xref: /illumos-gate/usr/src/uts/common/io/nge/nge_chip.c (revision 15c07adc1c7b828006b5e3c4d528b92229d6bd23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2018, Joyent, Inc.
29  */
30 
31 #include "nge.h"
32 static uint32_t	nge_watchdog_count	= 1 << 5;
33 static uint32_t	nge_watchdog_check	= 1 << 3;
34 extern boolean_t nge_enable_msi;
35 static void nge_sync_mac_modes(nge_t *);
36 
37 #undef NGE_DBG
38 #define	NGE_DBG		NGE_DBG_CHIP
39 
40 /*
41  * Operating register get/set access routines
42  */
43 uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
44 #pragma	inline(nge_reg_get8)
45 
46 uint8_t
47 nge_reg_get8(nge_t *ngep, nge_regno_t regno)
48 {
49 	NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
50 
51 	return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
52 }
53 
54 void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
55 #pragma	inline(nge_reg_put8)
56 
57 void
58 nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
59 {
60 	NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
61 	    (void *)ngep, regno, data));
62 	ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
63 
64 }
65 
66 uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
67 #pragma	inline(nge_reg_get16)
68 
69 uint16_t
70 nge_reg_get16(nge_t *ngep, nge_regno_t regno)
71 {
72 	NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
73 	return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
74 }
75 
76 void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
77 #pragma	inline(nge_reg_put16)
78 
79 void
80 nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
81 {
82 	NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
83 	    (void *)ngep, regno, data));
84 	ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
85 
86 }
87 
88 uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
89 #pragma	inline(nge_reg_get32)
90 
91 uint32_t
92 nge_reg_get32(nge_t *ngep, nge_regno_t regno)
93 {
94 	NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
95 	return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
96 }
97 
98 void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
99 #pragma	inline(nge_reg_put32)
100 
101 void
102 nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
103 {
104 	NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
105 	    (void *)ngep, regno, data));
106 	ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
107 
108 }
109 
110 
111 static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
112 #pragma	no_inline(nge_chip_peek_cfg)
113 
114 static int
115 nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
116 {
117 	int err;
118 	uint64_t regval;
119 	uint64_t regno;
120 
121 	NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
122 	    (void *)ngep, (void *)ppd));
123 
124 	err = DDI_SUCCESS;
125 	regno = ppd->pp_acc_offset;
126 
127 	switch (ppd->pp_acc_size) {
128 	case 1:
129 		regval = pci_config_get8(ngep->cfg_handle, regno);
130 		break;
131 
132 	case 2:
133 		regval = pci_config_get16(ngep->cfg_handle, regno);
134 		break;
135 
136 	case 4:
137 		regval = pci_config_get32(ngep->cfg_handle, regno);
138 		break;
139 
140 	case 8:
141 		regval = pci_config_get64(ngep->cfg_handle, regno);
142 		break;
143 	}
144 	ppd->pp_acc_data = regval;
145 	return (err);
146 }
147 
148 static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
149 
150 static int
151 nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
152 {
153 	int err;
154 	uint64_t regval;
155 	uint64_t regno;
156 
157 	NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
158 	    (void *)ngep, (void *)ppd));
159 
160 	err = DDI_SUCCESS;
161 	regno = ppd->pp_acc_offset;
162 	regval = ppd->pp_acc_data;
163 
164 	switch (ppd->pp_acc_size) {
165 	case 1:
166 		pci_config_put8(ngep->cfg_handle, regno, regval);
167 		break;
168 
169 	case 2:
170 		pci_config_put16(ngep->cfg_handle, regno, regval);
171 		break;
172 
173 	case 4:
174 		pci_config_put32(ngep->cfg_handle, regno, regval);
175 		break;
176 
177 	case 8:
178 		pci_config_put64(ngep->cfg_handle, regno, regval);
179 		break;
180 	}
181 
182 	return (err);
183 
184 }
185 
186 static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
187 
188 static int
189 nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
190 {
191 	int err;
192 	uint64_t regval;
193 	void *regaddr;
194 
195 	NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
196 	    (void *)ngep, (void *)ppd));
197 
198 	err = DDI_SUCCESS;
199 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
200 
201 	switch (ppd->pp_acc_size) {
202 	case 1:
203 		regval = ddi_get8(ngep->io_handle, regaddr);
204 	break;
205 
206 	case 2:
207 		regval = ddi_get16(ngep->io_handle, regaddr);
208 	break;
209 
210 	case 4:
211 		regval = ddi_get32(ngep->io_handle, regaddr);
212 	break;
213 
214 	case 8:
215 		regval = ddi_get64(ngep->io_handle, regaddr);
216 	break;
217 
218 	default:
219 		regval = 0x0ull;
220 	break;
221 	}
222 	ppd->pp_acc_data = regval;
223 	return (err);
224 }
225 
226 static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
227 
228 static int
229 nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
230 {
231 	int err;
232 	uint64_t regval;
233 	void *regaddr;
234 
235 	NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
236 	    (void *)ngep, (void *)ppd));
237 
238 	err = DDI_SUCCESS;
239 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
240 	regval = ppd->pp_acc_data;
241 
242 	switch (ppd->pp_acc_size) {
243 	case 1:
244 		ddi_put8(ngep->io_handle, regaddr, regval);
245 		break;
246 
247 	case 2:
248 		ddi_put16(ngep->io_handle, regaddr, regval);
249 		break;
250 
251 	case 4:
252 		ddi_put32(ngep->io_handle, regaddr, regval);
253 		break;
254 
255 	case 8:
256 		ddi_put64(ngep->io_handle, regaddr, regval);
257 		break;
258 	}
259 	return (err);
260 }
261 
262 static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
263 #pragma	no_inline(nge_chip_peek_mii)
264 
265 static int
266 nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
267 {
268 	int err;
269 
270 	err = DDI_SUCCESS;
271 	ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
272 	return (err);
273 }
274 
275 static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
276 #pragma	no_inline(nge_chip_poke_mii)
277 
278 static int
279 nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
280 {
281 	int err;
282 	err = DDI_SUCCESS;
283 	nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
284 	return (err);
285 }
286 
287 /*
288  * Basic SEEPROM get/set access routine
289  *
290  * This uses the chip's SEEPROM auto-access method, controlled by the
291  * Serial EEPROM Address/Data Registers at 0x504h, so the CPU
292  * doesn't have to fiddle with the individual bits.
293  *
294  * The caller should hold <genlock> and *also* have already acquired
295  * the right to access the SEEPROM.
296  *
297  * Return value:
298  *	0 on success,
299  *	ENODATA on access timeout (maybe retryable: device may just be busy)
300  *	EPROTO on other h/w or s/w errors.
301  *
302  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
303  * from a (successful) SEEPROM_ACCESS_READ.
304  */
305 
306 static int
307 nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
308 {
309 	uint32_t tries;
310 	nge_ep_cmd cmd_reg;
311 	nge_ep_data data_reg;
312 
313 	NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
314 	    (void *)ngep, cmd, addr, (void *)dp));
315 
316 	ASSERT(mutex_owned(ngep->genlock));
317 
318 	/*
319 	 * Check there's no command in progress.
320 	 *
321 	 * Note: this *shouldn't* ever find that there is a command
322 	 * in progress, because we already hold the <genlock> mutex.
323 	 * Also, to ensure we don't have a conflict with the chip's
324 	 * internal firmware or a process accessing the same (shared)
325 	 * So this is just a final consistency check: we shouldn't
326 	 * see EITHER the START bit (command started but not complete)
327 	 * OR the COMPLETE bit (command completed but not cleared).
328 	 */
329 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
330 	for (tries = 0; tries < 30; tries++) {
331 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
332 			break;
333 		drv_usecwait(10);
334 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
335 	}
336 
337 	/*
338 	 * This should not happen. If so, we have to restart eeprom
339 	 *  state machine
340 	 */
341 	if (tries == 30) {
342 		cmd_reg.cmd_bits.sts = SEEPROM_READY;
343 		nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
344 		drv_usecwait(10);
345 		/*
346 		 * Polling the status bit to make assure the eeprom is ready
347 		 */
348 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
349 		for (tries = 0; tries < 30; tries++) {
350 			if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
351 				break;
352 			drv_usecwait(10);
353 			cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
354 		}
355 	}
356 
357 	/*
358 	 * Assemble the command ...
359 	 */
360 	cmd_reg.cmd_bits.addr = (uint32_t)addr;
361 	cmd_reg.cmd_bits.cmd = cmd;
362 	cmd_reg.cmd_bits.sts = 0;
363 
364 	nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
365 
366 	/*
367 	 * Polling whether the access is successful.
368 	 *
369 	 */
370 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
371 	for (tries = 0; tries < 30; tries++) {
372 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
373 			break;
374 		drv_usecwait(10);
375 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
376 	}
377 
378 	if (tries == 30) {
379 		nge_report(ngep, NGE_HW_ROM);
380 		return (DDI_FAILURE);
381 	}
382 	switch (cmd) {
383 	default:
384 	case SEEPROM_CMD_WRITE_ENABLE:
385 	case SEEPROM_CMD_ERASE:
386 	case SEEPROM_CMD_ERALSE_ALL:
387 	case SEEPROM_CMD_WRITE_DIS:
388 	break;
389 
390 	case SEEPROM_CMD_READ:
391 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
392 		*dp = data_reg.data_bits.data;
393 	break;
394 
395 	case SEEPROM_CMD_WRITE:
396 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
397 		data_reg.data_bits.data = *dp;
398 		nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
399 	break;
400 	}
401 
402 	return (DDI_SUCCESS);
403 }
404 
405 
406 static int
407 nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
408 {
409 	uint16_t data;
410 	int err;
411 
412 	err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
413 	    ppd->pp_acc_offset, &data);
414 	ppd->pp_acc_data =  data;
415 	return (err);
416 }
417 
418 static int
419 nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
420 {
421 	uint16_t data;
422 	int err;
423 
424 	data = ppd->pp_acc_data;
425 	err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
426 	    ppd->pp_acc_offset, &data);
427 	return (err);
428 }
429 
430 void
431 nge_init_dev_spec_param(nge_t *ngep)
432 {
433 	nge_dev_spec_param_t	*dev_param_p;
434 	chip_info_t	*infop;
435 
436 	dev_param_p = &ngep->dev_spec_param;
437 	infop = (chip_info_t *)&ngep->chipinfo;
438 
439 	switch (infop->device) {
440 	case DEVICE_ID_NF3_E6:
441 	case DEVICE_ID_NF3_DF:
442 	case DEVICE_ID_MCP04_37:
443 	case DEVICE_ID_MCP04_38:
444 		dev_param_p->msi = B_FALSE;
445 		dev_param_p->msi_x = B_FALSE;
446 		dev_param_p->vlan = B_FALSE;
447 		dev_param_p->advanced_pm = B_FALSE;
448 		dev_param_p->mac_addr_order = B_FALSE;
449 		dev_param_p->tx_pause_frame = B_FALSE;
450 		dev_param_p->rx_pause_frame = B_FALSE;
451 		dev_param_p->jumbo = B_FALSE;
452 		dev_param_p->tx_rx_64byte = B_FALSE;
453 		dev_param_p->rx_hw_checksum = B_FALSE;
454 		dev_param_p->tx_hw_checksum = 0;
455 		dev_param_p->desc_type = DESC_OFFLOAD;
456 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
457 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
458 		dev_param_p->nge_split = NGE_SPLIT_32;
459 		break;
460 
461 	case DEVICE_ID_CK804_56:
462 	case DEVICE_ID_CK804_57:
463 		dev_param_p->msi = B_TRUE;
464 		dev_param_p->msi_x = B_TRUE;
465 		dev_param_p->vlan = B_FALSE;
466 		dev_param_p->advanced_pm = B_FALSE;
467 		dev_param_p->mac_addr_order = B_FALSE;
468 		dev_param_p->tx_pause_frame = B_FALSE;
469 		dev_param_p->rx_pause_frame = B_TRUE;
470 		dev_param_p->jumbo = B_TRUE;
471 		dev_param_p->tx_rx_64byte = B_FALSE;
472 		dev_param_p->rx_hw_checksum = B_TRUE;
473 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
474 		dev_param_p->desc_type = DESC_HOT;
475 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
476 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
477 		dev_param_p->nge_split = NGE_SPLIT_96;
478 		break;
479 
480 	case DEVICE_ID_MCP51_268:
481 	case DEVICE_ID_MCP51_269:
482 		dev_param_p->msi = B_FALSE;
483 		dev_param_p->msi_x = B_FALSE;
484 		dev_param_p->vlan = B_FALSE;
485 		dev_param_p->advanced_pm = B_TRUE;
486 		dev_param_p->mac_addr_order = B_FALSE;
487 		dev_param_p->tx_pause_frame = B_FALSE;
488 		dev_param_p->rx_pause_frame = B_FALSE;
489 		dev_param_p->jumbo = B_FALSE;
490 		dev_param_p->tx_rx_64byte = B_TRUE;
491 		dev_param_p->rx_hw_checksum = B_FALSE;
492 		dev_param_p->tx_hw_checksum = 0;
493 		dev_param_p->desc_type = DESC_OFFLOAD;
494 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
495 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
496 		dev_param_p->nge_split = NGE_SPLIT_32;
497 		break;
498 
499 	case DEVICE_ID_MCP55_372:
500 	case DEVICE_ID_MCP55_373:
501 		dev_param_p->msi = B_TRUE;
502 		dev_param_p->msi_x = B_TRUE;
503 		dev_param_p->vlan = B_TRUE;
504 		dev_param_p->advanced_pm = B_TRUE;
505 		dev_param_p->mac_addr_order = B_FALSE;
506 		dev_param_p->tx_pause_frame = B_TRUE;
507 		dev_param_p->rx_pause_frame = B_TRUE;
508 		dev_param_p->jumbo = B_TRUE;
509 		dev_param_p->tx_rx_64byte = B_TRUE;
510 		dev_param_p->rx_hw_checksum = B_TRUE;
511 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
512 		dev_param_p->desc_type = DESC_HOT;
513 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
514 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
515 		dev_param_p->nge_split = NGE_SPLIT_96;
516 		break;
517 
518 	case DEVICE_ID_MCP61_3EE:
519 	case DEVICE_ID_MCP61_3EF:
520 		dev_param_p->msi = B_FALSE;
521 		dev_param_p->msi_x = B_FALSE;
522 		dev_param_p->vlan = B_FALSE;
523 		dev_param_p->advanced_pm = B_TRUE;
524 		dev_param_p->mac_addr_order = B_TRUE;
525 		dev_param_p->tx_pause_frame = B_FALSE;
526 		dev_param_p->rx_pause_frame = B_FALSE;
527 		dev_param_p->jumbo = B_FALSE;
528 		dev_param_p->tx_rx_64byte = B_TRUE;
529 		dev_param_p->rx_hw_checksum = B_FALSE;
530 		dev_param_p->tx_hw_checksum = 0;
531 		dev_param_p->desc_type = DESC_OFFLOAD;
532 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
533 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
534 		dev_param_p->nge_split = NGE_SPLIT_32;
535 		break;
536 
537 	case DEVICE_ID_MCP77_760:
538 	case DEVICE_ID_MCP79_AB0:
539 		dev_param_p->msi = B_FALSE;
540 		dev_param_p->msi_x = B_FALSE;
541 		dev_param_p->vlan = B_FALSE;
542 		dev_param_p->advanced_pm = B_TRUE;
543 		dev_param_p->mac_addr_order = B_TRUE;
544 		dev_param_p->tx_pause_frame = B_FALSE;
545 		dev_param_p->rx_pause_frame = B_FALSE;
546 		dev_param_p->jumbo = B_FALSE;
547 		dev_param_p->tx_rx_64byte = B_TRUE;
548 		dev_param_p->rx_hw_checksum = B_FALSE;
549 		dev_param_p->tx_hw_checksum = 0;
550 		dev_param_p->desc_type = DESC_HOT;
551 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
552 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
553 		dev_param_p->nge_split = NGE_SPLIT_32;
554 		break;
555 
556 	default:
557 		dev_param_p->msi = B_FALSE;
558 		dev_param_p->msi_x = B_FALSE;
559 		dev_param_p->vlan = B_FALSE;
560 		dev_param_p->advanced_pm = B_FALSE;
561 		dev_param_p->mac_addr_order = B_FALSE;
562 		dev_param_p->tx_pause_frame = B_FALSE;
563 		dev_param_p->rx_pause_frame = B_FALSE;
564 		dev_param_p->jumbo = B_FALSE;
565 		dev_param_p->tx_rx_64byte = B_FALSE;
566 		dev_param_p->rx_hw_checksum = B_FALSE;
567 		dev_param_p->tx_hw_checksum = 0;
568 		dev_param_p->desc_type = DESC_OFFLOAD;
569 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
570 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
571 		dev_param_p->nge_split = NGE_SPLIT_32;
572 		return;
573 	}
574 }
575 /*
576  * Perform first-stage chip (re-)initialisation, using only config-space
577  * accesses:
578  *
579  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
580  *   returning the data in the structure pointed to by <infop>.
581  */
582 void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
583 #pragma	no_inline(nge_chip_cfg_init)
584 
585 void
586 nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
587 {
588 	uint16_t command;
589 	ddi_acc_handle_t handle;
590 	nge_interbus_conf interbus_conf;
591 	nge_msi_mask_conf msi_mask_conf;
592 	nge_msi_map_cap_conf cap_conf;
593 
594 	NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
595 	    (void *)ngep, (void *)infop, reset));
596 
597 	/*
598 	 * save PCI cache line size and subsystem vendor ID
599 	 *
600 	 * Read all the config-space registers that characterise the
601 	 * chip, specifically vendor/device/revision/subsystem vendor
602 	 * and subsystem device id.  We expect (but don't check) that
603 	 */
604 	handle = ngep->cfg_handle;
605 	/* reading the vendor information once */
606 	if (reset == B_FALSE) {
607 		infop->command = pci_config_get16(handle,
608 		    PCI_CONF_COMM);
609 		infop->vendor = pci_config_get16(handle,
610 		    PCI_CONF_VENID);
611 		infop->device = pci_config_get16(handle,
612 		    PCI_CONF_DEVID);
613 		infop->subven = pci_config_get16(handle,
614 		    PCI_CONF_SUBVENID);
615 		infop->subdev = pci_config_get16(handle,
616 		    PCI_CONF_SUBSYSID);
617 		infop->class_code = pci_config_get8(handle,
618 		    PCI_CONF_BASCLASS);
619 		infop->revision = pci_config_get8(handle,
620 		    PCI_CONF_REVID);
621 		infop->clsize = pci_config_get8(handle,
622 		    PCI_CONF_CACHE_LINESZ);
623 		infop->latency = pci_config_get8(handle,
624 		    PCI_CONF_LATENCY_TIMER);
625 	}
626 	if (nge_enable_msi) {
627 		/* Disable the hidden for MSI support */
628 		interbus_conf.conf_val = pci_config_get32(handle,
629 		    PCI_CONF_HT_INTERNAL);
630 		if ((infop->device == DEVICE_ID_MCP55_373) ||
631 		    (infop->device == DEVICE_ID_MCP55_372))
632 			interbus_conf.conf_bits.msix_off = NGE_SET;
633 		interbus_conf.conf_bits.msi_off = NGE_CLEAR;
634 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
635 		    interbus_conf.conf_val);
636 
637 		if ((infop->device == DEVICE_ID_MCP55_373) ||
638 		    (infop->device == DEVICE_ID_MCP55_372)) {
639 
640 			/* Disable the vector off for mcp55 */
641 			msi_mask_conf.msi_mask_conf_val =
642 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
643 			msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
644 			msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
645 			msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
646 			msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
647 			msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
648 			msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
649 			msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
650 			msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
651 			pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
652 			    msi_mask_conf.msi_mask_conf_val);
653 
654 			/* Enable the MSI mapping */
655 			cap_conf.msi_map_cap_conf_val =
656 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
657 			cap_conf.map_cap_conf_bits.map_en = NGE_SET;
658 			pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
659 			    cap_conf.msi_map_cap_conf_val);
660 		}
661 	} else {
662 		interbus_conf.conf_val = pci_config_get32(handle,
663 		    PCI_CONF_HT_INTERNAL);
664 		interbus_conf.conf_bits.msi_off = NGE_SET;
665 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
666 		    interbus_conf.conf_val);
667 	}
668 	command = infop->command | PCI_COMM_MAE;
669 	command &= ~PCI_COMM_MEMWR_INVAL;
670 	command |= PCI_COMM_ME;
671 	pci_config_put16(handle, PCI_CONF_COMM, command);
672 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
673 
674 }
675 
676 int
677 nge_chip_stop(nge_t *ngep, boolean_t fault)
678 {
679 	int err;
680 	uint32_t reg_val;
681 	uint32_t	tries;
682 	nge_mintr_src mintr_src;
683 	nge_mii_cs mii_cs;
684 	nge_rx_poll rx_poll;
685 	nge_tx_poll tx_poll;
686 	nge_rx_en rx_en;
687 	nge_tx_en tx_en;
688 	nge_tx_sta tx_sta;
689 	nge_rx_sta rx_sta;
690 	nge_mode_cntl mode;
691 	nge_pmu_cntl2 pmu_cntl2;
692 
693 	NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
694 
695 	err = DDI_SUCCESS;
696 
697 	/* Clear any pending PHY interrupt */
698 	mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
699 	nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
700 
701 	/* Mask all interrupts */
702 	reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
703 	reg_val &= ~NGE_INTR_ALL_EN;
704 	nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
705 
706 	/* Disable auto-polling of phy */
707 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
708 	mii_cs.cs_bits.ap_en = NGE_CLEAR;
709 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
710 
711 	/* Reset buffer management & DMA */
712 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
713 	mode.mode_bits.dma_dis = NGE_SET;
714 	mode.mode_bits.desc_type = ngep->desc_mode;
715 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
716 
717 	for (tries = 0; tries < 10000; tries++) {
718 		drv_usecwait(10);
719 		mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
720 		if (mode.mode_bits.dma_status == NGE_SET)
721 			break;
722 	}
723 	if (tries == 10000) {
724 		ngep->nge_chip_state = NGE_CHIP_ERROR;
725 		return (DDI_FAILURE);
726 	}
727 
728 	/* Disable rx's machine */
729 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
730 	rx_en.bits.rx_en = NGE_CLEAR;
731 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
732 
733 	/* Disable tx's machine */
734 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
735 	tx_en.bits.tx_en = NGE_CLEAR;
736 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
737 
738 	/*
739 	 * Clean the status of tx's state machine
740 	 * and Make assure the tx's channel is idle
741 	 */
742 	tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
743 	for (tries = 0; tries < 1000; tries++) {
744 		if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
745 			break;
746 		drv_usecwait(10);
747 		tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
748 	}
749 	if (tries == 1000) {
750 		ngep->nge_chip_state = NGE_CHIP_ERROR;
751 		return (DDI_FAILURE);
752 	}
753 	nge_reg_put32(ngep, NGE_TX_STA,  tx_sta.sta_val);
754 
755 	/*
756 	 * Clean the status of rx's state machine
757 	 * and Make assure the tx's channel is idle
758 	 */
759 	rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
760 	for (tries = 0; tries < 1000; tries++) {
761 		if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
762 			break;
763 		drv_usecwait(10);
764 		rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
765 	}
766 	if (tries == 1000) {
767 		ngep->nge_chip_state = NGE_CHIP_ERROR;
768 		return (DDI_FAILURE);
769 	}
770 	nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
771 
772 	/* Disable auto-poll of rx's state machine */
773 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
774 	rx_poll.poll_bits.rpen = NGE_CLEAR;
775 	rx_poll.poll_bits.rpi = NGE_CLEAR;
776 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
777 
778 	/* Disable auto-polling of tx's  state machine */
779 	tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
780 	tx_poll.poll_bits.tpen = NGE_CLEAR;
781 	tx_poll.poll_bits.tpi = NGE_CLEAR;
782 	nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
783 
784 	/* Restore buffer management */
785 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
786 	mode.mode_bits.bm_reset = NGE_SET;
787 	mode.mode_bits.tx_rcom_en = NGE_SET;
788 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
789 
790 	if (ngep->dev_spec_param.advanced_pm) {
791 
792 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
793 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
794 
795 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
796 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
797 		pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
798 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
799 	}
800 	if (fault)
801 		ngep->nge_chip_state = NGE_CHIP_FAULT;
802 	else
803 		ngep->nge_chip_state = NGE_CHIP_STOPPED;
804 
805 	return (err);
806 }
807 
808 static void
809 nge_rx_setup(nge_t *ngep)
810 {
811 	uint64_t desc_addr;
812 	nge_rxtx_dlen dlen;
813 	nge_rx_poll rx_poll;
814 
815 	/*
816 	 * Filling the address and length of rx's descriptors
817 	 */
818 	desc_addr = ngep->recv->desc.cookie.dmac_laddress;
819 	nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
820 	nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
821 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
822 	dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
823 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
824 
825 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
826 	rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
827 	rx_poll.poll_bits.rpen = NGE_SET;
828 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
829 }
830 
831 static void
832 nge_tx_setup(nge_t *ngep)
833 {
834 	uint64_t desc_addr;
835 	nge_rxtx_dlen dlen;
836 
837 	/*
838 	 * Filling the address and length of tx's descriptors
839 	 */
840 	desc_addr = ngep->send->desc.cookie.dmac_laddress;
841 	nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
842 	nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
843 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
844 	dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
845 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
846 }
847 
848 static int
849 nge_buff_setup(nge_t *ngep)
850 {
851 	nge_mode_cntl mode_cntl;
852 	nge_dev_spec_param_t	*dev_param_p;
853 
854 	dev_param_p = &ngep->dev_spec_param;
855 
856 	/*
857 	 * Configure Rx&Tx's buffer
858 	 */
859 	nge_rx_setup(ngep);
860 	nge_tx_setup(ngep);
861 
862 	/*
863 	 * Configure buffer attribute
864 	 */
865 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
866 
867 	/*
868 	 * Enable Dma access request
869 	 */
870 	mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
871 
872 	/*
873 	 * Enbale Buffer management
874 	 */
875 	mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
876 
877 	/*
878 	 * Support Standoffload Descriptor
879 	 */
880 	mode_cntl.mode_bits.desc_type = ngep->desc_mode;
881 
882 	/*
883 	 * Support receive hardware checksum
884 	 */
885 	if (dev_param_p->rx_hw_checksum) {
886 		mode_cntl.mode_bits.rx_sum_en = NGE_SET;
887 	} else
888 		mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
889 
890 	/*
891 	 * Disable Tx PRD coarse update
892 	 */
893 	mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
894 
895 	/*
896 	 * Disable 64-byte access
897 	 */
898 	mode_cntl.mode_bits.w64_dis = NGE_SET;
899 
900 	/*
901 	 * Skip Rx Error Frame is not supported and if
902 	 * enable it, jumbo frame does not work any more.
903 	 */
904 	mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
905 
906 	/*
907 	 * Can not support hot mode now
908 	 */
909 	mode_cntl.mode_bits.resv15 = NGE_CLEAR;
910 
911 	if (dev_param_p->vlan) {
912 		/* Disable the vlan strip for devices which support vlan */
913 		mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
914 
915 		/* Disable the vlan insert for devices which supprot vlan */
916 		mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
917 	}
918 
919 	if (dev_param_p->tx_rx_64byte) {
920 
921 		/* Set the maximum TX PRD fetch size to 64 bytes */
922 		mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
923 
924 		/* Set the maximum RX PRD fetch size to 64 bytes */
925 		mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
926 	}
927 	/*
928 	 * Upload Rx data as it arrives, rather than waiting for full frame
929 	 */
930 	mode_cntl.mode_bits.resv16 = NGE_CLEAR;
931 
932 	/*
933 	 * Normal HOT table accesses
934 	 */
935 	mode_cntl.mode_bits.resv17 = NGE_CLEAR;
936 
937 	/*
938 	 * Normal HOT buffer requesting
939 	 */
940 	mode_cntl.mode_bits.resv18 = NGE_CLEAR;
941 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
942 
943 	/*
944 	 * Signal controller to check for new Rx descriptors
945 	 */
946 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
947 	mode_cntl.mode_bits.rxdm = NGE_SET;
948 	mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
949 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
950 
951 
952 	return (DDI_SUCCESS);
953 }
954 
955 /*
956  * When chipset resets, the chipset can not restore  the orignial
957  * mac address to the mac address registers.
958  *
959  * When the driver is dettached, the function will write the orignial
960  * mac address to the mac address registers.
961  */
962 
963 void
964 nge_restore_mac_addr(nge_t *ngep)
965 {
966 	uint32_t mac_addr;
967 
968 	mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
969 	nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
970 	mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
971 	nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
972 }
973 
974 int
975 nge_chip_reset(nge_t *ngep)
976 {
977 	int err;
978 	uint8_t i;
979 	uint32_t regno;
980 	uint64_t mac = 0;
981 	nge_uni_addr1 uaddr1;
982 	nge_cp_cntl ee_cntl;
983 	nge_soft_misc soft_misc;
984 	nge_pmu_cntl0 pmu_cntl0;
985 	nge_pmu_cntl2 pmu_cntl2;
986 	nge_pm_cntl2 pm_cntl2;
987 	const nge_ksindex_t *ksip;
988 
989 	NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
990 
991 	/*
992 	 * Clear the statistics by reading the statistics register
993 	 */
994 	for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
995 		regno = KS_BASE + ksip->index * sizeof (uint32_t);
996 		(void) nge_reg_get32(ngep, regno);
997 	}
998 
999 	/*
1000 	 * Setup seeprom control
1001 	 */
1002 	ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
1003 	ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
1004 	ee_cntl.cntl_bits.rom_size = EEPROM_32K;
1005 	ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
1006 	ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
1007 	nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
1008 
1009 	/*
1010 	 * Reading the unicast mac address table
1011 	 */
1012 	if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
1013 		uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1014 		mac = uaddr1.addr_bits.addr;
1015 		mac <<= 32;
1016 		mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
1017 		ngep->chipinfo.hw_mac_addr = mac;
1018 		if (ngep->dev_spec_param.mac_addr_order) {
1019 			for (i = 0; i < ETHERADDRL; i++) {
1020 				ngep->chipinfo.vendor_addr.addr[i] =
1021 				    (uchar_t)mac;
1022 				ngep->cur_uni_addr.addr[i] =
1023 				    (uchar_t)mac;
1024 				mac >>= 8;
1025 			}
1026 		} else {
1027 			for (i = ETHERADDRL; i-- != 0; ) {
1028 				ngep->chipinfo.vendor_addr.addr[i] =
1029 				    (uchar_t)mac;
1030 				ngep->cur_uni_addr.addr[i] =
1031 				    (uchar_t)mac;
1032 				mac >>= 8;
1033 			}
1034 		}
1035 		ngep->chipinfo.vendor_addr.set = 1;
1036 	}
1037 	pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
1038 	    ngep->chipinfo.clsize);
1039 	pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
1040 	    ngep->chipinfo.latency);
1041 
1042 
1043 	if (ngep->dev_spec_param.advanced_pm) {
1044 
1045 		/* Program software misc register */
1046 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1047 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
1048 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
1049 		soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
1050 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
1051 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
1052 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
1053 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
1054 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
1055 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1056 
1057 		/* wait for 32 us */
1058 		drv_usecwait(32);
1059 
1060 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1061 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
1062 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
1063 		soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
1064 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
1065 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
1066 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
1067 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
1068 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
1069 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1070 
1071 		/* Program PMU registers */
1072 		pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
1073 		pmu_cntl0.cntl0_bits.core_spd10_fp =
1074 		    NGE_PMU_CORE_SPD10_BUSY;
1075 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1076 		    NGE_PMU_CORE_SPD10_IDLE;
1077 		pmu_cntl0.cntl0_bits.core_spd100_fp =
1078 		    NGE_PMU_CORE_SPD100_BUSY;
1079 		pmu_cntl0.cntl0_bits.core_spd100_idle =
1080 		    NGE_PMU_CORE_SPD100_IDLE;
1081 		pmu_cntl0.cntl0_bits.core_spd1000_fp =
1082 		    NGE_PMU_CORE_SPD1000_BUSY;
1083 		pmu_cntl0.cntl0_bits.core_spd1000_idle =
1084 		    NGE_PMU_CORE_SPD100_IDLE;
1085 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1086 		    NGE_PMU_CORE_SPD10_IDLE;
1087 		nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
1088 
1089 		/* Set the core idle limit value */
1090 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
1091 		    NGE_PMU_CIDLE_LIMIT_DEF);
1092 
1093 		/* Set the device idle limit value */
1094 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
1095 		    NGE_PMU_DIDLE_LIMIT_DEF);
1096 
1097 		/* Enable the core/device idle timer in PMU control 2 */
1098 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
1099 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
1100 		pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
1101 		pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
1102 		pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
1103 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
1104 	}
1105 	/*
1106 	 * Stop the chipset and clear buffer management
1107 	 */
1108 	err = nge_chip_stop(ngep, B_FALSE);
1109 	if (err == DDI_FAILURE)
1110 		return (err);
1111 	/*
1112 	 * Clear the power state bits for phy since interface no longer
1113 	 * works after rebooting from Windows on a multi-boot machine
1114 	 */
1115 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
1116 	    ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1117 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
1118 	    ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1119 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
1120 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EF ||
1121 	    ngep->chipinfo.device == DEVICE_ID_MCP77_760 ||
1122 	    ngep->chipinfo.device == DEVICE_ID_MCP79_AB0) {
1123 
1124 		pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
1125 		/* bring phy out of coma mode */
1126 		pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
1127 		/* disable auto reset coma bits */
1128 		pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
1129 		/* restore power to gated clocks */
1130 		pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
1131 		nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
1132 	}
1133 
1134 	ngep->nge_chip_state = NGE_CHIP_RESET;
1135 	return (DDI_SUCCESS);
1136 }
1137 
1138 int
1139 nge_chip_start(nge_t *ngep)
1140 {
1141 	int err;
1142 	nge_itc itc;
1143 	nge_tx_cntl tx_cntl;
1144 	nge_rx_cntrl0 rx_cntl0;
1145 	nge_rx_cntl1 rx_cntl1;
1146 	nge_tx_en tx_en;
1147 	nge_rx_en rx_en;
1148 	nge_mii_cs mii_cs;
1149 	nge_swtr_cntl swtr_cntl;
1150 	nge_rx_fifo_wm rx_fifo;
1151 	nge_intr_mask intr_mask;
1152 	nge_mintr_mask mintr_mask;
1153 	nge_dev_spec_param_t	*dev_param_p;
1154 
1155 	NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
1156 
1157 	/*
1158 	 * Setup buffer management
1159 	 */
1160 	err = nge_buff_setup(ngep);
1161 	if (err == DDI_FAILURE)
1162 		return (err);
1163 
1164 	dev_param_p = &ngep->dev_spec_param;
1165 
1166 	/*
1167 	 * Enable polling attribute
1168 	 */
1169 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
1170 	mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
1171 	mii_cs.cs_bits.ap_en = NGE_SET;
1172 	mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
1173 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
1174 
1175 	/*
1176 	 * Setup link
1177 	 */
1178 	(*ngep->physops->phys_update)(ngep);
1179 
1180 	/*
1181 	 * Configure the tx's parameters
1182 	 */
1183 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1184 	if (dev_param_p->tx_pause_frame)
1185 		tx_cntl.cntl_bits.paen = NGE_SET;
1186 	else
1187 		tx_cntl.cntl_bits.paen = NGE_CLEAR;
1188 	tx_cntl.cntl_bits.retry_en = NGE_SET;
1189 	tx_cntl.cntl_bits.pad_en = NGE_SET;
1190 	tx_cntl.cntl_bits.fappend_en = NGE_SET;
1191 	tx_cntl.cntl_bits.two_def_en = NGE_SET;
1192 	tx_cntl.cntl_bits.max_retry = 15;
1193 	tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
1194 	tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
1195 	tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
1196 	tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
1197 	tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
1198 	tx_cntl.cntl_bits.exdef_mask = NGE_SET;
1199 	tx_cntl.cntl_bits.lcar_mask = NGE_SET;
1200 	tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
1201 	tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
1202 	tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
1203 	nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1204 
1205 
1206 	/*
1207 	 * Configure the parameters of Rx's state machine
1208 	 * Enabe the parameters:
1209 	 * 1). Pad Strip
1210 	 * 2). FCS Relay
1211 	 * 3). Pause
1212 	 * 4). Address filter
1213 	 * 5). Runt Packet receive
1214 	 * 6). Broadcast
1215 	 * 7). Receive Deferral
1216 	 *
1217 	 * Disable the following parameters for decreasing
1218 	 * the number of interrupts:
1219 	 * 1). Runt Inerrupt.
1220 	 * 2). Rx's Late Collision interrupt.
1221 	 * 3). Rx's Max length Error Interrupt.
1222 	 * 4). Rx's Length Field error Interrupt.
1223 	 * 5). Rx's FCS error interrupt.
1224 	 * 6). Rx's overflow error interrupt.
1225 	 * 7). Rx's Frame alignment error interrupt.
1226 	 */
1227 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1228 	rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
1229 	rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
1230 	if (dev_param_p->rx_pause_frame)
1231 		rx_cntl0.cntl_bits.paen = NGE_SET;
1232 	else
1233 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1234 	rx_cntl0.cntl_bits.lben = NGE_CLEAR;
1235 	rx_cntl0.cntl_bits.afen = NGE_SET;
1236 	rx_cntl0.cntl_bits.runten = NGE_CLEAR;
1237 	rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
1238 	rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
1239 	rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
1240 	rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
1241 	rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
1242 	rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
1243 	rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
1244 	rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
1245 	rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
1246 	rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
1247 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1248 
1249 	/*
1250 	 * Configure the watermark for the rx's statemachine
1251 	 */
1252 	rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
1253 	rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
1254 	rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
1255 	rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
1256 	nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
1257 
1258 	/*
1259 	 * Configure the deffer time slot for rx's state machine
1260 	 */
1261 	nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
1262 
1263 	/*
1264 	 * Configure the length of rx's packet
1265 	 */
1266 	rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
1267 	rx_cntl1.cntl_bits.length = ngep->max_sdu;
1268 	nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
1269 	/*
1270 	 * Enable Tx's state machine
1271 	 */
1272 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
1273 	tx_en.bits.tx_en = NGE_SET;
1274 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
1275 
1276 	/*
1277 	 * Enable Rx's state machine
1278 	 */
1279 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
1280 	rx_en.bits.rx_en = NGE_SET;
1281 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
1282 
1283 	itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
1284 	itc.itc_bits.sw_intv = ngep->sw_intr_intv;
1285 	nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
1286 
1287 	swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
1288 	swtr_cntl.cntl_bits.sten = NGE_SET;
1289 	swtr_cntl.cntl_bits.stren = NGE_SET;
1290 	nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
1291 
1292 	/*
1293 	 * Disable all mii read/write operation Interrupt
1294 	 */
1295 	mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
1296 	mintr_mask.mask_bits.mrei = NGE_CLEAR;
1297 	mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
1298 	mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
1299 	mintr_mask.mask_bits.mapi = NGE_SET;
1300 	mintr_mask.mask_bits.mpdi = NGE_SET;
1301 	nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
1302 
1303 	/*
1304 	 * Enable all interrupt event
1305 	 */
1306 	intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1307 	intr_mask.mask_bits.reint = NGE_SET;
1308 	intr_mask.mask_bits.rcint = NGE_SET;
1309 	intr_mask.mask_bits.miss = NGE_SET;
1310 	intr_mask.mask_bits.teint = NGE_SET;
1311 	intr_mask.mask_bits.tcint = NGE_CLEAR;
1312 	intr_mask.mask_bits.stint = NGE_CLEAR;
1313 	intr_mask.mask_bits.mint = NGE_CLEAR;
1314 	intr_mask.mask_bits.rfint = NGE_CLEAR;
1315 	intr_mask.mask_bits.tfint = NGE_SET;
1316 	intr_mask.mask_bits.feint = NGE_SET;
1317 	intr_mask.mask_bits.resv10 = NGE_CLEAR;
1318 	intr_mask.mask_bits.resv11 = NGE_CLEAR;
1319 	intr_mask.mask_bits.resv12 = NGE_CLEAR;
1320 	intr_mask.mask_bits.resv13 = NGE_CLEAR;
1321 	intr_mask.mask_bits.phyint = NGE_CLEAR;
1322 	ngep->intr_masks = intr_mask.mask_val;
1323 	nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1324 	ngep->nge_chip_state = NGE_CHIP_RUNNING;
1325 	return (DDI_SUCCESS);
1326 }
1327 
1328 /*
1329  * nge_chip_sync() -- program the chip with the unicast MAC address,
1330  * the multicast hash table, the required level of promiscuity.
1331  */
1332 void
1333 nge_chip_sync(nge_t *ngep)
1334 {
1335 	uint8_t i;
1336 	uint64_t macaddr;
1337 	uint64_t mul_addr;
1338 	uint64_t mul_mask;
1339 	nge_rx_cntrl0 rx_cntl;
1340 	nge_uni_addr1 uni_adr1;
1341 
1342 	NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
1343 
1344 	macaddr = 0x0ull;
1345 	mul_addr = 0x0ull;
1346 	mul_mask = 0x0ull;
1347 	rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1348 
1349 	if (ngep->promisc) {
1350 		rx_cntl.cntl_bits.afen = NGE_CLEAR;
1351 		rx_cntl.cntl_bits.brdis = NGE_SET;
1352 	} else {
1353 		rx_cntl.cntl_bits.afen = NGE_SET;
1354 		rx_cntl.cntl_bits.brdis = NGE_CLEAR;
1355 	}
1356 
1357 	/*
1358 	 * Transform the MAC address from host to chip format, the unicast
1359 	 * MAC address(es) ...
1360 	 */
1361 	for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
1362 		macaddr |= ngep->cur_uni_addr.addr[i-1];
1363 		macaddr <<= (i > 1) ? 8 : 0;
1364 	}
1365 
1366 	nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
1367 	macaddr = macaddr >>32;
1368 	uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1369 	uni_adr1.addr_bits.addr = (uint16_t)macaddr;
1370 	uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
1371 	nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
1372 
1373 	/*
1374 	 * Reprogram the  multicast address table ...
1375 	 */
1376 	for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
1377 		mul_addr |= ngep->cur_mul_addr.addr[i-1];
1378 		mul_addr <<= (i > 1) ? 8 : 0;
1379 		mul_mask |= ngep->cur_mul_mask.addr[i-1];
1380 		mul_mask <<= (i > 1) ? 8 : 0;
1381 	}
1382 	nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
1383 	mul_addr >>= 32;
1384 	nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
1385 	nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
1386 	mul_mask >>= 32;
1387 	nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
1388 	/*
1389 	 * Set or clear the PROMISCUOUS mode bit
1390 	 */
1391 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
1392 	/*
1393 	 * For internal PHY loopback, the link will
1394 	 * not be up, so it need to sync mac modes directly.
1395 	 */
1396 	if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
1397 		nge_sync_mac_modes(ngep);
1398 }
1399 
1400 static void
1401 nge_chip_err(nge_t *ngep)
1402 {
1403 	nge_reg010 reg010_ins;
1404 	nge_sw_statistics_t *psw_stat;
1405 	nge_intr_mask intr_mask;
1406 
1407 	NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
1408 
1409 	psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
1410 	reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
1411 	if (reg010_ins.reg010_bits.resv0)
1412 		psw_stat->fe_err.tso_err_mss ++;
1413 
1414 	if (reg010_ins.reg010_bits.resv1)
1415 		psw_stat->fe_err.tso_dis ++;
1416 
1417 	if (reg010_ins.reg010_bits.resv2)
1418 		psw_stat->fe_err.tso_err_nosum ++;
1419 
1420 	if (reg010_ins.reg010_bits.resv3)
1421 		psw_stat->fe_err.tso_err_hov ++;
1422 
1423 	if (reg010_ins.reg010_bits.resv4)
1424 		psw_stat->fe_err.tso_err_huf ++;
1425 
1426 	if (reg010_ins.reg010_bits.resv5)
1427 		psw_stat->fe_err.tso_err_l2 ++;
1428 
1429 	if (reg010_ins.reg010_bits.resv6)
1430 		psw_stat->fe_err.tso_err_ip ++;
1431 
1432 	if (reg010_ins.reg010_bits.resv7)
1433 		psw_stat->fe_err.tso_err_l4 ++;
1434 
1435 	if (reg010_ins.reg010_bits.resv8)
1436 		psw_stat->fe_err.tso_err_tcp ++;
1437 
1438 	if (reg010_ins.reg010_bits.resv9)
1439 		psw_stat->fe_err.hsum_err_ip ++;
1440 
1441 	if (reg010_ins.reg010_bits.resv10)
1442 		psw_stat->fe_err.hsum_err_l4 ++;
1443 
1444 	if (reg010_ins.reg010_val != 0) {
1445 
1446 		/*
1447 		 * Fatal error is triggered by malformed driver commands.
1448 		 * Disable unless debugging.
1449 		 */
1450 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1451 		intr_mask.mask_bits.feint = NGE_CLEAR;
1452 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1453 		ngep->intr_masks = intr_mask.mask_val;
1454 
1455 	}
1456 }
1457 
1458 static void
1459 nge_sync_mac_modes(nge_t *ngep)
1460 {
1461 	nge_tx_def tx_def;
1462 	nge_tx_fifo_wm tx_fifo;
1463 	nge_bkoff_cntl bk_cntl;
1464 	nge_mac2phy m2p;
1465 	nge_rx_cntrl0 rx_cntl0;
1466 	nge_tx_cntl tx_cntl;
1467 	nge_dev_spec_param_t	*dev_param_p;
1468 
1469 	dev_param_p = &ngep->dev_spec_param;
1470 
1471 	tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
1472 	m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
1473 	tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
1474 	bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
1475 	bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
1476 	switch (ngep->param_link_speed) {
1477 	case 10:
1478 		m2p.m2p_bits.speed = low_speed;
1479 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1480 		if (ngep->phy_mode == RGMII_IN) {
1481 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1482 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1483 		} else {
1484 			tx_def.def_bits.if_def = TX_TIFG_MII;
1485 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1486 		}
1487 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1488 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1489 		break;
1490 
1491 	case 100:
1492 		m2p.m2p_bits.speed = fast_speed;
1493 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1494 		if (ngep->phy_mode == RGMII_IN) {
1495 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1496 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1497 		} else {
1498 			tx_def.def_bits.if_def = TX_TIFG_MII;
1499 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1500 		}
1501 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1502 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1503 		break;
1504 
1505 	case 1000:
1506 		m2p.m2p_bits.speed = giga_speed;
1507 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1508 		if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
1509 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1510 			tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
1511 		} else {
1512 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1513 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1514 		}
1515 
1516 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
1517 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
1518 		break;
1519 	}
1520 
1521 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1522 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
1523 		m2p.m2p_bits.phyintr = NGE_CLEAR;
1524 		m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
1525 	}
1526 	if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
1527 		m2p.m2p_bits.hdup_en = NGE_SET;
1528 	}
1529 	else
1530 		m2p.m2p_bits.hdup_en = NGE_CLEAR;
1531 	nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
1532 	nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
1533 
1534 	tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
1535 	tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
1536 	tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
1537 	tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
1538 	nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
1539 
1540 	nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
1541 
1542 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1543 	if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame) {
1544 		if (rx_cntl0.cntl_bits.paen == NGE_CLEAR) {
1545 			rx_cntl0.cntl_bits.paen = NGE_SET;
1546 			nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1547 	}
1548 	} else {
1549 		if (rx_cntl0.cntl_bits.paen == NGE_SET) {
1550 			rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1551 			nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1552 		}
1553 	}
1554 
1555 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1556 	if (ngep->param_link_tx_pause && dev_param_p->tx_pause_frame) {
1557 		if (tx_cntl.cntl_bits.paen == NGE_CLEAR) {
1558 			tx_cntl.cntl_bits.paen = NGE_SET;
1559 			nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1560 		}
1561 	} else {
1562 		if (tx_cntl.cntl_bits.paen == NGE_SET) {
1563 			tx_cntl.cntl_bits.paen = NGE_CLEAR;
1564 			nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1565 		}
1566 	}
1567 }
1568 
1569 /*
1570  * Handler for hardware link state change.
1571  *
1572  * When this routine is called, the hardware link state has changed
1573  * and the new state is reflected in the param_* variables.  Here
1574  * we must update the softstate, reprogram the MAC to match, and
1575  * record the change in the log and/or on the console.
1576  */
1577 static void
1578 nge_factotum_link_handler(nge_t *ngep)
1579 {
1580 	/*
1581 	 * Update the s/w link_state
1582 	 */
1583 	if (ngep->param_link_up)
1584 		ngep->link_state = LINK_STATE_UP;
1585 	else
1586 		ngep->link_state = LINK_STATE_DOWN;
1587 
1588 	/*
1589 	 * Reprogram the MAC modes to match
1590 	 */
1591 	nge_sync_mac_modes(ngep);
1592 }
1593 
1594 static boolean_t
1595 nge_factotum_link_check(nge_t *ngep)
1596 {
1597 	boolean_t lchg;
1598 	boolean_t check;
1599 
1600 	ASSERT(mutex_owned(ngep->genlock));
1601 
1602 	(*ngep->physops->phys_check)(ngep);
1603 	switch (ngep->link_state) {
1604 	case LINK_STATE_UP:
1605 		lchg = (ngep->param_link_up == B_FALSE);
1606 		check = (ngep->param_link_up == B_FALSE);
1607 		break;
1608 
1609 	case LINK_STATE_DOWN:
1610 		lchg = (ngep->param_link_up == B_TRUE);
1611 		check = (ngep->param_link_up == B_TRUE);
1612 		break;
1613 
1614 	default:
1615 		check = B_TRUE;
1616 		break;
1617 	}
1618 
1619 	/*
1620 	 * If <check> is false, we're sure the link hasn't changed.
1621 	 * If true, however, it's not yet definitive; we have to call
1622 	 * nge_phys_check() to determine whether the link has settled
1623 	 * into a new state yet ... and if it has, then call the link
1624 	 * state change handler.But when the chip is 5700 in Dell 6650
1625 	 * ,even if check is false, the link may have changed.So we
1626 	 * have to call nge_phys_check() to determine the link state.
1627 	 */
1628 	if (check)
1629 		nge_factotum_link_handler(ngep);
1630 
1631 	return (lchg);
1632 }
1633 
1634 /*
1635  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1636  */
1637 static boolean_t nge_factotum_stall_check(nge_t *ngep);
1638 
1639 static boolean_t
1640 nge_factotum_stall_check(nge_t *ngep)
1641 {
1642 	uint32_t dogval;
1643 	send_ring_t *srp;
1644 	srp = ngep->send;
1645 	/*
1646 	 * Specific check for Tx stall ...
1647 	 *
1648 	 * The 'watchdog' counter is incremented whenever a packet
1649 	 * is queued, reset to 1 when some (but not all) buffers
1650 	 * are reclaimed, reset to 0 (disabled) when all buffers
1651 	 * are reclaimed, and shifted left here.  If it exceeds the
1652 	 * threshold value, the chip is assumed to have stalled and
1653 	 * is put into the ERROR state.  The factotum will then reset
1654 	 * it on the next pass.
1655 	 *
1656 	 * All of which should ensure that we don't get into a state
1657 	 * where packets are left pending indefinitely!
1658 	 */
1659 	if (ngep->watchdog == 0 &&
1660 	    srp->tx_free < srp->desc.nslots)
1661 		ngep->watchdog = 1;
1662 	dogval = nge_atomic_shl32(&ngep->watchdog, 1);
1663 	if (dogval >= nge_watchdog_check)
1664 		nge_tx_recycle(ngep, B_FALSE);
1665 	if (dogval < nge_watchdog_count)
1666 		return (B_FALSE);
1667 	else {
1668 		ngep->statistics.sw_statistics.tx_stall++;
1669 		return (B_TRUE);
1670 	}
1671 }
1672 
1673 
1674 /*
1675  * The factotum is woken up when there's something to do that we'd rather
1676  * not do from inside a hardware interrupt handler or high-level cyclic.
1677  * Its two main tasks are:
1678  *	reset & restart the chip after an error
1679  *	check the link status whenever necessary
1680  */
1681 /* ARGSUSED */
1682 uint_t
1683 nge_chip_factotum(caddr_t args1, caddr_t args2)
1684 {
1685 	uint_t result;
1686 	nge_t *ngep;
1687 	boolean_t err;
1688 	boolean_t linkchg;
1689 
1690 	ngep = (nge_t *)args1;
1691 
1692 	NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
1693 
1694 	mutex_enter(ngep->softlock);
1695 	if (ngep->factotum_flag == 0) {
1696 		mutex_exit(ngep->softlock);
1697 		return (DDI_INTR_UNCLAIMED);
1698 	}
1699 	ngep->factotum_flag = 0;
1700 	mutex_exit(ngep->softlock);
1701 	err = B_FALSE;
1702 	linkchg = B_FALSE;
1703 	result = DDI_INTR_CLAIMED;
1704 
1705 	mutex_enter(ngep->genlock);
1706 	switch (ngep->nge_chip_state) {
1707 	default:
1708 		break;
1709 
1710 	case NGE_CHIP_RUNNING:
1711 		linkchg = nge_factotum_link_check(ngep);
1712 		err = nge_factotum_stall_check(ngep);
1713 		break;
1714 
1715 	case NGE_CHIP_FAULT:
1716 		(void) nge_restart(ngep);
1717 		NGE_REPORT((ngep, "automatic recovery activated"));
1718 		break;
1719 	}
1720 
1721 	if (err)
1722 		(void) nge_chip_stop(ngep, B_TRUE);
1723 	mutex_exit(ngep->genlock);
1724 
1725 	/*
1726 	 * If the link state changed, tell the world about it (if
1727 	 * this version of MAC supports link state notification).
1728 	 * Note: can't do this while still holding the mutex.
1729 	 */
1730 	if (linkchg)
1731 		mac_link_update(ngep->mh, ngep->link_state);
1732 
1733 	return (result);
1734 
1735 }
1736 
1737 static void
1738 nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
1739 {
1740 	boolean_t brx;
1741 	boolean_t btx;
1742 	nge_mintr_src mintr_src;
1743 
1744 	brx = B_FALSE;
1745 	btx = B_FALSE;
1746 	ngep->statistics.sw_statistics.intr_count++;
1747 	ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
1748 	brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
1749 	    | pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
1750 	    != 0 ? B_TRUE : B_FALSE;
1751 	if (pintr_src->int_bits.reint)
1752 		ngep->statistics.sw_statistics.rx_err++;
1753 	if (pintr_src->int_bits.miss)
1754 		ngep->statistics.sw_statistics.rx_nobuffer++;
1755 
1756 	btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tfint)
1757 	    != 0 ? B_TRUE : B_FALSE;
1758 	if (btx)
1759 		nge_tx_recycle(ngep, B_TRUE);
1760 	if (brx)
1761 		nge_receive(ngep);
1762 	if (pintr_src->int_bits.teint)
1763 		ngep->statistics.sw_statistics.tx_stop_err++;
1764 	if (ngep->intr_moderation && brx) {
1765 		if (ngep->poll) {
1766 			if (ngep->recv_count < ngep->param_rx_intr_hwater) {
1767 				ngep->quiet_time++;
1768 				if (ngep->quiet_time ==
1769 				    ngep->param_poll_quiet_time) {
1770 					ngep->poll = B_FALSE;
1771 					ngep->quiet_time = 0;
1772 				}
1773 			} else
1774 				ngep->quiet_time = 0;
1775 		} else {
1776 			if (ngep->recv_count > ngep->param_rx_intr_lwater) {
1777 				ngep->busy_time++;
1778 				if (ngep->busy_time ==
1779 				    ngep->param_poll_busy_time) {
1780 					ngep->poll = B_TRUE;
1781 					ngep->busy_time = 0;
1782 				}
1783 			} else
1784 				ngep->busy_time = 0;
1785 		}
1786 	}
1787 	ngep->recv_count = 0;
1788 	if (pintr_src->int_bits.feint)
1789 		nge_chip_err(ngep);
1790 	/* link interrupt, check the link state */
1791 	if (pintr_src->int_bits.mint) {
1792 		mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
1793 		nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
1794 		nge_wake_factotum(ngep);
1795 	}
1796 }
1797 
1798 /*
1799  *	nge_chip_intr() -- handle chip interrupts
1800  */
1801 /* ARGSUSED */
1802 uint_t
1803 nge_chip_intr(caddr_t arg1, caddr_t arg2)
1804 {
1805 	nge_t *ngep = (nge_t *)arg1;
1806 	nge_intr_src intr_src;
1807 	nge_intr_mask intr_mask;
1808 
1809 	mutex_enter(ngep->genlock);
1810 
1811 	if (ngep->suspended) {
1812 		mutex_exit(ngep->genlock);
1813 		return (DDI_INTR_UNCLAIMED);
1814 	}
1815 
1816 	/*
1817 	 * Check whether chip's says it's asserting #INTA;
1818 	 * if not, don't process or claim the interrupt.
1819 	 */
1820 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
1821 	if (intr_src.intr_val == 0) {
1822 		mutex_exit(ngep->genlock);
1823 		return (DDI_INTR_UNCLAIMED);
1824 	}
1825 	/*
1826 	 * Ack the interrupt
1827 	 */
1828 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
1829 
1830 	if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
1831 		mutex_exit(ngep->genlock);
1832 		return (DDI_INTR_CLAIMED);
1833 	}
1834 	nge_intr_handle(ngep, &intr_src);
1835 	if (ngep->poll && !ngep->ch_intr_mode) {
1836 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1837 		intr_mask.mask_bits.stint = NGE_SET;
1838 		intr_mask.mask_bits.rcint = NGE_CLEAR;
1839 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1840 		ngep->ch_intr_mode = B_TRUE;
1841 	} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
1842 		nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
1843 		ngep->ch_intr_mode = B_FALSE;
1844 	}
1845 	mutex_exit(ngep->genlock);
1846 	return (DDI_INTR_CLAIMED);
1847 }
1848 
1849 static enum ioc_reply
1850 nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1851 {
1852 	int err;
1853 	uint64_t sizemask;
1854 	uint64_t mem_va;
1855 	uint64_t maxoff;
1856 	boolean_t peek;
1857 	nge_peekpoke_t *ppd;
1858 	int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
1859 
1860 	switch (cmd) {
1861 	default:
1862 		return (IOC_INVAL);
1863 
1864 	case NGE_PEEK:
1865 		peek = B_TRUE;
1866 		break;
1867 
1868 	case NGE_POKE:
1869 		peek = B_FALSE;
1870 		break;
1871 	}
1872 
1873 	/*
1874 	 * Validate format of ioctl
1875 	 */
1876 	if (iocp->ioc_count != sizeof (nge_peekpoke_t))
1877 		return (IOC_INVAL);
1878 	if (mp->b_cont == NULL)
1879 		return (IOC_INVAL);
1880 	ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
1881 
1882 	/*
1883 	 * Validate request parameters
1884 	 */
1885 	switch (ppd->pp_acc_space) {
1886 	default:
1887 		return (IOC_INVAL);
1888 
1889 	case NGE_PP_SPACE_CFG:
1890 		/*
1891 		 * Config space
1892 		 */
1893 		sizemask = 8|4|2|1;
1894 		mem_va = 0;
1895 		maxoff = PCI_CONF_HDR_SIZE;
1896 		ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
1897 		break;
1898 
1899 	case NGE_PP_SPACE_REG:
1900 		/*
1901 		 * Memory-mapped I/O space
1902 		 */
1903 		sizemask = 8|4|2|1;
1904 		mem_va = 0;
1905 		maxoff = NGE_REG_SIZE;
1906 		ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
1907 		break;
1908 
1909 	case NGE_PP_SPACE_MII:
1910 		sizemask = 4|2|1;
1911 		mem_va = 0;
1912 		maxoff = NGE_MII_SIZE;
1913 		ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
1914 		break;
1915 
1916 	case NGE_PP_SPACE_SEEPROM:
1917 		sizemask = 4|2|1;
1918 		mem_va = 0;
1919 		maxoff = NGE_SEEROM_SIZE;
1920 		ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
1921 		break;
1922 	}
1923 
1924 	switch (ppd->pp_acc_size) {
1925 	default:
1926 		return (IOC_INVAL);
1927 
1928 	case 8:
1929 	case 4:
1930 	case 2:
1931 	case 1:
1932 		if ((ppd->pp_acc_size & sizemask) == 0)
1933 			return (IOC_INVAL);
1934 		break;
1935 	}
1936 
1937 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1938 		return (IOC_INVAL);
1939 
1940 	if (ppd->pp_acc_offset >= maxoff)
1941 		return (IOC_INVAL);
1942 
1943 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1944 		return (IOC_INVAL);
1945 
1946 	/*
1947 	 * All OK - go do it!
1948 	 */
1949 	ppd->pp_acc_offset += mem_va;
1950 	if (ppfn)
1951 		err = (*ppfn)(ngep, ppd);
1952 	if (err != DDI_SUCCESS)
1953 		return (IOC_INVAL);
1954 	return (peek ? IOC_REPLY : IOC_ACK);
1955 }
1956 
1957 static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
1958 					struct iocblk *iocp);
1959 #pragma	no_inline(nge_diag_ioctl)
1960 
1961 static enum ioc_reply
1962 nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1963 {
1964 	ASSERT(mutex_owned(ngep->genlock));
1965 
1966 	switch (cmd) {
1967 	default:
1968 		nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
1969 		return (IOC_INVAL);
1970 
1971 	case NGE_DIAG:
1972 		return (IOC_ACK);
1973 
1974 	case NGE_PEEK:
1975 	case NGE_POKE:
1976 		return (nge_pp_ioctl(ngep, cmd, mp, iocp));
1977 
1978 	case NGE_PHY_RESET:
1979 		return (IOC_RESTART_ACK);
1980 
1981 	case NGE_SOFT_RESET:
1982 	case NGE_HARD_RESET:
1983 		return (IOC_ACK);
1984 	}
1985 
1986 	/* NOTREACHED */
1987 }
1988 
1989 enum ioc_reply
1990 nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
1991 {
1992 	int cmd;
1993 
1994 	ASSERT(mutex_owned(ngep->genlock));
1995 
1996 	cmd = iocp->ioc_cmd;
1997 
1998 	switch (cmd) {
1999 	default:
2000 		return (IOC_INVAL);
2001 
2002 	case NGE_DIAG:
2003 	case NGE_PEEK:
2004 	case NGE_POKE:
2005 	case NGE_PHY_RESET:
2006 	case NGE_SOFT_RESET:
2007 	case NGE_HARD_RESET:
2008 #if	NGE_DEBUGGING
2009 		return (nge_diag_ioctl(ngep, cmd, mp, iocp));
2010 #else
2011 		return (IOC_INVAL);
2012 #endif
2013 
2014 	case NGE_MII_READ:
2015 	case NGE_MII_WRITE:
2016 		return (IOC_INVAL);
2017 
2018 #if	NGE_SEE_IO32
2019 	case NGE_SEE_READ:
2020 	case NGE_SEE_WRITE:
2021 		return (IOC_INVAL);
2022 #endif
2023 
2024 #if	NGE_FLASH_IO32
2025 	case NGE_FLASH_READ:
2026 	case NGE_FLASH_WRITE:
2027 		return (IOC_INVAL);
2028 #endif
2029 	}
2030 }
2031