xref: /illumos-gate/usr/src/uts/common/io/mac/mac.c (revision d77e6e0f12d19668c0e9068c0fcd7a2123da5373)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2020 Joyent, Inc.
25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26  * Copyright 2020 RackTop Systems, Inc.
27  */
28 
29 /*
30  * MAC Services Module
31  *
32  * The GLDv3 framework locking -  The MAC layer
33  * --------------------------------------------
34  *
35  * The MAC layer is central to the GLD framework and can provide the locking
36  * framework needed for itself and for the use of MAC clients. MAC end points
37  * are fairly disjoint and don't share a lot of state. So a coarse grained
38  * multi-threading scheme is to single thread all create/modify/delete or set
39  * type of control operations on a per mac end point while allowing data threads
40  * concurrently.
41  *
42  * Control operations (set) that modify a mac end point are always serialized on
43  * a per mac end point basis, We have at most 1 such thread per mac end point
44  * at a time.
45  *
46  * All other operations that are not serialized are essentially multi-threaded.
47  * For example a control operation (get) like getting statistics which may not
48  * care about reading values atomically or data threads sending or receiving
49  * data. Mostly these type of operations don't modify the control state. Any
50  * state these operations care about are protected using traditional locks.
51  *
52  * The perimeter only serializes serial operations. It does not imply there
53  * aren't any other concurrent operations. However a serialized operation may
54  * sometimes need to make sure it is the only thread. In this case it needs
55  * to use reference counting mechanisms to cv_wait until any current data
56  * threads are done.
57  *
58  * The mac layer itself does not hold any locks across a call to another layer.
59  * The perimeter is however held across a down call to the driver to make the
60  * whole control operation atomic with respect to other control operations.
61  * Also the data path and get type control operations may proceed concurrently.
62  * These operations synchronize with the single serial operation on a given mac
63  * end point using regular locks. The perimeter ensures that conflicting
64  * operations like say a mac_multicast_add and a mac_multicast_remove on the
65  * same mac end point don't interfere with each other and also ensures that the
66  * changes in the mac layer and the call to the underlying driver to say add a
67  * multicast address are done atomically without interference from a thread
68  * trying to delete the same address.
69  *
70  * For example, consider
71  * mac_multicst_add()
72  * {
73  *	mac_perimeter_enter();	serialize all control operations
74  *
75  *	grab list lock		protect against access by data threads
76  *	add to list
77  *	drop list lock
78  *
79  *	call driver's mi_multicst
80  *
81  *	mac_perimeter_exit();
82  * }
83  *
84  * To lessen the number of serialization locks and simplify the lock hierarchy,
85  * we serialize all the control operations on a per mac end point by using a
86  * single serialization lock called the perimeter. We allow recursive entry into
87  * the perimeter to facilitate use of this mechanism by both the mac client and
88  * the MAC layer itself.
89  *
90  * MAC client means an entity that does an operation on a mac handle
91  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
92  * an entity that does an operation on a mac handle obtained from a
93  * mac_register. An entity could be both client and driver but on different
94  * handles eg. aggr. and should only make the corresponding mac interface calls
95  * i.e. mac driver interface or mac client interface as appropriate for that
96  * mac handle.
97  *
98  * General rules.
99  * -------------
100  *
101  * R1. The lock order of upcall threads is natually opposite to downcall
102  * threads. Hence upcalls must not hold any locks across layers for fear of
103  * recursive lock enter and lock order violation. This applies to all layers.
104  *
105  * R2. The perimeter is just another lock. Since it is held in the down
106  * direction, acquiring the perimeter in an upcall is prohibited as it would
107  * cause a deadlock. This applies to all layers.
108  *
109  * Note that upcalls that need to grab the mac perimeter (for example
110  * mac_notify upcalls) can still achieve that by posting the request to a
111  * thread, which can then grab all the required perimeters and locks in the
112  * right global order. Note that in the above example the mac layer iself
113  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
114  * to the client must do that. Please see the aggr code for an example.
115  *
116  * MAC client rules
117  * ----------------
118  *
119  * R3. A MAC client may use the MAC provided perimeter facility to serialize
120  * control operations on a per mac end point. It does this by by acquring
121  * and holding the perimeter across a sequence of calls to the mac layer.
122  * This ensures atomicity across the entire block of mac calls. In this
123  * model the MAC client must not hold any client locks across the calls to
124  * the mac layer. This model is the preferred solution.
125  *
126  * R4. However if a MAC client has a lot of global state across all mac end
127  * points the per mac end point serialization may not be sufficient. In this
128  * case the client may choose to use global locks or use its own serialization.
129  * To avoid deadlocks, these client layer locks held across the mac calls
130  * in the control path must never be acquired by the data path for the reason
131  * mentioned below.
132  *
133  * (Assume that a control operation that holds a client lock blocks in the
134  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
135  * data thread that holds this reference count, tries to acquire the same
136  * client lock subsequently it will deadlock).
137  *
138  * A MAC client may follow either the R3 model or the R4 model, but can't
139  * mix both. In the former, the hierarchy is Perim -> client locks, but in
140  * the latter it is client locks -> Perim.
141  *
142  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
143  * context since they may block while trying to acquire the perimeter.
144  * In addition some calls may block waiting for upcall refcnts to come down to
145  * zero.
146  *
147  * R6. MAC clients must make sure that they are single threaded and all threads
148  * from the top (in particular data threads) have finished before calling
149  * mac_client_close. The MAC framework does not track the number of client
150  * threads using the mac client handle. Also mac clients must make sure
151  * they have undone all the control operations before calling mac_client_close.
152  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
153  * mac_unicast_add/mac_multicast_add.
154  *
155  * MAC framework rules
156  * -------------------
157  *
158  * R7. The mac layer itself must not hold any mac layer locks (except the mac
159  * perimeter) across a call to any other layer from the mac layer. The call to
160  * any other layer could be via mi_* entry points, classifier entry points into
161  * the driver or via upcall pointers into layers above. The mac perimeter may
162  * be acquired or held only in the down direction, for e.g. when calling into
163  * a mi_* driver enty point to provide atomicity of the operation.
164  *
165  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
166  * mac driver interfaces, the MAC layer must provide a cut out for control
167  * interfaces like upcall notifications and start them in a separate thread.
168  *
169  * R9. Note that locking order also implies a plumbing order. For example
170  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
171  * to plumb in any other order must be failed at mac_open time, otherwise it
172  * could lead to deadlocks due to inverse locking order.
173  *
174  * R10. MAC driver interfaces must not block since the driver could call them
175  * in interrupt context.
176  *
177  * R11. Walkers must preferably not hold any locks while calling walker
178  * callbacks. Instead these can operate on reference counts. In simple
179  * callbacks it may be ok to hold a lock and call the callbacks, but this is
180  * harder to maintain in the general case of arbitrary callbacks.
181  *
182  * R12. The MAC layer must protect upcall notification callbacks using reference
183  * counts rather than holding locks across the callbacks.
184  *
185  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
186  * sure that any pointers (such as mac ring pointers) it passes to the driver
187  * remain valid until mac unregister time. Currently the mac layer achieves
188  * this by using generation numbers for rings and freeing the mac rings only
189  * at unregister time.  The MAC layer must provide a layer of indirection and
190  * must not expose underlying driver rings or driver data structures/pointers
191  * directly to MAC clients.
192  *
193  * MAC driver rules
194  * ----------------
195  *
196  * R14. It would be preferable if MAC drivers don't hold any locks across any
197  * mac call. However at a minimum they must not hold any locks across data
198  * upcalls. They must also make sure that all references to mac data structures
199  * are cleaned up and that it is single threaded at mac_unregister time.
200  *
201  * R15. MAC driver interfaces don't block and so the action may be done
202  * asynchronously in a separate thread as for example handling notifications.
203  * The driver must not assume that the action is complete when the call
204  * returns.
205  *
206  * R16. Drivers must maintain a generation number per Rx ring, and pass it
207  * back to mac_rx_ring(); They are expected to increment the generation
208  * number whenever the ring's stop routine is invoked.
209  * See comments in mac_rx_ring();
210  *
211  * R17 Similarly mi_stop is another synchronization point and the driver must
212  * ensure that all upcalls are done and there won't be any future upcall
213  * before returning from mi_stop.
214  *
215  * R18. The driver may assume that all set/modify control operations via
216  * the mi_* entry points are single threaded on a per mac end point.
217  *
218  * Lock and Perimeter hierarchy scenarios
219  * ---------------------------------------
220  *
221  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
222  *
223  * ft_lock -> fe_lock [mac_flow_lookup]
224  *
225  * mi_rw_lock -> fe_lock [mac_bcast_send]
226  *
227  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
228  *
229  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
230  *
231  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
232  *
233  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
234  * client to driver. In the case of clients that explictly use the mac provided
235  * perimeter mechanism for its serialization, the hierarchy is
236  * Perimeter -> mac layer locks, since the client never holds any locks across
237  * the mac calls. In the case of clients that use its own locks the hierarchy
238  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
239  * calls mac_perim_enter/exit in this case.
240  *
241  * Subflow creation rules
242  * ---------------------------
243  * o In case of a user specified cpulist present on underlying link and flows,
244  * the flows cpulist must be a subset of the underlying link.
245  * o In case of a user specified fanout mode present on link and flow, the
246  * subflow fanout count has to be less than or equal to that of the
247  * underlying link. The cpu-bindings for the subflows will be a subset of
248  * the underlying link.
249  * o In case if no cpulist specified on both underlying link and flow, the
250  * underlying link relies on a  MAC tunable to provide out of box fanout.
251  * The subflow will have no cpulist (the subflow will be unbound)
252  * o In case if no cpulist is specified on the underlying link, a subflow can
253  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
254  * for the subflow will not adhere to restriction that they need to be subset
255  * of the underlying link.
256  * o In case where the underlying link is carrying either a user specified
257  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
258  * created unbound.
259  * o While creating unbound subflows, bandwidth mode changes attempt to
260  * figure a right fanout count. In such cases the fanout count will override
261  * the unbound cpu-binding behavior.
262  * o In addition to this, while cycling between flow and link properties, we
263  * impose a restriction that if a link property has a subflow with
264  * user-specified attributes, we will not allow changing the link property.
265  * The administrator needs to reset all the user specified properties for the
266  * subflows before attempting a link property change.
267  * Some of the above rules can be overridden by specifying additional command
268  * line options while creating or modifying link or subflow properties.
269  *
270  * Datapath
271  * --------
272  *
273  * For information on the datapath, the world of soft rings, hardware rings, how
274  * it is structured, and the path of an mblk_t between a driver and a mac
275  * client, see mac_sched.c.
276  */
277 
278 #include <sys/types.h>
279 #include <sys/conf.h>
280 #include <sys/id_space.h>
281 #include <sys/esunddi.h>
282 #include <sys/stat.h>
283 #include <sys/mkdev.h>
284 #include <sys/stream.h>
285 #include <sys/strsun.h>
286 #include <sys/strsubr.h>
287 #include <sys/dlpi.h>
288 #include <sys/list.h>
289 #include <sys/modhash.h>
290 #include <sys/mac_provider.h>
291 #include <sys/mac_client_impl.h>
292 #include <sys/mac_soft_ring.h>
293 #include <sys/mac_stat.h>
294 #include <sys/mac_impl.h>
295 #include <sys/mac.h>
296 #include <sys/dls.h>
297 #include <sys/dld.h>
298 #include <sys/modctl.h>
299 #include <sys/fs/dv_node.h>
300 #include <sys/thread.h>
301 #include <sys/proc.h>
302 #include <sys/callb.h>
303 #include <sys/cpuvar.h>
304 #include <sys/atomic.h>
305 #include <sys/bitmap.h>
306 #include <sys/sdt.h>
307 #include <sys/mac_flow.h>
308 #include <sys/ddi_intr_impl.h>
309 #include <sys/disp.h>
310 #include <sys/sdt.h>
311 #include <sys/vnic.h>
312 #include <sys/vnic_impl.h>
313 #include <sys/vlan.h>
314 #include <inet/ip.h>
315 #include <inet/ip6.h>
316 #include <sys/exacct.h>
317 #include <sys/exacct_impl.h>
318 #include <inet/nd.h>
319 #include <sys/ethernet.h>
320 #include <sys/pool.h>
321 #include <sys/pool_pset.h>
322 #include <sys/cpupart.h>
323 #include <inet/wifi_ioctl.h>
324 #include <net/wpa.h>
325 
326 #define	IMPL_HASHSZ	67	/* prime */
327 
328 kmem_cache_t		*i_mac_impl_cachep;
329 mod_hash_t		*i_mac_impl_hash;
330 krwlock_t		i_mac_impl_lock;
331 uint_t			i_mac_impl_count;
332 static kmem_cache_t	*mac_ring_cache;
333 static id_space_t	*minor_ids;
334 static uint32_t		minor_count;
335 static pool_event_cb_t	mac_pool_event_reg;
336 
337 /*
338  * Logging stuff. Perhaps mac_logging_interval could be broken into
339  * mac_flow_log_interval and mac_link_log_interval if we want to be
340  * able to schedule them differently.
341  */
342 uint_t			mac_logging_interval;
343 boolean_t		mac_flow_log_enable;
344 boolean_t		mac_link_log_enable;
345 timeout_id_t		mac_logging_timer;
346 
347 #define	MACTYPE_KMODDIR	"mac"
348 #define	MACTYPE_HASHSZ	67
349 static mod_hash_t	*i_mactype_hash;
350 /*
351  * i_mactype_lock synchronizes threads that obtain references to mactype_t
352  * structures through i_mactype_getplugin().
353  */
354 static kmutex_t		i_mactype_lock;
355 
356 /*
357  * mac_tx_percpu_cnt
358  *
359  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
360  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
361  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
362  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
363  */
364 int mac_tx_percpu_cnt;
365 int mac_tx_percpu_cnt_max = 128;
366 
367 /*
368  * Call back functions for the bridge module.  These are guaranteed to be valid
369  * when holding a reference on a link or when holding mip->mi_bridge_lock and
370  * mi_bridge_link is non-NULL.
371  */
372 mac_bridge_tx_t mac_bridge_tx_cb;
373 mac_bridge_rx_t mac_bridge_rx_cb;
374 mac_bridge_ref_t mac_bridge_ref_cb;
375 mac_bridge_ls_t mac_bridge_ls_cb;
376 
377 static int i_mac_constructor(void *, void *, int);
378 static void i_mac_destructor(void *, void *);
379 static int i_mac_ring_ctor(void *, void *, int);
380 static void i_mac_ring_dtor(void *, void *);
381 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
382 void mac_tx_client_flush(mac_client_impl_t *);
383 void mac_tx_client_block(mac_client_impl_t *);
384 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
385 static int mac_start_group_and_rings(mac_group_t *);
386 static void mac_stop_group_and_rings(mac_group_t *);
387 static void mac_pool_event_cb(pool_event_t, int, void *);
388 
389 typedef struct netinfo_s {
390 	list_node_t	ni_link;
391 	void		*ni_record;
392 	int		ni_size;
393 	int		ni_type;
394 } netinfo_t;
395 
396 /*
397  * Module initialization functions.
398  */
399 
400 void
401 mac_init(void)
402 {
403 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
404 	    boot_max_ncpus);
405 
406 	/* Upper bound is mac_tx_percpu_cnt_max */
407 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
408 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
409 
410 	if (mac_tx_percpu_cnt < 1) {
411 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
412 		mac_tx_percpu_cnt = 1;
413 	}
414 
415 	ASSERT(mac_tx_percpu_cnt >= 1);
416 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
417 	/*
418 	 * Make it of the form 2**N - 1 in the range
419 	 * [0 .. mac_tx_percpu_cnt_max - 1]
420 	 */
421 	mac_tx_percpu_cnt--;
422 
423 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
424 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
425 	    NULL, NULL, NULL, 0);
426 	ASSERT(i_mac_impl_cachep != NULL);
427 
428 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
429 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
430 	    NULL, NULL, 0);
431 	ASSERT(mac_ring_cache != NULL);
432 
433 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
434 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
435 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
436 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
437 
438 	mac_flow_init();
439 	mac_soft_ring_init();
440 	mac_bcast_init();
441 	mac_client_init();
442 
443 	i_mac_impl_count = 0;
444 
445 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
446 	    MACTYPE_HASHSZ,
447 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
448 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
449 
450 	/*
451 	 * Allocate an id space to manage minor numbers. The range of the
452 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
453 	 * leaves half of the 32-bit minors available for driver private use.
454 	 */
455 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
456 	    MAC_PRIVATE_MINOR-1);
457 	ASSERT(minor_ids != NULL);
458 	minor_count = 0;
459 
460 	/* Let's default to 20 seconds */
461 	mac_logging_interval = 20;
462 	mac_flow_log_enable = B_FALSE;
463 	mac_link_log_enable = B_FALSE;
464 	mac_logging_timer = NULL;
465 
466 	/* Register to be notified of noteworthy pools events */
467 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
468 	mac_pool_event_reg.pec_arg = NULL;
469 	pool_event_cb_register(&mac_pool_event_reg);
470 }
471 
472 int
473 mac_fini(void)
474 {
475 
476 	if (i_mac_impl_count > 0 || minor_count > 0)
477 		return (EBUSY);
478 
479 	pool_event_cb_unregister(&mac_pool_event_reg);
480 
481 	id_space_destroy(minor_ids);
482 	mac_flow_fini();
483 
484 	mod_hash_destroy_hash(i_mac_impl_hash);
485 	rw_destroy(&i_mac_impl_lock);
486 
487 	mac_client_fini();
488 	kmem_cache_destroy(mac_ring_cache);
489 
490 	mod_hash_destroy_hash(i_mactype_hash);
491 	mac_soft_ring_finish();
492 
493 
494 	return (0);
495 }
496 
497 /*
498  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
499  * (e.g. softmac) may pass in a NULL ops argument.
500  */
501 void
502 mac_init_ops(struct dev_ops *ops, const char *name)
503 {
504 	major_t major = ddi_name_to_major((char *)name);
505 
506 	/*
507 	 * By returning on error below, we are not letting the driver continue
508 	 * in an undefined context.  The mac_register() function will faill if
509 	 * DN_GLDV3_DRIVER isn't set.
510 	 */
511 	if (major == DDI_MAJOR_T_NONE)
512 		return;
513 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
514 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
515 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
516 	if (ops != NULL)
517 		dld_init_ops(ops, name);
518 }
519 
520 void
521 mac_fini_ops(struct dev_ops *ops)
522 {
523 	dld_fini_ops(ops);
524 }
525 
526 /*ARGSUSED*/
527 static int
528 i_mac_constructor(void *buf, void *arg, int kmflag)
529 {
530 	mac_impl_t	*mip = buf;
531 
532 	bzero(buf, sizeof (mac_impl_t));
533 
534 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
535 
536 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
537 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
538 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
539 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
540 
541 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
542 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
543 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
544 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
545 
546 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
547 
548 	return (0);
549 }
550 
551 /*ARGSUSED*/
552 static void
553 i_mac_destructor(void *buf, void *arg)
554 {
555 	mac_impl_t	*mip = buf;
556 	mac_cb_info_t	*mcbi;
557 
558 	ASSERT(mip->mi_ref == 0);
559 	ASSERT(mip->mi_active == 0);
560 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
561 	ASSERT(mip->mi_devpromisc == 0);
562 	ASSERT(mip->mi_ksp == NULL);
563 	ASSERT(mip->mi_kstat_count == 0);
564 	ASSERT(mip->mi_nclients == 0);
565 	ASSERT(mip->mi_nactiveclients == 0);
566 	ASSERT(mip->mi_single_active_client == NULL);
567 	ASSERT(mip->mi_state_flags == 0);
568 	ASSERT(mip->mi_factory_addr == NULL);
569 	ASSERT(mip->mi_factory_addr_num == 0);
570 	ASSERT(mip->mi_default_tx_ring == NULL);
571 
572 	mcbi = &mip->mi_notify_cb_info;
573 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
574 	ASSERT(mip->mi_notify_bits == 0);
575 	ASSERT(mip->mi_notify_thread == NULL);
576 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
577 	mcbi->mcbi_lockp = NULL;
578 
579 	mcbi = &mip->mi_promisc_cb_info;
580 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
581 	ASSERT(mip->mi_promisc_list == NULL);
582 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
583 	mcbi->mcbi_lockp = NULL;
584 
585 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
586 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
587 
588 	rw_destroy(&mip->mi_rw_lock);
589 
590 	mutex_destroy(&mip->mi_promisc_lock);
591 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
592 	mutex_destroy(&mip->mi_notify_lock);
593 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
594 	mutex_destroy(&mip->mi_ring_lock);
595 
596 	ASSERT(mip->mi_bridge_link == NULL);
597 }
598 
599 /* ARGSUSED */
600 static int
601 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
602 {
603 	mac_ring_t *ring = (mac_ring_t *)buf;
604 
605 	bzero(ring, sizeof (mac_ring_t));
606 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
607 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
608 	ring->mr_state = MR_FREE;
609 	return (0);
610 }
611 
612 /* ARGSUSED */
613 static void
614 i_mac_ring_dtor(void *buf, void *arg)
615 {
616 	mac_ring_t *ring = (mac_ring_t *)buf;
617 
618 	cv_destroy(&ring->mr_cv);
619 	mutex_destroy(&ring->mr_lock);
620 }
621 
622 /*
623  * Common functions to do mac callback addition and deletion. Currently this is
624  * used by promisc callbacks and notify callbacks. List addition and deletion
625  * need to take care of list walkers. List walkers in general, can't hold list
626  * locks and make upcall callbacks due to potential lock order and recursive
627  * reentry issues. Instead list walkers increment the list walker count to mark
628  * the presence of a walker thread. Addition can be carefully done to ensure
629  * that the list walker always sees either the old list or the new list.
630  * However the deletion can't be done while the walker is active, instead the
631  * deleting thread simply marks the entry as logically deleted. The last walker
632  * physically deletes and frees up the logically deleted entries when the walk
633  * is complete.
634  */
635 void
636 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
637     mac_cb_t *mcb_elem)
638 {
639 	mac_cb_t	*p;
640 	mac_cb_t	**pp;
641 
642 	/* Verify it is not already in the list */
643 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
644 		if (p == mcb_elem)
645 			break;
646 	}
647 	VERIFY(p == NULL);
648 
649 	/*
650 	 * Add it to the head of the callback list. The membar ensures that
651 	 * the following list pointer manipulations reach global visibility
652 	 * in exactly the program order below.
653 	 */
654 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
655 
656 	mcb_elem->mcb_nextp = *mcb_head;
657 	membar_producer();
658 	*mcb_head = mcb_elem;
659 }
660 
661 /*
662  * Mark the entry as logically deleted. If there aren't any walkers unlink
663  * from the list. In either case return the corresponding status.
664  */
665 boolean_t
666 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
667     mac_cb_t *mcb_elem)
668 {
669 	mac_cb_t	*p;
670 	mac_cb_t	**pp;
671 
672 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
673 	/*
674 	 * Search the callback list for the entry to be removed
675 	 */
676 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
677 		if (p == mcb_elem)
678 			break;
679 	}
680 	VERIFY(p != NULL);
681 
682 	/*
683 	 * If there are walkers just mark it as deleted and the last walker
684 	 * will remove from the list and free it.
685 	 */
686 	if (mcbi->mcbi_walker_cnt != 0) {
687 		p->mcb_flags |= MCB_CONDEMNED;
688 		mcbi->mcbi_del_cnt++;
689 		return (B_FALSE);
690 	}
691 
692 	ASSERT(mcbi->mcbi_del_cnt == 0);
693 	*pp = p->mcb_nextp;
694 	p->mcb_nextp = NULL;
695 	return (B_TRUE);
696 }
697 
698 /*
699  * Wait for all pending callback removals to be completed
700  */
701 void
702 mac_callback_remove_wait(mac_cb_info_t *mcbi)
703 {
704 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
705 	while (mcbi->mcbi_del_cnt != 0) {
706 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
707 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
708 	}
709 }
710 
711 void
712 mac_callback_barrier(mac_cb_info_t *mcbi)
713 {
714 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
715 	ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX);
716 
717 	if (mcbi->mcbi_walker_cnt == 0) {
718 		return;
719 	}
720 
721 	mcbi->mcbi_barrier_cnt++;
722 	do {
723 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
724 	} while (mcbi->mcbi_walker_cnt > 0);
725 	mcbi->mcbi_barrier_cnt--;
726 	cv_broadcast(&mcbi->mcbi_cv);
727 }
728 
729 void
730 mac_callback_walker_enter(mac_cb_info_t *mcbi)
731 {
732 	mutex_enter(mcbi->mcbi_lockp);
733 	/*
734 	 * Incoming walkers should give precedence to timely clean-up of
735 	 * deleted callback entries and requested barriers.
736 	 */
737 	while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) {
738 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
739 	}
740 	mcbi->mcbi_walker_cnt++;
741 	mutex_exit(mcbi->mcbi_lockp);
742 }
743 
744 /*
745  * The last mac callback walker does the cleanup. Walk the list and unlik
746  * all the logically deleted entries and construct a temporary list of
747  * removed entries. Return the list of removed entries to the caller.
748  */
749 static mac_cb_t *
750 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
751 {
752 	mac_cb_t	*p;
753 	mac_cb_t	**pp;
754 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
755 	int	cnt = 0;
756 
757 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
758 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
759 
760 	pp = mcb_head;
761 	while (*pp != NULL) {
762 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
763 			p = *pp;
764 			*pp = p->mcb_nextp;
765 			p->mcb_nextp = rmlist;
766 			rmlist = p;
767 			cnt++;
768 			continue;
769 		}
770 		pp = &(*pp)->mcb_nextp;
771 	}
772 
773 	ASSERT(mcbi->mcbi_del_cnt == cnt);
774 	mcbi->mcbi_del_cnt = 0;
775 	return (rmlist);
776 }
777 
778 void
779 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp,
780     boolean_t is_promisc)
781 {
782 	boolean_t do_wake = B_FALSE;
783 
784 	mutex_enter(mcbi->mcbi_lockp);
785 
786 	/* If walkers remain, nothing more can be done for now */
787 	if (--mcbi->mcbi_walker_cnt != 0) {
788 		mutex_exit(mcbi->mcbi_lockp);
789 		return;
790 	}
791 
792 	if (mcbi->mcbi_del_cnt != 0) {
793 		mac_cb_t *rmlist;
794 
795 		rmlist = mac_callback_walker_cleanup(mcbi, headp);
796 
797 		if (!is_promisc) {
798 			/* The "normal" non-promisc callback clean-up */
799 			mac_callback_free(rmlist);
800 		} else {
801 			mac_cb_t *mcb, *mcb_next;
802 
803 			/*
804 			 * The promisc callbacks are in 2 lists, one off the
805 			 * 'mip' and another off the 'mcip' threaded by
806 			 * mpi_mi_link and mpi_mci_link respectively.  There
807 			 * is, however, only a single shared total walker
808 			 * count, and an entry cannot be physically unlinked if
809 			 * a walker is active on either list. The last walker
810 			 * does this cleanup of logically deleted entries.
811 			 *
812 			 * With a list of callbacks deleted from above from
813 			 * mi_promisc_list (headp), remove the corresponding
814 			 * entry from mci_promisc_list (headp_pair) and free
815 			 * the structure.
816 			 */
817 			for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
818 				mac_promisc_impl_t *mpip;
819 				mac_client_impl_t *mcip;
820 
821 				mcb_next = mcb->mcb_nextp;
822 				mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
823 				mcip = mpip->mpi_mcip;
824 
825 				ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info,
826 				    ==, mcbi);
827 				ASSERT3P(&mcip->mci_mip->mi_promisc_list,
828 				    ==, headp);
829 
830 				VERIFY(mac_callback_remove(mcbi,
831 				    &mcip->mci_promisc_list,
832 				    &mpip->mpi_mci_link));
833 				mcb->mcb_flags = 0;
834 				mcb->mcb_nextp = NULL;
835 				kmem_cache_free(mac_promisc_impl_cache, mpip);
836 			}
837 		}
838 
839 		/*
840 		 * Wake any walker threads that could be waiting in
841 		 * mac_callback_walker_enter() until deleted items have been
842 		 * cleaned from the list.
843 		 */
844 		do_wake = B_TRUE;
845 	}
846 
847 	if (mcbi->mcbi_barrier_cnt != 0) {
848 		/*
849 		 * One or more threads are waiting for all walkers to exit the
850 		 * callback list.  Notify them, now that the list is clear.
851 		 */
852 		do_wake = B_TRUE;
853 	}
854 
855 	if (do_wake) {
856 		cv_broadcast(&mcbi->mcbi_cv);
857 	}
858 	mutex_exit(mcbi->mcbi_lockp);
859 }
860 
861 static boolean_t
862 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
863 {
864 	mac_cb_t	*mcb;
865 
866 	/* Verify it is not already in the list */
867 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
868 		if (mcb == mcb_elem)
869 			return (B_TRUE);
870 	}
871 
872 	return (B_FALSE);
873 }
874 
875 static boolean_t
876 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
877 {
878 	boolean_t	found;
879 
880 	mutex_enter(mcbi->mcbi_lockp);
881 	found = mac_callback_lookup(mcb_headp, mcb_elem);
882 	mutex_exit(mcbi->mcbi_lockp);
883 
884 	return (found);
885 }
886 
887 /* Free the list of removed callbacks */
888 void
889 mac_callback_free(mac_cb_t *rmlist)
890 {
891 	mac_cb_t	*mcb;
892 	mac_cb_t	*mcb_next;
893 
894 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
895 		mcb_next = mcb->mcb_nextp;
896 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
897 	}
898 }
899 
900 void
901 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
902 {
903 	mac_cb_info_t	*mcbi;
904 
905 	/*
906 	 * Signal the notify thread even after mi_ref has become zero and
907 	 * mi_disabled is set. The synchronization with the notify thread
908 	 * happens in mac_unregister and that implies the driver must make
909 	 * sure it is single-threaded (with respect to mac calls) and that
910 	 * all pending mac calls have returned before it calls mac_unregister
911 	 */
912 	rw_enter(&i_mac_impl_lock, RW_READER);
913 	if (mip->mi_state_flags & MIS_DISABLED)
914 		goto exit;
915 
916 	/*
917 	 * Guard against incorrect notifications.  (Running a newer
918 	 * mac client against an older implementation?)
919 	 */
920 	if (type >= MAC_NNOTE)
921 		goto exit;
922 
923 	mcbi = &mip->mi_notify_cb_info;
924 	mutex_enter(mcbi->mcbi_lockp);
925 	mip->mi_notify_bits |= (1 << type);
926 	cv_broadcast(&mcbi->mcbi_cv);
927 	mutex_exit(mcbi->mcbi_lockp);
928 
929 exit:
930 	rw_exit(&i_mac_impl_lock);
931 }
932 
933 /*
934  * Mac serialization primitives. Please see the block comment at the
935  * top of the file.
936  */
937 void
938 i_mac_perim_enter(mac_impl_t *mip)
939 {
940 	mac_client_impl_t	*mcip;
941 
942 	if (mip->mi_state_flags & MIS_IS_VNIC) {
943 		/*
944 		 * This is a VNIC. Return the lower mac since that is what
945 		 * we want to serialize on.
946 		 */
947 		mcip = mac_vnic_lower(mip);
948 		mip = mcip->mci_mip;
949 	}
950 
951 	mutex_enter(&mip->mi_perim_lock);
952 	if (mip->mi_perim_owner == curthread) {
953 		mip->mi_perim_ocnt++;
954 		mutex_exit(&mip->mi_perim_lock);
955 		return;
956 	}
957 
958 	while (mip->mi_perim_owner != NULL)
959 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
960 
961 	mip->mi_perim_owner = curthread;
962 	ASSERT(mip->mi_perim_ocnt == 0);
963 	mip->mi_perim_ocnt++;
964 #ifdef DEBUG
965 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
966 	    MAC_PERIM_STACK_DEPTH);
967 #endif
968 	mutex_exit(&mip->mi_perim_lock);
969 }
970 
971 int
972 i_mac_perim_enter_nowait(mac_impl_t *mip)
973 {
974 	/*
975 	 * The vnic is a special case, since the serialization is done based
976 	 * on the lower mac. If the lower mac is busy, it does not imply the
977 	 * vnic can't be unregistered. But in the case of other drivers,
978 	 * a busy perimeter or open mac handles implies that the mac is busy
979 	 * and can't be unregistered.
980 	 */
981 	if (mip->mi_state_flags & MIS_IS_VNIC) {
982 		i_mac_perim_enter(mip);
983 		return (0);
984 	}
985 
986 	mutex_enter(&mip->mi_perim_lock);
987 	if (mip->mi_perim_owner != NULL) {
988 		mutex_exit(&mip->mi_perim_lock);
989 		return (EBUSY);
990 	}
991 	ASSERT(mip->mi_perim_ocnt == 0);
992 	mip->mi_perim_owner = curthread;
993 	mip->mi_perim_ocnt++;
994 	mutex_exit(&mip->mi_perim_lock);
995 
996 	return (0);
997 }
998 
999 void
1000 i_mac_perim_exit(mac_impl_t *mip)
1001 {
1002 	mac_client_impl_t *mcip;
1003 
1004 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1005 		/*
1006 		 * This is a VNIC. Return the lower mac since that is what
1007 		 * we want to serialize on.
1008 		 */
1009 		mcip = mac_vnic_lower(mip);
1010 		mip = mcip->mci_mip;
1011 	}
1012 
1013 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
1014 
1015 	mutex_enter(&mip->mi_perim_lock);
1016 	if (--mip->mi_perim_ocnt == 0) {
1017 		mip->mi_perim_owner = NULL;
1018 		cv_signal(&mip->mi_perim_cv);
1019 	}
1020 	mutex_exit(&mip->mi_perim_lock);
1021 }
1022 
1023 /*
1024  * Returns whether the current thread holds the mac perimeter. Used in making
1025  * assertions.
1026  */
1027 boolean_t
1028 mac_perim_held(mac_handle_t mh)
1029 {
1030 	mac_impl_t	*mip = (mac_impl_t *)mh;
1031 	mac_client_impl_t *mcip;
1032 
1033 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1034 		/*
1035 		 * This is a VNIC. Return the lower mac since that is what
1036 		 * we want to serialize on.
1037 		 */
1038 		mcip = mac_vnic_lower(mip);
1039 		mip = mcip->mci_mip;
1040 	}
1041 	return (mip->mi_perim_owner == curthread);
1042 }
1043 
1044 /*
1045  * mac client interfaces to enter the mac perimeter of a mac end point, given
1046  * its mac handle, or macname or linkid.
1047  */
1048 void
1049 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
1050 {
1051 	mac_impl_t	*mip = (mac_impl_t *)mh;
1052 
1053 	i_mac_perim_enter(mip);
1054 	/*
1055 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
1056 	 * mac_open has been done internally while entering the perimeter.
1057 	 * This information is used in mac_perim_exit
1058 	 */
1059 	MAC_ENCODE_MPH(*mphp, mip, 0);
1060 }
1061 
1062 int
1063 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
1064 {
1065 	int	err;
1066 	mac_handle_t	mh;
1067 
1068 	if ((err = mac_open(name, &mh)) != 0)
1069 		return (err);
1070 
1071 	mac_perim_enter_by_mh(mh, mphp);
1072 	MAC_ENCODE_MPH(*mphp, mh, 1);
1073 	return (0);
1074 }
1075 
1076 int
1077 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
1078 {
1079 	int	err;
1080 	mac_handle_t	mh;
1081 
1082 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1083 		return (err);
1084 
1085 	mac_perim_enter_by_mh(mh, mphp);
1086 	MAC_ENCODE_MPH(*mphp, mh, 1);
1087 	return (0);
1088 }
1089 
1090 void
1091 mac_perim_exit(mac_perim_handle_t mph)
1092 {
1093 	mac_impl_t	*mip;
1094 	boolean_t	need_close;
1095 
1096 	MAC_DECODE_MPH(mph, mip, need_close);
1097 	i_mac_perim_exit(mip);
1098 	if (need_close)
1099 		mac_close((mac_handle_t)mip);
1100 }
1101 
1102 int
1103 mac_hold(const char *macname, mac_impl_t **pmip)
1104 {
1105 	mac_impl_t	*mip;
1106 	int		err;
1107 
1108 	/*
1109 	 * Check the device name length to make sure it won't overflow our
1110 	 * buffer.
1111 	 */
1112 	if (strlen(macname) >= MAXNAMELEN)
1113 		return (EINVAL);
1114 
1115 	/*
1116 	 * Look up its entry in the global hash table.
1117 	 */
1118 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1119 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1120 	    (mod_hash_val_t *)&mip);
1121 
1122 	if (err != 0) {
1123 		rw_exit(&i_mac_impl_lock);
1124 		return (ENOENT);
1125 	}
1126 
1127 	if (mip->mi_state_flags & MIS_DISABLED) {
1128 		rw_exit(&i_mac_impl_lock);
1129 		return (ENOENT);
1130 	}
1131 
1132 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1133 		rw_exit(&i_mac_impl_lock);
1134 		return (EBUSY);
1135 	}
1136 
1137 	mip->mi_ref++;
1138 	rw_exit(&i_mac_impl_lock);
1139 
1140 	*pmip = mip;
1141 	return (0);
1142 }
1143 
1144 void
1145 mac_rele(mac_impl_t *mip)
1146 {
1147 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1148 	ASSERT(mip->mi_ref != 0);
1149 	if (--mip->mi_ref == 0) {
1150 		ASSERT(mip->mi_nactiveclients == 0 &&
1151 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1152 	}
1153 	rw_exit(&i_mac_impl_lock);
1154 }
1155 
1156 /*
1157  * Private GLDv3 function to start a MAC instance.
1158  */
1159 int
1160 mac_start(mac_handle_t mh)
1161 {
1162 	mac_impl_t	*mip = (mac_impl_t *)mh;
1163 	int		err = 0;
1164 	mac_group_t	*defgrp;
1165 
1166 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1167 	ASSERT(mip->mi_start != NULL);
1168 
1169 	/*
1170 	 * Check whether the device is already started.
1171 	 */
1172 	if (mip->mi_active++ == 0) {
1173 		mac_ring_t *ring = NULL;
1174 
1175 		/*
1176 		 * Start the device.
1177 		 */
1178 		err = mip->mi_start(mip->mi_driver);
1179 		if (err != 0) {
1180 			mip->mi_active--;
1181 			return (err);
1182 		}
1183 
1184 		/*
1185 		 * Start the default tx ring.
1186 		 */
1187 		if (mip->mi_default_tx_ring != NULL) {
1188 
1189 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1190 			if (ring->mr_state != MR_INUSE) {
1191 				err = mac_start_ring(ring);
1192 				if (err != 0) {
1193 					mip->mi_active--;
1194 					return (err);
1195 				}
1196 			}
1197 		}
1198 
1199 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1200 			/*
1201 			 * Start the default group which is responsible
1202 			 * for receiving broadcast and multicast
1203 			 * traffic for both primary and non-primary
1204 			 * MAC clients.
1205 			 */
1206 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1207 			err = mac_start_group_and_rings(defgrp);
1208 			if (err != 0) {
1209 				mip->mi_active--;
1210 				if ((ring != NULL) &&
1211 				    (ring->mr_state == MR_INUSE))
1212 					mac_stop_ring(ring);
1213 				return (err);
1214 			}
1215 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1216 		}
1217 	}
1218 
1219 	return (err);
1220 }
1221 
1222 /*
1223  * Private GLDv3 function to stop a MAC instance.
1224  */
1225 void
1226 mac_stop(mac_handle_t mh)
1227 {
1228 	mac_impl_t	*mip = (mac_impl_t *)mh;
1229 	mac_group_t	*grp;
1230 
1231 	ASSERT(mip->mi_stop != NULL);
1232 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1233 
1234 	/*
1235 	 * Check whether the device is still needed.
1236 	 */
1237 	ASSERT(mip->mi_active != 0);
1238 	if (--mip->mi_active == 0) {
1239 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1240 			/*
1241 			 * There should be no more active clients since the
1242 			 * MAC is being stopped. Stop the default RX group
1243 			 * and transition it back to registered state.
1244 			 *
1245 			 * When clients are torn down, the groups
1246 			 * are release via mac_release_rx_group which
1247 			 * knows the the default group is always in
1248 			 * started mode since broadcast uses it. So
1249 			 * we can assert that their are no clients
1250 			 * (since mac_bcast_add doesn't register itself
1251 			 * as a client) and group is in SHARED state.
1252 			 */
1253 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1254 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1255 			    mip->mi_nactiveclients == 0);
1256 			mac_stop_group_and_rings(grp);
1257 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1258 		}
1259 
1260 		if (mip->mi_default_tx_ring != NULL) {
1261 			mac_ring_t *ring;
1262 
1263 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1264 			if (ring->mr_state == MR_INUSE) {
1265 				mac_stop_ring(ring);
1266 				ring->mr_flag = 0;
1267 			}
1268 		}
1269 
1270 		/*
1271 		 * Stop the device.
1272 		 */
1273 		mip->mi_stop(mip->mi_driver);
1274 	}
1275 }
1276 
1277 int
1278 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1279 {
1280 	int		err = 0;
1281 
1282 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1283 	ASSERT(mip->mi_setpromisc != NULL);
1284 
1285 	if (on) {
1286 		/*
1287 		 * Enable promiscuous mode on the device if not yet enabled.
1288 		 */
1289 		if (mip->mi_devpromisc++ == 0) {
1290 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1291 			if (err != 0) {
1292 				mip->mi_devpromisc--;
1293 				return (err);
1294 			}
1295 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1296 		}
1297 	} else {
1298 		if (mip->mi_devpromisc == 0)
1299 			return (EPROTO);
1300 
1301 		/*
1302 		 * Disable promiscuous mode on the device if this is the last
1303 		 * enabling.
1304 		 */
1305 		if (--mip->mi_devpromisc == 0) {
1306 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1307 			if (err != 0) {
1308 				mip->mi_devpromisc++;
1309 				return (err);
1310 			}
1311 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1312 		}
1313 	}
1314 
1315 	return (0);
1316 }
1317 
1318 /*
1319  * The promiscuity state can change any time. If the caller needs to take
1320  * actions that are atomic with the promiscuity state, then the caller needs
1321  * to bracket the entire sequence with mac_perim_enter/exit
1322  */
1323 boolean_t
1324 mac_promisc_get(mac_handle_t mh)
1325 {
1326 	mac_impl_t		*mip = (mac_impl_t *)mh;
1327 
1328 	/*
1329 	 * Return the current promiscuity.
1330 	 */
1331 	return (mip->mi_devpromisc != 0);
1332 }
1333 
1334 /*
1335  * Invoked at MAC instance attach time to initialize the list
1336  * of factory MAC addresses supported by a MAC instance. This function
1337  * builds a local cache in the mac_impl_t for the MAC addresses
1338  * supported by the underlying hardware. The MAC clients themselves
1339  * use the mac_addr_factory*() functions to query and reserve
1340  * factory MAC addresses.
1341  */
1342 void
1343 mac_addr_factory_init(mac_impl_t *mip)
1344 {
1345 	mac_capab_multifactaddr_t capab;
1346 	uint8_t *addr;
1347 	int i;
1348 
1349 	/*
1350 	 * First round to see how many factory MAC addresses are available.
1351 	 */
1352 	bzero(&capab, sizeof (capab));
1353 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1354 	    &capab) || (capab.mcm_naddr == 0)) {
1355 		/*
1356 		 * The MAC instance doesn't support multiple factory
1357 		 * MAC addresses, we're done here.
1358 		 */
1359 		return;
1360 	}
1361 
1362 	/*
1363 	 * Allocate the space and get all the factory addresses.
1364 	 */
1365 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1366 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1367 
1368 	mip->mi_factory_addr_num = capab.mcm_naddr;
1369 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1370 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1371 
1372 	for (i = 0; i < capab.mcm_naddr; i++) {
1373 		bcopy(addr + i * MAXMACADDRLEN,
1374 		    mip->mi_factory_addr[i].mfa_addr,
1375 		    mip->mi_type->mt_addr_length);
1376 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1377 	}
1378 
1379 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1380 }
1381 
1382 void
1383 mac_addr_factory_fini(mac_impl_t *mip)
1384 {
1385 	if (mip->mi_factory_addr == NULL) {
1386 		ASSERT(mip->mi_factory_addr_num == 0);
1387 		return;
1388 	}
1389 
1390 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1391 	    sizeof (mac_factory_addr_t));
1392 
1393 	mip->mi_factory_addr = NULL;
1394 	mip->mi_factory_addr_num = 0;
1395 }
1396 
1397 /*
1398  * Reserve a factory MAC address. If *slot is set to -1, the function
1399  * attempts to reserve any of the available factory MAC addresses and
1400  * returns the reserved slot id. If no slots are available, the function
1401  * returns ENOSPC. If *slot is not set to -1, the function reserves
1402  * the specified slot if it is available, or returns EBUSY is the slot
1403  * is already used. Returns ENOTSUP if the underlying MAC does not
1404  * support multiple factory addresses. If the slot number is not -1 but
1405  * is invalid, returns EINVAL.
1406  */
1407 int
1408 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1409 {
1410 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1411 	mac_impl_t *mip = mcip->mci_mip;
1412 	int i, ret = 0;
1413 
1414 	i_mac_perim_enter(mip);
1415 	/*
1416 	 * Protect against concurrent readers that may need a self-consistent
1417 	 * view of the factory addresses
1418 	 */
1419 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1420 
1421 	if (mip->mi_factory_addr_num == 0) {
1422 		ret = ENOTSUP;
1423 		goto bail;
1424 	}
1425 
1426 	if (*slot != -1) {
1427 		/* check the specified slot */
1428 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1429 			ret = EINVAL;
1430 			goto bail;
1431 		}
1432 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1433 			ret = EBUSY;
1434 			goto bail;
1435 		}
1436 	} else {
1437 		/* pick the next available slot */
1438 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1439 			if (!mip->mi_factory_addr[i].mfa_in_use)
1440 				break;
1441 		}
1442 
1443 		if (i == mip->mi_factory_addr_num) {
1444 			ret = ENOSPC;
1445 			goto bail;
1446 		}
1447 		*slot = i+1;
1448 	}
1449 
1450 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1451 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1452 
1453 bail:
1454 	rw_exit(&mip->mi_rw_lock);
1455 	i_mac_perim_exit(mip);
1456 	return (ret);
1457 }
1458 
1459 /*
1460  * Release the specified factory MAC address slot.
1461  */
1462 void
1463 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1464 {
1465 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1466 	mac_impl_t *mip = mcip->mci_mip;
1467 
1468 	i_mac_perim_enter(mip);
1469 	/*
1470 	 * Protect against concurrent readers that may need a self-consistent
1471 	 * view of the factory addresses
1472 	 */
1473 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1474 
1475 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1476 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1477 
1478 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1479 
1480 	rw_exit(&mip->mi_rw_lock);
1481 	i_mac_perim_exit(mip);
1482 }
1483 
1484 /*
1485  * Stores in mac_addr the value of the specified MAC address. Returns
1486  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1487  * The caller must provide a string of at least MAXNAMELEN bytes.
1488  */
1489 void
1490 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1491     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1492 {
1493 	mac_impl_t *mip = (mac_impl_t *)mh;
1494 	boolean_t in_use;
1495 
1496 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1497 
1498 	/*
1499 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1500 	 * and mi_rw_lock
1501 	 */
1502 	rw_enter(&mip->mi_rw_lock, RW_READER);
1503 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1504 	*addr_len = mip->mi_type->mt_addr_length;
1505 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1506 	if (in_use && client_name != NULL) {
1507 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1508 		    client_name, MAXNAMELEN);
1509 	}
1510 	if (in_use_arg != NULL)
1511 		*in_use_arg = in_use;
1512 	rw_exit(&mip->mi_rw_lock);
1513 }
1514 
1515 /*
1516  * Returns the number of factory MAC addresses (in addition to the
1517  * primary MAC address), 0 if the underlying MAC doesn't support
1518  * that feature.
1519  */
1520 uint_t
1521 mac_addr_factory_num(mac_handle_t mh)
1522 {
1523 	mac_impl_t *mip = (mac_impl_t *)mh;
1524 
1525 	return (mip->mi_factory_addr_num);
1526 }
1527 
1528 
1529 void
1530 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1531 {
1532 	mac_ring_t	*ring;
1533 
1534 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1535 		ring->mr_flag &= ~flag;
1536 }
1537 
1538 /*
1539  * The following mac_hwrings_xxx() functions are private mac client functions
1540  * used by the aggr driver to access and control the underlying HW Rx group
1541  * and rings. In this case, the aggr driver has exclusive control of the
1542  * underlying HW Rx group/rings, it calls the following functions to
1543  * start/stop the HW Rx rings, disable/enable polling, add/remove MAC
1544  * addresses, or set up the Rx callback.
1545  */
1546 /* ARGSUSED */
1547 static void
1548 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1549     mblk_t *mp_chain, boolean_t loopback)
1550 {
1551 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1552 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1553 	mac_direct_rx_t		proc;
1554 	void			*arg1;
1555 	mac_resource_handle_t	arg2;
1556 
1557 	proc = srs_rx->sr_func;
1558 	arg1 = srs_rx->sr_arg1;
1559 	arg2 = mac_srs->srs_mrh;
1560 
1561 	proc(arg1, arg2, mp_chain, NULL);
1562 }
1563 
1564 /*
1565  * This function is called to get the list of HW rings that are reserved by
1566  * an exclusive mac client.
1567  *
1568  * Return value: the number of HW rings.
1569  */
1570 int
1571 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1572     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1573 {
1574 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1575 	flow_entry_t		*flent = mcip->mci_flent;
1576 	mac_group_t		*grp;
1577 	mac_ring_t		*ring;
1578 	int			cnt = 0;
1579 
1580 	if (rtype == MAC_RING_TYPE_RX) {
1581 		grp = flent->fe_rx_ring_group;
1582 	} else if (rtype == MAC_RING_TYPE_TX) {
1583 		grp = flent->fe_tx_ring_group;
1584 	} else {
1585 		ASSERT(B_FALSE);
1586 		return (-1);
1587 	}
1588 
1589 	/*
1590 	 * The MAC client did not reserve an Rx group, return directly.
1591 	 * This is probably because the underlying MAC does not support
1592 	 * any groups.
1593 	 */
1594 	if (hwgh != NULL)
1595 		*hwgh = NULL;
1596 	if (grp == NULL)
1597 		return (0);
1598 	/*
1599 	 * This group must be reserved by this MAC client.
1600 	 */
1601 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1602 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1603 
1604 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1605 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1606 		hwrh[cnt] = (mac_ring_handle_t)ring;
1607 	}
1608 	if (hwgh != NULL)
1609 		*hwgh = (mac_group_handle_t)grp;
1610 
1611 	return (cnt);
1612 }
1613 
1614 /*
1615  * Get the HW ring handles of the given group index. If the MAC
1616  * doesn't have a group at this index, or any groups at all, then 0 is
1617  * returned and hwgh is set to NULL. This is a private client API. The
1618  * MAC perimeter must be held when calling this function.
1619  *
1620  * mh: A handle to the MAC that owns the group.
1621  *
1622  * idx: The index of the HW group to be read.
1623  *
1624  * hwgh: If non-NULL, contains a handle to the HW group on return.
1625  *
1626  * hwrh: An array of ring handles pointing to the HW rings in the
1627  * group. The array must be large enough to hold a handle to each ring
1628  * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP.
1629  *
1630  * rtype: Used to determine if we are fetching Rx or Tx rings.
1631  *
1632  * Returns the number of rings in the group.
1633  */
1634 uint_t
1635 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh,
1636     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1637 {
1638 	mac_impl_t		*mip = (mac_impl_t *)mh;
1639 	mac_group_t		*grp;
1640 	mac_ring_t		*ring;
1641 	uint_t			cnt = 0;
1642 
1643 	/*
1644 	 * The MAC perimeter must be held when accessing the
1645 	 * mi_{rx,tx}_groups fields.
1646 	 */
1647 	ASSERT(MAC_PERIM_HELD(mh));
1648 	ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX);
1649 
1650 	if (rtype == MAC_RING_TYPE_RX) {
1651 		grp = mip->mi_rx_groups;
1652 	} else {
1653 		ASSERT(rtype == MAC_RING_TYPE_TX);
1654 		grp = mip->mi_tx_groups;
1655 	}
1656 
1657 	while (grp != NULL && grp->mrg_index != idx)
1658 		grp = grp->mrg_next;
1659 
1660 	/*
1661 	 * If the MAC doesn't have a group at this index or doesn't
1662 	 * impelement RINGS capab, then set hwgh to NULL and return 0.
1663 	 */
1664 	if (hwgh != NULL)
1665 		*hwgh = NULL;
1666 
1667 	if (grp == NULL)
1668 		return (0);
1669 
1670 	ASSERT3U(idx, ==, grp->mrg_index);
1671 
1672 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1673 		ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP);
1674 		hwrh[cnt] = (mac_ring_handle_t)ring;
1675 	}
1676 
1677 	/* A group should always have at least one ring. */
1678 	ASSERT3U(cnt, >, 0);
1679 
1680 	if (hwgh != NULL)
1681 		*hwgh = (mac_group_handle_t)grp;
1682 
1683 	return (cnt);
1684 }
1685 
1686 /*
1687  * This function is called to get info about Tx/Rx rings.
1688  *
1689  * Return value: returns uint_t which will have various bits set
1690  * that indicates different properties of the ring.
1691  */
1692 uint_t
1693 mac_hwring_getinfo(mac_ring_handle_t rh)
1694 {
1695 	mac_ring_t *ring = (mac_ring_t *)rh;
1696 	mac_ring_info_t *info = &ring->mr_info;
1697 
1698 	return (info->mri_flags);
1699 }
1700 
1701 /*
1702  * Set the passthru callback on the hardware ring.
1703  */
1704 void
1705 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1,
1706     mac_resource_handle_t arg2)
1707 {
1708 	mac_ring_t *hwring = (mac_ring_t *)hwrh;
1709 
1710 	ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1711 
1712 	hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER;
1713 
1714 	hwring->mr_pt_fn = fn;
1715 	hwring->mr_pt_arg1 = arg1;
1716 	hwring->mr_pt_arg2 = arg2;
1717 }
1718 
1719 /*
1720  * Clear the passthru callback on the hardware ring.
1721  */
1722 void
1723 mac_hwring_clear_passthru(mac_ring_handle_t hwrh)
1724 {
1725 	mac_ring_t *hwring = (mac_ring_t *)hwrh;
1726 
1727 	ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1728 
1729 	hwring->mr_classify_type = MAC_NO_CLASSIFIER;
1730 
1731 	hwring->mr_pt_fn = NULL;
1732 	hwring->mr_pt_arg1 = NULL;
1733 	hwring->mr_pt_arg2 = NULL;
1734 }
1735 
1736 void
1737 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1)
1738 {
1739 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1740 	flow_entry_t		*flent = mcip->mci_flent;
1741 
1742 	mutex_enter(&flent->fe_lock);
1743 	flent->fe_cb_fn = (flow_fn_t)func;
1744 	flent->fe_cb_arg1 = arg1;
1745 	flent->fe_cb_arg2 = NULL;
1746 	flent->fe_flags &= ~FE_MC_NO_DATAPATH;
1747 	mutex_exit(&flent->fe_lock);
1748 }
1749 
1750 void
1751 mac_client_clear_flow_cb(mac_client_handle_t mch)
1752 {
1753 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1754 	flow_entry_t		*flent = mcip->mci_flent;
1755 
1756 	mutex_enter(&flent->fe_lock);
1757 	flent->fe_cb_fn = (flow_fn_t)mac_rx_def;
1758 	flent->fe_cb_arg1 = NULL;
1759 	flent->fe_cb_arg2 = NULL;
1760 	flent->fe_flags |= FE_MC_NO_DATAPATH;
1761 	mutex_exit(&flent->fe_lock);
1762 }
1763 
1764 /*
1765  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1766  * setup the RX callback of the mac client which exclusively controls
1767  * HW ring.
1768  */
1769 void
1770 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1771     mac_ring_handle_t pseudo_rh)
1772 {
1773 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1774 	mac_ring_t		*pseudo_ring;
1775 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1776 
1777 	if (pseudo_rh != NULL) {
1778 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1779 		/* Export the ddi handles to pseudo ring */
1780 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1781 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1782 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1783 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1784 		/*
1785 		 * Save a pointer to pseudo ring in the hw ring. If
1786 		 * interrupt handle changes, the hw ring will be
1787 		 * notified of the change (see mac_ring_intr_set())
1788 		 * and the appropriate change has to be made to
1789 		 * the pseudo ring that has exported the ddi handle.
1790 		 */
1791 		hw_ring->mr_prh = pseudo_rh;
1792 	}
1793 
1794 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1795 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1796 		mac_srs->srs_mrh = prh;
1797 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1798 	}
1799 }
1800 
1801 void
1802 mac_hwring_teardown(mac_ring_handle_t hwrh)
1803 {
1804 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1805 	mac_soft_ring_set_t	*mac_srs;
1806 
1807 	if (hw_ring == NULL)
1808 		return;
1809 	hw_ring->mr_prh = NULL;
1810 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1811 		mac_srs = hw_ring->mr_srs;
1812 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1813 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1814 		mac_srs->srs_mrh = NULL;
1815 	}
1816 }
1817 
1818 int
1819 mac_hwring_disable_intr(mac_ring_handle_t rh)
1820 {
1821 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1822 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1823 
1824 	return (intr->mi_disable(intr->mi_handle));
1825 }
1826 
1827 int
1828 mac_hwring_enable_intr(mac_ring_handle_t rh)
1829 {
1830 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1831 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1832 
1833 	return (intr->mi_enable(intr->mi_handle));
1834 }
1835 
1836 /*
1837  * Start the HW ring pointed to by rh.
1838  *
1839  * This is used by special MAC clients that are MAC themselves and
1840  * need to exert control over the underlying HW rings of the NIC.
1841  */
1842 int
1843 mac_hwring_start(mac_ring_handle_t rh)
1844 {
1845 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1846 	int rv = 0;
1847 
1848 	if (rr_ring->mr_state != MR_INUSE)
1849 		rv = mac_start_ring(rr_ring);
1850 
1851 	return (rv);
1852 }
1853 
1854 /*
1855  * Stop the HW ring pointed to by rh. Also see mac_hwring_start().
1856  */
1857 void
1858 mac_hwring_stop(mac_ring_handle_t rh)
1859 {
1860 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1861 
1862 	if (rr_ring->mr_state != MR_FREE)
1863 		mac_stop_ring(rr_ring);
1864 }
1865 
1866 /*
1867  * Remove the quiesced flag from the HW ring pointed to by rh.
1868  *
1869  * This is used by special MAC clients that are MAC themselves and
1870  * need to exert control over the underlying HW rings of the NIC.
1871  */
1872 int
1873 mac_hwring_activate(mac_ring_handle_t rh)
1874 {
1875 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1876 
1877 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1878 	return (0);
1879 }
1880 
1881 /*
1882  * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate().
1883  */
1884 void
1885 mac_hwring_quiesce(mac_ring_handle_t rh)
1886 {
1887 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1888 
1889 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1890 }
1891 
1892 mblk_t *
1893 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1894 {
1895 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1896 	mac_ring_info_t *info = &rr_ring->mr_info;
1897 
1898 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1899 }
1900 
1901 /*
1902  * Send packets through a selected tx ring.
1903  */
1904 mblk_t *
1905 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1906 {
1907 	mac_ring_t *ring = (mac_ring_t *)rh;
1908 	mac_ring_info_t *info = &ring->mr_info;
1909 
1910 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1911 	    ring->mr_state >= MR_INUSE);
1912 	return (info->mri_tx(info->mri_driver, mp));
1913 }
1914 
1915 /*
1916  * Query stats for a particular rx/tx ring
1917  */
1918 int
1919 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1920 {
1921 	mac_ring_t	*ring = (mac_ring_t *)rh;
1922 	mac_ring_info_t *info = &ring->mr_info;
1923 
1924 	return (info->mri_stat(info->mri_driver, stat, val));
1925 }
1926 
1927 /*
1928  * Private function that is only used by aggr to send packets through
1929  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1930  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1931  * access to mac_impl_t to send packets through m_tx() entry point.
1932  * It accomplishes this by calling mac_hwring_send_priv() function.
1933  */
1934 mblk_t *
1935 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1936 {
1937 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1938 	mac_impl_t *mip = mcip->mci_mip;
1939 
1940 	return (mac_provider_tx(mip, rh, mp, mcip));
1941 }
1942 
1943 /*
1944  * Private function that is only used by aggr to update the default transmission
1945  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1946  * temporarily be down, it may need to update the default ring that is used by
1947  * MAC such that it refers to a link that can actively be used to send traffic.
1948  * Note that this is different from the case where the port has been removed
1949  * from the group. In those cases, all of the rings will be torn down because
1950  * the ring will no longer exist. It's important to give aggr a case where the
1951  * rings can still exist such that it may be able to continue to send LACP PDUs
1952  * to potentially restore the link.
1953  *
1954  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1955  * This is to help out aggr which doesn't really know the internal state that
1956  * MAC does about the rings and can't know that it's not quite ready for use
1957  * yet.
1958  */
1959 void
1960 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1961 {
1962 	mac_impl_t *mip = (mac_impl_t *)mh;
1963 	mac_ring_t *ring = (mac_ring_t *)rh;
1964 
1965 	ASSERT(MAC_PERIM_HELD(mh));
1966 	VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1967 
1968 	if (ring->mr_state != MR_INUSE)
1969 		return;
1970 
1971 	mip->mi_default_tx_ring = rh;
1972 }
1973 
1974 int
1975 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1976 {
1977 	mac_group_t *group = (mac_group_t *)gh;
1978 
1979 	return (mac_group_addmac(group, addr));
1980 }
1981 
1982 int
1983 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1984 {
1985 	mac_group_t *group = (mac_group_t *)gh;
1986 
1987 	return (mac_group_remmac(group, addr));
1988 }
1989 
1990 /*
1991  * Program the group's HW VLAN filter if it has such support.
1992  * Otherwise, the group will implicitly accept tagged traffic and
1993  * there is nothing to do.
1994  */
1995 int
1996 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid)
1997 {
1998 	mac_group_t *group = (mac_group_t *)gh;
1999 
2000 	if (!MAC_GROUP_HW_VLAN(group))
2001 		return (0);
2002 
2003 	return (mac_group_addvlan(group, vid));
2004 }
2005 
2006 int
2007 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid)
2008 {
2009 	mac_group_t *group = (mac_group_t *)gh;
2010 
2011 	if (!MAC_GROUP_HW_VLAN(group))
2012 		return (0);
2013 
2014 	return (mac_group_remvlan(group, vid));
2015 }
2016 
2017 /*
2018  * Determine if a MAC has HW VLAN support. This is a private API
2019  * consumed by aggr. In the future it might be nice to have a bitfield
2020  * in mac_capab_rings_t to track which forms of HW filtering are
2021  * supported by the MAC.
2022  */
2023 boolean_t
2024 mac_has_hw_vlan(mac_handle_t mh)
2025 {
2026 	mac_impl_t *mip = (mac_impl_t *)mh;
2027 
2028 	return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups));
2029 }
2030 
2031 /*
2032  * Get the number of Rx HW groups on this MAC.
2033  */
2034 uint_t
2035 mac_get_num_rx_groups(mac_handle_t mh)
2036 {
2037 	mac_impl_t *mip = (mac_impl_t *)mh;
2038 
2039 	ASSERT(MAC_PERIM_HELD(mh));
2040 	return (mip->mi_rx_group_count);
2041 }
2042 
2043 int
2044 mac_set_promisc(mac_handle_t mh, boolean_t value)
2045 {
2046 	mac_impl_t *mip = (mac_impl_t *)mh;
2047 
2048 	ASSERT(MAC_PERIM_HELD(mh));
2049 	return (i_mac_promisc_set(mip, value));
2050 }
2051 
2052 /*
2053  * Set the RX group to be shared/reserved. Note that the group must be
2054  * started/stopped outside of this function.
2055  */
2056 void
2057 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
2058 {
2059 	/*
2060 	 * If there is no change in the group state, just return.
2061 	 */
2062 	if (grp->mrg_state == state)
2063 		return;
2064 
2065 	switch (state) {
2066 	case MAC_GROUP_STATE_RESERVED:
2067 		/*
2068 		 * Successfully reserved the group.
2069 		 *
2070 		 * Given that there is an exclusive client controlling this
2071 		 * group, we enable the group level polling when available,
2072 		 * so that SRSs get to turn on/off individual rings they's
2073 		 * assigned to.
2074 		 */
2075 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2076 
2077 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
2078 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
2079 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2080 		}
2081 		break;
2082 
2083 	case MAC_GROUP_STATE_SHARED:
2084 		/*
2085 		 * Set all rings of this group to software classified.
2086 		 * If the group has an overriding interrupt, then re-enable it.
2087 		 */
2088 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2089 
2090 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
2091 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
2092 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2093 		}
2094 		/* The ring is not available for reservations any more */
2095 		break;
2096 
2097 	case MAC_GROUP_STATE_REGISTERED:
2098 		/* Also callable from mac_register, perim is not held */
2099 		break;
2100 
2101 	default:
2102 		ASSERT(B_FALSE);
2103 		break;
2104 	}
2105 
2106 	grp->mrg_state = state;
2107 }
2108 
2109 /*
2110  * Quiesce future hardware classified packets for the specified Rx ring
2111  */
2112 static void
2113 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
2114 {
2115 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
2116 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
2117 
2118 	mutex_enter(&rx_ring->mr_lock);
2119 	rx_ring->mr_flag |= ring_flag;
2120 	while (rx_ring->mr_refcnt != 0)
2121 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
2122 	mutex_exit(&rx_ring->mr_lock);
2123 }
2124 
2125 /*
2126  * Please see mac_tx for details about the per cpu locking scheme
2127  */
2128 static void
2129 mac_tx_lock_all(mac_client_impl_t *mcip)
2130 {
2131 	int	i;
2132 
2133 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
2134 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2135 }
2136 
2137 static void
2138 mac_tx_unlock_all(mac_client_impl_t *mcip)
2139 {
2140 	int	i;
2141 
2142 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
2143 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2144 }
2145 
2146 static void
2147 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
2148 {
2149 	int	i;
2150 
2151 	for (i = mac_tx_percpu_cnt; i > 0; i--)
2152 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2153 }
2154 
2155 static int
2156 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
2157 {
2158 	int	i;
2159 	int	refcnt = 0;
2160 
2161 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
2162 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
2163 
2164 	return (refcnt);
2165 }
2166 
2167 /*
2168  * Stop future Tx packets coming down from the client in preparation for
2169  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
2170  * of rings between clients
2171  */
2172 void
2173 mac_tx_client_block(mac_client_impl_t *mcip)
2174 {
2175 	mac_tx_lock_all(mcip);
2176 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
2177 	while (mac_tx_sum_refcnt(mcip) != 0) {
2178 		mac_tx_unlock_allbutzero(mcip);
2179 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2180 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2181 		mac_tx_lock_all(mcip);
2182 	}
2183 	mac_tx_unlock_all(mcip);
2184 }
2185 
2186 void
2187 mac_tx_client_unblock(mac_client_impl_t *mcip)
2188 {
2189 	mac_tx_lock_all(mcip);
2190 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
2191 	mac_tx_unlock_all(mcip);
2192 	/*
2193 	 * We may fail to disable flow control for the last MAC_NOTE_TX
2194 	 * notification because the MAC client is quiesced. Send the
2195 	 * notification again.
2196 	 */
2197 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
2198 }
2199 
2200 /*
2201  * Wait for an SRS to quiesce. The SRS worker will signal us when the
2202  * quiesce is done.
2203  */
2204 static void
2205 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
2206 {
2207 	mutex_enter(&srs->srs_lock);
2208 	while (!(srs->srs_state & srs_flag))
2209 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
2210 	mutex_exit(&srs->srs_lock);
2211 }
2212 
2213 /*
2214  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
2215  * works bottom up by cutting off packet flow from the bottommost point in the
2216  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
2217  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
2218  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
2219  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
2220  * for the SRS and MR flags. In the former case the threads pause waiting for
2221  * a restart, while in the latter case the threads exit. The Tx SRS teardown
2222  * is also mostly similar to the above.
2223  *
2224  * 1. Stop future hardware classified packets at the lowest level in the mac.
2225  *    Remove any hardware classification rule (CONDEMNED case) and mark the
2226  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
2227  *    from increasing. Upcalls from the driver that come through hardware
2228  *    classification will be dropped in mac_rx from now on. Then we wait for
2229  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
2230  *    sure there aren't any upcall threads from the driver through hardware
2231  *    classification. In the case of SRS teardown we also remove the
2232  *    classification rule in the driver.
2233  *
2234  * 2. Stop future software classified packets by marking the flow entry with
2235  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
2236  *    increasing. We also remove the flow entry from the table in the latter
2237  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
2238  *    that indicates there aren't any active threads using that flow entry.
2239  *
2240  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
2241  *    SRS worker thread, and the soft ring threads are quiesced in sequence
2242  *    with the SRS worker thread serving as a master controller. This
2243  *    mechansim is explained in mac_srs_worker_quiesce().
2244  *
2245  * The restart mechanism to reactivate the SRS and softrings is explained
2246  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
2247  * restart sequence.
2248  */
2249 void
2250 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2251 {
2252 	flow_entry_t	*flent = srs->srs_flent;
2253 	uint_t	mr_flag, srs_done_flag;
2254 
2255 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2256 	ASSERT(!(srs->srs_type & SRST_TX));
2257 
2258 	if (srs_quiesce_flag == SRS_CONDEMNED) {
2259 		mr_flag = MR_CONDEMNED;
2260 		srs_done_flag = SRS_CONDEMNED_DONE;
2261 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2262 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
2263 	} else {
2264 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
2265 		mr_flag = MR_QUIESCE;
2266 		srs_done_flag = SRS_QUIESCE_DONE;
2267 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2268 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
2269 	}
2270 
2271 	if (srs->srs_ring != NULL) {
2272 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
2273 	} else {
2274 		/*
2275 		 * SRS is driven by software classification. In case
2276 		 * of CONDEMNED, the top level teardown functions will
2277 		 * deal with flow removal.
2278 		 */
2279 		if (srs_quiesce_flag != SRS_CONDEMNED) {
2280 			FLOW_MARK(flent, FE_QUIESCE);
2281 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2287 	 * SRS quiesce to complete. The SRS worker thread will wake us
2288 	 * up when the quiesce is complete
2289 	 */
2290 	mac_srs_signal(srs, srs_quiesce_flag);
2291 	mac_srs_quiesce_wait(srs, srs_done_flag);
2292 }
2293 
2294 /*
2295  * Remove an SRS.
2296  */
2297 void
2298 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
2299 {
2300 	flow_entry_t *flent = srs->srs_flent;
2301 	int i;
2302 
2303 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
2304 	/*
2305 	 * Locate and remove our entry in the fe_rx_srs[] array, and
2306 	 * adjust the fe_rx_srs array entries and array count by
2307 	 * moving the last entry into the vacated spot.
2308 	 */
2309 	mutex_enter(&flent->fe_lock);
2310 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2311 		if (flent->fe_rx_srs[i] == srs)
2312 			break;
2313 	}
2314 
2315 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
2316 	if (i != flent->fe_rx_srs_cnt - 1) {
2317 		flent->fe_rx_srs[i] =
2318 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2319 		i = flent->fe_rx_srs_cnt - 1;
2320 	}
2321 
2322 	flent->fe_rx_srs[i] = NULL;
2323 	flent->fe_rx_srs_cnt--;
2324 	mutex_exit(&flent->fe_lock);
2325 
2326 	mac_srs_free(srs);
2327 }
2328 
2329 static void
2330 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2331 {
2332 	mutex_enter(&srs->srs_lock);
2333 	srs->srs_state &= ~flag;
2334 	mutex_exit(&srs->srs_lock);
2335 }
2336 
2337 void
2338 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2339 {
2340 	flow_entry_t	*flent = srs->srs_flent;
2341 	mac_ring_t	*mr;
2342 
2343 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2344 	ASSERT((srs->srs_type & SRST_TX) == 0);
2345 
2346 	/*
2347 	 * This handles a change in the number of SRSs between the quiesce and
2348 	 * and restart operation of a flow.
2349 	 */
2350 	if (!SRS_QUIESCED(srs))
2351 		return;
2352 
2353 	/*
2354 	 * Signal the SRS to restart itself. Wait for the restart to complete
2355 	 * Note that we only restart the SRS if it is not marked as
2356 	 * permanently quiesced.
2357 	 */
2358 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2359 		mac_srs_signal(srs, SRS_RESTART);
2360 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2361 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2362 
2363 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2364 	}
2365 
2366 	/* Finally clear the flags to let the packets in */
2367 	mr = srs->srs_ring;
2368 	if (mr != NULL) {
2369 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2370 		/* In case the ring was stopped, safely restart it */
2371 		if (mr->mr_state != MR_INUSE)
2372 			(void) mac_start_ring(mr);
2373 	} else {
2374 		FLOW_UNMARK(flent, FE_QUIESCE);
2375 	}
2376 }
2377 
2378 /*
2379  * Temporary quiesce of a flow and associated Rx SRS.
2380  * Please see block comment above mac_rx_classify_flow_rem.
2381  */
2382 /* ARGSUSED */
2383 int
2384 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2385 {
2386 	int		i;
2387 
2388 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2389 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2390 		    SRS_QUIESCE);
2391 	}
2392 	return (0);
2393 }
2394 
2395 /*
2396  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2397  * Please see block comment above mac_rx_classify_flow_rem
2398  */
2399 /* ARGSUSED */
2400 int
2401 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2402 {
2403 	int		i;
2404 
2405 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2406 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2407 
2408 	return (0);
2409 }
2410 
2411 void
2412 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2413 {
2414 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2415 	flow_entry_t		*flent = mcip->mci_flent;
2416 	mac_impl_t		*mip = mcip->mci_mip;
2417 	mac_soft_ring_set_t	*mac_srs;
2418 	int			i;
2419 
2420 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2421 
2422 	if (flent == NULL)
2423 		return;
2424 
2425 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2426 		mac_srs = flent->fe_rx_srs[i];
2427 		mutex_enter(&mac_srs->srs_lock);
2428 		if (on)
2429 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2430 		else
2431 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2432 		mutex_exit(&mac_srs->srs_lock);
2433 	}
2434 }
2435 
2436 void
2437 mac_rx_client_quiesce(mac_client_handle_t mch)
2438 {
2439 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2440 	mac_impl_t		*mip = mcip->mci_mip;
2441 
2442 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2443 
2444 	if (MCIP_DATAPATH_SETUP(mcip)) {
2445 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2446 		    NULL);
2447 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2448 		    mac_rx_classify_flow_quiesce, NULL);
2449 	}
2450 }
2451 
2452 void
2453 mac_rx_client_restart(mac_client_handle_t mch)
2454 {
2455 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2456 	mac_impl_t		*mip = mcip->mci_mip;
2457 
2458 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2459 
2460 	if (MCIP_DATAPATH_SETUP(mcip)) {
2461 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2462 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2463 		    mac_rx_classify_flow_restart, NULL);
2464 	}
2465 }
2466 
2467 /*
2468  * This function only quiesces the Tx SRS and softring worker threads. Callers
2469  * need to make sure that there aren't any mac client threads doing current or
2470  * future transmits in the mac before calling this function.
2471  */
2472 void
2473 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2474 {
2475 	mac_client_impl_t	*mcip = srs->srs_mcip;
2476 
2477 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2478 
2479 	ASSERT(srs->srs_type & SRST_TX);
2480 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2481 	    srs_quiesce_flag == SRS_QUIESCE);
2482 
2483 	/*
2484 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2485 	 * SRS quiesce to complete. The SRS worker thread will wake us
2486 	 * up when the quiesce is complete
2487 	 */
2488 	mac_srs_signal(srs, srs_quiesce_flag);
2489 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2490 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2491 }
2492 
2493 void
2494 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2495 {
2496 	/*
2497 	 * Resizing the fanout could result in creation of new SRSs.
2498 	 * They may not necessarily be in the quiesced state in which
2499 	 * case it need be restarted
2500 	 */
2501 	if (!SRS_QUIESCED(srs))
2502 		return;
2503 
2504 	mac_srs_signal(srs, SRS_RESTART);
2505 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2506 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2507 }
2508 
2509 /*
2510  * Temporary quiesce of a flow and associated Rx SRS.
2511  * Please see block comment above mac_rx_srs_quiesce
2512  */
2513 /* ARGSUSED */
2514 int
2515 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2516 {
2517 	/*
2518 	 * The fe_tx_srs is null for a subflow on an interface that is
2519 	 * not plumbed
2520 	 */
2521 	if (flent->fe_tx_srs != NULL)
2522 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2523 	return (0);
2524 }
2525 
2526 /* ARGSUSED */
2527 int
2528 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2529 {
2530 	/*
2531 	 * The fe_tx_srs is null for a subflow on an interface that is
2532 	 * not plumbed
2533 	 */
2534 	if (flent->fe_tx_srs != NULL)
2535 		mac_tx_srs_restart(flent->fe_tx_srs);
2536 	return (0);
2537 }
2538 
2539 static void
2540 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2541 {
2542 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2543 
2544 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2545 
2546 	mac_tx_client_block(mcip);
2547 	if (MCIP_TX_SRS(mcip) != NULL) {
2548 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2549 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2550 		    mac_tx_flow_quiesce, NULL);
2551 	}
2552 }
2553 
2554 void
2555 mac_tx_client_quiesce(mac_client_handle_t mch)
2556 {
2557 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2558 }
2559 
2560 void
2561 mac_tx_client_condemn(mac_client_handle_t mch)
2562 {
2563 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2564 }
2565 
2566 void
2567 mac_tx_client_restart(mac_client_handle_t mch)
2568 {
2569 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2570 
2571 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2572 
2573 	mac_tx_client_unblock(mcip);
2574 	if (MCIP_TX_SRS(mcip) != NULL) {
2575 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2576 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2577 		    mac_tx_flow_restart, NULL);
2578 	}
2579 }
2580 
2581 void
2582 mac_tx_client_flush(mac_client_impl_t *mcip)
2583 {
2584 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2585 
2586 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2587 	mac_tx_client_restart((mac_client_handle_t)mcip);
2588 }
2589 
2590 void
2591 mac_client_quiesce(mac_client_impl_t *mcip)
2592 {
2593 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2594 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2595 }
2596 
2597 void
2598 mac_client_restart(mac_client_impl_t *mcip)
2599 {
2600 	mac_rx_client_restart((mac_client_handle_t)mcip);
2601 	mac_tx_client_restart((mac_client_handle_t)mcip);
2602 }
2603 
2604 /*
2605  * Allocate a minor number.
2606  */
2607 minor_t
2608 mac_minor_hold(boolean_t sleep)
2609 {
2610 	id_t id;
2611 
2612 	/*
2613 	 * Grab a value from the arena.
2614 	 */
2615 	atomic_inc_32(&minor_count);
2616 
2617 	if (sleep)
2618 		return ((uint_t)id_alloc(minor_ids));
2619 
2620 	if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2621 		atomic_dec_32(&minor_count);
2622 		return (0);
2623 	}
2624 
2625 	return ((uint_t)id);
2626 }
2627 
2628 /*
2629  * Release a previously allocated minor number.
2630  */
2631 void
2632 mac_minor_rele(minor_t minor)
2633 {
2634 	/*
2635 	 * Return the value to the arena.
2636 	 */
2637 	id_free(minor_ids, minor);
2638 	atomic_dec_32(&minor_count);
2639 }
2640 
2641 uint32_t
2642 mac_no_notification(mac_handle_t mh)
2643 {
2644 	mac_impl_t *mip = (mac_impl_t *)mh;
2645 
2646 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2647 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2648 }
2649 
2650 /*
2651  * Prevent any new opens of this mac in preparation for unregister
2652  */
2653 int
2654 i_mac_disable(mac_impl_t *mip)
2655 {
2656 	mac_client_impl_t	*mcip;
2657 
2658 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2659 	if (mip->mi_state_flags & MIS_DISABLED) {
2660 		/* Already disabled, return success */
2661 		rw_exit(&i_mac_impl_lock);
2662 		return (0);
2663 	}
2664 	/*
2665 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2666 	 * If so return failure. If all the other checks below pass, then
2667 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2668 	 * any new VLAN's from being created or new mac client opens of this
2669 	 * mac end point.
2670 	 */
2671 	if (mip->mi_ref > 0) {
2672 		rw_exit(&i_mac_impl_lock);
2673 		return (EBUSY);
2674 	}
2675 
2676 	/*
2677 	 * mac clients must delete all multicast groups they join before
2678 	 * closing. bcast groups are reference counted, the last client
2679 	 * to delete the group will wait till the group is physically
2680 	 * deleted. Since all clients have closed this mac end point
2681 	 * mi_bcast_ngrps must be zero at this point
2682 	 */
2683 	ASSERT(mip->mi_bcast_ngrps == 0);
2684 
2685 	/*
2686 	 * Don't let go of this if it has some flows.
2687 	 * All other code guarantees no flows are added to a disabled
2688 	 * mac, therefore it is sufficient to check for the flow table
2689 	 * only here.
2690 	 */
2691 	mcip = mac_primary_client_handle(mip);
2692 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2693 		rw_exit(&i_mac_impl_lock);
2694 		return (ENOTEMPTY);
2695 	}
2696 
2697 	mip->mi_state_flags |= MIS_DISABLED;
2698 	rw_exit(&i_mac_impl_lock);
2699 	return (0);
2700 }
2701 
2702 int
2703 mac_disable_nowait(mac_handle_t mh)
2704 {
2705 	mac_impl_t	*mip = (mac_impl_t *)mh;
2706 	int err;
2707 
2708 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2709 		return (err);
2710 	err = i_mac_disable(mip);
2711 	i_mac_perim_exit(mip);
2712 	return (err);
2713 }
2714 
2715 int
2716 mac_disable(mac_handle_t mh)
2717 {
2718 	mac_impl_t	*mip = (mac_impl_t *)mh;
2719 	int err;
2720 
2721 	i_mac_perim_enter(mip);
2722 	err = i_mac_disable(mip);
2723 	i_mac_perim_exit(mip);
2724 
2725 	/*
2726 	 * Clean up notification thread and wait for it to exit.
2727 	 */
2728 	if (err == 0)
2729 		i_mac_notify_exit(mip);
2730 
2731 	return (err);
2732 }
2733 
2734 /*
2735  * Called when the MAC instance has a non empty flow table, to de-multiplex
2736  * incoming packets to the right flow.
2737  */
2738 /* ARGSUSED */
2739 static mblk_t *
2740 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2741 {
2742 	flow_entry_t	*flent = NULL;
2743 	uint_t		flags = FLOW_INBOUND;
2744 	int		err;
2745 
2746 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2747 	if (err != 0) {
2748 		/* no registered receive function */
2749 		return (mp);
2750 	} else {
2751 		mac_client_impl_t	*mcip;
2752 
2753 		/*
2754 		 * This flent might just be an additional one on the MAC client,
2755 		 * i.e. for classification purposes (different fdesc), however
2756 		 * the resources, SRS et. al., are in the mci_flent, so if
2757 		 * this isn't the mci_flent, we need to get it.
2758 		 */
2759 		if ((mcip = flent->fe_mcip) != NULL &&
2760 		    mcip->mci_flent != flent) {
2761 			FLOW_REFRELE(flent);
2762 			flent = mcip->mci_flent;
2763 			FLOW_TRY_REFHOLD(flent, err);
2764 			if (err != 0)
2765 				return (mp);
2766 		}
2767 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2768 		    B_FALSE);
2769 		FLOW_REFRELE(flent);
2770 	}
2771 	return (NULL);
2772 }
2773 
2774 mblk_t *
2775 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2776 {
2777 	mac_impl_t	*mip = (mac_impl_t *)mh;
2778 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2779 
2780 	/*
2781 	 * We walk the chain and attempt to classify each packet.
2782 	 * The packets that couldn't be classified will be returned
2783 	 * back to the caller.
2784 	 */
2785 	bp = mp_chain;
2786 	bpp = &list;
2787 	while (bp != NULL) {
2788 		bp1 = bp;
2789 		bp = bp->b_next;
2790 		bp1->b_next = NULL;
2791 
2792 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2793 			*bpp = bp1;
2794 			bpp = &bp1->b_next;
2795 		}
2796 	}
2797 	return (list);
2798 }
2799 
2800 static int
2801 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2802 {
2803 	mac_ring_handle_t ring = arg;
2804 
2805 	if (flent->fe_tx_srs)
2806 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2807 	return (0);
2808 }
2809 
2810 void
2811 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2812 {
2813 	mac_client_impl_t	*cclient;
2814 	mac_soft_ring_set_t	*mac_srs;
2815 
2816 	/*
2817 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2818 	 * If there are any clients mi_disabled must be B_FALSE and can't
2819 	 * get set since there are clients. If there aren't any clients we
2820 	 * don't do anything. In any case the mip has to be valid. The driver
2821 	 * must make sure that it goes single threaded (with respect to mac
2822 	 * calls) and wait for all pending mac calls to finish before calling
2823 	 * mac_unregister.
2824 	 */
2825 	rw_enter(&i_mac_impl_lock, RW_READER);
2826 	if (mip->mi_state_flags & MIS_DISABLED) {
2827 		rw_exit(&i_mac_impl_lock);
2828 		return;
2829 	}
2830 
2831 	/*
2832 	 * Get MAC tx srs from walking mac_client_handle list.
2833 	 */
2834 	rw_enter(&mip->mi_rw_lock, RW_READER);
2835 	for (cclient = mip->mi_clients_list; cclient != NULL;
2836 	    cclient = cclient->mci_client_next) {
2837 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2838 			mac_tx_srs_wakeup(mac_srs, ring);
2839 		} else {
2840 			/*
2841 			 * Aggr opens underlying ports in exclusive mode
2842 			 * and registers flow control callbacks using
2843 			 * mac_tx_client_notify(). When opened in
2844 			 * exclusive mode, Tx SRS won't be created
2845 			 * during mac_unicast_add().
2846 			 */
2847 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2848 				mac_tx_invoke_callbacks(cclient,
2849 				    (mac_tx_cookie_t)ring);
2850 			}
2851 		}
2852 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2853 		    mac_tx_flow_srs_wakeup, ring);
2854 	}
2855 	rw_exit(&mip->mi_rw_lock);
2856 	rw_exit(&i_mac_impl_lock);
2857 }
2858 
2859 /* ARGSUSED */
2860 void
2861 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2862     boolean_t add)
2863 {
2864 	mac_impl_t *mip = (mac_impl_t *)mh;
2865 
2866 	i_mac_perim_enter((mac_impl_t *)mh);
2867 	/*
2868 	 * If no specific refresh function was given then default to the
2869 	 * driver's m_multicst entry point.
2870 	 */
2871 	if (refresh == NULL) {
2872 		refresh = mip->mi_multicst;
2873 		arg = mip->mi_driver;
2874 	}
2875 
2876 	mac_bcast_refresh(mip, refresh, arg, add);
2877 	i_mac_perim_exit((mac_impl_t *)mh);
2878 }
2879 
2880 void
2881 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2882 {
2883 	mac_impl_t	*mip = (mac_impl_t *)mh;
2884 
2885 	/*
2886 	 * If no specific refresh function was given then default to the
2887 	 * driver's m_promisc entry point.
2888 	 */
2889 	if (refresh == NULL) {
2890 		refresh = mip->mi_setpromisc;
2891 		arg = mip->mi_driver;
2892 	}
2893 	ASSERT(refresh != NULL);
2894 
2895 	/*
2896 	 * Call the refresh function with the current promiscuity.
2897 	 */
2898 	refresh(arg, (mip->mi_devpromisc != 0));
2899 }
2900 
2901 /*
2902  * The mac client requests that the mac not to change its margin size to
2903  * be less than the specified value.  If "current" is B_TRUE, then the client
2904  * requests the mac not to change its margin size to be smaller than the
2905  * current size. Further, return the current margin size value in this case.
2906  *
2907  * We keep every requested size in an ordered list from largest to smallest.
2908  */
2909 int
2910 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2911 {
2912 	mac_impl_t		*mip = (mac_impl_t *)mh;
2913 	mac_margin_req_t	**pp, *p;
2914 	int			err = 0;
2915 
2916 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2917 	if (current)
2918 		*marginp = mip->mi_margin;
2919 
2920 	/*
2921 	 * If the current margin value cannot satisfy the margin requested,
2922 	 * return ENOTSUP directly.
2923 	 */
2924 	if (*marginp > mip->mi_margin) {
2925 		err = ENOTSUP;
2926 		goto done;
2927 	}
2928 
2929 	/*
2930 	 * Check whether the given margin is already in the list. If so,
2931 	 * bump the reference count.
2932 	 */
2933 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2934 		if (p->mmr_margin == *marginp) {
2935 			/*
2936 			 * The margin requested is already in the list,
2937 			 * so just bump the reference count.
2938 			 */
2939 			p->mmr_ref++;
2940 			goto done;
2941 		}
2942 		if (p->mmr_margin < *marginp)
2943 			break;
2944 	}
2945 
2946 
2947 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2948 	p->mmr_margin = *marginp;
2949 	p->mmr_ref++;
2950 	p->mmr_nextp = *pp;
2951 	*pp = p;
2952 
2953 done:
2954 	rw_exit(&(mip->mi_rw_lock));
2955 	return (err);
2956 }
2957 
2958 /*
2959  * The mac client requests to cancel its previous mac_margin_add() request.
2960  * We remove the requested margin size from the list.
2961  */
2962 int
2963 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2964 {
2965 	mac_impl_t		*mip = (mac_impl_t *)mh;
2966 	mac_margin_req_t	**pp, *p;
2967 	int			err = 0;
2968 
2969 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2970 	/*
2971 	 * Find the entry in the list for the given margin.
2972 	 */
2973 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2974 		if (p->mmr_margin == margin) {
2975 			if (--p->mmr_ref == 0)
2976 				break;
2977 
2978 			/*
2979 			 * There is still a reference to this address so
2980 			 * there's nothing more to do.
2981 			 */
2982 			goto done;
2983 		}
2984 	}
2985 
2986 	/*
2987 	 * We did not find an entry for the given margin.
2988 	 */
2989 	if (p == NULL) {
2990 		err = ENOENT;
2991 		goto done;
2992 	}
2993 
2994 	ASSERT(p->mmr_ref == 0);
2995 
2996 	/*
2997 	 * Remove it from the list.
2998 	 */
2999 	*pp = p->mmr_nextp;
3000 	kmem_free(p, sizeof (mac_margin_req_t));
3001 done:
3002 	rw_exit(&(mip->mi_rw_lock));
3003 	return (err);
3004 }
3005 
3006 boolean_t
3007 mac_margin_update(mac_handle_t mh, uint32_t margin)
3008 {
3009 	mac_impl_t	*mip = (mac_impl_t *)mh;
3010 	uint32_t	margin_needed = 0;
3011 
3012 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
3013 
3014 	if (mip->mi_mmrp != NULL)
3015 		margin_needed = mip->mi_mmrp->mmr_margin;
3016 
3017 	if (margin_needed <= margin)
3018 		mip->mi_margin = margin;
3019 
3020 	rw_exit(&(mip->mi_rw_lock));
3021 
3022 	if (margin_needed <= margin)
3023 		i_mac_notify(mip, MAC_NOTE_MARGIN);
3024 
3025 	return (margin_needed <= margin);
3026 }
3027 
3028 /*
3029  * MAC clients use this interface to request that a MAC device not change its
3030  * MTU below the specified amount. At this time, that amount must be within the
3031  * range of the device's current minimum and the device's current maximum. eg. a
3032  * client cannot request a 3000 byte MTU when the device's MTU is currently
3033  * 2000.
3034  *
3035  * If "current" is set to B_TRUE, then the request is to simply to reserve the
3036  * current underlying mac's maximum for this mac client and return it in mtup.
3037  */
3038 int
3039 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
3040 {
3041 	mac_impl_t		*mip = (mac_impl_t *)mh;
3042 	mac_mtu_req_t		*prev, *cur;
3043 	mac_propval_range_t	mpr;
3044 	int			err;
3045 
3046 	i_mac_perim_enter(mip);
3047 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3048 
3049 	if (current == B_TRUE)
3050 		*mtup = mip->mi_sdu_max;
3051 	mpr.mpr_count = 1;
3052 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
3053 	if (err != 0) {
3054 		rw_exit(&mip->mi_rw_lock);
3055 		i_mac_perim_exit(mip);
3056 		return (err);
3057 	}
3058 
3059 	if (*mtup > mip->mi_sdu_max ||
3060 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
3061 		rw_exit(&mip->mi_rw_lock);
3062 		i_mac_perim_exit(mip);
3063 		return (ENOTSUP);
3064 	}
3065 
3066 	prev = NULL;
3067 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3068 		if (*mtup == cur->mtr_mtu) {
3069 			cur->mtr_ref++;
3070 			rw_exit(&mip->mi_rw_lock);
3071 			i_mac_perim_exit(mip);
3072 			return (0);
3073 		}
3074 
3075 		if (*mtup > cur->mtr_mtu)
3076 			break;
3077 
3078 		prev = cur;
3079 	}
3080 
3081 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
3082 	cur->mtr_mtu = *mtup;
3083 	cur->mtr_ref = 1;
3084 	if (prev != NULL) {
3085 		cur->mtr_nextp = prev->mtr_nextp;
3086 		prev->mtr_nextp = cur;
3087 	} else {
3088 		cur->mtr_nextp = mip->mi_mtrp;
3089 		mip->mi_mtrp = cur;
3090 	}
3091 
3092 	rw_exit(&mip->mi_rw_lock);
3093 	i_mac_perim_exit(mip);
3094 	return (0);
3095 }
3096 
3097 int
3098 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
3099 {
3100 	mac_impl_t *mip = (mac_impl_t *)mh;
3101 	mac_mtu_req_t *cur, *prev;
3102 
3103 	i_mac_perim_enter(mip);
3104 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3105 
3106 	prev = NULL;
3107 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3108 		if (cur->mtr_mtu == mtu) {
3109 			ASSERT(cur->mtr_ref > 0);
3110 			cur->mtr_ref--;
3111 			if (cur->mtr_ref == 0) {
3112 				if (prev == NULL) {
3113 					mip->mi_mtrp = cur->mtr_nextp;
3114 				} else {
3115 					prev->mtr_nextp = cur->mtr_nextp;
3116 				}
3117 				kmem_free(cur, sizeof (mac_mtu_req_t));
3118 			}
3119 			rw_exit(&mip->mi_rw_lock);
3120 			i_mac_perim_exit(mip);
3121 			return (0);
3122 		}
3123 
3124 		prev = cur;
3125 	}
3126 
3127 	rw_exit(&mip->mi_rw_lock);
3128 	i_mac_perim_exit(mip);
3129 	return (ENOENT);
3130 }
3131 
3132 /*
3133  * MAC Type Plugin functions.
3134  */
3135 
3136 mactype_t *
3137 mactype_getplugin(const char *pname)
3138 {
3139 	mactype_t	*mtype = NULL;
3140 	boolean_t	tried_modload = B_FALSE;
3141 
3142 	mutex_enter(&i_mactype_lock);
3143 
3144 find_registered_mactype:
3145 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
3146 	    (mod_hash_val_t *)&mtype) != 0) {
3147 		if (!tried_modload) {
3148 			/*
3149 			 * If the plugin has not yet been loaded, then
3150 			 * attempt to load it now.  If modload() succeeds,
3151 			 * the plugin should have registered using
3152 			 * mactype_register(), in which case we can go back
3153 			 * and attempt to find it again.
3154 			 */
3155 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
3156 				tried_modload = B_TRUE;
3157 				goto find_registered_mactype;
3158 			}
3159 		}
3160 	} else {
3161 		/*
3162 		 * Note that there's no danger that the plugin we've loaded
3163 		 * could be unloaded between the modload() step and the
3164 		 * reference count bump here, as we're holding
3165 		 * i_mactype_lock, which mactype_unregister() also holds.
3166 		 */
3167 		atomic_inc_32(&mtype->mt_ref);
3168 	}
3169 
3170 	mutex_exit(&i_mactype_lock);
3171 	return (mtype);
3172 }
3173 
3174 mactype_register_t *
3175 mactype_alloc(uint_t mactype_version)
3176 {
3177 	mactype_register_t *mtrp;
3178 
3179 	/*
3180 	 * Make sure there isn't a version mismatch between the plugin and
3181 	 * the framework.  In the future, if multiple versions are
3182 	 * supported, this check could become more sophisticated.
3183 	 */
3184 	if (mactype_version != MACTYPE_VERSION)
3185 		return (NULL);
3186 
3187 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
3188 	mtrp->mtr_version = mactype_version;
3189 	return (mtrp);
3190 }
3191 
3192 void
3193 mactype_free(mactype_register_t *mtrp)
3194 {
3195 	kmem_free(mtrp, sizeof (mactype_register_t));
3196 }
3197 
3198 int
3199 mactype_register(mactype_register_t *mtrp)
3200 {
3201 	mactype_t	*mtp;
3202 	mactype_ops_t	*ops = mtrp->mtr_ops;
3203 
3204 	/* Do some sanity checking before we register this MAC type. */
3205 	if (mtrp->mtr_ident == NULL || ops == NULL)
3206 		return (EINVAL);
3207 
3208 	/*
3209 	 * Verify that all mandatory callbacks are set in the ops
3210 	 * vector.
3211 	 */
3212 	if (ops->mtops_unicst_verify == NULL ||
3213 	    ops->mtops_multicst_verify == NULL ||
3214 	    ops->mtops_sap_verify == NULL ||
3215 	    ops->mtops_header == NULL ||
3216 	    ops->mtops_header_info == NULL) {
3217 		return (EINVAL);
3218 	}
3219 
3220 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
3221 	mtp->mt_ident = mtrp->mtr_ident;
3222 	mtp->mt_ops = *ops;
3223 	mtp->mt_type = mtrp->mtr_mactype;
3224 	mtp->mt_nativetype = mtrp->mtr_nativetype;
3225 	mtp->mt_addr_length = mtrp->mtr_addrlen;
3226 	if (mtrp->mtr_brdcst_addr != NULL) {
3227 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
3228 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
3229 		    mtrp->mtr_addrlen);
3230 	}
3231 
3232 	mtp->mt_stats = mtrp->mtr_stats;
3233 	mtp->mt_statcount = mtrp->mtr_statcount;
3234 
3235 	mtp->mt_mapping = mtrp->mtr_mapping;
3236 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
3237 
3238 	if (mod_hash_insert(i_mactype_hash,
3239 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
3240 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3241 		kmem_free(mtp, sizeof (*mtp));
3242 		return (EEXIST);
3243 	}
3244 	return (0);
3245 }
3246 
3247 int
3248 mactype_unregister(const char *ident)
3249 {
3250 	mactype_t	*mtp;
3251 	mod_hash_val_t	val;
3252 	int		err;
3253 
3254 	/*
3255 	 * Let's not allow MAC drivers to use this plugin while we're
3256 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
3257 	 * plugin from unregistering while a MAC driver is attempting to
3258 	 * hold a reference to it in i_mactype_getplugin().
3259 	 */
3260 	mutex_enter(&i_mactype_lock);
3261 
3262 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
3263 	    (mod_hash_val_t *)&mtp)) != 0) {
3264 		/* A plugin is trying to unregister, but it never registered. */
3265 		err = ENXIO;
3266 		goto done;
3267 	}
3268 
3269 	if (mtp->mt_ref != 0) {
3270 		err = EBUSY;
3271 		goto done;
3272 	}
3273 
3274 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
3275 	ASSERT(err == 0);
3276 	if (err != 0) {
3277 		/* This should never happen, thus the ASSERT() above. */
3278 		err = EINVAL;
3279 		goto done;
3280 	}
3281 	ASSERT(mtp == (mactype_t *)val);
3282 
3283 	if (mtp->mt_brdcst_addr != NULL)
3284 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3285 	kmem_free(mtp, sizeof (mactype_t));
3286 done:
3287 	mutex_exit(&i_mactype_lock);
3288 	return (err);
3289 }
3290 
3291 /*
3292  * Checks the size of the value size specified for a property as
3293  * part of a property operation. Returns B_TRUE if the size is
3294  * correct, B_FALSE otherwise.
3295  */
3296 boolean_t
3297 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
3298 {
3299 	uint_t minsize = 0;
3300 
3301 	if (is_range)
3302 		return (valsize >= sizeof (mac_propval_range_t));
3303 
3304 	switch (id) {
3305 	case MAC_PROP_ZONE:
3306 		minsize = sizeof (dld_ioc_zid_t);
3307 		break;
3308 	case MAC_PROP_AUTOPUSH:
3309 		if (valsize != 0)
3310 			minsize = sizeof (struct dlautopush);
3311 		break;
3312 	case MAC_PROP_TAGMODE:
3313 		minsize = sizeof (link_tagmode_t);
3314 		break;
3315 	case MAC_PROP_RESOURCE:
3316 	case MAC_PROP_RESOURCE_EFF:
3317 		minsize = sizeof (mac_resource_props_t);
3318 		break;
3319 	case MAC_PROP_DUPLEX:
3320 		minsize = sizeof (link_duplex_t);
3321 		break;
3322 	case MAC_PROP_SPEED:
3323 		minsize = sizeof (uint64_t);
3324 		break;
3325 	case MAC_PROP_STATUS:
3326 		minsize = sizeof (link_state_t);
3327 		break;
3328 	case MAC_PROP_AUTONEG:
3329 	case MAC_PROP_EN_AUTONEG:
3330 		minsize = sizeof (uint8_t);
3331 		break;
3332 	case MAC_PROP_MTU:
3333 	case MAC_PROP_LLIMIT:
3334 	case MAC_PROP_LDECAY:
3335 		minsize = sizeof (uint32_t);
3336 		break;
3337 	case MAC_PROP_FLOWCTRL:
3338 		minsize = sizeof (link_flowctrl_t);
3339 		break;
3340 	case MAC_PROP_ADV_FEC_CAP:
3341 	case MAC_PROP_EN_FEC_CAP:
3342 		minsize = sizeof (link_fec_t);
3343 		break;
3344 	case MAC_PROP_ADV_5000FDX_CAP:
3345 	case MAC_PROP_EN_5000FDX_CAP:
3346 	case MAC_PROP_ADV_2500FDX_CAP:
3347 	case MAC_PROP_EN_2500FDX_CAP:
3348 	case MAC_PROP_ADV_100GFDX_CAP:
3349 	case MAC_PROP_EN_100GFDX_CAP:
3350 	case MAC_PROP_ADV_50GFDX_CAP:
3351 	case MAC_PROP_EN_50GFDX_CAP:
3352 	case MAC_PROP_ADV_40GFDX_CAP:
3353 	case MAC_PROP_EN_40GFDX_CAP:
3354 	case MAC_PROP_ADV_25GFDX_CAP:
3355 	case MAC_PROP_EN_25GFDX_CAP:
3356 	case MAC_PROP_ADV_10GFDX_CAP:
3357 	case MAC_PROP_EN_10GFDX_CAP:
3358 	case MAC_PROP_ADV_1000HDX_CAP:
3359 	case MAC_PROP_EN_1000HDX_CAP:
3360 	case MAC_PROP_ADV_100FDX_CAP:
3361 	case MAC_PROP_EN_100FDX_CAP:
3362 	case MAC_PROP_ADV_100HDX_CAP:
3363 	case MAC_PROP_EN_100HDX_CAP:
3364 	case MAC_PROP_ADV_10FDX_CAP:
3365 	case MAC_PROP_EN_10FDX_CAP:
3366 	case MAC_PROP_ADV_10HDX_CAP:
3367 	case MAC_PROP_EN_10HDX_CAP:
3368 	case MAC_PROP_ADV_100T4_CAP:
3369 	case MAC_PROP_EN_100T4_CAP:
3370 		minsize = sizeof (uint8_t);
3371 		break;
3372 	case MAC_PROP_PVID:
3373 		minsize = sizeof (uint16_t);
3374 		break;
3375 	case MAC_PROP_IPTUN_HOPLIMIT:
3376 		minsize = sizeof (uint32_t);
3377 		break;
3378 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3379 		minsize = sizeof (uint32_t);
3380 		break;
3381 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3382 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3383 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3384 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3385 		minsize = sizeof (uint_t);
3386 		break;
3387 	case MAC_PROP_WL_ESSID:
3388 		minsize = sizeof (wl_linkstatus_t);
3389 		break;
3390 	case MAC_PROP_WL_BSSID:
3391 		minsize = sizeof (wl_bssid_t);
3392 		break;
3393 	case MAC_PROP_WL_BSSTYPE:
3394 		minsize = sizeof (wl_bss_type_t);
3395 		break;
3396 	case MAC_PROP_WL_LINKSTATUS:
3397 		minsize = sizeof (wl_linkstatus_t);
3398 		break;
3399 	case MAC_PROP_WL_DESIRED_RATES:
3400 		minsize = sizeof (wl_rates_t);
3401 		break;
3402 	case MAC_PROP_WL_SUPPORTED_RATES:
3403 		minsize = sizeof (wl_rates_t);
3404 		break;
3405 	case MAC_PROP_WL_AUTH_MODE:
3406 		minsize = sizeof (wl_authmode_t);
3407 		break;
3408 	case MAC_PROP_WL_ENCRYPTION:
3409 		minsize = sizeof (wl_encryption_t);
3410 		break;
3411 	case MAC_PROP_WL_RSSI:
3412 		minsize = sizeof (wl_rssi_t);
3413 		break;
3414 	case MAC_PROP_WL_PHY_CONFIG:
3415 		minsize = sizeof (wl_phy_conf_t);
3416 		break;
3417 	case MAC_PROP_WL_CAPABILITY:
3418 		minsize = sizeof (wl_capability_t);
3419 		break;
3420 	case MAC_PROP_WL_WPA:
3421 		minsize = sizeof (wl_wpa_t);
3422 		break;
3423 	case MAC_PROP_WL_SCANRESULTS:
3424 		minsize = sizeof (wl_wpa_ess_t);
3425 		break;
3426 	case MAC_PROP_WL_POWER_MODE:
3427 		minsize = sizeof (wl_ps_mode_t);
3428 		break;
3429 	case MAC_PROP_WL_RADIO:
3430 		minsize = sizeof (wl_radio_t);
3431 		break;
3432 	case MAC_PROP_WL_ESS_LIST:
3433 		minsize = sizeof (wl_ess_list_t);
3434 		break;
3435 	case MAC_PROP_WL_KEY_TAB:
3436 		minsize = sizeof (wl_wep_key_tab_t);
3437 		break;
3438 	case MAC_PROP_WL_CREATE_IBSS:
3439 		minsize = sizeof (wl_create_ibss_t);
3440 		break;
3441 	case MAC_PROP_WL_SETOPTIE:
3442 		minsize = sizeof (wl_wpa_ie_t);
3443 		break;
3444 	case MAC_PROP_WL_DELKEY:
3445 		minsize = sizeof (wl_del_key_t);
3446 		break;
3447 	case MAC_PROP_WL_KEY:
3448 		minsize = sizeof (wl_key_t);
3449 		break;
3450 	case MAC_PROP_WL_MLME:
3451 		minsize = sizeof (wl_mlme_t);
3452 		break;
3453 	case MAC_PROP_VN_PROMISC_FILTERED:
3454 		minsize = sizeof (boolean_t);
3455 		break;
3456 	}
3457 
3458 	return (valsize >= minsize);
3459 }
3460 
3461 /*
3462  * mac_set_prop() sets MAC or hardware driver properties:
3463  *
3464  * - MAC-managed properties such as resource properties include maxbw,
3465  *   priority, and cpu binding list, as well as the default port VID
3466  *   used by bridging. These properties are consumed by the MAC layer
3467  *   itself and not passed down to the driver. For resource control
3468  *   properties, this function invokes mac_set_resources() which will
3469  *   cache the property value in mac_impl_t and may call
3470  *   mac_client_set_resource() to update property value of the primary
3471  *   mac client, if it exists.
3472  *
3473  * - Properties which act on the hardware and must be passed to the
3474  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3475  */
3476 int
3477 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3478     uint_t valsize)
3479 {
3480 	int err = ENOTSUP;
3481 	mac_impl_t *mip = (mac_impl_t *)mh;
3482 
3483 	ASSERT(MAC_PERIM_HELD(mh));
3484 
3485 	switch (id) {
3486 	case MAC_PROP_RESOURCE: {
3487 		mac_resource_props_t *mrp;
3488 
3489 		/* call mac_set_resources() for MAC properties */
3490 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3491 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3492 		bcopy(val, mrp, sizeof (*mrp));
3493 		err = mac_set_resources(mh, mrp);
3494 		kmem_free(mrp, sizeof (*mrp));
3495 		break;
3496 	}
3497 
3498 	case MAC_PROP_PVID:
3499 		ASSERT(valsize >= sizeof (uint16_t));
3500 		if (mip->mi_state_flags & MIS_IS_VNIC)
3501 			return (EINVAL);
3502 		err = mac_set_pvid(mh, *(uint16_t *)val);
3503 		break;
3504 
3505 	case MAC_PROP_MTU: {
3506 		uint32_t mtu;
3507 
3508 		ASSERT(valsize >= sizeof (uint32_t));
3509 		bcopy(val, &mtu, sizeof (mtu));
3510 		err = mac_set_mtu(mh, mtu, NULL);
3511 		break;
3512 	}
3513 
3514 	case MAC_PROP_LLIMIT:
3515 	case MAC_PROP_LDECAY: {
3516 		uint32_t learnval;
3517 
3518 		if (valsize < sizeof (learnval) ||
3519 		    (mip->mi_state_flags & MIS_IS_VNIC))
3520 			return (EINVAL);
3521 		bcopy(val, &learnval, sizeof (learnval));
3522 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3523 			return (EINVAL);
3524 		if (id == MAC_PROP_LLIMIT)
3525 			mip->mi_llimit = learnval;
3526 		else
3527 			mip->mi_ldecay = learnval;
3528 		err = 0;
3529 		break;
3530 	}
3531 
3532 	case MAC_PROP_ADV_FEC_CAP:
3533 	case MAC_PROP_EN_FEC_CAP: {
3534 		link_fec_t fec;
3535 
3536 		ASSERT(valsize >= sizeof (link_fec_t));
3537 
3538 		/*
3539 		 * fec cannot be zero, and auto must be set exclusively.
3540 		 */
3541 		bcopy(val, &fec, sizeof (link_fec_t));
3542 		if (fec == 0)
3543 			return (EINVAL);
3544 		if ((fec & LINK_FEC_AUTO) != 0 && (fec & ~LINK_FEC_AUTO) != 0)
3545 			return (EINVAL);
3546 
3547 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3548 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3549 			    name, id, valsize, val);
3550 		}
3551 		break;
3552 	}
3553 
3554 	default:
3555 		/* For other driver properties, call driver's callback */
3556 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3557 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3558 			    name, id, valsize, val);
3559 		}
3560 	}
3561 	return (err);
3562 }
3563 
3564 /*
3565  * mac_get_prop() gets MAC or device driver properties.
3566  *
3567  * If the property is a driver property, mac_get_prop() calls driver's callback
3568  * entry point to get it.
3569  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3570  * which returns the cached value in mac_impl_t.
3571  */
3572 int
3573 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3574     uint_t valsize)
3575 {
3576 	int err = ENOTSUP;
3577 	mac_impl_t *mip = (mac_impl_t *)mh;
3578 	uint_t	rings;
3579 	uint_t	vlinks;
3580 
3581 	bzero(val, valsize);
3582 
3583 	switch (id) {
3584 	case MAC_PROP_RESOURCE: {
3585 		mac_resource_props_t *mrp;
3586 
3587 		/* If mac property, read from cache */
3588 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3589 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3590 		mac_get_resources(mh, mrp);
3591 		bcopy(mrp, val, sizeof (*mrp));
3592 		kmem_free(mrp, sizeof (*mrp));
3593 		return (0);
3594 	}
3595 	case MAC_PROP_RESOURCE_EFF: {
3596 		mac_resource_props_t *mrp;
3597 
3598 		/* If mac effective property, read from client */
3599 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3600 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3601 		mac_get_effective_resources(mh, mrp);
3602 		bcopy(mrp, val, sizeof (*mrp));
3603 		kmem_free(mrp, sizeof (*mrp));
3604 		return (0);
3605 	}
3606 
3607 	case MAC_PROP_PVID:
3608 		ASSERT(valsize >= sizeof (uint16_t));
3609 		if (mip->mi_state_flags & MIS_IS_VNIC)
3610 			return (EINVAL);
3611 		*(uint16_t *)val = mac_get_pvid(mh);
3612 		return (0);
3613 
3614 	case MAC_PROP_LLIMIT:
3615 	case MAC_PROP_LDECAY:
3616 		ASSERT(valsize >= sizeof (uint32_t));
3617 		if (mip->mi_state_flags & MIS_IS_VNIC)
3618 			return (EINVAL);
3619 		if (id == MAC_PROP_LLIMIT)
3620 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3621 		else
3622 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3623 		return (0);
3624 
3625 	case MAC_PROP_MTU: {
3626 		uint32_t sdu;
3627 
3628 		ASSERT(valsize >= sizeof (uint32_t));
3629 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3630 		bcopy(&sdu, val, sizeof (sdu));
3631 
3632 		return (0);
3633 	}
3634 	case MAC_PROP_STATUS: {
3635 		link_state_t link_state;
3636 
3637 		if (valsize < sizeof (link_state))
3638 			return (EINVAL);
3639 		link_state = mac_link_get(mh);
3640 		bcopy(&link_state, val, sizeof (link_state));
3641 
3642 		return (0);
3643 	}
3644 
3645 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3646 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3647 		ASSERT(valsize >= sizeof (uint_t));
3648 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3649 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3650 		bcopy(&rings, val, sizeof (uint_t));
3651 		return (0);
3652 
3653 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3654 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3655 		ASSERT(valsize >= sizeof (uint_t));
3656 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3657 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3658 		bcopy(&vlinks, val, sizeof (uint_t));
3659 		return (0);
3660 
3661 	case MAC_PROP_RXRINGSRANGE:
3662 	case MAC_PROP_TXRINGSRANGE:
3663 		/*
3664 		 * The value for these properties are returned through
3665 		 * the MAC_PROP_RESOURCE property.
3666 		 */
3667 		return (0);
3668 
3669 	default:
3670 		break;
3671 
3672 	}
3673 
3674 	/* If driver property, request from driver */
3675 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3676 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3677 		    valsize, val);
3678 	}
3679 
3680 	return (err);
3681 }
3682 
3683 /*
3684  * Helper function to initialize the range structure for use in
3685  * mac_get_prop. If the type can be other than uint32, we can
3686  * pass that as an arg.
3687  */
3688 static void
3689 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3690 {
3691 	range->mpr_count = 1;
3692 	range->mpr_type = MAC_PROPVAL_UINT32;
3693 	range->mpr_range_uint32[0].mpur_min = min;
3694 	range->mpr_range_uint32[0].mpur_max = max;
3695 }
3696 
3697 /*
3698  * Returns information about the specified property, such as default
3699  * values or permissions.
3700  */
3701 int
3702 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3703     void *default_val, uint_t default_size, mac_propval_range_t *range,
3704     uint_t *perm)
3705 {
3706 	mac_prop_info_state_t state;
3707 	mac_impl_t *mip = (mac_impl_t *)mh;
3708 	uint_t	max;
3709 
3710 	/*
3711 	 * A property is read/write by default unless the driver says
3712 	 * otherwise.
3713 	 */
3714 	if (perm != NULL)
3715 		*perm = MAC_PROP_PERM_RW;
3716 
3717 	if (default_val != NULL)
3718 		bzero(default_val, default_size);
3719 
3720 	/*
3721 	 * First, handle framework properties for which we don't need to
3722 	 * involve the driver.
3723 	 */
3724 	switch (id) {
3725 	case MAC_PROP_RESOURCE:
3726 	case MAC_PROP_PVID:
3727 	case MAC_PROP_LLIMIT:
3728 	case MAC_PROP_LDECAY:
3729 		return (0);
3730 
3731 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3732 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3733 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3734 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3735 		if (perm != NULL)
3736 			*perm = MAC_PROP_PERM_READ;
3737 		return (0);
3738 
3739 	case MAC_PROP_RXRINGSRANGE:
3740 	case MAC_PROP_TXRINGSRANGE:
3741 		/*
3742 		 * Currently, we support range for RX and TX rings properties.
3743 		 * When we extend this support to maxbw, cpus and priority,
3744 		 * we should move this to mac_get_resources.
3745 		 * There is no default value for RX or TX rings.
3746 		 */
3747 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3748 		    mac_is_vnic_primary(mh)) {
3749 			/*
3750 			 * We don't support setting rings for a VLAN
3751 			 * data link because it shares its ring with the
3752 			 * primary MAC client.
3753 			 */
3754 			if (perm != NULL)
3755 				*perm = MAC_PROP_PERM_READ;
3756 			if (range != NULL)
3757 				range->mpr_count = 0;
3758 		} else if (range != NULL) {
3759 			if (mip->mi_state_flags & MIS_IS_VNIC)
3760 				mh = mac_get_lower_mac_handle(mh);
3761 			mip = (mac_impl_t *)mh;
3762 			if ((id == MAC_PROP_RXRINGSRANGE &&
3763 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3764 			    (id == MAC_PROP_TXRINGSRANGE &&
3765 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3766 				if (id == MAC_PROP_RXRINGSRANGE) {
3767 					if ((mac_rxhwlnksavail_get(mh) +
3768 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3769 						/*
3770 						 * doesn't support groups or
3771 						 * rings
3772 						 */
3773 						range->mpr_count = 0;
3774 					} else {
3775 						/*
3776 						 * supports specifying groups,
3777 						 * but not rings
3778 						 */
3779 						_mac_set_range(range, 0, 0);
3780 					}
3781 				} else {
3782 					if ((mac_txhwlnksavail_get(mh) +
3783 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3784 						/*
3785 						 * doesn't support groups or
3786 						 * rings
3787 						 */
3788 						range->mpr_count = 0;
3789 					} else {
3790 						/*
3791 						 * supports specifying groups,
3792 						 * but not rings
3793 						 */
3794 						_mac_set_range(range, 0, 0);
3795 					}
3796 				}
3797 			} else {
3798 				max = id == MAC_PROP_RXRINGSRANGE ?
3799 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3800 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3801 				if (max <= 1) {
3802 					/*
3803 					 * doesn't support groups or
3804 					 * rings
3805 					 */
3806 					range->mpr_count = 0;
3807 				} else  {
3808 					/*
3809 					 * -1 because we have to leave out the
3810 					 * default ring.
3811 					 */
3812 					_mac_set_range(range, 1, max - 1);
3813 				}
3814 			}
3815 		}
3816 		return (0);
3817 
3818 	case MAC_PROP_STATUS:
3819 		if (perm != NULL)
3820 			*perm = MAC_PROP_PERM_READ;
3821 		return (0);
3822 	}
3823 
3824 	/*
3825 	 * Get the property info from the driver if it implements the
3826 	 * property info entry point.
3827 	 */
3828 	bzero(&state, sizeof (state));
3829 
3830 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3831 		state.pr_default = default_val;
3832 		state.pr_default_size = default_size;
3833 
3834 		/*
3835 		 * The caller specifies the maximum number of ranges
3836 		 * it can accomodate using mpr_count. We don't touch
3837 		 * this value until the driver returns from its
3838 		 * mc_propinfo() callback, and ensure we don't exceed
3839 		 * this number of range as the driver defines
3840 		 * supported range from its mc_propinfo().
3841 		 *
3842 		 * pr_range_cur_count keeps track of how many ranges
3843 		 * were defined by the driver from its mc_propinfo()
3844 		 * entry point.
3845 		 *
3846 		 * On exit, the user-specified range mpr_count returns
3847 		 * the number of ranges specified by the driver on
3848 		 * success, or the number of ranges it wanted to
3849 		 * define if that number of ranges could not be
3850 		 * accomodated by the specified range structure.  In
3851 		 * the latter case, the caller will be able to
3852 		 * allocate a larger range structure, and query the
3853 		 * property again.
3854 		 */
3855 		state.pr_range_cur_count = 0;
3856 		state.pr_range = range;
3857 
3858 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3859 		    (mac_prop_info_handle_t)&state);
3860 
3861 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3862 			range->mpr_count = state.pr_range_cur_count;
3863 
3864 		/*
3865 		 * The operation could fail if the buffer supplied by
3866 		 * the user was too small for the range or default
3867 		 * value of the property.
3868 		 */
3869 		if (state.pr_errno != 0)
3870 			return (state.pr_errno);
3871 
3872 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3873 			*perm = state.pr_perm;
3874 	}
3875 
3876 	/*
3877 	 * The MAC layer may want to provide default values or allowed
3878 	 * ranges for properties if the driver does not provide a
3879 	 * property info entry point, or that entry point exists, but
3880 	 * it did not provide a default value or allowed ranges for
3881 	 * that property.
3882 	 */
3883 	switch (id) {
3884 	case MAC_PROP_MTU: {
3885 		uint32_t sdu;
3886 
3887 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3888 
3889 		if (range != NULL && !(state.pr_flags &
3890 		    MAC_PROP_INFO_RANGE)) {
3891 			/* MTU range */
3892 			_mac_set_range(range, sdu, sdu);
3893 		}
3894 
3895 		if (default_val != NULL && !(state.pr_flags &
3896 		    MAC_PROP_INFO_DEFAULT)) {
3897 			if (mip->mi_info.mi_media == DL_ETHER)
3898 				sdu = ETHERMTU;
3899 			/* default MTU value */
3900 			bcopy(&sdu, default_val, sizeof (sdu));
3901 		}
3902 	}
3903 	}
3904 
3905 	return (0);
3906 }
3907 
3908 int
3909 mac_fastpath_disable(mac_handle_t mh)
3910 {
3911 	mac_impl_t	*mip = (mac_impl_t *)mh;
3912 
3913 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3914 		return (0);
3915 
3916 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3917 }
3918 
3919 void
3920 mac_fastpath_enable(mac_handle_t mh)
3921 {
3922 	mac_impl_t	*mip = (mac_impl_t *)mh;
3923 
3924 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3925 		return;
3926 
3927 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3928 }
3929 
3930 void
3931 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3932 {
3933 	uint_t nprops, i;
3934 
3935 	if (priv_props == NULL)
3936 		return;
3937 
3938 	nprops = 0;
3939 	while (priv_props[nprops] != NULL)
3940 		nprops++;
3941 	if (nprops == 0)
3942 		return;
3943 
3944 
3945 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3946 
3947 	for (i = 0; i < nprops; i++) {
3948 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3949 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3950 		    MAXLINKPROPNAME);
3951 	}
3952 
3953 	mip->mi_priv_prop_count = nprops;
3954 }
3955 
3956 void
3957 mac_unregister_priv_prop(mac_impl_t *mip)
3958 {
3959 	uint_t i;
3960 
3961 	if (mip->mi_priv_prop_count == 0) {
3962 		ASSERT(mip->mi_priv_prop == NULL);
3963 		return;
3964 	}
3965 
3966 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3967 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3968 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3969 	    sizeof (char *));
3970 
3971 	mip->mi_priv_prop = NULL;
3972 	mip->mi_priv_prop_count = 0;
3973 }
3974 
3975 /*
3976  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3977  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3978  * cases if MAC free's the ring structure after mac_stop_ring(), any
3979  * illegal access to the ring structure coming from the driver will panic
3980  * the system. In order to protect the system from such inadverent access,
3981  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3982  * When packets are received on free'd up rings, MAC (through the generation
3983  * count mechanism) will drop such packets.
3984  */
3985 static mac_ring_t *
3986 mac_ring_alloc(mac_impl_t *mip)
3987 {
3988 	mac_ring_t *ring;
3989 
3990 	mutex_enter(&mip->mi_ring_lock);
3991 	if (mip->mi_ring_freelist != NULL) {
3992 		ring = mip->mi_ring_freelist;
3993 		mip->mi_ring_freelist = ring->mr_next;
3994 		bzero(ring, sizeof (mac_ring_t));
3995 		mutex_exit(&mip->mi_ring_lock);
3996 	} else {
3997 		mutex_exit(&mip->mi_ring_lock);
3998 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3999 	}
4000 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
4001 	return (ring);
4002 }
4003 
4004 static void
4005 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
4006 {
4007 	ASSERT(ring->mr_state == MR_FREE);
4008 
4009 	mutex_enter(&mip->mi_ring_lock);
4010 	ring->mr_state = MR_FREE;
4011 	ring->mr_flag = 0;
4012 	ring->mr_next = mip->mi_ring_freelist;
4013 	ring->mr_mip = NULL;
4014 	mip->mi_ring_freelist = ring;
4015 	mac_ring_stat_delete(ring);
4016 	mutex_exit(&mip->mi_ring_lock);
4017 }
4018 
4019 static void
4020 mac_ring_freeall(mac_impl_t *mip)
4021 {
4022 	mac_ring_t *ring_next;
4023 	mutex_enter(&mip->mi_ring_lock);
4024 	mac_ring_t *ring = mip->mi_ring_freelist;
4025 	while (ring != NULL) {
4026 		ring_next = ring->mr_next;
4027 		kmem_cache_free(mac_ring_cache, ring);
4028 		ring = ring_next;
4029 	}
4030 	mip->mi_ring_freelist = NULL;
4031 	mutex_exit(&mip->mi_ring_lock);
4032 }
4033 
4034 int
4035 mac_start_ring(mac_ring_t *ring)
4036 {
4037 	int rv = 0;
4038 
4039 	ASSERT(ring->mr_state == MR_FREE);
4040 
4041 	if (ring->mr_start != NULL) {
4042 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
4043 		if (rv != 0)
4044 			return (rv);
4045 	}
4046 
4047 	ring->mr_state = MR_INUSE;
4048 	return (rv);
4049 }
4050 
4051 void
4052 mac_stop_ring(mac_ring_t *ring)
4053 {
4054 	ASSERT(ring->mr_state == MR_INUSE);
4055 
4056 	if (ring->mr_stop != NULL)
4057 		ring->mr_stop(ring->mr_driver);
4058 
4059 	ring->mr_state = MR_FREE;
4060 
4061 	/*
4062 	 * Increment the ring generation number for this ring.
4063 	 */
4064 	ring->mr_gen_num++;
4065 }
4066 
4067 int
4068 mac_start_group(mac_group_t *group)
4069 {
4070 	int rv = 0;
4071 
4072 	if (group->mrg_start != NULL)
4073 		rv = group->mrg_start(group->mrg_driver);
4074 
4075 	return (rv);
4076 }
4077 
4078 void
4079 mac_stop_group(mac_group_t *group)
4080 {
4081 	if (group->mrg_stop != NULL)
4082 		group->mrg_stop(group->mrg_driver);
4083 }
4084 
4085 /*
4086  * Called from mac_start() on the default Rx group. Broadcast and multicast
4087  * packets are received only on the default group. Hence the default group
4088  * needs to be up even if the primary client is not up, for the other groups
4089  * to be functional. We do this by calling this function at mac_start time
4090  * itself. However the broadcast packets that are received can't make their
4091  * way beyond mac_rx until a mac client creates a broadcast flow.
4092  */
4093 static int
4094 mac_start_group_and_rings(mac_group_t *group)
4095 {
4096 	mac_ring_t	*ring;
4097 	int		rv = 0;
4098 
4099 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
4100 	if ((rv = mac_start_group(group)) != 0)
4101 		return (rv);
4102 
4103 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4104 		ASSERT(ring->mr_state == MR_FREE);
4105 
4106 		if ((rv = mac_start_ring(ring)) != 0)
4107 			goto error;
4108 
4109 		/*
4110 		 * When aggr_set_port_sdu() is called, it will remove
4111 		 * the port client's unicast address. This will cause
4112 		 * MAC to stop the default group's rings on the port
4113 		 * MAC. After it modifies the SDU, it will then re-add
4114 		 * the unicast address. At which time, this function is
4115 		 * called to start the default group's rings. Normally
4116 		 * this function would set the classify type to
4117 		 * MAC_SW_CLASSIFIER; but that will break aggr which
4118 		 * relies on the passthru classify mode being set for
4119 		 * correct delivery (see mac_rx_common()). To avoid
4120 		 * that, we check for a passthru callback and set the
4121 		 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was
4122 		 * before the rings were stopped.
4123 		 */
4124 		ring->mr_classify_type = (ring->mr_pt_fn != NULL) ?
4125 		    MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER;
4126 	}
4127 	return (0);
4128 
4129 error:
4130 	mac_stop_group_and_rings(group);
4131 	return (rv);
4132 }
4133 
4134 /* Called from mac_stop on the default Rx group */
4135 static void
4136 mac_stop_group_and_rings(mac_group_t *group)
4137 {
4138 	mac_ring_t	*ring;
4139 
4140 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4141 		if (ring->mr_state != MR_FREE) {
4142 			mac_stop_ring(ring);
4143 			ring->mr_flag = 0;
4144 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
4145 		}
4146 	}
4147 	mac_stop_group(group);
4148 }
4149 
4150 
4151 static mac_ring_t *
4152 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
4153     mac_capab_rings_t *cap_rings)
4154 {
4155 	mac_ring_t *ring, *rnext;
4156 	mac_ring_info_t ring_info;
4157 	ddi_intr_handle_t ddi_handle;
4158 
4159 	ring = mac_ring_alloc(mip);
4160 
4161 	/* Prepare basic information of ring */
4162 
4163 	/*
4164 	 * Ring index is numbered to be unique across a particular device.
4165 	 * Ring index computation makes following assumptions:
4166 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
4167 	 *	ring index exchanged with the driver (e.g. during mr_rget)
4168 	 *	is unique only across the group the ring belongs to.
4169 	 *	- Drivers with dynamic grouping (e.g. nxge), start
4170 	 *	with single group (mrg_index = 0).
4171 	 */
4172 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
4173 	ring->mr_type = group->mrg_type;
4174 	ring->mr_gh = (mac_group_handle_t)group;
4175 
4176 	/* Insert the new ring to the list. */
4177 	ring->mr_next = group->mrg_rings;
4178 	group->mrg_rings = ring;
4179 
4180 	/* Zero to reuse the info data structure */
4181 	bzero(&ring_info, sizeof (ring_info));
4182 
4183 	/* Query ring information from driver */
4184 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
4185 	    index, &ring_info, (mac_ring_handle_t)ring);
4186 
4187 	ring->mr_info = ring_info;
4188 
4189 	/*
4190 	 * The interrupt handle could be shared among multiple rings.
4191 	 * Thus if there is a bunch of rings that are sharing an
4192 	 * interrupt, then only one ring among the bunch will be made
4193 	 * available for interrupt re-targeting; the rest will have
4194 	 * ddi_shared flag set to TRUE and would not be available for
4195 	 * be interrupt re-targeting.
4196 	 */
4197 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
4198 		rnext = ring->mr_next;
4199 		while (rnext != NULL) {
4200 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
4201 			    ddi_handle) {
4202 				/*
4203 				 * If default ring (mr_index == 0) is part
4204 				 * of a group of rings sharing an
4205 				 * interrupt, then set ddi_shared flag for
4206 				 * the default ring and give another ring
4207 				 * the chance to be re-targeted.
4208 				 */
4209 				if (rnext->mr_index == 0 &&
4210 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
4211 					rnext->mr_info.mri_intr.mi_ddi_shared =
4212 					    B_TRUE;
4213 				} else {
4214 					ring->mr_info.mri_intr.mi_ddi_shared =
4215 					    B_TRUE;
4216 				}
4217 				break;
4218 			}
4219 			rnext = rnext->mr_next;
4220 		}
4221 		/*
4222 		 * If rnext is NULL, then no matching ddi_handle was found.
4223 		 * Rx rings get registered first. So if this is a Tx ring,
4224 		 * then go through all the Rx rings and see if there is a
4225 		 * matching ddi handle.
4226 		 */
4227 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
4228 			mac_compare_ddi_handle(mip->mi_rx_groups,
4229 			    mip->mi_rx_group_count, ring);
4230 		}
4231 	}
4232 
4233 	/* Update ring's status */
4234 	ring->mr_state = MR_FREE;
4235 	ring->mr_flag = 0;
4236 
4237 	/* Update the ring count of the group */
4238 	group->mrg_cur_count++;
4239 
4240 	/* Create per ring kstats */
4241 	if (ring->mr_stat != NULL) {
4242 		ring->mr_mip = mip;
4243 		mac_ring_stat_create(ring);
4244 	}
4245 
4246 	return (ring);
4247 }
4248 
4249 /*
4250  * Rings are chained together for easy regrouping.
4251  */
4252 static void
4253 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
4254     mac_capab_rings_t *cap_rings)
4255 {
4256 	int index;
4257 
4258 	/*
4259 	 * Initialize all ring members of this group. Size of zero will not
4260 	 * enter the loop, so it's safe for initializing an empty group.
4261 	 */
4262 	for (index = size - 1; index >= 0; index--)
4263 		(void) mac_init_ring(mip, group, index, cap_rings);
4264 }
4265 
4266 int
4267 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4268 {
4269 	mac_capab_rings_t	*cap_rings;
4270 	mac_group_t		*group;
4271 	mac_group_t		*groups;
4272 	mac_group_info_t	group_info;
4273 	uint_t			group_free = 0;
4274 	uint_t			ring_left;
4275 	mac_ring_t		*ring;
4276 	int			g;
4277 	int			err = 0;
4278 	uint_t			grpcnt;
4279 	boolean_t		pseudo_txgrp = B_FALSE;
4280 
4281 	switch (rtype) {
4282 	case MAC_RING_TYPE_RX:
4283 		ASSERT(mip->mi_rx_groups == NULL);
4284 
4285 		cap_rings = &mip->mi_rx_rings_cap;
4286 		cap_rings->mr_type = MAC_RING_TYPE_RX;
4287 		break;
4288 	case MAC_RING_TYPE_TX:
4289 		ASSERT(mip->mi_tx_groups == NULL);
4290 
4291 		cap_rings = &mip->mi_tx_rings_cap;
4292 		cap_rings->mr_type = MAC_RING_TYPE_TX;
4293 		break;
4294 	default:
4295 		ASSERT(B_FALSE);
4296 	}
4297 
4298 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
4299 		return (0);
4300 	grpcnt = cap_rings->mr_gnum;
4301 
4302 	/*
4303 	 * If we have multiple TX rings, but only one TX group, we can
4304 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
4305 	 * except for an aggr. For an aggr currently we maintain only
4306 	 * one group with all the rings (for all its ports), going
4307 	 * forwards we might change this.
4308 	 */
4309 	if (rtype == MAC_RING_TYPE_TX &&
4310 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
4311 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
4312 		/*
4313 		 * The -1 here is because we create a default TX group
4314 		 * with all the rings in it.
4315 		 */
4316 		grpcnt = cap_rings->mr_rnum - 1;
4317 		pseudo_txgrp = B_TRUE;
4318 	}
4319 
4320 	/*
4321 	 * Allocate a contiguous buffer for all groups.
4322 	 */
4323 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
4324 
4325 	ring_left = cap_rings->mr_rnum;
4326 
4327 	/*
4328 	 * Get all ring groups if any, and get their ring members
4329 	 * if any.
4330 	 */
4331 	for (g = 0; g < grpcnt; g++) {
4332 		group = groups + g;
4333 
4334 		/* Prepare basic information of the group */
4335 		group->mrg_index = g;
4336 		group->mrg_type = rtype;
4337 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
4338 		group->mrg_mh = (mac_handle_t)mip;
4339 		group->mrg_next = group + 1;
4340 
4341 		/* Zero to reuse the info data structure */
4342 		bzero(&group_info, sizeof (group_info));
4343 
4344 		if (pseudo_txgrp) {
4345 			/*
4346 			 * This is a pseudo group that we created, apart
4347 			 * from setting the state there is nothing to be
4348 			 * done.
4349 			 */
4350 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4351 			group_free++;
4352 			continue;
4353 		}
4354 		/* Query group information from driver */
4355 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4356 		    (mac_group_handle_t)group);
4357 
4358 		switch (cap_rings->mr_group_type) {
4359 		case MAC_GROUP_TYPE_DYNAMIC:
4360 			if (cap_rings->mr_gaddring == NULL ||
4361 			    cap_rings->mr_gremring == NULL) {
4362 				DTRACE_PROBE3(
4363 				    mac__init__rings_no_addremring,
4364 				    char *, mip->mi_name,
4365 				    mac_group_add_ring_t,
4366 				    cap_rings->mr_gaddring,
4367 				    mac_group_add_ring_t,
4368 				    cap_rings->mr_gremring);
4369 				err = EINVAL;
4370 				goto bail;
4371 			}
4372 
4373 			switch (rtype) {
4374 			case MAC_RING_TYPE_RX:
4375 				/*
4376 				 * The first RX group must have non-zero
4377 				 * rings, and the following groups must
4378 				 * have zero rings.
4379 				 */
4380 				if (g == 0 && group_info.mgi_count == 0) {
4381 					DTRACE_PROBE1(
4382 					    mac__init__rings__rx__def__zero,
4383 					    char *, mip->mi_name);
4384 					err = EINVAL;
4385 					goto bail;
4386 				}
4387 				if (g > 0 && group_info.mgi_count != 0) {
4388 					DTRACE_PROBE3(
4389 					    mac__init__rings__rx__nonzero,
4390 					    char *, mip->mi_name,
4391 					    int, g, int, group_info.mgi_count);
4392 					err = EINVAL;
4393 					goto bail;
4394 				}
4395 				break;
4396 			case MAC_RING_TYPE_TX:
4397 				/*
4398 				 * All TX ring groups must have zero rings.
4399 				 */
4400 				if (group_info.mgi_count != 0) {
4401 					DTRACE_PROBE3(
4402 					    mac__init__rings__tx__nonzero,
4403 					    char *, mip->mi_name,
4404 					    int, g, int, group_info.mgi_count);
4405 					err = EINVAL;
4406 					goto bail;
4407 				}
4408 				break;
4409 			}
4410 			break;
4411 		case MAC_GROUP_TYPE_STATIC:
4412 			/*
4413 			 * Note that an empty group is allowed, e.g., an aggr
4414 			 * would start with an empty group.
4415 			 */
4416 			break;
4417 		default:
4418 			/* unknown group type */
4419 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4420 			    char *, mip->mi_name,
4421 			    int, cap_rings->mr_group_type);
4422 			err = EINVAL;
4423 			goto bail;
4424 		}
4425 
4426 
4427 		/*
4428 		 * The driver must register some form of hardware MAC
4429 		 * filter in order for Rx groups to support multiple
4430 		 * MAC addresses.
4431 		 */
4432 		if (rtype == MAC_RING_TYPE_RX &&
4433 		    (group_info.mgi_addmac == NULL ||
4434 		    group_info.mgi_remmac == NULL)) {
4435 			DTRACE_PROBE1(mac__init__rings__no__mac__filter,
4436 			    char *, mip->mi_name);
4437 			err = EINVAL;
4438 			goto bail;
4439 		}
4440 
4441 		/* Cache driver-supplied information */
4442 		group->mrg_info = group_info;
4443 
4444 		/* Update the group's status and group count. */
4445 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4446 		group_free++;
4447 
4448 		group->mrg_rings = NULL;
4449 		group->mrg_cur_count = 0;
4450 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4451 		ring_left -= group_info.mgi_count;
4452 
4453 		/* The current group size should be equal to default value */
4454 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4455 	}
4456 
4457 	/* Build up a dummy group for free resources as a pool */
4458 	group = groups + grpcnt;
4459 
4460 	/* Prepare basic information of the group */
4461 	group->mrg_index = -1;
4462 	group->mrg_type = rtype;
4463 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4464 	group->mrg_mh = (mac_handle_t)mip;
4465 	group->mrg_next = NULL;
4466 
4467 	/*
4468 	 * If there are ungrouped rings, allocate a continuous buffer for
4469 	 * remaining resources.
4470 	 */
4471 	if (ring_left != 0) {
4472 		group->mrg_rings = NULL;
4473 		group->mrg_cur_count = 0;
4474 		mac_init_group(mip, group, ring_left, cap_rings);
4475 
4476 		/* The current group size should be equal to ring_left */
4477 		ASSERT(group->mrg_cur_count == ring_left);
4478 
4479 		ring_left = 0;
4480 
4481 		/* Update this group's status */
4482 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4483 	} else {
4484 		group->mrg_rings = NULL;
4485 	}
4486 
4487 	ASSERT(ring_left == 0);
4488 
4489 bail:
4490 
4491 	/* Cache other important information to finalize the initialization */
4492 	switch (rtype) {
4493 	case MAC_RING_TYPE_RX:
4494 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4495 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4496 		mip->mi_rx_groups = groups;
4497 		mip->mi_rx_donor_grp = groups;
4498 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4499 			/*
4500 			 * The default ring is reserved since it is
4501 			 * used for sending the broadcast etc. packets.
4502 			 */
4503 			mip->mi_rxrings_avail =
4504 			    mip->mi_rx_groups->mrg_cur_count - 1;
4505 			mip->mi_rxrings_rsvd = 1;
4506 		}
4507 		/*
4508 		 * The default group cannot be reserved. It is used by
4509 		 * all the clients that do not have an exclusive group.
4510 		 */
4511 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4512 		mip->mi_rxhwclnt_used = 1;
4513 		break;
4514 	case MAC_RING_TYPE_TX:
4515 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4516 		    cap_rings->mr_group_type;
4517 		mip->mi_tx_group_count = grpcnt;
4518 		mip->mi_tx_group_free = group_free;
4519 		mip->mi_tx_groups = groups;
4520 
4521 		group = groups + grpcnt;
4522 		ring = group->mrg_rings;
4523 		/*
4524 		 * The ring can be NULL in the case of aggr. Aggr will
4525 		 * have an empty Tx group which will get populated
4526 		 * later when pseudo Tx rings are added after
4527 		 * mac_register() is done.
4528 		 */
4529 		if (ring == NULL) {
4530 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4531 			/*
4532 			 * pass the group to aggr so it can add Tx
4533 			 * rings to the group later.
4534 			 */
4535 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4536 			    (mac_group_handle_t)group);
4537 			/*
4538 			 * Even though there are no rings at this time
4539 			 * (rings will come later), set the group
4540 			 * state to registered.
4541 			 */
4542 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4543 		} else {
4544 			/*
4545 			 * Ring 0 is used as the default one and it could be
4546 			 * assigned to a client as well.
4547 			 */
4548 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4549 				ring = ring->mr_next;
4550 			ASSERT(ring->mr_index == 0);
4551 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4552 		}
4553 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4554 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4555 			/*
4556 			 * The default ring cannot be reserved.
4557 			 */
4558 			mip->mi_txrings_rsvd = 1;
4559 		}
4560 		/*
4561 		 * The default group cannot be reserved. It will be shared
4562 		 * by clients that do not have an exclusive group.
4563 		 */
4564 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4565 		mip->mi_txhwclnt_used = 1;
4566 		break;
4567 	default:
4568 		ASSERT(B_FALSE);
4569 	}
4570 
4571 	if (err != 0)
4572 		mac_free_rings(mip, rtype);
4573 
4574 	return (err);
4575 }
4576 
4577 /*
4578  * The ddi interrupt handle could be shared amoung rings. If so, compare
4579  * the new ring's ddi handle with the existing ones and set ddi_shared
4580  * flag.
4581  */
4582 void
4583 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4584 {
4585 	mac_group_t *group;
4586 	mac_ring_t *ring;
4587 	ddi_intr_handle_t ddi_handle;
4588 	int g;
4589 
4590 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4591 	for (g = 0; g < grpcnt; g++) {
4592 		group = groups + g;
4593 		for (ring = group->mrg_rings; ring != NULL;
4594 		    ring = ring->mr_next) {
4595 			if (ring == cring)
4596 				continue;
4597 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4598 			    ddi_handle) {
4599 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4600 				    ring->mr_index == 0 &&
4601 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4602 					ring->mr_info.mri_intr.mi_ddi_shared =
4603 					    B_TRUE;
4604 				} else {
4605 					cring->mr_info.mri_intr.mi_ddi_shared =
4606 					    B_TRUE;
4607 				}
4608 				return;
4609 			}
4610 		}
4611 	}
4612 }
4613 
4614 /*
4615  * Called to free all groups of particular type (RX or TX). It's assumed that
4616  * no clients are using these groups.
4617  */
4618 void
4619 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4620 {
4621 	mac_group_t *group, *groups;
4622 	uint_t group_count;
4623 
4624 	switch (rtype) {
4625 	case MAC_RING_TYPE_RX:
4626 		if (mip->mi_rx_groups == NULL)
4627 			return;
4628 
4629 		groups = mip->mi_rx_groups;
4630 		group_count = mip->mi_rx_group_count;
4631 
4632 		mip->mi_rx_groups = NULL;
4633 		mip->mi_rx_donor_grp = NULL;
4634 		mip->mi_rx_group_count = 0;
4635 		break;
4636 	case MAC_RING_TYPE_TX:
4637 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4638 
4639 		if (mip->mi_tx_groups == NULL)
4640 			return;
4641 
4642 		groups = mip->mi_tx_groups;
4643 		group_count = mip->mi_tx_group_count;
4644 
4645 		mip->mi_tx_groups = NULL;
4646 		mip->mi_tx_group_count = 0;
4647 		mip->mi_tx_group_free = 0;
4648 		mip->mi_default_tx_ring = NULL;
4649 		break;
4650 	default:
4651 		ASSERT(B_FALSE);
4652 	}
4653 
4654 	for (group = groups; group != NULL; group = group->mrg_next) {
4655 		mac_ring_t *ring;
4656 
4657 		if (group->mrg_cur_count == 0)
4658 			continue;
4659 
4660 		ASSERT(group->mrg_rings != NULL);
4661 
4662 		while ((ring = group->mrg_rings) != NULL) {
4663 			group->mrg_rings = ring->mr_next;
4664 			mac_ring_free(mip, ring);
4665 		}
4666 	}
4667 
4668 	/* Free all the cached rings */
4669 	mac_ring_freeall(mip);
4670 	/* Free the block of group data strutures */
4671 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4672 }
4673 
4674 /*
4675  * Associate the VLAN filter to the receive group.
4676  */
4677 int
4678 mac_group_addvlan(mac_group_t *group, uint16_t vlan)
4679 {
4680 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4681 	VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL);
4682 
4683 	if (vlan > VLAN_ID_MAX)
4684 		return (EINVAL);
4685 
4686 	vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4687 	return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan));
4688 }
4689 
4690 /*
4691  * Dissociate the VLAN from the receive group.
4692  */
4693 int
4694 mac_group_remvlan(mac_group_t *group, uint16_t vlan)
4695 {
4696 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4697 	VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL);
4698 
4699 	if (vlan > VLAN_ID_MAX)
4700 		return (EINVAL);
4701 
4702 	vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4703 	return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan));
4704 }
4705 
4706 /*
4707  * Associate a MAC address with a receive group.
4708  *
4709  * The return value of this function should always be checked properly, because
4710  * any type of failure could cause unexpected results. A group can be added
4711  * or removed with a MAC address only after it has been reserved. Ideally,
4712  * a successful reservation always leads to calling mac_group_addmac() to
4713  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4714  * always imply that the group is functioning abnormally.
4715  *
4716  * Currently this function is called everywhere, and it reflects assumptions
4717  * about MAC addresses in the implementation. CR 6735196.
4718  */
4719 int
4720 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4721 {
4722 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4723 	VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL);
4724 
4725 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4726 }
4727 
4728 /*
4729  * Remove the association between MAC address and receive group.
4730  */
4731 int
4732 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4733 {
4734 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4735 	VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL);
4736 
4737 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4738 }
4739 
4740 /*
4741  * This is the entry point for packets transmitted through the bridge
4742  * code. If no bridge is in place, mac_ring_tx() transmits via the tx
4743  * ring. The 'rh' pointer may be NULL to select the default ring.
4744  */
4745 mblk_t *
4746 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4747 {
4748 	mac_handle_t mh;
4749 
4750 	/*
4751 	 * Once we take a reference on the bridge link, the bridge
4752 	 * module itself can't unload, so the callback pointers are
4753 	 * stable.
4754 	 */
4755 	mutex_enter(&mip->mi_bridge_lock);
4756 	if ((mh = mip->mi_bridge_link) != NULL)
4757 		mac_bridge_ref_cb(mh, B_TRUE);
4758 	mutex_exit(&mip->mi_bridge_lock);
4759 	if (mh == NULL) {
4760 		mp = mac_ring_tx((mac_handle_t)mip, rh, mp);
4761 	} else {
4762 		/*
4763 		 * The bridge may place this mblk on a provider's Tx
4764 		 * path, a mac's Rx path, or both. Since we don't have
4765 		 * enough information at this point, we can't be sure
4766 		 * that the destination(s) are capable of handling the
4767 		 * hardware offloads requested by the mblk. We emulate
4768 		 * them here as it is the safest choice. In the
4769 		 * future, if bridge performance becomes a priority,
4770 		 * we can elide the emulation here and leave the
4771 		 * choice up to bridge.
4772 		 *
4773 		 * We don't clear the DB_CKSUMFLAGS here because
4774 		 * HCK_IPV4_HDRCKSUM (Tx) and HCK_IPV4_HDRCKSUM_OK
4775 		 * (Rx) still have the same value. If the bridge
4776 		 * receives a packet from a HCKSUM_IPHDRCKSUM NIC then
4777 		 * the mac(s) it is forwarded on may calculate the
4778 		 * checksum again, but incorrectly (because the
4779 		 * checksum field is not zero). Until the
4780 		 * HCK_IPV4_HDRCKSUM/HCK_IPV4_HDRCKSUM_OK issue is
4781 		 * resovled, we leave the flag clearing in bridge
4782 		 * itself.
4783 		 */
4784 		if ((DB_CKSUMFLAGS(mp) & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) {
4785 			mac_hw_emul(&mp, NULL, NULL, MAC_ALL_EMULS);
4786 		}
4787 
4788 		mp = mac_bridge_tx_cb(mh, rh, mp);
4789 		mac_bridge_ref_cb(mh, B_FALSE);
4790 	}
4791 
4792 	return (mp);
4793 }
4794 
4795 /*
4796  * Find a ring from its index.
4797  */
4798 mac_ring_handle_t
4799 mac_find_ring(mac_group_handle_t gh, int index)
4800 {
4801 	mac_group_t *group = (mac_group_t *)gh;
4802 	mac_ring_t *ring = group->mrg_rings;
4803 
4804 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4805 		if (ring->mr_index == index)
4806 			break;
4807 
4808 	return ((mac_ring_handle_t)ring);
4809 }
4810 /*
4811  * Add a ring to an existing group.
4812  *
4813  * The ring must be either passed directly (for example if the ring
4814  * movement is initiated by the framework), or specified through a driver
4815  * index (for example when the ring is added by the driver.
4816  *
4817  * The caller needs to call mac_perim_enter() before calling this function.
4818  */
4819 int
4820 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4821 {
4822 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4823 	mac_capab_rings_t *cap_rings;
4824 	boolean_t driver_call = (ring == NULL);
4825 	mac_group_type_t group_type;
4826 	int ret = 0;
4827 	flow_entry_t *flent;
4828 
4829 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4830 
4831 	switch (group->mrg_type) {
4832 	case MAC_RING_TYPE_RX:
4833 		cap_rings = &mip->mi_rx_rings_cap;
4834 		group_type = mip->mi_rx_group_type;
4835 		break;
4836 	case MAC_RING_TYPE_TX:
4837 		cap_rings = &mip->mi_tx_rings_cap;
4838 		group_type = mip->mi_tx_group_type;
4839 		break;
4840 	default:
4841 		ASSERT(B_FALSE);
4842 	}
4843 
4844 	/*
4845 	 * There should be no ring with the same ring index in the target
4846 	 * group.
4847 	 */
4848 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4849 	    driver_call ? index : ring->mr_index) == NULL);
4850 
4851 	if (driver_call) {
4852 		/*
4853 		 * The function is called as a result of a request from
4854 		 * a driver to add a ring to an existing group, for example
4855 		 * from the aggregation driver. Allocate a new mac_ring_t
4856 		 * for that ring.
4857 		 */
4858 		ring = mac_init_ring(mip, group, index, cap_rings);
4859 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4860 	} else {
4861 		/*
4862 		 * The function is called as a result of a MAC layer request
4863 		 * to add a ring to an existing group. In this case the
4864 		 * ring is being moved between groups, which requires
4865 		 * the underlying driver to support dynamic grouping,
4866 		 * and the mac_ring_t already exists.
4867 		 */
4868 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4869 		ASSERT(group->mrg_driver == NULL ||
4870 		    cap_rings->mr_gaddring != NULL);
4871 		ASSERT(ring->mr_gh == NULL);
4872 	}
4873 
4874 	/*
4875 	 * At this point the ring should not be in use, and it should be
4876 	 * of the right for the target group.
4877 	 */
4878 	ASSERT(ring->mr_state < MR_INUSE);
4879 	ASSERT(ring->mr_srs == NULL);
4880 	ASSERT(ring->mr_type == group->mrg_type);
4881 
4882 	if (!driver_call) {
4883 		/*
4884 		 * Add the driver level hardware ring if the process was not
4885 		 * initiated by the driver, and the target group is not the
4886 		 * group.
4887 		 */
4888 		if (group->mrg_driver != NULL) {
4889 			cap_rings->mr_gaddring(group->mrg_driver,
4890 			    ring->mr_driver, ring->mr_type);
4891 		}
4892 
4893 		/*
4894 		 * Insert the ring ahead existing rings.
4895 		 */
4896 		ring->mr_next = group->mrg_rings;
4897 		group->mrg_rings = ring;
4898 		ring->mr_gh = (mac_group_handle_t)group;
4899 		group->mrg_cur_count++;
4900 	}
4901 
4902 	/*
4903 	 * If the group has not been actively used, we're done.
4904 	 */
4905 	if (group->mrg_index != -1 &&
4906 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4907 		return (0);
4908 
4909 	/*
4910 	 * Start the ring if needed. Failure causes to undo the grouping action.
4911 	 */
4912 	if (ring->mr_state != MR_INUSE) {
4913 		if ((ret = mac_start_ring(ring)) != 0) {
4914 			if (!driver_call) {
4915 				cap_rings->mr_gremring(group->mrg_driver,
4916 				    ring->mr_driver, ring->mr_type);
4917 			}
4918 			group->mrg_cur_count--;
4919 			group->mrg_rings = ring->mr_next;
4920 
4921 			ring->mr_gh = NULL;
4922 
4923 			if (driver_call)
4924 				mac_ring_free(mip, ring);
4925 
4926 			return (ret);
4927 		}
4928 	}
4929 
4930 	/*
4931 	 * Set up SRS/SR according to the ring type.
4932 	 */
4933 	switch (ring->mr_type) {
4934 	case MAC_RING_TYPE_RX:
4935 		/*
4936 		 * Setup an SRS on top of the new ring if the group is
4937 		 * reserved for someone's exclusive use.
4938 		 */
4939 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4940 			mac_client_impl_t *mcip =  MAC_GROUP_ONLY_CLIENT(group);
4941 
4942 			VERIFY3P(mcip, !=, NULL);
4943 			flent = mcip->mci_flent;
4944 			VERIFY3S(flent->fe_rx_srs_cnt, >, 0);
4945 			mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4946 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4947 			    mac_rx_deliver, mcip, NULL, NULL);
4948 		} else {
4949 			ring->mr_classify_type = MAC_SW_CLASSIFIER;
4950 		}
4951 		break;
4952 	case MAC_RING_TYPE_TX:
4953 	{
4954 		mac_grp_client_t	*mgcp = group->mrg_clients;
4955 		mac_client_impl_t	*mcip;
4956 		mac_soft_ring_set_t	*mac_srs;
4957 		mac_srs_tx_t		*tx;
4958 
4959 		if (MAC_GROUP_NO_CLIENT(group)) {
4960 			if (ring->mr_state == MR_INUSE)
4961 				mac_stop_ring(ring);
4962 			ring->mr_flag = 0;
4963 			break;
4964 		}
4965 		/*
4966 		 * If the rings are being moved to a group that has
4967 		 * clients using it, then add the new rings to the
4968 		 * clients SRS.
4969 		 */
4970 		while (mgcp != NULL) {
4971 			boolean_t	is_aggr;
4972 
4973 			mcip = mgcp->mgc_client;
4974 			flent = mcip->mci_flent;
4975 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4976 			mac_srs = MCIP_TX_SRS(mcip);
4977 			tx = &mac_srs->srs_tx;
4978 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4979 			/*
4980 			 * If we are  growing from 1 to multiple rings.
4981 			 */
4982 			if (tx->st_mode == SRS_TX_BW ||
4983 			    tx->st_mode == SRS_TX_SERIALIZE ||
4984 			    tx->st_mode == SRS_TX_DEFAULT) {
4985 				mac_ring_t	*tx_ring = tx->st_arg2;
4986 
4987 				tx->st_arg2 = NULL;
4988 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4989 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4990 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4991 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4992 					    SRS_TX_BW_FANOUT;
4993 				} else {
4994 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
4995 					    SRS_TX_FANOUT;
4996 				}
4997 				tx->st_func = mac_tx_get_func(tx->st_mode);
4998 			}
4999 			mac_tx_srs_add_ring(mac_srs, ring);
5000 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
5001 			    mac_rx_deliver, mcip, NULL, NULL);
5002 			mac_tx_client_restart((mac_client_handle_t)mcip);
5003 			mgcp = mgcp->mgc_next;
5004 		}
5005 		break;
5006 	}
5007 	default:
5008 		ASSERT(B_FALSE);
5009 	}
5010 	/*
5011 	 * For aggr, the default ring will be NULL to begin with. If it
5012 	 * is NULL, then pick the first ring that gets added as the
5013 	 * default ring. Any ring in an aggregation can be removed at
5014 	 * any time (by the user action of removing a link) and if the
5015 	 * current default ring gets removed, then a new one gets
5016 	 * picked (see i_mac_group_rem_ring()).
5017 	 */
5018 	if (mip->mi_state_flags & MIS_IS_AGGR &&
5019 	    mip->mi_default_tx_ring == NULL &&
5020 	    ring->mr_type == MAC_RING_TYPE_TX) {
5021 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
5022 	}
5023 
5024 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
5025 	return (0);
5026 }
5027 
5028 /*
5029  * Remove a ring from it's current group. MAC internal function for dynamic
5030  * grouping.
5031  *
5032  * The caller needs to call mac_perim_enter() before calling this function.
5033  */
5034 void
5035 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
5036     boolean_t driver_call)
5037 {
5038 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
5039 	mac_capab_rings_t *cap_rings = NULL;
5040 	mac_group_type_t group_type;
5041 
5042 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5043 
5044 	ASSERT(mac_find_ring((mac_group_handle_t)group,
5045 	    ring->mr_index) == (mac_ring_handle_t)ring);
5046 	ASSERT((mac_group_t *)ring->mr_gh == group);
5047 	ASSERT(ring->mr_type == group->mrg_type);
5048 
5049 	if (ring->mr_state == MR_INUSE)
5050 		mac_stop_ring(ring);
5051 	switch (ring->mr_type) {
5052 	case MAC_RING_TYPE_RX:
5053 		group_type = mip->mi_rx_group_type;
5054 		cap_rings = &mip->mi_rx_rings_cap;
5055 
5056 		/*
5057 		 * Only hardware classified packets hold a reference to the
5058 		 * ring all the way up the Rx path. mac_rx_srs_remove()
5059 		 * will take care of quiescing the Rx path and removing the
5060 		 * SRS. The software classified path neither holds a reference
5061 		 * nor any association with the ring in mac_rx.
5062 		 */
5063 		if (ring->mr_srs != NULL) {
5064 			mac_rx_srs_remove(ring->mr_srs);
5065 			ring->mr_srs = NULL;
5066 		}
5067 
5068 		break;
5069 	case MAC_RING_TYPE_TX:
5070 	{
5071 		mac_grp_client_t	*mgcp;
5072 		mac_client_impl_t	*mcip;
5073 		mac_soft_ring_set_t	*mac_srs;
5074 		mac_srs_tx_t		*tx;
5075 		mac_ring_t		*rem_ring;
5076 		mac_group_t		*defgrp;
5077 		uint_t			ring_info = 0;
5078 
5079 		/*
5080 		 * For TX this function is invoked in three
5081 		 * cases:
5082 		 *
5083 		 * 1) In the case of a failure during the
5084 		 * initial creation of a group when a share is
5085 		 * associated with a MAC client. So the SRS is not
5086 		 * yet setup, and will be setup later after the
5087 		 * group has been reserved and populated.
5088 		 *
5089 		 * 2) From mac_release_tx_group() when freeing
5090 		 * a TX SRS.
5091 		 *
5092 		 * 3) In the case of aggr, when a port gets removed,
5093 		 * the pseudo Tx rings that it exposed gets removed.
5094 		 *
5095 		 * In the first two cases the SRS and its soft
5096 		 * rings are already quiesced.
5097 		 */
5098 		if (driver_call) {
5099 			mac_client_impl_t *mcip;
5100 			mac_soft_ring_set_t *mac_srs;
5101 			mac_soft_ring_t *sringp;
5102 			mac_srs_tx_t *srs_tx;
5103 
5104 			if (mip->mi_state_flags & MIS_IS_AGGR &&
5105 			    mip->mi_default_tx_ring ==
5106 			    (mac_ring_handle_t)ring) {
5107 				/* pick a new default Tx ring */
5108 				mip->mi_default_tx_ring =
5109 				    (group->mrg_rings != ring) ?
5110 				    (mac_ring_handle_t)group->mrg_rings :
5111 				    (mac_ring_handle_t)(ring->mr_next);
5112 			}
5113 			/* Presently only aggr case comes here */
5114 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
5115 				break;
5116 
5117 			mcip = MAC_GROUP_ONLY_CLIENT(group);
5118 			ASSERT(mcip != NULL);
5119 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
5120 			mac_srs = MCIP_TX_SRS(mcip);
5121 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
5122 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
5123 			srs_tx = &mac_srs->srs_tx;
5124 			/*
5125 			 * Wakeup any callers blocked on this
5126 			 * Tx ring due to flow control.
5127 			 */
5128 			sringp = srs_tx->st_soft_rings[ring->mr_index];
5129 			ASSERT(sringp != NULL);
5130 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
5131 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
5132 			mac_tx_srs_del_ring(mac_srs, ring);
5133 			mac_tx_client_restart((mac_client_handle_t)mcip);
5134 			break;
5135 		}
5136 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
5137 		group_type = mip->mi_tx_group_type;
5138 		cap_rings = &mip->mi_tx_rings_cap;
5139 		/*
5140 		 * See if we need to take it out of the MAC clients using
5141 		 * this group
5142 		 */
5143 		if (MAC_GROUP_NO_CLIENT(group))
5144 			break;
5145 		mgcp = group->mrg_clients;
5146 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
5147 		while (mgcp != NULL) {
5148 			mcip = mgcp->mgc_client;
5149 			mac_srs = MCIP_TX_SRS(mcip);
5150 			tx = &mac_srs->srs_tx;
5151 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
5152 			/*
5153 			 * If we are here when removing rings from the
5154 			 * defgroup, mac_reserve_tx_ring would have
5155 			 * already deleted the ring from the MAC
5156 			 * clients in the group.
5157 			 */
5158 			if (group != defgrp) {
5159 				mac_tx_invoke_callbacks(mcip,
5160 				    (mac_tx_cookie_t)
5161 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
5162 				mac_tx_srs_del_ring(mac_srs, ring);
5163 			}
5164 			/*
5165 			 * Additionally, if  we are left with only
5166 			 * one ring in the group after this, we need
5167 			 * to modify the mode etc. to. (We haven't
5168 			 * yet taken the ring out, so we check with 2).
5169 			 */
5170 			if (group->mrg_cur_count == 2) {
5171 				if (ring->mr_next == NULL)
5172 					rem_ring = group->mrg_rings;
5173 				else
5174 					rem_ring = ring->mr_next;
5175 				mac_tx_invoke_callbacks(mcip,
5176 				    (mac_tx_cookie_t)
5177 				    mac_tx_srs_get_soft_ring(mac_srs,
5178 				    rem_ring));
5179 				mac_tx_srs_del_ring(mac_srs, rem_ring);
5180 				if (rem_ring->mr_state != MR_INUSE) {
5181 					(void) mac_start_ring(rem_ring);
5182 				}
5183 				tx->st_arg2 = (void *)rem_ring;
5184 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
5185 				ring_info = mac_hwring_getinfo(
5186 				    (mac_ring_handle_t)rem_ring);
5187 				/*
5188 				 * We are  shrinking from multiple
5189 				 * to 1 ring.
5190 				 */
5191 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
5192 					tx->st_mode = SRS_TX_BW;
5193 				} else if (mac_tx_serialize ||
5194 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
5195 					tx->st_mode = SRS_TX_SERIALIZE;
5196 				} else {
5197 					tx->st_mode = SRS_TX_DEFAULT;
5198 				}
5199 				tx->st_func = mac_tx_get_func(tx->st_mode);
5200 			}
5201 			mac_tx_client_restart((mac_client_handle_t)mcip);
5202 			mgcp = mgcp->mgc_next;
5203 		}
5204 		break;
5205 	}
5206 	default:
5207 		ASSERT(B_FALSE);
5208 	}
5209 
5210 	/*
5211 	 * Remove the ring from the group.
5212 	 */
5213 	if (ring == group->mrg_rings)
5214 		group->mrg_rings = ring->mr_next;
5215 	else {
5216 		mac_ring_t *pre;
5217 
5218 		pre = group->mrg_rings;
5219 		while (pre->mr_next != ring)
5220 			pre = pre->mr_next;
5221 		pre->mr_next = ring->mr_next;
5222 	}
5223 	group->mrg_cur_count--;
5224 
5225 	if (!driver_call) {
5226 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
5227 		ASSERT(group->mrg_driver == NULL ||
5228 		    cap_rings->mr_gremring != NULL);
5229 
5230 		/*
5231 		 * Remove the driver level hardware ring.
5232 		 */
5233 		if (group->mrg_driver != NULL) {
5234 			cap_rings->mr_gremring(group->mrg_driver,
5235 			    ring->mr_driver, ring->mr_type);
5236 		}
5237 	}
5238 
5239 	ring->mr_gh = NULL;
5240 	if (driver_call)
5241 		mac_ring_free(mip, ring);
5242 	else
5243 		ring->mr_flag = 0;
5244 }
5245 
5246 /*
5247  * Move a ring to the target group. If needed, remove the ring from the group
5248  * that it currently belongs to.
5249  *
5250  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
5251  */
5252 static int
5253 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
5254 {
5255 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
5256 	int rv;
5257 
5258 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5259 	ASSERT(d_group != NULL);
5260 	ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
5261 
5262 	if (s_group == d_group)
5263 		return (0);
5264 
5265 	/*
5266 	 * Remove it from current group first.
5267 	 */
5268 	if (s_group != NULL)
5269 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
5270 
5271 	/*
5272 	 * Add it to the new group.
5273 	 */
5274 	rv = i_mac_group_add_ring(d_group, ring, 0);
5275 	if (rv != 0) {
5276 		/*
5277 		 * Failed to add ring back to source group. If
5278 		 * that fails, the ring is stuck in limbo, log message.
5279 		 */
5280 		if (i_mac_group_add_ring(s_group, ring, 0)) {
5281 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
5282 			    mip->mi_name, (void *)ring);
5283 		}
5284 	}
5285 
5286 	return (rv);
5287 }
5288 
5289 /*
5290  * Find a MAC address according to its value.
5291  */
5292 mac_address_t *
5293 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
5294 {
5295 	mac_address_t *map;
5296 
5297 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5298 
5299 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
5300 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
5301 			break;
5302 	}
5303 
5304 	return (map);
5305 }
5306 
5307 /*
5308  * Check whether the MAC address is shared by multiple clients.
5309  */
5310 boolean_t
5311 mac_check_macaddr_shared(mac_address_t *map)
5312 {
5313 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
5314 
5315 	return (map->ma_nusers > 1);
5316 }
5317 
5318 /*
5319  * Remove the specified MAC address from the MAC address list and free it.
5320  */
5321 static void
5322 mac_free_macaddr(mac_address_t *map)
5323 {
5324 	mac_impl_t *mip = map->ma_mip;
5325 
5326 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5327 	VERIFY3P(mip->mi_addresses, !=, NULL);
5328 
5329 	VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5330 	VERIFY3P(map, !=, NULL);
5331 	VERIFY3S(map->ma_nusers, ==, 0);
5332 	VERIFY3P(map->ma_vlans, ==, NULL);
5333 
5334 	if (map == mip->mi_addresses) {
5335 		mip->mi_addresses = map->ma_next;
5336 	} else {
5337 		mac_address_t *pre;
5338 
5339 		pre = mip->mi_addresses;
5340 		while (pre->ma_next != map)
5341 			pre = pre->ma_next;
5342 		pre->ma_next = map->ma_next;
5343 	}
5344 
5345 	kmem_free(map, sizeof (mac_address_t));
5346 }
5347 
5348 static mac_vlan_t *
5349 mac_find_vlan(mac_address_t *map, uint16_t vid)
5350 {
5351 	mac_vlan_t *mvp;
5352 
5353 	for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) {
5354 		if (mvp->mv_vid == vid)
5355 			return (mvp);
5356 	}
5357 
5358 	return (NULL);
5359 }
5360 
5361 static mac_vlan_t *
5362 mac_add_vlan(mac_address_t *map, uint16_t vid)
5363 {
5364 	mac_vlan_t *mvp;
5365 
5366 	/*
5367 	 * We should never add the same {addr, VID} tuple more
5368 	 * than once, but let's be sure.
5369 	 */
5370 	for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next)
5371 		VERIFY3U(mvp->mv_vid, !=, vid);
5372 
5373 	/* Add the VLAN to the head of the VLAN list. */
5374 	mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP);
5375 	mvp->mv_vid = vid;
5376 	mvp->mv_next = map->ma_vlans;
5377 	map->ma_vlans = mvp;
5378 
5379 	return (mvp);
5380 }
5381 
5382 static void
5383 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp)
5384 {
5385 	mac_vlan_t *pre;
5386 
5387 	if (map->ma_vlans == mvp) {
5388 		map->ma_vlans = mvp->mv_next;
5389 	} else {
5390 		pre = map->ma_vlans;
5391 		while (pre->mv_next != mvp) {
5392 			pre = pre->mv_next;
5393 
5394 			/*
5395 			 * We've reached the end of the list without
5396 			 * finding mvp.
5397 			 */
5398 			VERIFY3P(pre, !=, NULL);
5399 		}
5400 		pre->mv_next = mvp->mv_next;
5401 	}
5402 
5403 	kmem_free(mvp, sizeof (mac_vlan_t));
5404 }
5405 
5406 /*
5407  * Create a new mac_address_t if this is the first use of the address
5408  * or add a VID to an existing address. In either case, the
5409  * mac_address_t acts as a list of {addr, VID} tuples where each tuple
5410  * shares the same addr. If group is non-NULL then attempt to program
5411  * the MAC's HW filters for this group. Otherwise, if group is NULL,
5412  * then the MAC has no rings and there is nothing to program.
5413  */
5414 int
5415 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr,
5416     uint16_t vid, boolean_t use_hw)
5417 {
5418 	mac_address_t	*map;
5419 	mac_vlan_t	*mvp;
5420 	int		err = 0;
5421 	boolean_t	allocated_map = B_FALSE;
5422 	boolean_t	hw_mac = B_FALSE;
5423 	boolean_t	hw_vlan = B_FALSE;
5424 
5425 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5426 
5427 	map = mac_find_macaddr(mip, addr);
5428 
5429 	/*
5430 	 * If this is the first use of this MAC address then allocate
5431 	 * and initialize a new structure.
5432 	 */
5433 	if (map == NULL) {
5434 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5435 		map->ma_len = mip->mi_type->mt_addr_length;
5436 		bcopy(addr, map->ma_addr, map->ma_len);
5437 		map->ma_nusers = 0;
5438 		map->ma_group = group;
5439 		map->ma_mip = mip;
5440 		map->ma_untagged = B_FALSE;
5441 
5442 		/* Add the new MAC address to the head of the address list. */
5443 		map->ma_next = mip->mi_addresses;
5444 		mip->mi_addresses = map;
5445 
5446 		allocated_map = B_TRUE;
5447 	}
5448 
5449 	VERIFY(map->ma_group == NULL || map->ma_group == group);
5450 	if (map->ma_group == NULL)
5451 		map->ma_group = group;
5452 
5453 	if (vid == VLAN_ID_NONE) {
5454 		map->ma_untagged = B_TRUE;
5455 		mvp = NULL;
5456 	} else {
5457 		mvp = mac_add_vlan(map, vid);
5458 	}
5459 
5460 	/*
5461 	 * Set the VLAN HW filter if:
5462 	 *
5463 	 * o the MAC's VLAN HW filtering is enabled, and
5464 	 * o the address does not currently rely on promisc mode.
5465 	 *
5466 	 * This is called even when the client specifies an untagged
5467 	 * address (VLAN_ID_NONE) because some MAC providers require
5468 	 * setting additional bits to accept untagged traffic when
5469 	 * VLAN HW filtering is enabled.
5470 	 */
5471 	if (MAC_GROUP_HW_VLAN(group) &&
5472 	    map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) {
5473 		if ((err = mac_group_addvlan(group, vid)) != 0)
5474 			goto bail;
5475 
5476 		hw_vlan = B_TRUE;
5477 	}
5478 
5479 	VERIFY3S(map->ma_nusers, >=, 0);
5480 	map->ma_nusers++;
5481 
5482 	/*
5483 	 * If this MAC address already has a HW filter then simply
5484 	 * increment the counter.
5485 	 */
5486 	if (map->ma_nusers > 1)
5487 		return (0);
5488 
5489 	/*
5490 	 * All logic from here on out is executed during initial
5491 	 * creation only.
5492 	 */
5493 	VERIFY3S(map->ma_nusers, ==, 1);
5494 
5495 	/*
5496 	 * Activate this MAC address by adding it to the reserved group.
5497 	 */
5498 	if (group != NULL) {
5499 		err = mac_group_addmac(group, (const uint8_t *)addr);
5500 
5501 		/*
5502 		 * If the driver is out of filters then we can
5503 		 * continue and use promisc mode. For any other error,
5504 		 * assume the driver is in a state where we can't
5505 		 * program the filters or use promisc mode; so we must
5506 		 * bail.
5507 		 */
5508 		if (err != 0 && err != ENOSPC) {
5509 			map->ma_nusers--;
5510 			goto bail;
5511 		}
5512 
5513 		hw_mac = (err == 0);
5514 	}
5515 
5516 	if (hw_mac) {
5517 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5518 		return (0);
5519 	}
5520 
5521 	/*
5522 	 * The MAC address addition failed. If the client requires a
5523 	 * hardware classified MAC address, fail the operation. This
5524 	 * feature is only used by sun4v vsw.
5525 	 */
5526 	if (use_hw && !hw_mac) {
5527 		err = ENOSPC;
5528 		map->ma_nusers--;
5529 		goto bail;
5530 	}
5531 
5532 	/*
5533 	 * If we reach this point then either the MAC doesn't have
5534 	 * RINGS capability or we are out of MAC address HW filters.
5535 	 * In any case we must put the MAC into promiscuous mode.
5536 	 */
5537 	VERIFY(group == NULL || !hw_mac);
5538 
5539 	/*
5540 	 * The one exception is the primary address. A non-RINGS
5541 	 * driver filters the primary address by default; promisc mode
5542 	 * is not needed.
5543 	 */
5544 	if ((group == NULL) &&
5545 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5546 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5547 		return (0);
5548 	}
5549 
5550 	/*
5551 	 * Enable promiscuous mode in order to receive traffic to the
5552 	 * new MAC address. All existing HW filters still send their
5553 	 * traffic to their respective group/SRSes. But with promisc
5554 	 * enabled all unknown traffic is delivered to the default
5555 	 * group where it is SW classified via mac_rx_classify().
5556 	 */
5557 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5558 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5559 		return (0);
5560 	}
5561 
5562 	/*
5563 	 * We failed to set promisc mode and we are about to free 'map'.
5564 	 */
5565 	map->ma_nusers = 0;
5566 
5567 bail:
5568 	if (hw_vlan) {
5569 		int err2 = mac_group_remvlan(group, vid);
5570 
5571 		if (err2 != 0) {
5572 			cmn_err(CE_WARN, "Failed to remove VLAN %u from group"
5573 			    " %d on MAC %s: %d.", vid, group->mrg_index,
5574 			    mip->mi_name, err2);
5575 		}
5576 	}
5577 
5578 	if (mvp != NULL)
5579 		mac_rem_vlan(map, mvp);
5580 
5581 	if (allocated_map)
5582 		mac_free_macaddr(map);
5583 
5584 	return (err);
5585 }
5586 
5587 int
5588 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid)
5589 {
5590 	mac_vlan_t	*mvp;
5591 	mac_impl_t	*mip = map->ma_mip;
5592 	mac_group_t	*group = map->ma_group;
5593 	int		err = 0;
5594 
5595 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5596 	VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5597 
5598 	if (vid == VLAN_ID_NONE) {
5599 		map->ma_untagged = B_FALSE;
5600 		mvp = NULL;
5601 	} else {
5602 		mvp = mac_find_vlan(map, vid);
5603 		VERIFY3P(mvp, !=, NULL);
5604 	}
5605 
5606 	if (MAC_GROUP_HW_VLAN(group) &&
5607 	    map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED &&
5608 	    ((err = mac_group_remvlan(group, vid)) != 0))
5609 		return (err);
5610 
5611 	if (mvp != NULL)
5612 		mac_rem_vlan(map, mvp);
5613 
5614 	/*
5615 	 * If it's not the last client using this MAC address, only update
5616 	 * the MAC clients count.
5617 	 */
5618 	map->ma_nusers--;
5619 	if (map->ma_nusers > 0)
5620 		return (0);
5621 
5622 	VERIFY3S(map->ma_nusers, ==, 0);
5623 
5624 	/*
5625 	 * The MAC address is no longer used by any MAC client, so
5626 	 * remove it from its associated group. Turn off promiscuous
5627 	 * mode if this is the last address relying on it.
5628 	 */
5629 	switch (map->ma_type) {
5630 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5631 		/*
5632 		 * Don't free the preset primary address for drivers that
5633 		 * don't advertise RINGS capability.
5634 		 */
5635 		if (group == NULL)
5636 			return (0);
5637 
5638 		if ((err = mac_group_remmac(group, map->ma_addr)) != 0) {
5639 			if (vid == VLAN_ID_NONE)
5640 				map->ma_untagged = B_TRUE;
5641 			else
5642 				(void) mac_add_vlan(map, vid);
5643 
5644 			/*
5645 			 * If we fail to remove the MAC address HW
5646 			 * filter but then also fail to re-add the
5647 			 * VLAN HW filter then we are in a busted
5648 			 * state. We do our best by logging a warning
5649 			 * and returning the original 'err' that got
5650 			 * us here. At this point, traffic for this
5651 			 * address + VLAN combination will be dropped
5652 			 * until the user reboots the system. In the
5653 			 * future, it would be nice to have a system
5654 			 * that can compare the state of expected
5655 			 * classification according to mac to the
5656 			 * actual state of the provider, and report
5657 			 * and fix any inconsistencies.
5658 			 */
5659 			if (MAC_GROUP_HW_VLAN(group)) {
5660 				int err2;
5661 
5662 				err2 = mac_group_addvlan(group, vid);
5663 				if (err2 != 0) {
5664 					cmn_err(CE_WARN, "Failed to readd VLAN"
5665 					    " %u to group %d on MAC %s: %d.",
5666 					    vid, group->mrg_index, mip->mi_name,
5667 					    err2);
5668 				}
5669 			}
5670 
5671 			map->ma_nusers = 1;
5672 			return (err);
5673 		}
5674 
5675 		map->ma_group = NULL;
5676 		break;
5677 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5678 		err = i_mac_promisc_set(mip, B_FALSE);
5679 		break;
5680 	default:
5681 		panic("Unexpected ma_type 0x%x, file: %s, line %d",
5682 		    map->ma_type, __FILE__, __LINE__);
5683 	}
5684 
5685 	if (err != 0) {
5686 		map->ma_nusers = 1;
5687 		return (err);
5688 	}
5689 
5690 	/*
5691 	 * We created MAC address for the primary one at registration, so we
5692 	 * won't free it here. mac_fini_macaddr() will take care of it.
5693 	 */
5694 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5695 		mac_free_macaddr(map);
5696 
5697 	return (0);
5698 }
5699 
5700 /*
5701  * Update an existing MAC address. The caller need to make sure that the new
5702  * value has not been used.
5703  */
5704 int
5705 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5706 {
5707 	mac_impl_t *mip = map->ma_mip;
5708 	int err = 0;
5709 
5710 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5711 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5712 
5713 	switch (map->ma_type) {
5714 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5715 		/*
5716 		 * Update the primary address for drivers that are not
5717 		 * RINGS capable.
5718 		 */
5719 		if (mip->mi_rx_groups == NULL) {
5720 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5721 			    mac_addr);
5722 			if (err != 0)
5723 				return (err);
5724 			break;
5725 		}
5726 
5727 		/*
5728 		 * If this MAC address is not currently in use,
5729 		 * simply break out and update the value.
5730 		 */
5731 		if (map->ma_nusers == 0)
5732 			break;
5733 
5734 		/*
5735 		 * Need to replace the MAC address associated with a group.
5736 		 */
5737 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5738 		if (err != 0)
5739 			return (err);
5740 
5741 		err = mac_group_addmac(map->ma_group, mac_addr);
5742 
5743 		/*
5744 		 * Failure hints hardware error. The MAC layer needs to
5745 		 * have error notification facility to handle this.
5746 		 * Now, simply try to restore the value.
5747 		 */
5748 		if (err != 0)
5749 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5750 
5751 		break;
5752 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5753 		/*
5754 		 * Need to do nothing more if in promiscuous mode.
5755 		 */
5756 		break;
5757 	default:
5758 		ASSERT(B_FALSE);
5759 	}
5760 
5761 	/*
5762 	 * Successfully replaced the MAC address.
5763 	 */
5764 	if (err == 0)
5765 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5766 
5767 	return (err);
5768 }
5769 
5770 /*
5771  * Freshen the MAC address with new value. Its caller must have updated the
5772  * hardware MAC address before calling this function.
5773  * This funcitons is supposed to be used to handle the MAC address change
5774  * notification from underlying drivers.
5775  */
5776 void
5777 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5778 {
5779 	mac_impl_t *mip = map->ma_mip;
5780 
5781 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5782 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5783 
5784 	/*
5785 	 * Freshen the MAC address with new value.
5786 	 */
5787 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5788 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5789 
5790 	/*
5791 	 * Update all MAC clients that share this MAC address.
5792 	 */
5793 	mac_unicast_update_clients(mip, map);
5794 }
5795 
5796 /*
5797  * Set up the primary MAC address.
5798  */
5799 void
5800 mac_init_macaddr(mac_impl_t *mip)
5801 {
5802 	mac_address_t *map;
5803 
5804 	/*
5805 	 * The reference count is initialized to zero, until it's really
5806 	 * activated.
5807 	 */
5808 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5809 	map->ma_len = mip->mi_type->mt_addr_length;
5810 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5811 
5812 	/*
5813 	 * If driver advertises RINGS capability, it shouldn't have initialized
5814 	 * its primary MAC address. For other drivers, including VNIC, the
5815 	 * primary address must work after registration.
5816 	 */
5817 	if (mip->mi_rx_groups == NULL)
5818 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5819 
5820 	map->ma_mip = mip;
5821 
5822 	mip->mi_addresses = map;
5823 }
5824 
5825 /*
5826  * Clean up the primary MAC address. Note, only one primary MAC address
5827  * is allowed. All other MAC addresses must have been freed appropriately.
5828  */
5829 void
5830 mac_fini_macaddr(mac_impl_t *mip)
5831 {
5832 	mac_address_t *map = mip->mi_addresses;
5833 
5834 	if (map == NULL)
5835 		return;
5836 
5837 	/*
5838 	 * If mi_addresses is initialized, there should be exactly one
5839 	 * entry left on the list with no users.
5840 	 */
5841 	VERIFY3S(map->ma_nusers, ==, 0);
5842 	VERIFY3P(map->ma_next, ==, NULL);
5843 	VERIFY3P(map->ma_vlans, ==, NULL);
5844 
5845 	kmem_free(map, sizeof (mac_address_t));
5846 	mip->mi_addresses = NULL;
5847 }
5848 
5849 /*
5850  * Logging related functions.
5851  *
5852  * Note that Kernel statistics have been extended to maintain fine
5853  * granularity of statistics viz. hardware lane, software lane, fanout
5854  * stats etc. However, extended accounting continues to support only
5855  * aggregate statistics like before.
5856  */
5857 
5858 /* Write the flow description to a netinfo_t record */
5859 static netinfo_t *
5860 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5861 {
5862 	netinfo_t		*ninfo;
5863 	net_desc_t		*ndesc;
5864 	flow_desc_t		*fdesc;
5865 	mac_resource_props_t	*mrp;
5866 
5867 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5868 	if (ninfo == NULL)
5869 		return (NULL);
5870 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5871 	if (ndesc == NULL) {
5872 		kmem_free(ninfo, sizeof (netinfo_t));
5873 		return (NULL);
5874 	}
5875 
5876 	/*
5877 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5878 	 * Updates to the fe_flow_desc are done under the fe_lock
5879 	 */
5880 	mutex_enter(&flent->fe_lock);
5881 	fdesc = &flent->fe_flow_desc;
5882 	mrp = &flent->fe_resource_props;
5883 
5884 	ndesc->nd_name = flent->fe_flow_name;
5885 	ndesc->nd_devname = mcip->mci_name;
5886 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5887 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5888 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5889 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5890 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5891 	if (ndesc->nd_isv4) {
5892 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5893 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5894 	} else {
5895 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5896 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5897 	}
5898 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5899 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5900 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5901 	mutex_exit(&flent->fe_lock);
5902 
5903 	ninfo->ni_record = ndesc;
5904 	ninfo->ni_size = sizeof (net_desc_t);
5905 	ninfo->ni_type = EX_NET_FLDESC_REC;
5906 
5907 	return (ninfo);
5908 }
5909 
5910 /* Write the flow statistics to a netinfo_t record */
5911 static netinfo_t *
5912 mac_write_flow_stats(flow_entry_t *flent)
5913 {
5914 	netinfo_t		*ninfo;
5915 	net_stat_t		*nstat;
5916 	mac_soft_ring_set_t	*mac_srs;
5917 	mac_rx_stats_t		*mac_rx_stat;
5918 	mac_tx_stats_t		*mac_tx_stat;
5919 	int			i;
5920 
5921 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5922 	if (ninfo == NULL)
5923 		return (NULL);
5924 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5925 	if (nstat == NULL) {
5926 		kmem_free(ninfo, sizeof (netinfo_t));
5927 		return (NULL);
5928 	}
5929 
5930 	nstat->ns_name = flent->fe_flow_name;
5931 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5932 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5933 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5934 
5935 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5936 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5937 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5938 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5939 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5940 	}
5941 
5942 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5943 	if (mac_srs != NULL) {
5944 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5945 
5946 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5947 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5948 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5949 	}
5950 
5951 	ninfo->ni_record = nstat;
5952 	ninfo->ni_size = sizeof (net_stat_t);
5953 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5954 
5955 	return (ninfo);
5956 }
5957 
5958 /* Write the link description to a netinfo_t record */
5959 static netinfo_t *
5960 mac_write_link_desc(mac_client_impl_t *mcip)
5961 {
5962 	netinfo_t		*ninfo;
5963 	net_desc_t		*ndesc;
5964 	flow_entry_t		*flent = mcip->mci_flent;
5965 
5966 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5967 	if (ninfo == NULL)
5968 		return (NULL);
5969 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5970 	if (ndesc == NULL) {
5971 		kmem_free(ninfo, sizeof (netinfo_t));
5972 		return (NULL);
5973 	}
5974 
5975 	ndesc->nd_name = mcip->mci_name;
5976 	ndesc->nd_devname = mcip->mci_name;
5977 	ndesc->nd_isv4 = B_TRUE;
5978 	/*
5979 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5980 	 * Updates to the fe_flow_desc are done under the fe_lock
5981 	 * after removing the flent from the flow table.
5982 	 */
5983 	mutex_enter(&flent->fe_lock);
5984 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5985 	mutex_exit(&flent->fe_lock);
5986 
5987 	ninfo->ni_record = ndesc;
5988 	ninfo->ni_size = sizeof (net_desc_t);
5989 	ninfo->ni_type = EX_NET_LNDESC_REC;
5990 
5991 	return (ninfo);
5992 }
5993 
5994 /* Write the link statistics to a netinfo_t record */
5995 static netinfo_t *
5996 mac_write_link_stats(mac_client_impl_t *mcip)
5997 {
5998 	netinfo_t		*ninfo;
5999 	net_stat_t		*nstat;
6000 	flow_entry_t		*flent;
6001 	mac_soft_ring_set_t	*mac_srs;
6002 	mac_rx_stats_t		*mac_rx_stat;
6003 	mac_tx_stats_t		*mac_tx_stat;
6004 	int			i;
6005 
6006 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
6007 	if (ninfo == NULL)
6008 		return (NULL);
6009 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
6010 	if (nstat == NULL) {
6011 		kmem_free(ninfo, sizeof (netinfo_t));
6012 		return (NULL);
6013 	}
6014 
6015 	nstat->ns_name = mcip->mci_name;
6016 	flent = mcip->mci_flent;
6017 	if (flent != NULL)  {
6018 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
6019 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
6020 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
6021 
6022 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
6023 			    mac_rx_stat->mrs_pollbytes +
6024 			    mac_rx_stat->mrs_lclbytes;
6025 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
6026 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
6027 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
6028 		}
6029 	}
6030 
6031 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
6032 	if (mac_srs != NULL) {
6033 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
6034 
6035 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
6036 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
6037 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
6038 	}
6039 
6040 	ninfo->ni_record = nstat;
6041 	ninfo->ni_size = sizeof (net_stat_t);
6042 	ninfo->ni_type = EX_NET_LNSTAT_REC;
6043 
6044 	return (ninfo);
6045 }
6046 
6047 typedef struct i_mac_log_state_s {
6048 	boolean_t	mi_last;
6049 	int		mi_fenable;
6050 	int		mi_lenable;
6051 	list_t		*mi_list;
6052 } i_mac_log_state_t;
6053 
6054 /*
6055  * For a given flow, if the description has not been logged before, do it now.
6056  * If it is a VNIC, then we have collected information about it from the MAC
6057  * table, so skip it.
6058  *
6059  * Called through mac_flow_walk_nolock()
6060  *
6061  * Return 0 if successful.
6062  */
6063 static int
6064 mac_log_flowinfo(flow_entry_t *flent, void *arg)
6065 {
6066 	mac_client_impl_t	*mcip = flent->fe_mcip;
6067 	i_mac_log_state_t	*lstate = arg;
6068 	netinfo_t		*ninfo;
6069 
6070 	if (mcip == NULL)
6071 		return (0);
6072 
6073 	/*
6074 	 * If the name starts with "vnic", and fe_user_generated is true (to
6075 	 * exclude the mcast and active flow entries created implicitly for
6076 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
6077 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
6078 	 */
6079 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
6080 	    (flent->fe_type & FLOW_USER) != 0) {
6081 		return (0);
6082 	}
6083 
6084 	if (!flent->fe_desc_logged) {
6085 		/*
6086 		 * We don't return error because we want to continue the
6087 		 * walk in case this is the last walk which means we
6088 		 * need to reset fe_desc_logged in all the flows.
6089 		 */
6090 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
6091 			return (0);
6092 		list_insert_tail(lstate->mi_list, ninfo);
6093 		flent->fe_desc_logged = B_TRUE;
6094 	}
6095 
6096 	/*
6097 	 * Regardless of the error, we want to proceed in case we have to
6098 	 * reset fe_desc_logged.
6099 	 */
6100 	ninfo = mac_write_flow_stats(flent);
6101 	if (ninfo == NULL)
6102 		return (-1);
6103 
6104 	list_insert_tail(lstate->mi_list, ninfo);
6105 
6106 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
6107 		flent->fe_desc_logged = B_FALSE;
6108 
6109 	return (0);
6110 }
6111 
6112 /*
6113  * Log the description for each mac client of this mac_impl_t, if it
6114  * hasn't already been done. Additionally, log statistics for the link as
6115  * well. Walk the flow table and log information for each flow as well.
6116  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
6117  * also fe_desc_logged, if flow logging is on) since we want to log the
6118  * description if and when logging is restarted.
6119  *
6120  * Return 0 upon success or -1 upon failure
6121  */
6122 static int
6123 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
6124 {
6125 	mac_client_impl_t	*mcip;
6126 	netinfo_t		*ninfo;
6127 
6128 	i_mac_perim_enter(mip);
6129 	/*
6130 	 * Only walk the client list for NIC and etherstub
6131 	 */
6132 	if ((mip->mi_state_flags & MIS_DISABLED) ||
6133 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
6134 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
6135 		i_mac_perim_exit(mip);
6136 		return (0);
6137 	}
6138 
6139 	for (mcip = mip->mi_clients_list; mcip != NULL;
6140 	    mcip = mcip->mci_client_next) {
6141 		if (!MCIP_DATAPATH_SETUP(mcip))
6142 			continue;
6143 		if (lstate->mi_lenable) {
6144 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
6145 				ninfo = mac_write_link_desc(mcip);
6146 				if (ninfo == NULL) {
6147 				/*
6148 				 * We can't terminate it if this is the last
6149 				 * walk, else there might be some links with
6150 				 * mi_desc_logged set to true, which means
6151 				 * their description won't be logged the next
6152 				 * time logging is started (similarly for the
6153 				 * flows within such links). We can continue
6154 				 * without walking the flow table (i.e. to
6155 				 * set fe_desc_logged to false) because we
6156 				 * won't have written any flow stuff for this
6157 				 * link as we haven't logged the link itself.
6158 				 */
6159 					i_mac_perim_exit(mip);
6160 					if (lstate->mi_last)
6161 						return (0);
6162 					else
6163 						return (-1);
6164 				}
6165 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
6166 				list_insert_tail(lstate->mi_list, ninfo);
6167 			}
6168 		}
6169 
6170 		ninfo = mac_write_link_stats(mcip);
6171 		if (ninfo == NULL && !lstate->mi_last) {
6172 			i_mac_perim_exit(mip);
6173 			return (-1);
6174 		}
6175 		list_insert_tail(lstate->mi_list, ninfo);
6176 
6177 		if (lstate->mi_last)
6178 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
6179 
6180 		if (lstate->mi_fenable) {
6181 			if (mcip->mci_subflow_tab != NULL) {
6182 				(void) mac_flow_walk_nolock(
6183 				    mcip->mci_subflow_tab, mac_log_flowinfo,
6184 				    lstate);
6185 			}
6186 		}
6187 	}
6188 	i_mac_perim_exit(mip);
6189 	return (0);
6190 }
6191 
6192 /*
6193  * modhash walker function to add a mac_impl_t to a list
6194  */
6195 /*ARGSUSED*/
6196 static uint_t
6197 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
6198 {
6199 	list_t			*list = (list_t *)arg;
6200 	mac_impl_t		*mip = (mac_impl_t *)val;
6201 
6202 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
6203 		list_insert_tail(list, mip);
6204 		mip->mi_ref++;
6205 	}
6206 
6207 	return (MH_WALK_CONTINUE);
6208 }
6209 
6210 void
6211 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
6212 {
6213 	list_t			mac_impl_list;
6214 	mac_impl_t		*mip;
6215 	netinfo_t		*ninfo;
6216 
6217 	/* Create list of mac_impls */
6218 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
6219 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
6220 	    mi_node));
6221 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
6222 	rw_exit(&i_mac_impl_lock);
6223 
6224 	/* Create log entries for each mac_impl */
6225 	for (mip = list_head(&mac_impl_list); mip != NULL;
6226 	    mip = list_next(&mac_impl_list, mip)) {
6227 		if (i_mac_impl_log(mip, lstate) != 0)
6228 			continue;
6229 	}
6230 
6231 	/* Remove elements and destroy list of mac_impls */
6232 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6233 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
6234 		mip->mi_ref--;
6235 	}
6236 	rw_exit(&i_mac_impl_lock);
6237 	list_destroy(&mac_impl_list);
6238 
6239 	/*
6240 	 * Write log entries to files outside of locks, free associated
6241 	 * structures, and remove entries from the list.
6242 	 */
6243 	while ((ninfo = list_head(net_log_list)) != NULL) {
6244 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
6245 		list_remove(net_log_list, ninfo);
6246 		kmem_free(ninfo->ni_record, ninfo->ni_size);
6247 		kmem_free(ninfo, sizeof (*ninfo));
6248 	}
6249 	list_destroy(net_log_list);
6250 }
6251 
6252 /*
6253  * The timer thread that runs every mac_logging_interval seconds and logs
6254  * link and/or flow information.
6255  */
6256 /* ARGSUSED */
6257 void
6258 mac_log_linkinfo(void *arg)
6259 {
6260 	i_mac_log_state_t	lstate;
6261 	list_t			net_log_list;
6262 
6263 	list_create(&net_log_list, sizeof (netinfo_t),
6264 	    offsetof(netinfo_t, ni_link));
6265 
6266 	rw_enter(&i_mac_impl_lock, RW_READER);
6267 	if (!mac_flow_log_enable && !mac_link_log_enable) {
6268 		rw_exit(&i_mac_impl_lock);
6269 		return;
6270 	}
6271 	lstate.mi_fenable = mac_flow_log_enable;
6272 	lstate.mi_lenable = mac_link_log_enable;
6273 	lstate.mi_last = B_FALSE;
6274 	lstate.mi_list = &net_log_list;
6275 
6276 	/* Write log entries for each mac_impl in the list */
6277 	i_mac_log_info(&net_log_list, &lstate);
6278 
6279 	if (mac_flow_log_enable || mac_link_log_enable) {
6280 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
6281 		    SEC_TO_TICK(mac_logging_interval));
6282 	}
6283 }
6284 
6285 typedef struct i_mac_fastpath_state_s {
6286 	boolean_t	mf_disable;
6287 	int		mf_err;
6288 } i_mac_fastpath_state_t;
6289 
6290 /* modhash walker function to enable or disable fastpath */
6291 /*ARGSUSED*/
6292 static uint_t
6293 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
6294     void *arg)
6295 {
6296 	i_mac_fastpath_state_t	*state = arg;
6297 	mac_handle_t		mh = (mac_handle_t)val;
6298 
6299 	if (state->mf_disable)
6300 		state->mf_err = mac_fastpath_disable(mh);
6301 	else
6302 		mac_fastpath_enable(mh);
6303 
6304 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
6305 }
6306 
6307 /*
6308  * Start the logging timer.
6309  */
6310 int
6311 mac_start_logusage(mac_logtype_t type, uint_t interval)
6312 {
6313 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
6314 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
6315 	int			err;
6316 
6317 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6318 	switch (type) {
6319 	case MAC_LOGTYPE_FLOW:
6320 		if (mac_flow_log_enable) {
6321 			rw_exit(&i_mac_impl_lock);
6322 			return (0);
6323 		}
6324 		/* FALLTHRU */
6325 	case MAC_LOGTYPE_LINK:
6326 		if (mac_link_log_enable) {
6327 			rw_exit(&i_mac_impl_lock);
6328 			return (0);
6329 		}
6330 		break;
6331 	default:
6332 		ASSERT(0);
6333 	}
6334 
6335 	/* Disable fastpath */
6336 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
6337 	if ((err = dstate.mf_err) != 0) {
6338 		/* Reenable fastpath  */
6339 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6340 		rw_exit(&i_mac_impl_lock);
6341 		return (err);
6342 	}
6343 
6344 	switch (type) {
6345 	case MAC_LOGTYPE_FLOW:
6346 		mac_flow_log_enable = B_TRUE;
6347 		/* FALLTHRU */
6348 	case MAC_LOGTYPE_LINK:
6349 		mac_link_log_enable = B_TRUE;
6350 		break;
6351 	}
6352 
6353 	mac_logging_interval = interval;
6354 	rw_exit(&i_mac_impl_lock);
6355 	mac_log_linkinfo(NULL);
6356 	return (0);
6357 }
6358 
6359 /*
6360  * Stop the logging timer if both link and flow logging are turned off.
6361  */
6362 void
6363 mac_stop_logusage(mac_logtype_t type)
6364 {
6365 	i_mac_log_state_t	lstate;
6366 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
6367 	list_t			net_log_list;
6368 
6369 	list_create(&net_log_list, sizeof (netinfo_t),
6370 	    offsetof(netinfo_t, ni_link));
6371 
6372 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6373 
6374 	lstate.mi_fenable = mac_flow_log_enable;
6375 	lstate.mi_lenable = mac_link_log_enable;
6376 	lstate.mi_list = &net_log_list;
6377 
6378 	/* Last walk */
6379 	lstate.mi_last = B_TRUE;
6380 
6381 	switch (type) {
6382 	case MAC_LOGTYPE_FLOW:
6383 		if (lstate.mi_fenable) {
6384 			ASSERT(mac_link_log_enable);
6385 			mac_flow_log_enable = B_FALSE;
6386 			mac_link_log_enable = B_FALSE;
6387 			break;
6388 		}
6389 		/* FALLTHRU */
6390 	case MAC_LOGTYPE_LINK:
6391 		if (!lstate.mi_lenable || mac_flow_log_enable) {
6392 			rw_exit(&i_mac_impl_lock);
6393 			return;
6394 		}
6395 		mac_link_log_enable = B_FALSE;
6396 		break;
6397 	default:
6398 		ASSERT(0);
6399 	}
6400 
6401 	/* Reenable fastpath */
6402 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6403 
6404 	(void) untimeout(mac_logging_timer);
6405 	mac_logging_timer = NULL;
6406 
6407 	/* Write log entries for each mac_impl in the list */
6408 	i_mac_log_info(&net_log_list, &lstate);
6409 }
6410 
6411 /*
6412  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
6413  */
6414 void
6415 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
6416 {
6417 	pri_t			pri;
6418 	int			count;
6419 	mac_soft_ring_set_t	*mac_srs;
6420 
6421 	if (flent->fe_rx_srs_cnt <= 0)
6422 		return;
6423 
6424 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
6425 	    SRST_FLOW) {
6426 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
6427 		    mcip->mci_max_pri,
6428 		    flent->fe_resource_props.mrp_priority);
6429 	} else {
6430 		pri = mcip->mci_max_pri;
6431 	}
6432 
6433 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
6434 		mac_srs = flent->fe_rx_srs[count];
6435 		mac_update_srs_priority(mac_srs, pri);
6436 	}
6437 	/*
6438 	 * If we have a Tx SRS, we need to modify all the threads associated
6439 	 * with it.
6440 	 */
6441 	if (flent->fe_tx_srs != NULL)
6442 		mac_update_srs_priority(flent->fe_tx_srs, pri);
6443 }
6444 
6445 /*
6446  * RX and TX rings are reserved according to different semantics depending
6447  * on the requests from the MAC clients and type of rings:
6448  *
6449  * On the Tx side, by default we reserve individual rings, independently from
6450  * the groups.
6451  *
6452  * On the Rx side, the reservation is at the granularity of the group
6453  * of rings, and used for v12n level 1 only. It has a special case for the
6454  * primary client.
6455  *
6456  * If a share is allocated to a MAC client, we allocate a TX group and an
6457  * RX group to the client, and assign TX rings and RX rings to these
6458  * groups according to information gathered from the driver through
6459  * the share capability.
6460  *
6461  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
6462  * to allocate individual rings out of a group and program the hw classifier
6463  * based on IP address or higher level criteria.
6464  */
6465 
6466 /*
6467  * mac_reserve_tx_ring()
6468  * Reserve a unused ring by marking it with MR_INUSE state.
6469  * As reserved, the ring is ready to function.
6470  *
6471  * Notes for Hybrid I/O:
6472  *
6473  * If a specific ring is needed, it is specified through the desired_ring
6474  * argument. Otherwise that argument is set to NULL.
6475  * If the desired ring was previous allocated to another client, this
6476  * function swaps it with a new ring from the group of unassigned rings.
6477  */
6478 mac_ring_t *
6479 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
6480 {
6481 	mac_group_t		*group;
6482 	mac_grp_client_t	*mgcp;
6483 	mac_client_impl_t	*mcip;
6484 	mac_soft_ring_set_t	*srs;
6485 
6486 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6487 
6488 	/*
6489 	 * Find an available ring and start it before changing its status.
6490 	 * The unassigned rings are at the end of the mi_tx_groups
6491 	 * array.
6492 	 */
6493 	group = MAC_DEFAULT_TX_GROUP(mip);
6494 
6495 	/* Can't take the default ring out of the default group */
6496 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
6497 
6498 	if (desired_ring->mr_state == MR_FREE) {
6499 		ASSERT(MAC_GROUP_NO_CLIENT(group));
6500 		if (mac_start_ring(desired_ring) != 0)
6501 			return (NULL);
6502 		return (desired_ring);
6503 	}
6504 	/*
6505 	 * There are clients using this ring, so let's move the clients
6506 	 * away from using this ring.
6507 	 */
6508 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6509 		mcip = mgcp->mgc_client;
6510 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
6511 		srs = MCIP_TX_SRS(mcip);
6512 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
6513 		mac_tx_invoke_callbacks(mcip,
6514 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
6515 		    desired_ring));
6516 		mac_tx_srs_del_ring(srs, desired_ring);
6517 		mac_tx_client_restart((mac_client_handle_t)mcip);
6518 	}
6519 	return (desired_ring);
6520 }
6521 
6522 /*
6523  * For a non-default group with multiple clients, return the primary client.
6524  */
6525 static mac_client_impl_t *
6526 mac_get_grp_primary(mac_group_t *grp)
6527 {
6528 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6529 	mac_client_impl_t	*mcip;
6530 
6531 	while (mgcp != NULL) {
6532 		mcip = mgcp->mgc_client;
6533 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
6534 			return (mcip);
6535 		mgcp = mgcp->mgc_next;
6536 	}
6537 	return (NULL);
6538 }
6539 
6540 /*
6541  * Hybrid I/O specifies the ring that should be given to a share.
6542  * If the ring is already used by clients, then we need to release
6543  * the ring back to the default group so that we can give it to
6544  * the share. This means the clients using this ring now get a
6545  * replacement ring. If there aren't any replacement rings, this
6546  * function returns a failure.
6547  */
6548 static int
6549 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
6550     mac_ring_t *ring, mac_ring_t **rings, int nrings)
6551 {
6552 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
6553 	mac_resource_props_t	*mrp;
6554 	mac_client_impl_t	*mcip;
6555 	mac_group_t		*defgrp;
6556 	mac_ring_t		*tring;
6557 	mac_group_t		*tgrp;
6558 	int			i;
6559 	int			j;
6560 
6561 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6562 	if (mcip == NULL)
6563 		mcip = mac_get_grp_primary(group);
6564 	ASSERT(mcip != NULL);
6565 	ASSERT(mcip->mci_share == 0);
6566 
6567 	mrp = MCIP_RESOURCE_PROPS(mcip);
6568 	if (ring_type == MAC_RING_TYPE_RX) {
6569 		defgrp = mip->mi_rx_donor_grp;
6570 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
6571 			/* Need to put this mac client in the default group */
6572 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
6573 				return (ENOSPC);
6574 		} else {
6575 			/*
6576 			 * Switch this ring with some other ring from
6577 			 * the default group.
6578 			 */
6579 			for (tring = defgrp->mrg_rings; tring != NULL;
6580 			    tring = tring->mr_next) {
6581 				if (tring->mr_index == 0)
6582 					continue;
6583 				for (j = 0; j < nrings; j++) {
6584 					if (rings[j] == tring)
6585 						break;
6586 				}
6587 				if (j >= nrings)
6588 					break;
6589 			}
6590 			if (tring == NULL)
6591 				return (ENOSPC);
6592 			if (mac_group_mov_ring(mip, group, tring) != 0)
6593 				return (ENOSPC);
6594 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6595 				(void) mac_group_mov_ring(mip, defgrp, tring);
6596 				return (ENOSPC);
6597 			}
6598 		}
6599 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6600 		return (0);
6601 	}
6602 
6603 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6604 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6605 		/*
6606 		 * See if we can get a spare ring to replace the default
6607 		 * ring.
6608 		 */
6609 		if (defgrp->mrg_cur_count == 1) {
6610 			/*
6611 			 * Need to get a ring from another client, see if
6612 			 * there are any clients that can be moved to
6613 			 * the default group, thereby freeing some rings.
6614 			 */
6615 			for (i = 0; i < mip->mi_tx_group_count; i++) {
6616 				tgrp = &mip->mi_tx_groups[i];
6617 				if (tgrp->mrg_state ==
6618 				    MAC_GROUP_STATE_REGISTERED) {
6619 					continue;
6620 				}
6621 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6622 				if (mcip == NULL)
6623 					mcip = mac_get_grp_primary(tgrp);
6624 				ASSERT(mcip != NULL);
6625 				mrp = MCIP_RESOURCE_PROPS(mcip);
6626 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6627 					ASSERT(tgrp->mrg_cur_count == 1);
6628 					/*
6629 					 * If this ring is part of the
6630 					 * rings asked by the share we cannot
6631 					 * use it as the default ring.
6632 					 */
6633 					for (j = 0; j < nrings; j++) {
6634 						if (rings[j] == tgrp->mrg_rings)
6635 							break;
6636 					}
6637 					if (j < nrings)
6638 						continue;
6639 					mac_tx_client_quiesce(
6640 					    (mac_client_handle_t)mcip);
6641 					mac_tx_switch_group(mcip, tgrp,
6642 					    defgrp);
6643 					mac_tx_client_restart(
6644 					    (mac_client_handle_t)mcip);
6645 					break;
6646 				}
6647 			}
6648 			/*
6649 			 * All the rings are reserved, can't give up the
6650 			 * default ring.
6651 			 */
6652 			if (defgrp->mrg_cur_count <= 1)
6653 				return (ENOSPC);
6654 		}
6655 		/*
6656 		 * Swap the default ring with another.
6657 		 */
6658 		for (tring = defgrp->mrg_rings; tring != NULL;
6659 		    tring = tring->mr_next) {
6660 			/*
6661 			 * If this ring is part of the rings asked by the
6662 			 * share we cannot use it as the default ring.
6663 			 */
6664 			for (j = 0; j < nrings; j++) {
6665 				if (rings[j] == tring)
6666 					break;
6667 			}
6668 			if (j >= nrings)
6669 				break;
6670 		}
6671 		ASSERT(tring != NULL);
6672 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6673 		return (0);
6674 	}
6675 	/*
6676 	 * The Tx ring is with a group reserved by a MAC client. See if
6677 	 * we can swap it.
6678 	 */
6679 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6680 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6681 	if (mcip == NULL)
6682 		mcip = mac_get_grp_primary(group);
6683 	ASSERT(mcip !=  NULL);
6684 	mrp = MCIP_RESOURCE_PROPS(mcip);
6685 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6686 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6687 		ASSERT(group->mrg_cur_count == 1);
6688 		/* Put this mac client in the default group */
6689 		mac_tx_switch_group(mcip, group, defgrp);
6690 	} else {
6691 		/*
6692 		 * Switch this ring with some other ring from
6693 		 * the default group.
6694 		 */
6695 		for (tring = defgrp->mrg_rings; tring != NULL;
6696 		    tring = tring->mr_next) {
6697 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6698 				continue;
6699 			/*
6700 			 * If this ring is part of the rings asked by the
6701 			 * share we cannot use it for swapping.
6702 			 */
6703 			for (j = 0; j < nrings; j++) {
6704 				if (rings[j] == tring)
6705 					break;
6706 			}
6707 			if (j >= nrings)
6708 				break;
6709 		}
6710 		if (tring == NULL) {
6711 			mac_tx_client_restart((mac_client_handle_t)mcip);
6712 			return (ENOSPC);
6713 		}
6714 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6715 			mac_tx_client_restart((mac_client_handle_t)mcip);
6716 			return (ENOSPC);
6717 		}
6718 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6719 			(void) mac_group_mov_ring(mip, defgrp, tring);
6720 			mac_tx_client_restart((mac_client_handle_t)mcip);
6721 			return (ENOSPC);
6722 		}
6723 	}
6724 	mac_tx_client_restart((mac_client_handle_t)mcip);
6725 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6726 	return (0);
6727 }
6728 
6729 /*
6730  * Populate a zero-ring group with rings. If the share is non-NULL,
6731  * the rings are chosen according to that share.
6732  * Invoked after allocating a new RX or TX group through
6733  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6734  * Returns zero on success, an errno otherwise.
6735  */
6736 int
6737 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6738     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6739     uint32_t ringcnt)
6740 {
6741 	mac_ring_t **rings, *ring;
6742 	uint_t nrings;
6743 	int rv = 0, i = 0, j;
6744 
6745 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6746 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6747 	    (ring_type == MAC_RING_TYPE_TX &&
6748 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6749 
6750 	/*
6751 	 * First find the rings to allocate to the group.
6752 	 */
6753 	if (share != 0) {
6754 		/* get rings through ms_squery() */
6755 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6756 		ASSERT(nrings != 0);
6757 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6758 		    KM_SLEEP);
6759 		mip->mi_share_capab.ms_squery(share, ring_type,
6760 		    (mac_ring_handle_t *)rings, &nrings);
6761 		for (i = 0; i < nrings; i++) {
6762 			/*
6763 			 * If we have given this ring to a non-default
6764 			 * group, we need to check if we can get this
6765 			 * ring.
6766 			 */
6767 			ring = rings[i];
6768 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6769 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6770 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6771 				    ring, rings, nrings) != 0) {
6772 					rv = ENOSPC;
6773 					goto bail;
6774 				}
6775 			}
6776 		}
6777 	} else {
6778 		/*
6779 		 * Pick one ring from default group.
6780 		 *
6781 		 * for now pick the second ring which requires the first ring
6782 		 * at index 0 to stay in the default group, since it is the
6783 		 * ring which carries the multicast traffic.
6784 		 * We need a better way for a driver to indicate this,
6785 		 * for example a per-ring flag.
6786 		 */
6787 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6788 		    KM_SLEEP);
6789 		for (ring = src_group->mrg_rings; ring != NULL;
6790 		    ring = ring->mr_next) {
6791 			if (ring_type == MAC_RING_TYPE_RX &&
6792 			    ring->mr_index == 0) {
6793 				continue;
6794 			}
6795 			if (ring_type == MAC_RING_TYPE_TX &&
6796 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6797 				continue;
6798 			}
6799 			rings[i++] = ring;
6800 			if (i == ringcnt)
6801 				break;
6802 		}
6803 		ASSERT(ring != NULL);
6804 		nrings = i;
6805 		/* Not enough rings as required */
6806 		if (nrings != ringcnt) {
6807 			rv = ENOSPC;
6808 			goto bail;
6809 		}
6810 	}
6811 
6812 	switch (ring_type) {
6813 	case MAC_RING_TYPE_RX:
6814 		if (src_group->mrg_cur_count - nrings < 1) {
6815 			/* we ran out of rings */
6816 			rv = ENOSPC;
6817 			goto bail;
6818 		}
6819 
6820 		/* move receive rings to new group */
6821 		for (i = 0; i < nrings; i++) {
6822 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6823 			if (rv != 0) {
6824 				/* move rings back on failure */
6825 				for (j = 0; j < i; j++) {
6826 					(void) mac_group_mov_ring(mip,
6827 					    src_group, rings[j]);
6828 				}
6829 				goto bail;
6830 			}
6831 		}
6832 		break;
6833 
6834 	case MAC_RING_TYPE_TX: {
6835 		mac_ring_t *tmp_ring;
6836 
6837 		/* move the TX rings to the new group */
6838 		for (i = 0; i < nrings; i++) {
6839 			/* get the desired ring */
6840 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6841 			if (tmp_ring == NULL) {
6842 				rv = ENOSPC;
6843 				goto bail;
6844 			}
6845 			ASSERT(tmp_ring == rings[i]);
6846 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6847 			if (rv != 0) {
6848 				/* cleanup on failure */
6849 				for (j = 0; j < i; j++) {
6850 					(void) mac_group_mov_ring(mip,
6851 					    MAC_DEFAULT_TX_GROUP(mip),
6852 					    rings[j]);
6853 				}
6854 				goto bail;
6855 			}
6856 		}
6857 		break;
6858 	}
6859 	}
6860 
6861 	/* add group to share */
6862 	if (share != 0)
6863 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6864 
6865 bail:
6866 	/* free temporary array of rings */
6867 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6868 
6869 	return (rv);
6870 }
6871 
6872 void
6873 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6874 {
6875 	mac_grp_client_t *mgcp;
6876 
6877 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6878 		if (mgcp->mgc_client == mcip)
6879 			break;
6880 	}
6881 
6882 	ASSERT(mgcp == NULL);
6883 
6884 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6885 	mgcp->mgc_client = mcip;
6886 	mgcp->mgc_next = grp->mrg_clients;
6887 	grp->mrg_clients = mgcp;
6888 }
6889 
6890 void
6891 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6892 {
6893 	mac_grp_client_t *mgcp, **pprev;
6894 
6895 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6896 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6897 		if (mgcp->mgc_client == mcip)
6898 			break;
6899 	}
6900 
6901 	ASSERT(mgcp != NULL);
6902 
6903 	*pprev = mgcp->mgc_next;
6904 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6905 }
6906 
6907 /*
6908  * Return true if any client on this group explicitly asked for HW
6909  * rings (of type mask) or have a bound share.
6910  */
6911 static boolean_t
6912 i_mac_clients_hw(mac_group_t *grp, uint32_t mask)
6913 {
6914 	mac_grp_client_t	*mgcip;
6915 	mac_client_impl_t	*mcip;
6916 	mac_resource_props_t	*mrp;
6917 
6918 	for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) {
6919 		mcip = mgcip->mgc_client;
6920 		mrp = MCIP_RESOURCE_PROPS(mcip);
6921 		if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0)
6922 			return (B_TRUE);
6923 	}
6924 
6925 	return (B_FALSE);
6926 }
6927 
6928 /*
6929  * Finds an available group and exclusively reserves it for a client.
6930  * The group is chosen to suit the flow's resource controls (bandwidth and
6931  * fanout requirements) and the address type.
6932  * If the requestor is the pimary MAC then return the group with the
6933  * largest number of rings, otherwise the default ring when available.
6934  */
6935 mac_group_t *
6936 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6937 {
6938 	mac_share_handle_t	share = mcip->mci_share;
6939 	mac_impl_t		*mip = mcip->mci_mip;
6940 	mac_group_t		*grp = NULL;
6941 	int			i;
6942 	int			err = 0;
6943 	mac_address_t		*map;
6944 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6945 	int			nrings;
6946 	int			donor_grp_rcnt;
6947 	boolean_t		need_exclgrp = B_FALSE;
6948 	int			need_rings = 0;
6949 	mac_group_t		*candidate_grp = NULL;
6950 	mac_client_impl_t	*gclient;
6951 	mac_group_t		*donorgrp = NULL;
6952 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6953 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6954 	boolean_t		isprimary;
6955 
6956 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6957 
6958 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6959 
6960 	/*
6961 	 * Check if a group already has this MAC address (case of VLANs)
6962 	 * unless we are moving this MAC client from one group to another.
6963 	 */
6964 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6965 		if (map->ma_group != NULL)
6966 			return (map->ma_group);
6967 	}
6968 
6969 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6970 		return (NULL);
6971 
6972 	/*
6973 	 * If this client is requesting exclusive MAC access then
6974 	 * return NULL to ensure the client uses the default group.
6975 	 */
6976 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6977 		return (NULL);
6978 
6979 	/* For dynamic groups default unspecified to 1 */
6980 	if (rxhw && unspec &&
6981 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6982 		mrp->mrp_nrxrings = 1;
6983 	}
6984 
6985 	/*
6986 	 * For static grouping we allow only specifying rings=0 and
6987 	 * unspecified
6988 	 */
6989 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6990 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6991 		return (NULL);
6992 	}
6993 
6994 	if (rxhw) {
6995 		/*
6996 		 * We have explicitly asked for a group (with nrxrings,
6997 		 * if unspec).
6998 		 */
6999 		if (unspec || mrp->mrp_nrxrings > 0) {
7000 			need_exclgrp = B_TRUE;
7001 			need_rings = mrp->mrp_nrxrings;
7002 		} else if (mrp->mrp_nrxrings == 0) {
7003 			/*
7004 			 * We have asked for a software group.
7005 			 */
7006 			return (NULL);
7007 		}
7008 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
7009 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7010 		/*
7011 		 * If the primary is the only active client on this
7012 		 * mip and we have not asked for any rings, we give
7013 		 * it the default group so that the primary gets to
7014 		 * use all the rings.
7015 		 */
7016 		return (NULL);
7017 	}
7018 
7019 	/* The group that can donate rings */
7020 	donorgrp = mip->mi_rx_donor_grp;
7021 
7022 	/*
7023 	 * The number of rings that the default group can donate.
7024 	 * We need to leave at least one ring.
7025 	 */
7026 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7027 
7028 	/*
7029 	 * Try to exclusively reserve a RX group.
7030 	 *
7031 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
7032 	 * client), try to reserve the a non-default RX group and give
7033 	 * it all the rings from the donor group, except the default ring
7034 	 *
7035 	 * For flows requiring HW_RING (unicast flow of other clients), try
7036 	 * to reserve non-default RX group with the specified number of
7037 	 * rings, if available.
7038 	 *
7039 	 * For flows that have not asked for software or hardware ring,
7040 	 * try to reserve a non-default group with 1 ring, if available.
7041 	 */
7042 	for (i = 1; i < mip->mi_rx_group_count; i++) {
7043 		grp = &mip->mi_rx_groups[i];
7044 
7045 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
7046 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
7047 
7048 		/*
7049 		 * Check if this group could be a candidate group for
7050 		 * eviction if we need a group for this MAC client,
7051 		 * but there aren't any. A candidate group is one
7052 		 * that didn't ask for an exclusive group, but got
7053 		 * one and it has enough rings (combined with what
7054 		 * the donor group can donate) for the new MAC
7055 		 * client.
7056 		 */
7057 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
7058 			/*
7059 			 * If the donor group is not the default
7060 			 * group, don't bother looking for a candidate
7061 			 * group. If we don't have enough rings we
7062 			 * will check if the primary group can be
7063 			 * vacated.
7064 			 */
7065 			if (candidate_grp == NULL &&
7066 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
7067 				if (!i_mac_clients_hw(grp, MRP_RX_RINGS) &&
7068 				    (unspec ||
7069 				    (grp->mrg_cur_count + donor_grp_rcnt >=
7070 				    need_rings))) {
7071 					candidate_grp = grp;
7072 				}
7073 			}
7074 			continue;
7075 		}
7076 		/*
7077 		 * This group could already be SHARED by other multicast
7078 		 * flows on this client. In that case, the group would
7079 		 * be shared and has already been started.
7080 		 */
7081 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
7082 
7083 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
7084 		    (mac_start_group(grp) != 0)) {
7085 			continue;
7086 		}
7087 
7088 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7089 			break;
7090 		ASSERT(grp->mrg_cur_count == 0);
7091 
7092 		/*
7093 		 * Populate the group. Rings should be taken
7094 		 * from the donor group.
7095 		 */
7096 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
7097 
7098 		/*
7099 		 * If the donor group can't donate, let's just walk and
7100 		 * see if someone can vacate a group, so that we have
7101 		 * enough rings for this, unless we already have
7102 		 * identified a candiate group..
7103 		 */
7104 		if (nrings <= donor_grp_rcnt) {
7105 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7106 			    donorgrp, grp, share, nrings);
7107 			if (err == 0) {
7108 				/*
7109 				 * For a share i_mac_group_allocate_rings gets
7110 				 * the rings from the driver, let's populate
7111 				 * the property for the client now.
7112 				 */
7113 				if (share != 0) {
7114 					mac_client_set_rings(
7115 					    (mac_client_handle_t)mcip,
7116 					    grp->mrg_cur_count, -1);
7117 				}
7118 				if (mac_is_primary_client(mcip) && !rxhw)
7119 					mip->mi_rx_donor_grp = grp;
7120 				break;
7121 			}
7122 		}
7123 
7124 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7125 		    mip->mi_name, int, grp->mrg_index, int, err);
7126 
7127 		/*
7128 		 * It's a dynamic group but the grouping operation
7129 		 * failed.
7130 		 */
7131 		mac_stop_group(grp);
7132 	}
7133 
7134 	/* We didn't find an exclusive group for this MAC client */
7135 	if (i >= mip->mi_rx_group_count) {
7136 
7137 		if (!need_exclgrp)
7138 			return (NULL);
7139 
7140 		/*
7141 		 * If we found a candidate group then move the
7142 		 * existing MAC client from the candidate_group to the
7143 		 * default group and give the candidate_group to the
7144 		 * new MAC client. If we didn't find a candidate
7145 		 * group, then check if the primary is in its own
7146 		 * group and if it can make way for this MAC client.
7147 		 */
7148 		if (candidate_grp == NULL &&
7149 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
7150 		    donorgrp->mrg_cur_count >= need_rings) {
7151 			candidate_grp = donorgrp;
7152 		}
7153 		if (candidate_grp != NULL) {
7154 			boolean_t	prim_grp = B_FALSE;
7155 
7156 			/*
7157 			 * Switch the existing MAC client from the
7158 			 * candidate group to the default group. If
7159 			 * the candidate group is the donor group,
7160 			 * then after the switch we need to update the
7161 			 * donor group too.
7162 			 */
7163 			grp = candidate_grp;
7164 			gclient = grp->mrg_clients->mgc_client;
7165 			VERIFY3P(gclient, !=, NULL);
7166 			if (grp == mip->mi_rx_donor_grp)
7167 				prim_grp = B_TRUE;
7168 			if (mac_rx_switch_group(gclient, grp,
7169 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
7170 				return (NULL);
7171 			}
7172 			if (prim_grp) {
7173 				mip->mi_rx_donor_grp =
7174 				    MAC_DEFAULT_RX_GROUP(mip);
7175 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
7176 			}
7177 
7178 			/*
7179 			 * Now give this group with the required rings
7180 			 * to this MAC client.
7181 			 */
7182 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7183 			if (mac_start_group(grp) != 0)
7184 				return (NULL);
7185 
7186 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7187 				return (grp);
7188 
7189 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7190 			ASSERT(grp->mrg_cur_count == 0);
7191 			ASSERT(donor_grp_rcnt >= need_rings);
7192 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7193 			    donorgrp, grp, share, need_rings);
7194 			if (err == 0) {
7195 				/*
7196 				 * For a share i_mac_group_allocate_rings gets
7197 				 * the rings from the driver, let's populate
7198 				 * the property for the client now.
7199 				 */
7200 				if (share != 0) {
7201 					mac_client_set_rings(
7202 					    (mac_client_handle_t)mcip,
7203 					    grp->mrg_cur_count, -1);
7204 				}
7205 				DTRACE_PROBE2(rx__group__reserved,
7206 				    char *, mip->mi_name, int, grp->mrg_index);
7207 				return (grp);
7208 			}
7209 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7210 			    mip->mi_name, int, grp->mrg_index, int, err);
7211 			mac_stop_group(grp);
7212 		}
7213 		return (NULL);
7214 	}
7215 	ASSERT(grp != NULL);
7216 
7217 	DTRACE_PROBE2(rx__group__reserved,
7218 	    char *, mip->mi_name, int, grp->mrg_index);
7219 	return (grp);
7220 }
7221 
7222 /*
7223  * mac_rx_release_group()
7224  *
7225  * Release the group when it has no remaining clients. The group is
7226  * stopped and its shares are removed and all rings are assigned back
7227  * to default group. This should never be called against the default
7228  * group.
7229  */
7230 void
7231 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
7232 {
7233 	mac_impl_t		*mip = mcip->mci_mip;
7234 	mac_ring_t		*ring;
7235 
7236 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
7237 	ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE);
7238 
7239 	if (mip->mi_rx_donor_grp == group)
7240 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
7241 
7242 	/*
7243 	 * This is the case where there are no clients left. Any
7244 	 * SRS etc on this group have also be quiesced.
7245 	 */
7246 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
7247 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
7248 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
7249 			/*
7250 			 * Remove the SRS associated with the HW ring.
7251 			 * As a result, polling will be disabled.
7252 			 */
7253 			ring->mr_srs = NULL;
7254 		}
7255 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
7256 		    ring->mr_state == MR_INUSE);
7257 		if (ring->mr_state == MR_INUSE) {
7258 			mac_stop_ring(ring);
7259 			ring->mr_flag = 0;
7260 		}
7261 	}
7262 
7263 	/* remove group from share */
7264 	if (mcip->mci_share != 0) {
7265 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
7266 		    group->mrg_driver);
7267 	}
7268 
7269 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7270 		mac_ring_t *ring;
7271 
7272 		/*
7273 		 * Rings were dynamically allocated to group.
7274 		 * Move rings back to default group.
7275 		 */
7276 		while ((ring = group->mrg_rings) != NULL) {
7277 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
7278 			    ring);
7279 		}
7280 	}
7281 	mac_stop_group(group);
7282 	/*
7283 	 * Possible improvement: See if we can assign the group just released
7284 	 * to a another client of the mip
7285 	 */
7286 }
7287 
7288 /*
7289  * Move the MAC address from fgrp to tgrp.
7290  */
7291 static int
7292 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
7293     mac_group_t *tgrp)
7294 {
7295 	mac_impl_t		*mip = mcip->mci_mip;
7296 	uint8_t			maddr[MAXMACADDRLEN];
7297 	int			err = 0;
7298 	uint16_t		vid;
7299 	mac_unicast_impl_t	*muip;
7300 	boolean_t		use_hw;
7301 
7302 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
7303 	VERIFY3P(mcip->mci_unicast, !=, NULL);
7304 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
7305 
7306 	/*
7307 	 * Does the client require MAC address hardware classifiction?
7308 	 */
7309 	use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
7310 	vid = i_mac_flow_vid(mcip->mci_flent);
7311 
7312 	/*
7313 	 * You can never move an address that is shared by multiple
7314 	 * clients. mac_datapath_setup() ensures that clients sharing
7315 	 * an address are placed on the default group. This guarantees
7316 	 * that a non-default group will only ever have one client and
7317 	 * thus make full use of HW filters.
7318 	 */
7319 	if (mac_check_macaddr_shared(mcip->mci_unicast))
7320 		return (EINVAL);
7321 
7322 	err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid);
7323 
7324 	if (err != 0) {
7325 		mac_rx_client_restart((mac_client_handle_t)mcip);
7326 		return (err);
7327 	}
7328 
7329 	/*
7330 	 * If this isn't the primary MAC address then the
7331 	 * mac_address_t has been freed by the last call to
7332 	 * mac_remove_macaddr_vlan(). In any case, NULL the reference
7333 	 * to avoid a dangling pointer.
7334 	 */
7335 	mcip->mci_unicast = NULL;
7336 
7337 	/*
7338 	 * We also have to NULL all the mui_map references -- sun4v
7339 	 * strikes again!
7340 	 */
7341 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7342 	for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7343 		muip->mui_map = NULL;
7344 	rw_exit(&mcip->mci_rw_lock);
7345 
7346 	/*
7347 	 * Program the H/W Classifier first, if this fails we need not
7348 	 * proceed with the other stuff.
7349 	 */
7350 	if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) {
7351 		int err2;
7352 
7353 		/* Revert back the H/W Classifier */
7354 		err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw);
7355 
7356 		if (err2 != 0) {
7357 			cmn_err(CE_WARN, "Failed to revert HW classification"
7358 			    " on MAC %s, for client %s: %d.", mip->mi_name,
7359 			    mcip->mci_name, err2);
7360 		}
7361 
7362 		mac_rx_client_restart((mac_client_handle_t)mcip);
7363 		return (err);
7364 	}
7365 
7366 	/*
7367 	 * Get a reference to the new mac_address_t and update the
7368 	 * client's reference. Then restart the client and add the
7369 	 * other clients of this MAC addr (if they exsit).
7370 	 */
7371 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
7372 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7373 	for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7374 		muip->mui_map = mcip->mci_unicast;
7375 	rw_exit(&mcip->mci_rw_lock);
7376 	mac_rx_client_restart((mac_client_handle_t)mcip);
7377 	return (0);
7378 }
7379 
7380 /*
7381  * Switch the MAC client from one group to another. This means we need
7382  * to remove the MAC address from the group, remove the MAC client,
7383  * teardown the SRSs and revert the group state. Then, we add the client
7384  * to the destination group, set the SRSs, and add the MAC address to the
7385  * group.
7386  */
7387 int
7388 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7389     mac_group_t *tgrp)
7390 {
7391 	int			err;
7392 	mac_group_state_t	next_state;
7393 	mac_client_impl_t	*group_only_mcip;
7394 	mac_client_impl_t	*gmcip;
7395 	mac_impl_t		*mip = mcip->mci_mip;
7396 	mac_grp_client_t	*mgcp;
7397 
7398 	VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group);
7399 
7400 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
7401 		return (err);
7402 
7403 	/*
7404 	 * If the group is marked as reserved and in use by a single
7405 	 * client, then there is an SRS to teardown.
7406 	 */
7407 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7408 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7409 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
7410 	}
7411 
7412 	/*
7413 	 * If we are moving the client from a non-default group, then
7414 	 * we know that any additional clients on this group share the
7415 	 * same MAC address. Since we moved the MAC address filter, we
7416 	 * need to move these clients too.
7417 	 *
7418 	 * If we are moving the client from the default group and its
7419 	 * MAC address has VLAN clients, then we must move those
7420 	 * clients as well.
7421 	 *
7422 	 * In both cases the idea is the same: we moved the MAC
7423 	 * address filter to the tgrp, so we must move all clients
7424 	 * using that MAC address to tgrp as well.
7425 	 */
7426 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
7427 		mgcp = fgrp->mrg_clients;
7428 		while (mgcp != NULL) {
7429 			gmcip = mgcp->mgc_client;
7430 			mgcp = mgcp->mgc_next;
7431 			mac_group_remove_client(fgrp, gmcip);
7432 			mac_group_add_client(tgrp, gmcip);
7433 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
7434 		}
7435 		mac_release_rx_group(mcip, fgrp);
7436 		VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE);
7437 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
7438 	} else {
7439 		mac_group_remove_client(fgrp, mcip);
7440 		mac_group_add_client(tgrp, mcip);
7441 		mcip->mci_flent->fe_rx_ring_group = tgrp;
7442 
7443 		/*
7444 		 * If there are other clients (VLANs) sharing this address
7445 		 * then move them too.
7446 		 */
7447 		if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7448 			/*
7449 			 * We need to move all the clients that are using
7450 			 * this MAC address.
7451 			 */
7452 			mgcp = fgrp->mrg_clients;
7453 			while (mgcp != NULL) {
7454 				gmcip = mgcp->mgc_client;
7455 				mgcp = mgcp->mgc_next;
7456 				if (mcip->mci_unicast == gmcip->mci_unicast) {
7457 					mac_group_remove_client(fgrp, gmcip);
7458 					mac_group_add_client(tgrp, gmcip);
7459 					gmcip->mci_flent->fe_rx_ring_group =
7460 					    tgrp;
7461 				}
7462 			}
7463 		}
7464 
7465 		/*
7466 		 * The default group still handles multicast and
7467 		 * broadcast traffic; it won't transition to
7468 		 * MAC_GROUP_STATE_REGISTERED.
7469 		 */
7470 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
7471 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
7472 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
7473 	}
7474 
7475 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
7476 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
7477 	mac_set_group_state(tgrp, next_state);
7478 
7479 	/*
7480 	 * If the destination group is reserved, then setup the SRSes.
7481 	 * Otherwise make sure to use SW classification.
7482 	 */
7483 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7484 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
7485 		mac_fanout_setup(mcip, mcip->mci_flent,
7486 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
7487 		    NULL);
7488 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
7489 	} else {
7490 		mac_rx_switch_grp_to_sw(tgrp);
7491 	}
7492 
7493 	return (0);
7494 }
7495 
7496 /*
7497  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
7498  * when a share was allocated to the client.
7499  */
7500 mac_group_t *
7501 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
7502 {
7503 	mac_impl_t		*mip = mcip->mci_mip;
7504 	mac_group_t		*grp = NULL;
7505 	int			rv;
7506 	int			i;
7507 	int			err;
7508 	mac_group_t		*defgrp;
7509 	mac_share_handle_t	share = mcip->mci_share;
7510 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7511 	int			nrings;
7512 	int			defnrings;
7513 	boolean_t		need_exclgrp = B_FALSE;
7514 	int			need_rings = 0;
7515 	mac_group_t		*candidate_grp = NULL;
7516 	mac_client_impl_t	*gclient;
7517 	mac_resource_props_t	*gmrp;
7518 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
7519 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
7520 	boolean_t		isprimary;
7521 
7522 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7523 
7524 	/*
7525 	 * When we come here for a VLAN on the primary (dladm create-vlan),
7526 	 * we need to pair it along with the primary (to keep it consistent
7527 	 * with the RX side). So, we check if the primary is already assigned
7528 	 * to a group and return the group if so. The other way is also
7529 	 * true, i.e. the VLAN is already created and now we are plumbing
7530 	 * the primary.
7531 	 */
7532 	if (!move && isprimary) {
7533 		for (gclient = mip->mi_clients_list; gclient != NULL;
7534 		    gclient = gclient->mci_client_next) {
7535 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
7536 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
7537 				return (gclient->mci_flent->fe_tx_ring_group);
7538 			}
7539 		}
7540 	}
7541 
7542 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
7543 		return (NULL);
7544 
7545 	/* For dynamic groups, default unspec to 1 */
7546 	if (txhw && unspec &&
7547 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7548 		mrp->mrp_ntxrings = 1;
7549 	}
7550 	/*
7551 	 * For static grouping we allow only specifying rings=0 and
7552 	 * unspecified
7553 	 */
7554 	if (txhw && mrp->mrp_ntxrings > 0 &&
7555 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
7556 		return (NULL);
7557 	}
7558 
7559 	if (txhw) {
7560 		/*
7561 		 * We have explicitly asked for a group (with ntxrings,
7562 		 * if unspec).
7563 		 */
7564 		if (unspec || mrp->mrp_ntxrings > 0) {
7565 			need_exclgrp = B_TRUE;
7566 			need_rings = mrp->mrp_ntxrings;
7567 		} else if (mrp->mrp_ntxrings == 0) {
7568 			/*
7569 			 * We have asked for a software group.
7570 			 */
7571 			return (NULL);
7572 		}
7573 	}
7574 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7575 	/*
7576 	 * The number of rings that the default group can donate.
7577 	 * We need to leave at least one ring - the default ring - in
7578 	 * this group.
7579 	 */
7580 	defnrings = defgrp->mrg_cur_count - 1;
7581 
7582 	/*
7583 	 * Primary gets default group unless explicitly told not
7584 	 * to  (i.e. rings > 0).
7585 	 */
7586 	if (isprimary && !need_exclgrp)
7587 		return (NULL);
7588 
7589 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
7590 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
7591 		grp = &mip->mi_tx_groups[i];
7592 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
7593 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
7594 			/*
7595 			 * Select a candidate for replacement if we don't
7596 			 * get an exclusive group. A candidate group is one
7597 			 * that didn't ask for an exclusive group, but got
7598 			 * one and it has enough rings (combined with what
7599 			 * the default group can donate) for the new MAC
7600 			 * client.
7601 			 */
7602 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7603 			    candidate_grp == NULL) {
7604 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
7605 				VERIFY3P(gclient, !=, NULL);
7606 				gmrp = MCIP_RESOURCE_PROPS(gclient);
7607 				if (gclient->mci_share == 0 &&
7608 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7609 				    (unspec ||
7610 				    (grp->mrg_cur_count + defnrings) >=
7611 				    need_rings)) {
7612 					candidate_grp = grp;
7613 				}
7614 			}
7615 			continue;
7616 		}
7617 		/*
7618 		 * If the default can't donate let's just walk and
7619 		 * see if someone can vacate a group, so that we have
7620 		 * enough rings for this.
7621 		 */
7622 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7623 		    nrings <= defnrings) {
7624 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7625 				rv = mac_start_group(grp);
7626 				ASSERT(rv == 0);
7627 			}
7628 			break;
7629 		}
7630 	}
7631 
7632 	/* The default group */
7633 	if (i >= mip->mi_tx_group_count) {
7634 		/*
7635 		 * If we need an exclusive group and have identified a
7636 		 * candidate group we switch the MAC client from the
7637 		 * candidate group to the default group and give the
7638 		 * candidate group to this client.
7639 		 */
7640 		if (need_exclgrp && candidate_grp != NULL) {
7641 			/*
7642 			 * Switch the MAC client from the candidate
7643 			 * group to the default group. We know the
7644 			 * candidate_grp came from a reserved group
7645 			 * and thus only has one client.
7646 			 */
7647 			grp = candidate_grp;
7648 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
7649 			VERIFY3P(gclient, !=, NULL);
7650 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7651 			mac_tx_switch_group(gclient, grp, defgrp);
7652 			mac_tx_client_restart((mac_client_handle_t)gclient);
7653 
7654 			/*
7655 			 * Give the candidate group with the specified number
7656 			 * of rings to this MAC client.
7657 			 */
7658 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7659 			rv = mac_start_group(grp);
7660 			ASSERT(rv == 0);
7661 
7662 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7663 				return (grp);
7664 
7665 			ASSERT(grp->mrg_cur_count == 0);
7666 			ASSERT(defgrp->mrg_cur_count > need_rings);
7667 
7668 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7669 			    defgrp, grp, share, need_rings);
7670 			if (err == 0) {
7671 				/*
7672 				 * For a share i_mac_group_allocate_rings gets
7673 				 * the rings from the driver, let's populate
7674 				 * the property for the client now.
7675 				 */
7676 				if (share != 0) {
7677 					mac_client_set_rings(
7678 					    (mac_client_handle_t)mcip, -1,
7679 					    grp->mrg_cur_count);
7680 				}
7681 				mip->mi_tx_group_free--;
7682 				return (grp);
7683 			}
7684 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7685 			    mip->mi_name, int, grp->mrg_index, int, err);
7686 			mac_stop_group(grp);
7687 		}
7688 		return (NULL);
7689 	}
7690 	/*
7691 	 * We got an exclusive group, but it is not dynamic.
7692 	 */
7693 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7694 		mip->mi_tx_group_free--;
7695 		return (grp);
7696 	}
7697 
7698 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7699 	    share, nrings);
7700 	if (rv != 0) {
7701 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7702 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7703 		mac_stop_group(grp);
7704 		return (NULL);
7705 	}
7706 	/*
7707 	 * For a share i_mac_group_allocate_rings gets the rings from the
7708 	 * driver, let's populate the property for the client now.
7709 	 */
7710 	if (share != 0) {
7711 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7712 		    grp->mrg_cur_count);
7713 	}
7714 	mip->mi_tx_group_free--;
7715 	return (grp);
7716 }
7717 
7718 void
7719 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7720 {
7721 	mac_impl_t		*mip = mcip->mci_mip;
7722 	mac_share_handle_t	share = mcip->mci_share;
7723 	mac_ring_t		*ring;
7724 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7725 	mac_group_t		*defgrp;
7726 
7727 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7728 	if (srs != NULL) {
7729 		if (srs->srs_soft_ring_count > 0) {
7730 			for (ring = grp->mrg_rings; ring != NULL;
7731 			    ring = ring->mr_next) {
7732 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7733 				mac_tx_invoke_callbacks(mcip,
7734 				    (mac_tx_cookie_t)
7735 				    mac_tx_srs_get_soft_ring(srs, ring));
7736 				mac_tx_srs_del_ring(srs, ring);
7737 			}
7738 		} else {
7739 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7740 			srs->srs_tx.st_arg2 = NULL;
7741 			mac_srs_stat_delete(srs);
7742 		}
7743 	}
7744 	if (share != 0)
7745 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7746 
7747 	/* move the ring back to the pool */
7748 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7749 		while ((ring = grp->mrg_rings) != NULL)
7750 			(void) mac_group_mov_ring(mip, defgrp, ring);
7751 	}
7752 	mac_stop_group(grp);
7753 	mip->mi_tx_group_free++;
7754 }
7755 
7756 /*
7757  * Disassociate a MAC client from a group, i.e go through the rings in the
7758  * group and delete all the soft rings tied to them.
7759  */
7760 static void
7761 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7762 {
7763 	mac_client_impl_t	*mcip = flent->fe_mcip;
7764 	mac_soft_ring_set_t	*tx_srs;
7765 	mac_srs_tx_t		*tx;
7766 	mac_ring_t		*ring;
7767 
7768 	tx_srs = flent->fe_tx_srs;
7769 	tx = &tx_srs->srs_tx;
7770 
7771 	/* Single ring case we haven't created any soft rings */
7772 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7773 	    tx->st_mode == SRS_TX_DEFAULT) {
7774 		tx->st_arg2 = NULL;
7775 		mac_srs_stat_delete(tx_srs);
7776 	/* Fanout case, where we have to dismantle the soft rings */
7777 	} else {
7778 		for (ring = fgrp->mrg_rings; ring != NULL;
7779 		    ring = ring->mr_next) {
7780 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7781 			mac_tx_invoke_callbacks(mcip,
7782 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7783 			    ring));
7784 			mac_tx_srs_del_ring(tx_srs, ring);
7785 		}
7786 		ASSERT(tx->st_arg2 == NULL);
7787 	}
7788 }
7789 
7790 /*
7791  * Switch the MAC client from one group to another. This means we need
7792  * to remove the MAC client, teardown the SRSs and revert the group state.
7793  * Then, we add the client to the destination roup, set the SRSs etc.
7794  */
7795 void
7796 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7797     mac_group_t *tgrp)
7798 {
7799 	mac_client_impl_t	*group_only_mcip;
7800 	mac_impl_t		*mip = mcip->mci_mip;
7801 	flow_entry_t		*flent = mcip->mci_flent;
7802 	mac_group_t		*defgrp;
7803 	mac_grp_client_t	*mgcp;
7804 	mac_client_impl_t	*gmcip;
7805 	flow_entry_t		*gflent;
7806 
7807 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7808 	ASSERT(fgrp == flent->fe_tx_ring_group);
7809 
7810 	if (fgrp == defgrp) {
7811 		/*
7812 		 * If this is the primary we need to find any VLANs on
7813 		 * the primary and move them too.
7814 		 */
7815 		mac_group_remove_client(fgrp, mcip);
7816 		mac_tx_dismantle_soft_rings(fgrp, flent);
7817 		if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7818 			mgcp = fgrp->mrg_clients;
7819 			while (mgcp != NULL) {
7820 				gmcip = mgcp->mgc_client;
7821 				mgcp = mgcp->mgc_next;
7822 				if (mcip->mci_unicast != gmcip->mci_unicast)
7823 					continue;
7824 				mac_tx_client_quiesce(
7825 				    (mac_client_handle_t)gmcip);
7826 
7827 				gflent = gmcip->mci_flent;
7828 				mac_group_remove_client(fgrp, gmcip);
7829 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7830 
7831 				mac_group_add_client(tgrp, gmcip);
7832 				gflent->fe_tx_ring_group = tgrp;
7833 				/* We could directly set this to SHARED */
7834 				tgrp->mrg_state = mac_group_next_state(tgrp,
7835 				    &group_only_mcip, defgrp, B_FALSE);
7836 
7837 				mac_tx_srs_group_setup(gmcip, gflent,
7838 				    SRST_LINK);
7839 				mac_fanout_setup(gmcip, gflent,
7840 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7841 				    gmcip, NULL, NULL);
7842 
7843 				mac_tx_client_restart(
7844 				    (mac_client_handle_t)gmcip);
7845 			}
7846 		}
7847 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7848 			mac_ring_t	*ring;
7849 			int		cnt;
7850 			int		ringcnt;
7851 
7852 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7853 			/*
7854 			 * Additionally, we also need to stop all
7855 			 * the rings in the default group, except
7856 			 * the default ring. The reason being
7857 			 * this group won't be released since it is
7858 			 * the default group, so the rings won't
7859 			 * be stopped otherwise.
7860 			 */
7861 			ringcnt = fgrp->mrg_cur_count;
7862 			ring = fgrp->mrg_rings;
7863 			for (cnt = 0; cnt < ringcnt; cnt++) {
7864 				if (ring->mr_state == MR_INUSE &&
7865 				    ring !=
7866 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7867 					mac_stop_ring(ring);
7868 					ring->mr_flag = 0;
7869 				}
7870 				ring = ring->mr_next;
7871 			}
7872 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7873 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7874 		} else {
7875 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7876 		}
7877 	} else {
7878 		/*
7879 		 * We could have VLANs sharing the non-default group with
7880 		 * the primary.
7881 		 */
7882 		mgcp = fgrp->mrg_clients;
7883 		while (mgcp != NULL) {
7884 			gmcip = mgcp->mgc_client;
7885 			mgcp = mgcp->mgc_next;
7886 			if (gmcip == mcip)
7887 				continue;
7888 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7889 			gflent = gmcip->mci_flent;
7890 
7891 			mac_group_remove_client(fgrp, gmcip);
7892 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7893 
7894 			mac_group_add_client(tgrp, gmcip);
7895 			gflent->fe_tx_ring_group = tgrp;
7896 			/* We could directly set this to SHARED */
7897 			tgrp->mrg_state = mac_group_next_state(tgrp,
7898 			    &group_only_mcip, defgrp, B_FALSE);
7899 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7900 			mac_fanout_setup(gmcip, gflent,
7901 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7902 			    gmcip, NULL, NULL);
7903 
7904 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7905 		}
7906 		mac_group_remove_client(fgrp, mcip);
7907 		mac_release_tx_group(mcip, fgrp);
7908 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7909 	}
7910 
7911 	/* Add it to the tgroup */
7912 	mac_group_add_client(tgrp, mcip);
7913 	flent->fe_tx_ring_group = tgrp;
7914 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7915 	    defgrp, B_FALSE);
7916 
7917 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7918 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7919 	    mac_rx_deliver, mcip, NULL, NULL);
7920 }
7921 
7922 /*
7923  * This is a 1-time control path activity initiated by the client (IP).
7924  * The mac perimeter protects against other simultaneous control activities,
7925  * for example an ioctl that attempts to change the degree of fanout and
7926  * increase or decrease the number of softrings associated with this Tx SRS.
7927  */
7928 static mac_tx_notify_cb_t *
7929 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7930     mac_tx_notify_t notify, void *arg)
7931 {
7932 	mac_cb_info_t *mcbi;
7933 	mac_tx_notify_cb_t *mtnfp;
7934 
7935 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7936 
7937 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7938 	mtnfp->mtnf_fn = notify;
7939 	mtnfp->mtnf_arg = arg;
7940 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7941 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7942 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7943 
7944 	mcbi = &mcip->mci_tx_notify_cb_info;
7945 	mutex_enter(mcbi->mcbi_lockp);
7946 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7947 	mutex_exit(mcbi->mcbi_lockp);
7948 	return (mtnfp);
7949 }
7950 
7951 static void
7952 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7953 {
7954 	mac_cb_info_t	*mcbi;
7955 	mac_cb_t	**cblist;
7956 
7957 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7958 
7959 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7960 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7961 		cmn_err(CE_WARN,
7962 		    "mac_client_tx_notify_remove: callback not "
7963 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7964 		return;
7965 	}
7966 
7967 	mcbi = &mcip->mci_tx_notify_cb_info;
7968 	cblist = &mcip->mci_tx_notify_cb_list;
7969 	mutex_enter(mcbi->mcbi_lockp);
7970 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7971 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7972 	else
7973 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7974 	mutex_exit(mcbi->mcbi_lockp);
7975 }
7976 
7977 /*
7978  * mac_client_tx_notify():
7979  * call to add and remove flow control callback routine.
7980  */
7981 mac_tx_notify_handle_t
7982 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7983     void *ptr)
7984 {
7985 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7986 	mac_tx_notify_cb_t	*mtnfp = NULL;
7987 
7988 	i_mac_perim_enter(mcip->mci_mip);
7989 
7990 	if (callb_func != NULL) {
7991 		/* Add a notify callback */
7992 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7993 	} else {
7994 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7995 	}
7996 	i_mac_perim_exit(mcip->mci_mip);
7997 
7998 	return ((mac_tx_notify_handle_t)mtnfp);
7999 }
8000 
8001 void
8002 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
8003     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
8004 {
8005 	mac_bridge_tx_cb = txf;
8006 	mac_bridge_rx_cb = rxf;
8007 	mac_bridge_ref_cb = reff;
8008 	mac_bridge_ls_cb = lsf;
8009 }
8010 
8011 int
8012 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
8013 {
8014 	mac_impl_t *mip = (mac_impl_t *)mh;
8015 	int retv;
8016 
8017 	mutex_enter(&mip->mi_bridge_lock);
8018 	if (mip->mi_bridge_link == NULL) {
8019 		mip->mi_bridge_link = link;
8020 		retv = 0;
8021 	} else {
8022 		retv = EBUSY;
8023 	}
8024 	mutex_exit(&mip->mi_bridge_lock);
8025 	if (retv == 0) {
8026 		mac_poll_state_change(mh, B_FALSE);
8027 		mac_capab_update(mh);
8028 	}
8029 	return (retv);
8030 }
8031 
8032 /*
8033  * Disable bridging on the indicated link.
8034  */
8035 void
8036 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
8037 {
8038 	mac_impl_t *mip = (mac_impl_t *)mh;
8039 
8040 	mutex_enter(&mip->mi_bridge_lock);
8041 	ASSERT(mip->mi_bridge_link == link);
8042 	mip->mi_bridge_link = NULL;
8043 	mutex_exit(&mip->mi_bridge_lock);
8044 	mac_poll_state_change(mh, B_TRUE);
8045 	mac_capab_update(mh);
8046 }
8047 
8048 void
8049 mac_no_active(mac_handle_t mh)
8050 {
8051 	mac_impl_t *mip = (mac_impl_t *)mh;
8052 
8053 	i_mac_perim_enter(mip);
8054 	mip->mi_state_flags |= MIS_NO_ACTIVE;
8055 	i_mac_perim_exit(mip);
8056 }
8057 
8058 /*
8059  * Walk the primary VLAN clients whenever the primary's rings property
8060  * changes and update the mac_resource_props_t for the VLAN's client.
8061  * We need to do this since we don't support setting these properties
8062  * on the primary's VLAN clients, but the VLAN clients have to
8063  * follow the primary w.r.t the rings property.
8064  */
8065 void
8066 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
8067 {
8068 	mac_client_impl_t	*vmcip;
8069 	mac_resource_props_t	*vmrp;
8070 
8071 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
8072 	    vmcip = vmcip->mci_client_next) {
8073 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
8074 		    mac_client_vid((mac_client_handle_t)vmcip) ==
8075 		    VLAN_ID_NONE) {
8076 			continue;
8077 		}
8078 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
8079 
8080 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
8081 		if (mrp->mrp_mask & MRP_RX_RINGS)
8082 			vmrp->mrp_mask |= MRP_RX_RINGS;
8083 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
8084 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
8085 
8086 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
8087 		if (mrp->mrp_mask & MRP_TX_RINGS)
8088 			vmrp->mrp_mask |= MRP_TX_RINGS;
8089 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
8090 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
8091 
8092 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
8093 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
8094 		else
8095 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
8096 
8097 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
8098 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
8099 		else
8100 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
8101 	}
8102 }
8103 
8104 /*
8105  * We are adding or removing ring(s) from a group. The source for taking
8106  * rings is the default group. The destination for giving rings back is
8107  * the default group.
8108  */
8109 int
8110 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
8111     mac_group_t *defgrp)
8112 {
8113 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8114 	uint_t			modify;
8115 	int			count;
8116 	mac_ring_t		*ring;
8117 	mac_ring_t		*next;
8118 	mac_impl_t		*mip = mcip->mci_mip;
8119 	mac_ring_t		**rings;
8120 	uint_t			ringcnt;
8121 	int			i = 0;
8122 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
8123 	int			start;
8124 	int			end;
8125 	mac_group_t		*tgrp;
8126 	int			j;
8127 	int			rv = 0;
8128 
8129 	/*
8130 	 * If we are asked for just a group, we give 1 ring, else
8131 	 * the specified number of rings.
8132 	 */
8133 	if (rx_group) {
8134 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
8135 		    mrp->mrp_nrxrings;
8136 	} else {
8137 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
8138 		    mrp->mrp_ntxrings;
8139 	}
8140 
8141 	/* don't allow modifying rings for a share for now. */
8142 	ASSERT(mcip->mci_share == 0);
8143 
8144 	if (ringcnt == group->mrg_cur_count)
8145 		return (0);
8146 
8147 	if (group->mrg_cur_count > ringcnt) {
8148 		modify = group->mrg_cur_count - ringcnt;
8149 		if (rx_group) {
8150 			if (mip->mi_rx_donor_grp == group) {
8151 				ASSERT(mac_is_primary_client(mcip));
8152 				mip->mi_rx_donor_grp = defgrp;
8153 			} else {
8154 				defgrp = mip->mi_rx_donor_grp;
8155 			}
8156 		}
8157 		ring = group->mrg_rings;
8158 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
8159 		    KM_SLEEP);
8160 		j = 0;
8161 		for (count = 0; count < modify; count++) {
8162 			next = ring->mr_next;
8163 			rv = mac_group_mov_ring(mip, defgrp, ring);
8164 			if (rv != 0) {
8165 				/* cleanup on failure */
8166 				for (j = 0; j < count; j++) {
8167 					(void) mac_group_mov_ring(mip, group,
8168 					    rings[j]);
8169 				}
8170 				break;
8171 			}
8172 			rings[j++] = ring;
8173 			ring = next;
8174 		}
8175 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
8176 		return (rv);
8177 	}
8178 	if (ringcnt >= MAX_RINGS_PER_GROUP)
8179 		return (EINVAL);
8180 
8181 	modify = ringcnt - group->mrg_cur_count;
8182 
8183 	if (rx_group) {
8184 		if (group != mip->mi_rx_donor_grp)
8185 			defgrp = mip->mi_rx_donor_grp;
8186 		else
8187 			/*
8188 			 * This is the donor group with all the remaining
8189 			 * rings. Default group now gets to be the donor
8190 			 */
8191 			mip->mi_rx_donor_grp = defgrp;
8192 		start = 1;
8193 		end = mip->mi_rx_group_count;
8194 	} else {
8195 		start = 0;
8196 		end = mip->mi_tx_group_count - 1;
8197 	}
8198 	/*
8199 	 * If the default doesn't have any rings, lets see if we can
8200 	 * take rings given to an h/w client that doesn't need it.
8201 	 * For now, we just see if there is  any one client that can donate
8202 	 * all the required rings.
8203 	 */
8204 	if (defgrp->mrg_cur_count < (modify + 1)) {
8205 		for (i = start; i < end; i++) {
8206 			if (rx_group) {
8207 				tgrp = &mip->mi_rx_groups[i];
8208 				if (tgrp == group || tgrp->mrg_state <
8209 				    MAC_GROUP_STATE_RESERVED) {
8210 					continue;
8211 				}
8212 				if (i_mac_clients_hw(tgrp, MRP_RX_RINGS))
8213 					continue;
8214 				mcip = tgrp->mrg_clients->mgc_client;
8215 				VERIFY3P(mcip, !=, NULL);
8216 				if ((tgrp->mrg_cur_count +
8217 				    defgrp->mrg_cur_count) < (modify + 1)) {
8218 					continue;
8219 				}
8220 				if (mac_rx_switch_group(mcip, tgrp,
8221 				    defgrp) != 0) {
8222 					return (ENOSPC);
8223 				}
8224 			} else {
8225 				tgrp = &mip->mi_tx_groups[i];
8226 				if (tgrp == group || tgrp->mrg_state <
8227 				    MAC_GROUP_STATE_RESERVED) {
8228 					continue;
8229 				}
8230 				if (i_mac_clients_hw(tgrp, MRP_TX_RINGS))
8231 					continue;
8232 				mcip = tgrp->mrg_clients->mgc_client;
8233 				VERIFY3P(mcip, !=, NULL);
8234 				if ((tgrp->mrg_cur_count +
8235 				    defgrp->mrg_cur_count) < (modify + 1)) {
8236 					continue;
8237 				}
8238 				/* OK, we can switch this to s/w */
8239 				mac_tx_client_quiesce(
8240 				    (mac_client_handle_t)mcip);
8241 				mac_tx_switch_group(mcip, tgrp, defgrp);
8242 				mac_tx_client_restart(
8243 				    (mac_client_handle_t)mcip);
8244 			}
8245 		}
8246 		if (defgrp->mrg_cur_count < (modify + 1))
8247 			return (ENOSPC);
8248 	}
8249 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
8250 	    group, mcip->mci_share, modify)) != 0) {
8251 		return (rv);
8252 	}
8253 	return (0);
8254 }
8255 
8256 /*
8257  * Given the poolname in mac_resource_props, find the cpupart
8258  * that is associated with this pool.  The cpupart will be used
8259  * later for finding the cpus to be bound to the networking threads.
8260  *
8261  * use_default is set B_TRUE if pools are enabled and pool_default
8262  * is returned.  This avoids a 2nd lookup to set the poolname
8263  * for pool-effective.
8264  *
8265  * returns:
8266  *
8267  *    NULL -   pools are disabled or if the 'cpus' property is set.
8268  *    cpupart of pool_default  - pools are enabled and the pool
8269  *             is not available or poolname is blank
8270  *    cpupart of named pool    - pools are enabled and the pool
8271  *             is available.
8272  */
8273 cpupart_t *
8274 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
8275 {
8276 	pool_t		*pool;
8277 	cpupart_t	*cpupart;
8278 
8279 	*use_default = B_FALSE;
8280 
8281 	/* CPUs property is set */
8282 	if (mrp->mrp_mask & MRP_CPUS)
8283 		return (NULL);
8284 
8285 	ASSERT(pool_lock_held());
8286 
8287 	/* Pools are disabled, no pset */
8288 	if (pool_state == POOL_DISABLED)
8289 		return (NULL);
8290 
8291 	/* Pools property is set */
8292 	if (mrp->mrp_mask & MRP_POOL) {
8293 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
8294 			/* Pool not found */
8295 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
8296 			    mrp->mrp_pool);
8297 			*use_default = B_TRUE;
8298 			pool = pool_default;
8299 		}
8300 	/* Pools property is not set */
8301 	} else {
8302 		*use_default = B_TRUE;
8303 		pool = pool_default;
8304 	}
8305 
8306 	/* Find the CPU pset that corresponds to the pool */
8307 	mutex_enter(&cpu_lock);
8308 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
8309 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
8310 		    pool->pool_pset->pset_id);
8311 	}
8312 	mutex_exit(&cpu_lock);
8313 
8314 	return (cpupart);
8315 }
8316 
8317 void
8318 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
8319     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
8320 {
8321 	ASSERT(pool_lock_held());
8322 
8323 	if (cpupart != NULL) {
8324 		emrp->mrp_mask |= MRP_POOL;
8325 		if (use_default) {
8326 			(void) strcpy(emrp->mrp_pool,
8327 			    "pool_default");
8328 		} else {
8329 			ASSERT(strlen(mrp->mrp_pool) != 0);
8330 			(void) strcpy(emrp->mrp_pool,
8331 			    mrp->mrp_pool);
8332 		}
8333 	} else {
8334 		emrp->mrp_mask &= ~MRP_POOL;
8335 		bzero(emrp->mrp_pool, MAXPATHLEN);
8336 	}
8337 }
8338 
8339 struct mac_pool_arg {
8340 	char		mpa_poolname[MAXPATHLEN];
8341 	pool_event_t	mpa_what;
8342 };
8343 
8344 /*ARGSUSED*/
8345 static uint_t
8346 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
8347 {
8348 	struct mac_pool_arg	*mpa = arg;
8349 	mac_impl_t		*mip = (mac_impl_t *)val;
8350 	mac_client_impl_t	*mcip;
8351 	mac_resource_props_t	*mrp, *emrp;
8352 	boolean_t		pool_update = B_FALSE;
8353 	boolean_t		pool_clear = B_FALSE;
8354 	boolean_t		use_default = B_FALSE;
8355 	cpupart_t		*cpupart = NULL;
8356 
8357 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
8358 	i_mac_perim_enter(mip);
8359 	for (mcip = mip->mi_clients_list; mcip != NULL;
8360 	    mcip = mcip->mci_client_next) {
8361 		pool_update = B_FALSE;
8362 		pool_clear = B_FALSE;
8363 		use_default = B_FALSE;
8364 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
8365 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
8366 
8367 		/*
8368 		 * When pools are enabled
8369 		 */
8370 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
8371 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8372 			mrp->mrp_mask |= MRP_POOL;
8373 			pool_update = B_TRUE;
8374 		}
8375 
8376 		/*
8377 		 * When pools are disabled
8378 		 */
8379 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
8380 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8381 			mrp->mrp_mask |= MRP_POOL;
8382 			pool_clear = B_TRUE;
8383 		}
8384 
8385 		/*
8386 		 * Look for links with the pool property set and the poolname
8387 		 * matching the one which is changing.
8388 		 */
8389 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
8390 			/*
8391 			 * The pool associated with the link has changed.
8392 			 */
8393 			if (mpa->mpa_what == POOL_E_CHANGE) {
8394 				mrp->mrp_mask |= MRP_POOL;
8395 				pool_update = B_TRUE;
8396 			}
8397 		}
8398 
8399 		/*
8400 		 * This link is associated with pool_default and
8401 		 * pool_default has changed.
8402 		 */
8403 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
8404 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
8405 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
8406 			mrp->mrp_mask |= MRP_POOL;
8407 			pool_update = B_TRUE;
8408 		}
8409 
8410 		/*
8411 		 * Get new list of cpus for the pool, bind network
8412 		 * threads to new list of cpus and update resources.
8413 		 */
8414 		if (pool_update) {
8415 			if (MCIP_DATAPATH_SETUP(mcip)) {
8416 				pool_lock();
8417 				cpupart = mac_pset_find(mrp, &use_default);
8418 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8419 				    mac_rx_deliver, mcip, NULL, cpupart);
8420 				mac_set_pool_effective(use_default, cpupart,
8421 				    mrp, emrp);
8422 				pool_unlock();
8423 			}
8424 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8425 			    B_FALSE);
8426 		}
8427 
8428 		/*
8429 		 * Clear the effective pool and bind network threads
8430 		 * to any available CPU.
8431 		 */
8432 		if (pool_clear) {
8433 			if (MCIP_DATAPATH_SETUP(mcip)) {
8434 				emrp->mrp_mask &= ~MRP_POOL;
8435 				bzero(emrp->mrp_pool, MAXPATHLEN);
8436 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8437 				    mac_rx_deliver, mcip, NULL, NULL);
8438 			}
8439 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8440 			    B_FALSE);
8441 		}
8442 	}
8443 	i_mac_perim_exit(mip);
8444 	kmem_free(mrp, sizeof (*mrp));
8445 	return (MH_WALK_CONTINUE);
8446 }
8447 
8448 static void
8449 mac_pool_update(void *arg)
8450 {
8451 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
8452 	kmem_free(arg, sizeof (struct mac_pool_arg));
8453 }
8454 
8455 /*
8456  * Callback function to be executed when a noteworthy pool event
8457  * takes place.
8458  */
8459 /* ARGSUSED */
8460 static void
8461 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
8462 {
8463 	pool_t			*pool;
8464 	char			*poolname = NULL;
8465 	struct mac_pool_arg	*mpa;
8466 
8467 	pool_lock();
8468 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
8469 
8470 	switch (what) {
8471 	case POOL_E_ENABLE:
8472 	case POOL_E_DISABLE:
8473 		break;
8474 
8475 	case POOL_E_CHANGE:
8476 		pool = pool_lookup_pool_by_id(id);
8477 		if (pool == NULL) {
8478 			kmem_free(mpa, sizeof (struct mac_pool_arg));
8479 			pool_unlock();
8480 			return;
8481 		}
8482 		pool_get_name(pool, &poolname);
8483 		(void) strlcpy(mpa->mpa_poolname, poolname,
8484 		    sizeof (mpa->mpa_poolname));
8485 		break;
8486 
8487 	default:
8488 		kmem_free(mpa, sizeof (struct mac_pool_arg));
8489 		pool_unlock();
8490 		return;
8491 	}
8492 	pool_unlock();
8493 
8494 	mpa->mpa_what = what;
8495 
8496 	mac_pool_update(mpa);
8497 }
8498 
8499 /*
8500  * Set effective rings property. This could be called from datapath_setup/
8501  * datapath_teardown or set-linkprop.
8502  * If the group is reserved we just go ahead and set the effective rings.
8503  * Additionally, for TX this could mean the default group has lost/gained
8504  * some rings, so if the default group is reserved, we need to adjust the
8505  * effective rings for the default group clients. For RX, if we are working
8506  * with the non-default group, we just need to reset the effective props
8507  * for the default group clients.
8508  */
8509 void
8510 mac_set_rings_effective(mac_client_impl_t *mcip)
8511 {
8512 	mac_impl_t		*mip = mcip->mci_mip;
8513 	mac_group_t		*grp;
8514 	mac_group_t		*defgrp;
8515 	flow_entry_t		*flent = mcip->mci_flent;
8516 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
8517 	mac_grp_client_t	*mgcp;
8518 	mac_client_impl_t	*gmcip;
8519 
8520 	grp = flent->fe_rx_ring_group;
8521 	if (grp != NULL) {
8522 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
8523 		/*
8524 		 * If we have reserved a group, set the effective rings
8525 		 * to the ring count in the group.
8526 		 */
8527 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8528 			emrp->mrp_mask |= MRP_RX_RINGS;
8529 			emrp->mrp_nrxrings = grp->mrg_cur_count;
8530 		}
8531 
8532 		/*
8533 		 * We go through the clients in the shared group and
8534 		 * reset the effective properties. It is possible this
8535 		 * might have already been done for some client (i.e.
8536 		 * if some client is being moved to a group that is
8537 		 * already shared). The case where the default group is
8538 		 * RESERVED is taken care of above (note in the RX side if
8539 		 * there is a non-default group, the default group is always
8540 		 * SHARED).
8541 		 */
8542 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8543 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
8544 				mgcp = grp->mrg_clients;
8545 			else
8546 				mgcp = defgrp->mrg_clients;
8547 			while (mgcp != NULL) {
8548 				gmcip = mgcp->mgc_client;
8549 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8550 				if (emrp->mrp_mask & MRP_RX_RINGS) {
8551 					emrp->mrp_mask &= ~MRP_RX_RINGS;
8552 					emrp->mrp_nrxrings = 0;
8553 				}
8554 				mgcp = mgcp->mgc_next;
8555 			}
8556 		}
8557 	}
8558 
8559 	/* Now the TX side */
8560 	grp = flent->fe_tx_ring_group;
8561 	if (grp != NULL) {
8562 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
8563 
8564 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8565 			emrp->mrp_mask |= MRP_TX_RINGS;
8566 			emrp->mrp_ntxrings = grp->mrg_cur_count;
8567 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8568 			mgcp = grp->mrg_clients;
8569 			while (mgcp != NULL) {
8570 				gmcip = mgcp->mgc_client;
8571 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8572 				if (emrp->mrp_mask & MRP_TX_RINGS) {
8573 					emrp->mrp_mask &= ~MRP_TX_RINGS;
8574 					emrp->mrp_ntxrings = 0;
8575 				}
8576 				mgcp = mgcp->mgc_next;
8577 			}
8578 		}
8579 
8580 		/*
8581 		 * If the group is not the default group and the default
8582 		 * group is reserved, the ring count in the default group
8583 		 * might have changed, update it.
8584 		 */
8585 		if (grp != defgrp &&
8586 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8587 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
8588 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8589 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
8590 		}
8591 	}
8592 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
8593 }
8594 
8595 /*
8596  * Check if the primary is in the default group. If so, see if we
8597  * can give it a an exclusive group now that another client is
8598  * being configured. We take the primary out of the default group
8599  * because the multicast/broadcast packets for the all the clients
8600  * will land in the default ring in the default group which means
8601  * any client in the default group, even if it is the only on in
8602  * the group, will lose exclusive access to the rings, hence
8603  * polling.
8604  */
8605 mac_client_impl_t *
8606 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8607 {
8608 	mac_impl_t		*mip = mcip->mci_mip;
8609 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
8610 	flow_entry_t		*flent = mcip->mci_flent;
8611 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8612 	uint8_t			*mac_addr;
8613 	mac_group_t		*ngrp;
8614 
8615 	/*
8616 	 * Check if the primary is in the default group, if not
8617 	 * or if it is explicitly configured to be in the default
8618 	 * group OR set the RX rings property, return.
8619 	 */
8620 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8621 		return (NULL);
8622 
8623 	/*
8624 	 * If the new client needs an exclusive group and we
8625 	 * don't have another for the primary, return.
8626 	 */
8627 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
8628 		return (NULL);
8629 
8630 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
8631 	/*
8632 	 * We call this when we are setting up the datapath for
8633 	 * the first non-primary.
8634 	 */
8635 	ASSERT(mip->mi_nactiveclients == 2);
8636 
8637 	/*
8638 	 * OK, now we have the primary that needs to be relocated.
8639 	 */
8640 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8641 	if (ngrp == NULL)
8642 		return (NULL);
8643 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8644 		mac_stop_group(ngrp);
8645 		return (NULL);
8646 	}
8647 	return (mcip);
8648 }
8649 
8650 void
8651 mac_transceiver_init(mac_impl_t *mip)
8652 {
8653 	if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8654 	    &mip->mi_transceiver)) {
8655 		/*
8656 		 * The driver set a flag that we don't know about. In this case,
8657 		 * we need to warn about that case and ignore this capability.
8658 		 */
8659 		if (mip->mi_transceiver.mct_flags != 0) {
8660 			dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8661 			    "flags to invalid value: 0x%x, ignoring "
8662 			    "capability", mip->mi_transceiver.mct_flags);
8663 			bzero(&mip->mi_transceiver,
8664 			    sizeof (mac_capab_transceiver_t));
8665 		}
8666 	} else {
8667 			bzero(&mip->mi_transceiver,
8668 			    sizeof (mac_capab_transceiver_t));
8669 	}
8670 }
8671 
8672 int
8673 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8674 {
8675 	mac_impl_t *mip = (mac_impl_t *)mh;
8676 
8677 	ASSERT(MAC_PERIM_HELD(mh));
8678 
8679 	if (mip->mi_transceiver.mct_ntransceivers == 0)
8680 		return (ENOTSUP);
8681 
8682 	*countp = mip->mi_transceiver.mct_ntransceivers;
8683 	return (0);
8684 }
8685 
8686 int
8687 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8688     boolean_t *usable)
8689 {
8690 	int ret;
8691 	mac_transceiver_info_t info;
8692 
8693 	mac_impl_t *mip = (mac_impl_t *)mh;
8694 
8695 	ASSERT(MAC_PERIM_HELD(mh));
8696 
8697 	if (mip->mi_transceiver.mct_info == NULL ||
8698 	    mip->mi_transceiver.mct_ntransceivers == 0)
8699 		return (ENOTSUP);
8700 
8701 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8702 		return (EINVAL);
8703 
8704 	bzero(&info, sizeof (mac_transceiver_info_t));
8705 	if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8706 	    &info)) != 0) {
8707 		return (ret);
8708 	}
8709 
8710 	*present = info.mti_present;
8711 	*usable = info.mti_usable;
8712 	return (0);
8713 }
8714 
8715 int
8716 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8717     size_t nbytes, off_t offset, size_t *nread)
8718 {
8719 	int ret;
8720 	size_t nr;
8721 	mac_impl_t *mip = (mac_impl_t *)mh;
8722 
8723 	ASSERT(MAC_PERIM_HELD(mh));
8724 
8725 	if (mip->mi_transceiver.mct_read == NULL)
8726 		return (ENOTSUP);
8727 
8728 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8729 		return (EINVAL);
8730 
8731 	/*
8732 	 * All supported pages today are 256 bytes wide. Make sure offset +
8733 	 * nbytes never exceeds that.
8734 	 */
8735 	if (offset < 0 || offset >= 256 || nbytes > 256 ||
8736 	    offset + nbytes > 256)
8737 		return (EINVAL);
8738 
8739 	if (nread == NULL)
8740 		nread = &nr;
8741 	ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8742 	    nbytes, offset, nread);
8743 	if (ret == 0 && *nread > nbytes) {
8744 		dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8745 		    "%lu byte sized buffer, possible memory corruption",
8746 		    *nread, nbytes);
8747 	}
8748 
8749 	return (ret);
8750 }
8751 
8752 void
8753 mac_led_init(mac_impl_t *mip)
8754 {
8755 	mip->mi_led_modes = MAC_LED_DEFAULT;
8756 
8757 	if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8758 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8759 		return;
8760 	}
8761 
8762 	if (mip->mi_led.mcl_flags != 0) {
8763 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8764 		    "flags to invalid value: 0x%x, ignoring "
8765 		    "capability", mip->mi_transceiver.mct_flags);
8766 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8767 		return;
8768 	}
8769 
8770 	if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8771 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8772 		    "supported modes to invalid value: 0x%x, ignoring "
8773 		    "capability", mip->mi_transceiver.mct_flags);
8774 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8775 		return;
8776 	}
8777 }
8778 
8779 int
8780 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8781 {
8782 	mac_impl_t *mip = (mac_impl_t *)mh;
8783 
8784 	ASSERT(MAC_PERIM_HELD(mh));
8785 
8786 	if (mip->mi_led.mcl_set == NULL)
8787 		return (ENOTSUP);
8788 
8789 	*supported = mip->mi_led.mcl_modes;
8790 	*active = mip->mi_led_modes;
8791 
8792 	return (0);
8793 }
8794 
8795 /*
8796  * Update and multiplex the various LED requests. We only ever send one LED to
8797  * the underlying driver at a time. As such, we end up multiplexing all
8798  * requested states and picking one to send down to the driver.
8799  */
8800 int
8801 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8802 {
8803 	int ret;
8804 	mac_led_mode_t driver;
8805 
8806 	mac_impl_t *mip = (mac_impl_t *)mh;
8807 
8808 	ASSERT(MAC_PERIM_HELD(mh));
8809 
8810 	/*
8811 	 * If we've been passed a desired value of zero, that indicates that
8812 	 * we're basically resetting to the value of zero, which is our default
8813 	 * value.
8814 	 */
8815 	if (desired == 0)
8816 		desired = MAC_LED_DEFAULT;
8817 
8818 	if (mip->mi_led.mcl_set == NULL)
8819 		return (ENOTSUP);
8820 
8821 	/*
8822 	 * Catch both values that we don't know about and those that the driver
8823 	 * doesn't support.
8824 	 */
8825 	if ((desired & ~MAC_LED_ALL) != 0)
8826 		return (EINVAL);
8827 
8828 	if ((desired & ~mip->mi_led.mcl_modes) != 0)
8829 		return (ENOTSUP);
8830 
8831 	/*
8832 	 * If we have the same value, then there is nothing to do.
8833 	 */
8834 	if (desired == mip->mi_led_modes)
8835 		return (0);
8836 
8837 	/*
8838 	 * Based on the desired value, determine what to send to the driver. We
8839 	 * only will send a single bit to the driver at any given time. IDENT
8840 	 * takes priority over OFF or ON. We also let OFF take priority over the
8841 	 * rest.
8842 	 */
8843 	if (desired & MAC_LED_IDENT) {
8844 		driver = MAC_LED_IDENT;
8845 	} else if (desired & MAC_LED_OFF) {
8846 		driver = MAC_LED_OFF;
8847 	} else if (desired & MAC_LED_ON) {
8848 		driver = MAC_LED_ON;
8849 	} else {
8850 		driver = MAC_LED_DEFAULT;
8851 	}
8852 
8853 	if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8854 		mip->mi_led_modes = desired;
8855 	}
8856 
8857 	return (ret);
8858 }
8859 
8860 /*
8861  * Send packets through the Tx ring ('mrh') or through the default
8862  * handler if no ring is specified. Before passing the packet down to
8863  * the MAC provider, emulate any hardware offloads which have been
8864  * requested but are not supported by the provider.
8865  */
8866 mblk_t *
8867 mac_ring_tx(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp)
8868 {
8869 	mac_impl_t *mip = (mac_impl_t *)mh;
8870 
8871 	if (mrh == NULL)
8872 		mrh = mip->mi_default_tx_ring;
8873 
8874 	if (mrh == NULL)
8875 		return (mip->mi_tx(mip->mi_driver, mp));
8876 	else
8877 		return (mac_hwring_tx(mrh, mp));
8878 }
8879 
8880 /*
8881  * This is the final stop before reaching the underlying MAC provider.
8882  * This is also where the bridging hook is inserted. Packets that are
8883  * bridged will return through mac_bridge_tx(), with rh nulled out if
8884  * the bridge chooses to send output on a different link due to
8885  * forwarding.
8886  */
8887 mblk_t *
8888 mac_provider_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp,
8889     mac_client_impl_t *mcip)
8890 {
8891 	/*
8892 	 * If there is a bound Hybrid I/O share, send packets through
8893 	 * the default tx ring. When there's a bound Hybrid I/O share,
8894 	 * the tx rings of this client are mapped in the guest domain
8895 	 * and not accessible from here.
8896 	 */
8897 	if (mcip->mci_state_flags & MCIS_SHARE_BOUND)
8898 		rh = mip->mi_default_tx_ring;
8899 
8900 	if (mip->mi_promisc_list != NULL)
8901 		mac_promisc_dispatch(mip, mp, mcip, B_FALSE);
8902 
8903 	if (mip->mi_bridge_link == NULL)
8904 		return (mac_ring_tx((mac_handle_t)mip, rh, mp));
8905 	else
8906 		return (mac_bridge_tx(mip, rh, mp));
8907 }
8908