xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 0b466603bce1aab6133ee3b3c8fb941d5c83bf16)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  */
17 
18 /*
19  * blkdev driver for NVMe compliant storage devices
20  *
21  * This driver was written to conform to version 1.2.1 of the NVMe
22  * specification.  It may work with newer versions, but that is completely
23  * untested and disabled by default.
24  *
25  * The driver has only been tested on x86 systems and will not work on big-
26  * endian systems without changes to the code accessing registers and data
27  * structures used by the hardware.
28  *
29  *
30  * Interrupt Usage:
31  *
32  * The driver will use a single interrupt while configuring the device as the
33  * specification requires, but contrary to the specification it will try to use
34  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
35  * will switch to multiple-message MSI(-X) if supported. The driver wants to
36  * have one interrupt vector per CPU, but it will work correctly if less are
37  * available. Interrupts can be shared by queues, the interrupt handler will
38  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
39  * the admin queue will share an interrupt with one I/O queue. The interrupt
40  * handler will retrieve completed commands from all queues sharing an interrupt
41  * vector and will post them to a taskq for completion processing.
42  *
43  *
44  * Command Processing:
45  *
46  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
47  * to 65536 I/O commands. The driver will configure one I/O queue pair per
48  * available interrupt vector, with the queue length usually much smaller than
49  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
50  * interrupt vectors will be used.
51  *
52  * Additionally the hardware provides a single special admin queue pair that can
53  * hold up to 4096 admin commands.
54  *
55  * From the hardware perspective both queues of a queue pair are independent,
56  * but they share some driver state: the command array (holding pointers to
57  * commands currently being processed by the hardware) and the active command
58  * counter. Access to the submission side of a queue pair and the shared state
59  * is protected by nq_mutex. The completion side of a queue pair does not need
60  * that protection apart from its access to the shared state; it is called only
61  * in the interrupt handler which does not run concurrently for the same
62  * interrupt vector.
63  *
64  * When a command is submitted to a queue pair the active command counter is
65  * incremented and a pointer to the command is stored in the command array. The
66  * array index is used as command identifier (CID) in the submission queue
67  * entry. Some commands may take a very long time to complete, and if the queue
68  * wraps around in that time a submission may find the next array slot to still
69  * be used by a long-running command. In this case the array is sequentially
70  * searched for the next free slot. The length of the command array is the same
71  * as the configured queue length.
72  *
73  *
74  * Namespace Support:
75  *
76  * NVMe devices can have multiple namespaces, each being a independent data
77  * store. The driver supports multiple namespaces and creates a blkdev interface
78  * for each namespace found. Namespaces can have various attributes to support
79  * thin provisioning and protection information. This driver does not support
80  * any of this and ignores namespaces that have these attributes.
81  *
82  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
83  * (EUI64). This driver uses the EUI64 if present to generate the devid and
84  * passes it to blkdev to use it in the device node names. As this is currently
85  * untested namespaces with EUI64 are ignored by default.
86  *
87  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
88  * single controller. This is an artificial limit imposed by the driver to be
89  * able to address a reasonable number of controllers and namespaces using a
90  * 32bit minor node number.
91  *
92  *
93  * Minor nodes:
94  *
95  * For each NVMe device the driver exposes one minor node for the controller and
96  * one minor node for each namespace. The only operations supported by those
97  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
98  * interface for the nvmeadm(1M) utility.
99  *
100  *
101  * Blkdev Interface:
102  *
103  * This driver uses blkdev to do all the heavy lifting involved with presenting
104  * a disk device to the system. As a result, the processing of I/O requests is
105  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
106  * setup, and splitting of transfers into manageable chunks.
107  *
108  * I/O requests coming in from blkdev are turned into NVM commands and posted to
109  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
110  * queues. There is currently no timeout handling of I/O commands.
111  *
112  * Blkdev also supports querying device/media information and generating a
113  * devid. The driver reports the best block size as determined by the namespace
114  * format back to blkdev as physical block size to support partition and block
115  * alignment. The devid is either based on the namespace EUI64, if present, or
116  * composed using the device vendor ID, model number, serial number, and the
117  * namespace ID.
118  *
119  *
120  * Error Handling:
121  *
122  * Error handling is currently limited to detecting fatal hardware errors,
123  * either by asynchronous events, or synchronously through command status or
124  * admin command timeouts. In case of severe errors the device is fenced off,
125  * all further requests will return EIO. FMA is then called to fault the device.
126  *
127  * The hardware has a limit for outstanding asynchronous event requests. Before
128  * this limit is known the driver assumes it is at least 1 and posts a single
129  * asynchronous request. Later when the limit is known more asynchronous event
130  * requests are posted to allow quicker reception of error information. When an
131  * asynchronous event is posted by the hardware the driver will parse the error
132  * status fields and log information or fault the device, depending on the
133  * severity of the asynchronous event. The asynchronous event request is then
134  * reused and posted to the admin queue again.
135  *
136  * On command completion the command status is checked for errors. In case of
137  * errors indicating a driver bug the driver panics. Almost all other error
138  * status values just cause EIO to be returned.
139  *
140  * Command timeouts are currently detected for all admin commands except
141  * asynchronous event requests. If a command times out and the hardware appears
142  * to be healthy the driver attempts to abort the command. If this fails the
143  * driver assumes the device to be dead, fences it off, and calls FMA to retire
144  * it. In general admin commands are issued at attach time only. No timeout
145  * handling of normal I/O commands is presently done.
146  *
147  * In some cases it may be possible that the ABORT command times out, too. In
148  * that case the device is also declared dead and fenced off.
149  *
150  *
151  * Quiesce / Fast Reboot:
152  *
153  * The driver currently does not support fast reboot. A quiesce(9E) entry point
154  * is still provided which is used to send a shutdown notification to the
155  * device.
156  *
157  *
158  * Driver Configuration:
159  *
160  * The following driver properties can be changed to control some aspects of the
161  * drivers operation:
162  * - strict-version: can be set to 0 to allow devices conforming to newer
163  *   versions or namespaces with EUI64 to be used
164  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
165  *   specific command status as a fatal error leading device faulting
166  * - admin-queue-len: the maximum length of the admin queue (16-4096)
167  * - io-queue-len: the maximum length of the I/O queues (16-65536)
168  * - async-event-limit: the maximum number of asynchronous event requests to be
169  *   posted by the driver
170  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
171  *   cache
172  * - min-phys-block-size: the minimum physical block size to report to blkdev,
173  *   which is among other things the basis for ZFS vdev ashift
174  *
175  *
176  * TODO:
177  * - figure out sane default for I/O queue depth reported to blkdev
178  * - polled I/O support to support kernel core dumping
179  * - FMA handling of media errors
180  * - support for devices supporting very large I/O requests using chained PRPs
181  * - support for configuring hardware parameters like interrupt coalescing
182  * - support for media formatting and hard partitioning into namespaces
183  * - support for big-endian systems
184  * - support for fast reboot
185  * - support for firmware updates
186  * - support for NVMe Subsystem Reset (1.1)
187  * - support for Scatter/Gather lists (1.1)
188  * - support for Reservations (1.1)
189  * - support for power management
190  */
191 
192 #include <sys/byteorder.h>
193 #ifdef _BIG_ENDIAN
194 #error nvme driver needs porting for big-endian platforms
195 #endif
196 
197 #include <sys/modctl.h>
198 #include <sys/conf.h>
199 #include <sys/devops.h>
200 #include <sys/ddi.h>
201 #include <sys/sunddi.h>
202 #include <sys/sunndi.h>
203 #include <sys/bitmap.h>
204 #include <sys/sysmacros.h>
205 #include <sys/param.h>
206 #include <sys/varargs.h>
207 #include <sys/cpuvar.h>
208 #include <sys/disp.h>
209 #include <sys/blkdev.h>
210 #include <sys/atomic.h>
211 #include <sys/archsystm.h>
212 #include <sys/sata/sata_hba.h>
213 #include <sys/stat.h>
214 #include <sys/policy.h>
215 
216 #include <sys/nvme.h>
217 
218 #ifdef __x86
219 #include <sys/x86_archext.h>
220 #endif
221 
222 #include "nvme_reg.h"
223 #include "nvme_var.h"
224 
225 
226 /* NVMe spec version supported */
227 static const int nvme_version_major = 1;
228 static const int nvme_version_minor = 2;
229 
230 /* tunable for admin command timeout in seconds, default is 1s */
231 int nvme_admin_cmd_timeout = 1;
232 
233 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
234 int nvme_format_cmd_timeout = 600;
235 
236 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
237 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
238 static int nvme_quiesce(dev_info_t *);
239 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
240 static int nvme_setup_interrupts(nvme_t *, int, int);
241 static void nvme_release_interrupts(nvme_t *);
242 static uint_t nvme_intr(caddr_t, caddr_t);
243 
244 static void nvme_shutdown(nvme_t *, int, boolean_t);
245 static boolean_t nvme_reset(nvme_t *, boolean_t);
246 static int nvme_init(nvme_t *);
247 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
248 static void nvme_free_cmd(nvme_cmd_t *);
249 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
250     bd_xfer_t *);
251 static int nvme_admin_cmd(nvme_cmd_t *, int);
252 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
253 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
254 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
255 static void nvme_wakeup_cmd(void *);
256 static void nvme_async_event_task(void *);
257 
258 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
259 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
260 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
261 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
262 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
263 static inline int nvme_check_cmd_status(nvme_cmd_t *);
264 
265 static void nvme_abort_cmd(nvme_cmd_t *);
266 static int nvme_async_event(nvme_t *);
267 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
268     boolean_t, uint8_t);
269 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
270 static void *nvme_identify(nvme_t *, uint32_t);
271 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
272     uint32_t *);
273 static boolean_t nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
274     void **, size_t *);
275 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t);
276 static int nvme_set_nqueues(nvme_t *, uint16_t);
277 
278 static void nvme_free_dma(nvme_dma_t *);
279 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
280     nvme_dma_t **);
281 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
282     nvme_dma_t **);
283 static void nvme_free_qpair(nvme_qpair_t *);
284 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
285 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
286 
287 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
288 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
289 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
290 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
291 
292 static boolean_t nvme_check_regs_hdl(nvme_t *);
293 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
294 
295 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
296 
297 static void nvme_bd_xfer_done(void *);
298 static void nvme_bd_driveinfo(void *, bd_drive_t *);
299 static int nvme_bd_mediainfo(void *, bd_media_t *);
300 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
301 static int nvme_bd_read(void *, bd_xfer_t *);
302 static int nvme_bd_write(void *, bd_xfer_t *);
303 static int nvme_bd_sync(void *, bd_xfer_t *);
304 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
305 
306 static int nvme_prp_dma_constructor(void *, void *, int);
307 static void nvme_prp_dma_destructor(void *, void *);
308 
309 static void nvme_prepare_devid(nvme_t *, uint32_t);
310 
311 static int nvme_open(dev_t *, int, int, cred_t *);
312 static int nvme_close(dev_t, int, int, cred_t *);
313 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
314 
315 #define	NVME_MINOR_INST_SHIFT	14
316 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
317 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
318 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
319 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
320 
321 static void *nvme_state;
322 static kmem_cache_t *nvme_cmd_cache;
323 
324 /*
325  * DMA attributes for queue DMA memory
326  *
327  * Queue DMA memory must be page aligned. The maximum length of a queue is
328  * 65536 entries, and an entry can be 64 bytes long.
329  */
330 static ddi_dma_attr_t nvme_queue_dma_attr = {
331 	.dma_attr_version	= DMA_ATTR_V0,
332 	.dma_attr_addr_lo	= 0,
333 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
334 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
335 	.dma_attr_align		= 0x1000,
336 	.dma_attr_burstsizes	= 0x7ff,
337 	.dma_attr_minxfer	= 0x1000,
338 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
339 	.dma_attr_seg		= 0xffffffffffffffffULL,
340 	.dma_attr_sgllen	= 1,
341 	.dma_attr_granular	= 1,
342 	.dma_attr_flags		= 0,
343 };
344 
345 /*
346  * DMA attributes for transfers using Physical Region Page (PRP) entries
347  *
348  * A PRP entry describes one page of DMA memory using the page size specified
349  * in the controller configuration's memory page size register (CC.MPS). It uses
350  * a 64bit base address aligned to this page size. There is no limitation on
351  * chaining PRPs together for arbitrarily large DMA transfers.
352  */
353 static ddi_dma_attr_t nvme_prp_dma_attr = {
354 	.dma_attr_version	= DMA_ATTR_V0,
355 	.dma_attr_addr_lo	= 0,
356 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
357 	.dma_attr_count_max	= 0xfff,
358 	.dma_attr_align		= 0x1000,
359 	.dma_attr_burstsizes	= 0x7ff,
360 	.dma_attr_minxfer	= 0x1000,
361 	.dma_attr_maxxfer	= 0x1000,
362 	.dma_attr_seg		= 0xfff,
363 	.dma_attr_sgllen	= -1,
364 	.dma_attr_granular	= 1,
365 	.dma_attr_flags		= 0,
366 };
367 
368 /*
369  * DMA attributes for transfers using scatter/gather lists
370  *
371  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
372  * 32bit length field. SGL Segment and SGL Last Segment entries require the
373  * length to be a multiple of 16 bytes.
374  */
375 static ddi_dma_attr_t nvme_sgl_dma_attr = {
376 	.dma_attr_version	= DMA_ATTR_V0,
377 	.dma_attr_addr_lo	= 0,
378 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
379 	.dma_attr_count_max	= 0xffffffffUL,
380 	.dma_attr_align		= 1,
381 	.dma_attr_burstsizes	= 0x7ff,
382 	.dma_attr_minxfer	= 0x10,
383 	.dma_attr_maxxfer	= 0xfffffffffULL,
384 	.dma_attr_seg		= 0xffffffffffffffffULL,
385 	.dma_attr_sgllen	= -1,
386 	.dma_attr_granular	= 0x10,
387 	.dma_attr_flags		= 0
388 };
389 
390 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
391 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
392 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
393 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
394 };
395 
396 static struct cb_ops nvme_cb_ops = {
397 	.cb_open	= nvme_open,
398 	.cb_close	= nvme_close,
399 	.cb_strategy	= nodev,
400 	.cb_print	= nodev,
401 	.cb_dump	= nodev,
402 	.cb_read	= nodev,
403 	.cb_write	= nodev,
404 	.cb_ioctl	= nvme_ioctl,
405 	.cb_devmap	= nodev,
406 	.cb_mmap	= nodev,
407 	.cb_segmap	= nodev,
408 	.cb_chpoll	= nochpoll,
409 	.cb_prop_op	= ddi_prop_op,
410 	.cb_str		= 0,
411 	.cb_flag	= D_NEW | D_MP,
412 	.cb_rev		= CB_REV,
413 	.cb_aread	= nodev,
414 	.cb_awrite	= nodev
415 };
416 
417 static struct dev_ops nvme_dev_ops = {
418 	.devo_rev	= DEVO_REV,
419 	.devo_refcnt	= 0,
420 	.devo_getinfo	= ddi_no_info,
421 	.devo_identify	= nulldev,
422 	.devo_probe	= nulldev,
423 	.devo_attach	= nvme_attach,
424 	.devo_detach	= nvme_detach,
425 	.devo_reset	= nodev,
426 	.devo_cb_ops	= &nvme_cb_ops,
427 	.devo_bus_ops	= NULL,
428 	.devo_power	= NULL,
429 	.devo_quiesce	= nvme_quiesce,
430 };
431 
432 static struct modldrv nvme_modldrv = {
433 	.drv_modops	= &mod_driverops,
434 	.drv_linkinfo	= "NVMe v1.1b",
435 	.drv_dev_ops	= &nvme_dev_ops
436 };
437 
438 static struct modlinkage nvme_modlinkage = {
439 	.ml_rev		= MODREV_1,
440 	.ml_linkage	= { &nvme_modldrv, NULL }
441 };
442 
443 static bd_ops_t nvme_bd_ops = {
444 	.o_version	= BD_OPS_VERSION_0,
445 	.o_drive_info	= nvme_bd_driveinfo,
446 	.o_media_info	= nvme_bd_mediainfo,
447 	.o_devid_init	= nvme_bd_devid,
448 	.o_sync_cache	= nvme_bd_sync,
449 	.o_read		= nvme_bd_read,
450 	.o_write	= nvme_bd_write,
451 };
452 
453 int
454 _init(void)
455 {
456 	int error;
457 
458 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
459 	if (error != DDI_SUCCESS)
460 		return (error);
461 
462 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
463 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
464 
465 	bd_mod_init(&nvme_dev_ops);
466 
467 	error = mod_install(&nvme_modlinkage);
468 	if (error != DDI_SUCCESS) {
469 		ddi_soft_state_fini(&nvme_state);
470 		bd_mod_fini(&nvme_dev_ops);
471 	}
472 
473 	return (error);
474 }
475 
476 int
477 _fini(void)
478 {
479 	int error;
480 
481 	error = mod_remove(&nvme_modlinkage);
482 	if (error == DDI_SUCCESS) {
483 		ddi_soft_state_fini(&nvme_state);
484 		kmem_cache_destroy(nvme_cmd_cache);
485 		bd_mod_fini(&nvme_dev_ops);
486 	}
487 
488 	return (error);
489 }
490 
491 int
492 _info(struct modinfo *modinfop)
493 {
494 	return (mod_info(&nvme_modlinkage, modinfop));
495 }
496 
497 static inline void
498 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
499 {
500 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
501 
502 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
503 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
504 }
505 
506 static inline void
507 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
508 {
509 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
510 
511 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
512 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
513 }
514 
515 static inline uint64_t
516 nvme_get64(nvme_t *nvme, uintptr_t reg)
517 {
518 	uint64_t val;
519 
520 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
521 
522 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
523 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
524 
525 	return (val);
526 }
527 
528 static inline uint32_t
529 nvme_get32(nvme_t *nvme, uintptr_t reg)
530 {
531 	uint32_t val;
532 
533 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
534 
535 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
536 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
537 
538 	return (val);
539 }
540 
541 static boolean_t
542 nvme_check_regs_hdl(nvme_t *nvme)
543 {
544 	ddi_fm_error_t error;
545 
546 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
547 
548 	if (error.fme_status != DDI_FM_OK)
549 		return (B_TRUE);
550 
551 	return (B_FALSE);
552 }
553 
554 static boolean_t
555 nvme_check_dma_hdl(nvme_dma_t *dma)
556 {
557 	ddi_fm_error_t error;
558 
559 	if (dma == NULL)
560 		return (B_FALSE);
561 
562 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
563 
564 	if (error.fme_status != DDI_FM_OK)
565 		return (B_TRUE);
566 
567 	return (B_FALSE);
568 }
569 
570 static void
571 nvme_free_dma_common(nvme_dma_t *dma)
572 {
573 	if (dma->nd_dmah != NULL)
574 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
575 	if (dma->nd_acch != NULL)
576 		ddi_dma_mem_free(&dma->nd_acch);
577 	if (dma->nd_dmah != NULL)
578 		ddi_dma_free_handle(&dma->nd_dmah);
579 }
580 
581 static void
582 nvme_free_dma(nvme_dma_t *dma)
583 {
584 	nvme_free_dma_common(dma);
585 	kmem_free(dma, sizeof (*dma));
586 }
587 
588 /* ARGSUSED */
589 static void
590 nvme_prp_dma_destructor(void *buf, void *private)
591 {
592 	nvme_dma_t *dma = (nvme_dma_t *)buf;
593 
594 	nvme_free_dma_common(dma);
595 }
596 
597 static int
598 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
599     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
600 {
601 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
602 	    &dma->nd_dmah) != DDI_SUCCESS) {
603 		/*
604 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
605 		 * the only other possible error is DDI_DMA_BADATTR which
606 		 * indicates a driver bug which should cause a panic.
607 		 */
608 		dev_err(nvme->n_dip, CE_PANIC,
609 		    "!failed to get DMA handle, check DMA attributes");
610 		return (DDI_FAILURE);
611 	}
612 
613 	/*
614 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
615 	 * or the flags are conflicting, which isn't the case here.
616 	 */
617 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
618 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
619 	    &dma->nd_len, &dma->nd_acch);
620 
621 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
622 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
623 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
624 		dev_err(nvme->n_dip, CE_WARN,
625 		    "!failed to bind DMA memory");
626 		atomic_inc_32(&nvme->n_dma_bind_err);
627 		nvme_free_dma_common(dma);
628 		return (DDI_FAILURE);
629 	}
630 
631 	return (DDI_SUCCESS);
632 }
633 
634 static int
635 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
636     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
637 {
638 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
639 
640 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
641 	    DDI_SUCCESS) {
642 		*ret = NULL;
643 		kmem_free(dma, sizeof (nvme_dma_t));
644 		return (DDI_FAILURE);
645 	}
646 
647 	bzero(dma->nd_memp, dma->nd_len);
648 
649 	*ret = dma;
650 	return (DDI_SUCCESS);
651 }
652 
653 /* ARGSUSED */
654 static int
655 nvme_prp_dma_constructor(void *buf, void *private, int flags)
656 {
657 	nvme_dma_t *dma = (nvme_dma_t *)buf;
658 	nvme_t *nvme = (nvme_t *)private;
659 
660 	dma->nd_dmah = NULL;
661 	dma->nd_acch = NULL;
662 
663 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
664 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
665 		return (-1);
666 	}
667 
668 	ASSERT(dma->nd_ncookie == 1);
669 
670 	dma->nd_cached = B_TRUE;
671 
672 	return (0);
673 }
674 
675 static int
676 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
677     uint_t flags, nvme_dma_t **dma)
678 {
679 	uint32_t len = nentry * qe_len;
680 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
681 
682 	len = roundup(len, nvme->n_pagesize);
683 
684 	q_dma_attr.dma_attr_minxfer = len;
685 
686 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
687 	    != DDI_SUCCESS) {
688 		dev_err(nvme->n_dip, CE_WARN,
689 		    "!failed to get DMA memory for queue");
690 		goto fail;
691 	}
692 
693 	if ((*dma)->nd_ncookie != 1) {
694 		dev_err(nvme->n_dip, CE_WARN,
695 		    "!got too many cookies for queue DMA");
696 		goto fail;
697 	}
698 
699 	return (DDI_SUCCESS);
700 
701 fail:
702 	if (*dma) {
703 		nvme_free_dma(*dma);
704 		*dma = NULL;
705 	}
706 
707 	return (DDI_FAILURE);
708 }
709 
710 static void
711 nvme_free_qpair(nvme_qpair_t *qp)
712 {
713 	int i;
714 
715 	mutex_destroy(&qp->nq_mutex);
716 
717 	if (qp->nq_sqdma != NULL)
718 		nvme_free_dma(qp->nq_sqdma);
719 	if (qp->nq_cqdma != NULL)
720 		nvme_free_dma(qp->nq_cqdma);
721 
722 	if (qp->nq_active_cmds > 0)
723 		for (i = 0; i != qp->nq_nentry; i++)
724 			if (qp->nq_cmd[i] != NULL)
725 				nvme_free_cmd(qp->nq_cmd[i]);
726 
727 	if (qp->nq_cmd != NULL)
728 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
729 
730 	kmem_free(qp, sizeof (nvme_qpair_t));
731 }
732 
733 static int
734 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
735     int idx)
736 {
737 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
738 
739 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
740 	    DDI_INTR_PRI(nvme->n_intr_pri));
741 
742 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
743 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
744 		goto fail;
745 
746 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
747 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
748 		goto fail;
749 
750 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
751 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
752 	qp->nq_nentry = nentry;
753 
754 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
755 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
756 
757 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
758 	qp->nq_next_cmd = 0;
759 
760 	*nqp = qp;
761 	return (DDI_SUCCESS);
762 
763 fail:
764 	nvme_free_qpair(qp);
765 	*nqp = NULL;
766 
767 	return (DDI_FAILURE);
768 }
769 
770 static nvme_cmd_t *
771 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
772 {
773 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
774 
775 	if (cmd == NULL)
776 		return (cmd);
777 
778 	bzero(cmd, sizeof (nvme_cmd_t));
779 
780 	cmd->nc_nvme = nvme;
781 
782 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
783 	    DDI_INTR_PRI(nvme->n_intr_pri));
784 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
785 
786 	return (cmd);
787 }
788 
789 static void
790 nvme_free_cmd(nvme_cmd_t *cmd)
791 {
792 	if (cmd->nc_dma) {
793 		if (cmd->nc_dma->nd_cached)
794 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
795 			    cmd->nc_dma);
796 		else
797 			nvme_free_dma(cmd->nc_dma);
798 		cmd->nc_dma = NULL;
799 	}
800 
801 	cv_destroy(&cmd->nc_cv);
802 	mutex_destroy(&cmd->nc_mutex);
803 
804 	kmem_cache_free(nvme_cmd_cache, cmd);
805 }
806 
807 static int
808 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
809 {
810 	nvme_reg_sqtdbl_t tail = { 0 };
811 
812 	mutex_enter(&qp->nq_mutex);
813 
814 	if (qp->nq_active_cmds == qp->nq_nentry) {
815 		mutex_exit(&qp->nq_mutex);
816 		return (DDI_FAILURE);
817 	}
818 
819 	cmd->nc_completed = B_FALSE;
820 
821 	/*
822 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
823 	 * slot. If the slot is already occupied advance to the next slot and
824 	 * try again. This can happen for long running commands like async event
825 	 * requests.
826 	 */
827 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
828 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
829 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
830 
831 	qp->nq_active_cmds++;
832 
833 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
834 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
835 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
836 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
837 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
838 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
839 
840 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
841 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
842 
843 	mutex_exit(&qp->nq_mutex);
844 	return (DDI_SUCCESS);
845 }
846 
847 static nvme_cmd_t *
848 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
849 {
850 	nvme_reg_cqhdbl_t head = { 0 };
851 
852 	nvme_cqe_t *cqe;
853 	nvme_cmd_t *cmd;
854 
855 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
856 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
857 
858 	cqe = &qp->nq_cq[qp->nq_cqhead];
859 
860 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
861 	if (cqe->cqe_sf.sf_p == qp->nq_phase)
862 		return (NULL);
863 
864 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
865 	ASSERT(cqe->cqe_cid < qp->nq_nentry);
866 
867 	mutex_enter(&qp->nq_mutex);
868 	cmd = qp->nq_cmd[cqe->cqe_cid];
869 	qp->nq_cmd[cqe->cqe_cid] = NULL;
870 	qp->nq_active_cmds--;
871 	mutex_exit(&qp->nq_mutex);
872 
873 	ASSERT(cmd != NULL);
874 	ASSERT(cmd->nc_nvme == nvme);
875 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
876 	ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
877 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
878 
879 	qp->nq_sqhead = cqe->cqe_sqhd;
880 
881 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
882 
883 	/* Toggle phase on wrap-around. */
884 	if (qp->nq_cqhead == 0)
885 		qp->nq_phase = qp->nq_phase ? 0 : 1;
886 
887 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
888 
889 	return (cmd);
890 }
891 
892 static int
893 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
894 {
895 	nvme_cqe_t *cqe = &cmd->nc_cqe;
896 
897 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
898 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
899 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
900 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
901 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
902 
903 	if (cmd->nc_xfer != NULL)
904 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
905 
906 	if (cmd->nc_nvme->n_strict_version) {
907 		cmd->nc_nvme->n_dead = B_TRUE;
908 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
909 	}
910 
911 	return (EIO);
912 }
913 
914 static int
915 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
916 {
917 	nvme_cqe_t *cqe = &cmd->nc_cqe;
918 
919 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
920 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
921 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
922 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
923 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
924 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
925 		cmd->nc_nvme->n_dead = B_TRUE;
926 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
927 	}
928 
929 	return (EIO);
930 }
931 
932 static int
933 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
934 {
935 	nvme_cqe_t *cqe = &cmd->nc_cqe;
936 
937 	switch (cqe->cqe_sf.sf_sc) {
938 	case NVME_CQE_SC_INT_NVM_WRITE:
939 		/* write fail */
940 		/* TODO: post ereport */
941 		if (cmd->nc_xfer != NULL)
942 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
943 		return (EIO);
944 
945 	case NVME_CQE_SC_INT_NVM_READ:
946 		/* read fail */
947 		/* TODO: post ereport */
948 		if (cmd->nc_xfer != NULL)
949 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
950 		return (EIO);
951 
952 	default:
953 		return (nvme_check_unknown_cmd_status(cmd));
954 	}
955 }
956 
957 static int
958 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
959 {
960 	nvme_cqe_t *cqe = &cmd->nc_cqe;
961 
962 	switch (cqe->cqe_sf.sf_sc) {
963 	case NVME_CQE_SC_GEN_SUCCESS:
964 		return (0);
965 
966 	/*
967 	 * Errors indicating a bug in the driver should cause a panic.
968 	 */
969 	case NVME_CQE_SC_GEN_INV_OPC:
970 		/* Invalid Command Opcode */
971 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
972 		    "invalid opcode in cmd %p", (void *)cmd);
973 		return (0);
974 
975 	case NVME_CQE_SC_GEN_INV_FLD:
976 		/* Invalid Field in Command */
977 		if (!cmd->nc_dontpanic)
978 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
979 			    "programming error: invalid field in cmd %p",
980 			    (void *)cmd);
981 		return (EIO);
982 
983 	case NVME_CQE_SC_GEN_ID_CNFL:
984 		/* Command ID Conflict */
985 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
986 		    "cmd ID conflict in cmd %p", (void *)cmd);
987 		return (0);
988 
989 	case NVME_CQE_SC_GEN_INV_NS:
990 		/* Invalid Namespace or Format */
991 		if (!cmd->nc_dontpanic)
992 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
993 			    "programming error: " "invalid NS/format in cmd %p",
994 			    (void *)cmd);
995 		return (EINVAL);
996 
997 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
998 		/* LBA Out Of Range */
999 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1000 		    "LBA out of range in cmd %p", (void *)cmd);
1001 		return (0);
1002 
1003 	/*
1004 	 * Non-fatal errors, handle gracefully.
1005 	 */
1006 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1007 		/* Data Transfer Error (DMA) */
1008 		/* TODO: post ereport */
1009 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1010 		if (cmd->nc_xfer != NULL)
1011 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1012 		return (EIO);
1013 
1014 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1015 		/*
1016 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1017 		 * detailed error information is returned as async event,
1018 		 * so we pretty much ignore the error here and handle it
1019 		 * in the async event handler.
1020 		 */
1021 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1022 		if (cmd->nc_xfer != NULL)
1023 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1024 		return (EIO);
1025 
1026 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1027 		/*
1028 		 * Command Abort Requested. This normally happens only when a
1029 		 * command times out.
1030 		 */
1031 		/* TODO: post ereport or change blkdev to handle this? */
1032 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1033 		return (ECANCELED);
1034 
1035 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1036 		/* Command Aborted due to Power Loss Notification */
1037 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1038 		cmd->nc_nvme->n_dead = B_TRUE;
1039 		return (EIO);
1040 
1041 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1042 		/* Command Aborted due to SQ Deletion */
1043 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1044 		return (EIO);
1045 
1046 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1047 		/* Capacity Exceeded */
1048 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1049 		if (cmd->nc_xfer != NULL)
1050 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1051 		return (EIO);
1052 
1053 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1054 		/* Namespace Not Ready */
1055 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1056 		if (cmd->nc_xfer != NULL)
1057 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1058 		return (EIO);
1059 
1060 	default:
1061 		return (nvme_check_unknown_cmd_status(cmd));
1062 	}
1063 }
1064 
1065 static int
1066 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1067 {
1068 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1069 
1070 	switch (cqe->cqe_sf.sf_sc) {
1071 	case NVME_CQE_SC_SPC_INV_CQ:
1072 		/* Completion Queue Invalid */
1073 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1074 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1075 		return (EINVAL);
1076 
1077 	case NVME_CQE_SC_SPC_INV_QID:
1078 		/* Invalid Queue Identifier */
1079 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1080 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1081 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1082 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1083 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1084 		return (EINVAL);
1085 
1086 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1087 		/* Max Queue Size Exceeded */
1088 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1089 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1090 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1091 		return (EINVAL);
1092 
1093 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1094 		/* Abort Command Limit Exceeded */
1095 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1096 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1097 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1098 		return (0);
1099 
1100 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1101 		/* Async Event Request Limit Exceeded */
1102 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1103 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1104 		    "async event request limit exceeded in cmd %p",
1105 		    (void *)cmd);
1106 		return (0);
1107 
1108 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1109 		/* Invalid Interrupt Vector */
1110 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1111 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1112 		return (EINVAL);
1113 
1114 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1115 		/* Invalid Log Page */
1116 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1117 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1118 		return (EINVAL);
1119 
1120 	case NVME_CQE_SC_SPC_INV_FORMAT:
1121 		/* Invalid Format */
1122 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1123 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1124 		if (cmd->nc_xfer != NULL)
1125 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1126 		return (EINVAL);
1127 
1128 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1129 		/* Invalid Queue Deletion */
1130 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1131 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1132 		return (EINVAL);
1133 
1134 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1135 		/* Conflicting Attributes */
1136 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1137 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1138 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1139 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1140 		if (cmd->nc_xfer != NULL)
1141 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1142 		return (EINVAL);
1143 
1144 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1145 		/* Invalid Protection Information */
1146 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1147 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1148 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1149 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1150 		if (cmd->nc_xfer != NULL)
1151 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1152 		return (EINVAL);
1153 
1154 	case NVME_CQE_SC_SPC_NVM_READONLY:
1155 		/* Write to Read Only Range */
1156 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1157 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1158 		if (cmd->nc_xfer != NULL)
1159 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1160 		return (EROFS);
1161 
1162 	default:
1163 		return (nvme_check_unknown_cmd_status(cmd));
1164 	}
1165 }
1166 
1167 static inline int
1168 nvme_check_cmd_status(nvme_cmd_t *cmd)
1169 {
1170 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1171 
1172 	/* take a shortcut if everything is alright */
1173 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1174 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1175 		return (0);
1176 
1177 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1178 		return (nvme_check_generic_cmd_status(cmd));
1179 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1180 		return (nvme_check_specific_cmd_status(cmd));
1181 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1182 		return (nvme_check_integrity_cmd_status(cmd));
1183 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1184 		return (nvme_check_vendor_cmd_status(cmd));
1185 
1186 	return (nvme_check_unknown_cmd_status(cmd));
1187 }
1188 
1189 /*
1190  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1191  *
1192  * This functions takes care of cleaning up aborted commands. The command
1193  * status is checked to catch any fatal errors.
1194  */
1195 static void
1196 nvme_abort_cmd_cb(void *arg)
1197 {
1198 	nvme_cmd_t *cmd = arg;
1199 
1200 	/*
1201 	 * Grab the command mutex. Once we have it we hold the last reference
1202 	 * to the command and can safely free it.
1203 	 */
1204 	mutex_enter(&cmd->nc_mutex);
1205 	(void) nvme_check_cmd_status(cmd);
1206 	mutex_exit(&cmd->nc_mutex);
1207 
1208 	nvme_free_cmd(cmd);
1209 }
1210 
1211 static void
1212 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1213 {
1214 	nvme_t *nvme = abort_cmd->nc_nvme;
1215 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1216 	nvme_abort_cmd_t ac = { 0 };
1217 
1218 	sema_p(&nvme->n_abort_sema);
1219 
1220 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1221 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1222 
1223 	/*
1224 	 * Drop the mutex of the aborted command. From this point on
1225 	 * we must assume that the abort callback has freed the command.
1226 	 */
1227 	mutex_exit(&abort_cmd->nc_mutex);
1228 
1229 	cmd->nc_sqid = 0;
1230 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1231 	cmd->nc_callback = nvme_wakeup_cmd;
1232 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1233 
1234 	/*
1235 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1236 	 * the aborted command has completed (aborted or otherwise).
1237 	 */
1238 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1239 		sema_v(&nvme->n_abort_sema);
1240 		dev_err(nvme->n_dip, CE_WARN,
1241 		    "!nvme_admin_cmd failed for ABORT");
1242 		atomic_inc_32(&nvme->n_abort_failed);
1243 		return;
1244 	}
1245 	sema_v(&nvme->n_abort_sema);
1246 
1247 	if (nvme_check_cmd_status(cmd)) {
1248 		dev_err(nvme->n_dip, CE_WARN,
1249 		    "!ABORT failed with sct = %x, sc = %x",
1250 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1251 		atomic_inc_32(&nvme->n_abort_failed);
1252 	} else {
1253 		atomic_inc_32(&nvme->n_cmd_aborted);
1254 	}
1255 
1256 	nvme_free_cmd(cmd);
1257 }
1258 
1259 /*
1260  * nvme_wait_cmd -- wait for command completion or timeout
1261  *
1262  * Returns B_TRUE if the command completed normally.
1263  *
1264  * Returns B_FALSE if the command timed out and an abort was attempted. The
1265  * command mutex will be dropped and the command must be considered freed. The
1266  * freeing of the command is normally done by the abort command callback.
1267  *
1268  * In case of a serious error or a timeout of the abort command the hardware
1269  * will be declared dead and FMA will be notified.
1270  */
1271 static boolean_t
1272 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1273 {
1274 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1275 	nvme_t *nvme = cmd->nc_nvme;
1276 	nvme_reg_csts_t csts;
1277 
1278 	ASSERT(mutex_owned(&cmd->nc_mutex));
1279 
1280 	while (!cmd->nc_completed) {
1281 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1282 			break;
1283 	}
1284 
1285 	if (cmd->nc_completed)
1286 		return (B_TRUE);
1287 
1288 	/*
1289 	 * The command timed out. Change the callback to the cleanup function.
1290 	 */
1291 	cmd->nc_callback = nvme_abort_cmd_cb;
1292 
1293 	/*
1294 	 * Check controller for fatal status, any errors associated with the
1295 	 * register or DMA handle, or for a double timeout (abort command timed
1296 	 * out). If necessary log a warning and call FMA.
1297 	 */
1298 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1299 	dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1300 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1301 	atomic_inc_32(&nvme->n_cmd_timeout);
1302 
1303 	if (csts.b.csts_cfs ||
1304 	    nvme_check_regs_hdl(nvme) ||
1305 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1306 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1307 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1308 		nvme->n_dead = B_TRUE;
1309 		mutex_exit(&cmd->nc_mutex);
1310 	} else {
1311 		/*
1312 		 * Try to abort the command. The command mutex is released by
1313 		 * nvme_abort_cmd().
1314 		 * If the abort succeeds it will have freed the aborted command.
1315 		 * If the abort fails for other reasons we must assume that the
1316 		 * command may complete at any time, and the callback will free
1317 		 * it for us.
1318 		 */
1319 		nvme_abort_cmd(cmd);
1320 	}
1321 
1322 	return (B_FALSE);
1323 }
1324 
1325 static void
1326 nvme_wakeup_cmd(void *arg)
1327 {
1328 	nvme_cmd_t *cmd = arg;
1329 
1330 	mutex_enter(&cmd->nc_mutex);
1331 	/*
1332 	 * There is a slight chance that this command completed shortly after
1333 	 * the timeout was hit in nvme_wait_cmd() but before the callback was
1334 	 * changed. Catch that case here and clean up accordingly.
1335 	 */
1336 	if (cmd->nc_callback == nvme_abort_cmd_cb) {
1337 		mutex_exit(&cmd->nc_mutex);
1338 		nvme_abort_cmd_cb(cmd);
1339 		return;
1340 	}
1341 
1342 	cmd->nc_completed = B_TRUE;
1343 	cv_signal(&cmd->nc_cv);
1344 	mutex_exit(&cmd->nc_mutex);
1345 }
1346 
1347 static void
1348 nvme_async_event_task(void *arg)
1349 {
1350 	nvme_cmd_t *cmd = arg;
1351 	nvme_t *nvme = cmd->nc_nvme;
1352 	nvme_error_log_entry_t *error_log = NULL;
1353 	nvme_health_log_t *health_log = NULL;
1354 	size_t logsize = 0;
1355 	nvme_async_event_t event;
1356 	int ret;
1357 
1358 	/*
1359 	 * Check for errors associated with the async request itself. The only
1360 	 * command-specific error is "async event limit exceeded", which
1361 	 * indicates a programming error in the driver and causes a panic in
1362 	 * nvme_check_cmd_status().
1363 	 *
1364 	 * Other possible errors are various scenarios where the async request
1365 	 * was aborted, or internal errors in the device. Internal errors are
1366 	 * reported to FMA, the command aborts need no special handling here.
1367 	 */
1368 	if (nvme_check_cmd_status(cmd)) {
1369 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1370 		    "!async event request returned failure, sct = %x, "
1371 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1372 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1373 		    cmd->nc_cqe.cqe_sf.sf_m);
1374 
1375 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1376 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1377 			cmd->nc_nvme->n_dead = B_TRUE;
1378 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1379 			    DDI_SERVICE_LOST);
1380 		}
1381 		nvme_free_cmd(cmd);
1382 		return;
1383 	}
1384 
1385 
1386 	event.r = cmd->nc_cqe.cqe_dw0;
1387 
1388 	/* Clear CQE and re-submit the async request. */
1389 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1390 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1391 
1392 	if (ret != DDI_SUCCESS) {
1393 		dev_err(nvme->n_dip, CE_WARN,
1394 		    "!failed to resubmit async event request");
1395 		atomic_inc_32(&nvme->n_async_resubmit_failed);
1396 		nvme_free_cmd(cmd);
1397 	}
1398 
1399 	switch (event.b.ae_type) {
1400 	case NVME_ASYNC_TYPE_ERROR:
1401 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1402 			(void) nvme_get_logpage(nvme, (void **)&error_log,
1403 			    &logsize, event.b.ae_logpage);
1404 		} else {
1405 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1406 			    "async event reply: %d", event.b.ae_logpage);
1407 			atomic_inc_32(&nvme->n_wrong_logpage);
1408 		}
1409 
1410 		switch (event.b.ae_info) {
1411 		case NVME_ASYNC_ERROR_INV_SQ:
1412 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1413 			    "invalid submission queue");
1414 			return;
1415 
1416 		case NVME_ASYNC_ERROR_INV_DBL:
1417 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1418 			    "invalid doorbell write value");
1419 			return;
1420 
1421 		case NVME_ASYNC_ERROR_DIAGFAIL:
1422 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1423 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1424 			nvme->n_dead = B_TRUE;
1425 			atomic_inc_32(&nvme->n_diagfail_event);
1426 			break;
1427 
1428 		case NVME_ASYNC_ERROR_PERSISTENT:
1429 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1430 			    "device error");
1431 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1432 			nvme->n_dead = B_TRUE;
1433 			atomic_inc_32(&nvme->n_persistent_event);
1434 			break;
1435 
1436 		case NVME_ASYNC_ERROR_TRANSIENT:
1437 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1438 			    "device error");
1439 			/* TODO: send ereport */
1440 			atomic_inc_32(&nvme->n_transient_event);
1441 			break;
1442 
1443 		case NVME_ASYNC_ERROR_FW_LOAD:
1444 			dev_err(nvme->n_dip, CE_WARN,
1445 			    "!firmware image load error");
1446 			atomic_inc_32(&nvme->n_fw_load_event);
1447 			break;
1448 		}
1449 		break;
1450 
1451 	case NVME_ASYNC_TYPE_HEALTH:
1452 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1453 			(void) nvme_get_logpage(nvme, (void **)&health_log,
1454 			    &logsize, event.b.ae_logpage, -1);
1455 		} else {
1456 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1457 			    "async event reply: %d", event.b.ae_logpage);
1458 			atomic_inc_32(&nvme->n_wrong_logpage);
1459 		}
1460 
1461 		switch (event.b.ae_info) {
1462 		case NVME_ASYNC_HEALTH_RELIABILITY:
1463 			dev_err(nvme->n_dip, CE_WARN,
1464 			    "!device reliability compromised");
1465 			/* TODO: send ereport */
1466 			atomic_inc_32(&nvme->n_reliability_event);
1467 			break;
1468 
1469 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1470 			dev_err(nvme->n_dip, CE_WARN,
1471 			    "!temperature above threshold");
1472 			/* TODO: send ereport */
1473 			atomic_inc_32(&nvme->n_temperature_event);
1474 			break;
1475 
1476 		case NVME_ASYNC_HEALTH_SPARE:
1477 			dev_err(nvme->n_dip, CE_WARN,
1478 			    "!spare space below threshold");
1479 			/* TODO: send ereport */
1480 			atomic_inc_32(&nvme->n_spare_event);
1481 			break;
1482 		}
1483 		break;
1484 
1485 	case NVME_ASYNC_TYPE_VENDOR:
1486 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1487 		    "received, info = %x, logpage = %x", event.b.ae_info,
1488 		    event.b.ae_logpage);
1489 		atomic_inc_32(&nvme->n_vendor_event);
1490 		break;
1491 
1492 	default:
1493 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1494 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1495 		    event.b.ae_info, event.b.ae_logpage);
1496 		atomic_inc_32(&nvme->n_unknown_event);
1497 		break;
1498 	}
1499 
1500 	if (error_log)
1501 		kmem_free(error_log, logsize);
1502 
1503 	if (health_log)
1504 		kmem_free(health_log, logsize);
1505 }
1506 
1507 static int
1508 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1509 {
1510 	int ret;
1511 
1512 	mutex_enter(&cmd->nc_mutex);
1513 	ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1514 
1515 	if (ret != DDI_SUCCESS) {
1516 		mutex_exit(&cmd->nc_mutex);
1517 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1518 		    "!nvme_submit_cmd failed");
1519 		atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1520 		nvme_free_cmd(cmd);
1521 		return (DDI_FAILURE);
1522 	}
1523 
1524 	if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1525 		/*
1526 		 * The command timed out. An abort command was posted that
1527 		 * will take care of the cleanup.
1528 		 */
1529 		return (DDI_FAILURE);
1530 	}
1531 	mutex_exit(&cmd->nc_mutex);
1532 
1533 	return (DDI_SUCCESS);
1534 }
1535 
1536 static int
1537 nvme_async_event(nvme_t *nvme)
1538 {
1539 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1540 	int ret;
1541 
1542 	cmd->nc_sqid = 0;
1543 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1544 	cmd->nc_callback = nvme_async_event_task;
1545 
1546 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1547 
1548 	if (ret != DDI_SUCCESS) {
1549 		dev_err(nvme->n_dip, CE_WARN,
1550 		    "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1551 		nvme_free_cmd(cmd);
1552 		return (DDI_FAILURE);
1553 	}
1554 
1555 	return (DDI_SUCCESS);
1556 }
1557 
1558 static int
1559 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1560     uint8_t pi, boolean_t pil, uint8_t ses)
1561 {
1562 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1563 	nvme_format_nvm_t format_nvm = { 0 };
1564 	int ret;
1565 
1566 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1567 	format_nvm.b.fm_ms = ms ? 1 : 0;
1568 	format_nvm.b.fm_pi = pi & 0x7;
1569 	format_nvm.b.fm_pil = pil ? 1 : 0;
1570 	format_nvm.b.fm_ses = ses & 0x7;
1571 
1572 	cmd->nc_sqid = 0;
1573 	cmd->nc_callback = nvme_wakeup_cmd;
1574 	cmd->nc_sqe.sqe_nsid = nsid;
1575 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1576 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1577 
1578 	/*
1579 	 * Some devices like Samsung SM951 don't allow formatting of all
1580 	 * namespaces in one command. Handle that gracefully.
1581 	 */
1582 	if (nsid == (uint32_t)-1)
1583 		cmd->nc_dontpanic = B_TRUE;
1584 
1585 	if ((ret = nvme_admin_cmd(cmd, nvme_format_cmd_timeout))
1586 	    != DDI_SUCCESS) {
1587 		dev_err(nvme->n_dip, CE_WARN,
1588 		    "!nvme_admin_cmd failed for FORMAT NVM");
1589 		return (EIO);
1590 	}
1591 
1592 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1593 		dev_err(nvme->n_dip, CE_WARN,
1594 		    "!FORMAT failed with sct = %x, sc = %x",
1595 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1596 	}
1597 
1598 	nvme_free_cmd(cmd);
1599 	return (ret);
1600 }
1601 
1602 static int
1603 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1604     ...)
1605 {
1606 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1607 	nvme_getlogpage_t getlogpage = { 0 };
1608 	va_list ap;
1609 	int ret = DDI_FAILURE;
1610 
1611 	va_start(ap, logpage);
1612 
1613 	cmd->nc_sqid = 0;
1614 	cmd->nc_callback = nvme_wakeup_cmd;
1615 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1616 
1617 	getlogpage.b.lp_lid = logpage;
1618 
1619 	switch (logpage) {
1620 	case NVME_LOGPAGE_ERROR:
1621 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1622 		/*
1623 		 * The GET LOG PAGE command can use at most 2 pages to return
1624 		 * data, PRP lists are not supported.
1625 		 */
1626 		*bufsize = MIN(2 * nvme->n_pagesize,
1627 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1628 		break;
1629 
1630 	case NVME_LOGPAGE_HEALTH:
1631 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1632 		*bufsize = sizeof (nvme_health_log_t);
1633 		break;
1634 
1635 	case NVME_LOGPAGE_FWSLOT:
1636 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1637 		*bufsize = sizeof (nvme_fwslot_log_t);
1638 		break;
1639 
1640 	default:
1641 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1642 		    logpage);
1643 		atomic_inc_32(&nvme->n_unknown_logpage);
1644 		goto fail;
1645 	}
1646 
1647 	va_end(ap);
1648 
1649 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1650 
1651 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1652 
1653 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1654 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1655 		dev_err(nvme->n_dip, CE_WARN,
1656 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1657 		goto fail;
1658 	}
1659 
1660 	if (cmd->nc_dma->nd_ncookie > 2) {
1661 		dev_err(nvme->n_dip, CE_WARN,
1662 		    "!too many DMA cookies for GET LOG PAGE");
1663 		atomic_inc_32(&nvme->n_too_many_cookies);
1664 		goto fail;
1665 	}
1666 
1667 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1668 	if (cmd->nc_dma->nd_ncookie > 1) {
1669 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1670 		    &cmd->nc_dma->nd_cookie);
1671 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1672 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1673 	}
1674 
1675 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1676 		dev_err(nvme->n_dip, CE_WARN,
1677 		    "!nvme_admin_cmd failed for GET LOG PAGE");
1678 		return (ret);
1679 	}
1680 
1681 	if (nvme_check_cmd_status(cmd)) {
1682 		dev_err(nvme->n_dip, CE_WARN,
1683 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1684 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1685 		goto fail;
1686 	}
1687 
1688 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1689 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1690 
1691 	ret = DDI_SUCCESS;
1692 
1693 fail:
1694 	nvme_free_cmd(cmd);
1695 
1696 	return (ret);
1697 }
1698 
1699 static void *
1700 nvme_identify(nvme_t *nvme, uint32_t nsid)
1701 {
1702 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1703 	void *buf = NULL;
1704 
1705 	cmd->nc_sqid = 0;
1706 	cmd->nc_callback = nvme_wakeup_cmd;
1707 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1708 	cmd->nc_sqe.sqe_nsid = nsid;
1709 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1710 
1711 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1712 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1713 		dev_err(nvme->n_dip, CE_WARN,
1714 		    "!nvme_zalloc_dma failed for IDENTIFY");
1715 		goto fail;
1716 	}
1717 
1718 	if (cmd->nc_dma->nd_ncookie > 2) {
1719 		dev_err(nvme->n_dip, CE_WARN,
1720 		    "!too many DMA cookies for IDENTIFY");
1721 		atomic_inc_32(&nvme->n_too_many_cookies);
1722 		goto fail;
1723 	}
1724 
1725 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1726 	if (cmd->nc_dma->nd_ncookie > 1) {
1727 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1728 		    &cmd->nc_dma->nd_cookie);
1729 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1730 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1731 	}
1732 
1733 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1734 		dev_err(nvme->n_dip, CE_WARN,
1735 		    "!nvme_admin_cmd failed for IDENTIFY");
1736 		return (NULL);
1737 	}
1738 
1739 	if (nvme_check_cmd_status(cmd)) {
1740 		dev_err(nvme->n_dip, CE_WARN,
1741 		    "!IDENTIFY failed with sct = %x, sc = %x",
1742 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1743 		goto fail;
1744 	}
1745 
1746 	buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1747 	bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1748 
1749 fail:
1750 	nvme_free_cmd(cmd);
1751 
1752 	return (buf);
1753 }
1754 
1755 static boolean_t
1756 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1757     uint32_t *res)
1758 {
1759 	_NOTE(ARGUNUSED(nsid));
1760 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1761 	boolean_t ret = B_FALSE;
1762 
1763 	ASSERT(res != NULL);
1764 
1765 	cmd->nc_sqid = 0;
1766 	cmd->nc_callback = nvme_wakeup_cmd;
1767 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1768 	cmd->nc_sqe.sqe_cdw10 = feature;
1769 	cmd->nc_sqe.sqe_cdw11 = val;
1770 
1771 	switch (feature) {
1772 	case NVME_FEAT_WRITE_CACHE:
1773 		if (!nvme->n_write_cache_present)
1774 			goto fail;
1775 		break;
1776 
1777 	case NVME_FEAT_NQUEUES:
1778 		break;
1779 
1780 	default:
1781 		goto fail;
1782 	}
1783 
1784 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1785 		dev_err(nvme->n_dip, CE_WARN,
1786 		    "!nvme_admin_cmd failed for SET FEATURES");
1787 		return (ret);
1788 	}
1789 
1790 	if (nvme_check_cmd_status(cmd)) {
1791 		dev_err(nvme->n_dip, CE_WARN,
1792 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
1793 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1794 		    cmd->nc_cqe.cqe_sf.sf_sc);
1795 		goto fail;
1796 	}
1797 
1798 	*res = cmd->nc_cqe.cqe_dw0;
1799 	ret = B_TRUE;
1800 
1801 fail:
1802 	nvme_free_cmd(cmd);
1803 	return (ret);
1804 }
1805 
1806 static boolean_t
1807 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1808     void **buf, size_t *bufsize)
1809 {
1810 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1811 	boolean_t ret = B_FALSE;
1812 
1813 	ASSERT(res != NULL);
1814 
1815 	if (bufsize != NULL)
1816 		*bufsize = 0;
1817 
1818 	cmd->nc_sqid = 0;
1819 	cmd->nc_callback = nvme_wakeup_cmd;
1820 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1821 	cmd->nc_sqe.sqe_cdw10 = feature;
1822 	cmd->nc_sqe.sqe_cdw11 = *res;
1823 
1824 	switch (feature) {
1825 	case NVME_FEAT_ARBITRATION:
1826 	case NVME_FEAT_POWER_MGMT:
1827 	case NVME_FEAT_TEMPERATURE:
1828 	case NVME_FEAT_ERROR:
1829 	case NVME_FEAT_NQUEUES:
1830 	case NVME_FEAT_INTR_COAL:
1831 	case NVME_FEAT_INTR_VECT:
1832 	case NVME_FEAT_WRITE_ATOM:
1833 	case NVME_FEAT_ASYNC_EVENT:
1834 	case NVME_FEAT_PROGRESS:
1835 		break;
1836 
1837 	case NVME_FEAT_WRITE_CACHE:
1838 		if (!nvme->n_write_cache_present)
1839 			goto fail;
1840 		break;
1841 
1842 	case NVME_FEAT_LBA_RANGE:
1843 		if (!nvme->n_lba_range_supported)
1844 			goto fail;
1845 
1846 		/*
1847 		 * The LBA Range Type feature is optional. There doesn't seem
1848 		 * be a method of detecting whether it is supported other than
1849 		 * using it. This will cause a "invalid field in command" error,
1850 		 * which is normally considered a programming error and causes
1851 		 * panic in nvme_check_generic_cmd_status().
1852 		 */
1853 		cmd->nc_dontpanic = B_TRUE;
1854 		cmd->nc_sqe.sqe_nsid = nsid;
1855 		ASSERT(bufsize != NULL);
1856 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
1857 
1858 		break;
1859 
1860 	case NVME_FEAT_AUTO_PST:
1861 		if (!nvme->n_auto_pst_supported)
1862 			goto fail;
1863 
1864 		ASSERT(bufsize != NULL);
1865 		*bufsize = NVME_AUTO_PST_BUFSIZE;
1866 		break;
1867 
1868 	default:
1869 		goto fail;
1870 	}
1871 
1872 	if (bufsize != NULL && *bufsize != 0) {
1873 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1874 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1875 			dev_err(nvme->n_dip, CE_WARN,
1876 			    "!nvme_zalloc_dma failed for GET FEATURES");
1877 			goto fail;
1878 		}
1879 
1880 		if (cmd->nc_dma->nd_ncookie > 2) {
1881 			dev_err(nvme->n_dip, CE_WARN,
1882 			    "!too many DMA cookies for GET FEATURES");
1883 			atomic_inc_32(&nvme->n_too_many_cookies);
1884 			goto fail;
1885 		}
1886 
1887 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
1888 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1889 		if (cmd->nc_dma->nd_ncookie > 1) {
1890 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1891 			    &cmd->nc_dma->nd_cookie);
1892 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
1893 			    cmd->nc_dma->nd_cookie.dmac_laddress;
1894 		}
1895 	}
1896 
1897 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1898 		dev_err(nvme->n_dip, CE_WARN,
1899 		    "!nvme_admin_cmd failed for GET FEATURES");
1900 		return (ret);
1901 	}
1902 
1903 	if (nvme_check_cmd_status(cmd)) {
1904 		if (feature == NVME_FEAT_LBA_RANGE &&
1905 		    cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1906 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1907 			nvme->n_lba_range_supported = B_FALSE;
1908 		else
1909 			dev_err(nvme->n_dip, CE_WARN,
1910 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
1911 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1912 			    cmd->nc_cqe.cqe_sf.sf_sc);
1913 		goto fail;
1914 	}
1915 
1916 	if (bufsize != NULL && *bufsize != 0) {
1917 		ASSERT(buf != NULL);
1918 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
1919 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1920 	}
1921 
1922 	*res = cmd->nc_cqe.cqe_dw0;
1923 	ret = B_TRUE;
1924 
1925 fail:
1926 	nvme_free_cmd(cmd);
1927 	return (ret);
1928 }
1929 
1930 static boolean_t
1931 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1932 {
1933 	nvme_write_cache_t nwc = { 0 };
1934 
1935 	if (enable)
1936 		nwc.b.wc_wce = 1;
1937 
1938 	if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r))
1939 		return (B_FALSE);
1940 
1941 	return (B_TRUE);
1942 }
1943 
1944 static int
1945 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1946 {
1947 	nvme_nqueues_t nq = { 0 };
1948 
1949 	nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1950 
1951 	if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) {
1952 		return (0);
1953 	}
1954 
1955 	/*
1956 	 * Always use the same number of submission and completion queues, and
1957 	 * never use more than the requested number of queues.
1958 	 */
1959 	return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1960 }
1961 
1962 static int
1963 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1964 {
1965 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1966 	nvme_create_queue_dw10_t dw10 = { 0 };
1967 	nvme_create_cq_dw11_t c_dw11 = { 0 };
1968 	nvme_create_sq_dw11_t s_dw11 = { 0 };
1969 
1970 	dw10.b.q_qid = idx;
1971 	dw10.b.q_qsize = qp->nq_nentry - 1;
1972 
1973 	c_dw11.b.cq_pc = 1;
1974 	c_dw11.b.cq_ien = 1;
1975 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1976 
1977 	cmd->nc_sqid = 0;
1978 	cmd->nc_callback = nvme_wakeup_cmd;
1979 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1980 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1981 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1982 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1983 
1984 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1985 		dev_err(nvme->n_dip, CE_WARN,
1986 		    "!nvme_admin_cmd failed for CREATE CQUEUE");
1987 		return (DDI_FAILURE);
1988 	}
1989 
1990 	if (nvme_check_cmd_status(cmd)) {
1991 		dev_err(nvme->n_dip, CE_WARN,
1992 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
1993 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1994 		nvme_free_cmd(cmd);
1995 		return (DDI_FAILURE);
1996 	}
1997 
1998 	nvme_free_cmd(cmd);
1999 
2000 	s_dw11.b.sq_pc = 1;
2001 	s_dw11.b.sq_cqid = idx;
2002 
2003 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2004 	cmd->nc_sqid = 0;
2005 	cmd->nc_callback = nvme_wakeup_cmd;
2006 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2007 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2008 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2009 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2010 
2011 	if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
2012 		dev_err(nvme->n_dip, CE_WARN,
2013 		    "!nvme_admin_cmd failed for CREATE SQUEUE");
2014 		return (DDI_FAILURE);
2015 	}
2016 
2017 	if (nvme_check_cmd_status(cmd)) {
2018 		dev_err(nvme->n_dip, CE_WARN,
2019 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2020 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2021 		nvme_free_cmd(cmd);
2022 		return (DDI_FAILURE);
2023 	}
2024 
2025 	nvme_free_cmd(cmd);
2026 
2027 	return (DDI_SUCCESS);
2028 }
2029 
2030 static boolean_t
2031 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2032 {
2033 	nvme_reg_csts_t csts;
2034 	int i;
2035 
2036 	nvme_put32(nvme, NVME_REG_CC, 0);
2037 
2038 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2039 	if (csts.b.csts_rdy == 1) {
2040 		nvme_put32(nvme, NVME_REG_CC, 0);
2041 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2042 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2043 			if (csts.b.csts_rdy == 0)
2044 				break;
2045 
2046 			if (quiesce)
2047 				drv_usecwait(50000);
2048 			else
2049 				delay(drv_usectohz(50000));
2050 		}
2051 	}
2052 
2053 	nvme_put32(nvme, NVME_REG_AQA, 0);
2054 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2055 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2056 
2057 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2058 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2059 }
2060 
2061 static void
2062 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2063 {
2064 	nvme_reg_cc_t cc;
2065 	nvme_reg_csts_t csts;
2066 	int i;
2067 
2068 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2069 
2070 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2071 	cc.b.cc_shn = mode & 0x3;
2072 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2073 
2074 	for (i = 0; i != 10; i++) {
2075 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2076 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2077 			break;
2078 
2079 		if (quiesce)
2080 			drv_usecwait(100000);
2081 		else
2082 			delay(drv_usectohz(100000));
2083 	}
2084 }
2085 
2086 
2087 static void
2088 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2089 {
2090 	/*
2091 	 * Section 7.7 of the spec describes how to get a unique ID for
2092 	 * the controller: the vendor ID, the model name and the serial
2093 	 * number shall be unique when combined.
2094 	 *
2095 	 * If a namespace has no EUI64 we use the above and add the hex
2096 	 * namespace ID to get a unique ID for the namespace.
2097 	 */
2098 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2099 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2100 
2101 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2102 	bcopy(nvme->n_idctl->id_serial, serial,
2103 	    sizeof (nvme->n_idctl->id_serial));
2104 
2105 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2106 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2107 
2108 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2109 	    nvme->n_idctl->id_vid, model, serial, nsid);
2110 }
2111 
2112 static int
2113 nvme_init_ns(nvme_t *nvme, int nsid)
2114 {
2115 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2116 	nvme_identify_nsid_t *idns;
2117 	int last_rp;
2118 
2119 	ns->ns_nvme = nvme;
2120 	idns = nvme_identify(nvme, nsid);
2121 
2122 	if (idns == NULL) {
2123 		dev_err(nvme->n_dip, CE_WARN,
2124 		    "!failed to identify namespace %d", nsid);
2125 		return (DDI_FAILURE);
2126 	}
2127 
2128 	ns->ns_idns = idns;
2129 	ns->ns_id = nsid;
2130 	ns->ns_block_count = idns->id_nsize;
2131 	ns->ns_block_size =
2132 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2133 	ns->ns_best_block_size = ns->ns_block_size;
2134 
2135 	/*
2136 	 * Get the EUI64 if present. Use it for devid and device node names.
2137 	 */
2138 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2139 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2140 
2141 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2142 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2143 		uint8_t *eui64 = ns->ns_eui64;
2144 
2145 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2146 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2147 		    eui64[0], eui64[1], eui64[2], eui64[3],
2148 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2149 	} else {
2150 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2151 		    ns->ns_id);
2152 
2153 		nvme_prepare_devid(nvme, ns->ns_id);
2154 	}
2155 
2156 	/*
2157 	 * Find the LBA format with no metadata and the best relative
2158 	 * performance. A value of 3 means "degraded", 0 is best.
2159 	 */
2160 	last_rp = 3;
2161 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2162 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2163 			break;
2164 		if (idns->id_lbaf[j].lbaf_ms != 0)
2165 			continue;
2166 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2167 			continue;
2168 		last_rp = idns->id_lbaf[j].lbaf_rp;
2169 		ns->ns_best_block_size =
2170 		    1 << idns->id_lbaf[j].lbaf_lbads;
2171 	}
2172 
2173 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2174 		ns->ns_best_block_size = nvme->n_min_block_size;
2175 
2176 	/*
2177 	 * We currently don't support namespaces that use either:
2178 	 * - thin provisioning
2179 	 * - protection information
2180 	 */
2181 	if (idns->id_nsfeat.f_thin ||
2182 	    idns->id_dps.dp_pinfo) {
2183 		dev_err(nvme->n_dip, CE_WARN,
2184 		    "!ignoring namespace %d, unsupported features: "
2185 		    "thin = %d, pinfo = %d", nsid,
2186 		    idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2187 		ns->ns_ignore = B_TRUE;
2188 	} else {
2189 		ns->ns_ignore = B_FALSE;
2190 	}
2191 
2192 	return (DDI_SUCCESS);
2193 }
2194 
2195 static int
2196 nvme_init(nvme_t *nvme)
2197 {
2198 	nvme_reg_cc_t cc = { 0 };
2199 	nvme_reg_aqa_t aqa = { 0 };
2200 	nvme_reg_asq_t asq = { 0 };
2201 	nvme_reg_acq_t acq = { 0 };
2202 	nvme_reg_cap_t cap;
2203 	nvme_reg_vs_t vs;
2204 	nvme_reg_csts_t csts;
2205 	int i = 0;
2206 	int nqueues;
2207 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2208 	char *vendor, *product;
2209 
2210 	/* Check controller version */
2211 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2212 	nvme->n_version.v_major = vs.b.vs_mjr;
2213 	nvme->n_version.v_minor = vs.b.vs_mnr;
2214 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2215 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2216 
2217 	if (NVME_VERSION_HIGHER(&nvme->n_version,
2218 	    nvme_version_major, nvme_version_minor)) {
2219 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2220 		    nvme_version_major, nvme_version_minor);
2221 		if (nvme->n_strict_version)
2222 			goto fail;
2223 	}
2224 
2225 	/* retrieve controller configuration */
2226 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2227 
2228 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2229 		dev_err(nvme->n_dip, CE_WARN,
2230 		    "!NVM command set not supported by hardware");
2231 		goto fail;
2232 	}
2233 
2234 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2235 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2236 	nvme->n_timeout = cap.b.cap_to;
2237 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2238 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2239 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2240 
2241 	/*
2242 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2243 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2244 	 * page size value.
2245 	 */
2246 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2247 	    cap.b.cap_mpsmax + 12);
2248 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2249 
2250 	/*
2251 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2252 	 */
2253 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2254 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2255 
2256 	/*
2257 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2258 	 * Maxxfer may be increased after we identified the controller limits.
2259 	 */
2260 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2261 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2262 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2263 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2264 
2265 	/*
2266 	 * Reset controller if it's still in ready state.
2267 	 */
2268 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2269 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2270 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2271 		nvme->n_dead = B_TRUE;
2272 		goto fail;
2273 	}
2274 
2275 	/*
2276 	 * Create the admin queue pair.
2277 	 */
2278 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2279 	    != DDI_SUCCESS) {
2280 		dev_err(nvme->n_dip, CE_WARN,
2281 		    "!unable to allocate admin qpair");
2282 		goto fail;
2283 	}
2284 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2285 	nvme->n_ioq[0] = nvme->n_adminq;
2286 
2287 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2288 
2289 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2290 	    "admin-queue-len", nvme->n_admin_queue_len);
2291 
2292 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2293 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2294 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2295 
2296 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2297 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2298 
2299 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2300 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2301 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2302 
2303 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2304 	cc.b.cc_css = 0;	/* use NVM command set */
2305 	cc.b.cc_mps = nvme->n_pageshift - 12;
2306 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2307 	cc.b.cc_en = 1;		/* enable controller */
2308 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2309 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2310 
2311 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2312 
2313 	/*
2314 	 * Wait for the controller to become ready.
2315 	 */
2316 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2317 	if (csts.b.csts_rdy == 0) {
2318 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2319 			delay(drv_usectohz(50000));
2320 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2321 
2322 			if (csts.b.csts_cfs == 1) {
2323 				dev_err(nvme->n_dip, CE_WARN,
2324 				    "!controller fatal status at init");
2325 				ddi_fm_service_impact(nvme->n_dip,
2326 				    DDI_SERVICE_LOST);
2327 				nvme->n_dead = B_TRUE;
2328 				goto fail;
2329 			}
2330 
2331 			if (csts.b.csts_rdy == 1)
2332 				break;
2333 		}
2334 	}
2335 
2336 	if (csts.b.csts_rdy == 0) {
2337 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2338 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2339 		nvme->n_dead = B_TRUE;
2340 		goto fail;
2341 	}
2342 
2343 	/*
2344 	 * Assume an abort command limit of 1. We'll destroy and re-init
2345 	 * that later when we know the true abort command limit.
2346 	 */
2347 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2348 
2349 	/*
2350 	 * Setup initial interrupt for admin queue.
2351 	 */
2352 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2353 	    != DDI_SUCCESS) &&
2354 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2355 	    != DDI_SUCCESS) &&
2356 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2357 	    != DDI_SUCCESS)) {
2358 		dev_err(nvme->n_dip, CE_WARN,
2359 		    "!failed to setup initial interrupt");
2360 		goto fail;
2361 	}
2362 
2363 	/*
2364 	 * Post an asynchronous event command to catch errors.
2365 	 */
2366 	if (nvme_async_event(nvme) != DDI_SUCCESS) {
2367 		dev_err(nvme->n_dip, CE_WARN,
2368 		    "!failed to post async event");
2369 		goto fail;
2370 	}
2371 
2372 	/*
2373 	 * Identify Controller
2374 	 */
2375 	nvme->n_idctl = nvme_identify(nvme, 0);
2376 	if (nvme->n_idctl == NULL) {
2377 		dev_err(nvme->n_dip, CE_WARN,
2378 		    "!failed to identify controller");
2379 		goto fail;
2380 	}
2381 
2382 	/*
2383 	 * Get Vendor & Product ID
2384 	 */
2385 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2386 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2387 	sata_split_model(model, &vendor, &product);
2388 
2389 	if (vendor == NULL)
2390 		nvme->n_vendor = strdup("NVMe");
2391 	else
2392 		nvme->n_vendor = strdup(vendor);
2393 
2394 	nvme->n_product = strdup(product);
2395 
2396 	/*
2397 	 * Get controller limits.
2398 	 */
2399 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2400 	    MIN(nvme->n_admin_queue_len / 10,
2401 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2402 
2403 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2404 	    "async-event-limit", nvme->n_async_event_limit);
2405 
2406 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2407 
2408 	/*
2409 	 * Reinitialize the semaphore with the true abort command limit
2410 	 * supported by the hardware. It's not necessary to disable interrupts
2411 	 * as only command aborts use the semaphore, and no commands are
2412 	 * executed or aborted while we're here.
2413 	 */
2414 	sema_destroy(&nvme->n_abort_sema);
2415 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2416 	    SEMA_DRIVER, NULL);
2417 
2418 	nvme->n_progress |= NVME_CTRL_LIMITS;
2419 
2420 	if (nvme->n_idctl->id_mdts == 0)
2421 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2422 	else
2423 		nvme->n_max_data_transfer_size =
2424 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2425 
2426 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2427 
2428 	/*
2429 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2430 	 * Chained PRPs are currently unsupported.
2431 	 *
2432 	 * This is a no-op on hardware which doesn't support a transfer size
2433 	 * big enough to require chained PRPs.
2434 	 */
2435 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2436 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2437 
2438 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2439 
2440 	/*
2441 	 * Make sure the minimum/maximum queue entry sizes are not
2442 	 * larger/smaller than the default.
2443 	 */
2444 
2445 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2446 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2447 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2448 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2449 		goto fail;
2450 
2451 	/*
2452 	 * Check for the presence of a Volatile Write Cache. If present,
2453 	 * enable or disable based on the value of the property
2454 	 * volatile-write-cache-enable (default is enabled).
2455 	 */
2456 	nvme->n_write_cache_present =
2457 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2458 
2459 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2460 	    "volatile-write-cache-present",
2461 	    nvme->n_write_cache_present ? 1 : 0);
2462 
2463 	if (!nvme->n_write_cache_present) {
2464 		nvme->n_write_cache_enabled = B_FALSE;
2465 	} else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) {
2466 		dev_err(nvme->n_dip, CE_WARN,
2467 		    "!failed to %sable volatile write cache",
2468 		    nvme->n_write_cache_enabled ? "en" : "dis");
2469 		/*
2470 		 * Assume the cache is (still) enabled.
2471 		 */
2472 		nvme->n_write_cache_enabled = B_TRUE;
2473 	}
2474 
2475 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2476 	    "volatile-write-cache-enable",
2477 	    nvme->n_write_cache_enabled ? 1 : 0);
2478 
2479 	/*
2480 	 * Assume LBA Range Type feature is supported. If it isn't this
2481 	 * will be set to B_FALSE by nvme_get_features().
2482 	 */
2483 	nvme->n_lba_range_supported = B_TRUE;
2484 
2485 	/*
2486 	 * Check support for Autonomous Power State Transition.
2487 	 */
2488 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2489 		nvme->n_auto_pst_supported =
2490 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2491 
2492 	/*
2493 	 * Identify Namespaces
2494 	 */
2495 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2496 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2497 		dev_err(nvme->n_dip, CE_WARN,
2498 		    "!too many namespaces: %d, limiting to %d\n",
2499 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2500 		nvme->n_namespace_count = NVME_MINOR_MAX;
2501 	}
2502 
2503 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2504 	    nvme->n_namespace_count, KM_SLEEP);
2505 
2506 	for (i = 0; i != nvme->n_namespace_count; i++) {
2507 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2508 		    NULL);
2509 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2510 			goto fail;
2511 	}
2512 
2513 	/*
2514 	 * Try to set up MSI/MSI-X interrupts.
2515 	 */
2516 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2517 	    != 0) {
2518 		nvme_release_interrupts(nvme);
2519 
2520 		nqueues = MIN(UINT16_MAX, ncpus);
2521 
2522 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2523 		    nqueues) != DDI_SUCCESS) &&
2524 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2525 		    nqueues) != DDI_SUCCESS)) {
2526 			dev_err(nvme->n_dip, CE_WARN,
2527 			    "!failed to setup MSI/MSI-X interrupts");
2528 			goto fail;
2529 		}
2530 	}
2531 
2532 	nqueues = nvme->n_intr_cnt;
2533 
2534 	/*
2535 	 * Create I/O queue pairs.
2536 	 */
2537 	nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2538 	if (nvme->n_ioq_count == 0) {
2539 		dev_err(nvme->n_dip, CE_WARN,
2540 		    "!failed to set number of I/O queues to %d", nqueues);
2541 		goto fail;
2542 	}
2543 
2544 	/*
2545 	 * Reallocate I/O queue array
2546 	 */
2547 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2548 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2549 	    (nvme->n_ioq_count + 1), KM_SLEEP);
2550 	nvme->n_ioq[0] = nvme->n_adminq;
2551 
2552 	/*
2553 	 * If we got less queues than we asked for we might as well give
2554 	 * some of the interrupt vectors back to the system.
2555 	 */
2556 	if (nvme->n_ioq_count < nqueues) {
2557 		nvme_release_interrupts(nvme);
2558 
2559 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2560 		    nvme->n_ioq_count) != DDI_SUCCESS) {
2561 			dev_err(nvme->n_dip, CE_WARN,
2562 			    "!failed to reduce number of interrupts");
2563 			goto fail;
2564 		}
2565 	}
2566 
2567 	/*
2568 	 * Alloc & register I/O queue pairs
2569 	 */
2570 	nvme->n_io_queue_len =
2571 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2572 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2573 	    nvme->n_io_queue_len);
2574 
2575 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2576 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2577 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2578 			dev_err(nvme->n_dip, CE_WARN,
2579 			    "!unable to allocate I/O qpair %d", i);
2580 			goto fail;
2581 		}
2582 
2583 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2584 		    != DDI_SUCCESS) {
2585 			dev_err(nvme->n_dip, CE_WARN,
2586 			    "!unable to create I/O qpair %d", i);
2587 			goto fail;
2588 		}
2589 	}
2590 
2591 	/*
2592 	 * Post more asynchronous events commands to reduce event reporting
2593 	 * latency as suggested by the spec.
2594 	 */
2595 	for (i = 1; i != nvme->n_async_event_limit; i++) {
2596 		if (nvme_async_event(nvme) != DDI_SUCCESS) {
2597 			dev_err(nvme->n_dip, CE_WARN,
2598 			    "!failed to post async event %d", i);
2599 			goto fail;
2600 		}
2601 	}
2602 
2603 	return (DDI_SUCCESS);
2604 
2605 fail:
2606 	(void) nvme_reset(nvme, B_FALSE);
2607 	return (DDI_FAILURE);
2608 }
2609 
2610 static uint_t
2611 nvme_intr(caddr_t arg1, caddr_t arg2)
2612 {
2613 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2614 	nvme_t *nvme = (nvme_t *)arg1;
2615 	int inum = (int)(uintptr_t)arg2;
2616 	int ccnt = 0;
2617 	int qnum;
2618 	nvme_cmd_t *cmd;
2619 
2620 	if (inum >= nvme->n_intr_cnt)
2621 		return (DDI_INTR_UNCLAIMED);
2622 
2623 	/*
2624 	 * The interrupt vector a queue uses is calculated as queue_idx %
2625 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2626 	 * in steps of n_intr_cnt to process all queues using this vector.
2627 	 */
2628 	for (qnum = inum;
2629 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2630 	    qnum += nvme->n_intr_cnt) {
2631 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2632 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2633 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2634 			ccnt++;
2635 		}
2636 	}
2637 
2638 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2639 }
2640 
2641 static void
2642 nvme_release_interrupts(nvme_t *nvme)
2643 {
2644 	int i;
2645 
2646 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2647 		if (nvme->n_inth[i] == NULL)
2648 			break;
2649 
2650 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2651 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2652 		else
2653 			(void) ddi_intr_disable(nvme->n_inth[i]);
2654 
2655 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2656 		(void) ddi_intr_free(nvme->n_inth[i]);
2657 	}
2658 
2659 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2660 	nvme->n_inth = NULL;
2661 	nvme->n_inth_sz = 0;
2662 
2663 	nvme->n_progress &= ~NVME_INTERRUPTS;
2664 }
2665 
2666 static int
2667 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2668 {
2669 	int nintrs, navail, count;
2670 	int ret;
2671 	int i;
2672 
2673 	if (nvme->n_intr_types == 0) {
2674 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2675 		    &nvme->n_intr_types);
2676 		if (ret != DDI_SUCCESS) {
2677 			dev_err(nvme->n_dip, CE_WARN,
2678 			    "!%s: ddi_intr_get_supported types failed",
2679 			    __func__);
2680 			return (ret);
2681 		}
2682 #ifdef __x86
2683 		if (get_hwenv() == HW_VMWARE)
2684 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2685 #endif
2686 	}
2687 
2688 	if ((nvme->n_intr_types & intr_type) == 0)
2689 		return (DDI_FAILURE);
2690 
2691 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2692 	if (ret != DDI_SUCCESS) {
2693 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2694 		    __func__);
2695 		return (ret);
2696 	}
2697 
2698 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2699 	if (ret != DDI_SUCCESS) {
2700 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2701 		    __func__);
2702 		return (ret);
2703 	}
2704 
2705 	/* We want at most one interrupt per queue pair. */
2706 	if (navail > nqpairs)
2707 		navail = nqpairs;
2708 
2709 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2710 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2711 
2712 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2713 	    &count, 0);
2714 	if (ret != DDI_SUCCESS) {
2715 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2716 		    __func__);
2717 		goto fail;
2718 	}
2719 
2720 	nvme->n_intr_cnt = count;
2721 
2722 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2723 	if (ret != DDI_SUCCESS) {
2724 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2725 		    __func__);
2726 		goto fail;
2727 	}
2728 
2729 	for (i = 0; i < count; i++) {
2730 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2731 		    (void *)nvme, (void *)(uintptr_t)i);
2732 		if (ret != DDI_SUCCESS) {
2733 			dev_err(nvme->n_dip, CE_WARN,
2734 			    "!%s: ddi_intr_add_handler failed", __func__);
2735 			goto fail;
2736 		}
2737 	}
2738 
2739 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2740 
2741 	for (i = 0; i < count; i++) {
2742 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2743 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2744 		else
2745 			ret = ddi_intr_enable(nvme->n_inth[i]);
2746 
2747 		if (ret != DDI_SUCCESS) {
2748 			dev_err(nvme->n_dip, CE_WARN,
2749 			    "!%s: enabling interrupt %d failed", __func__, i);
2750 			goto fail;
2751 		}
2752 	}
2753 
2754 	nvme->n_intr_type = intr_type;
2755 
2756 	nvme->n_progress |= NVME_INTERRUPTS;
2757 
2758 	return (DDI_SUCCESS);
2759 
2760 fail:
2761 	nvme_release_interrupts(nvme);
2762 
2763 	return (ret);
2764 }
2765 
2766 static int
2767 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2768 {
2769 	_NOTE(ARGUNUSED(arg));
2770 
2771 	pci_ereport_post(dip, fm_error, NULL);
2772 	return (fm_error->fme_status);
2773 }
2774 
2775 static int
2776 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2777 {
2778 	nvme_t *nvme;
2779 	int instance;
2780 	int nregs;
2781 	off_t regsize;
2782 	int i;
2783 	char name[32];
2784 
2785 	if (cmd != DDI_ATTACH)
2786 		return (DDI_FAILURE);
2787 
2788 	instance = ddi_get_instance(dip);
2789 
2790 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2791 		return (DDI_FAILURE);
2792 
2793 	nvme = ddi_get_soft_state(nvme_state, instance);
2794 	ddi_set_driver_private(dip, nvme);
2795 	nvme->n_dip = dip;
2796 
2797 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2798 
2799 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2800 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2801 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2802 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2803 	    B_TRUE : B_FALSE;
2804 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2805 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2806 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2807 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2808 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2809 	    DDI_PROP_DONTPASS, "async-event-limit",
2810 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2811 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2812 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2813 	    B_TRUE : B_FALSE;
2814 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2815 	    DDI_PROP_DONTPASS, "min-phys-block-size",
2816 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
2817 
2818 	if (!ISP2(nvme->n_min_block_size) ||
2819 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2820 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2821 		    "using default %d", ISP2(nvme->n_min_block_size) ?
2822 		    "too low" : "not a power of 2",
2823 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
2824 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2825 	}
2826 
2827 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2828 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2829 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2830 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2831 
2832 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2833 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2834 
2835 	if (nvme->n_async_event_limit < 1)
2836 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2837 
2838 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2839 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2840 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2841 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2842 
2843 	/*
2844 	 * Setup FMA support.
2845 	 */
2846 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2847 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2848 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2849 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2850 
2851 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2852 
2853 	if (nvme->n_fm_cap) {
2854 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2855 			nvme->n_reg_acc_attr.devacc_attr_access =
2856 			    DDI_FLAGERR_ACC;
2857 
2858 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2859 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2860 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2861 		}
2862 
2863 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2864 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2865 			pci_ereport_setup(dip);
2866 
2867 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2868 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2869 			    (void *)nvme);
2870 	}
2871 
2872 	nvme->n_progress |= NVME_FMA_INIT;
2873 
2874 	/*
2875 	 * The spec defines several register sets. Only the controller
2876 	 * registers (set 1) are currently used.
2877 	 */
2878 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2879 	    nregs < 2 ||
2880 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2881 		goto fail;
2882 
2883 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2884 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2885 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2886 		goto fail;
2887 	}
2888 
2889 	nvme->n_progress |= NVME_REGS_MAPPED;
2890 
2891 	/*
2892 	 * Create taskq for command completion.
2893 	 */
2894 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2895 	    ddi_driver_name(dip), ddi_get_instance(dip));
2896 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2897 	    TASKQ_DEFAULTPRI, 0);
2898 	if (nvme->n_cmd_taskq == NULL) {
2899 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2900 		goto fail;
2901 	}
2902 
2903 	/*
2904 	 * Create PRP DMA cache
2905 	 */
2906 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2907 	    ddi_driver_name(dip), ddi_get_instance(dip));
2908 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2909 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2910 	    NULL, (void *)nvme, NULL, 0);
2911 
2912 	if (nvme_init(nvme) != DDI_SUCCESS)
2913 		goto fail;
2914 
2915 	/*
2916 	 * Attach the blkdev driver for each namespace.
2917 	 */
2918 	for (i = 0; i != nvme->n_namespace_count; i++) {
2919 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2920 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2921 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2922 			dev_err(dip, CE_WARN,
2923 			    "!failed to create minor node for namespace %d", i);
2924 			goto fail;
2925 		}
2926 
2927 		if (nvme->n_ns[i].ns_ignore)
2928 			continue;
2929 
2930 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2931 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2932 
2933 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2934 			dev_err(dip, CE_WARN,
2935 			    "!failed to get blkdev handle for namespace %d", i);
2936 			goto fail;
2937 		}
2938 
2939 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2940 		    != DDI_SUCCESS) {
2941 			dev_err(dip, CE_WARN,
2942 			    "!failed to attach blkdev handle for namespace %d",
2943 			    i);
2944 			goto fail;
2945 		}
2946 	}
2947 
2948 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2949 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2950 	    != DDI_SUCCESS) {
2951 		dev_err(dip, CE_WARN, "nvme_attach: "
2952 		    "cannot create devctl minor node");
2953 		goto fail;
2954 	}
2955 
2956 	return (DDI_SUCCESS);
2957 
2958 fail:
2959 	/* attach successful anyway so that FMA can retire the device */
2960 	if (nvme->n_dead)
2961 		return (DDI_SUCCESS);
2962 
2963 	(void) nvme_detach(dip, DDI_DETACH);
2964 
2965 	return (DDI_FAILURE);
2966 }
2967 
2968 static int
2969 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2970 {
2971 	int instance, i;
2972 	nvme_t *nvme;
2973 
2974 	if (cmd != DDI_DETACH)
2975 		return (DDI_FAILURE);
2976 
2977 	instance = ddi_get_instance(dip);
2978 
2979 	nvme = ddi_get_soft_state(nvme_state, instance);
2980 
2981 	if (nvme == NULL)
2982 		return (DDI_FAILURE);
2983 
2984 	ddi_remove_minor_node(dip, "devctl");
2985 	mutex_destroy(&nvme->n_minor.nm_mutex);
2986 
2987 	if (nvme->n_ns) {
2988 		for (i = 0; i != nvme->n_namespace_count; i++) {
2989 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
2990 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
2991 
2992 			if (nvme->n_ns[i].ns_bd_hdl) {
2993 				(void) bd_detach_handle(
2994 				    nvme->n_ns[i].ns_bd_hdl);
2995 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2996 			}
2997 
2998 			if (nvme->n_ns[i].ns_idns)
2999 				kmem_free(nvme->n_ns[i].ns_idns,
3000 				    sizeof (nvme_identify_nsid_t));
3001 			if (nvme->n_ns[i].ns_devid)
3002 				strfree(nvme->n_ns[i].ns_devid);
3003 		}
3004 
3005 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3006 		    nvme->n_namespace_count);
3007 	}
3008 
3009 	if (nvme->n_progress & NVME_INTERRUPTS)
3010 		nvme_release_interrupts(nvme);
3011 
3012 	if (nvme->n_cmd_taskq)
3013 		ddi_taskq_wait(nvme->n_cmd_taskq);
3014 
3015 	if (nvme->n_ioq_count > 0) {
3016 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3017 			if (nvme->n_ioq[i] != NULL) {
3018 				/* TODO: send destroy queue commands */
3019 				nvme_free_qpair(nvme->n_ioq[i]);
3020 			}
3021 		}
3022 
3023 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3024 		    (nvme->n_ioq_count + 1));
3025 	}
3026 
3027 	if (nvme->n_prp_cache != NULL) {
3028 		kmem_cache_destroy(nvme->n_prp_cache);
3029 	}
3030 
3031 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3032 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3033 		(void) nvme_reset(nvme, B_FALSE);
3034 	}
3035 
3036 	if (nvme->n_cmd_taskq)
3037 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3038 
3039 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3040 		sema_destroy(&nvme->n_abort_sema);
3041 
3042 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3043 		nvme_free_qpair(nvme->n_adminq);
3044 
3045 	if (nvme->n_idctl)
3046 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3047 
3048 	if (nvme->n_progress & NVME_REGS_MAPPED)
3049 		ddi_regs_map_free(&nvme->n_regh);
3050 
3051 	if (nvme->n_progress & NVME_FMA_INIT) {
3052 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3053 			ddi_fm_handler_unregister(nvme->n_dip);
3054 
3055 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3056 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3057 			pci_ereport_teardown(nvme->n_dip);
3058 
3059 		ddi_fm_fini(nvme->n_dip);
3060 	}
3061 
3062 	if (nvme->n_vendor != NULL)
3063 		strfree(nvme->n_vendor);
3064 
3065 	if (nvme->n_product != NULL)
3066 		strfree(nvme->n_product);
3067 
3068 	ddi_soft_state_free(nvme_state, instance);
3069 
3070 	return (DDI_SUCCESS);
3071 }
3072 
3073 static int
3074 nvme_quiesce(dev_info_t *dip)
3075 {
3076 	int instance;
3077 	nvme_t *nvme;
3078 
3079 	instance = ddi_get_instance(dip);
3080 
3081 	nvme = ddi_get_soft_state(nvme_state, instance);
3082 
3083 	if (nvme == NULL)
3084 		return (DDI_FAILURE);
3085 
3086 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3087 
3088 	(void) nvme_reset(nvme, B_TRUE);
3089 
3090 	return (DDI_FAILURE);
3091 }
3092 
3093 static int
3094 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3095 {
3096 	nvme_t *nvme = cmd->nc_nvme;
3097 	int nprp_page, nprp;
3098 	uint64_t *prp;
3099 
3100 	if (xfer->x_ndmac == 0)
3101 		return (DDI_FAILURE);
3102 
3103 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3104 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3105 
3106 	if (xfer->x_ndmac == 1) {
3107 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3108 		return (DDI_SUCCESS);
3109 	} else if (xfer->x_ndmac == 2) {
3110 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3111 		return (DDI_SUCCESS);
3112 	}
3113 
3114 	xfer->x_ndmac--;
3115 
3116 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3117 	ASSERT(nprp_page > 0);
3118 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3119 
3120 	/*
3121 	 * We currently don't support chained PRPs and set up our DMA
3122 	 * attributes to reflect that. If we still get an I/O request
3123 	 * that needs a chained PRP something is very wrong.
3124 	 */
3125 	VERIFY(nprp == 1);
3126 
3127 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3128 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3129 
3130 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3131 
3132 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3133 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3134 	    xfer->x_ndmac > 0;
3135 	    prp++, xfer->x_ndmac--) {
3136 		*prp = xfer->x_dmac.dmac_laddress;
3137 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3138 	}
3139 
3140 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3141 	    DDI_DMA_SYNC_FORDEV);
3142 	return (DDI_SUCCESS);
3143 }
3144 
3145 static nvme_cmd_t *
3146 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3147 {
3148 	nvme_t *nvme = ns->ns_nvme;
3149 	nvme_cmd_t *cmd;
3150 
3151 	/*
3152 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3153 	 */
3154 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3155 	    KM_NOSLEEP : KM_SLEEP);
3156 
3157 	if (cmd == NULL)
3158 		return (NULL);
3159 
3160 	cmd->nc_sqe.sqe_opc = opc;
3161 	cmd->nc_callback = nvme_bd_xfer_done;
3162 	cmd->nc_xfer = xfer;
3163 
3164 	switch (opc) {
3165 	case NVME_OPC_NVM_WRITE:
3166 	case NVME_OPC_NVM_READ:
3167 		VERIFY(xfer->x_nblks <= 0x10000);
3168 
3169 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3170 
3171 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3172 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3173 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3174 
3175 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3176 			goto fail;
3177 		break;
3178 
3179 	case NVME_OPC_NVM_FLUSH:
3180 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3181 		break;
3182 
3183 	default:
3184 		goto fail;
3185 	}
3186 
3187 	return (cmd);
3188 
3189 fail:
3190 	nvme_free_cmd(cmd);
3191 	return (NULL);
3192 }
3193 
3194 static void
3195 nvme_bd_xfer_done(void *arg)
3196 {
3197 	nvme_cmd_t *cmd = arg;
3198 	bd_xfer_t *xfer = cmd->nc_xfer;
3199 	int error = 0;
3200 
3201 	error = nvme_check_cmd_status(cmd);
3202 	nvme_free_cmd(cmd);
3203 
3204 	bd_xfer_done(xfer, error);
3205 }
3206 
3207 static void
3208 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3209 {
3210 	nvme_namespace_t *ns = arg;
3211 	nvme_t *nvme = ns->ns_nvme;
3212 
3213 	/*
3214 	 * blkdev maintains one queue size per instance (namespace),
3215 	 * but all namespace share the I/O queues.
3216 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3217 	 * or change blkdev to handle EAGAIN
3218 	 */
3219 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3220 	    / nvme->n_namespace_count;
3221 
3222 	/*
3223 	 * d_maxxfer is not set, which means the value is taken from the DMA
3224 	 * attributes specified to bd_alloc_handle.
3225 	 */
3226 
3227 	drive->d_removable = B_FALSE;
3228 	drive->d_hotpluggable = B_FALSE;
3229 
3230 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3231 	drive->d_target = ns->ns_id;
3232 	drive->d_lun = 0;
3233 
3234 	drive->d_model = nvme->n_idctl->id_model;
3235 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3236 	drive->d_vendor = nvme->n_vendor;
3237 	drive->d_vendor_len = strlen(nvme->n_vendor);
3238 	drive->d_product = nvme->n_product;
3239 	drive->d_product_len = strlen(nvme->n_product);
3240 	drive->d_serial = nvme->n_idctl->id_serial;
3241 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3242 	drive->d_revision = nvme->n_idctl->id_fwrev;
3243 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3244 }
3245 
3246 static int
3247 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3248 {
3249 	nvme_namespace_t *ns = arg;
3250 
3251 	media->m_nblks = ns->ns_block_count;
3252 	media->m_blksize = ns->ns_block_size;
3253 	media->m_readonly = B_FALSE;
3254 	media->m_solidstate = B_TRUE;
3255 
3256 	media->m_pblksize = ns->ns_best_block_size;
3257 
3258 	return (0);
3259 }
3260 
3261 static int
3262 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3263 {
3264 	nvme_t *nvme = ns->ns_nvme;
3265 	nvme_cmd_t *cmd;
3266 
3267 	if (nvme->n_dead)
3268 		return (EIO);
3269 
3270 	/* No polling for now */
3271 	if (xfer->x_flags & BD_XFER_POLL)
3272 		return (EIO);
3273 
3274 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3275 	if (cmd == NULL)
3276 		return (ENOMEM);
3277 
3278 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3279 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3280 
3281 	if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
3282 	    != DDI_SUCCESS)
3283 		return (EAGAIN);
3284 
3285 	return (0);
3286 }
3287 
3288 static int
3289 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3290 {
3291 	nvme_namespace_t *ns = arg;
3292 
3293 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3294 }
3295 
3296 static int
3297 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3298 {
3299 	nvme_namespace_t *ns = arg;
3300 
3301 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3302 }
3303 
3304 static int
3305 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3306 {
3307 	nvme_namespace_t *ns = arg;
3308 
3309 	if (ns->ns_nvme->n_dead)
3310 		return (EIO);
3311 
3312 	/*
3313 	 * If the volatile write cache is not present or not enabled the FLUSH
3314 	 * command is a no-op, so we can take a shortcut here.
3315 	 */
3316 	if (!ns->ns_nvme->n_write_cache_present) {
3317 		bd_xfer_done(xfer, ENOTSUP);
3318 		return (0);
3319 	}
3320 
3321 	if (!ns->ns_nvme->n_write_cache_enabled) {
3322 		bd_xfer_done(xfer, 0);
3323 		return (0);
3324 	}
3325 
3326 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3327 }
3328 
3329 static int
3330 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3331 {
3332 	nvme_namespace_t *ns = arg;
3333 
3334 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3335 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3336 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3337 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3338 	} else {
3339 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3340 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3341 	}
3342 }
3343 
3344 static int
3345 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3346 {
3347 #ifndef __lock_lint
3348 	_NOTE(ARGUNUSED(cred_p));
3349 #endif
3350 	minor_t minor = getminor(*devp);
3351 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3352 	int nsid = NVME_MINOR_NSID(minor);
3353 	nvme_minor_state_t *nm;
3354 	int rv = 0;
3355 
3356 	if (otyp != OTYP_CHR)
3357 		return (EINVAL);
3358 
3359 	if (nvme == NULL)
3360 		return (ENXIO);
3361 
3362 	if (nsid > nvme->n_namespace_count)
3363 		return (ENXIO);
3364 
3365 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3366 
3367 	mutex_enter(&nm->nm_mutex);
3368 	if (nm->nm_oexcl) {
3369 		rv = EBUSY;
3370 		goto out;
3371 	}
3372 
3373 	if (flag & FEXCL) {
3374 		if (nm->nm_ocnt != 0) {
3375 			rv = EBUSY;
3376 			goto out;
3377 		}
3378 		nm->nm_oexcl = B_TRUE;
3379 	}
3380 
3381 	nm->nm_ocnt++;
3382 
3383 out:
3384 	mutex_exit(&nm->nm_mutex);
3385 	return (rv);
3386 
3387 }
3388 
3389 static int
3390 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3391 {
3392 #ifndef __lock_lint
3393 	_NOTE(ARGUNUSED(cred_p));
3394 	_NOTE(ARGUNUSED(flag));
3395 #endif
3396 	minor_t minor = getminor(dev);
3397 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3398 	int nsid = NVME_MINOR_NSID(minor);
3399 	nvme_minor_state_t *nm;
3400 
3401 	if (otyp != OTYP_CHR)
3402 		return (ENXIO);
3403 
3404 	if (nvme == NULL)
3405 		return (ENXIO);
3406 
3407 	if (nsid > nvme->n_namespace_count)
3408 		return (ENXIO);
3409 
3410 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3411 
3412 	mutex_enter(&nm->nm_mutex);
3413 	if (nm->nm_oexcl)
3414 		nm->nm_oexcl = B_FALSE;
3415 
3416 	ASSERT(nm->nm_ocnt > 0);
3417 	nm->nm_ocnt--;
3418 	mutex_exit(&nm->nm_mutex);
3419 
3420 	return (0);
3421 }
3422 
3423 static int
3424 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3425     cred_t *cred_p)
3426 {
3427 	_NOTE(ARGUNUSED(cred_p));
3428 	int rv = 0;
3429 	void *idctl;
3430 
3431 	if ((mode & FREAD) == 0)
3432 		return (EPERM);
3433 
3434 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3435 		return (EINVAL);
3436 
3437 	idctl = nvme_identify(nvme, nsid);
3438 	if (idctl == NULL)
3439 		return (EIO);
3440 
3441 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3442 	    != 0)
3443 		rv = EFAULT;
3444 
3445 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3446 
3447 	return (rv);
3448 }
3449 
3450 static int
3451 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3452     int mode, cred_t *cred_p)
3453 {
3454 	_NOTE(ARGUNUSED(nsid, cred_p));
3455 	int rv = 0;
3456 	nvme_reg_cap_t cap = { 0 };
3457 	nvme_capabilities_t nc;
3458 
3459 	if ((mode & FREAD) == 0)
3460 		return (EPERM);
3461 
3462 	if (nioc->n_len < sizeof (nc))
3463 		return (EINVAL);
3464 
3465 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3466 
3467 	/*
3468 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3469 	 * specify the base page size of 4k (1<<12), so add 12 here to
3470 	 * get the real page size value.
3471 	 */
3472 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3473 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3474 
3475 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3476 		rv = EFAULT;
3477 
3478 	return (rv);
3479 }
3480 
3481 static int
3482 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3483     int mode, cred_t *cred_p)
3484 {
3485 	_NOTE(ARGUNUSED(cred_p));
3486 	void *log = NULL;
3487 	size_t bufsize = 0;
3488 	int rv = 0;
3489 
3490 	if ((mode & FREAD) == 0)
3491 		return (EPERM);
3492 
3493 	switch (nioc->n_arg) {
3494 	case NVME_LOGPAGE_ERROR:
3495 		if (nsid != 0)
3496 			return (EINVAL);
3497 		break;
3498 	case NVME_LOGPAGE_HEALTH:
3499 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3500 			return (EINVAL);
3501 
3502 		if (nsid == 0)
3503 			nsid = (uint32_t)-1;
3504 
3505 		break;
3506 	case NVME_LOGPAGE_FWSLOT:
3507 		if (nsid != 0)
3508 			return (EINVAL);
3509 		break;
3510 	default:
3511 		return (EINVAL);
3512 	}
3513 
3514 	if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3515 	    != DDI_SUCCESS)
3516 		return (EIO);
3517 
3518 	if (nioc->n_len < bufsize) {
3519 		kmem_free(log, bufsize);
3520 		return (EINVAL);
3521 	}
3522 
3523 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3524 		rv = EFAULT;
3525 
3526 	nioc->n_len = bufsize;
3527 	kmem_free(log, bufsize);
3528 
3529 	return (rv);
3530 }
3531 
3532 static int
3533 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3534     int mode, cred_t *cred_p)
3535 {
3536 	_NOTE(ARGUNUSED(cred_p));
3537 	void *buf = NULL;
3538 	size_t bufsize = 0;
3539 	uint32_t res = 0;
3540 	uint8_t feature;
3541 	int rv = 0;
3542 
3543 	if ((mode & FREAD) == 0)
3544 		return (EPERM);
3545 
3546 	if ((nioc->n_arg >> 32) > 0xff)
3547 		return (EINVAL);
3548 
3549 	feature = (uint8_t)(nioc->n_arg >> 32);
3550 
3551 	switch (feature) {
3552 	case NVME_FEAT_ARBITRATION:
3553 	case NVME_FEAT_POWER_MGMT:
3554 	case NVME_FEAT_TEMPERATURE:
3555 	case NVME_FEAT_ERROR:
3556 	case NVME_FEAT_NQUEUES:
3557 	case NVME_FEAT_INTR_COAL:
3558 	case NVME_FEAT_WRITE_ATOM:
3559 	case NVME_FEAT_ASYNC_EVENT:
3560 	case NVME_FEAT_PROGRESS:
3561 		if (nsid != 0)
3562 			return (EINVAL);
3563 		break;
3564 
3565 	case NVME_FEAT_INTR_VECT:
3566 		if (nsid != 0)
3567 			return (EINVAL);
3568 
3569 		res = nioc->n_arg & 0xffffffffUL;
3570 		if (res >= nvme->n_intr_cnt)
3571 			return (EINVAL);
3572 		break;
3573 
3574 	case NVME_FEAT_LBA_RANGE:
3575 		if (nvme->n_lba_range_supported == B_FALSE)
3576 			return (EINVAL);
3577 
3578 		if (nsid == 0 ||
3579 		    nsid > nvme->n_namespace_count)
3580 			return (EINVAL);
3581 
3582 		break;
3583 
3584 	case NVME_FEAT_WRITE_CACHE:
3585 		if (nsid != 0)
3586 			return (EINVAL);
3587 
3588 		if (!nvme->n_write_cache_present)
3589 			return (EINVAL);
3590 
3591 		break;
3592 
3593 	case NVME_FEAT_AUTO_PST:
3594 		if (nsid != 0)
3595 			return (EINVAL);
3596 
3597 		if (!nvme->n_auto_pst_supported)
3598 			return (EINVAL);
3599 
3600 		break;
3601 
3602 	default:
3603 		return (EINVAL);
3604 	}
3605 
3606 	if (nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize) ==
3607 	    B_FALSE)
3608 		return (EIO);
3609 
3610 	if (nioc->n_len < bufsize) {
3611 		kmem_free(buf, bufsize);
3612 		return (EINVAL);
3613 	}
3614 
3615 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3616 		rv = EFAULT;
3617 
3618 	kmem_free(buf, bufsize);
3619 	nioc->n_arg = res;
3620 	nioc->n_len = bufsize;
3621 
3622 	return (rv);
3623 }
3624 
3625 static int
3626 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3627     cred_t *cred_p)
3628 {
3629 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
3630 
3631 	if ((mode & FREAD) == 0)
3632 		return (EPERM);
3633 
3634 	nioc->n_arg = nvme->n_intr_cnt;
3635 	return (0);
3636 }
3637 
3638 static int
3639 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3640     cred_t *cred_p)
3641 {
3642 	_NOTE(ARGUNUSED(nsid, cred_p));
3643 	int rv = 0;
3644 
3645 	if ((mode & FREAD) == 0)
3646 		return (EPERM);
3647 
3648 	if (nioc->n_len < sizeof (nvme->n_version))
3649 		return (ENOMEM);
3650 
3651 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3652 	    sizeof (nvme->n_version), mode) != 0)
3653 		rv = EFAULT;
3654 
3655 	return (rv);
3656 }
3657 
3658 static int
3659 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3660     cred_t *cred_p)
3661 {
3662 	_NOTE(ARGUNUSED(mode));
3663 	nvme_format_nvm_t frmt = { 0 };
3664 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
3665 
3666 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3667 		return (EPERM);
3668 
3669 	frmt.r = nioc->n_arg & 0xffffffff;
3670 
3671 	/*
3672 	 * Check whether the FORMAT NVM command is supported.
3673 	 */
3674 	if (nvme->n_idctl->id_oacs.oa_format == 0)
3675 		return (EINVAL);
3676 
3677 	/*
3678 	 * Don't allow format or secure erase of individual namespace if that
3679 	 * would cause a format or secure erase of all namespaces.
3680 	 */
3681 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3682 		return (EINVAL);
3683 
3684 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3685 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
3686 		return (EINVAL);
3687 
3688 	/*
3689 	 * Don't allow formatting with Protection Information.
3690 	 */
3691 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3692 		return (EINVAL);
3693 
3694 	/*
3695 	 * Don't allow formatting using an illegal LBA format, or any LBA format
3696 	 * that uses metadata.
3697 	 */
3698 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3699 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3700 		return (EINVAL);
3701 
3702 	/*
3703 	 * Don't allow formatting using an illegal Secure Erase setting.
3704 	 */
3705 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3706 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3707 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3708 		return (EINVAL);
3709 
3710 	if (nsid == 0)
3711 		nsid = (uint32_t)-1;
3712 
3713 	return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3714 	    frmt.b.fm_ses));
3715 }
3716 
3717 static int
3718 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3719     cred_t *cred_p)
3720 {
3721 	_NOTE(ARGUNUSED(nioc, mode));
3722 	int rv = 0;
3723 
3724 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3725 		return (EPERM);
3726 
3727 	if (nsid == 0)
3728 		return (EINVAL);
3729 
3730 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3731 	if (rv != DDI_SUCCESS)
3732 		rv = EBUSY;
3733 
3734 	return (rv);
3735 }
3736 
3737 static int
3738 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3739     cred_t *cred_p)
3740 {
3741 	_NOTE(ARGUNUSED(nioc, mode));
3742 	nvme_identify_nsid_t *idns;
3743 	int rv = 0;
3744 
3745 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3746 		return (EPERM);
3747 
3748 	if (nsid == 0)
3749 		return (EINVAL);
3750 
3751 	/*
3752 	 * Identify namespace again, free old identify data.
3753 	 */
3754 	idns = nvme->n_ns[nsid - 1].ns_idns;
3755 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3756 		return (EIO);
3757 
3758 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
3759 
3760 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3761 	if (rv != DDI_SUCCESS)
3762 		rv = EBUSY;
3763 
3764 	return (rv);
3765 }
3766 
3767 static int
3768 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3769     int *rval_p)
3770 {
3771 #ifndef __lock_lint
3772 	_NOTE(ARGUNUSED(rval_p));
3773 #endif
3774 	minor_t minor = getminor(dev);
3775 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3776 	int nsid = NVME_MINOR_NSID(minor);
3777 	int rv = 0;
3778 	nvme_ioctl_t nioc;
3779 
3780 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3781 		NULL,
3782 		nvme_ioctl_identify,
3783 		nvme_ioctl_identify,
3784 		nvme_ioctl_capabilities,
3785 		nvme_ioctl_get_logpage,
3786 		nvme_ioctl_get_features,
3787 		nvme_ioctl_intr_cnt,
3788 		nvme_ioctl_version,
3789 		nvme_ioctl_format,
3790 		nvme_ioctl_detach,
3791 		nvme_ioctl_attach
3792 	};
3793 
3794 	if (nvme == NULL)
3795 		return (ENXIO);
3796 
3797 	if (nsid > nvme->n_namespace_count)
3798 		return (ENXIO);
3799 
3800 	if (IS_DEVCTL(cmd))
3801 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3802 
3803 #ifdef _MULTI_DATAMODEL
3804 	switch (ddi_model_convert_from(mode & FMODELS)) {
3805 	case DDI_MODEL_ILP32: {
3806 		nvme_ioctl32_t nioc32;
3807 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3808 		    mode) != 0)
3809 			return (EFAULT);
3810 		nioc.n_len = nioc32.n_len;
3811 		nioc.n_buf = nioc32.n_buf;
3812 		nioc.n_arg = nioc32.n_arg;
3813 		break;
3814 	}
3815 	case DDI_MODEL_NONE:
3816 #endif
3817 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3818 		    != 0)
3819 			return (EFAULT);
3820 #ifdef _MULTI_DATAMODEL
3821 		break;
3822 	}
3823 #endif
3824 
3825 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3826 		/*
3827 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3828 		 * attachment point nodes.
3829 		 */
3830 		nsid = 0;
3831 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3832 		/*
3833 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3834 		 * will always return identify data for namespace 1.
3835 		 */
3836 		nsid = 1;
3837 	}
3838 
3839 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3840 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3841 		    cred_p);
3842 	else
3843 		rv = EINVAL;
3844 
3845 #ifdef _MULTI_DATAMODEL
3846 	switch (ddi_model_convert_from(mode & FMODELS)) {
3847 	case DDI_MODEL_ILP32: {
3848 		nvme_ioctl32_t nioc32;
3849 
3850 		nioc32.n_len = (size32_t)nioc.n_len;
3851 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3852 		nioc32.n_arg = nioc.n_arg;
3853 
3854 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3855 		    mode) != 0)
3856 			return (EFAULT);
3857 		break;
3858 	}
3859 	case DDI_MODEL_NONE:
3860 #endif
3861 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3862 		    != 0)
3863 			return (EFAULT);
3864 #ifdef _MULTI_DATAMODEL
3865 		break;
3866 	}
3867 #endif
3868 
3869 	return (rv);
3870 }
3871