev_err(nvme->n_dip, CE_WARN,
1519 		    "!too many DMA cookies for IDENTIFY");
1520 		atomic_inc_32(&nvme->n_too_many_cookies);
1521 		goto fail;
1522 	}
1523 
1524 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1525 	if (cmd->nc_dma->nd_ncookie > 1) {
1526 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1527 		    &cmd->nc_dma->nd_cookie);
1528 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1529 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1530 	}
1531 
1532 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1533 		dev_err(nvme->n_dip, CE_WARN,
1534 		    "!nvme_admin_cmd failed for IDENTIFY");
1535 		return (NULL);
1536 	}
1537 
1538 	if (nvme_check_cmd_status(cmd)) {
1539 		dev_err(nvme->n_dip, CE_WARN,
1540 		    "!IDENTIFY failed with sct = %x, sc = %x",
1541 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1542 		goto fail;
1543 	}
1544 
1545 	buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1546 	bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1547 
1548 fail:
1549 	nvme_free_cmd(cmd);
1550 
1551 	return (buf);
1552 }
1553 
1554 static int
1555 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1556 {
1557 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1558 	nvme_nqueue_t nq = { 0 };
1559 
1560 	nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1561 
1562 	cmd->nc_sqid = 0;
1563 	cmd->nc_callback = nvme_wakeup_cmd;
1564 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1565 	cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES;
1566 	cmd->nc_sqe.sqe_cdw11 = nq.r;
1567 
1568 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1569 		dev_err(nvme->n_dip, CE_WARN,
1570 		    "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)");
1571 		return (0);
1572 	}
1573 
1574 	if (nvme_check_cmd_status(cmd)) {
1575 		dev_err(nvme->n_dip, CE_WARN,
1576 		    "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x",
1577 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1578 		nvme_free_cmd(cmd);
1579 		return (0);
1580 	}
1581 
1582 	nq.r = cmd->nc_cqe.cqe_dw0;
1583 	nvme_free_cmd(cmd);
1584 
1585 	/*
1586 	 * Always use the same number of submission and completion queues, and
1587 	 * never use more than the requested number of queues.
1588 	 */
1589 	return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1590 }
1591 
1592 static int
1593 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1594 {
1595 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1596 	nvme_create_queue_dw10_t dw10 = { 0 };
1597 	nvme_create_cq_dw11_t c_dw11 = { 0 };
1598 	nvme_create_sq_dw11_t s_dw11 = { 0 };
1599 
1600 	dw10.b.q_qid = idx;
1601 	dw10.b.q_qsize = qp->nq_nentry - 1;
1602 
1603 	c_dw11.b.cq_pc = 1;
1604 	c_dw11.b.cq_ien = 1;
1605 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1606 
1607 	cmd->nc_sqid = 0;
1608 	cmd->nc_callback = nvme_wakeup_cmd;
1609 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1610 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1611 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1612 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1613 
1614 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1615 		dev_err(nvme->n_dip, CE_WARN,
1616 		    "!nvme_admin_cmd failed for CREATE CQUEUE");
1617 		return (DDI_FAILURE);
1618 	}
1619 
1620 	if (nvme_check_cmd_status(cmd)) {
1621 		dev_err(nvme->n_dip, CE_WARN,
1622 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
1623 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1624 		nvme_free_cmd(cmd);
1625 		return (DDI_FAILURE);
1626 	}
1627 
1628 	nvme_free_cmd(cmd);
1629 
1630 	s_dw11.b.sq_pc = 1;
1631 	s_dw11.b.sq_cqid = idx;
1632 
1633 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1634 	cmd->nc_sqid = 0;
1635 	cmd->nc_callback = nvme_wakeup_cmd;
1636 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
1637 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1638 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
1639 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
1640 
1641 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1642 		dev_err(nvme->n_dip, CE_WARN,
1643 		    "!nvme_admin_cmd failed for CREATE SQUEUE");
1644 		return (DDI_FAILURE);
1645 	}
1646 
1647 	if (nvme_check_cmd_status(cmd)) {
1648 		dev_err(nvme->n_dip, CE_WARN,
1649 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
1650 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1651 		nvme_free_cmd(cmd);
1652 		return (DDI_FAILURE);
1653 	}
1654 
1655 	nvme_free_cmd(cmd);
1656 
1657 	return (DDI_SUCCESS);
1658 }
1659 
1660 static boolean_t
1661 nvme_reset(nvme_t *nvme, boolean_t quiesce)
1662 {
1663 	nvme_reg_csts_t csts;
1664 	int i;
1665 
1666 	nvme_put32(nvme, NVME_REG_CC, 0);
1667 
1668 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1669 	if (csts.b.csts_rdy == 1) {
1670 		nvme_put32(nvme, NVME_REG_CC, 0);
1671 		for (i = 0; i != nvme->n_timeout * 10; i++) {
1672 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1673 			if (csts.b.csts_rdy == 0)
1674 				break;
1675 
1676 			if (quiesce)
1677 				drv_usecwait(50000);
1678 			else
1679 				delay(drv_usectohz(50000));
1680 		}
1681 	}
1682 
1683 	nvme_put32(nvme, NVME_REG_AQA, 0);
1684 	nvme_put32(nvme, NVME_REG_ASQ, 0);
1685 	nvme_put32(nvme, NVME_REG_ACQ, 0);
1686 
1687 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1688 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
1689 }
1690 
1691 static void
1692 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
1693 {
1694 	nvme_reg_cc_t cc;
1695 	nvme_reg_csts_t csts;
1696 	int i;
1697 
1698 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
1699 
1700 	cc.r = nvme_get32(nvme, NVME_REG_CC);
1701 	cc.b.cc_shn = mode & 0x3;
1702 	nvme_put32(nvme, NVME_REG_CC, cc.r);
1703 
1704 	for (i = 0; i != 10; i++) {
1705 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1706 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
1707 			break;
1708 
1709 		if (quiesce)
1710 			drv_usecwait(100000);
1711 		else
1712 			delay(drv_usectohz(100000));
1713 	}
1714 }
1715 
1716 
1717 static void
1718 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
1719 {
1720 	char model[sizeof (nvme->n_idctl->id_model) + 1];
1721 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
1722 
1723 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1724 	bcopy(nvme->n_idctl->id_serial, serial,
1725 	    sizeof (nvme->n_idctl->id_serial));
1726 
1727 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
1728 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
1729 
1730 	(void) snprintf(nvme->n_ns[nsid - 1].ns_devid,
1731 	    sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X",
1732 	    nvme->n_idctl->id_vid, model, serial, nsid);
1733 }
1734 
1735 static int
1736 nvme_init(nvme_t *nvme)
1737 {
1738 	nvme_reg_cc_t cc = { 0 };
1739 	nvme_reg_aqa_t aqa = { 0 };
1740 	nvme_reg_asq_t asq = { 0 };
1741 	nvme_reg_acq_t acq = { 0 };
1742 	nvme_reg_cap_t cap;
1743 	nvme_reg_vs_t vs;
1744 	nvme_reg_csts_t csts;
1745 	int i = 0;
1746 	int nqueues;
1747 	char model[sizeof (nvme->n_idctl->id_model) + 1];
1748 	char *vendor, *product;
1749 
1750 	/* Setup fixed interrupt for admin queue. */
1751 	if (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
1752 	    != DDI_SUCCESS) {
1753 		dev_err(nvme->n_dip, CE_WARN,
1754 		    "!failed to setup fixed interrupt");
1755 		goto fail;
1756 	}
1757 
1758 	/* Check controller version */
1759 	vs.r = nvme_get32(nvme, NVME_REG_VS);
1760 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
1761 	    vs.b.vs_mjr, vs.b.vs_mnr);
1762 
1763 	if (nvme_version_major < vs.b.vs_mjr ||
1764 	    (nvme_version_major == vs.b.vs_mjr &&
1765 	    nvme_version_minor < vs.b.vs_mnr)) {
1766 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
1767 		    nvme_version_major, nvme_version_minor);
1768 		if (nvme->n_strict_version)
1769 			goto fail;
1770 	}
1771 
1772 	/* retrieve controller configuration */
1773 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
1774 
1775 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
1776 		dev_err(nvme->n_dip, CE_WARN,
1777 		    "!NVM command set not supported by hardware");
1778 		goto fail;
1779 	}
1780 
1781 	nvme->n_nssr_supported = cap.b.cap_nssrs;
1782 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
1783 	nvme->n_timeout = cap.b.cap_to;
1784 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
1785 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
1786 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
1787 
1788 	/*
1789 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
1790 	 * the base page size of 4k (1<<12), so add 12 here to get the real
1791 	 * page size value.
1792 	 */
1793 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
1794 	    cap.b.cap_mpsmax + 12);
1795 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
1796 
1797 	/*
1798 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
1799 	 */
1800 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
1801 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1802 
1803 	/*
1804 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
1805 	 * Maxxfer may be increased after we identified the controller limits.
1806 	 */
1807 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
1808 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1809 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
1810 
1811 	/*
1812 	 * Reset controller if it's still in ready state.
1813 	 */
1814 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
1815 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
1816 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1817 		nvme->n_dead = B_TRUE;
1818 		goto fail;
1819 	}
1820 
1821 	/*
1822 	 * Create the admin queue pair.
1823 	 */
1824 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
1825 	    != DDI_SUCCESS) {
1826 		dev_err(nvme->n_dip, CE_WARN,
1827 		    "!unable to allocate admin qpair");
1828 		goto fail;
1829 	}
1830 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
1831 	nvme->n_ioq[0] = nvme->n_adminq;
1832 
1833 	nvme->n_progress |= NVME_ADMIN_QUEUE;
1834 
1835 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1836 	    "admin-queue-len", nvme->n_admin_queue_len);
1837 
1838 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
1839 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
1840 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
1841 
1842 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
1843 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
1844 
1845 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
1846 	nvme_put64(nvme, NVME_REG_ASQ, asq);
1847 	nvme_put64(nvme, NVME_REG_ACQ, acq);
1848 
1849 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
1850 	cc.b.cc_css = 0;	/* use NVM command set */
1851 	cc.b.cc_mps = nvme->n_pageshift - 12;
1852 	cc.b.cc_shn = 0;	/* no shutdown in progress */
1853 	cc.b.cc_en = 1;		/* enable controller */
1854 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
1855 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
1856 
1857 	nvme_put32(nvme, NVME_REG_CC, cc.r);
1858 
1859 	/*
1860 	 * Wait for the controller to become ready.
1861 	 */
1862 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1863 	if (csts.b.csts_rdy == 0) {
1864 		for (i = 0; i != nvme->n_timeout * 10; i++) {
1865 			delay(drv_usectohz(50000));
1866 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1867 
1868 			if (csts.b.csts_cfs == 1) {
1869 				dev_err(nvme->n_dip, CE_WARN,
1870 				    "!controller fatal status at init");
1871 				ddi_fm_service_impact(nvme->n_dip,
1872 				    DDI_SERVICE_LOST);
1873 				nvme->n_dead = B_TRUE;
1874 				goto fail;
1875 			}
1876 
1877 			if (csts.b.csts_rdy == 1)
1878 				break;
1879 		}
1880 	}
1881 
1882 	if (csts.b.csts_rdy == 0) {
1883 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
1884 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1885 		nvme->n_dead = B_TRUE;
1886 		goto fail;
1887 	}
1888 
1889 	/*
1890 	 * Assume an abort command limit of 1. We'll destroy and re-init
1891 	 * that later when we know the true abort command limit.
1892 	 */
1893 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
1894 
1895 	/*
1896 	 * Post an asynchronous event command to catch errors.
1897 	 */
1898 	if (nvme_async_event(nvme) != DDI_SUCCESS) {
1899 		dev_err(nvme->n_dip, CE_WARN,
1900 		    "!failed to post async event");
1901 		goto fail;
1902 	}
1903 
1904 	/*
1905 	 * Identify Controller
1906 	 */
1907 	nvme->n_idctl = nvme_identify(nvme, 0);
1908 	if (nvme->n_idctl == NULL) {
1909 		dev_err(nvme->n_dip, CE_WARN,
1910 		    "!failed to identify controller");
1911 		goto fail;
1912 	}
1913 
1914 	/*
1915 	 * Get Vendor & Product ID
1916 	 */
1917 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1918 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
1919 	sata_split_model(model, &vendor, &product);
1920 
1921 	if (vendor == NULL)
1922 		nvme->n_vendor = strdup("NVMe");
1923 	else
1924 		nvme->n_vendor = strdup(vendor);
1925 
1926 	nvme->n_product = strdup(product);
1927 
1928 	/*
1929 	 * Get controller limits.
1930 	 */
1931 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
1932 	    MIN(nvme->n_admin_queue_len / 10,
1933 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
1934 
1935 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1936 	    "async-event-limit", nvme->n_async_event_limit);
1937 
1938 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
1939 
1940 	/*
1941 	 * Reinitialize the semaphore with the true abort command limit
1942 	 * supported by the hardware. It's not necessary to disable interrupts
1943 	 * as only command aborts use the semaphore, and no commands are
1944 	 * executed or aborted while we're here.
1945 	 */
1946 	sema_destroy(&nvme->n_abort_sema);
1947 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
1948 	    SEMA_DRIVER, NULL);
1949 
1950 	nvme->n_progress |= NVME_CTRL_LIMITS;
1951 
1952 	if (nvme->n_idctl->id_mdts == 0)
1953 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
1954 	else
1955 		nvme->n_max_data_transfer_size =
1956 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
1957 
1958 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
1959 
1960 	/*
1961 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
1962 	 * Chained PRPs are currently unsupported.
1963 	 *
1964 	 * This is a no-op on hardware which doesn't support a transfer size
1965 	 * big enough to require chained PRPs.
1966 	 */
1967 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
1968 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
1969 
1970 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
1971 
1972 	/*
1973 	 * Make sure the minimum/maximum queue entry sizes are not
1974 	 * larger/smaller than the default.
1975 	 */
1976 
1977 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
1978 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
1979 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
1980 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
1981 		goto fail;
1982 
1983 	/*
1984 	 * Check for the presence of a Volatile Write Cache. If present,
1985 	 * enable it by default.
1986 	 */
1987 	if (nvme->n_idctl->id_vwc.vwc_present == 0) {
1988 		nvme->n_volatile_write_cache_enabled = B_FALSE;
1989 		nvme_bd_ops.o_sync_cache = NULL;
1990 	} else {
1991 		/*
1992 		 * TODO: send SET FEATURES to enable VWC
1993 		 * (have no hardware to test this)
1994 		 */
1995 		nvme->n_volatile_write_cache_enabled = B_FALSE;
1996 		nvme_bd_ops.o_sync_cache = NULL;
1997 	}
1998 
1999 	/*
2000 	 * Grab a copy of all mandatory log pages.
2001 	 *
2002 	 * TODO: should go away once user space tool exists to print logs
2003 	 */
2004 	nvme->n_error_log = (nvme_error_log_entry_t *)
2005 	    nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR);
2006 	nvme->n_health_log = (nvme_health_log_t *)
2007 	    nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1);
2008 	nvme->n_fwslot_log = (nvme_fwslot_log_t *)
2009 	    nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT);
2010 
2011 	/*
2012 	 * Identify Namespaces
2013 	 */
2014 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2015 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2016 	    nvme->n_namespace_count, KM_SLEEP);
2017 
2018 	for (i = 0; i != nvme->n_namespace_count; i++) {
2019 		nvme_identify_nsid_t *idns;
2020 		int last_rp;
2021 
2022 		nvme->n_ns[i].ns_nvme = nvme;
2023 		nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1);
2024 
2025 		if (idns == NULL) {
2026 			dev_err(nvme->n_dip, CE_WARN,
2027 			    "!failed to identify namespace %d", i + 1);
2028 			goto fail;
2029 		}
2030 
2031 		nvme->n_ns[i].ns_id = i + 1;
2032 		nvme->n_ns[i].ns_block_count = idns->id_nsize;
2033 		nvme->n_ns[i].ns_block_size =
2034 		    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2035 		nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size;
2036 
2037 		nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id);
2038 
2039 		/*
2040 		 * Find the LBA format with no metadata and the best relative
2041 		 * performance. A value of 3 means "degraded", 0 is best.
2042 		 */
2043 		last_rp = 3;
2044 		for (int j = 0; j <= idns->id_nlbaf; j++) {
2045 			if (idns->id_lbaf[j].lbaf_lbads == 0)
2046 				break;
2047 			if (idns->id_lbaf[j].lbaf_ms != 0)
2048 				continue;
2049 			if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2050 				continue;
2051 			last_rp = idns->id_lbaf[j].lbaf_rp;
2052 			nvme->n_ns[i].ns_best_block_size =
2053 			    1 << idns->id_lbaf[j].lbaf_lbads;
2054 		}
2055 
2056 		/*
2057 		 * We currently don't support namespaces that use either:
2058 		 * - thin provisioning
2059 		 * - extended LBAs
2060 		 * - protection information
2061 		 */
2062 		if (idns->id_nsfeat.f_thin ||
2063 		    idns->id_flbas.lba_extlba ||
2064 		    idns->id_dps.dp_pinfo) {
2065 			dev_err(nvme->n_dip, CE_WARN,
2066 			    "!ignoring namespace %d, unsupported features: "
2067 			    "thin = %d, extlba = %d, pinfo = %d", i + 1,
2068 			    idns->id_nsfeat.f_thin, idns->id_flbas.lba_extlba,
2069 			    idns->id_dps.dp_pinfo);
2070 			nvme->n_ns[i].ns_ignore = B_TRUE;
2071 		}
2072 	}
2073 
2074 	/*
2075 	 * Try to set up MSI/MSI-X interrupts.
2076 	 */
2077 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2078 	    != 0) {
2079 		nvme_release_interrupts(nvme);
2080 
2081 		nqueues = MIN(UINT16_MAX, ncpus);
2082 
2083 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2084 		    nqueues) != DDI_SUCCESS) &&
2085 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2086 		    nqueues) != DDI_SUCCESS)) {
2087 			dev_err(nvme->n_dip, CE_WARN,
2088 			    "!failed to setup MSI/MSI-X interrupts");
2089 			goto fail;
2090 		}
2091 	}
2092 
2093 	nqueues = nvme->n_intr_cnt;
2094 
2095 	/*
2096 	 * Create I/O queue pairs.
2097 	 */
2098 	nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2099 	if (nvme->n_ioq_count == 0) {
2100 		dev_err(nvme->n_dip, CE_WARN,
2101 		    "!failed to set number of I/O queues to %d", nqueues);
2102 		goto fail;
2103 	}
2104 
2105 	/*
2106 	 * Reallocate I/O queue array
2107 	 */
2108 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2109 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2110 	    (nvme->n_ioq_count + 1), KM_SLEEP);
2111 	nvme->n_ioq[0] = nvme->n_adminq;
2112 
2113 	/*
2114 	 * If we got less queues than we asked for we might as well give
2115 	 * some of the interrupt vectors back to the system.
2116 	 */
2117 	if (nvme->n_ioq_count < nqueues) {
2118 		nvme_release_interrupts(nvme);
2119 
2120 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2121 		    nvme->n_ioq_count) != DDI_SUCCESS) {
2122 			dev_err(nvme->n_dip, CE_WARN,
2123 			    "!failed to reduce number of interrupts");
2124 			goto fail;
2125 		}
2126 	}
2127 
2128 	/*
2129 	 * Alloc & register I/O queue pairs
2130 	 */
2131 	nvme->n_io_queue_len =
2132 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2133 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2134 	    nvme->n_io_queue_len);
2135 
2136 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2137 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2138 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2139 			dev_err(nvme->n_dip, CE_WARN,
2140 			    "!unable to allocate I/O qpair %d", i);
2141 			goto fail;
2142 		}
2143 
2144 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2145 		    != DDI_SUCCESS) {
2146 			dev_err(nvme->n_dip, CE_WARN,
2147 			    "!unable to create I/O qpair %d", i);
2148 			goto fail;
2149 		}
2150 	}
2151 
2152 	/*
2153 	 * Post more asynchronous events commands to reduce event reporting
2154 	 * latency as suggested by the spec.
2155 	 */
2156 	for (i = 1; i != nvme->n_async_event_limit; i++) {
2157 		if (nvme_async_event(nvme) != DDI_SUCCESS) {
2158 			dev_err(nvme->n_dip, CE_WARN,
2159 			    "!failed to post async event %d", i);
2160 			goto fail;
2161 		}
2162 	}
2163 
2164 	return (DDI_SUCCESS);
2165 
2166 fail:
2167 	(void) nvme_reset(nvme, B_FALSE);
2168 	return (DDI_FAILURE);
2169 }
2170 
2171 static uint_t
2172 nvme_intr(caddr_t arg1, caddr_t arg2)
2173 {
2174 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2175 	nvme_t *nvme = (nvme_t *)arg1;
2176 	int inum = (int)(uintptr_t)arg2;
2177 	int qnum;
2178 	nvme_cmd_t *cmd;
2179 
2180 	if (inum >= nvme->n_intr_cnt)
2181 		return (DDI_INTR_UNCLAIMED);
2182 
2183 	/*
2184 	 * The interrupt vector a queue uses is calculated as queue_idx %
2185 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2186 	 * in steps of n_intr_cnt to process all queues using this vector.
2187 	 */
2188 	for (qnum = inum;
2189 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2190 	    qnum += nvme->n_intr_cnt) {
2191 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2192 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2193 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2194 		}
2195 	}
2196 
2197 	return (DDI_INTR_CLAIMED);
2198 }
2199 
2200 static void
2201 nvme_release_interrupts(nvme_t *nvme)
2202 {
2203 	int i;
2204 
2205 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2206 		if (nvme->n_inth[i] == NULL)
2207 			break;
2208 
2209 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2210 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2211 		else
2212 			(void) ddi_intr_disable(nvme->n_inth[i]);
2213 
2214 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2215 		(void) ddi_intr_free(nvme->n_inth[i]);
2216 	}
2217 
2218 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2219 	nvme->n_inth = NULL;
2220 	nvme->n_inth_sz = 0;
2221 
2222 	nvme->n_progress &= ~NVME_INTERRUPTS;
2223 }
2224 
2225 static int
2226 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2227 {
2228 	int failed = 0;
2229 	int nintrs, navail, count;
2230 	int ret;
2231 	int i;
2232 
2233 	if (nvme->n_intr_types == 0) {
2234 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2235 		    &nvme->n_intr_types);
2236 		if (ret != DDI_SUCCESS) {
2237 			dev_err(nvme->n_dip, CE_WARN,
2238 			    "!%s: ddi_intr_get_supported types failed",
2239 			    __func__);
2240 			return (ret);
2241 		}
2242 	}
2243 
2244 	if ((nvme->n_intr_types & intr_type) == 0)
2245 		return (DDI_FAILURE);
2246 
2247 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2248 	if (ret != DDI_SUCCESS) {
2249 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2250 		    __func__);
2251 		return (ret);
2252 	}
2253 
2254 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2255 	if (ret != DDI_SUCCESS) {
2256 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2257 		    __func__);
2258 		return (ret);
2259 	}
2260 
2261 	/* We want at most one interrupt per queue pair. */
2262 	if (navail > nqpairs)
2263 		navail = nqpairs;
2264 
2265 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2266 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2267 
2268 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2269 	    &count, 0);
2270 	if (ret != DDI_SUCCESS) {
2271 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2272 		    __func__);
2273 		goto fail;
2274 	}
2275 
2276 	nvme->n_intr_cnt = count;
2277 
2278 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2279 	if (ret != DDI_SUCCESS) {
2280 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2281 		    __func__);
2282 		goto fail;
2283 	}
2284 
2285 	for (i = 0; i < count; i++) {
2286 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2287 		    (void *)nvme, (void *)(uintptr_t)i);
2288 		if (ret != DDI_SUCCESS) {
2289 			dev_err(nvme->n_dip, CE_WARN,
2290 			    "!%s: ddi_intr_add_handler failed", __func__);
2291 			goto fail;
2292 		}
2293 	}
2294 
2295 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2296 
2297 	for (i = 0; i < count; i++) {
2298 		if (nvme->n_inth[i] == NULL)
2299 			break;
2300 
2301 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) {
2302 			if (ddi_intr_block_enable(&nvme->n_inth[i], 1) !=
2303 			    DDI_SUCCESS)
2304 				failed++;
2305 		} else {
2306 			if (ddi_intr_enable(nvme->n_inth[i]) != DDI_SUCCESS)
2307 				failed++;
2308 		}
2309 	}
2310 
2311 	if (failed != 0) {
2312 		dev_err(nvme->n_dip, CE_WARN,
2313 		    "!%s: enabling interrupts failed", __func__);
2314 		goto fail;
2315 	}
2316 
2317 	nvme->n_intr_type = intr_type;
2318 
2319 	nvme->n_progress |= NVME_INTERRUPTS;
2320 
2321 	return (DDI_SUCCESS);
2322 
2323 fail:
2324 	nvme_release_interrupts(nvme);
2325 
2326 	return (ret);
2327 }
2328 
2329 static int
2330 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2331 {
2332 	_NOTE(ARGUNUSED(arg));
2333 
2334 	pci_ereport_post(dip, fm_error, NULL);
2335 	return (fm_error->fme_status);
2336 }
2337 
2338 static int
2339 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2340 {
2341 	nvme_t *nvme;
2342 	int instance;
2343 	int nregs;
2344 	off_t regsize;
2345 	int i;
2346 	char name[32];
2347 
2348 	if (cmd != DDI_ATTACH)
2349 		return (DDI_FAILURE);
2350 
2351 	instance = ddi_get_instance(dip);
2352 
2353 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2354 		return (DDI_FAILURE);
2355 
2356 	nvme = ddi_get_soft_state(nvme_state, instance);
2357 	ddi_set_driver_private(dip, nvme);
2358 	nvme->n_dip = dip;
2359 
2360 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2361 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2362 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2363 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2364 	    B_TRUE : B_FALSE;
2365 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2366 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2367 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2368 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2369 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2370 	    DDI_PROP_DONTPASS, "async-event-limit",
2371 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2372 
2373 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2374 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2375 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2376 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2377 
2378 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2379 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2380 
2381 	if (nvme->n_async_event_limit < 1)
2382 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2383 
2384 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2385 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2386 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2387 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2388 
2389 	/*
2390 	 * Setup FMA support.
2391 	 */
2392 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2393 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2394 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2395 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2396 
2397 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2398 
2399 	if (nvme->n_fm_cap) {
2400 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2401 			nvme->n_reg_acc_attr.devacc_attr_access =
2402 			    DDI_FLAGERR_ACC;
2403 
2404 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2405 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2406 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2407 		}
2408 
2409 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2410 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2411 			pci_ereport_setup(dip);
2412 
2413 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2414 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2415 			    (void *)nvme);
2416 	}
2417 
2418 	nvme->n_progress |= NVME_FMA_INIT;
2419 
2420 	/*
2421 	 * The spec defines several register sets. Only the controller
2422 	 * registers (set 1) are currently used.
2423 	 */
2424 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2425 	    nregs < 2 ||
2426 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2427 		goto fail;
2428 
2429 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2430 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2431 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2432 		goto fail;
2433 	}
2434 
2435 	nvme->n_progress |= NVME_REGS_MAPPED;
2436 
2437 	/*
2438 	 * Create taskq for command completion.
2439 	 */
2440 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2441 	    ddi_driver_name(dip), ddi_get_instance(dip));
2442 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2443 	    TASKQ_DEFAULTPRI, 0);
2444 	if (nvme->n_cmd_taskq == NULL) {
2445 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2446 		goto fail;
2447 	}
2448 
2449 
2450 	if (nvme_init(nvme) != DDI_SUCCESS)
2451 		goto fail;
2452 
2453 	/*
2454 	 * Attach the blkdev driver for each namespace.
2455 	 */
2456 	for (i = 0; i != nvme->n_namespace_count; i++) {
2457 		if (nvme->n_ns[i].ns_ignore)
2458 			continue;
2459 
2460 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2461 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2462 
2463 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2464 			dev_err(dip, CE_WARN,
2465 			    "!failed to get blkdev handle for namespace %d", i);
2466 			goto fail;
2467 		}
2468 
2469 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2470 		    != DDI_SUCCESS) {
2471 			dev_err(dip, CE_WARN,
2472 			    "!failed to attach blkdev handle for namespace %d",
2473 			    i);
2474 			goto fail;
2475 		}
2476 	}
2477 
2478 	return (DDI_SUCCESS);
2479 
2480 fail:
2481 	/* attach successful anyway so that FMA can retire the device */
2482 	if (nvme->n_dead)
2483 		return (DDI_SUCCESS);
2484 
2485 	(void) nvme_detach(dip, DDI_DETACH);
2486 
2487 	return (DDI_FAILURE);
2488 }
2489 
2490 static int
2491 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2492 {
2493 	int instance, i;
2494 	nvme_t *nvme;
2495 
2496 	if (cmd != DDI_DETACH)
2497 		return (DDI_FAILURE);
2498 
2499 	instance = ddi_get_instance(dip);
2500 
2501 	nvme = ddi_get_soft_state(nvme_state, instance);
2502 
2503 	if (nvme == NULL)
2504 		return (DDI_FAILURE);
2505 
2506 	if (nvme->n_ns) {
2507 		for (i = 0; i != nvme->n_namespace_count; i++) {
2508 			if (nvme->n_ns[i].ns_bd_hdl) {
2509 				(void) bd_detach_handle(
2510 				    nvme->n_ns[i].ns_bd_hdl);
2511 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2512 			}
2513 
2514 			if (nvme->n_ns[i].ns_idns)
2515 				kmem_free(nvme->n_ns[i].ns_idns,
2516 				    sizeof (nvme_identify_nsid_t));
2517 		}
2518 
2519 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
2520 		    nvme->n_namespace_count);
2521 	}
2522 
2523 	if (nvme->n_progress & NVME_INTERRUPTS)
2524 		nvme_release_interrupts(nvme);
2525 
2526 	if (nvme->n_cmd_taskq)
2527 		ddi_taskq_wait(nvme->n_cmd_taskq);
2528 
2529 	if (nvme->n_ioq_count > 0) {
2530 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2531 			if (nvme->n_ioq[i] != NULL) {
2532 				/* TODO: send destroy queue commands */
2533 				nvme_free_qpair(nvme->n_ioq[i]);
2534 			}
2535 		}
2536 
2537 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
2538 		    (nvme->n_ioq_count + 1));
2539 	}
2540 
2541 	if (nvme->n_progress & NVME_REGS_MAPPED) {
2542 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
2543 		(void) nvme_reset(nvme, B_FALSE);
2544 	}
2545 
2546 	if (nvme->n_cmd_taskq)
2547 		ddi_taskq_destroy(nvme->n_cmd_taskq);
2548 
2549 	if (nvme->n_progress & NVME_CTRL_LIMITS)
2550 		sema_destroy(&nvme->n_abort_sema);
2551 
2552 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
2553 		nvme_free_qpair(nvme->n_adminq);
2554 
2555 	if (nvme->n_idctl)
2556 		kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t));
2557 
2558 	if (nvme->n_progress & NVME_REGS_MAPPED)
2559 		ddi_regs_map_free(&nvme->n_regh);
2560 
2561 	if (nvme->n_progress & NVME_FMA_INIT) {
2562 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2563 			ddi_fm_handler_unregister(nvme->n_dip);
2564 
2565 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2566 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2567 			pci_ereport_teardown(nvme->n_dip);
2568 
2569 		ddi_fm_fini(nvme->n_dip);
2570 	}
2571 
2572 	if (nvme->n_vendor != NULL)
2573 		strfree(nvme->n_vendor);
2574 
2575 	if (nvme->n_product != NULL)
2576 		strfree(nvme->n_product);
2577 
2578 	ddi_soft_state_free(nvme_state, instance);
2579 
2580 	return (DDI_SUCCESS);
2581 }
2582 
2583 static int
2584 nvme_quiesce(dev_info_t *dip)
2585 {
2586 	int instance;
2587 	nvme_t *nvme;
2588 
2589 	instance = ddi_get_instance(dip);
2590 
2591 	nvme = ddi_get_soft_state(nvme_state, instance);
2592 
2593 	if (nvme == NULL)
2594 		return (DDI_FAILURE);
2595 
2596 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
2597 
2598 	(void) nvme_reset(nvme, B_TRUE);
2599 
2600 	return (DDI_FAILURE);
2601 }
2602 
2603 static int
2604 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
2605 {
2606 	nvme_t *nvme = cmd->nc_nvme;
2607 	int nprp_page, nprp;
2608 	uint64_t *prp;
2609 
2610 	if (xfer->x_ndmac == 0)
2611 		return (DDI_FAILURE);
2612 
2613 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
2614 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2615 
2616 	if (xfer->x_ndmac == 1) {
2617 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
2618 		return (DDI_SUCCESS);
2619 	} else if (xfer->x_ndmac == 2) {
2620 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
2621 		return (DDI_SUCCESS);
2622 	}
2623 
2624 	xfer->x_ndmac--;
2625 
2626 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
2627 	ASSERT(nprp_page > 0);
2628 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
2629 
2630 	/*
2631 	 * We currently don't support chained PRPs and set up our DMA
2632 	 * attributes to reflect that. If we still get an I/O request
2633 	 * that needs a chained PRP something is very wrong.
2634 	 */
2635 	VERIFY(nprp == 1);
2636 
2637 	if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ,
2638 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2639 		dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed",
2640 		    __func__);
2641 		return (DDI_FAILURE);
2642 	}
2643 
2644 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
2645 	ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie);
2646 
2647 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2648 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
2649 	    xfer->x_ndmac > 0;
2650 	    prp++, xfer->x_ndmac--) {
2651 		*prp = xfer->x_dmac.dmac_laddress;
2652 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2653 	}
2654 
2655 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
2656 	    DDI_DMA_SYNC_FORDEV);
2657 	return (DDI_SUCCESS);
2658 }
2659 
2660 static nvme_cmd_t *
2661 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
2662 {
2663 	nvme_t *nvme = ns->ns_nvme;
2664 	nvme_cmd_t *cmd;
2665 
2666 	/*
2667 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
2668 	 */
2669 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
2670 	    KM_NOSLEEP : KM_SLEEP);
2671 
2672 	if (cmd == NULL)
2673 		return (NULL);
2674 
2675 	cmd->nc_sqe.sqe_opc = opc;
2676 	cmd->nc_callback = nvme_bd_xfer_done;
2677 	cmd->nc_xfer = xfer;
2678 
2679 	switch (opc) {
2680 	case NVME_OPC_NVM_WRITE:
2681 	case NVME_OPC_NVM_READ:
2682 		VERIFY(xfer->x_nblks <= 0x10000);
2683 
2684 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
2685 
2686 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
2687 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
2688 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
2689 
2690 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
2691 			goto fail;
2692 		break;
2693 
2694 	case NVME_OPC_NVM_FLUSH:
2695 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
2696 		break;
2697 
2698 	default:
2699 		goto fail;
2700 	}
2701 
2702 	return (cmd);
2703 
2704 fail:
2705 	nvme_free_cmd(cmd);
2706 	return (NULL);
2707 }
2708 
2709 static void
2710 nvme_bd_xfer_done(void *arg)
2711 {
2712 	nvme_cmd_t *cmd = arg;
2713 	bd_xfer_t *xfer = cmd->nc_xfer;
2714 	int error = 0;
2715 
2716 	error = nvme_check_cmd_status(cmd);
2717 	nvme_free_cmd(cmd);
2718 
2719 	bd_xfer_done(xfer, error);
2720 }
2721 
2722 static void
2723 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
2724 {
2725 	nvme_namespace_t *ns = arg;
2726 	nvme_t *nvme = ns->ns_nvme;
2727 
2728 	/*
2729 	 * blkdev maintains one queue size per instance (namespace),
2730 	 * but all namespace share the I/O queues.
2731 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
2732 	 * or change blkdev to handle EAGAIN
2733 	 */
2734 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
2735 	    / nvme->n_namespace_count;
2736 
2737 	/*
2738 	 * d_maxxfer is not set, which means the value is taken from the DMA
2739 	 * attributes specified to bd_alloc_handle.
2740 	 */
2741 
2742 	drive->d_removable = B_FALSE;
2743 	drive->d_hotpluggable = B_FALSE;
2744 
2745 	drive->d_target = ns->ns_id;
2746 	drive->d_lun = 0;
2747 
2748 	drive->d_model = nvme->n_idctl->id_model;
2749 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
2750 	drive->d_vendor = nvme->n_vendor;
2751 	drive->d_vendor_len = strlen(nvme->n_vendor);
2752 	drive->d_product = nvme->n_product;
2753 	drive->d_product_len = strlen(nvme->n_product);
2754 	drive->d_serial = nvme->n_idctl->id_serial;
2755 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
2756 	drive->d_revision = nvme->n_idctl->id_fwrev;
2757 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
2758 }
2759 
2760 static int
2761 nvme_bd_mediainfo(void *arg, bd_media_t *media)
2762 {
2763 	nvme_namespace_t *ns = arg;
2764 
2765 	media->m_nblks = ns->ns_block_count;
2766 	media->m_blksize = ns->ns_block_size;
2767 	media->m_readonly = B_FALSE;
2768 	media->m_solidstate = B_TRUE;
2769 
2770 	media->m_pblksize = ns->ns_best_block_size;
2771 
2772 	return (0);
2773 }
2774 
2775 static int
2776 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
2777 {
2778 	nvme_t *nvme = ns->ns_nvme;
2779 	nvme_cmd_t *cmd;
2780 
2781 	if (nvme->n_dead)
2782 		return (EIO);
2783 
2784 	/* No polling for now */
2785 	if (xfer->x_flags & BD_XFER_POLL)
2786 		return (EIO);
2787 
2788 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
2789 	if (cmd == NULL)
2790 		return (ENOMEM);
2791 
2792 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
2793 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
2794 
2795 	if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
2796 	    != DDI_SUCCESS)
2797 		return (EAGAIN);
2798 
2799 	return (0);
2800 }
2801 
2802 static int
2803 nvme_bd_read(void *arg, bd_xfer_t *xfer)
2804 {
2805 	nvme_namespace_t *ns = arg;
2806 
2807 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
2808 }
2809 
2810 static int
2811 nvme_bd_write(void *arg, bd_xfer_t *xfer)
2812 {
2813 	nvme_namespace_t *ns = arg;
2814 
2815 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
2816 }
2817 
2818 static int
2819 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
2820 {
2821 	nvme_namespace_t *ns = arg;
2822 
2823 	if (ns->ns_nvme->n_dead)
2824 		return (EIO);
2825 
2826 	/*
2827 	 * If the volatile write cache isn't enabled the FLUSH command is a
2828 	 * no-op, so we can take a shortcut here.
2829 	 */
2830 	if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) {
2831 		bd_xfer_done(xfer, ENOTSUP);
2832 		return (0);
2833 	}
2834 
2835 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
2836 }
2837 
2838 static int
2839 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
2840 {
2841 	nvme_namespace_t *ns = arg;
2842 
2843 	return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid),
2844 	    ns->ns_devid, devid));
2845 }
2846