1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40 
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 					u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52 
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 					 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					     u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					      u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 						 u16 offset);
62 
63 /**
64  *  ixgbe_init_ops_generic - Inits function ptrs
65  *  @hw: pointer to the hardware structure
66  *
67  *  Initialize the function pointers.
68  **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 	struct ixgbe_mac_info *mac = &hw->mac;
73 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74 
75 	DEBUGFUNC("ixgbe_init_ops_generic");
76 
77 	/* EEPROM */
78 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 	if (eec & IXGBE_EEC_PRES) {
81 		eeprom->ops.read = ixgbe_read_eerd_generic;
82 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 	} else {
84 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 		eeprom->ops.read_buffer =
86 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 	}
88 	eeprom->ops.write = ixgbe_write_eeprom_generic;
89 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 	eeprom->ops.validate_checksum =
91 				      ixgbe_validate_eeprom_checksum_generic;
92 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94 
95 	/* MAC */
96 	mac->ops.init_hw = ixgbe_init_hw_generic;
97 	mac->ops.reset_hw = NULL;
98 	mac->ops.start_hw = ixgbe_start_hw_generic;
99 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 	mac->ops.get_media_type = NULL;
101 	mac->ops.get_supported_physical_layer = NULL;
102 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111 
112 	/* LEDs */
113 	mac->ops.led_on = ixgbe_led_on_generic;
114 	mac->ops.led_off = ixgbe_led_off_generic;
115 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 
118 	/* RAR, Multicast, VLAN */
119 	mac->ops.set_rar = ixgbe_set_rar_generic;
120 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
121 	mac->ops.insert_mac_addr = NULL;
122 	mac->ops.set_vmdq = NULL;
123 	mac->ops.clear_vmdq = NULL;
124 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
128 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
129 	mac->ops.clear_vfta = NULL;
130 	mac->ops.set_vfta = NULL;
131 	mac->ops.set_vlvf = NULL;
132 	mac->ops.init_uta_tables = NULL;
133 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
134 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
135 
136 	/* Flow Control */
137 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
138 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
139 
140 	/* Link */
141 	mac->ops.get_link_capabilities = NULL;
142 	mac->ops.setup_link = NULL;
143 	mac->ops.check_link = NULL;
144 	mac->ops.dmac_config = NULL;
145 	mac->ops.dmac_update_tcs = NULL;
146 	mac->ops.dmac_config_tcs = NULL;
147 
148 	return IXGBE_SUCCESS;
149 }
150 
151 /**
152  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153  * of flow control
154  * @hw: pointer to hardware structure
155  *
156  * This function returns TRUE if the device supports flow control
157  * autonegotiation, and FALSE if it does not.
158  *
159  **/
160 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161 {
162 	bool supported = FALSE;
163 	ixgbe_link_speed speed;
164 	bool link_up;
165 
166 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167 
168 	switch (hw->phy.media_type) {
169 	case ixgbe_media_type_fiber_fixed:
170 	case ixgbe_media_type_fiber_qsfp:
171 	case ixgbe_media_type_fiber:
172 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173 		/* if link is down, assume supported */
174 		if (link_up)
175 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176 				TRUE : FALSE;
177 		else
178 			supported = TRUE;
179 		break;
180 	case ixgbe_media_type_backplane:
181 		supported = TRUE;
182 		break;
183 	case ixgbe_media_type_copper:
184 		/* only some copper devices support flow control autoneg */
185 		switch (hw->device_id) {
186 		case IXGBE_DEV_ID_82599_T3_LOM:
187 		case IXGBE_DEV_ID_X540T:
188 		case IXGBE_DEV_ID_X540T1:
189 		case IXGBE_DEV_ID_X540_BYPASS:
190 		case IXGBE_DEV_ID_X550T:
191 		case IXGBE_DEV_ID_X550T1:
192 		case IXGBE_DEV_ID_X550EM_X_10G_T:
193 			supported = TRUE;
194 			break;
195 		default:
196 			supported = FALSE;
197 		}
198 	default:
199 		break;
200 	}
201 
202 	if (!supported) {
203 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
204 		      "Device %x does not support flow control autoneg",
205 		      hw->device_id);
206 	}
207 
208 	return supported;
209 }
210 
211 /**
212  *  ixgbe_setup_fc_generic - Set up flow control
213  *  @hw: pointer to hardware structure
214  *
215  *  Called at init time to set up flow control.
216  **/
217 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
218 {
219 	s32 ret_val = IXGBE_SUCCESS;
220 	u32 reg = 0, reg_bp = 0;
221 	u16 reg_cu = 0;
222 	bool locked = FALSE;
223 
224 	DEBUGFUNC("ixgbe_setup_fc_generic");
225 
226 	/* Validate the requested mode */
227 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
228 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
229 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
230 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
231 		goto out;
232 	}
233 
234 	/*
235 	 * 10gig parts do not have a word in the EEPROM to determine the
236 	 * default flow control setting, so we explicitly set it to full.
237 	 */
238 	if (hw->fc.requested_mode == ixgbe_fc_default)
239 		hw->fc.requested_mode = ixgbe_fc_full;
240 
241 	/*
242 	 * Set up the 1G and 10G flow control advertisement registers so the
243 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
244 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
245 	 */
246 	switch (hw->phy.media_type) {
247 	case ixgbe_media_type_backplane:
248 		/* some MAC's need RMW protection on AUTOC */
249 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
250 		if (ret_val != IXGBE_SUCCESS)
251 			goto out;
252 
253 		/* only backplane uses autoc so fall though */
254 	case ixgbe_media_type_fiber_fixed:
255 	case ixgbe_media_type_fiber_qsfp:
256 	case ixgbe_media_type_fiber:
257 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
258 
259 		break;
260 	case ixgbe_media_type_copper:
261 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
262 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
263 		break;
264 	default:
265 		break;
266 	}
267 
268 	/*
269 	 * The possible values of fc.requested_mode are:
270 	 * 0: Flow control is completely disabled
271 	 * 1: Rx flow control is enabled (we can receive pause frames,
272 	 *    but not send pause frames).
273 	 * 2: Tx flow control is enabled (we can send pause frames but
274 	 *    we do not support receiving pause frames).
275 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
276 	 * other: Invalid.
277 	 */
278 	switch (hw->fc.requested_mode) {
279 	case ixgbe_fc_none:
280 		/* Flow control completely disabled by software override. */
281 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
282 		if (hw->phy.media_type == ixgbe_media_type_backplane)
283 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
284 				    IXGBE_AUTOC_ASM_PAUSE);
285 		else if (hw->phy.media_type == ixgbe_media_type_copper)
286 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
287 		break;
288 	case ixgbe_fc_tx_pause:
289 		/*
290 		 * Tx Flow control is enabled, and Rx Flow control is
291 		 * disabled by software override.
292 		 */
293 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
294 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
295 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
296 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
297 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
298 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
299 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
300 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
301 		}
302 		break;
303 	case ixgbe_fc_rx_pause:
304 		/*
305 		 * Rx Flow control is enabled and Tx Flow control is
306 		 * disabled by software override. Since there really
307 		 * isn't a way to advertise that we are capable of RX
308 		 * Pause ONLY, we will advertise that we support both
309 		 * symmetric and asymmetric Rx PAUSE, as such we fall
310 		 * through to the fc_full statement.  Later, we will
311 		 * disable the adapter's ability to send PAUSE frames.
312 		 */
313 	case ixgbe_fc_full:
314 		/* Flow control (both Rx and Tx) is enabled by SW override. */
315 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
316 		if (hw->phy.media_type == ixgbe_media_type_backplane)
317 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
318 				  IXGBE_AUTOC_ASM_PAUSE;
319 		else if (hw->phy.media_type == ixgbe_media_type_copper)
320 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
321 		break;
322 	default:
323 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
324 			     "Flow control param set incorrectly\n");
325 		ret_val = IXGBE_ERR_CONFIG;
326 		goto out;
327 		break;
328 	}
329 
330 	if (hw->mac.type < ixgbe_mac_X540) {
331 		/*
332 		 * Enable auto-negotiation between the MAC & PHY;
333 		 * the MAC will advertise clause 37 flow control.
334 		 */
335 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
336 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
337 
338 		/* Disable AN timeout */
339 		if (hw->fc.strict_ieee)
340 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
341 
342 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
343 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
344 	}
345 
346 	/*
347 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
348 	 * and copper. There is no need to set the PCS1GCTL register.
349 	 *
350 	 */
351 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
352 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
353 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
354 		if (ret_val)
355 			goto out;
356 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
357 		    (ixgbe_device_supports_autoneg_fc(hw))) {
358 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
359 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
360 	}
361 
362 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363 out:
364 	return ret_val;
365 }
366 
367 /**
368  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
369  *  @hw: pointer to hardware structure
370  *
371  *  Starts the hardware by filling the bus info structure and media type, clears
372  *  all on chip counters, initializes receive address registers, multicast
373  *  table, VLAN filter table, calls routine to set up link and flow control
374  *  settings, and leaves transmit and receive units disabled and uninitialized
375  **/
376 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
377 {
378 	s32 ret_val;
379 	u32 ctrl_ext;
380 
381 	DEBUGFUNC("ixgbe_start_hw_generic");
382 
383 	/* Set the media type */
384 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
385 
386 	/* PHY ops initialization must be done in reset_hw() */
387 
388 	/* Clear the VLAN filter table */
389 	hw->mac.ops.clear_vfta(hw);
390 
391 	/* Clear statistics registers */
392 	hw->mac.ops.clear_hw_cntrs(hw);
393 
394 	/* Set No Snoop Disable */
395 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
396 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
397 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
398 	IXGBE_WRITE_FLUSH(hw);
399 
400 	/* Setup flow control */
401 	ret_val = ixgbe_setup_fc(hw);
402 	if (ret_val != IXGBE_SUCCESS)
403 		goto out;
404 
405 	/* Clear adapter stopped flag */
406 	hw->adapter_stopped = FALSE;
407 
408 out:
409 	return ret_val;
410 }
411 
412 /**
413  *  ixgbe_start_hw_gen2 - Init sequence for common device family
414  *  @hw: pointer to hw structure
415  *
416  * Performs the init sequence common to the second generation
417  * of 10 GbE devices.
418  * Devices in the second generation:
419  *     82599
420  *     X540
421  **/
422 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
423 {
424 	u32 i;
425 	u32 regval;
426 
427 	/* Clear the rate limiters */
428 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
429 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
430 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
431 	}
432 	IXGBE_WRITE_FLUSH(hw);
433 
434 	/* Disable relaxed ordering */
435 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
436 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
437 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
438 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
439 	}
440 
441 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
442 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
443 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
444 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
445 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
446 	}
447 
448 	return IXGBE_SUCCESS;
449 }
450 
451 /**
452  *  ixgbe_init_hw_generic - Generic hardware initialization
453  *  @hw: pointer to hardware structure
454  *
455  *  Initialize the hardware by resetting the hardware, filling the bus info
456  *  structure and media type, clears all on chip counters, initializes receive
457  *  address registers, multicast table, VLAN filter table, calls routine to set
458  *  up link and flow control settings, and leaves transmit and receive units
459  *  disabled and uninitialized
460  **/
461 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
462 {
463 	s32 status;
464 
465 	DEBUGFUNC("ixgbe_init_hw_generic");
466 
467 	/* Reset the hardware */
468 	status = hw->mac.ops.reset_hw(hw);
469 
470 	if (status == IXGBE_SUCCESS) {
471 		/* Start the HW */
472 		status = hw->mac.ops.start_hw(hw);
473 	}
474 
475 	return status;
476 }
477 
478 /**
479  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
480  *  @hw: pointer to hardware structure
481  *
482  *  Clears all hardware statistics counters by reading them from the hardware
483  *  Statistics counters are clear on read.
484  **/
485 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
486 {
487 	u16 i = 0;
488 
489 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
490 
491 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
492 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
493 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
494 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
495 	for (i = 0; i < 8; i++)
496 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
497 
498 	IXGBE_READ_REG(hw, IXGBE_MLFC);
499 	IXGBE_READ_REG(hw, IXGBE_MRFC);
500 	IXGBE_READ_REG(hw, IXGBE_RLEC);
501 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
502 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
503 	if (hw->mac.type >= ixgbe_mac_82599EB) {
504 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
505 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
506 	} else {
507 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
508 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
509 	}
510 
511 	for (i = 0; i < 8; i++) {
512 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
513 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
514 		if (hw->mac.type >= ixgbe_mac_82599EB) {
515 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
516 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
517 		} else {
518 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
519 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
520 		}
521 	}
522 	if (hw->mac.type >= ixgbe_mac_82599EB)
523 		for (i = 0; i < 8; i++)
524 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
525 	IXGBE_READ_REG(hw, IXGBE_PRC64);
526 	IXGBE_READ_REG(hw, IXGBE_PRC127);
527 	IXGBE_READ_REG(hw, IXGBE_PRC255);
528 	IXGBE_READ_REG(hw, IXGBE_PRC511);
529 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
530 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
531 	IXGBE_READ_REG(hw, IXGBE_GPRC);
532 	IXGBE_READ_REG(hw, IXGBE_BPRC);
533 	IXGBE_READ_REG(hw, IXGBE_MPRC);
534 	IXGBE_READ_REG(hw, IXGBE_GPTC);
535 	IXGBE_READ_REG(hw, IXGBE_GORCL);
536 	IXGBE_READ_REG(hw, IXGBE_GORCH);
537 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
538 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
539 	if (hw->mac.type == ixgbe_mac_82598EB)
540 		for (i = 0; i < 8; i++)
541 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
542 	IXGBE_READ_REG(hw, IXGBE_RUC);
543 	IXGBE_READ_REG(hw, IXGBE_RFC);
544 	IXGBE_READ_REG(hw, IXGBE_ROC);
545 	IXGBE_READ_REG(hw, IXGBE_RJC);
546 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
547 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
548 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
549 	IXGBE_READ_REG(hw, IXGBE_TORL);
550 	IXGBE_READ_REG(hw, IXGBE_TORH);
551 	IXGBE_READ_REG(hw, IXGBE_TPR);
552 	IXGBE_READ_REG(hw, IXGBE_TPT);
553 	IXGBE_READ_REG(hw, IXGBE_PTC64);
554 	IXGBE_READ_REG(hw, IXGBE_PTC127);
555 	IXGBE_READ_REG(hw, IXGBE_PTC255);
556 	IXGBE_READ_REG(hw, IXGBE_PTC511);
557 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
558 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
559 	IXGBE_READ_REG(hw, IXGBE_MPTC);
560 	IXGBE_READ_REG(hw, IXGBE_BPTC);
561 	for (i = 0; i < 16; i++) {
562 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
563 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
564 		if (hw->mac.type >= ixgbe_mac_82599EB) {
565 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
566 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
567 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
568 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
569 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
570 		} else {
571 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
572 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
573 		}
574 	}
575 
576 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
577 		if (hw->phy.id == 0)
578 			ixgbe_identify_phy(hw);
579 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
580 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
581 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
582 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
583 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
584 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
585 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
586 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
587 	}
588 
589 	return IXGBE_SUCCESS;
590 }
591 
592 /**
593  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
594  *  @hw: pointer to hardware structure
595  *  @pba_num: stores the part number string from the EEPROM
596  *  @pba_num_size: part number string buffer length
597  *
598  *  Reads the part number string from the EEPROM.
599  **/
600 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
601 				  u32 pba_num_size)
602 {
603 	s32 ret_val;
604 	u16 data;
605 	u16 pba_ptr;
606 	u16 offset;
607 	u16 length;
608 
609 	DEBUGFUNC("ixgbe_read_pba_string_generic");
610 
611 	if (pba_num == NULL) {
612 		DEBUGOUT("PBA string buffer was null\n");
613 		return IXGBE_ERR_INVALID_ARGUMENT;
614 	}
615 
616 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
617 	if (ret_val) {
618 		DEBUGOUT("NVM Read Error\n");
619 		return ret_val;
620 	}
621 
622 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
623 	if (ret_val) {
624 		DEBUGOUT("NVM Read Error\n");
625 		return ret_val;
626 	}
627 
628 	/*
629 	 * if data is not ptr guard the PBA must be in legacy format which
630 	 * means pba_ptr is actually our second data word for the PBA number
631 	 * and we can decode it into an ascii string
632 	 */
633 	if (data != IXGBE_PBANUM_PTR_GUARD) {
634 		DEBUGOUT("NVM PBA number is not stored as string\n");
635 
636 		/* we will need 11 characters to store the PBA */
637 		if (pba_num_size < 11) {
638 			DEBUGOUT("PBA string buffer too small\n");
639 			return IXGBE_ERR_NO_SPACE;
640 		}
641 
642 		/* extract hex string from data and pba_ptr */
643 		pba_num[0] = (data >> 12) & 0xF;
644 		pba_num[1] = (data >> 8) & 0xF;
645 		pba_num[2] = (data >> 4) & 0xF;
646 		pba_num[3] = data & 0xF;
647 		pba_num[4] = (pba_ptr >> 12) & 0xF;
648 		pba_num[5] = (pba_ptr >> 8) & 0xF;
649 		pba_num[6] = '-';
650 		pba_num[7] = 0;
651 		pba_num[8] = (pba_ptr >> 4) & 0xF;
652 		pba_num[9] = pba_ptr & 0xF;
653 
654 		/* put a null character on the end of our string */
655 		pba_num[10] = '\0';
656 
657 		/* switch all the data but the '-' to hex char */
658 		for (offset = 0; offset < 10; offset++) {
659 			if (pba_num[offset] < 0xA)
660 				pba_num[offset] += '0';
661 			else if (pba_num[offset] < 0x10)
662 				pba_num[offset] += 'A' - 0xA;
663 		}
664 
665 		return IXGBE_SUCCESS;
666 	}
667 
668 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
669 	if (ret_val) {
670 		DEBUGOUT("NVM Read Error\n");
671 		return ret_val;
672 	}
673 
674 	if (length == 0xFFFF || length == 0) {
675 		DEBUGOUT("NVM PBA number section invalid length\n");
676 		return IXGBE_ERR_PBA_SECTION;
677 	}
678 
679 	/* check if pba_num buffer is big enough */
680 	if (pba_num_size  < (((u32)length * 2) - 1)) {
681 		DEBUGOUT("PBA string buffer too small\n");
682 		return IXGBE_ERR_NO_SPACE;
683 	}
684 
685 	/* trim pba length from start of string */
686 	pba_ptr++;
687 	length--;
688 
689 	for (offset = 0; offset < length; offset++) {
690 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
691 		if (ret_val) {
692 			DEBUGOUT("NVM Read Error\n");
693 			return ret_val;
694 		}
695 		pba_num[offset * 2] = (u8)(data >> 8);
696 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
697 	}
698 	pba_num[offset * 2] = '\0';
699 
700 	return IXGBE_SUCCESS;
701 }
702 
703 /**
704  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
705  *  @hw: pointer to hardware structure
706  *  @pba_num: stores the part number from the EEPROM
707  *
708  *  Reads the part number from the EEPROM.
709  **/
710 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
711 {
712 	s32 ret_val;
713 	u16 data;
714 
715 	DEBUGFUNC("ixgbe_read_pba_num_generic");
716 
717 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
718 	if (ret_val) {
719 		DEBUGOUT("NVM Read Error\n");
720 		return ret_val;
721 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
722 		DEBUGOUT("NVM Not supported\n");
723 		return IXGBE_NOT_IMPLEMENTED;
724 	}
725 	*pba_num = (u32)(data << 16);
726 
727 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
728 	if (ret_val) {
729 		DEBUGOUT("NVM Read Error\n");
730 		return ret_val;
731 	}
732 	*pba_num |= data;
733 
734 	return IXGBE_SUCCESS;
735 }
736 
737 /**
738  *  ixgbe_read_pba_raw
739  *  @hw: pointer to the HW structure
740  *  @eeprom_buf: optional pointer to EEPROM image
741  *  @eeprom_buf_size: size of EEPROM image in words
742  *  @max_pba_block_size: PBA block size limit
743  *  @pba: pointer to output PBA structure
744  *
745  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
746  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
747  *
748  **/
749 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
750 		       u32 eeprom_buf_size, u16 max_pba_block_size,
751 		       struct ixgbe_pba *pba)
752 {
753 	s32 ret_val;
754 	u16 pba_block_size;
755 
756 	if (pba == NULL)
757 		return IXGBE_ERR_PARAM;
758 
759 	if (eeprom_buf == NULL) {
760 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
761 						     &pba->word[0]);
762 		if (ret_val)
763 			return ret_val;
764 	} else {
765 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
766 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
767 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
768 		} else {
769 			return IXGBE_ERR_PARAM;
770 		}
771 	}
772 
773 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
774 		if (pba->pba_block == NULL)
775 			return IXGBE_ERR_PARAM;
776 
777 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
778 						   eeprom_buf_size,
779 						   &pba_block_size);
780 		if (ret_val)
781 			return ret_val;
782 
783 		if (pba_block_size > max_pba_block_size)
784 			return IXGBE_ERR_PARAM;
785 
786 		if (eeprom_buf == NULL) {
787 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
788 							     pba_block_size,
789 							     pba->pba_block);
790 			if (ret_val)
791 				return ret_val;
792 		} else {
793 			if (eeprom_buf_size > (u32)(pba->word[1] +
794 					      pba_block_size)) {
795 				memcpy(pba->pba_block,
796 				       &eeprom_buf[pba->word[1]],
797 				       pba_block_size * sizeof(u16));
798 			} else {
799 				return IXGBE_ERR_PARAM;
800 			}
801 		}
802 	}
803 
804 	return IXGBE_SUCCESS;
805 }
806 
807 /**
808  *  ixgbe_write_pba_raw
809  *  @hw: pointer to the HW structure
810  *  @eeprom_buf: optional pointer to EEPROM image
811  *  @eeprom_buf_size: size of EEPROM image in words
812  *  @pba: pointer to PBA structure
813  *
814  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
815  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
816  *
817  **/
818 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
819 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
820 {
821 	s32 ret_val;
822 
823 	if (pba == NULL)
824 		return IXGBE_ERR_PARAM;
825 
826 	if (eeprom_buf == NULL) {
827 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
828 						      &pba->word[0]);
829 		if (ret_val)
830 			return ret_val;
831 	} else {
832 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
833 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
834 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
835 		} else {
836 			return IXGBE_ERR_PARAM;
837 		}
838 	}
839 
840 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
841 		if (pba->pba_block == NULL)
842 			return IXGBE_ERR_PARAM;
843 
844 		if (eeprom_buf == NULL) {
845 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
846 							      pba->pba_block[0],
847 							      pba->pba_block);
848 			if (ret_val)
849 				return ret_val;
850 		} else {
851 			if (eeprom_buf_size > (u32)(pba->word[1] +
852 					      pba->pba_block[0])) {
853 				memcpy(&eeprom_buf[pba->word[1]],
854 				       pba->pba_block,
855 				       pba->pba_block[0] * sizeof(u16));
856 			} else {
857 				return IXGBE_ERR_PARAM;
858 			}
859 		}
860 	}
861 
862 	return IXGBE_SUCCESS;
863 }
864 
865 /**
866  *  ixgbe_get_pba_block_size
867  *  @hw: pointer to the HW structure
868  *  @eeprom_buf: optional pointer to EEPROM image
869  *  @eeprom_buf_size: size of EEPROM image in words
870  *  @pba_data_size: pointer to output variable
871  *
872  *  Returns the size of the PBA block in words. Function operates on EEPROM
873  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
874  *  EEPROM device.
875  *
876  **/
877 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
878 			     u32 eeprom_buf_size, u16 *pba_block_size)
879 {
880 	s32 ret_val;
881 	u16 pba_word[2];
882 	u16 length;
883 
884 	DEBUGFUNC("ixgbe_get_pba_block_size");
885 
886 	if (eeprom_buf == NULL) {
887 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
888 						     &pba_word[0]);
889 		if (ret_val)
890 			return ret_val;
891 	} else {
892 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
893 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
894 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
895 		} else {
896 			return IXGBE_ERR_PARAM;
897 		}
898 	}
899 
900 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
901 		if (eeprom_buf == NULL) {
902 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
903 						      &length);
904 			if (ret_val)
905 				return ret_val;
906 		} else {
907 			if (eeprom_buf_size > pba_word[1])
908 				length = eeprom_buf[pba_word[1] + 0];
909 			else
910 				return IXGBE_ERR_PARAM;
911 		}
912 
913 		if (length == 0xFFFF || length == 0)
914 			return IXGBE_ERR_PBA_SECTION;
915 	} else {
916 		/* PBA number in legacy format, there is no PBA Block. */
917 		length = 0;
918 	}
919 
920 	if (pba_block_size != NULL)
921 		*pba_block_size = length;
922 
923 	return IXGBE_SUCCESS;
924 }
925 
926 /**
927  *  ixgbe_get_mac_addr_generic - Generic get MAC address
928  *  @hw: pointer to hardware structure
929  *  @mac_addr: Adapter MAC address
930  *
931  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
932  *  A reset of the adapter must be performed prior to calling this function
933  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
934  **/
935 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
936 {
937 	u32 rar_high;
938 	u32 rar_low;
939 	u16 i;
940 
941 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
942 
943 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
944 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
945 
946 	for (i = 0; i < 4; i++)
947 		mac_addr[i] = (u8)(rar_low >> (i*8));
948 
949 	for (i = 0; i < 2; i++)
950 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
951 
952 	return IXGBE_SUCCESS;
953 }
954 
955 /**
956  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
957  *  @hw: pointer to hardware structure
958  *  @link_status: the link status returned by the PCI config space
959  *
960  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
961  **/
962 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
963 {
964 	struct ixgbe_mac_info *mac = &hw->mac;
965 
966 	if (hw->bus.type == ixgbe_bus_type_unknown)
967 		hw->bus.type = ixgbe_bus_type_pci_express;
968 
969 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
970 	case IXGBE_PCI_LINK_WIDTH_1:
971 		hw->bus.width = ixgbe_bus_width_pcie_x1;
972 		break;
973 	case IXGBE_PCI_LINK_WIDTH_2:
974 		hw->bus.width = ixgbe_bus_width_pcie_x2;
975 		break;
976 	case IXGBE_PCI_LINK_WIDTH_4:
977 		hw->bus.width = ixgbe_bus_width_pcie_x4;
978 		break;
979 	case IXGBE_PCI_LINK_WIDTH_8:
980 		hw->bus.width = ixgbe_bus_width_pcie_x8;
981 		break;
982 	default:
983 		hw->bus.width = ixgbe_bus_width_unknown;
984 		break;
985 	}
986 
987 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
988 	case IXGBE_PCI_LINK_SPEED_2500:
989 		hw->bus.speed = ixgbe_bus_speed_2500;
990 		break;
991 	case IXGBE_PCI_LINK_SPEED_5000:
992 		hw->bus.speed = ixgbe_bus_speed_5000;
993 		break;
994 	case IXGBE_PCI_LINK_SPEED_8000:
995 		hw->bus.speed = ixgbe_bus_speed_8000;
996 		break;
997 	default:
998 		hw->bus.speed = ixgbe_bus_speed_unknown;
999 		break;
1000 	}
1001 
1002 	mac->ops.set_lan_id(hw);
1003 }
1004 
1005 /**
1006  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1007  *  @hw: pointer to hardware structure
1008  *
1009  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1010  *  store this data within the ixgbe_hw structure.
1011  **/
1012 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1013 {
1014 	u16 link_status;
1015 
1016 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1017 
1018 	/* Get the negotiated link width and speed from PCI config space */
1019 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1020 
1021 	ixgbe_set_pci_config_data_generic(hw, link_status);
1022 
1023 	return IXGBE_SUCCESS;
1024 }
1025 
1026 /**
1027  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1028  *  @hw: pointer to the HW structure
1029  *
1030  *  Determines the LAN function id by reading memory-mapped registers
1031  *  and swaps the port value if requested.
1032  **/
1033 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1034 {
1035 	struct ixgbe_bus_info *bus = &hw->bus;
1036 	u32 reg;
1037 
1038 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1039 
1040 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1041 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1042 	bus->lan_id = bus->func;
1043 
1044 	/* check for a port swap */
1045 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1046 	if (reg & IXGBE_FACTPS_LFS)
1047 		bus->func ^= 0x1;
1048 }
1049 
1050 /**
1051  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1052  *  @hw: pointer to hardware structure
1053  *
1054  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1055  *  disables transmit and receive units. The adapter_stopped flag is used by
1056  *  the shared code and drivers to determine if the adapter is in a stopped
1057  *  state and should not touch the hardware.
1058  **/
1059 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1060 {
1061 	u32 reg_val;
1062 	u16 i;
1063 
1064 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1065 
1066 	/*
1067 	 * Set the adapter_stopped flag so other driver functions stop touching
1068 	 * the hardware
1069 	 */
1070 	hw->adapter_stopped = TRUE;
1071 
1072 	/* Disable the receive unit */
1073 	ixgbe_disable_rx(hw);
1074 
1075 	/* Clear interrupt mask to stop interrupts from being generated */
1076 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1077 
1078 	/* Clear any pending interrupts, flush previous writes */
1079 	IXGBE_READ_REG(hw, IXGBE_EICR);
1080 
1081 	/* Disable the transmit unit.  Each queue must be disabled. */
1082 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1083 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1084 
1085 	/* Disable the receive unit by stopping each queue */
1086 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1087 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1088 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1089 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1090 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1091 	}
1092 
1093 	/* flush all queues disables */
1094 	IXGBE_WRITE_FLUSH(hw);
1095 	msec_delay(2);
1096 
1097 	/*
1098 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1099 	 * access and verify no pending requests
1100 	 */
1101 	return ixgbe_disable_pcie_master(hw);
1102 }
1103 
1104 /**
1105  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1106  *  @hw: pointer to hardware structure
1107  *  @index: led number to turn on
1108  **/
1109 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1110 {
1111 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1112 
1113 	DEBUGFUNC("ixgbe_led_on_generic");
1114 
1115 	/* To turn on the LED, set mode to ON. */
1116 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1117 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1118 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1119 	IXGBE_WRITE_FLUSH(hw);
1120 
1121 	return IXGBE_SUCCESS;
1122 }
1123 
1124 /**
1125  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1126  *  @hw: pointer to hardware structure
1127  *  @index: led number to turn off
1128  **/
1129 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1130 {
1131 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1132 
1133 	DEBUGFUNC("ixgbe_led_off_generic");
1134 
1135 	/* To turn off the LED, set mode to OFF. */
1136 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1137 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1138 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1139 	IXGBE_WRITE_FLUSH(hw);
1140 
1141 	return IXGBE_SUCCESS;
1142 }
1143 
1144 /**
1145  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1146  *  @hw: pointer to hardware structure
1147  *
1148  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1149  *  ixgbe_hw struct in order to set up EEPROM access.
1150  **/
1151 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1152 {
1153 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1154 	u32 eec;
1155 	u16 eeprom_size;
1156 
1157 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1158 
1159 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1160 		eeprom->type = ixgbe_eeprom_none;
1161 		/* Set default semaphore delay to 10ms which is a well
1162 		 * tested value */
1163 		eeprom->semaphore_delay = 10;
1164 		/* Clear EEPROM page size, it will be initialized as needed */
1165 		eeprom->word_page_size = 0;
1166 
1167 		/*
1168 		 * Check for EEPROM present first.
1169 		 * If not present leave as none
1170 		 */
1171 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1172 		if (eec & IXGBE_EEC_PRES) {
1173 			eeprom->type = ixgbe_eeprom_spi;
1174 
1175 			/*
1176 			 * SPI EEPROM is assumed here.  This code would need to
1177 			 * change if a future EEPROM is not SPI.
1178 			 */
1179 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1180 					    IXGBE_EEC_SIZE_SHIFT);
1181 			eeprom->word_size = 1 << (eeprom_size +
1182 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1183 		}
1184 
1185 		if (eec & IXGBE_EEC_ADDR_SIZE)
1186 			eeprom->address_bits = 16;
1187 		else
1188 			eeprom->address_bits = 8;
1189 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1190 			  "%d\n", eeprom->type, eeprom->word_size,
1191 			  eeprom->address_bits);
1192 	}
1193 
1194 	return IXGBE_SUCCESS;
1195 }
1196 
1197 /**
1198  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1199  *  @hw: pointer to hardware structure
1200  *  @offset: offset within the EEPROM to write
1201  *  @words: number of word(s)
1202  *  @data: 16 bit word(s) to write to EEPROM
1203  *
1204  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1205  **/
1206 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1207 					       u16 words, u16 *data)
1208 {
1209 	s32 status = IXGBE_SUCCESS;
1210 	u16 i, count;
1211 
1212 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1213 
1214 	hw->eeprom.ops.init_params(hw);
1215 
1216 	if (words == 0) {
1217 		status = IXGBE_ERR_INVALID_ARGUMENT;
1218 		goto out;
1219 	}
1220 
1221 	if (offset + words > hw->eeprom.word_size) {
1222 		status = IXGBE_ERR_EEPROM;
1223 		goto out;
1224 	}
1225 
1226 	/*
1227 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1228 	 * initialization. It is worth to do that when we write large buffer.
1229 	 */
1230 	if ((hw->eeprom.word_page_size == 0) &&
1231 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1232 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1233 
1234 	/*
1235 	 * We cannot hold synchronization semaphores for too long
1236 	 * to avoid other entity starvation. However it is more efficient
1237 	 * to read in bursts than synchronizing access for each word.
1238 	 */
1239 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1240 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1241 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1242 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1243 							    count, &data[i]);
1244 
1245 		if (status != IXGBE_SUCCESS)
1246 			break;
1247 	}
1248 
1249 out:
1250 	return status;
1251 }
1252 
1253 /**
1254  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1255  *  @hw: pointer to hardware structure
1256  *  @offset: offset within the EEPROM to be written to
1257  *  @words: number of word(s)
1258  *  @data: 16 bit word(s) to be written to the EEPROM
1259  *
1260  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1261  *  EEPROM will most likely contain an invalid checksum.
1262  **/
1263 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1264 					      u16 words, u16 *data)
1265 {
1266 	s32 status;
1267 	u16 word;
1268 	u16 page_size;
1269 	u16 i;
1270 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1271 
1272 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1273 
1274 	/* Prepare the EEPROM for writing  */
1275 	status = ixgbe_acquire_eeprom(hw);
1276 
1277 	if (status == IXGBE_SUCCESS) {
1278 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1279 			ixgbe_release_eeprom(hw);
1280 			status = IXGBE_ERR_EEPROM;
1281 		}
1282 	}
1283 
1284 	if (status == IXGBE_SUCCESS) {
1285 		for (i = 0; i < words; i++) {
1286 			ixgbe_standby_eeprom(hw);
1287 
1288 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1289 			ixgbe_shift_out_eeprom_bits(hw,
1290 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1291 						   IXGBE_EEPROM_OPCODE_BITS);
1292 
1293 			ixgbe_standby_eeprom(hw);
1294 
1295 			/*
1296 			 * Some SPI eeproms use the 8th address bit embedded
1297 			 * in the opcode
1298 			 */
1299 			if ((hw->eeprom.address_bits == 8) &&
1300 			    ((offset + i) >= 128))
1301 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1302 
1303 			/* Send the Write command (8-bit opcode + addr) */
1304 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1305 						    IXGBE_EEPROM_OPCODE_BITS);
1306 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1307 						    hw->eeprom.address_bits);
1308 
1309 			page_size = hw->eeprom.word_page_size;
1310 
1311 			/* Send the data in burst via SPI*/
1312 			do {
1313 				word = data[i];
1314 				word = (word >> 8) | (word << 8);
1315 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1316 
1317 				if (page_size == 0)
1318 					break;
1319 
1320 				/* do not wrap around page */
1321 				if (((offset + i) & (page_size - 1)) ==
1322 				    (page_size - 1))
1323 					break;
1324 			} while (++i < words);
1325 
1326 			ixgbe_standby_eeprom(hw);
1327 			msec_delay(10);
1328 		}
1329 		/* Done with writing - release the EEPROM */
1330 		ixgbe_release_eeprom(hw);
1331 	}
1332 
1333 	return status;
1334 }
1335 
1336 /**
1337  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1338  *  @hw: pointer to hardware structure
1339  *  @offset: offset within the EEPROM to be written to
1340  *  @data: 16 bit word to be written to the EEPROM
1341  *
1342  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1343  *  EEPROM will most likely contain an invalid checksum.
1344  **/
1345 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1346 {
1347 	s32 status;
1348 
1349 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1350 
1351 	hw->eeprom.ops.init_params(hw);
1352 
1353 	if (offset >= hw->eeprom.word_size) {
1354 		status = IXGBE_ERR_EEPROM;
1355 		goto out;
1356 	}
1357 
1358 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1359 
1360 out:
1361 	return status;
1362 }
1363 
1364 /**
1365  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1366  *  @hw: pointer to hardware structure
1367  *  @offset: offset within the EEPROM to be read
1368  *  @data: read 16 bit words(s) from EEPROM
1369  *  @words: number of word(s)
1370  *
1371  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1372  **/
1373 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1374 					      u16 words, u16 *data)
1375 {
1376 	s32 status = IXGBE_SUCCESS;
1377 	u16 i, count;
1378 
1379 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1380 
1381 	hw->eeprom.ops.init_params(hw);
1382 
1383 	if (words == 0) {
1384 		status = IXGBE_ERR_INVALID_ARGUMENT;
1385 		goto out;
1386 	}
1387 
1388 	if (offset + words > hw->eeprom.word_size) {
1389 		status = IXGBE_ERR_EEPROM;
1390 		goto out;
1391 	}
1392 
1393 	/*
1394 	 * We cannot hold synchronization semaphores for too long
1395 	 * to avoid other entity starvation. However it is more efficient
1396 	 * to read in bursts than synchronizing access for each word.
1397 	 */
1398 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1399 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1400 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1401 
1402 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1403 							   count, &data[i]);
1404 
1405 		if (status != IXGBE_SUCCESS)
1406 			break;
1407 	}
1408 
1409 out:
1410 	return status;
1411 }
1412 
1413 /**
1414  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1415  *  @hw: pointer to hardware structure
1416  *  @offset: offset within the EEPROM to be read
1417  *  @words: number of word(s)
1418  *  @data: read 16 bit word(s) from EEPROM
1419  *
1420  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1421  **/
1422 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1423 					     u16 words, u16 *data)
1424 {
1425 	s32 status;
1426 	u16 word_in;
1427 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1428 	u16 i;
1429 
1430 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1431 
1432 	/* Prepare the EEPROM for reading  */
1433 	status = ixgbe_acquire_eeprom(hw);
1434 
1435 	if (status == IXGBE_SUCCESS) {
1436 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1437 			ixgbe_release_eeprom(hw);
1438 			status = IXGBE_ERR_EEPROM;
1439 		}
1440 	}
1441 
1442 	if (status == IXGBE_SUCCESS) {
1443 		for (i = 0; i < words; i++) {
1444 			ixgbe_standby_eeprom(hw);
1445 			/*
1446 			 * Some SPI eeproms use the 8th address bit embedded
1447 			 * in the opcode
1448 			 */
1449 			if ((hw->eeprom.address_bits == 8) &&
1450 			    ((offset + i) >= 128))
1451 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1452 
1453 			/* Send the READ command (opcode + addr) */
1454 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1455 						    IXGBE_EEPROM_OPCODE_BITS);
1456 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1457 						    hw->eeprom.address_bits);
1458 
1459 			/* Read the data. */
1460 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1461 			data[i] = (word_in >> 8) | (word_in << 8);
1462 		}
1463 
1464 		/* End this read operation */
1465 		ixgbe_release_eeprom(hw);
1466 	}
1467 
1468 	return status;
1469 }
1470 
1471 /**
1472  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1473  *  @hw: pointer to hardware structure
1474  *  @offset: offset within the EEPROM to be read
1475  *  @data: read 16 bit value from EEPROM
1476  *
1477  *  Reads 16 bit value from EEPROM through bit-bang method
1478  **/
1479 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1480 				       u16 *data)
1481 {
1482 	s32 status;
1483 
1484 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1485 
1486 	hw->eeprom.ops.init_params(hw);
1487 
1488 	if (offset >= hw->eeprom.word_size) {
1489 		status = IXGBE_ERR_EEPROM;
1490 		goto out;
1491 	}
1492 
1493 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1494 
1495 out:
1496 	return status;
1497 }
1498 
1499 /**
1500  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1501  *  @hw: pointer to hardware structure
1502  *  @offset: offset of word in the EEPROM to read
1503  *  @words: number of word(s)
1504  *  @data: 16 bit word(s) from the EEPROM
1505  *
1506  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1507  **/
1508 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1509 				   u16 words, u16 *data)
1510 {
1511 	u32 eerd;
1512 	s32 status = IXGBE_SUCCESS;
1513 	u32 i;
1514 
1515 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1516 
1517 	hw->eeprom.ops.init_params(hw);
1518 
1519 	if (words == 0) {
1520 		status = IXGBE_ERR_INVALID_ARGUMENT;
1521 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1522 		goto out;
1523 	}
1524 
1525 	if (offset >= hw->eeprom.word_size) {
1526 		status = IXGBE_ERR_EEPROM;
1527 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1528 		goto out;
1529 	}
1530 
1531 	for (i = 0; i < words; i++) {
1532 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1533 		       IXGBE_EEPROM_RW_REG_START;
1534 
1535 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1536 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1537 
1538 		if (status == IXGBE_SUCCESS) {
1539 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1540 				   IXGBE_EEPROM_RW_REG_DATA);
1541 		} else {
1542 			DEBUGOUT("Eeprom read timed out\n");
1543 			goto out;
1544 		}
1545 	}
1546 out:
1547 	return status;
1548 }
1549 
1550 /**
1551  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1552  *  @hw: pointer to hardware structure
1553  *  @offset: offset within the EEPROM to be used as a scratch pad
1554  *
1555  *  Discover EEPROM page size by writing marching data at given offset.
1556  *  This function is called only when we are writing a new large buffer
1557  *  at given offset so the data would be overwritten anyway.
1558  **/
1559 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1560 						 u16 offset)
1561 {
1562 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1563 	s32 status = IXGBE_SUCCESS;
1564 	u16 i;
1565 
1566 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1567 
1568 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1569 		data[i] = i;
1570 
1571 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1572 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1573 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1574 	hw->eeprom.word_page_size = 0;
1575 	if (status != IXGBE_SUCCESS)
1576 		goto out;
1577 
1578 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1579 	if (status != IXGBE_SUCCESS)
1580 		goto out;
1581 
1582 	/*
1583 	 * When writing in burst more than the actual page size
1584 	 * EEPROM address wraps around current page.
1585 	 */
1586 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1587 
1588 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1589 		  hw->eeprom.word_page_size);
1590 out:
1591 	return status;
1592 }
1593 
1594 /**
1595  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1596  *  @hw: pointer to hardware structure
1597  *  @offset: offset of  word in the EEPROM to read
1598  *  @data: word read from the EEPROM
1599  *
1600  *  Reads a 16 bit word from the EEPROM using the EERD register.
1601  **/
1602 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1603 {
1604 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1605 }
1606 
1607 /**
1608  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1609  *  @hw: pointer to hardware structure
1610  *  @offset: offset of  word in the EEPROM to write
1611  *  @words: number of word(s)
1612  *  @data: word(s) write to the EEPROM
1613  *
1614  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1615  **/
1616 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1617 				    u16 words, u16 *data)
1618 {
1619 	u32 eewr;
1620 	s32 status = IXGBE_SUCCESS;
1621 	u16 i;
1622 
1623 	DEBUGFUNC("ixgbe_write_eewr_generic");
1624 
1625 	hw->eeprom.ops.init_params(hw);
1626 
1627 	if (words == 0) {
1628 		status = IXGBE_ERR_INVALID_ARGUMENT;
1629 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1630 		goto out;
1631 	}
1632 
1633 	if (offset >= hw->eeprom.word_size) {
1634 		status = IXGBE_ERR_EEPROM;
1635 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1636 		goto out;
1637 	}
1638 
1639 	for (i = 0; i < words; i++) {
1640 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1641 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1642 			IXGBE_EEPROM_RW_REG_START;
1643 
1644 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1645 		if (status != IXGBE_SUCCESS) {
1646 			DEBUGOUT("Eeprom write EEWR timed out\n");
1647 			goto out;
1648 		}
1649 
1650 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1651 
1652 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1653 		if (status != IXGBE_SUCCESS) {
1654 			DEBUGOUT("Eeprom write EEWR timed out\n");
1655 			goto out;
1656 		}
1657 	}
1658 
1659 out:
1660 	return status;
1661 }
1662 
1663 /**
1664  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1665  *  @hw: pointer to hardware structure
1666  *  @offset: offset of  word in the EEPROM to write
1667  *  @data: word write to the EEPROM
1668  *
1669  *  Write a 16 bit word to the EEPROM using the EEWR register.
1670  **/
1671 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1672 {
1673 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1674 }
1675 
1676 /**
1677  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1678  *  @hw: pointer to hardware structure
1679  *  @ee_reg: EEPROM flag for polling
1680  *
1681  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1682  *  read or write is done respectively.
1683  **/
1684 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1685 {
1686 	u32 i;
1687 	u32 reg;
1688 	s32 status = IXGBE_ERR_EEPROM;
1689 
1690 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1691 
1692 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1693 		if (ee_reg == IXGBE_NVM_POLL_READ)
1694 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1695 		else
1696 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1697 
1698 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1699 			status = IXGBE_SUCCESS;
1700 			break;
1701 		}
1702 		usec_delay(5);
1703 	}
1704 
1705 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1706 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1707 			     "EEPROM read/write done polling timed out");
1708 
1709 	return status;
1710 }
1711 
1712 /**
1713  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1714  *  @hw: pointer to hardware structure
1715  *
1716  *  Prepares EEPROM for access using bit-bang method. This function should
1717  *  be called before issuing a command to the EEPROM.
1718  **/
1719 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1720 {
1721 	s32 status = IXGBE_SUCCESS;
1722 	u32 eec;
1723 	u32 i;
1724 
1725 	DEBUGFUNC("ixgbe_acquire_eeprom");
1726 
1727 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1728 	    != IXGBE_SUCCESS)
1729 		status = IXGBE_ERR_SWFW_SYNC;
1730 
1731 	if (status == IXGBE_SUCCESS) {
1732 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1733 
1734 		/* Request EEPROM Access */
1735 		eec |= IXGBE_EEC_REQ;
1736 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1737 
1738 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1739 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1740 			if (eec & IXGBE_EEC_GNT)
1741 				break;
1742 			usec_delay(5);
1743 		}
1744 
1745 		/* Release if grant not acquired */
1746 		if (!(eec & IXGBE_EEC_GNT)) {
1747 			eec &= ~IXGBE_EEC_REQ;
1748 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1749 			DEBUGOUT("Could not acquire EEPROM grant\n");
1750 
1751 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1752 			status = IXGBE_ERR_EEPROM;
1753 		}
1754 
1755 		/* Setup EEPROM for Read/Write */
1756 		if (status == IXGBE_SUCCESS) {
1757 			/* Clear CS and SK */
1758 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1759 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1760 			IXGBE_WRITE_FLUSH(hw);
1761 			usec_delay(1);
1762 		}
1763 	}
1764 	return status;
1765 }
1766 
1767 /**
1768  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1769  *  @hw: pointer to hardware structure
1770  *
1771  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1772  **/
1773 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1774 {
1775 	s32 status = IXGBE_ERR_EEPROM;
1776 	u32 timeout = 2000;
1777 	u32 i;
1778 	u32 swsm;
1779 
1780 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1781 
1782 
1783 	/* Get SMBI software semaphore between device drivers first */
1784 	for (i = 0; i < timeout; i++) {
1785 		/*
1786 		 * If the SMBI bit is 0 when we read it, then the bit will be
1787 		 * set and we have the semaphore
1788 		 */
1789 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1790 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1791 			status = IXGBE_SUCCESS;
1792 			break;
1793 		}
1794 		usec_delay(50);
1795 	}
1796 
1797 	if (i == timeout) {
1798 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1799 			 "not granted.\n");
1800 		/*
1801 		 * this release is particularly important because our attempts
1802 		 * above to get the semaphore may have succeeded, and if there
1803 		 * was a timeout, we should unconditionally clear the semaphore
1804 		 * bits to free the driver to make progress
1805 		 */
1806 		ixgbe_release_eeprom_semaphore(hw);
1807 
1808 		usec_delay(50);
1809 		/*
1810 		 * one last try
1811 		 * If the SMBI bit is 0 when we read it, then the bit will be
1812 		 * set and we have the semaphore
1813 		 */
1814 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1815 		if (!(swsm & IXGBE_SWSM_SMBI))
1816 			status = IXGBE_SUCCESS;
1817 	}
1818 
1819 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1820 	if (status == IXGBE_SUCCESS) {
1821 		for (i = 0; i < timeout; i++) {
1822 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1823 
1824 			/* Set the SW EEPROM semaphore bit to request access */
1825 			swsm |= IXGBE_SWSM_SWESMBI;
1826 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1827 
1828 			/*
1829 			 * If we set the bit successfully then we got the
1830 			 * semaphore.
1831 			 */
1832 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1833 			if (swsm & IXGBE_SWSM_SWESMBI)
1834 				break;
1835 
1836 			usec_delay(50);
1837 		}
1838 
1839 		/*
1840 		 * Release semaphores and return error if SW EEPROM semaphore
1841 		 * was not granted because we don't have access to the EEPROM
1842 		 */
1843 		if (i >= timeout) {
1844 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1845 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1846 			ixgbe_release_eeprom_semaphore(hw);
1847 			status = IXGBE_ERR_EEPROM;
1848 		}
1849 	} else {
1850 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1851 			     "Software semaphore SMBI between device drivers "
1852 			     "not granted.\n");
1853 	}
1854 
1855 	return status;
1856 }
1857 
1858 /**
1859  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1860  *  @hw: pointer to hardware structure
1861  *
1862  *  This function clears hardware semaphore bits.
1863  **/
1864 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1865 {
1866 	u32 swsm;
1867 
1868 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1869 
1870 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1871 
1872 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1873 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1874 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1875 	IXGBE_WRITE_FLUSH(hw);
1876 }
1877 
1878 /**
1879  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1880  *  @hw: pointer to hardware structure
1881  **/
1882 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1883 {
1884 	s32 status = IXGBE_SUCCESS;
1885 	u16 i;
1886 	u8 spi_stat_reg;
1887 
1888 	DEBUGFUNC("ixgbe_ready_eeprom");
1889 
1890 	/*
1891 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1892 	 * EEPROM will signal that the command has been completed by clearing
1893 	 * bit 0 of the internal status register.  If it's not cleared within
1894 	 * 5 milliseconds, then error out.
1895 	 */
1896 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1897 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1898 					    IXGBE_EEPROM_OPCODE_BITS);
1899 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1900 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1901 			break;
1902 
1903 		usec_delay(5);
1904 		ixgbe_standby_eeprom(hw);
1905 	}
1906 
1907 	/*
1908 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1909 	 * devices (and only 0-5mSec on 5V devices)
1910 	 */
1911 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1912 		DEBUGOUT("SPI EEPROM Status error\n");
1913 		status = IXGBE_ERR_EEPROM;
1914 	}
1915 
1916 	return status;
1917 }
1918 
1919 /**
1920  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1921  *  @hw: pointer to hardware structure
1922  **/
1923 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1924 {
1925 	u32 eec;
1926 
1927 	DEBUGFUNC("ixgbe_standby_eeprom");
1928 
1929 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1930 
1931 	/* Toggle CS to flush commands */
1932 	eec |= IXGBE_EEC_CS;
1933 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1934 	IXGBE_WRITE_FLUSH(hw);
1935 	usec_delay(1);
1936 	eec &= ~IXGBE_EEC_CS;
1937 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1938 	IXGBE_WRITE_FLUSH(hw);
1939 	usec_delay(1);
1940 }
1941 
1942 /**
1943  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1944  *  @hw: pointer to hardware structure
1945  *  @data: data to send to the EEPROM
1946  *  @count: number of bits to shift out
1947  **/
1948 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1949 					u16 count)
1950 {
1951 	u32 eec;
1952 	u32 mask;
1953 	u32 i;
1954 
1955 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1956 
1957 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1958 
1959 	/*
1960 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1961 	 * one bit at a time.  Determine the starting bit based on count
1962 	 */
1963 	mask = 0x01 << (count - 1);
1964 
1965 	for (i = 0; i < count; i++) {
1966 		/*
1967 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1968 		 * "1", and then raising and then lowering the clock (the SK
1969 		 * bit controls the clock input to the EEPROM).  A "0" is
1970 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1971 		 * raising and then lowering the clock.
1972 		 */
1973 		if (data & mask)
1974 			eec |= IXGBE_EEC_DI;
1975 		else
1976 			eec &= ~IXGBE_EEC_DI;
1977 
1978 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1979 		IXGBE_WRITE_FLUSH(hw);
1980 
1981 		usec_delay(1);
1982 
1983 		ixgbe_raise_eeprom_clk(hw, &eec);
1984 		ixgbe_lower_eeprom_clk(hw, &eec);
1985 
1986 		/*
1987 		 * Shift mask to signify next bit of data to shift in to the
1988 		 * EEPROM
1989 		 */
1990 		mask = mask >> 1;
1991 	}
1992 
1993 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1994 	eec &= ~IXGBE_EEC_DI;
1995 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1996 	IXGBE_WRITE_FLUSH(hw);
1997 }
1998 
1999 /**
2000  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2001  *  @hw: pointer to hardware structure
2002  **/
2003 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2004 {
2005 	u32 eec;
2006 	u32 i;
2007 	u16 data = 0;
2008 
2009 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2010 
2011 	/*
2012 	 * In order to read a register from the EEPROM, we need to shift
2013 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2014 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2015 	 * the value of the "DO" bit.  During this "shifting in" process the
2016 	 * "DI" bit should always be clear.
2017 	 */
2018 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2019 
2020 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2021 
2022 	for (i = 0; i < count; i++) {
2023 		data = data << 1;
2024 		ixgbe_raise_eeprom_clk(hw, &eec);
2025 
2026 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2027 
2028 		eec &= ~(IXGBE_EEC_DI);
2029 		if (eec & IXGBE_EEC_DO)
2030 			data |= 1;
2031 
2032 		ixgbe_lower_eeprom_clk(hw, &eec);
2033 	}
2034 
2035 	return data;
2036 }
2037 
2038 /**
2039  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2040  *  @hw: pointer to hardware structure
2041  *  @eec: EEC register's current value
2042  **/
2043 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2044 {
2045 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2046 
2047 	/*
2048 	 * Raise the clock input to the EEPROM
2049 	 * (setting the SK bit), then delay
2050 	 */
2051 	*eec = *eec | IXGBE_EEC_SK;
2052 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2053 	IXGBE_WRITE_FLUSH(hw);
2054 	usec_delay(1);
2055 }
2056 
2057 /**
2058  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2059  *  @hw: pointer to hardware structure
2060  *  @eecd: EECD's current value
2061  **/
2062 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2063 {
2064 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2065 
2066 	/*
2067 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2068 	 * delay
2069 	 */
2070 	*eec = *eec & ~IXGBE_EEC_SK;
2071 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2072 	IXGBE_WRITE_FLUSH(hw);
2073 	usec_delay(1);
2074 }
2075 
2076 /**
2077  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2078  *  @hw: pointer to hardware structure
2079  **/
2080 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2081 {
2082 	u32 eec;
2083 
2084 	DEBUGFUNC("ixgbe_release_eeprom");
2085 
2086 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2087 
2088 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2089 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2090 
2091 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2092 	IXGBE_WRITE_FLUSH(hw);
2093 
2094 	usec_delay(1);
2095 
2096 	/* Stop requesting EEPROM access */
2097 	eec &= ~IXGBE_EEC_REQ;
2098 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2099 
2100 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2101 
2102 	/* Delay before attempt to obtain semaphore again to allow FW access */
2103 	msec_delay(hw->eeprom.semaphore_delay);
2104 }
2105 
2106 /**
2107  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2108  *  @hw: pointer to hardware structure
2109  *
2110  *  Returns a negative error code on error, or the 16-bit checksum
2111  **/
2112 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2113 {
2114 	u16 i;
2115 	u16 j;
2116 	u16 checksum = 0;
2117 	u16 length = 0;
2118 	u16 pointer = 0;
2119 	u16 word = 0;
2120 
2121 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2122 
2123 	/* Include 0x0-0x3F in the checksum */
2124 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2125 		if (hw->eeprom.ops.read(hw, i, &word)) {
2126 			DEBUGOUT("EEPROM read failed\n");
2127 			return IXGBE_ERR_EEPROM;
2128 		}
2129 		checksum += word;
2130 	}
2131 
2132 	/* Include all data from pointers except for the fw pointer */
2133 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2134 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2135 			DEBUGOUT("EEPROM read failed\n");
2136 			return IXGBE_ERR_EEPROM;
2137 		}
2138 
2139 		/* If the pointer seems invalid */
2140 		if (pointer == 0xFFFF || pointer == 0)
2141 			continue;
2142 
2143 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2144 			DEBUGOUT("EEPROM read failed\n");
2145 			return IXGBE_ERR_EEPROM;
2146 		}
2147 
2148 		if (length == 0xFFFF || length == 0)
2149 			continue;
2150 
2151 		for (j = pointer + 1; j <= pointer + length; j++) {
2152 			if (hw->eeprom.ops.read(hw, j, &word)) {
2153 				DEBUGOUT("EEPROM read failed\n");
2154 				return IXGBE_ERR_EEPROM;
2155 			}
2156 			checksum += word;
2157 		}
2158 	}
2159 
2160 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2161 
2162 	return (s32)checksum;
2163 }
2164 
2165 /**
2166  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2167  *  @hw: pointer to hardware structure
2168  *  @checksum_val: calculated checksum
2169  *
2170  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2171  *  caller does not need checksum_val, the value can be NULL.
2172  **/
2173 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2174 					   u16 *checksum_val)
2175 {
2176 	s32 status;
2177 	u16 checksum;
2178 	u16 read_checksum = 0;
2179 
2180 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2181 
2182 	/* Read the first word from the EEPROM. If this times out or fails, do
2183 	 * not continue or we could be in for a very long wait while every
2184 	 * EEPROM read fails
2185 	 */
2186 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2187 	if (status) {
2188 		DEBUGOUT("EEPROM read failed\n");
2189 		return status;
2190 	}
2191 
2192 	status = hw->eeprom.ops.calc_checksum(hw);
2193 	if (status < 0)
2194 		return status;
2195 
2196 	checksum = (u16)(status & 0xffff);
2197 
2198 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2199 	if (status) {
2200 		DEBUGOUT("EEPROM read failed\n");
2201 		return status;
2202 	}
2203 
2204 	/* Verify read checksum from EEPROM is the same as
2205 	 * calculated checksum
2206 	 */
2207 	if (read_checksum != checksum)
2208 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2209 
2210 	/* If the user cares, return the calculated checksum */
2211 	if (checksum_val)
2212 		*checksum_val = checksum;
2213 
2214 	return status;
2215 }
2216 
2217 /**
2218  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2219  *  @hw: pointer to hardware structure
2220  **/
2221 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2222 {
2223 	s32 status;
2224 	u16 checksum;
2225 
2226 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2227 
2228 	/* Read the first word from the EEPROM. If this times out or fails, do
2229 	 * not continue or we could be in for a very long wait while every
2230 	 * EEPROM read fails
2231 	 */
2232 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2233 	if (status) {
2234 		DEBUGOUT("EEPROM read failed\n");
2235 		return status;
2236 	}
2237 
2238 	status = hw->eeprom.ops.calc_checksum(hw);
2239 	if (status < 0)
2240 		return status;
2241 
2242 	checksum = (u16)(status & 0xffff);
2243 
2244 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2245 
2246 	return status;
2247 }
2248 
2249 /**
2250  *  ixgbe_validate_mac_addr - Validate MAC address
2251  *  @mac_addr: pointer to MAC address.
2252  *
2253  *  Tests a MAC address to ensure it is a valid Individual Address
2254  **/
2255 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2256 {
2257 	s32 status = IXGBE_SUCCESS;
2258 
2259 	DEBUGFUNC("ixgbe_validate_mac_addr");
2260 
2261 	/* Make sure it is not a multicast address */
2262 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2263 		DEBUGOUT("MAC address is multicast\n");
2264 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2265 	/* Not a broadcast address */
2266 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2267 		DEBUGOUT("MAC address is broadcast\n");
2268 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2269 	/* Reject the zero address */
2270 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2271 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2272 		DEBUGOUT("MAC address is all zeros\n");
2273 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2274 	}
2275 	return status;
2276 }
2277 
2278 /**
2279  *  ixgbe_set_rar_generic - Set Rx address register
2280  *  @hw: pointer to hardware structure
2281  *  @index: Receive address register to write
2282  *  @addr: Address to put into receive address register
2283  *  @vmdq: VMDq "set" or "pool" index
2284  *  @enable_addr: set flag that address is active
2285  *
2286  *  Puts an ethernet address into a receive address register.
2287  **/
2288 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2289 			  u32 enable_addr)
2290 {
2291 	u32 rar_low, rar_high;
2292 	u32 rar_entries = hw->mac.num_rar_entries;
2293 
2294 	DEBUGFUNC("ixgbe_set_rar_generic");
2295 
2296 	/* Make sure we are using a valid rar index range */
2297 	if (index >= rar_entries) {
2298 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2299 			     "RAR index %d is out of range.\n", index);
2300 		return IXGBE_ERR_INVALID_ARGUMENT;
2301 	}
2302 
2303 	/* setup VMDq pool selection before this RAR gets enabled */
2304 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2305 
2306 	/*
2307 	 * HW expects these in little endian so we reverse the byte
2308 	 * order from network order (big endian) to little endian
2309 	 */
2310 	rar_low = ((u32)addr[0] |
2311 		   ((u32)addr[1] << 8) |
2312 		   ((u32)addr[2] << 16) |
2313 		   ((u32)addr[3] << 24));
2314 	/*
2315 	 * Some parts put the VMDq setting in the extra RAH bits,
2316 	 * so save everything except the lower 16 bits that hold part
2317 	 * of the address and the address valid bit.
2318 	 */
2319 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2320 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2321 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2322 
2323 	if (enable_addr != 0)
2324 		rar_high |= IXGBE_RAH_AV;
2325 
2326 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2327 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2328 
2329 	return IXGBE_SUCCESS;
2330 }
2331 
2332 /**
2333  *  ixgbe_clear_rar_generic - Remove Rx address register
2334  *  @hw: pointer to hardware structure
2335  *  @index: Receive address register to write
2336  *
2337  *  Clears an ethernet address from a receive address register.
2338  **/
2339 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2340 {
2341 	u32 rar_high;
2342 	u32 rar_entries = hw->mac.num_rar_entries;
2343 
2344 	DEBUGFUNC("ixgbe_clear_rar_generic");
2345 
2346 	/* Make sure we are using a valid rar index range */
2347 	if (index >= rar_entries) {
2348 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2349 			     "RAR index %d is out of range.\n", index);
2350 		return IXGBE_ERR_INVALID_ARGUMENT;
2351 	}
2352 
2353 	/*
2354 	 * Some parts put the VMDq setting in the extra RAH bits,
2355 	 * so save everything except the lower 16 bits that hold part
2356 	 * of the address and the address valid bit.
2357 	 */
2358 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2359 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2360 
2361 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2362 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2363 
2364 	/* clear VMDq pool/queue selection for this RAR */
2365 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2366 
2367 	return IXGBE_SUCCESS;
2368 }
2369 
2370 /**
2371  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2372  *  @hw: pointer to hardware structure
2373  *
2374  *  Places the MAC address in receive address register 0 and clears the rest
2375  *  of the receive address registers. Clears the multicast table. Assumes
2376  *  the receiver is in reset when the routine is called.
2377  **/
2378 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2379 {
2380 	u32 i;
2381 	u32 rar_entries = hw->mac.num_rar_entries;
2382 
2383 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2384 
2385 	/*
2386 	 * If the current mac address is valid, assume it is a software override
2387 	 * to the permanent address.
2388 	 * Otherwise, use the permanent address from the eeprom.
2389 	 */
2390 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2391 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2392 		/* Get the MAC address from the RAR0 for later reference */
2393 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2394 
2395 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2396 			  hw->mac.addr[0], hw->mac.addr[1],
2397 			  hw->mac.addr[2]);
2398 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2399 			  hw->mac.addr[4], hw->mac.addr[5]);
2400 	} else {
2401 		/* Setup the receive address. */
2402 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2403 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2404 			  hw->mac.addr[0], hw->mac.addr[1],
2405 			  hw->mac.addr[2]);
2406 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2407 			  hw->mac.addr[4], hw->mac.addr[5]);
2408 
2409 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2410 
2411 		/* clear VMDq pool/queue selection for RAR 0 */
2412 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2413 	}
2414 	hw->addr_ctrl.overflow_promisc = 0;
2415 
2416 	hw->addr_ctrl.rar_used_count = 1;
2417 
2418 	/* Zero out the other receive addresses. */
2419 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2420 	for (i = 1; i < rar_entries; i++) {
2421 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2422 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2423 	}
2424 
2425 	/* Clear the MTA */
2426 	hw->addr_ctrl.mta_in_use = 0;
2427 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2428 
2429 	DEBUGOUT(" Clearing MTA\n");
2430 	for (i = 0; i < hw->mac.mcft_size; i++)
2431 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2432 
2433 	ixgbe_init_uta_tables(hw);
2434 
2435 	return IXGBE_SUCCESS;
2436 }
2437 
2438 /**
2439  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2440  *  @hw: pointer to hardware structure
2441  *  @addr: new address
2442  *
2443  *  Adds it to unused receive address register or goes into promiscuous mode.
2444  **/
2445 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2446 {
2447 	u32 rar_entries = hw->mac.num_rar_entries;
2448 	u32 rar;
2449 
2450 	DEBUGFUNC("ixgbe_add_uc_addr");
2451 
2452 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2453 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2454 
2455 	/*
2456 	 * Place this address in the RAR if there is room,
2457 	 * else put the controller into promiscuous mode
2458 	 */
2459 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2460 		rar = hw->addr_ctrl.rar_used_count;
2461 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2462 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2463 		hw->addr_ctrl.rar_used_count++;
2464 	} else {
2465 		hw->addr_ctrl.overflow_promisc++;
2466 	}
2467 
2468 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2469 }
2470 
2471 /**
2472  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2473  *  @hw: pointer to hardware structure
2474  *  @addr_list: the list of new addresses
2475  *  @addr_count: number of addresses
2476  *  @next: iterator function to walk the address list
2477  *
2478  *  The given list replaces any existing list.  Clears the secondary addrs from
2479  *  receive address registers.  Uses unused receive address registers for the
2480  *  first secondary addresses, and falls back to promiscuous mode as needed.
2481  *
2482  *  Drivers using secondary unicast addresses must set user_set_promisc when
2483  *  manually putting the device into promiscuous mode.
2484  **/
2485 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2486 				      u32 addr_count, ixgbe_mc_addr_itr next)
2487 {
2488 	u8 *addr;
2489 	u32 i;
2490 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2491 	u32 uc_addr_in_use;
2492 	u32 fctrl;
2493 	u32 vmdq;
2494 
2495 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2496 
2497 	/*
2498 	 * Clear accounting of old secondary address list,
2499 	 * don't count RAR[0]
2500 	 */
2501 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2502 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2503 	hw->addr_ctrl.overflow_promisc = 0;
2504 
2505 	/* Zero out the other receive addresses */
2506 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2507 	for (i = 0; i < uc_addr_in_use; i++) {
2508 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2509 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2510 	}
2511 
2512 	/* Add the new addresses */
2513 	for (i = 0; i < addr_count; i++) {
2514 		DEBUGOUT(" Adding the secondary addresses:\n");
2515 		addr = next(hw, &addr_list, &vmdq);
2516 		ixgbe_add_uc_addr(hw, addr, vmdq);
2517 	}
2518 
2519 	if (hw->addr_ctrl.overflow_promisc) {
2520 		/* enable promisc if not already in overflow or set by user */
2521 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2522 			DEBUGOUT(" Entering address overflow promisc mode\n");
2523 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2524 			fctrl |= IXGBE_FCTRL_UPE;
2525 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2526 		}
2527 	} else {
2528 		/* only disable if set by overflow, not by user */
2529 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2530 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2531 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2532 			fctrl &= ~IXGBE_FCTRL_UPE;
2533 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2534 		}
2535 	}
2536 
2537 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2538 	return IXGBE_SUCCESS;
2539 }
2540 
2541 /**
2542  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2543  *  @hw: pointer to hardware structure
2544  *  @mc_addr: the multicast address
2545  *
2546  *  Extracts the 12 bits, from a multicast address, to determine which
2547  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2548  *  incoming rx multicast addresses, to determine the bit-vector to check in
2549  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2550  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2551  *  to mc_filter_type.
2552  **/
2553 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2554 {
2555 	u32 vector = 0;
2556 
2557 	DEBUGFUNC("ixgbe_mta_vector");
2558 
2559 	switch (hw->mac.mc_filter_type) {
2560 	case 0:   /* use bits [47:36] of the address */
2561 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2562 		break;
2563 	case 1:   /* use bits [46:35] of the address */
2564 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2565 		break;
2566 	case 2:   /* use bits [45:34] of the address */
2567 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2568 		break;
2569 	case 3:   /* use bits [43:32] of the address */
2570 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2571 		break;
2572 	default:  /* Invalid mc_filter_type */
2573 		DEBUGOUT("MC filter type param set incorrectly\n");
2574 		ASSERT(0);
2575 		break;
2576 	}
2577 
2578 	/* vector can only be 12-bits or boundary will be exceeded */
2579 	vector &= 0xFFF;
2580 	return vector;
2581 }
2582 
2583 /**
2584  *  ixgbe_set_mta - Set bit-vector in multicast table
2585  *  @hw: pointer to hardware structure
2586  *  @hash_value: Multicast address hash value
2587  *
2588  *  Sets the bit-vector in the multicast table.
2589  **/
2590 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2591 {
2592 	u32 vector;
2593 	u32 vector_bit;
2594 	u32 vector_reg;
2595 
2596 	DEBUGFUNC("ixgbe_set_mta");
2597 
2598 	hw->addr_ctrl.mta_in_use++;
2599 
2600 	vector = ixgbe_mta_vector(hw, mc_addr);
2601 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2602 
2603 	/*
2604 	 * The MTA is a register array of 128 32-bit registers. It is treated
2605 	 * like an array of 4096 bits.  We want to set bit
2606 	 * BitArray[vector_value]. So we figure out what register the bit is
2607 	 * in, read it, OR in the new bit, then write back the new value.  The
2608 	 * register is determined by the upper 7 bits of the vector value and
2609 	 * the bit within that register are determined by the lower 5 bits of
2610 	 * the value.
2611 	 */
2612 	vector_reg = (vector >> 5) & 0x7F;
2613 	vector_bit = vector & 0x1F;
2614 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2615 }
2616 
2617 /**
2618  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2619  *  @hw: pointer to hardware structure
2620  *  @mc_addr_list: the list of new multicast addresses
2621  *  @mc_addr_count: number of addresses
2622  *  @next: iterator function to walk the multicast address list
2623  *  @clear: flag, when set clears the table beforehand
2624  *
2625  *  When the clear flag is set, the given list replaces any existing list.
2626  *  Hashes the given addresses into the multicast table.
2627  **/
2628 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2629 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2630 				      bool clear)
2631 {
2632 	u32 i;
2633 	u32 vmdq;
2634 
2635 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2636 
2637 	/*
2638 	 * Set the new number of MC addresses that we are being requested to
2639 	 * use.
2640 	 */
2641 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2642 	hw->addr_ctrl.mta_in_use = 0;
2643 
2644 	/* Clear mta_shadow */
2645 	if (clear) {
2646 		DEBUGOUT(" Clearing MTA\n");
2647 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2648 	}
2649 
2650 	/* Update mta_shadow */
2651 	for (i = 0; i < mc_addr_count; i++) {
2652 		DEBUGOUT(" Adding the multicast addresses:\n");
2653 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2654 	}
2655 
2656 	/* Enable mta */
2657 	for (i = 0; i < hw->mac.mcft_size; i++)
2658 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2659 				      hw->mac.mta_shadow[i]);
2660 
2661 	if (hw->addr_ctrl.mta_in_use > 0)
2662 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2663 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2664 
2665 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2666 	return IXGBE_SUCCESS;
2667 }
2668 
2669 /**
2670  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2671  *  @hw: pointer to hardware structure
2672  *
2673  *  Enables multicast address in RAR and the use of the multicast hash table.
2674  **/
2675 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2676 {
2677 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2678 
2679 	DEBUGFUNC("ixgbe_enable_mc_generic");
2680 
2681 	if (a->mta_in_use > 0)
2682 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2683 				hw->mac.mc_filter_type);
2684 
2685 	return IXGBE_SUCCESS;
2686 }
2687 
2688 /**
2689  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2690  *  @hw: pointer to hardware structure
2691  *
2692  *  Disables multicast address in RAR and the use of the multicast hash table.
2693  **/
2694 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2695 {
2696 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2697 
2698 	DEBUGFUNC("ixgbe_disable_mc_generic");
2699 
2700 	if (a->mta_in_use > 0)
2701 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2702 
2703 	return IXGBE_SUCCESS;
2704 }
2705 
2706 /**
2707  *  ixgbe_fc_enable_generic - Enable flow control
2708  *  @hw: pointer to hardware structure
2709  *
2710  *  Enable flow control according to the current settings.
2711  **/
2712 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2713 {
2714 	s32 ret_val = IXGBE_SUCCESS;
2715 	u32 mflcn_reg, fccfg_reg;
2716 	u32 reg;
2717 	u32 fcrtl, fcrth;
2718 	int i;
2719 
2720 	DEBUGFUNC("ixgbe_fc_enable_generic");
2721 
2722 	/* Validate the water mark configuration */
2723 	if (!hw->fc.pause_time) {
2724 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2725 		goto out;
2726 	}
2727 
2728 	/* Low water mark of zero causes XOFF floods */
2729 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2730 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2731 		    hw->fc.high_water[i]) {
2732 			if (!hw->fc.low_water[i] ||
2733 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2734 				DEBUGOUT("Invalid water mark configuration\n");
2735 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2736 				goto out;
2737 			}
2738 		}
2739 	}
2740 
2741 	/* Negotiate the fc mode to use */
2742 	ixgbe_fc_autoneg(hw);
2743 
2744 	/* Disable any previous flow control settings */
2745 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2746 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2747 
2748 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2749 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2750 
2751 	/*
2752 	 * The possible values of fc.current_mode are:
2753 	 * 0: Flow control is completely disabled
2754 	 * 1: Rx flow control is enabled (we can receive pause frames,
2755 	 *    but not send pause frames).
2756 	 * 2: Tx flow control is enabled (we can send pause frames but
2757 	 *    we do not support receiving pause frames).
2758 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2759 	 * other: Invalid.
2760 	 */
2761 	switch (hw->fc.current_mode) {
2762 	case ixgbe_fc_none:
2763 		/*
2764 		 * Flow control is disabled by software override or autoneg.
2765 		 * The code below will actually disable it in the HW.
2766 		 */
2767 		break;
2768 	case ixgbe_fc_rx_pause:
2769 		/*
2770 		 * Rx Flow control is enabled and Tx Flow control is
2771 		 * disabled by software override. Since there really
2772 		 * isn't a way to advertise that we are capable of RX
2773 		 * Pause ONLY, we will advertise that we support both
2774 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2775 		 * disable the adapter's ability to send PAUSE frames.
2776 		 */
2777 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2778 		break;
2779 	case ixgbe_fc_tx_pause:
2780 		/*
2781 		 * Tx Flow control is enabled, and Rx Flow control is
2782 		 * disabled by software override.
2783 		 */
2784 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2785 		break;
2786 	case ixgbe_fc_full:
2787 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2788 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2789 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2790 		break;
2791 	default:
2792 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2793 			     "Flow control param set incorrectly\n");
2794 		ret_val = IXGBE_ERR_CONFIG;
2795 		goto out;
2796 		break;
2797 	}
2798 
2799 	/* Set 802.3x based flow control settings. */
2800 	mflcn_reg |= IXGBE_MFLCN_DPF;
2801 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2802 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2803 
2804 
2805 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2806 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2807 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2808 		    hw->fc.high_water[i]) {
2809 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2810 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2811 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2812 		} else {
2813 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2814 			/*
2815 			 * In order to prevent Tx hangs when the internal Tx
2816 			 * switch is enabled we must set the high water mark
2817 			 * to the Rx packet buffer size - 24KB.  This allows
2818 			 * the Tx switch to function even under heavy Rx
2819 			 * workloads.
2820 			 */
2821 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2822 		}
2823 
2824 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2825 	}
2826 
2827 	/* Configure pause time (2 TCs per register) */
2828 	reg = hw->fc.pause_time * 0x00010001;
2829 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2830 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2831 
2832 	/* Configure flow control refresh threshold value */
2833 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2834 
2835 out:
2836 	return ret_val;
2837 }
2838 
2839 /**
2840  *  ixgbe_negotiate_fc - Negotiate flow control
2841  *  @hw: pointer to hardware structure
2842  *  @adv_reg: flow control advertised settings
2843  *  @lp_reg: link partner's flow control settings
2844  *  @adv_sym: symmetric pause bit in advertisement
2845  *  @adv_asm: asymmetric pause bit in advertisement
2846  *  @lp_sym: symmetric pause bit in link partner advertisement
2847  *  @lp_asm: asymmetric pause bit in link partner advertisement
2848  *
2849  *  Find the intersection between advertised settings and link partner's
2850  *  advertised settings
2851  **/
2852 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2853 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2854 {
2855 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2856 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2857 			     "Local or link partner's advertised flow control "
2858 			     "settings are NULL. Local: %x, link partner: %x\n",
2859 			     adv_reg, lp_reg);
2860 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2861 	}
2862 
2863 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2864 		/*
2865 		 * Now we need to check if the user selected Rx ONLY
2866 		 * of pause frames.  In this case, we had to advertise
2867 		 * FULL flow control because we could not advertise RX
2868 		 * ONLY. Hence, we must now check to see if we need to
2869 		 * turn OFF the TRANSMISSION of PAUSE frames.
2870 		 */
2871 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2872 			hw->fc.current_mode = ixgbe_fc_full;
2873 			DEBUGOUT("Flow Control = FULL.\n");
2874 		} else {
2875 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2876 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2877 		}
2878 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2881 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2882 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2883 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2884 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2885 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2886 	} else {
2887 		hw->fc.current_mode = ixgbe_fc_none;
2888 		DEBUGOUT("Flow Control = NONE.\n");
2889 	}
2890 	return IXGBE_SUCCESS;
2891 }
2892 
2893 /**
2894  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2895  *  @hw: pointer to hardware structure
2896  *
2897  *  Enable flow control according on 1 gig fiber.
2898  **/
2899 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2900 {
2901 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2902 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2903 
2904 	/*
2905 	 * On multispeed fiber at 1g, bail out if
2906 	 * - link is up but AN did not complete, or if
2907 	 * - link is up and AN completed but timed out
2908 	 */
2909 
2910 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2911 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2912 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2913 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2914 		goto out;
2915 	}
2916 
2917 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2918 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2919 
2920 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2921 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2922 				      IXGBE_PCS1GANA_ASM_PAUSE,
2923 				      IXGBE_PCS1GANA_SYM_PAUSE,
2924 				      IXGBE_PCS1GANA_ASM_PAUSE);
2925 
2926 out:
2927 	return ret_val;
2928 }
2929 
2930 /**
2931  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2932  *  @hw: pointer to hardware structure
2933  *
2934  *  Enable flow control according to IEEE clause 37.
2935  **/
2936 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2937 {
2938 	u32 links2, anlp1_reg, autoc_reg, links;
2939 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2940 
2941 	/*
2942 	 * On backplane, bail out if
2943 	 * - backplane autoneg was not completed, or if
2944 	 * - we are 82599 and link partner is not AN enabled
2945 	 */
2946 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2947 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2948 		DEBUGOUT("Auto-Negotiation did not complete\n");
2949 		goto out;
2950 	}
2951 
2952 	if (hw->mac.type == ixgbe_mac_82599EB) {
2953 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2954 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2955 			DEBUGOUT("Link partner is not AN enabled\n");
2956 			goto out;
2957 		}
2958 	}
2959 	/*
2960 	 * Read the 10g AN autoc and LP ability registers and resolve
2961 	 * local flow control settings accordingly
2962 	 */
2963 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2964 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2965 
2966 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2967 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2968 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2969 
2970 out:
2971 	return ret_val;
2972 }
2973 
2974 /**
2975  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2976  *  @hw: pointer to hardware structure
2977  *
2978  *  Enable flow control according to IEEE clause 37.
2979  **/
2980 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2981 {
2982 	u16 technology_ability_reg = 0;
2983 	u16 lp_technology_ability_reg = 0;
2984 
2985 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2986 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2987 			     &technology_ability_reg);
2988 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2989 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2990 			     &lp_technology_ability_reg);
2991 
2992 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2993 				  (u32)lp_technology_ability_reg,
2994 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2995 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2996 }
2997 
2998 /**
2999  *  ixgbe_fc_autoneg - Configure flow control
3000  *  @hw: pointer to hardware structure
3001  *
3002  *  Compares our advertised flow control capabilities to those advertised by
3003  *  our link partner, and determines the proper flow control mode to use.
3004  **/
3005 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3006 {
3007 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3008 	ixgbe_link_speed speed;
3009 	bool link_up;
3010 
3011 	DEBUGFUNC("ixgbe_fc_autoneg");
3012 
3013 	/*
3014 	 * AN should have completed when the cable was plugged in.
3015 	 * Look for reasons to bail out.  Bail out if:
3016 	 * - FC autoneg is disabled, or if
3017 	 * - link is not up.
3018 	 */
3019 	if (hw->fc.disable_fc_autoneg) {
3020 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3021 			     "Flow control autoneg is disabled");
3022 		goto out;
3023 	}
3024 
3025 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3026 	if (!link_up) {
3027 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3028 		goto out;
3029 	}
3030 
3031 	switch (hw->phy.media_type) {
3032 	/* Autoneg flow control on fiber adapters */
3033 	case ixgbe_media_type_fiber_fixed:
3034 	case ixgbe_media_type_fiber_qsfp:
3035 	case ixgbe_media_type_fiber:
3036 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3037 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3038 		break;
3039 
3040 	/* Autoneg flow control on backplane adapters */
3041 	case ixgbe_media_type_backplane:
3042 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3043 		break;
3044 
3045 	/* Autoneg flow control on copper adapters */
3046 	case ixgbe_media_type_copper:
3047 		if (ixgbe_device_supports_autoneg_fc(hw))
3048 			ret_val = ixgbe_fc_autoneg_copper(hw);
3049 		break;
3050 
3051 	default:
3052 		break;
3053 	}
3054 
3055 out:
3056 	if (ret_val == IXGBE_SUCCESS) {
3057 		hw->fc.fc_was_autonegged = TRUE;
3058 	} else {
3059 		hw->fc.fc_was_autonegged = FALSE;
3060 		hw->fc.current_mode = hw->fc.requested_mode;
3061 	}
3062 }
3063 
3064 /*
3065  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3066  * @hw: pointer to hardware structure
3067  *
3068  * System-wide timeout range is encoded in PCIe Device Control2 register.
3069  *
3070  * Add 10% to specified maximum and return the number of times to poll for
3071  * completion timeout, in units of 100 microsec.  Never return less than
3072  * 800 = 80 millisec.
3073  */
3074 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3075 {
3076 	s16 devctl2;
3077 	u32 pollcnt;
3078 
3079 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3080 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3081 
3082 	switch (devctl2) {
3083 	case IXGBE_PCIDEVCTRL2_65_130ms:
3084 		pollcnt = 1300;		/* 130 millisec */
3085 		break;
3086 	case IXGBE_PCIDEVCTRL2_260_520ms:
3087 		pollcnt = 5200;		/* 520 millisec */
3088 		break;
3089 	case IXGBE_PCIDEVCTRL2_1_2s:
3090 		pollcnt = 20000;	/* 2 sec */
3091 		break;
3092 	case IXGBE_PCIDEVCTRL2_4_8s:
3093 		pollcnt = 80000;	/* 8 sec */
3094 		break;
3095 	case IXGBE_PCIDEVCTRL2_17_34s:
3096 		pollcnt = 34000;	/* 34 sec */
3097 		break;
3098 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3099 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3100 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3101 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3102 	default:
3103 		pollcnt = 800;		/* 80 millisec minimum */
3104 		break;
3105 	}
3106 
3107 	/* add 10% to spec maximum */
3108 	return (pollcnt * 11) / 10;
3109 }
3110 
3111 /**
3112  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3113  *  @hw: pointer to hardware structure
3114  *
3115  *  Disables PCI-Express master access and verifies there are no pending
3116  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3117  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3118  *  is returned signifying master requests disabled.
3119  **/
3120 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3121 {
3122 	s32 status = IXGBE_SUCCESS;
3123 	u32 i, poll;
3124 	u16 value;
3125 
3126 	DEBUGFUNC("ixgbe_disable_pcie_master");
3127 
3128 	/* Always set this bit to ensure any future transactions are blocked */
3129 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3130 
3131 	/* Exit if master requests are blocked */
3132 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3133 	    IXGBE_REMOVED(hw->hw_addr))
3134 		goto out;
3135 
3136 	/* Poll for master request bit to clear */
3137 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3138 		usec_delay(100);
3139 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3140 			goto out;
3141 	}
3142 
3143 	/*
3144 	 * Two consecutive resets are required via CTRL.RST per datasheet
3145 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3146 	 * of this need.  The first reset prevents new master requests from
3147 	 * being issued by our device.  We then must wait 1usec or more for any
3148 	 * remaining completions from the PCIe bus to trickle in, and then reset
3149 	 * again to clear out any effects they may have had on our device.
3150 	 */
3151 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3152 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3153 
3154 	if (hw->mac.type >= ixgbe_mac_X550)
3155 		goto out;
3156 
3157 	/*
3158 	 * Before proceeding, make sure that the PCIe block does not have
3159 	 * transactions pending.
3160 	 */
3161 	poll = ixgbe_pcie_timeout_poll(hw);
3162 	for (i = 0; i < poll; i++) {
3163 		usec_delay(100);
3164 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3165 		if (IXGBE_REMOVED(hw->hw_addr))
3166 			goto out;
3167 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3168 			goto out;
3169 	}
3170 
3171 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3172 		     "PCIe transaction pending bit also did not clear.\n");
3173 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3174 
3175 out:
3176 	return status;
3177 }
3178 
3179 /**
3180  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3181  *  @hw: pointer to hardware structure
3182  *  @mask: Mask to specify which semaphore to acquire
3183  *
3184  *  Acquires the SWFW semaphore through the GSSR register for the specified
3185  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3186  **/
3187 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3188 {
3189 	u32 gssr = 0;
3190 	u32 swmask = mask;
3191 	u32 fwmask = mask << 5;
3192 	u32 timeout = 200;
3193 	u32 i;
3194 
3195 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3196 
3197 	for (i = 0; i < timeout; i++) {
3198 		/*
3199 		 * SW NVM semaphore bit is used for access to all
3200 		 * SW_FW_SYNC bits (not just NVM)
3201 		 */
3202 		if (ixgbe_get_eeprom_semaphore(hw))
3203 			return IXGBE_ERR_SWFW_SYNC;
3204 
3205 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3206 		if (!(gssr & (fwmask | swmask))) {
3207 			gssr |= swmask;
3208 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3209 			ixgbe_release_eeprom_semaphore(hw);
3210 			return IXGBE_SUCCESS;
3211 		} else {
3212 			/* Resource is currently in use by FW or SW */
3213 			ixgbe_release_eeprom_semaphore(hw);
3214 			msec_delay(5);
3215 		}
3216 	}
3217 
3218 	/* If time expired clear the bits holding the lock and retry */
3219 	if (gssr & (fwmask | swmask))
3220 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3221 
3222 	msec_delay(5);
3223 	return IXGBE_ERR_SWFW_SYNC;
3224 }
3225 
3226 /**
3227  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3228  *  @hw: pointer to hardware structure
3229  *  @mask: Mask to specify which semaphore to release
3230  *
3231  *  Releases the SWFW semaphore through the GSSR register for the specified
3232  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3233  **/
3234 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3235 {
3236 	u32 gssr;
3237 	u32 swmask = mask;
3238 
3239 	DEBUGFUNC("ixgbe_release_swfw_sync");
3240 
3241 	ixgbe_get_eeprom_semaphore(hw);
3242 
3243 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3244 	gssr &= ~swmask;
3245 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3246 
3247 	ixgbe_release_eeprom_semaphore(hw);
3248 }
3249 
3250 /**
3251  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3252  *  @hw: pointer to hardware structure
3253  *
3254  *  Stops the receive data path and waits for the HW to internally empty
3255  *  the Rx security block
3256  **/
3257 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3258 {
3259 #define IXGBE_MAX_SECRX_POLL 40
3260 
3261 	int i;
3262 	int secrxreg;
3263 
3264 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3265 
3266 
3267 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3268 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3269 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3270 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3271 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3272 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3273 			break;
3274 		else
3275 			/* Use interrupt-safe sleep just in case */
3276 			usec_delay(1000);
3277 	}
3278 
3279 	/* For informational purposes only */
3280 	if (i >= IXGBE_MAX_SECRX_POLL)
3281 		DEBUGOUT("Rx unit being enabled before security "
3282 			 "path fully disabled.  Continuing with init.\n");
3283 
3284 	return IXGBE_SUCCESS;
3285 }
3286 
3287 /**
3288  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3289  *  @hw: pointer to hardware structure
3290  *  @reg_val: Value we read from AUTOC
3291  *
3292  *  The default case requires no protection so just to the register read.
3293  */
3294 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3295 {
3296 	*locked = FALSE;
3297 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3298 	return IXGBE_SUCCESS;
3299 }
3300 
3301 /**
3302  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3303  * @hw: pointer to hardware structure
3304  * @reg_val: value to write to AUTOC
3305  * @locked: bool to indicate whether the SW/FW lock was already taken by
3306  *           previous read.
3307  *
3308  * The default case requires no protection so just to the register write.
3309  */
3310 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3311 {
3312 	UNREFERENCED_1PARAMETER(locked);
3313 
3314 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3315 	return IXGBE_SUCCESS;
3316 }
3317 
3318 /**
3319  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3320  *  @hw: pointer to hardware structure
3321  *
3322  *  Enables the receive data path.
3323  **/
3324 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3325 {
3326 	int secrxreg;
3327 
3328 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3329 
3330 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3331 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3332 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3333 	IXGBE_WRITE_FLUSH(hw);
3334 
3335 	return IXGBE_SUCCESS;
3336 }
3337 
3338 /**
3339  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3340  *  @hw: pointer to hardware structure
3341  *  @regval: register value to write to RXCTRL
3342  *
3343  *  Enables the Rx DMA unit
3344  **/
3345 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3346 {
3347 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3348 
3349 	if (regval & IXGBE_RXCTRL_RXEN)
3350 		ixgbe_enable_rx(hw);
3351 	else
3352 		ixgbe_disable_rx(hw);
3353 
3354 	return IXGBE_SUCCESS;
3355 }
3356 
3357 /**
3358  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3359  *  @hw: pointer to hardware structure
3360  *  @index: led number to blink
3361  **/
3362 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3363 {
3364 	ixgbe_link_speed speed = 0;
3365 	bool link_up = 0;
3366 	u32 autoc_reg = 0;
3367 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3368 	s32 ret_val = IXGBE_SUCCESS;
3369 	bool locked = FALSE;
3370 
3371 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3372 
3373 	/*
3374 	 * Link must be up to auto-blink the LEDs;
3375 	 * Force it if link is down.
3376 	 */
3377 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3378 
3379 	if (!link_up) {
3380 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3381 		if (ret_val != IXGBE_SUCCESS)
3382 			goto out;
3383 
3384 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3385 		autoc_reg |= IXGBE_AUTOC_FLU;
3386 
3387 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3388 		if (ret_val != IXGBE_SUCCESS)
3389 			goto out;
3390 
3391 		IXGBE_WRITE_FLUSH(hw);
3392 		msec_delay(10);
3393 	}
3394 
3395 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3396 	led_reg |= IXGBE_LED_BLINK(index);
3397 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3398 	IXGBE_WRITE_FLUSH(hw);
3399 
3400 out:
3401 	return ret_val;
3402 }
3403 
3404 /**
3405  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3406  *  @hw: pointer to hardware structure
3407  *  @index: led number to stop blinking
3408  **/
3409 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3410 {
3411 	u32 autoc_reg = 0;
3412 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3413 	s32 ret_val = IXGBE_SUCCESS;
3414 	bool locked = FALSE;
3415 
3416 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3417 
3418 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3419 	if (ret_val != IXGBE_SUCCESS)
3420 		goto out;
3421 
3422 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3423 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3424 
3425 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3426 	if (ret_val != IXGBE_SUCCESS)
3427 		goto out;
3428 
3429 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3430 	led_reg &= ~IXGBE_LED_BLINK(index);
3431 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3432 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3433 	IXGBE_WRITE_FLUSH(hw);
3434 
3435 out:
3436 	return ret_val;
3437 }
3438 
3439 /**
3440  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3441  *  @hw: pointer to hardware structure
3442  *  @san_mac_offset: SAN MAC address offset
3443  *
3444  *  This function will read the EEPROM location for the SAN MAC address
3445  *  pointer, and returns the value at that location.  This is used in both
3446  *  get and set mac_addr routines.
3447  **/
3448 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3449 					 u16 *san_mac_offset)
3450 {
3451 	s32 ret_val;
3452 
3453 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3454 
3455 	/*
3456 	 * First read the EEPROM pointer to see if the MAC addresses are
3457 	 * available.
3458 	 */
3459 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3460 				      san_mac_offset);
3461 	if (ret_val) {
3462 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3463 			      "eeprom at offset %d failed",
3464 			      IXGBE_SAN_MAC_ADDR_PTR);
3465 	}
3466 
3467 	return ret_val;
3468 }
3469 
3470 /**
3471  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3472  *  @hw: pointer to hardware structure
3473  *  @san_mac_addr: SAN MAC address
3474  *
3475  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3476  *  per-port, so set_lan_id() must be called before reading the addresses.
3477  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3478  *  upon for non-SFP connections, so we must call it here.
3479  **/
3480 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3481 {
3482 	u16 san_mac_data, san_mac_offset;
3483 	u8 i;
3484 	s32 ret_val;
3485 
3486 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3487 
3488 	/*
3489 	 * First read the EEPROM pointer to see if the MAC addresses are
3490 	 * available.  If they're not, no point in calling set_lan_id() here.
3491 	 */
3492 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3493 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3494 		goto san_mac_addr_out;
3495 
3496 	/* make sure we know which port we need to program */
3497 	hw->mac.ops.set_lan_id(hw);
3498 	/* apply the port offset to the address offset */
3499 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3500 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3501 	for (i = 0; i < 3; i++) {
3502 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3503 					      &san_mac_data);
3504 		if (ret_val) {
3505 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3506 				      "eeprom read at offset %d failed",
3507 				      san_mac_offset);
3508 			goto san_mac_addr_out;
3509 		}
3510 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3511 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3512 		san_mac_offset++;
3513 	}
3514 	return IXGBE_SUCCESS;
3515 
3516 san_mac_addr_out:
3517 	/*
3518 	 * No addresses available in this EEPROM.  It's not an
3519 	 * error though, so just wipe the local address and return.
3520 	 */
3521 	for (i = 0; i < 6; i++)
3522 		san_mac_addr[i] = 0xFF;
3523 	return IXGBE_SUCCESS;
3524 }
3525 
3526 /**
3527  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3528  *  @hw: pointer to hardware structure
3529  *  @san_mac_addr: SAN MAC address
3530  *
3531  *  Write a SAN MAC address to the EEPROM.
3532  **/
3533 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3534 {
3535 	s32 ret_val;
3536 	u16 san_mac_data, san_mac_offset;
3537 	u8 i;
3538 
3539 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3540 
3541 	/* Look for SAN mac address pointer.  If not defined, return */
3542 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3543 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3544 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3545 
3546 	/* Make sure we know which port we need to write */
3547 	hw->mac.ops.set_lan_id(hw);
3548 	/* Apply the port offset to the address offset */
3549 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3550 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3551 
3552 	for (i = 0; i < 3; i++) {
3553 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3554 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3555 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3556 		san_mac_offset++;
3557 	}
3558 
3559 	return IXGBE_SUCCESS;
3560 }
3561 
3562 /**
3563  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3564  *  @hw: pointer to hardware structure
3565  *
3566  *  Read PCIe configuration space, and get the MSI-X vector count from
3567  *  the capabilities table.
3568  **/
3569 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3570 {
3571 	u16 msix_count = 1;
3572 	u16 max_msix_count;
3573 	u16 pcie_offset;
3574 
3575 	switch (hw->mac.type) {
3576 	case ixgbe_mac_82598EB:
3577 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3578 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3579 		break;
3580 	case ixgbe_mac_82599EB:
3581 	case ixgbe_mac_X540:
3582 	case ixgbe_mac_X550:
3583 	case ixgbe_mac_X550EM_x:
3584 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3585 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3586 		break;
3587 	default:
3588 		return msix_count;
3589 	}
3590 
3591 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3592 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3593 	if (IXGBE_REMOVED(hw->hw_addr))
3594 		msix_count = 0;
3595 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3596 
3597 	/* MSI-X count is zero-based in HW */
3598 	msix_count++;
3599 
3600 	if (msix_count > max_msix_count)
3601 		msix_count = max_msix_count;
3602 
3603 	return msix_count;
3604 }
3605 
3606 /**
3607  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3608  *  @hw: pointer to hardware structure
3609  *  @addr: Address to put into receive address register
3610  *  @vmdq: VMDq pool to assign
3611  *
3612  *  Puts an ethernet address into a receive address register, or
3613  *  finds the rar that it is already in; adds to the pool list
3614  **/
3615 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3616 {
3617 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3618 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3619 	u32 rar;
3620 	u32 rar_low, rar_high;
3621 	u32 addr_low, addr_high;
3622 
3623 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3624 
3625 	/* swap bytes for HW little endian */
3626 	addr_low  = addr[0] | (addr[1] << 8)
3627 			    | (addr[2] << 16)
3628 			    | (addr[3] << 24);
3629 	addr_high = addr[4] | (addr[5] << 8);
3630 
3631 	/*
3632 	 * Either find the mac_id in rar or find the first empty space.
3633 	 * rar_highwater points to just after the highest currently used
3634 	 * rar in order to shorten the search.  It grows when we add a new
3635 	 * rar to the top.
3636 	 */
3637 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3638 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3639 
3640 		if (((IXGBE_RAH_AV & rar_high) == 0)
3641 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3642 			first_empty_rar = rar;
3643 		} else if ((rar_high & 0xFFFF) == addr_high) {
3644 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3645 			if (rar_low == addr_low)
3646 				break;    /* found it already in the rars */
3647 		}
3648 	}
3649 
3650 	if (rar < hw->mac.rar_highwater) {
3651 		/* already there so just add to the pool bits */
3652 		ixgbe_set_vmdq(hw, rar, vmdq);
3653 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3654 		/* stick it into first empty RAR slot we found */
3655 		rar = first_empty_rar;
3656 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657 	} else if (rar == hw->mac.rar_highwater) {
3658 		/* add it to the top of the list and inc the highwater mark */
3659 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3660 		hw->mac.rar_highwater++;
3661 	} else if (rar >= hw->mac.num_rar_entries) {
3662 		return IXGBE_ERR_INVALID_MAC_ADDR;
3663 	}
3664 
3665 	/*
3666 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3667 	 * remains cleared to be sure default pool packets will get delivered
3668 	 */
3669 	if (rar == 0)
3670 		ixgbe_clear_vmdq(hw, rar, 0);
3671 
3672 	return rar;
3673 }
3674 
3675 /**
3676  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3677  *  @hw: pointer to hardware struct
3678  *  @rar: receive address register index to disassociate
3679  *  @vmdq: VMDq pool index to remove from the rar
3680  **/
3681 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3682 {
3683 	u32 mpsar_lo, mpsar_hi;
3684 	u32 rar_entries = hw->mac.num_rar_entries;
3685 
3686 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3687 
3688 	/* Make sure we are using a valid rar index range */
3689 	if (rar >= rar_entries) {
3690 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3691 			     "RAR index %d is out of range.\n", rar);
3692 		return IXGBE_ERR_INVALID_ARGUMENT;
3693 	}
3694 
3695 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3696 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3697 
3698 	if (IXGBE_REMOVED(hw->hw_addr))
3699 		goto done;
3700 
3701 	if (!mpsar_lo && !mpsar_hi)
3702 		goto done;
3703 
3704 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3705 		if (mpsar_lo) {
3706 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3707 			mpsar_lo = 0;
3708 		}
3709 		if (mpsar_hi) {
3710 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3711 			mpsar_hi = 0;
3712 		}
3713 	} else if (vmdq < 32) {
3714 		mpsar_lo &= ~(1 << vmdq);
3715 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3716 	} else {
3717 		mpsar_hi &= ~(1 << (vmdq - 32));
3718 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3719 	}
3720 
3721 	/* was that the last pool using this rar? */
3722 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3723 		hw->mac.ops.clear_rar(hw, rar);
3724 done:
3725 	return IXGBE_SUCCESS;
3726 }
3727 
3728 /**
3729  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3730  *  @hw: pointer to hardware struct
3731  *  @rar: receive address register index to associate with a VMDq index
3732  *  @vmdq: VMDq pool index
3733  **/
3734 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3735 {
3736 	u32 mpsar;
3737 	u32 rar_entries = hw->mac.num_rar_entries;
3738 
3739 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3740 
3741 	/* Make sure we are using a valid rar index range */
3742 	if (rar >= rar_entries) {
3743 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3744 			     "RAR index %d is out of range.\n", rar);
3745 		return IXGBE_ERR_INVALID_ARGUMENT;
3746 	}
3747 
3748 	if (vmdq < 32) {
3749 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3750 		mpsar |= 1 << vmdq;
3751 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3752 	} else {
3753 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3754 		mpsar |= 1 << (vmdq - 32);
3755 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3756 	}
3757 	return IXGBE_SUCCESS;
3758 }
3759 
3760 /**
3761  *  This function should only be involved in the IOV mode.
3762  *  In IOV mode, Default pool is next pool after the number of
3763  *  VFs advertized and not 0.
3764  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3765  *
3766  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3767  *  @hw: pointer to hardware struct
3768  *  @vmdq: VMDq pool index
3769  **/
3770 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3771 {
3772 	u32 rar = hw->mac.san_mac_rar_index;
3773 
3774 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3775 
3776 	if (vmdq < 32) {
3777 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3778 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3779 	} else {
3780 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3781 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3782 	}
3783 
3784 	return IXGBE_SUCCESS;
3785 }
3786 
3787 /**
3788  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3789  *  @hw: pointer to hardware structure
3790  **/
3791 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3792 {
3793 	int i;
3794 
3795 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3796 	DEBUGOUT(" Clearing UTA\n");
3797 
3798 	for (i = 0; i < 128; i++)
3799 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3800 
3801 	return IXGBE_SUCCESS;
3802 }
3803 
3804 /**
3805  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3806  *  @hw: pointer to hardware structure
3807  *  @vlan: VLAN id to write to VLAN filter
3808  *
3809  *  return the VLVF index where this VLAN id should be placed
3810  *
3811  **/
3812 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3813 {
3814 	u32 bits = 0;
3815 	u32 first_empty_slot = 0;
3816 	s32 regindex;
3817 
3818 	/* short cut the special case */
3819 	if (vlan == 0)
3820 		return 0;
3821 
3822 	/*
3823 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3824 	  * slot found along the way
3825 	  */
3826 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3827 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3828 		if (!bits && !(first_empty_slot))
3829 			first_empty_slot = regindex;
3830 		else if ((bits & 0x0FFF) == vlan)
3831 			break;
3832 	}
3833 
3834 	/*
3835 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3836 	  * in the VLVF. Else use the first empty VLVF register for this
3837 	  * vlan id.
3838 	  */
3839 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3840 		if (first_empty_slot)
3841 			regindex = first_empty_slot;
3842 		else {
3843 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3844 				     "No space in VLVF.\n");
3845 			regindex = IXGBE_ERR_NO_SPACE;
3846 		}
3847 	}
3848 
3849 	return regindex;
3850 }
3851 
3852 /**
3853  *  ixgbe_set_vfta_generic - Set VLAN filter table
3854  *  @hw: pointer to hardware structure
3855  *  @vlan: VLAN id to write to VLAN filter
3856  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3857  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3858  *
3859  *  Turn on/off specified VLAN in the VLAN filter table.
3860  **/
3861 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3862 			   bool vlan_on)
3863 {
3864 	s32 regindex;
3865 	u32 bitindex;
3866 	u32 vfta;
3867 	u32 targetbit;
3868 	s32 ret_val = IXGBE_SUCCESS;
3869 	bool vfta_changed = FALSE;
3870 
3871 	DEBUGFUNC("ixgbe_set_vfta_generic");
3872 
3873 	if (vlan > 4095)
3874 		return IXGBE_ERR_PARAM;
3875 
3876 	/*
3877 	 * this is a 2 part operation - first the VFTA, then the
3878 	 * VLVF and VLVFB if VT Mode is set
3879 	 * We don't write the VFTA until we know the VLVF part succeeded.
3880 	 */
3881 
3882 	/* Part 1
3883 	 * The VFTA is a bitstring made up of 128 32-bit registers
3884 	 * that enable the particular VLAN id, much like the MTA:
3885 	 *    bits[11-5]: which register
3886 	 *    bits[4-0]:  which bit in the register
3887 	 */
3888 	regindex = (vlan >> 5) & 0x7F;
3889 	bitindex = vlan & 0x1F;
3890 	targetbit = (1 << bitindex);
3891 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3892 
3893 	if (vlan_on) {
3894 		if (!(vfta & targetbit)) {
3895 			vfta |= targetbit;
3896 			vfta_changed = TRUE;
3897 		}
3898 	} else {
3899 		if ((vfta & targetbit)) {
3900 			vfta &= ~targetbit;
3901 			vfta_changed = TRUE;
3902 		}
3903 	}
3904 
3905 	/* Part 2
3906 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3907 	 */
3908 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3909 					 &vfta_changed);
3910 	if (ret_val != IXGBE_SUCCESS)
3911 		return ret_val;
3912 
3913 	if (vfta_changed)
3914 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3915 
3916 	return IXGBE_SUCCESS;
3917 }
3918 
3919 /**
3920  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3921  *  @hw: pointer to hardware structure
3922  *  @vlan: VLAN id to write to VLAN filter
3923  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3924  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3925  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3926  *                 should be changed
3927  *
3928  *  Turn on/off specified bit in VLVF table.
3929  **/
3930 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3931 			    bool vlan_on, bool *vfta_changed)
3932 {
3933 	u32 vt;
3934 
3935 	DEBUGFUNC("ixgbe_set_vlvf_generic");
3936 
3937 	if (vlan > 4095)
3938 		return IXGBE_ERR_PARAM;
3939 
3940 	/* If VT Mode is set
3941 	 *   Either vlan_on
3942 	 *     make sure the vlan is in VLVF
3943 	 *     set the vind bit in the matching VLVFB
3944 	 *   Or !vlan_on
3945 	 *     clear the pool bit and possibly the vind
3946 	 */
3947 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3948 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3949 		s32 vlvf_index;
3950 		u32 bits;
3951 
3952 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3953 		if (vlvf_index < 0)
3954 			return vlvf_index;
3955 
3956 		if (vlan_on) {
3957 			/* set the pool bit */
3958 			if (vind < 32) {
3959 				bits = IXGBE_READ_REG(hw,
3960 						IXGBE_VLVFB(vlvf_index * 2));
3961 				bits |= (1 << vind);
3962 				IXGBE_WRITE_REG(hw,
3963 						IXGBE_VLVFB(vlvf_index * 2),
3964 						bits);
3965 			} else {
3966 				bits = IXGBE_READ_REG(hw,
3967 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3968 				bits |= (1 << (vind - 32));
3969 				IXGBE_WRITE_REG(hw,
3970 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3971 					bits);
3972 			}
3973 		} else {
3974 			/* clear the pool bit */
3975 			if (vind < 32) {
3976 				bits = IXGBE_READ_REG(hw,
3977 						IXGBE_VLVFB(vlvf_index * 2));
3978 				bits &= ~(1 << vind);
3979 				IXGBE_WRITE_REG(hw,
3980 						IXGBE_VLVFB(vlvf_index * 2),
3981 						bits);
3982 				bits |= IXGBE_READ_REG(hw,
3983 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3984 			} else {
3985 				bits = IXGBE_READ_REG(hw,
3986 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3987 				bits &= ~(1 << (vind - 32));
3988 				IXGBE_WRITE_REG(hw,
3989 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3990 					bits);
3991 				bits |= IXGBE_READ_REG(hw,
3992 						IXGBE_VLVFB(vlvf_index * 2));
3993 			}
3994 		}
3995 
3996 		/*
3997 		 * If there are still bits set in the VLVFB registers
3998 		 * for the VLAN ID indicated we need to see if the
3999 		 * caller is requesting that we clear the VFTA entry bit.
4000 		 * If the caller has requested that we clear the VFTA
4001 		 * entry bit but there are still pools/VFs using this VLAN
4002 		 * ID entry then ignore the request.  We're not worried
4003 		 * about the case where we're turning the VFTA VLAN ID
4004 		 * entry bit on, only when requested to turn it off as
4005 		 * there may be multiple pools and/or VFs using the
4006 		 * VLAN ID entry.  In that case we cannot clear the
4007 		 * VFTA bit until all pools/VFs using that VLAN ID have also
4008 		 * been cleared.  This will be indicated by "bits" being
4009 		 * zero.
4010 		 */
4011 		if (bits) {
4012 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4013 					(IXGBE_VLVF_VIEN | vlan));
4014 			if ((!vlan_on) && (vfta_changed != NULL)) {
4015 				/* someone wants to clear the vfta entry
4016 				 * but some pools/VFs are still using it.
4017 				 * Ignore it. */
4018 				*vfta_changed = FALSE;
4019 			}
4020 		} else
4021 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4022 	}
4023 
4024 	return IXGBE_SUCCESS;
4025 }
4026 
4027 /**
4028  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4029  *  @hw: pointer to hardware structure
4030  *
4031  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4032  **/
4033 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4034 {
4035 	u32 offset;
4036 
4037 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4038 
4039 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4040 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4041 
4042 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4043 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4044 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4045 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4046 	}
4047 
4048 	return IXGBE_SUCCESS;
4049 }
4050 
4051 /**
4052  *  ixgbe_check_mac_link_generic - Determine link and speed status
4053  *  @hw: pointer to hardware structure
4054  *  @speed: pointer to link speed
4055  *  @link_up: TRUE when link is up
4056  *  @link_up_wait_to_complete: bool used to wait for link up or not
4057  *
4058  *  Reads the links register to determine if link is up and the current speed
4059  **/
4060 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4061 				 bool *link_up, bool link_up_wait_to_complete)
4062 {
4063 	u32 links_reg, links_orig;
4064 	u32 i;
4065 
4066 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4067 
4068 	/* clear the old state */
4069 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4070 
4071 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4072 
4073 	if (links_orig != links_reg) {
4074 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4075 			  links_orig, links_reg);
4076 	}
4077 
4078 	if (link_up_wait_to_complete) {
4079 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4080 			if (links_reg & IXGBE_LINKS_UP) {
4081 				*link_up = TRUE;
4082 				break;
4083 			} else {
4084 				*link_up = FALSE;
4085 			}
4086 			msec_delay(100);
4087 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4088 		}
4089 	} else {
4090 		if (links_reg & IXGBE_LINKS_UP)
4091 			*link_up = TRUE;
4092 		else
4093 			*link_up = FALSE;
4094 	}
4095 
4096 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4097 	case IXGBE_LINKS_SPEED_10G_82599:
4098 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4099 		if (hw->mac.type >= ixgbe_mac_X550) {
4100 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4101 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4102 		}
4103 		break;
4104 	case IXGBE_LINKS_SPEED_1G_82599:
4105 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4106 		break;
4107 	case IXGBE_LINKS_SPEED_100_82599:
4108 		*speed = IXGBE_LINK_SPEED_100_FULL;
4109 		if (hw->mac.type >= ixgbe_mac_X550) {
4110 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4111 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4112 		}
4113 		break;
4114 	default:
4115 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4116 	}
4117 
4118 	return IXGBE_SUCCESS;
4119 }
4120 
4121 /**
4122  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4123  *  the EEPROM
4124  *  @hw: pointer to hardware structure
4125  *  @wwnn_prefix: the alternative WWNN prefix
4126  *  @wwpn_prefix: the alternative WWPN prefix
4127  *
4128  *  This function will read the EEPROM from the alternative SAN MAC address
4129  *  block to check the support for the alternative WWNN/WWPN prefix support.
4130  **/
4131 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4132 				 u16 *wwpn_prefix)
4133 {
4134 	u16 offset, caps;
4135 	u16 alt_san_mac_blk_offset;
4136 
4137 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4138 
4139 	/* clear output first */
4140 	*wwnn_prefix = 0xFFFF;
4141 	*wwpn_prefix = 0xFFFF;
4142 
4143 	/* check if alternative SAN MAC is supported */
4144 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4145 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4146 		goto wwn_prefix_err;
4147 
4148 	if ((alt_san_mac_blk_offset == 0) ||
4149 	    (alt_san_mac_blk_offset == 0xFFFF))
4150 		goto wwn_prefix_out;
4151 
4152 	/* check capability in alternative san mac address block */
4153 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4154 	if (hw->eeprom.ops.read(hw, offset, &caps))
4155 		goto wwn_prefix_err;
4156 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4157 		goto wwn_prefix_out;
4158 
4159 	/* get the corresponding prefix for WWNN/WWPN */
4160 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4161 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4162 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4163 			      "eeprom read at offset %d failed", offset);
4164 	}
4165 
4166 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4167 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4168 		goto wwn_prefix_err;
4169 
4170 wwn_prefix_out:
4171 	return IXGBE_SUCCESS;
4172 
4173 wwn_prefix_err:
4174 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4175 		      "eeprom read at offset %d failed", offset);
4176 	return IXGBE_SUCCESS;
4177 }
4178 
4179 /**
4180  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4181  *  @hw: pointer to hardware structure
4182  *  @bs: the fcoe boot status
4183  *
4184  *  This function will read the FCOE boot status from the iSCSI FCOE block
4185  **/
4186 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4187 {
4188 	u16 offset, caps, flags;
4189 	s32 status;
4190 
4191 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4192 
4193 	/* clear output first */
4194 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4195 
4196 	/* check if FCOE IBA block is present */
4197 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4198 	status = hw->eeprom.ops.read(hw, offset, &caps);
4199 	if (status != IXGBE_SUCCESS)
4200 		goto out;
4201 
4202 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4203 		goto out;
4204 
4205 	/* check if iSCSI FCOE block is populated */
4206 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4207 	if (status != IXGBE_SUCCESS)
4208 		goto out;
4209 
4210 	if ((offset == 0) || (offset == 0xFFFF))
4211 		goto out;
4212 
4213 	/* read fcoe flags in iSCSI FCOE block */
4214 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4215 	status = hw->eeprom.ops.read(hw, offset, &flags);
4216 	if (status != IXGBE_SUCCESS)
4217 		goto out;
4218 
4219 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4220 		*bs = ixgbe_fcoe_bootstatus_enabled;
4221 	else
4222 		*bs = ixgbe_fcoe_bootstatus_disabled;
4223 
4224 out:
4225 	return status;
4226 }
4227 
4228 /**
4229  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4230  *  @hw: pointer to hardware structure
4231  *  @enable: enable or disable switch for anti-spoofing
4232  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
4233  *
4234  **/
4235 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4236 {
4237 	int j;
4238 	int pf_target_reg = pf >> 3;
4239 	int pf_target_shift = pf % 8;
4240 	u32 pfvfspoof = 0;
4241 
4242 	if (hw->mac.type == ixgbe_mac_82598EB)
4243 		return;
4244 
4245 	if (enable)
4246 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4247 
4248 	/*
4249 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4250 	 * MAC anti-spoof enables in each register array element.
4251 	 */
4252 	for (j = 0; j < pf_target_reg; j++)
4253 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4254 
4255 	/*
4256 	 * The PF should be allowed to spoof so that it can support
4257 	 * emulation mode NICs.  Do not set the bits assigned to the PF
4258 	 */
4259 	pfvfspoof &= (1 << pf_target_shift) - 1;
4260 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4261 
4262 	/*
4263 	 * Remaining pools belong to the PF so they do not need to have
4264 	 * anti-spoofing enabled.
4265 	 */
4266 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4267 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4268 }
4269 
4270 /**
4271  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4272  *  @hw: pointer to hardware structure
4273  *  @enable: enable or disable switch for VLAN anti-spoofing
4274  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4275  *
4276  **/
4277 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4278 {
4279 	int vf_target_reg = vf >> 3;
4280 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4281 	u32 pfvfspoof;
4282 
4283 	if (hw->mac.type == ixgbe_mac_82598EB)
4284 		return;
4285 
4286 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4287 	if (enable)
4288 		pfvfspoof |= (1 << vf_target_shift);
4289 	else
4290 		pfvfspoof &= ~(1 << vf_target_shift);
4291 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4292 }
4293 
4294 /**
4295  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4296  *  @hw: pointer to hardware structure
4297  *  @device_caps: the EEPROM word with the extra device capabilities
4298  *
4299  *  This function will read the EEPROM location for the device capabilities,
4300  *  and return the word through device_caps.
4301  **/
4302 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4303 {
4304 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4305 
4306 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4307 
4308 	return IXGBE_SUCCESS;
4309 }
4310 
4311 /**
4312  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4313  *  @hw: pointer to hardware structure
4314  *
4315  **/
4316 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4317 {
4318 	u32 regval;
4319 	u32 i;
4320 
4321 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4322 
4323 	/* Enable relaxed ordering */
4324 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4325 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4326 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4327 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4328 	}
4329 
4330 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4331 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4332 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4333 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4334 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4335 	}
4336 
4337 }
4338 
4339 /**
4340  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4341  *  @buffer: pointer to EEPROM
4342  *  @length: size of EEPROM to calculate a checksum for
4343  *  Calculates the checksum for some buffer on a specified length.  The
4344  *  checksum calculated is returned.
4345  **/
4346 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4347 {
4348 	u32 i;
4349 	u8 sum = 0;
4350 
4351 	DEBUGFUNC("ixgbe_calculate_checksum");
4352 
4353 	if (!buffer)
4354 		return 0;
4355 
4356 	for (i = 0; i < length; i++)
4357 		sum += buffer[i];
4358 
4359 	return (u8) (0 - sum);
4360 }
4361 
4362 /**
4363  *  ixgbe_host_interface_command - Issue command to manageability block
4364  *  @hw: pointer to the HW structure
4365  *  @buffer: contains the command to write and where the return status will
4366  *   be placed
4367  *  @length: length of buffer, must be multiple of 4 bytes
4368  *  @timeout: time in ms to wait for command completion
4369  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4370  *   Needed because FW structures are big endian and decoding of
4371  *   these fields can be 8 bit or 16 bit based on command. Decoding
4372  *   is not easily understood without making a table of commands.
4373  *   So we will leave this up to the caller to read back the data
4374  *   in these cases.
4375  *
4376  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4377  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4378  **/
4379 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4380 				 u32 length, u32 timeout, bool return_data)
4381 {
4382 	u32 hicr, i, bi, fwsts;
4383 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4384 	u16 buf_len;
4385 	u16 dword_len;
4386 
4387 	DEBUGFUNC("ixgbe_host_interface_command");
4388 
4389 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4390 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4391 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4392 	}
4393 	/* Set bit 9 of FWSTS clearing FW reset indication */
4394 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4395 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4396 
4397 	/* Check that the host interface is enabled. */
4398 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4399 	if ((hicr & IXGBE_HICR_EN) == 0) {
4400 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4401 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4402 	}
4403 
4404 	/* Calculate length in DWORDs. We must be DWORD aligned */
4405 	if ((length % (sizeof(u32))) != 0) {
4406 		DEBUGOUT("Buffer length failure, not aligned to dword");
4407 		return IXGBE_ERR_INVALID_ARGUMENT;
4408 	}
4409 
4410 	dword_len = length >> 2;
4411 
4412 	/* The device driver writes the relevant command block
4413 	 * into the ram area.
4414 	 */
4415 	for (i = 0; i < dword_len; i++)
4416 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4417 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4418 
4419 	/* Setting this bit tells the ARC that a new command is pending. */
4420 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4421 
4422 	for (i = 0; i < timeout; i++) {
4423 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4424 		if (!(hicr & IXGBE_HICR_C))
4425 			break;
4426 		msec_delay(1);
4427 	}
4428 
4429 	/* Check command completion */
4430 	if ((timeout != 0 && i == timeout) ||
4431 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4432 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4433 			     "Command has failed with no status valid.\n");
4434 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4435 	}
4436 
4437 	if (!return_data)
4438 		return 0;
4439 
4440 	/* Calculate length in DWORDs */
4441 	dword_len = hdr_size >> 2;
4442 
4443 	/* first pull in the header so we know the buffer length */
4444 	for (bi = 0; bi < dword_len; bi++) {
4445 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4446 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4447 	}
4448 
4449 	/* If there is any thing in data position pull it in */
4450 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4451 	if (buf_len == 0)
4452 		return 0;
4453 
4454 	if (length < buf_len + hdr_size) {
4455 		DEBUGOUT("Buffer not large enough for reply message.\n");
4456 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4457 	}
4458 
4459 	/* Calculate length in DWORDs, add 3 for odd lengths */
4460 	dword_len = (buf_len + 3) >> 2;
4461 
4462 	/* Pull in the rest of the buffer (bi is where we left off) */
4463 	for (; bi <= dword_len; bi++) {
4464 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4465 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4466 	}
4467 
4468 	return 0;
4469 }
4470 
4471 /**
4472  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4473  *  @hw: pointer to the HW structure
4474  *  @maj: driver version major number
4475  *  @min: driver version minor number
4476  *  @build: driver version build number
4477  *  @sub: driver version sub build number
4478  *
4479  *  Sends driver version number to firmware through the manageability
4480  *  block.  On success return IXGBE_SUCCESS
4481  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4482  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4483  **/
4484 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4485 				 u8 build, u8 sub)
4486 {
4487 	struct ixgbe_hic_drv_info fw_cmd;
4488 	int i;
4489 	s32 ret_val = IXGBE_SUCCESS;
4490 
4491 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4492 
4493 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4494 	    != IXGBE_SUCCESS) {
4495 		ret_val = IXGBE_ERR_SWFW_SYNC;
4496 		goto out;
4497 	}
4498 
4499 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4500 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4501 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4502 	fw_cmd.port_num = (u8)hw->bus.func;
4503 	fw_cmd.ver_maj = maj;
4504 	fw_cmd.ver_min = min;
4505 	fw_cmd.ver_build = build;
4506 	fw_cmd.ver_sub = sub;
4507 	fw_cmd.hdr.checksum = 0;
4508 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4509 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4510 	fw_cmd.pad = 0;
4511 	fw_cmd.pad2 = 0;
4512 
4513 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4514 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4515 						       sizeof(fw_cmd),
4516 						       IXGBE_HI_COMMAND_TIMEOUT,
4517 						       TRUE);
4518 		if (ret_val != IXGBE_SUCCESS)
4519 			continue;
4520 
4521 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4522 		    FW_CEM_RESP_STATUS_SUCCESS)
4523 			ret_val = IXGBE_SUCCESS;
4524 		else
4525 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4526 
4527 		break;
4528 	}
4529 
4530 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4531 out:
4532 	return ret_val;
4533 }
4534 
4535 /**
4536  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4537  * @hw: pointer to hardware structure
4538  * @num_pb: number of packet buffers to allocate
4539  * @headroom: reserve n KB of headroom
4540  * @strategy: packet buffer allocation strategy
4541  **/
4542 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4543 			     int strategy)
4544 {
4545 	u32 pbsize = hw->mac.rx_pb_size;
4546 	int i = 0;
4547 	u32 rxpktsize, txpktsize, txpbthresh;
4548 
4549 	/* Reserve headroom */
4550 	pbsize -= headroom;
4551 
4552 	if (!num_pb)
4553 		num_pb = 1;
4554 
4555 	/* Divide remaining packet buffer space amongst the number of packet
4556 	 * buffers requested using supplied strategy.
4557 	 */
4558 	switch (strategy) {
4559 	case PBA_STRATEGY_WEIGHTED:
4560 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4561 		 * buffer with 5/8 of the packet buffer space.
4562 		 */
4563 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4564 		pbsize -= rxpktsize * (num_pb / 2);
4565 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4566 		for (; i < (num_pb / 2); i++)
4567 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4568 		/* Fall through to configure remaining packet buffers */
4569 	case PBA_STRATEGY_EQUAL:
4570 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4571 		for (; i < num_pb; i++)
4572 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4573 		break;
4574 	default:
4575 		break;
4576 	}
4577 
4578 	/* Only support an equally distributed Tx packet buffer strategy. */
4579 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4580 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4581 	for (i = 0; i < num_pb; i++) {
4582 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4583 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4584 	}
4585 
4586 	/* Clear unused TCs, if any, to zero buffer size*/
4587 	for (; i < IXGBE_MAX_PB; i++) {
4588 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4589 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4590 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4591 	}
4592 }
4593 
4594 /**
4595  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4596  * @hw: pointer to the hardware structure
4597  *
4598  * The 82599 and x540 MACs can experience issues if TX work is still pending
4599  * when a reset occurs.  This function prevents this by flushing the PCIe
4600  * buffers on the system.
4601  **/
4602 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4603 {
4604 	u32 gcr_ext, hlreg0, i, poll;
4605 	u16 value;
4606 
4607 	/*
4608 	 * If double reset is not requested then all transactions should
4609 	 * already be clear and as such there is no work to do
4610 	 */
4611 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4612 		return;
4613 
4614 	/*
4615 	 * Set loopback enable to prevent any transmits from being sent
4616 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4617 	 * has already been cleared.
4618 	 */
4619 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4620 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4621 
4622 	/* Wait for a last completion before clearing buffers */
4623 	IXGBE_WRITE_FLUSH(hw);
4624 	msec_delay(3);
4625 
4626 	/*
4627 	 * Before proceeding, make sure that the PCIe block does not have
4628 	 * transactions pending.
4629 	 */
4630 	poll = ixgbe_pcie_timeout_poll(hw);
4631 	for (i = 0; i < poll; i++) {
4632 		usec_delay(100);
4633 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4634 		if (IXGBE_REMOVED(hw->hw_addr))
4635 			goto out;
4636 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4637 			goto out;
4638 	}
4639 
4640 out:
4641 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4642 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4643 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4644 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4645 
4646 	/* Flush all writes and allow 20usec for all transactions to clear */
4647 	IXGBE_WRITE_FLUSH(hw);
4648 	usec_delay(20);
4649 
4650 	/* restore previous register values */
4651 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4652 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4653 }
4654 
4655 
4656 /**
4657  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4658  * @hw: pointer to hardware structure
4659  * @map: pointer to u8 arr for returning map
4660  *
4661  * Read the rtrup2tc HW register and resolve its content into map
4662  **/
4663 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4664 {
4665 	u32 reg, i;
4666 
4667 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4668 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4669 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
4670 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4671 	return;
4672 }
4673 
4674 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4675 {
4676 	u32 pfdtxgswc;
4677 	u32 rxctrl;
4678 
4679 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4680 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4681 		if (hw->mac.type != ixgbe_mac_82598EB) {
4682 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4683 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4684 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4685 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4686 				hw->mac.set_lben = TRUE;
4687 			} else {
4688 				hw->mac.set_lben = FALSE;
4689 			}
4690 		}
4691 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4692 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4693 	}
4694 }
4695 
4696 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4697 {
4698 	u32 pfdtxgswc;
4699 	u32 rxctrl;
4700 
4701 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4702 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4703 
4704 	if (hw->mac.type != ixgbe_mac_82598EB) {
4705 		if (hw->mac.set_lben) {
4706 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4707 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4708 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4709 			hw->mac.set_lben = FALSE;
4710 		}
4711 	}
4712 }
4713 
4714 /**
4715  * ixgbe_mng_present - returns TRUE when management capability is present
4716  * @hw: pointer to hardware structure
4717  */
4718 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4719 {
4720 	u32 fwsm;
4721 
4722 	if (hw->mac.type < ixgbe_mac_82599EB)
4723 		return FALSE;
4724 
4725 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4726 	fwsm &= IXGBE_FWSM_MODE_MASK;
4727 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4728 }
4729 
4730 /**
4731  * ixgbe_mng_enabled - Is the manageability engine enabled?
4732  * @hw: pointer to hardware structure
4733  *
4734  * Returns TRUE if the manageability engine is enabled.
4735  **/
4736 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4737 {
4738 	u32 fwsm, manc, factps;
4739 
4740 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4741 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4742 		return FALSE;
4743 
4744 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4745 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4746 		return FALSE;
4747 
4748 	if (hw->mac.type <= ixgbe_mac_X540) {
4749 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4750 		if (factps & IXGBE_FACTPS_MNGCG)
4751 			return FALSE;
4752 	}
4753 
4754 	return TRUE;
4755 }
4756 
4757 /**
4758  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4759  *  @hw: pointer to hardware structure
4760  *  @speed: new link speed
4761  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4762  *
4763  *  Set the link speed in the MAC and/or PHY register and restarts link.
4764  **/
4765 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4766 					  ixgbe_link_speed speed,
4767 					  bool autoneg_wait_to_complete)
4768 {
4769 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4770 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4771 	s32 status = IXGBE_SUCCESS;
4772 	u32 speedcnt = 0;
4773 	u32 i = 0;
4774 	bool autoneg, link_up = FALSE;
4775 
4776 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4777 
4778 	/* Mask off requested but non-supported speeds */
4779 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4780 	if (status != IXGBE_SUCCESS)
4781 		return status;
4782 
4783 	speed &= link_speed;
4784 
4785 	/* Try each speed one by one, highest priority first.  We do this in
4786 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4787 	 */
4788 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4789 		speedcnt++;
4790 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4791 
4792 		/* If we already have link at this speed, just jump out */
4793 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4794 		if (status != IXGBE_SUCCESS)
4795 			return status;
4796 
4797 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4798 			goto out;
4799 
4800 		/* Set the module link speed */
4801 		switch (hw->phy.media_type) {
4802 		case ixgbe_media_type_fiber_fixed:
4803 		case ixgbe_media_type_fiber:
4804 			ixgbe_set_rate_select_speed(hw,
4805 						    IXGBE_LINK_SPEED_10GB_FULL);
4806 			break;
4807 		case ixgbe_media_type_fiber_qsfp:
4808 			/* QSFP module automatically detects MAC link speed */
4809 			break;
4810 		default:
4811 			DEBUGOUT("Unexpected media type.\n");
4812 			break;
4813 		}
4814 
4815 		/* Allow module to change analog characteristics (1G->10G) */
4816 		msec_delay(40);
4817 
4818 		status = ixgbe_setup_mac_link(hw,
4819 					      IXGBE_LINK_SPEED_10GB_FULL,
4820 					      autoneg_wait_to_complete);
4821 		if (status != IXGBE_SUCCESS)
4822 			return status;
4823 
4824 		/* Flap the Tx laser if it has not already been done */
4825 		ixgbe_flap_tx_laser(hw);
4826 
4827 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4828 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4829 		 * attempted.  82599 uses the same timing for 10g SFI.
4830 		 */
4831 		for (i = 0; i < 5; i++) {
4832 			/* Wait for the link partner to also set speed */
4833 			msec_delay(100);
4834 
4835 			/* If we have link, just jump out */
4836 			status = ixgbe_check_link(hw, &link_speed,
4837 						  &link_up, FALSE);
4838 			if (status != IXGBE_SUCCESS)
4839 				return status;
4840 
4841 			if (link_up)
4842 				goto out;
4843 		}
4844 	}
4845 
4846 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4847 		speedcnt++;
4848 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4849 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4850 
4851 		/* If we already have link at this speed, just jump out */
4852 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4853 		if (status != IXGBE_SUCCESS)
4854 			return status;
4855 
4856 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4857 			goto out;
4858 
4859 		/* Set the module link speed */
4860 		switch (hw->phy.media_type) {
4861 		case ixgbe_media_type_fiber_fixed:
4862 		case ixgbe_media_type_fiber:
4863 			ixgbe_set_rate_select_speed(hw,
4864 						    IXGBE_LINK_SPEED_1GB_FULL);
4865 			break;
4866 		case ixgbe_media_type_fiber_qsfp:
4867 			/* QSFP module automatically detects link speed */
4868 			break;
4869 		default:
4870 			DEBUGOUT("Unexpected media type.\n");
4871 			break;
4872 		}
4873 
4874 		/* Allow module to change analog characteristics (10G->1G) */
4875 		msec_delay(40);
4876 
4877 		status = ixgbe_setup_mac_link(hw,
4878 					      IXGBE_LINK_SPEED_1GB_FULL,
4879 					      autoneg_wait_to_complete);
4880 		if (status != IXGBE_SUCCESS)
4881 			return status;
4882 
4883 		/* Flap the Tx laser if it has not already been done */
4884 		ixgbe_flap_tx_laser(hw);
4885 
4886 		/* Wait for the link partner to also set speed */
4887 		msec_delay(100);
4888 
4889 		/* If we have link, just jump out */
4890 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4891 		if (status != IXGBE_SUCCESS)
4892 			return status;
4893 
4894 		if (link_up)
4895 			goto out;
4896 	}
4897 
4898 	/* We didn't get link.  Configure back to the highest speed we tried,
4899 	 * (if there was more than one).  We call ourselves back with just the
4900 	 * single highest speed that the user requested.
4901 	 */
4902 	if (speedcnt > 1)
4903 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4904 						      highest_link_speed,
4905 						      autoneg_wait_to_complete);
4906 
4907 out:
4908 	/* Set autoneg_advertised value based on input link speed */
4909 	hw->phy.autoneg_advertised = 0;
4910 
4911 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4912 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4913 
4914 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4915 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4916 
4917 	return status;
4918 }
4919 
4920 /**
4921  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4922  *  @hw: pointer to hardware structure
4923  *  @speed: link speed to set
4924  *
4925  *  Set module link speed via the soft rate select.
4926  */
4927 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4928 					ixgbe_link_speed speed)
4929 {
4930 	s32 status;
4931 	u8 rs, eeprom_data;
4932 
4933 	switch (speed) {
4934 	case IXGBE_LINK_SPEED_10GB_FULL:
4935 		/* one bit mask same as setting on */
4936 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4937 		break;
4938 	case IXGBE_LINK_SPEED_1GB_FULL:
4939 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4940 		break;
4941 	default:
4942 		DEBUGOUT("Invalid fixed module speed\n");
4943 		return;
4944 	}
4945 
4946 	/* Set RS0 */
4947 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4948 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4949 					   &eeprom_data);
4950 	if (status) {
4951 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4952 		goto out;
4953 	}
4954 
4955 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4956 
4957 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4958 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4959 					    eeprom_data);
4960 	if (status) {
4961 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4962 		goto out;
4963 	}
4964 
4965 	/* Set RS1 */
4966 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4967 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4968 					   &eeprom_data);
4969 	if (status) {
4970 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4971 		goto out;
4972 	}
4973 
4974 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4975 
4976 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4977 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4978 					    eeprom_data);
4979 	if (status) {
4980 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4981 		goto out;
4982 	}
4983 out:
4984 	return;
4985 }
4986