xref: /illumos-gate/usr/src/uts/common/io/ib/clients/rdsv3/ib_send.c (revision 6e18d381c642549b8bb1774a803d3510aec6baaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright (c) 2006 Oracle.  All rights reserved.
27  *
28  * This software is available to you under a choice of one of two
29  * licenses.  You may choose to be licensed under the terms of the GNU
30  * General Public License (GPL) Version 2, available from the file
31  * COPYING in the main directory of this source tree, or the
32  * OpenIB.org BSD license below:
33  *
34  *     Redistribution and use in source and binary forms, with or
35  *     without modification, are permitted provided that the following
36  *     conditions are met:
37  *
38  *      - Redistributions of source code must retain the above
39  *        copyright notice, this list of conditions and the following
40  *        disclaimer.
41  *
42  *      - Redistributions in binary form must reproduce the above
43  *        copyright notice, this list of conditions and the following
44  *        disclaimer in the documentation and/or other materials
45  *        provided with the distribution.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
48  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
49  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
50  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
51  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
52  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
53  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
54  * SOFTWARE.
55  *
56  */
57 #include <sys/rds.h>
58 
59 #include <sys/ib/clients/rdsv3/rdsv3.h>
60 #include <sys/ib/clients/rdsv3/rdma.h>
61 #include <sys/ib/clients/rdsv3/ib.h>
62 #include <sys/ib/clients/rdsv3/rdsv3_debug.h>
63 
64 static void
65 rdsv3_ib_send_rdma_complete(struct rdsv3_message *rm,
66     int wc_status)
67 {
68 	int notify_status;
69 
70 	RDSV3_DPRINTF4("rdsv3_ib_send_rdma_complete", "rm: %p, wc_status: %d",
71 	    rm, wc_status);
72 
73 	switch (wc_status) {
74 	case IBT_WC_WR_FLUSHED_ERR:
75 		return;
76 
77 	case IBT_WC_SUCCESS:
78 		notify_status = RDSV3_RDMA_SUCCESS;
79 		break;
80 
81 	case IBT_WC_REMOTE_ACCESS_ERR:
82 		notify_status = RDSV3_RDMA_REMOTE_ERROR;
83 		break;
84 
85 	default:
86 		notify_status = RDSV3_RDMA_OTHER_ERROR;
87 		break;
88 	}
89 	rdsv3_rdma_send_complete(rm, notify_status);
90 
91 	RDSV3_DPRINTF4("rdsv3_ib_send_rdma_complete", "rm: %p, wc_status: %d",
92 	    rm, wc_status);
93 }
94 
95 static void rdsv3_ib_dma_unmap_sg_rdma(struct ib_device *dev,
96     uint_t num, struct rdsv3_rdma_sg scat[]);
97 
98 void
99 rdsv3_ib_send_unmap_rdma(struct rdsv3_ib_connection *ic,
100     struct rdsv3_rdma_op *op)
101 {
102 	RDSV3_DPRINTF4("rdsv3_ib_send_unmap_rdma", "ic: %p, op: %p", ic, op);
103 	if (op->r_mapped) {
104 		op->r_mapped = 0;
105 		if (ic->i_cm_id) {
106 			rdsv3_ib_dma_unmap_sg_rdma(ic->i_cm_id->device,
107 			    op->r_nents, op->r_rdma_sg);
108 		} else {
109 			rdsv3_ib_dma_unmap_sg_rdma((struct ib_device *)NULL,
110 			    op->r_nents, op->r_rdma_sg);
111 		}
112 	}
113 }
114 
115 static void
116 rdsv3_ib_send_unmap_rm(struct rdsv3_ib_connection *ic,
117     struct rdsv3_ib_send_work *send,
118     int wc_status)
119 {
120 	struct rdsv3_message *rm = send->s_rm;
121 
122 	RDSV3_DPRINTF4("rdsv3_ib_send_unmap_rm", "ic %p send %p rm %p\n",
123 	    ic, send, rm);
124 
125 	rdsv3_ib_dma_unmap_sg(ic->i_cm_id->device,
126 	    rm->m_sg, rm->m_nents);
127 
128 	if (rm->m_rdma_op != NULL) {
129 		rdsv3_ib_send_unmap_rdma(ic, rm->m_rdma_op);
130 
131 		/*
132 		 * If the user asked for a completion notification on this
133 		 * message, we can implement three different semantics:
134 		 *  1.	Notify when we received the ACK on the RDS message
135 		 *	that was queued with the RDMA. This provides reliable
136 		 *	notification of RDMA status at the expense of a one-way
137 		 *	packet delay.
138 		 *  2.	Notify when the IB stack gives us the completion
139 		 *	event for the RDMA operation.
140 		 *  3.	Notify when the IB stack gives us the completion
141 		 *	event for the accompanying RDS messages.
142 		 * Here, we implement approach #3. To implement approach #2,
143 		 * call rdsv3_rdma_send_complete from the cq_handler.
144 		 * To implement #1,
145 		 * don't call rdsv3_rdma_send_complete at all, and fall back to
146 		 * the notify
147 		 * handling in the ACK processing code.
148 		 *
149 		 * Note: There's no need to explicitly sync any RDMA buffers
150 		 * using
151 		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
152 		 * operation itself unmapped the RDMA buffers, which takes care
153 		 * of synching.
154 		 */
155 		rdsv3_ib_send_rdma_complete(rm, wc_status);
156 
157 		if (rm->m_rdma_op->r_write)
158 			rdsv3_stats_add(s_send_rdma_bytes,
159 			    rm->m_rdma_op->r_bytes);
160 		else
161 			rdsv3_stats_add(s_recv_rdma_bytes,
162 			    rm->m_rdma_op->r_bytes);
163 	}
164 
165 	/*
166 	 * If anyone waited for this message to get flushed out, wake
167 	 * them up now
168 	 */
169 	rdsv3_message_unmapped(rm);
170 
171 	rdsv3_message_put(rm);
172 	send->s_rm = NULL;
173 }
174 
175 void
176 rdsv3_ib_send_init_ring(struct rdsv3_ib_connection *ic)
177 {
178 	struct rdsv3_ib_send_work *send;
179 	uint32_t i;
180 
181 	RDSV3_DPRINTF4("rdsv3_ib_send_init_ring", "ic: %p", ic);
182 
183 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
184 		send->s_rm = NULL;
185 		send->s_op = NULL;
186 	}
187 }
188 
189 void
190 rdsv3_ib_send_clear_ring(struct rdsv3_ib_connection *ic)
191 {
192 	struct rdsv3_ib_send_work *send;
193 	uint32_t i;
194 
195 	RDSV3_DPRINTF4("rdsv3_ib_send_clear_ring", "ic: %p", ic);
196 
197 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
198 		if (send->s_opcode == 0xdd)
199 			continue;
200 		if (send->s_rm)
201 			rdsv3_ib_send_unmap_rm(ic, send, IBT_WC_WR_FLUSHED_ERR);
202 		if (send->s_op)
203 			rdsv3_ib_send_unmap_rdma(ic, send->s_op);
204 	}
205 
206 	RDSV3_DPRINTF4("rdsv3_ib_send_clear_ring", "Return: ic: %p", ic);
207 }
208 
209 /*
210  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
211  * operations performed in the send path.  As the sender allocs and potentially
212  * unallocs the next free entry in the ring it doesn't alter which is
213  * the next to be freed, which is what this is concerned with.
214  */
215 void
216 rdsv3_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
217 {
218 	struct rdsv3_connection *conn = context;
219 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
220 	ibt_wc_t wc;
221 	struct rdsv3_ib_send_work *send;
222 	uint32_t completed, polled;
223 	uint32_t oldest;
224 	uint32_t i = 0;
225 	int ret;
226 
227 	RDSV3_DPRINTF4("rdsv3_ib_send_cq_comp_handler", "conn: %p cq: %p",
228 	    conn, cq);
229 
230 	rdsv3_ib_stats_inc(s_ib_tx_cq_call);
231 	ret = ibt_enable_cq_notify(RDSV3_CQ2CQHDL(cq), IBT_NEXT_COMPLETION);
232 	if (ret)
233 		RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
234 		    "ib_req_notify_cq send failed: %d", ret);
235 
236 	while (ibt_poll_cq(RDSV3_CQ2CQHDL(cq), &wc, 1, &polled) ==
237 	    IBT_SUCCESS) {
238 		RDSV3_DPRINTF5("rdsv3_ib_send_cq_comp_handler",
239 		    "swc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
240 		    (unsigned long long)wc.wc_id, wc.wc_status,
241 		    wc.wc_bytes_xfer, ntohl(wc.wc_immed_data));
242 		rdsv3_ib_stats_inc(s_ib_tx_cq_event);
243 
244 		if (wc.wc_id == RDSV3_IB_ACK_WR_ID) {
245 			if (ic->i_ack_queued + HZ/2 < jiffies)
246 				rdsv3_ib_stats_inc(s_ib_tx_stalled);
247 			rdsv3_ib_ack_send_complete(ic);
248 			continue;
249 		}
250 
251 		oldest = rdsv3_ib_ring_oldest(&ic->i_send_ring);
252 
253 		completed = rdsv3_ib_ring_completed(&ic->i_send_ring,
254 		    wc.wc_id, oldest);
255 
256 		for (i = 0; i < completed; i++) {
257 			send = &ic->i_sends[oldest];
258 
259 			/*
260 			 * In the error case, wc.opcode sometimes contains
261 			 * garbage
262 			 */
263 			switch (send->s_opcode) {
264 			case IBT_WRC_SEND:
265 				if (send->s_rm)
266 					rdsv3_ib_send_unmap_rm(ic, send,
267 					    wc.wc_status);
268 				break;
269 			case IBT_WRC_RDMAW:
270 			case IBT_WRC_RDMAR:
271 				/*
272 				 * Nothing to be done - the SG list will
273 				 * be unmapped
274 				 * when the SEND completes.
275 				 */
276 				break;
277 			default:
278 #ifndef __lock_lint
279 				RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
280 				    "RDS/IB: %s: unexpected opcode "
281 				    "0x%x in WR!",
282 				    __func__, send->s_opcode);
283 #endif
284 				break;
285 			}
286 
287 			send->s_opcode = 0xdd;
288 			if (send->s_queued + HZ/2 < jiffies)
289 				rdsv3_ib_stats_inc(s_ib_tx_stalled);
290 
291 			/*
292 			 * If a RDMA operation produced an error, signal
293 			 * this right
294 			 * away. If we don't, the subsequent SEND that goes
295 			 * with this
296 			 * RDMA will be canceled with ERR_WFLUSH, and the
297 			 * application
298 			 * never learn that the RDMA failed.
299 			 */
300 			if (wc.wc_status ==
301 			    IBT_WC_REMOTE_ACCESS_ERR && send->s_op) {
302 				struct rdsv3_message *rm;
303 
304 				rm = rdsv3_send_get_message(conn, send->s_op);
305 				if (rm) {
306 					if (rm->m_rdma_op != NULL)
307 						rdsv3_ib_send_unmap_rdma(ic,
308 						    rm->m_rdma_op);
309 					rdsv3_ib_send_rdma_complete(rm,
310 					    wc.wc_status);
311 					rdsv3_message_put(rm);
312 				}
313 			}
314 
315 			oldest = (oldest + 1) % ic->i_send_ring.w_nr;
316 		}
317 
318 		RDSV3_DPRINTF4("rdsv3_ib_send_cq_comp_handler", "compl: %d",
319 		    completed);
320 		rdsv3_ib_ring_free(&ic->i_send_ring, completed);
321 
322 		if (test_and_clear_bit(RDSV3_LL_SEND_FULL, &conn->c_flags) ||
323 		    test_bit(0, &conn->c_map_queued))
324 			rdsv3_queue_delayed_work(rdsv3_wq, &conn->c_send_w, 0);
325 
326 		/* We expect errors as the qp is drained during shutdown */
327 		if (wc.wc_status != IBT_WC_SUCCESS && rdsv3_conn_up(conn)) {
328 			RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
329 			    "send completion on %u.%u.%u.%u "
330 			    "had status %u, disconnecting and reconnecting\n",
331 			    NIPQUAD(conn->c_faddr), wc.wc_status);
332 			rdsv3_conn_drop(conn);
333 		}
334 	}
335 
336 	RDSV3_DPRINTF4("rdsv3_ib_send_cq_comp_handler",
337 	    "Return: conn: %p, cq: %p", conn, cq);
338 }
339 
340 /*
341  * This is the main function for allocating credits when sending
342  * messages.
343  *
344  * Conceptually, we have two counters:
345  *  -	send credits: this tells us how many WRs we're allowed
346  *	to submit without overruning the reciever's queue. For
347  *	each SEND WR we post, we decrement this by one.
348  *
349  *  -	posted credits: this tells us how many WRs we recently
350  *	posted to the receive queue. This value is transferred
351  *	to the peer as a "credit update" in a RDS header field.
352  *	Every time we transmit credits to the peer, we subtract
353  *	the amount of transferred credits from this counter.
354  *
355  * It is essential that we avoid situations where both sides have
356  * exhausted their send credits, and are unable to send new credits
357  * to the peer. We achieve this by requiring that we send at least
358  * one credit update to the peer before exhausting our credits.
359  * When new credits arrive, we subtract one credit that is withheld
360  * until we've posted new buffers and are ready to transmit these
361  * credits (see rdsv3_ib_send_add_credits below).
362  *
363  * The RDS send code is essentially single-threaded; rdsv3_send_xmit
364  * grabs c_send_lock to ensure exclusive access to the send ring.
365  * However, the ACK sending code is independent and can race with
366  * message SENDs.
367  *
368  * In the send path, we need to update the counters for send credits
369  * and the counter of posted buffers atomically - when we use the
370  * last available credit, we cannot allow another thread to race us
371  * and grab the posted credits counter.  Hence, we have to use a
372  * spinlock to protect the credit counter, or use atomics.
373  *
374  * Spinlocks shared between the send and the receive path are bad,
375  * because they create unnecessary delays. An early implementation
376  * using a spinlock showed a 5% degradation in throughput at some
377  * loads.
378  *
379  * This implementation avoids spinlocks completely, putting both
380  * counters into a single atomic, and updating that atomic using
381  * atomic_add (in the receive path, when receiving fresh credits),
382  * and using atomic_cmpxchg when updating the two counters.
383  */
384 int
385 rdsv3_ib_send_grab_credits(struct rdsv3_ib_connection *ic,
386     uint32_t wanted, uint32_t *adv_credits, int need_posted, int max_posted)
387 {
388 	unsigned int avail, posted, got = 0, advertise;
389 	long oldval, newval;
390 
391 	RDSV3_DPRINTF4("rdsv3_ib_send_grab_credits", "ic: %p, %d %d %d %d",
392 	    ic, wanted, *adv_credits, need_posted, max_posted);
393 
394 	*adv_credits = 0;
395 	if (!ic->i_flowctl)
396 		return (wanted);
397 
398 try_again:
399 	advertise = 0;
400 	oldval = newval = atomic_get(&ic->i_credits);
401 	posted = IB_GET_POST_CREDITS(oldval);
402 	avail = IB_GET_SEND_CREDITS(oldval);
403 
404 	RDSV3_DPRINTF5("rdsv3_ib_send_grab_credits",
405 	    "wanted (%u): credits=%u posted=%u\n", wanted, avail, posted);
406 
407 	/* The last credit must be used to send a credit update. */
408 	if (avail && !posted)
409 		avail--;
410 
411 	if (avail < wanted) {
412 		struct rdsv3_connection *conn = ic->i_cm_id->context;
413 
414 		/* Oops, there aren't that many credits left! */
415 		set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
416 		got = avail;
417 	} else {
418 		/* Sometimes you get what you want, lalala. */
419 		got = wanted;
420 	}
421 	newval -= IB_SET_SEND_CREDITS(got);
422 
423 	/*
424 	 * If need_posted is non-zero, then the caller wants
425 	 * the posted regardless of whether any send credits are
426 	 * available.
427 	 */
428 	if (posted && (got || need_posted)) {
429 		advertise = min(posted, max_posted);
430 		newval -= IB_SET_POST_CREDITS(advertise);
431 	}
432 
433 	/* Finally bill everything */
434 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
435 		goto try_again;
436 
437 	*adv_credits = advertise;
438 
439 	RDSV3_DPRINTF4("rdsv3_ib_send_grab_credits", "ic: %p, %d %d %d %d",
440 	    ic, got, *adv_credits, need_posted, max_posted);
441 	return (got);
442 }
443 
444 void
445 rdsv3_ib_send_add_credits(struct rdsv3_connection *conn, unsigned int credits)
446 {
447 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
448 
449 	if (credits == 0)
450 		return;
451 
452 	RDSV3_DPRINTF5("rdsv3_ib_send_add_credits",
453 	    "credits (%u): current=%u%s\n",
454 	    credits,
455 	    IB_GET_SEND_CREDITS(atomic_get(&ic->i_credits)),
456 	    test_bit(RDSV3_LL_SEND_FULL, &conn->c_flags) ?
457 	    ", ll_send_full" : "");
458 
459 	atomic_add_32(&ic->i_credits, IB_SET_SEND_CREDITS(credits));
460 	if (test_and_clear_bit(RDSV3_LL_SEND_FULL, &conn->c_flags))
461 		rdsv3_queue_delayed_work(rdsv3_wq, &conn->c_send_w, 0);
462 
463 	ASSERT(!(IB_GET_SEND_CREDITS(credits) >= 16384));
464 
465 	rdsv3_ib_stats_inc(s_ib_rx_credit_updates);
466 
467 	RDSV3_DPRINTF4("rdsv3_ib_send_add_credits",
468 	    "Return: conn: %p, credits: %d",
469 	    conn, credits);
470 }
471 
472 void
473 rdsv3_ib_advertise_credits(struct rdsv3_connection *conn, unsigned int posted)
474 {
475 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
476 
477 	RDSV3_DPRINTF4("rdsv3_ib_advertise_credits", "conn: %p, posted: %d",
478 	    conn, posted);
479 
480 	if (posted == 0)
481 		return;
482 
483 	atomic_add_32(&ic->i_credits, IB_SET_POST_CREDITS(posted));
484 
485 	/*
486 	 * Decide whether to send an update to the peer now.
487 	 * If we would send a credit update for every single buffer we
488 	 * post, we would end up with an ACK storm (ACK arrives,
489 	 * consumes buffer, we refill the ring, send ACK to remote
490 	 * advertising the newly posted buffer... ad inf)
491 	 *
492 	 * Performance pretty much depends on how often we send
493 	 * credit updates - too frequent updates mean lots of ACKs.
494 	 * Too infrequent updates, and the peer will run out of
495 	 * credits and has to throttle.
496 	 * For the time being, 16 seems to be a good compromise.
497 	 */
498 	if (IB_GET_POST_CREDITS(atomic_get(&ic->i_credits)) >= 16)
499 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
500 }
501 
502 static inline void
503 rdsv3_ib_xmit_populate_wr(struct rdsv3_ib_connection *ic,
504     ibt_send_wr_t *wr, unsigned int pos,
505     struct rdsv3_scatterlist *scat, unsigned int off, unsigned int length,
506     int send_flags)
507 {
508 	ibt_wr_ds_t *sge;
509 
510 	RDSV3_DPRINTF4("rdsv3_ib_xmit_populate_wr",
511 	    "ic: %p, wr: %p scat: %p %d %d %d %d",
512 	    ic, wr, scat, pos, off, length, send_flags);
513 
514 	wr->wr_id = pos;
515 	wr->wr_trans = IBT_RC_SRV;
516 	wr->wr_flags = send_flags;
517 	wr->wr_opcode = IBT_WRC_SEND;
518 
519 	if (length != 0) {
520 		int	ix, len, assigned;
521 		ibt_wr_ds_t *sgl;
522 
523 		ASSERT(length <= scat->length - off);
524 
525 		sgl = scat->sgl;
526 		if (off != 0) {
527 			/* find the right sgl to begin with */
528 			while (sgl->ds_len <= off) {
529 				off -= sgl->ds_len;
530 				sgl++;
531 			}
532 		}
533 
534 		ix = 1; /* first data sgl is at 1 */
535 		assigned = 0;
536 		len = length;
537 		do {
538 			sge = &wr->wr_sgl[ix++];
539 			sge->ds_va = sgl->ds_va + off;
540 			assigned = min(len, sgl->ds_len - off);
541 			sge->ds_len = assigned;
542 			sge->ds_key = sgl->ds_key;
543 			len -= assigned;
544 			if (len != 0) {
545 				sgl++;
546 				off = 0;
547 			}
548 		} while (len > 0);
549 
550 		wr->wr_nds = ix;
551 	} else {
552 		/*
553 		 * We're sending a packet with no payload. There is only
554 		 * one SGE
555 		 */
556 		wr->wr_nds = 1;
557 	}
558 
559 	sge = &wr->wr_sgl[0];
560 	sge->ds_va = ic->i_send_hdrs_dma + (pos * sizeof (struct rdsv3_header));
561 	sge->ds_len = sizeof (struct rdsv3_header);
562 	sge->ds_key = ic->i_mr->lkey;
563 
564 	RDSV3_DPRINTF4("rdsv3_ib_xmit_populate_wr",
565 	    "Return: ic: %p, wr: %p scat: %p", ic, wr, scat);
566 }
567 
568 /*
569  * This can be called multiple times for a given message.  The first time
570  * we see a message we map its scatterlist into the IB device so that
571  * we can provide that mapped address to the IB scatter gather entries
572  * in the IB work requests.  We translate the scatterlist into a series
573  * of work requests that fragment the message.  These work requests complete
574  * in order so we pass ownership of the message to the completion handler
575  * once we send the final fragment.
576  *
577  * The RDS core uses the c_send_lock to only enter this function once
578  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
579  * don't get out of sync and confuse the ring.
580  */
581 int
582 rdsv3_ib_xmit(struct rdsv3_connection *conn, struct rdsv3_message *rm,
583     unsigned int hdr_off, unsigned int sg, unsigned int off)
584 {
585 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
586 	struct ib_device *dev = ic->i_cm_id->device;
587 	struct rdsv3_ib_send_work *send = NULL;
588 	struct rdsv3_ib_send_work *first;
589 	struct rdsv3_ib_send_work *prev;
590 	ibt_send_wr_t *wr;
591 	struct rdsv3_scatterlist *scat;
592 	uint32_t pos;
593 	uint32_t i;
594 	uint32_t work_alloc;
595 	uint32_t credit_alloc;
596 	uint32_t posted;
597 	uint32_t adv_credits = 0;
598 	int send_flags = 0;
599 	int sent;
600 	int ret;
601 	int flow_controlled = 0;
602 
603 	RDSV3_DPRINTF4("rdsv3_ib_xmit", "conn: %p, rm: %p", conn, rm);
604 
605 	ASSERT(!(off % RDSV3_FRAG_SIZE));
606 	ASSERT(!(hdr_off != 0 && hdr_off != sizeof (struct rdsv3_header)));
607 
608 	/* Do not send cong updates to IB loopback */
609 	if (conn->c_loopback &&
610 	    rm->m_inc.i_hdr.h_flags & RDSV3_FLAG_CONG_BITMAP) {
611 		rdsv3_cong_map_updated(conn->c_fcong, ~(uint64_t)0);
612 		return (sizeof (struct rdsv3_header) + RDSV3_CONG_MAP_BYTES);
613 	}
614 
615 #ifndef __lock_lint
616 	/* FIXME we may overallocate here */
617 	if (ntohl(rm->m_inc.i_hdr.h_len) == 0)
618 		i = 1;
619 	else
620 		i = ceil(ntohl(rm->m_inc.i_hdr.h_len), RDSV3_FRAG_SIZE);
621 #endif
622 
623 	work_alloc = rdsv3_ib_ring_alloc(&ic->i_send_ring, i, &pos);
624 	if (work_alloc == 0) {
625 		set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
626 		rdsv3_ib_stats_inc(s_ib_tx_ring_full);
627 		ret = -ENOMEM;
628 		goto out;
629 	}
630 
631 	credit_alloc = work_alloc;
632 	if (ic->i_flowctl) {
633 		credit_alloc = rdsv3_ib_send_grab_credits(ic, work_alloc,
634 		    &posted, 0, RDSV3_MAX_ADV_CREDIT);
635 		adv_credits += posted;
636 		if (credit_alloc < work_alloc) {
637 			rdsv3_ib_ring_unalloc(&ic->i_send_ring,
638 			    work_alloc - credit_alloc);
639 			work_alloc = credit_alloc;
640 			flow_controlled++;
641 		}
642 		if (work_alloc == 0) {
643 			set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
644 			rdsv3_ib_stats_inc(s_ib_tx_throttle);
645 			ret = -ENOMEM;
646 			goto out;
647 		}
648 	}
649 
650 	/* map the message the first time we see it */
651 	if (ic->i_rm == NULL) {
652 		/*
653 		 * printk(KERN_NOTICE
654 		 * "rdsv3_ib_xmit prep msg dport=%u flags=0x%x len=%d\n",
655 		 * be16_to_cpu(rm->m_inc.i_hdr.h_dport),
656 		 * rm->m_inc.i_hdr.h_flags,
657 		 * be32_to_cpu(rm->m_inc.i_hdr.h_len));
658 		 */
659 		if (rm->m_nents) {
660 			rm->m_count = rdsv3_ib_dma_map_sg(dev,
661 			    rm->m_sg, rm->m_nents);
662 			RDSV3_DPRINTF5("rdsv3_ib_xmit",
663 			    "ic %p mapping rm %p: %d\n", ic, rm, rm->m_count);
664 			if (rm->m_count == 0) {
665 				rdsv3_ib_stats_inc(s_ib_tx_sg_mapping_failure);
666 				rdsv3_ib_ring_unalloc(&ic->i_send_ring,
667 				    work_alloc);
668 				ret = -ENOMEM; /* XXX ? */
669 				RDSV3_DPRINTF2("rdsv3_ib_xmit",
670 				    "fail: ic %p mapping rm %p: %d\n",
671 				    ic, rm, rm->m_count);
672 				goto out;
673 			}
674 		} else {
675 			rm->m_count = 0;
676 		}
677 
678 		ic->i_unsignaled_wrs = rdsv3_ib_sysctl_max_unsig_wrs;
679 		ic->i_unsignaled_bytes = rdsv3_ib_sysctl_max_unsig_bytes;
680 		rdsv3_message_addref(rm);
681 		ic->i_rm = rm;
682 
683 		/* Finalize the header */
684 		if (test_bit(RDSV3_MSG_ACK_REQUIRED, &rm->m_flags))
685 			rm->m_inc.i_hdr.h_flags |= RDSV3_FLAG_ACK_REQUIRED;
686 		if (test_bit(RDSV3_MSG_RETRANSMITTED, &rm->m_flags))
687 			rm->m_inc.i_hdr.h_flags |= RDSV3_FLAG_RETRANSMITTED;
688 
689 		/*
690 		 * If it has a RDMA op, tell the peer we did it. This is
691 		 * used by the peer to release use-once RDMA MRs.
692 		 */
693 		if (rm->m_rdma_op) {
694 			struct rdsv3_ext_header_rdma ext_hdr;
695 
696 			ext_hdr.h_rdma_rkey = htonl(rm->m_rdma_op->r_key);
697 			(void) rdsv3_message_add_extension(&rm->m_inc.i_hdr,
698 			    RDSV3_EXTHDR_RDMA, &ext_hdr,
699 			    sizeof (ext_hdr));
700 		}
701 		if (rm->m_rdma_cookie) {
702 			(void) rdsv3_message_add_rdma_dest_extension(
703 			    &rm->m_inc.i_hdr,
704 			    rdsv3_rdma_cookie_key(rm->m_rdma_cookie),
705 			    rdsv3_rdma_cookie_offset(rm->m_rdma_cookie));
706 		}
707 
708 		/*
709 		 * Note - rdsv3_ib_piggyb_ack clears the ACK_REQUIRED bit, so
710 		 * we should not do this unless we have a chance of at least
711 		 * sticking the header into the send ring. Which is why we
712 		 * should call rdsv3_ib_ring_alloc first.
713 		 */
714 		rm->m_inc.i_hdr.h_ack = htonll(rdsv3_ib_piggyb_ack(ic));
715 		rdsv3_message_make_checksum(&rm->m_inc.i_hdr);
716 
717 		/*
718 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
719 		 */
720 		(void) rdsv3_ib_send_grab_credits(ic, 0, &posted, 1,
721 		    RDSV3_MAX_ADV_CREDIT - adv_credits);
722 		adv_credits += posted;
723 		ASSERT(adv_credits <= 255);
724 	} else if (ic->i_rm != rm)
725 		RDSV3_PANIC();
726 
727 	send = &ic->i_sends[pos];
728 	first = send;
729 	prev = NULL;
730 	scat = &rm->m_sg[sg];
731 	sent = 0;
732 	i = 0;
733 
734 	/*
735 	 * Sometimes you want to put a fence between an RDMA
736 	 * READ and the following SEND.
737 	 * We could either do this all the time
738 	 * or when requested by the user. Right now, we let
739 	 * the application choose.
740 	 */
741 	if (rm->m_rdma_op && rm->m_rdma_op->r_fence)
742 		send_flags = IBT_WR_SEND_FENCE;
743 
744 	/*
745 	 * We could be copying the header into the unused tail of the page.
746 	 * That would need to be changed in the future when those pages might
747 	 * be mapped userspace pages or page cache pages.  So instead we always
748 	 * use a second sge and our long-lived ring of mapped headers.  We send
749 	 * the header after the data so that the data payload can be aligned on
750 	 * the receiver.
751 	 */
752 
753 	/* handle a 0-len message */
754 	if (ntohl(rm->m_inc.i_hdr.h_len) == 0) {
755 		wr = &ic->i_send_wrs[0];
756 		rdsv3_ib_xmit_populate_wr(ic, wr, pos, NULL, 0, 0, send_flags);
757 		send->s_queued = jiffies;
758 		send->s_op = NULL;
759 		send->s_opcode = wr->wr_opcode;
760 		goto add_header;
761 	}
762 
763 	/* if there's data reference it with a chain of work reqs */
764 	for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) {
765 		unsigned int len;
766 
767 		send = &ic->i_sends[pos];
768 
769 		wr = &ic->i_send_wrs[i];
770 		len = min(RDSV3_FRAG_SIZE,
771 		    rdsv3_ib_sg_dma_len(dev, scat) - off);
772 		rdsv3_ib_xmit_populate_wr(ic, wr, pos, scat, off, len,
773 		    send_flags);
774 		send->s_queued = jiffies;
775 		send->s_op = NULL;
776 		send->s_opcode = wr->wr_opcode;
777 
778 		/*
779 		 * We want to delay signaling completions just enough to get
780 		 * the batching benefits but not so much that we create dead
781 		 * time
782 		 * on the wire.
783 		 */
784 		if (ic->i_unsignaled_wrs-- == 0) {
785 			ic->i_unsignaled_wrs = rdsv3_ib_sysctl_max_unsig_wrs;
786 			wr->wr_flags |=
787 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
788 		}
789 
790 		ic->i_unsignaled_bytes -= len;
791 		if (ic->i_unsignaled_bytes <= 0) {
792 			ic->i_unsignaled_bytes =
793 			    rdsv3_ib_sysctl_max_unsig_bytes;
794 			wr->wr_flags |=
795 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
796 		}
797 
798 		/*
799 		 * Always signal the last one if we're stopping due to flow
800 		 * control.
801 		 */
802 		if (flow_controlled && i == (work_alloc-1)) {
803 			wr->wr_flags |=
804 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
805 		}
806 
807 		RDSV3_DPRINTF5("rdsv3_ib_xmit", "send %p wr %p num_sge %u \n",
808 		    send, wr, wr->wr_nds);
809 
810 		sent += len;
811 		off += len;
812 		if (off == rdsv3_ib_sg_dma_len(dev, scat)) {
813 			scat++;
814 			off = 0;
815 		}
816 
817 add_header:
818 		/*
819 		 * Tack on the header after the data. The header SGE
820 		 * should already
821 		 * have been set up to point to the right header buffer.
822 		 */
823 		(void) memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
824 		    sizeof (struct rdsv3_header));
825 
826 		if (0) {
827 			struct rdsv3_header *hdr = &ic->i_send_hdrs[pos];
828 
829 			RDSV3_DPRINTF2("rdsv3_ib_xmit",
830 			    "send WR dport=%u flags=0x%x len=%d",
831 			    ntohs(hdr->h_dport),
832 			    hdr->h_flags,
833 			    ntohl(hdr->h_len));
834 		}
835 		if (adv_credits) {
836 			struct rdsv3_header *hdr = &ic->i_send_hdrs[pos];
837 
838 			/* add credit and redo the header checksum */
839 			hdr->h_credit = adv_credits;
840 			rdsv3_message_make_checksum(hdr);
841 			adv_credits = 0;
842 			rdsv3_ib_stats_inc(s_ib_tx_credit_updates);
843 		}
844 
845 		prev = send;
846 
847 		pos = (pos + 1) % ic->i_send_ring.w_nr;
848 	}
849 
850 	/*
851 	 * Account the RDS header in the number of bytes we sent, but just once.
852 	 * The caller has no concept of fragmentation.
853 	 */
854 	if (hdr_off == 0)
855 		sent += sizeof (struct rdsv3_header);
856 
857 	/* if we finished the message then send completion owns it */
858 	if (scat == &rm->m_sg[rm->m_count]) {
859 		prev->s_rm = ic->i_rm;
860 		wr->wr_flags |= IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
861 		ic->i_rm = NULL;
862 	}
863 
864 	if (i < work_alloc) {
865 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
866 		work_alloc = i;
867 	}
868 	if (ic->i_flowctl && i < credit_alloc)
869 		rdsv3_ib_send_add_credits(conn, credit_alloc - i);
870 
871 	/* XXX need to worry about failed_wr and partial sends. */
872 	ret = ibt_post_send(ib_get_ibt_channel_hdl(ic->i_cm_id),
873 	    ic->i_send_wrs, i, &posted);
874 	if (posted != i) {
875 		RDSV3_DPRINTF2("rdsv3_ib_xmit",
876 		    "ic %p first %p nwr: %d ret %d:%d",
877 		    ic, first, i, ret, posted);
878 	}
879 	if (ret) {
880 		RDSV3_DPRINTF2("rdsv3_ib_xmit",
881 		    "RDS/IB: ib_post_send to %u.%u.%u.%u "
882 		    "returned %d\n", NIPQUAD(conn->c_faddr), ret);
883 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
884 		if (prev->s_rm) {
885 			ic->i_rm = prev->s_rm;
886 			prev->s_rm = NULL;
887 		}
888 #if 1
889 		RDSV3_DPRINTF2("rdsv3_ib_xmit", "ibt_post_send FAIL");
890 		ret = -EAGAIN;
891 #else
892 		/* Finesse this later */
893 		RDSV3_PANIC();
894 #endif
895 		goto out;
896 	}
897 
898 	ret = sent;
899 
900 	RDSV3_DPRINTF4("rdsv3_ib_xmit", "Return: conn: %p, rm: %p", conn, rm);
901 out:
902 	ASSERT(!adv_credits);
903 	return (ret);
904 }
905 
906 static void
907 rdsv3_ib_dma_unmap_sg_rdma(struct ib_device *dev, uint_t num,
908 	struct rdsv3_rdma_sg scat[])
909 {
910 	ibt_hca_hdl_t hca_hdl;
911 	int i;
912 	int num_sgl;
913 
914 	RDSV3_DPRINTF4("rdsv3_ib_dma_unmap_sg", "rdma_sg: %p", scat);
915 
916 	if (dev) {
917 		hca_hdl = ib_get_ibt_hca_hdl(dev);
918 	} else {
919 		hca_hdl = scat[0].hca_hdl;
920 		RDSV3_DPRINTF2("rdsv3_ib_dma_unmap_sg_rdma",
921 		    "NULL dev use cached hca_hdl %p", hca_hdl);
922 	}
923 
924 	if (hca_hdl == NULL)
925 		return;
926 	scat[0].hca_hdl = NULL;
927 
928 	for (i = 0; i < num; i++) {
929 		if (scat[i].mihdl != NULL) {
930 			num_sgl = (scat[i].iovec.bytes / PAGESIZE) + 2;
931 			kmem_free(scat[i].swr.wr_sgl,
932 			    (num_sgl * sizeof (ibt_wr_ds_t)));
933 			scat[i].swr.wr_sgl = NULL;
934 			(void) ibt_unmap_mem_iov(hca_hdl, scat[i].mihdl);
935 			scat[i].mihdl = NULL;
936 		} else
937 			break;
938 	}
939 }
940 
941 /* ARGSUSED */
942 uint_t
943 rdsv3_ib_dma_map_sg_rdma(struct ib_device *dev, struct rdsv3_rdma_sg scat[],
944     uint_t num, struct rdsv3_scatterlist **scatl)
945 {
946 	ibt_hca_hdl_t hca_hdl;
947 	ibt_iov_attr_t iov_attr;
948 	struct buf *bp;
949 	uint_t i, j, k;
950 	uint_t count;
951 	struct rdsv3_scatterlist *sg;
952 	int ret;
953 
954 	RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma", "scat: %p, num: %d",
955 	    scat, num);
956 
957 	hca_hdl = ib_get_ibt_hca_hdl(dev);
958 	scat[0].hca_hdl = hca_hdl;
959 	bzero(&iov_attr, sizeof (ibt_iov_attr_t));
960 	iov_attr.iov_flags = IBT_IOV_BUF;
961 	iov_attr.iov_lso_hdr_sz = 0;
962 
963 	for (i = 0, count = 0; i < num; i++) {
964 		/* transpose umem_cookie  to buf structure */
965 		bp = ddi_umem_iosetup(scat[i].umem_cookie,
966 		    scat[i].iovec.addr & PAGEOFFSET, scat[i].iovec.bytes,
967 		    B_WRITE, 0, 0, NULL, DDI_UMEM_SLEEP);
968 		if (bp == NULL) {
969 			/* free resources  and return error */
970 			goto out;
971 		}
972 		/* setup ibt_map_mem_iov() attributes */
973 		iov_attr.iov_buf = bp;
974 		iov_attr.iov_wr_nds = (scat[i].iovec.bytes / PAGESIZE) + 2;
975 		scat[i].swr.wr_sgl =
976 		    kmem_zalloc(iov_attr.iov_wr_nds * sizeof (ibt_wr_ds_t),
977 		    KM_SLEEP);
978 
979 		ret = ibt_map_mem_iov(hca_hdl, &iov_attr,
980 		    (ibt_all_wr_t *)&scat[i].swr, &scat[i].mihdl);
981 		freerbuf(bp);
982 		if (ret != IBT_SUCCESS) {
983 			RDSV3_DPRINTF2("rdsv3_ib_dma_map_sg_rdma",
984 			    "ibt_map_mem_iov returned: %d", ret);
985 			/* free resources and return error */
986 			kmem_free(scat[i].swr.wr_sgl,
987 			    iov_attr.iov_wr_nds * sizeof (ibt_wr_ds_t));
988 			goto out;
989 		}
990 		count += scat[i].swr.wr_nds;
991 
992 #ifdef  DEBUG
993 		for (j = 0; j < scat[i].swr.wr_nds; j++) {
994 			RDSV3_DPRINTF5("rdsv3_ib_dma_map_sg_rdma",
995 			    "sgl[%d] va %llx len %x", j,
996 			    scat[i].swr.wr_sgl[j].ds_va,
997 			    scat[i].swr.wr_sgl[j].ds_len);
998 		}
999 #endif
1000 		RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma",
1001 		    "iovec.bytes: 0x%x scat[%d]swr.wr_nds: %d",
1002 		    scat[i].iovec.bytes, i, scat[i].swr.wr_nds);
1003 	}
1004 
1005 	count = ((count - 1) / RDSV3_IB_MAX_SGE) + 1;
1006 	RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma", "Ret: num: %d", count);
1007 	return (count);
1008 
1009 out:
1010 	rdsv3_ib_dma_unmap_sg_rdma(dev, num, scat);
1011 	return (0);
1012 }
1013 
1014 int
1015 rdsv3_ib_xmit_rdma(struct rdsv3_connection *conn, struct rdsv3_rdma_op *op)
1016 {
1017 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
1018 	struct rdsv3_ib_send_work *send = NULL;
1019 	struct rdsv3_rdma_sg *scat;
1020 	uint64_t remote_addr;
1021 	uint32_t pos;
1022 	uint32_t work_alloc;
1023 	uint32_t i, j, k, idx;
1024 	uint32_t left, count;
1025 	uint32_t posted;
1026 	int sent;
1027 	ibt_status_t status;
1028 	ibt_send_wr_t *wr;
1029 	ibt_wr_ds_t *sge;
1030 
1031 	RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma", "rdsv3_ib_conn: %p", ic);
1032 
1033 	/* map the message the first time we see it */
1034 	if (!op->r_mapped) {
1035 		op->r_count = rdsv3_ib_dma_map_sg_rdma(ic->i_cm_id->device,
1036 		    op->r_rdma_sg, op->r_nents, &op->r_sg);
1037 		RDSV3_DPRINTF5("rdsv3_ib_xmit_rdma", "ic %p mapping op %p: %d",
1038 		    ic, op, op->r_count);
1039 		if (op->r_count == 0) {
1040 			rdsv3_ib_stats_inc(s_ib_tx_sg_mapping_failure);
1041 			RDSV3_DPRINTF2("rdsv3_ib_xmit_rdma",
1042 			    "fail: ic %p mapping op %p: %d",
1043 			    ic, op, op->r_count);
1044 			return (-ENOMEM); /* XXX ? */
1045 		}
1046 		op->r_mapped = 1;
1047 	}
1048 
1049 	/*
1050 	 * Instead of knowing how to return a partial rdma read/write
1051 	 * we insist that there
1052 	 * be enough work requests to send the entire message.
1053 	 */
1054 	work_alloc = rdsv3_ib_ring_alloc(&ic->i_send_ring, op->r_count, &pos);
1055 	if (work_alloc != op->r_count) {
1056 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1057 		rdsv3_ib_stats_inc(s_ib_tx_ring_full);
1058 		return (-ENOMEM);
1059 	}
1060 
1061 	/*
1062 	 * take the scatter list and transpose into a list of
1063 	 * send wr's each with a scatter list of RDSV3_IB_MAX_SGE
1064 	 */
1065 	scat = &op->r_rdma_sg[0];
1066 	sent = 0;
1067 	remote_addr = op->r_remote_addr;
1068 
1069 	for (i = 0, k = 0; i < op->r_nents; i++) {
1070 		left = scat[i].swr.wr_nds;
1071 		for (idx = 0; left > 0; k++) {
1072 			send = &ic->i_sends[pos];
1073 			send->s_queued = jiffies;
1074 			send->s_opcode = op->r_write ? IBT_WRC_RDMAW :
1075 			    IBT_WRC_RDMAR;
1076 			send->s_op = op;
1077 
1078 			wr = &ic->i_send_wrs[k];
1079 			wr->wr_flags = 0;
1080 			wr->wr_id = pos;
1081 			wr->wr_trans = IBT_RC_SRV;
1082 			wr->wr_opcode = op->r_write ? IBT_WRC_RDMAW :
1083 			    IBT_WRC_RDMAR;
1084 			wr->wr.rc.rcwr.rdma.rdma_raddr = remote_addr;
1085 			wr->wr.rc.rcwr.rdma.rdma_rkey = op->r_key;
1086 
1087 			if (left > RDSV3_IB_MAX_SGE) {
1088 				count = RDSV3_IB_MAX_SGE;
1089 				left -= RDSV3_IB_MAX_SGE;
1090 			} else {
1091 				count = left;
1092 				left = 0;
1093 			}
1094 			wr->wr_nds = count;
1095 
1096 			for (j = 0; j < count; j++) {
1097 				sge = &wr->wr_sgl[j];
1098 				*sge = scat[i].swr.wr_sgl[idx];
1099 				remote_addr += scat[i].swr.wr_sgl[idx].ds_len;
1100 				sent += scat[i].swr.wr_sgl[idx].ds_len;
1101 				idx++;
1102 				RDSV3_DPRINTF4("xmit_rdma",
1103 				    "send_wrs[%d]sgl[%d] va %llx len %x",
1104 				    k, j, sge->ds_va, sge->ds_len);
1105 			}
1106 			RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma",
1107 			    "wr[%d] %p key: %x code: %d tlen: %d",
1108 			    k, wr, wr->wr.rc.rcwr.rdma.rdma_rkey,
1109 			    wr->wr_opcode, sent);
1110 
1111 			/*
1112 			 * We want to delay signaling completions just enough
1113 			 * to get the batching benefits but not so much that
1114 			 * we create dead time on the wire.
1115 			 */
1116 			if (ic->i_unsignaled_wrs-- == 0) {
1117 				ic->i_unsignaled_wrs =
1118 				    rdsv3_ib_sysctl_max_unsig_wrs;
1119 				wr->wr_flags = IBT_WR_SEND_SIGNAL;
1120 			}
1121 
1122 			pos = (pos + 1) % ic->i_send_ring.w_nr;
1123 		}
1124 	}
1125 
1126 	status = ibt_post_send(ib_get_ibt_channel_hdl(ic->i_cm_id),
1127 	    ic->i_send_wrs, k, &posted);
1128 	if (status != IBT_SUCCESS) {
1129 		RDSV3_DPRINTF2("rdsv3_ib_xmit_rdma",
1130 		    "RDS/IB: rdma ib_post_send returned %d", status);
1131 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1132 	}
1133 	return (status);
1134 }
1135 
1136 void
1137 rdsv3_ib_xmit_complete(struct rdsv3_connection *conn)
1138 {
1139 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
1140 
1141 	RDSV3_DPRINTF4("rdsv3_ib_xmit_complete", "conn: %p", conn);
1142 
1143 	/*
1144 	 * We may have a pending ACK or window update we were unable
1145 	 * to send previously (due to flow control). Try again.
1146 	 */
1147 	rdsv3_ib_attempt_ack(ic);
1148 }
1149