xref: /illumos-gate/usr/src/uts/common/io/ib/clients/rdsv3/ib_send.c (revision 5d5562f583b2b6affe19bdce0b3c8b1840d667a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright (c) 2006 Oracle.  All rights reserved.
27  *
28  * This software is available to you under a choice of one of two
29  * licenses.  You may choose to be licensed under the terms of the GNU
30  * General Public License (GPL) Version 2, available from the file
31  * COPYING in the main directory of this source tree, or the
32  * OpenIB.org BSD license below:
33  *
34  *     Redistribution and use in source and binary forms, with or
35  *     without modification, are permitted provided that the following
36  *     conditions are met:
37  *
38  *      - Redistributions of source code must retain the above
39  *        copyright notice, this list of conditions and the following
40  *        disclaimer.
41  *
42  *      - Redistributions in binary form must reproduce the above
43  *        copyright notice, this list of conditions and the following
44  *        disclaimer in the documentation and/or other materials
45  *        provided with the distribution.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
48  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
49  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
50  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
51  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
52  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
53  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
54  * SOFTWARE.
55  *
56  */
57 #include <sys/rds.h>
58 
59 #include <sys/ib/clients/rdsv3/rdsv3.h>
60 #include <sys/ib/clients/rdsv3/rdma.h>
61 #include <sys/ib/clients/rdsv3/ib.h>
62 #include <sys/ib/clients/rdsv3/rdsv3_debug.h>
63 
64 static void
65 rdsv3_ib_send_rdma_complete(struct rdsv3_message *rm,
66     int wc_status)
67 {
68 	int notify_status;
69 
70 	RDSV3_DPRINTF4("rdsv3_ib_send_rdma_complete", "rm: %p, wc_status: %d",
71 	    rm, wc_status);
72 
73 	switch (wc_status) {
74 	case IBT_WC_WR_FLUSHED_ERR:
75 		return;
76 
77 	case IBT_WC_SUCCESS:
78 		notify_status = RDSV3_RDMA_SUCCESS;
79 		break;
80 
81 	case IBT_WC_REMOTE_ACCESS_ERR:
82 		notify_status = RDSV3_RDMA_REMOTE_ERROR;
83 		break;
84 
85 	default:
86 		notify_status = RDSV3_RDMA_OTHER_ERROR;
87 		break;
88 	}
89 	rdsv3_rdma_send_complete(rm, notify_status);
90 
91 	RDSV3_DPRINTF4("rdsv3_ib_send_rdma_complete", "rm: %p, wc_status: %d",
92 	    rm, wc_status);
93 }
94 
95 static void rdsv3_ib_dma_unmap_sg_rdma(struct ib_device *dev,
96     uint_t num, struct rdsv3_rdma_sg scat[]);
97 
98 void
99 rdsv3_ib_send_unmap_rdma(struct rdsv3_ib_connection *ic,
100     struct rdsv3_rdma_op *op)
101 {
102 	RDSV3_DPRINTF4("rdsv3_ib_send_unmap_rdma", "ic: %p, op: %p", ic, op);
103 	if (op->r_mapped) {
104 		op->r_mapped = 0;
105 		if (ic->i_cm_id) {
106 			rdsv3_ib_dma_unmap_sg_rdma(ic->i_cm_id->device,
107 			    op->r_nents, op->r_rdma_sg);
108 		} else {
109 			rdsv3_ib_dma_unmap_sg_rdma((struct ib_device *)NULL,
110 			    op->r_nents, op->r_rdma_sg);
111 		}
112 	}
113 }
114 
115 static void
116 rdsv3_ib_send_unmap_rm(struct rdsv3_ib_connection *ic,
117     struct rdsv3_ib_send_work *send,
118     int wc_status)
119 {
120 	struct rdsv3_message *rm = send->s_rm;
121 
122 	RDSV3_DPRINTF4("rdsv3_ib_send_unmap_rm", "ic %p send %p rm %p\n",
123 	    ic, send, rm);
124 
125 	mutex_enter(&rm->m_rs_lock);
126 	if (rm->m_count) {
127 		rdsv3_ib_dma_unmap_sg(ic->i_cm_id->device,
128 		    rm->m_sg, rm->m_count);
129 		rm->m_count = 0;
130 	}
131 	mutex_exit(&rm->m_rs_lock);
132 
133 	if (rm->m_rdma_op != NULL) {
134 		rdsv3_ib_send_unmap_rdma(ic, rm->m_rdma_op);
135 
136 		/*
137 		 * If the user asked for a completion notification on this
138 		 * message, we can implement three different semantics:
139 		 *  1.	Notify when we received the ACK on the RDS message
140 		 *	that was queued with the RDMA. This provides reliable
141 		 *	notification of RDMA status at the expense of a one-way
142 		 *	packet delay.
143 		 *  2.	Notify when the IB stack gives us the completion
144 		 *	event for the RDMA operation.
145 		 *  3.	Notify when the IB stack gives us the completion
146 		 *	event for the accompanying RDS messages.
147 		 * Here, we implement approach #3. To implement approach #2,
148 		 * call rdsv3_rdma_send_complete from the cq_handler.
149 		 * To implement #1,
150 		 * don't call rdsv3_rdma_send_complete at all, and fall back to
151 		 * the notify
152 		 * handling in the ACK processing code.
153 		 *
154 		 * Note: There's no need to explicitly sync any RDMA buffers
155 		 * using
156 		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
157 		 * operation itself unmapped the RDMA buffers, which takes care
158 		 * of synching.
159 		 */
160 		rdsv3_ib_send_rdma_complete(rm, wc_status);
161 
162 		if (rm->m_rdma_op->r_write)
163 			rdsv3_stats_add(s_send_rdma_bytes,
164 			    rm->m_rdma_op->r_bytes);
165 		else
166 			rdsv3_stats_add(s_recv_rdma_bytes,
167 			    rm->m_rdma_op->r_bytes);
168 	}
169 
170 	/*
171 	 * If anyone waited for this message to get flushed out, wake
172 	 * them up now
173 	 */
174 	rdsv3_message_unmapped(rm);
175 
176 	rdsv3_message_put(rm);
177 	send->s_rm = NULL;
178 }
179 
180 void
181 rdsv3_ib_send_init_ring(struct rdsv3_ib_connection *ic)
182 {
183 	struct rdsv3_ib_send_work *send;
184 	uint32_t i;
185 
186 	RDSV3_DPRINTF4("rdsv3_ib_send_init_ring", "ic: %p", ic);
187 
188 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
189 		send->s_rm = NULL;
190 		send->s_op = NULL;
191 	}
192 }
193 
194 void
195 rdsv3_ib_send_clear_ring(struct rdsv3_ib_connection *ic)
196 {
197 	struct rdsv3_ib_send_work *send;
198 	uint32_t i;
199 
200 	RDSV3_DPRINTF4("rdsv3_ib_send_clear_ring", "ic: %p", ic);
201 
202 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
203 		if (send->s_opcode == 0xdd)
204 			continue;
205 		if (send->s_rm)
206 			rdsv3_ib_send_unmap_rm(ic, send, IBT_WC_WR_FLUSHED_ERR);
207 		if (send->s_op)
208 			rdsv3_ib_send_unmap_rdma(ic, send->s_op);
209 	}
210 
211 	RDSV3_DPRINTF4("rdsv3_ib_send_clear_ring", "Return: ic: %p", ic);
212 }
213 
214 /*
215  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
216  * operations performed in the send path.  As the sender allocs and potentially
217  * unallocs the next free entry in the ring it doesn't alter which is
218  * the next to be freed, which is what this is concerned with.
219  */
220 void
221 rdsv3_ib_send_cqe_handler(struct rdsv3_ib_connection *ic, ibt_wc_t *wc)
222 {
223 	struct rdsv3_connection *conn = ic->conn;
224 	struct rdsv3_ib_send_work *send;
225 	uint32_t completed, polled;
226 	uint32_t oldest;
227 	uint32_t i = 0;
228 	int ret;
229 
230 	RDSV3_DPRINTF4("rdsv3_ib_send_cqe_handler",
231 	    "wc wc_id 0x%llx status %u byte_len %u imm_data %u\n",
232 	    (unsigned long long)wc->wc_id, wc->wc_status,
233 	    wc->wc_bytes_xfer, ntohl(wc->wc_immed_data));
234 
235 	rdsv3_ib_stats_inc(s_ib_tx_cq_event);
236 
237 	if (wc->wc_id == RDSV3_IB_ACK_WR_ID) {
238 		if (ic->i_ack_queued + HZ/2 < jiffies)
239 			rdsv3_ib_stats_inc(s_ib_tx_stalled);
240 		rdsv3_ib_ack_send_complete(ic);
241 		return;
242 	}
243 
244 	oldest = rdsv3_ib_ring_oldest(&ic->i_send_ring);
245 
246 	completed = rdsv3_ib_ring_completed(&ic->i_send_ring,
247 	    (wc->wc_id & ~RDSV3_IB_SEND_OP), oldest);
248 
249 	for (i = 0; i < completed; i++) {
250 		send = &ic->i_sends[oldest];
251 
252 		/*
253 		 * In the error case, wc->opcode sometimes contains
254 		 * garbage
255 		 */
256 		switch (send->s_opcode) {
257 		case IBT_WRC_SEND:
258 			if (send->s_rm)
259 				rdsv3_ib_send_unmap_rm(ic, send,
260 				    wc->wc_status);
261 			break;
262 		case IBT_WRC_RDMAW:
263 		case IBT_WRC_RDMAR:
264 			/*
265 			 * Nothing to be done - the SG list will
266 			 * be unmapped
267 			 * when the SEND completes.
268 			 */
269 			break;
270 		default:
271 #ifndef __lock_lint
272 			RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
273 			    "RDS/IB: %s: unexpected opcode "
274 			    "0x%x in WR!",
275 			    __func__, send->s_opcode);
276 #endif
277 			break;
278 		}
279 
280 		send->s_opcode = 0xdd;
281 		if (send->s_queued + HZ/2 < jiffies)
282 			rdsv3_ib_stats_inc(s_ib_tx_stalled);
283 
284 		/*
285 		 * If a RDMA operation produced an error, signal
286 		 * this right
287 		 * away. If we don't, the subsequent SEND that goes
288 		 * with this
289 		 * RDMA will be canceled with ERR_WFLUSH, and the
290 		 * application
291 		 * never learn that the RDMA failed.
292 		 */
293 		if (wc->wc_status ==
294 		    IBT_WC_REMOTE_ACCESS_ERR && send->s_op) {
295 			struct rdsv3_message *rm;
296 
297 			rm = rdsv3_send_get_message(conn, send->s_op);
298 			if (rm) {
299 				if (rm->m_rdma_op != NULL)
300 					rdsv3_ib_send_unmap_rdma(ic,
301 					    rm->m_rdma_op);
302 				rdsv3_ib_send_rdma_complete(rm,
303 				    wc->wc_status);
304 				rdsv3_message_put(rm);
305 			}
306 		}
307 
308 		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
309 	}
310 
311 	rdsv3_ib_ring_free(&ic->i_send_ring, completed);
312 
313 	clear_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
314 
315 	/* We expect errors as the qp is drained during shutdown */
316 	if (wc->wc_status != IBT_WC_SUCCESS && rdsv3_conn_up(conn)) {
317 		RDSV3_DPRINTF2("rdsv3_ib_send_cqe_handler",
318 		    "send completion on %u.%u.%u.%u "
319 		    "had status %u, disconnecting and reconnecting\n",
320 		    NIPQUAD(conn->c_faddr), wc->wc_status);
321 		rdsv3_conn_drop(conn);
322 	}
323 
324 	RDSV3_DPRINTF4("rdsv3_ib_send_cqe_handler", "Return: conn: %p", ic);
325 }
326 
327 /*
328  * This is the main function for allocating credits when sending
329  * messages.
330  *
331  * Conceptually, we have two counters:
332  *  -	send credits: this tells us how many WRs we're allowed
333  *	to submit without overruning the reciever's queue. For
334  *	each SEND WR we post, we decrement this by one.
335  *
336  *  -	posted credits: this tells us how many WRs we recently
337  *	posted to the receive queue. This value is transferred
338  *	to the peer as a "credit update" in a RDS header field.
339  *	Every time we transmit credits to the peer, we subtract
340  *	the amount of transferred credits from this counter.
341  *
342  * It is essential that we avoid situations where both sides have
343  * exhausted their send credits, and are unable to send new credits
344  * to the peer. We achieve this by requiring that we send at least
345  * one credit update to the peer before exhausting our credits.
346  * When new credits arrive, we subtract one credit that is withheld
347  * until we've posted new buffers and are ready to transmit these
348  * credits (see rdsv3_ib_send_add_credits below).
349  *
350  * The RDS send code is essentially single-threaded; rdsv3_send_xmit
351  * grabs c_send_lock to ensure exclusive access to the send ring.
352  * However, the ACK sending code is independent and can race with
353  * message SENDs.
354  *
355  * In the send path, we need to update the counters for send credits
356  * and the counter of posted buffers atomically - when we use the
357  * last available credit, we cannot allow another thread to race us
358  * and grab the posted credits counter.  Hence, we have to use a
359  * spinlock to protect the credit counter, or use atomics.
360  *
361  * Spinlocks shared between the send and the receive path are bad,
362  * because they create unnecessary delays. An early implementation
363  * using a spinlock showed a 5% degradation in throughput at some
364  * loads.
365  *
366  * This implementation avoids spinlocks completely, putting both
367  * counters into a single atomic, and updating that atomic using
368  * atomic_add (in the receive path, when receiving fresh credits),
369  * and using atomic_cmpxchg when updating the two counters.
370  */
371 int
372 rdsv3_ib_send_grab_credits(struct rdsv3_ib_connection *ic,
373     uint32_t wanted, uint32_t *adv_credits, int need_posted)
374 {
375 	unsigned int avail, posted, got = 0, advertise;
376 	long oldval, newval;
377 
378 	RDSV3_DPRINTF4("rdsv3_ib_send_grab_credits", "ic: %p, %d %d %d",
379 	    ic, wanted, *adv_credits, need_posted);
380 
381 	*adv_credits = 0;
382 	if (!ic->i_flowctl)
383 		return (wanted);
384 
385 try_again:
386 	advertise = 0;
387 	oldval = newval = atomic_get(&ic->i_credits);
388 	posted = IB_GET_POST_CREDITS(oldval);
389 	avail = IB_GET_SEND_CREDITS(oldval);
390 
391 	RDSV3_DPRINTF5("rdsv3_ib_send_grab_credits",
392 	    "wanted (%u): credits=%u posted=%u\n", wanted, avail, posted);
393 
394 	/* The last credit must be used to send a credit update. */
395 	if (avail && !posted)
396 		avail--;
397 
398 	if (avail < wanted) {
399 		struct rdsv3_connection *conn = ic->i_cm_id->context;
400 
401 		/* Oops, there aren't that many credits left! */
402 		set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
403 		got = avail;
404 	} else {
405 		/* Sometimes you get what you want, lalala. */
406 		got = wanted;
407 	}
408 	newval -= IB_SET_SEND_CREDITS(got);
409 
410 	/*
411 	 * If need_posted is non-zero, then the caller wants
412 	 * the posted regardless of whether any send credits are
413 	 * available.
414 	 */
415 	if (posted && (got || need_posted)) {
416 		advertise = min(posted, RDSV3_MAX_ADV_CREDIT);
417 		newval -= IB_SET_POST_CREDITS(advertise);
418 	}
419 
420 	/* Finally bill everything */
421 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
422 		goto try_again;
423 
424 	*adv_credits = advertise;
425 
426 	RDSV3_DPRINTF4("rdsv3_ib_send_grab_credits", "ic: %p, %d %d %d",
427 	    ic, got, *adv_credits, need_posted);
428 
429 	return (got);
430 }
431 
432 void
433 rdsv3_ib_send_add_credits(struct rdsv3_connection *conn, unsigned int credits)
434 {
435 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
436 
437 	if (credits == 0)
438 		return;
439 
440 	RDSV3_DPRINTF5("rdsv3_ib_send_add_credits",
441 	    "credits (%u): current=%u%s\n",
442 	    credits,
443 	    IB_GET_SEND_CREDITS(atomic_get(&ic->i_credits)),
444 	    test_bit(RDSV3_LL_SEND_FULL, &conn->c_flags) ?
445 	    ", ll_send_full" : "");
446 
447 	atomic_add_32(&ic->i_credits, IB_SET_SEND_CREDITS(credits));
448 	if (test_and_clear_bit(RDSV3_LL_SEND_FULL, &conn->c_flags))
449 		rdsv3_queue_delayed_work(rdsv3_wq, &conn->c_send_w, 0);
450 
451 	ASSERT(!(IB_GET_SEND_CREDITS(credits) >= 16384));
452 
453 	rdsv3_ib_stats_inc(s_ib_rx_credit_updates);
454 
455 	RDSV3_DPRINTF4("rdsv3_ib_send_add_credits",
456 	    "Return: conn: %p, credits: %d",
457 	    conn, credits);
458 }
459 
460 void
461 rdsv3_ib_advertise_credits(struct rdsv3_connection *conn, unsigned int posted)
462 {
463 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
464 
465 	RDSV3_DPRINTF4("rdsv3_ib_advertise_credits", "conn: %p, posted: %d",
466 	    conn, posted);
467 
468 	if (posted == 0)
469 		return;
470 
471 	atomic_add_32(&ic->i_credits, IB_SET_POST_CREDITS(posted));
472 
473 	/*
474 	 * Decide whether to send an update to the peer now.
475 	 * If we would send a credit update for every single buffer we
476 	 * post, we would end up with an ACK storm (ACK arrives,
477 	 * consumes buffer, we refill the ring, send ACK to remote
478 	 * advertising the newly posted buffer... ad inf)
479 	 *
480 	 * Performance pretty much depends on how often we send
481 	 * credit updates - too frequent updates mean lots of ACKs.
482 	 * Too infrequent updates, and the peer will run out of
483 	 * credits and has to throttle.
484 	 * For the time being, 16 seems to be a good compromise.
485 	 */
486 	if (IB_GET_POST_CREDITS(atomic_get(&ic->i_credits)) >= 16)
487 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
488 }
489 
490 static inline void
491 rdsv3_ib_xmit_populate_wr(struct rdsv3_ib_connection *ic,
492     ibt_send_wr_t *wr, unsigned int pos,
493     struct rdsv3_scatterlist *scat, unsigned int off, unsigned int length,
494     int send_flags)
495 {
496 	ibt_wr_ds_t *sge;
497 
498 	RDSV3_DPRINTF4("rdsv3_ib_xmit_populate_wr",
499 	    "ic: %p, wr: %p scat: %p %d %d %d %d",
500 	    ic, wr, scat, pos, off, length, send_flags);
501 
502 	wr->wr_id = pos | RDSV3_IB_SEND_OP;
503 	wr->wr_trans = IBT_RC_SRV;
504 	wr->wr_flags = send_flags;
505 	wr->wr_opcode = IBT_WRC_SEND;
506 
507 	if (length != 0) {
508 		int	ix, len, assigned;
509 		ibt_wr_ds_t *sgl;
510 
511 		ASSERT(length <= scat->length - off);
512 
513 		sgl = scat->sgl;
514 		if (off != 0) {
515 			/* find the right sgl to begin with */
516 			while (sgl->ds_len <= off) {
517 				off -= sgl->ds_len;
518 				sgl++;
519 			}
520 		}
521 
522 		ix = 1; /* first data sgl is at 1 */
523 		assigned = 0;
524 		len = length;
525 		do {
526 			sge = &wr->wr_sgl[ix++];
527 			sge->ds_va = sgl->ds_va + off;
528 			assigned = min(len, sgl->ds_len - off);
529 			sge->ds_len = assigned;
530 			sge->ds_key = sgl->ds_key;
531 			len -= assigned;
532 			if (len != 0) {
533 				sgl++;
534 				off = 0;
535 			}
536 		} while (len > 0);
537 
538 		wr->wr_nds = ix;
539 	} else {
540 		/*
541 		 * We're sending a packet with no payload. There is only
542 		 * one SGE
543 		 */
544 		wr->wr_nds = 1;
545 	}
546 
547 	sge = &wr->wr_sgl[0];
548 	sge->ds_va = ic->i_send_hdrs_dma + (pos * sizeof (struct rdsv3_header));
549 	sge->ds_len = sizeof (struct rdsv3_header);
550 	sge->ds_key = ic->i_mr->lkey;
551 
552 	RDSV3_DPRINTF4("rdsv3_ib_xmit_populate_wr",
553 	    "Return: ic: %p, wr: %p scat: %p", ic, wr, scat);
554 }
555 
556 /*
557  * This can be called multiple times for a given message.  The first time
558  * we see a message we map its scatterlist into the IB device so that
559  * we can provide that mapped address to the IB scatter gather entries
560  * in the IB work requests.  We translate the scatterlist into a series
561  * of work requests that fragment the message.  These work requests complete
562  * in order so we pass ownership of the message to the completion handler
563  * once we send the final fragment.
564  *
565  * The RDS core uses the c_send_lock to only enter this function once
566  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
567  * don't get out of sync and confuse the ring.
568  */
569 int
570 rdsv3_ib_xmit(struct rdsv3_connection *conn, struct rdsv3_message *rm,
571     unsigned int hdr_off, unsigned int sg, unsigned int off)
572 {
573 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
574 	struct ib_device *dev = ic->i_cm_id->device;
575 	struct rdsv3_ib_send_work *send = NULL;
576 	struct rdsv3_ib_send_work *first;
577 	struct rdsv3_ib_send_work *prev;
578 	ibt_send_wr_t *wr;
579 	struct rdsv3_scatterlist *scat;
580 	uint32_t pos;
581 	uint32_t i;
582 	uint32_t work_alloc;
583 	uint32_t credit_alloc;
584 	uint32_t posted;
585 	uint32_t adv_credits = 0;
586 	int send_flags = 0;
587 	int sent;
588 	int ret;
589 	int flow_controlled = 0;
590 
591 	RDSV3_DPRINTF4("rdsv3_ib_xmit", "conn: %p, rm: %p", conn, rm);
592 
593 	ASSERT(!(off % RDSV3_FRAG_SIZE));
594 	ASSERT(!(hdr_off != 0 && hdr_off != sizeof (struct rdsv3_header)));
595 
596 	/* Do not send cong updates to IB loopback */
597 	if (conn->c_loopback &&
598 	    rm->m_inc.i_hdr.h_flags & RDSV3_FLAG_CONG_BITMAP) {
599 		rdsv3_cong_map_updated(conn->c_fcong, ~(uint64_t)0);
600 		return (sizeof (struct rdsv3_header) + RDSV3_CONG_MAP_BYTES);
601 	}
602 
603 #ifndef __lock_lint
604 	/* FIXME we may overallocate here */
605 	if (ntohl(rm->m_inc.i_hdr.h_len) == 0)
606 		i = 1;
607 	else
608 		i = ceil(ntohl(rm->m_inc.i_hdr.h_len), RDSV3_FRAG_SIZE);
609 #endif
610 
611 	work_alloc = rdsv3_ib_ring_alloc(&ic->i_send_ring, i, &pos);
612 	if (work_alloc != i) {
613 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
614 		set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
615 		rdsv3_ib_stats_inc(s_ib_tx_ring_full);
616 		ret = -ENOMEM;
617 		goto out;
618 	}
619 
620 	credit_alloc = work_alloc;
621 	if (ic->i_flowctl) {
622 		credit_alloc = rdsv3_ib_send_grab_credits(ic, work_alloc,
623 		    &posted, 0);
624 		adv_credits += posted;
625 		if (credit_alloc < work_alloc) {
626 			rdsv3_ib_ring_unalloc(&ic->i_send_ring,
627 			    work_alloc - credit_alloc);
628 			work_alloc = credit_alloc;
629 			flow_controlled++;
630 		}
631 		if (work_alloc == 0) {
632 			rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
633 			rdsv3_ib_stats_inc(s_ib_tx_throttle);
634 			ret = -ENOMEM;
635 			goto out;
636 		}
637 	}
638 
639 	/* map the message the first time we see it */
640 	if (ic->i_rm == NULL) {
641 		/*
642 		 * printk(KERN_NOTICE
643 		 * "rdsv3_ib_xmit prep msg dport=%u flags=0x%x len=%d\n",
644 		 * be16_to_cpu(rm->m_inc.i_hdr.h_dport),
645 		 * rm->m_inc.i_hdr.h_flags,
646 		 * be32_to_cpu(rm->m_inc.i_hdr.h_len));
647 		 */
648 		if (rm->m_nents) {
649 			rm->m_count = rdsv3_ib_dma_map_sg(dev,
650 			    rm->m_sg, rm->m_nents);
651 			RDSV3_DPRINTF5("rdsv3_ib_xmit",
652 			    "ic %p mapping rm %p: %d\n", ic, rm, rm->m_count);
653 			if (rm->m_count == 0) {
654 				rdsv3_ib_stats_inc(s_ib_tx_sg_mapping_failure);
655 				rdsv3_ib_ring_unalloc(&ic->i_send_ring,
656 				    work_alloc);
657 				ret = -ENOMEM; /* XXX ? */
658 				RDSV3_DPRINTF2("rdsv3_ib_xmit",
659 				    "fail: ic %p mapping rm %p: %d\n",
660 				    ic, rm, rm->m_count);
661 				goto out;
662 			}
663 		} else {
664 			rm->m_count = 0;
665 		}
666 
667 		ic->i_unsignaled_wrs = rdsv3_ib_sysctl_max_unsig_wrs;
668 		ic->i_unsignaled_bytes = rdsv3_ib_sysctl_max_unsig_bytes;
669 		rdsv3_message_addref(rm);
670 		ic->i_rm = rm;
671 
672 		/* Finalize the header */
673 		if (test_bit(RDSV3_MSG_ACK_REQUIRED, &rm->m_flags))
674 			rm->m_inc.i_hdr.h_flags |= RDSV3_FLAG_ACK_REQUIRED;
675 		if (test_bit(RDSV3_MSG_RETRANSMITTED, &rm->m_flags))
676 			rm->m_inc.i_hdr.h_flags |= RDSV3_FLAG_RETRANSMITTED;
677 
678 		/*
679 		 * If it has a RDMA op, tell the peer we did it. This is
680 		 * used by the peer to release use-once RDMA MRs.
681 		 */
682 		if (rm->m_rdma_op) {
683 			struct rdsv3_ext_header_rdma ext_hdr;
684 
685 			ext_hdr.h_rdma_rkey = htonl(rm->m_rdma_op->r_key);
686 			(void) rdsv3_message_add_extension(&rm->m_inc.i_hdr,
687 			    RDSV3_EXTHDR_RDMA, &ext_hdr,
688 			    sizeof (ext_hdr));
689 		}
690 		if (rm->m_rdma_cookie) {
691 			(void) rdsv3_message_add_rdma_dest_extension(
692 			    &rm->m_inc.i_hdr,
693 			    rdsv3_rdma_cookie_key(rm->m_rdma_cookie),
694 			    rdsv3_rdma_cookie_offset(rm->m_rdma_cookie));
695 		}
696 
697 		/*
698 		 * Note - rdsv3_ib_piggyb_ack clears the ACK_REQUIRED bit, so
699 		 * we should not do this unless we have a chance of at least
700 		 * sticking the header into the send ring. Which is why we
701 		 * should call rdsv3_ib_ring_alloc first.
702 		 */
703 		rm->m_inc.i_hdr.h_ack = htonll(rdsv3_ib_piggyb_ack(ic));
704 		rdsv3_message_make_checksum(&rm->m_inc.i_hdr);
705 
706 		/*
707 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
708 		 */
709 		(void) rdsv3_ib_send_grab_credits(ic, 0, &posted, 1);
710 		adv_credits += posted;
711 		ASSERT(adv_credits <= 255);
712 	}
713 
714 	send = &ic->i_sends[pos];
715 	first = send;
716 	prev = NULL;
717 	scat = &rm->m_sg[sg];
718 	sent = 0;
719 	i = 0;
720 
721 	/*
722 	 * Sometimes you want to put a fence between an RDMA
723 	 * READ and the following SEND.
724 	 * We could either do this all the time
725 	 * or when requested by the user. Right now, we let
726 	 * the application choose.
727 	 */
728 	if (rm->m_rdma_op && rm->m_rdma_op->r_fence)
729 		send_flags = IBT_WR_SEND_FENCE;
730 
731 	/*
732 	 * We could be copying the header into the unused tail of the page.
733 	 * That would need to be changed in the future when those pages might
734 	 * be mapped userspace pages or page cache pages.  So instead we always
735 	 * use a second sge and our long-lived ring of mapped headers.  We send
736 	 * the header after the data so that the data payload can be aligned on
737 	 * the receiver.
738 	 */
739 
740 	/* handle a 0-len message */
741 	if (ntohl(rm->m_inc.i_hdr.h_len) == 0) {
742 		wr = &ic->i_send_wrs[0];
743 		rdsv3_ib_xmit_populate_wr(ic, wr, pos, NULL, 0, 0, send_flags);
744 		send->s_queued = jiffies;
745 		send->s_op = NULL;
746 		send->s_opcode = wr->wr_opcode;
747 		goto add_header;
748 	}
749 
750 	/* if there's data reference it with a chain of work reqs */
751 	for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) {
752 		unsigned int len;
753 
754 		send = &ic->i_sends[pos];
755 
756 		wr = &ic->i_send_wrs[i];
757 		len = min(RDSV3_FRAG_SIZE,
758 		    rdsv3_ib_sg_dma_len(dev, scat) - off);
759 		rdsv3_ib_xmit_populate_wr(ic, wr, pos, scat, off, len,
760 		    send_flags);
761 		send->s_queued = jiffies;
762 		send->s_op = NULL;
763 		send->s_opcode = wr->wr_opcode;
764 
765 		/*
766 		 * We want to delay signaling completions just enough to get
767 		 * the batching benefits but not so much that we create dead
768 		 * time
769 		 * on the wire.
770 		 */
771 		if (ic->i_unsignaled_wrs-- == 0) {
772 			ic->i_unsignaled_wrs = rdsv3_ib_sysctl_max_unsig_wrs;
773 			wr->wr_flags |=
774 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
775 		}
776 
777 		ic->i_unsignaled_bytes -= len;
778 		if (ic->i_unsignaled_bytes <= 0) {
779 			ic->i_unsignaled_bytes =
780 			    rdsv3_ib_sysctl_max_unsig_bytes;
781 			wr->wr_flags |=
782 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
783 		}
784 
785 		/*
786 		 * Always signal the last one if we're stopping due to flow
787 		 * control.
788 		 */
789 		if (flow_controlled && i == (work_alloc-1)) {
790 			wr->wr_flags |=
791 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
792 		}
793 
794 		RDSV3_DPRINTF5("rdsv3_ib_xmit", "send %p wr %p num_sge %u \n",
795 		    send, wr, wr->wr_nds);
796 
797 		sent += len;
798 		off += len;
799 		if (off == rdsv3_ib_sg_dma_len(dev, scat)) {
800 			scat++;
801 			off = 0;
802 		}
803 
804 add_header:
805 		/*
806 		 * Tack on the header after the data. The header SGE
807 		 * should already
808 		 * have been set up to point to the right header buffer.
809 		 */
810 		(void) memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
811 		    sizeof (struct rdsv3_header));
812 
813 		if (0) {
814 			struct rdsv3_header *hdr = &ic->i_send_hdrs[pos];
815 
816 			RDSV3_DPRINTF2("rdsv3_ib_xmit",
817 			    "send WR dport=%u flags=0x%x len=%d",
818 			    ntohs(hdr->h_dport),
819 			    hdr->h_flags,
820 			    ntohl(hdr->h_len));
821 		}
822 		if (adv_credits) {
823 			struct rdsv3_header *hdr = &ic->i_send_hdrs[pos];
824 
825 			/* add credit and redo the header checksum */
826 			hdr->h_credit = adv_credits;
827 			rdsv3_message_make_checksum(hdr);
828 			adv_credits = 0;
829 			rdsv3_ib_stats_inc(s_ib_tx_credit_updates);
830 		}
831 
832 		prev = send;
833 
834 		pos = (pos + 1) % ic->i_send_ring.w_nr;
835 	}
836 
837 	/*
838 	 * Account the RDS header in the number of bytes we sent, but just once.
839 	 * The caller has no concept of fragmentation.
840 	 */
841 	if (hdr_off == 0)
842 		sent += sizeof (struct rdsv3_header);
843 
844 	/* if we finished the message then send completion owns it */
845 	if (scat == &rm->m_sg[rm->m_count]) {
846 		prev->s_rm = ic->i_rm;
847 		wr->wr_flags |= IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
848 		ic->i_rm = NULL;
849 	}
850 
851 	if (i < work_alloc) {
852 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
853 		work_alloc = i;
854 	}
855 	if (ic->i_flowctl && i < credit_alloc)
856 		rdsv3_ib_send_add_credits(conn, credit_alloc - i);
857 
858 	/* XXX need to worry about failed_wr and partial sends. */
859 	ret = ibt_post_send(ib_get_ibt_channel_hdl(ic->i_cm_id),
860 	    ic->i_send_wrs, i, &posted);
861 	if (posted != i) {
862 		RDSV3_DPRINTF2("rdsv3_ib_xmit",
863 		    "ic %p first %p nwr: %d ret %d:%d",
864 		    ic, first, i, ret, posted);
865 	}
866 	if (ret) {
867 		RDSV3_DPRINTF2("rdsv3_ib_xmit",
868 		    "RDS/IB: ib_post_send to %u.%u.%u.%u "
869 		    "returned %d\n", NIPQUAD(conn->c_faddr), ret);
870 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
871 		if (prev->s_rm) {
872 			ic->i_rm = prev->s_rm;
873 			prev->s_rm = NULL;
874 		}
875 		RDSV3_DPRINTF2("rdsv3_ib_xmit", "ibt_post_send failed\n");
876 		rdsv3_conn_drop(ic->conn);
877 		ret = -EAGAIN;
878 		goto out;
879 	}
880 
881 	ret = sent;
882 
883 	RDSV3_DPRINTF4("rdsv3_ib_xmit", "Return: conn: %p, rm: %p", conn, rm);
884 out:
885 	ASSERT(!adv_credits);
886 	return (ret);
887 }
888 
889 static void
890 rdsv3_ib_dma_unmap_sg_rdma(struct ib_device *dev, uint_t num,
891 	struct rdsv3_rdma_sg scat[])
892 {
893 	ibt_hca_hdl_t hca_hdl;
894 	int i;
895 	int num_sgl;
896 
897 	RDSV3_DPRINTF4("rdsv3_ib_dma_unmap_sg", "rdma_sg: %p", scat);
898 
899 	if (dev) {
900 		hca_hdl = ib_get_ibt_hca_hdl(dev);
901 	} else {
902 		hca_hdl = scat[0].hca_hdl;
903 		RDSV3_DPRINTF2("rdsv3_ib_dma_unmap_sg_rdma",
904 		    "NULL dev use cached hca_hdl %p", hca_hdl);
905 	}
906 
907 	if (hca_hdl == NULL)
908 		return;
909 	scat[0].hca_hdl = NULL;
910 
911 	for (i = 0; i < num; i++) {
912 		if (scat[i].mihdl != NULL) {
913 			num_sgl = (scat[i].iovec.bytes / PAGESIZE) + 2;
914 			kmem_free(scat[i].swr.wr_sgl,
915 			    (num_sgl * sizeof (ibt_wr_ds_t)));
916 			scat[i].swr.wr_sgl = NULL;
917 			(void) ibt_unmap_mem_iov(hca_hdl, scat[i].mihdl);
918 			scat[i].mihdl = NULL;
919 		} else
920 			break;
921 	}
922 }
923 
924 /* ARGSUSED */
925 uint_t
926 rdsv3_ib_dma_map_sg_rdma(struct ib_device *dev, struct rdsv3_rdma_sg scat[],
927     uint_t num, struct rdsv3_scatterlist **scatl)
928 {
929 	ibt_hca_hdl_t hca_hdl;
930 	ibt_iov_attr_t iov_attr;
931 	struct buf *bp;
932 	uint_t i, j, k;
933 	uint_t count;
934 	struct rdsv3_scatterlist *sg;
935 	int ret;
936 
937 	RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma", "scat: %p, num: %d",
938 	    scat, num);
939 
940 	hca_hdl = ib_get_ibt_hca_hdl(dev);
941 	scat[0].hca_hdl = hca_hdl;
942 	bzero(&iov_attr, sizeof (ibt_iov_attr_t));
943 	iov_attr.iov_flags = IBT_IOV_BUF;
944 	iov_attr.iov_lso_hdr_sz = 0;
945 
946 	for (i = 0, count = 0; i < num; i++) {
947 		/* transpose umem_cookie  to buf structure */
948 		bp = ddi_umem_iosetup(scat[i].umem_cookie,
949 		    scat[i].iovec.addr & PAGEOFFSET, scat[i].iovec.bytes,
950 		    B_WRITE, 0, 0, NULL, DDI_UMEM_SLEEP);
951 		if (bp == NULL) {
952 			/* free resources  and return error */
953 			goto out;
954 		}
955 		/* setup ibt_map_mem_iov() attributes */
956 		iov_attr.iov_buf = bp;
957 		iov_attr.iov_wr_nds = (scat[i].iovec.bytes / PAGESIZE) + 2;
958 		scat[i].swr.wr_sgl =
959 		    kmem_zalloc(iov_attr.iov_wr_nds * sizeof (ibt_wr_ds_t),
960 		    KM_SLEEP);
961 
962 		ret = ibt_map_mem_iov(hca_hdl, &iov_attr,
963 		    (ibt_all_wr_t *)&scat[i].swr, &scat[i].mihdl);
964 		freerbuf(bp);
965 		if (ret != IBT_SUCCESS) {
966 			RDSV3_DPRINTF2("rdsv3_ib_dma_map_sg_rdma",
967 			    "ibt_map_mem_iov returned: %d", ret);
968 			/* free resources and return error */
969 			kmem_free(scat[i].swr.wr_sgl,
970 			    iov_attr.iov_wr_nds * sizeof (ibt_wr_ds_t));
971 			goto out;
972 		}
973 		count += scat[i].swr.wr_nds;
974 
975 #ifdef  DEBUG
976 		for (j = 0; j < scat[i].swr.wr_nds; j++) {
977 			RDSV3_DPRINTF5("rdsv3_ib_dma_map_sg_rdma",
978 			    "sgl[%d] va %llx len %x", j,
979 			    scat[i].swr.wr_sgl[j].ds_va,
980 			    scat[i].swr.wr_sgl[j].ds_len);
981 		}
982 #endif
983 		RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma",
984 		    "iovec.bytes: 0x%x scat[%d]swr.wr_nds: %d",
985 		    scat[i].iovec.bytes, i, scat[i].swr.wr_nds);
986 	}
987 
988 	count = ((count - 1) / RDSV3_IB_MAX_SGE) + 1;
989 	RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma", "Ret: num: %d", count);
990 	return (count);
991 
992 out:
993 	rdsv3_ib_dma_unmap_sg_rdma(dev, num, scat);
994 	return (0);
995 }
996 
997 int
998 rdsv3_ib_xmit_rdma(struct rdsv3_connection *conn, struct rdsv3_rdma_op *op)
999 {
1000 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
1001 	struct rdsv3_ib_send_work *send = NULL;
1002 	struct rdsv3_rdma_sg *scat;
1003 	uint64_t remote_addr;
1004 	uint32_t pos;
1005 	uint32_t work_alloc;
1006 	uint32_t i, j, k, idx;
1007 	uint32_t left, count;
1008 	uint32_t posted;
1009 	int sent;
1010 	ibt_status_t status;
1011 	ibt_send_wr_t *wr;
1012 	ibt_wr_ds_t *sge;
1013 
1014 	RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma", "rdsv3_ib_conn: %p", ic);
1015 
1016 	/* map the message the first time we see it */
1017 	if (!op->r_mapped) {
1018 		op->r_count = rdsv3_ib_dma_map_sg_rdma(ic->i_cm_id->device,
1019 		    op->r_rdma_sg, op->r_nents, &op->r_sg);
1020 		RDSV3_DPRINTF5("rdsv3_ib_xmit_rdma", "ic %p mapping op %p: %d",
1021 		    ic, op, op->r_count);
1022 		if (op->r_count == 0) {
1023 			rdsv3_ib_stats_inc(s_ib_tx_sg_mapping_failure);
1024 			RDSV3_DPRINTF2("rdsv3_ib_xmit_rdma",
1025 			    "fail: ic %p mapping op %p: %d",
1026 			    ic, op, op->r_count);
1027 			return (-ENOMEM); /* XXX ? */
1028 		}
1029 		op->r_mapped = 1;
1030 	}
1031 
1032 	/*
1033 	 * Instead of knowing how to return a partial rdma read/write
1034 	 * we insist that there
1035 	 * be enough work requests to send the entire message.
1036 	 */
1037 	work_alloc = rdsv3_ib_ring_alloc(&ic->i_send_ring, op->r_count, &pos);
1038 	if (work_alloc != op->r_count) {
1039 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1040 		rdsv3_ib_stats_inc(s_ib_tx_ring_full);
1041 		return (-ENOMEM);
1042 	}
1043 
1044 	RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma", "pos %u cnt %u", pos, op->r_count);
1045 	/*
1046 	 * take the scatter list and transpose into a list of
1047 	 * send wr's each with a scatter list of RDSV3_IB_MAX_SGE
1048 	 */
1049 	scat = &op->r_rdma_sg[0];
1050 	sent = 0;
1051 	remote_addr = op->r_remote_addr;
1052 
1053 	for (i = 0, k = 0; i < op->r_nents; i++) {
1054 		left = scat[i].swr.wr_nds;
1055 		for (idx = 0; left > 0; k++) {
1056 			send = &ic->i_sends[pos];
1057 			send->s_queued = jiffies;
1058 			send->s_opcode = op->r_write ? IBT_WRC_RDMAW :
1059 			    IBT_WRC_RDMAR;
1060 			send->s_op = op;
1061 
1062 			wr = &ic->i_send_wrs[k];
1063 			wr->wr_flags = 0;
1064 			wr->wr_id = pos | RDSV3_IB_SEND_OP;
1065 			wr->wr_trans = IBT_RC_SRV;
1066 			wr->wr_opcode = op->r_write ? IBT_WRC_RDMAW :
1067 			    IBT_WRC_RDMAR;
1068 			wr->wr.rc.rcwr.rdma.rdma_raddr = remote_addr;
1069 			wr->wr.rc.rcwr.rdma.rdma_rkey = op->r_key;
1070 
1071 			if (left > RDSV3_IB_MAX_SGE) {
1072 				count = RDSV3_IB_MAX_SGE;
1073 				left -= RDSV3_IB_MAX_SGE;
1074 			} else {
1075 				count = left;
1076 				left = 0;
1077 			}
1078 			wr->wr_nds = count;
1079 
1080 			for (j = 0; j < count; j++) {
1081 				sge = &wr->wr_sgl[j];
1082 				*sge = scat[i].swr.wr_sgl[idx];
1083 				remote_addr += scat[i].swr.wr_sgl[idx].ds_len;
1084 				sent += scat[i].swr.wr_sgl[idx].ds_len;
1085 				idx++;
1086 				RDSV3_DPRINTF5("xmit_rdma",
1087 				    "send_wrs[%d]sgl[%d] va %llx len %x",
1088 				    k, j, sge->ds_va, sge->ds_len);
1089 			}
1090 			RDSV3_DPRINTF5("rdsv3_ib_xmit_rdma",
1091 			    "wr[%d] %p key: %x code: %d tlen: %d",
1092 			    k, wr, wr->wr.rc.rcwr.rdma.rdma_rkey,
1093 			    wr->wr_opcode, sent);
1094 
1095 			/*
1096 			 * We want to delay signaling completions just enough
1097 			 * to get the batching benefits but not so much that
1098 			 * we create dead time on the wire.
1099 			 */
1100 			if (ic->i_unsignaled_wrs-- == 0) {
1101 				ic->i_unsignaled_wrs =
1102 				    rdsv3_ib_sysctl_max_unsig_wrs;
1103 				wr->wr_flags = IBT_WR_SEND_SIGNAL;
1104 			}
1105 
1106 			pos = (pos + 1) % ic->i_send_ring.w_nr;
1107 		}
1108 	}
1109 
1110 	status = ibt_post_send(ib_get_ibt_channel_hdl(ic->i_cm_id),
1111 	    ic->i_send_wrs, k, &posted);
1112 	if (status != IBT_SUCCESS) {
1113 		RDSV3_DPRINTF2("rdsv3_ib_xmit_rdma",
1114 		    "RDS/IB: rdma ib_post_send to %u.%u.%u.%u "
1115 		    "returned %d", NIPQUAD(conn->c_faddr), status);
1116 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1117 	}
1118 	RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma", "Ret: %p", ic);
1119 	return (status);
1120 }
1121 
1122 void
1123 rdsv3_ib_xmit_complete(struct rdsv3_connection *conn)
1124 {
1125 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
1126 
1127 	RDSV3_DPRINTF4("rdsv3_ib_xmit_complete", "conn: %p", conn);
1128 
1129 	/*
1130 	 * We may have a pending ACK or window update we were unable
1131 	 * to send previously (due to flow control). Try again.
1132 	 */
1133 	rdsv3_ib_attempt_ack(ic);
1134 }
1135