xref: /illumos-gate/usr/src/uts/common/io/ib/adapters/hermon/hermon_qp.c (revision 9e39c5ba00a55fa05777cc94b148296af305e135)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * hermon_qp.c
29  *    Hermon Queue Pair Processing Routines
30  *
31  *    Implements all the routines necessary for allocating, freeing, and
32  *    querying the Hermon queue pairs.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/conf.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/modctl.h>
40 #include <sys/bitmap.h>
41 #include <sys/sysmacros.h>
42 
43 #include <sys/ib/adapters/hermon/hermon.h>
44 #include <sys/ib/ib_pkt_hdrs.h>
45 
46 static int hermon_qp_create_qpn(hermon_state_t *state, hermon_qphdl_t qp,
47     hermon_rsrc_t *qpc);
48 static int hermon_qpn_avl_compare(const void *q, const void *e);
49 static int hermon_special_qp_rsrc_alloc(hermon_state_t *state,
50     ibt_sqp_type_t type, uint_t port, hermon_rsrc_t **qp_rsrc);
51 static int hermon_special_qp_rsrc_free(hermon_state_t *state,
52     ibt_sqp_type_t type, uint_t port);
53 static void hermon_qp_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
54     uint_t real_max_sgl, hermon_qp_wq_type_t wq_type,
55     uint_t *logwqesz, uint_t *max_sgl);
56 
57 /*
58  * hermon_qp_alloc()
59  *    Context: Can be called only from user or kernel context.
60  */
61 int
62 hermon_qp_alloc(hermon_state_t *state, hermon_qp_info_t *qpinfo,
63     uint_t sleepflag)
64 {
65 	hermon_rsrc_t			*qpc, *rsrc;
66 	hermon_umap_db_entry_t		*umapdb;
67 	hermon_qphdl_t			qp;
68 	ibt_qp_alloc_attr_t		*attr_p;
69 	ibt_qp_type_t			type;
70 	hermon_qp_wq_type_t		swq_type;
71 	ibtl_qp_hdl_t			ibt_qphdl;
72 	ibt_chan_sizes_t		*queuesz_p;
73 	ib_qpn_t			*qpn;
74 	hermon_qphdl_t			*qphdl;
75 	ibt_mr_attr_t			mr_attr;
76 	hermon_mr_options_t		mr_op;
77 	hermon_srqhdl_t			srq;
78 	hermon_pdhdl_t			pd;
79 	hermon_cqhdl_t			sq_cq, rq_cq;
80 	hermon_mrhdl_t			mr;
81 	uint64_t			value, qp_desc_off;
82 	uint64_t			*thewqe, thewqesz;
83 	uint32_t			*sq_buf, *rq_buf;
84 	uint32_t			log_qp_sq_size, log_qp_rq_size;
85 	uint32_t			sq_size, rq_size;
86 	uint32_t			sq_depth, rq_depth;
87 	uint32_t			sq_wqe_size, rq_wqe_size, wqesz_shift;
88 	uint32_t			max_sgl, max_recv_sgl, uarpg;
89 	uint_t				qp_is_umap;
90 	uint_t				qp_srq_en, i, j;
91 	int				status, flag;
92 
93 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*attr_p, *queuesz_p))
94 
95 	/*
96 	 * Extract the necessary info from the hermon_qp_info_t structure
97 	 */
98 	attr_p	  = qpinfo->qpi_attrp;
99 	type	  = qpinfo->qpi_type;
100 	ibt_qphdl = qpinfo->qpi_ibt_qphdl;
101 	queuesz_p = qpinfo->qpi_queueszp;
102 	qpn	  = qpinfo->qpi_qpn;
103 	qphdl	  = &qpinfo->qpi_qphdl;
104 
105 	/*
106 	 * Determine whether QP is being allocated for userland access or
107 	 * whether it is being allocated for kernel access.  If the QP is
108 	 * being allocated for userland access, then lookup the UAR
109 	 * page number for the current process.  Note:  If this is not found
110 	 * (e.g. if the process has not previously open()'d the Hermon driver),
111 	 * then an error is returned.
112 	 */
113 
114 
115 	qp_is_umap = (attr_p->qp_alloc_flags & IBT_QP_USER_MAP) ? 1 : 0;
116 	if (qp_is_umap) {
117 		status = hermon_umap_db_find(state->hs_instance, ddi_get_pid(),
118 		    MLNX_UMAP_UARPG_RSRC, &value, 0, NULL);
119 		if (status != DDI_SUCCESS) {
120 			status = IBT_INVALID_PARAM;
121 			goto qpalloc_fail;
122 		}
123 		uarpg = ((hermon_rsrc_t *)(uintptr_t)value)->hr_indx;
124 	} else {
125 		uarpg = state->hs_kernel_uar_index;
126 	}
127 
128 	/*
129 	 * Determine whether QP is being associated with an SRQ
130 	 */
131 	qp_srq_en = (attr_p->qp_alloc_flags & IBT_QP_USES_SRQ) ? 1 : 0;
132 	if (qp_srq_en) {
133 		/*
134 		 * Check for valid SRQ handle pointers
135 		 */
136 		if (attr_p->qp_ibc_srq_hdl == NULL) {
137 			status = IBT_SRQ_HDL_INVALID;
138 			goto qpalloc_fail;
139 		}
140 		srq = (hermon_srqhdl_t)attr_p->qp_ibc_srq_hdl;
141 	}
142 
143 	/*
144 	 * Check for valid QP service type (only UD/RC/UC supported)
145 	 */
146 	if (((type != IBT_UD_RQP) && (type != IBT_RC_RQP) &&
147 	    (type != IBT_UC_RQP))) {
148 		status = IBT_QP_SRV_TYPE_INVALID;
149 		goto qpalloc_fail;
150 	}
151 
152 
153 	/*
154 	 * Check for valid PD handle pointer
155 	 */
156 	if (attr_p->qp_pd_hdl == NULL) {
157 		status = IBT_PD_HDL_INVALID;
158 		goto qpalloc_fail;
159 	}
160 	pd = (hermon_pdhdl_t)attr_p->qp_pd_hdl;
161 
162 	/*
163 	 * If on an SRQ, check to make sure the PD is the same
164 	 */
165 	if (qp_srq_en && (pd->pd_pdnum != srq->srq_pdhdl->pd_pdnum)) {
166 		status = IBT_PD_HDL_INVALID;
167 		goto qpalloc_fail;
168 	}
169 
170 	/* Increment the reference count on the protection domain (PD) */
171 	hermon_pd_refcnt_inc(pd);
172 
173 	/*
174 	 * Check for valid CQ handle pointers
175 	 */
176 	if ((attr_p->qp_ibc_scq_hdl == NULL) ||
177 	    (attr_p->qp_ibc_rcq_hdl == NULL)) {
178 		status = IBT_CQ_HDL_INVALID;
179 		goto qpalloc_fail1;
180 	}
181 	sq_cq = (hermon_cqhdl_t)attr_p->qp_ibc_scq_hdl;
182 	rq_cq = (hermon_cqhdl_t)attr_p->qp_ibc_rcq_hdl;
183 
184 	/*
185 	 * Increment the reference count on the CQs.  One or both of these
186 	 * could return error if we determine that the given CQ is already
187 	 * being used with a special (SMI/GSI) QP.
188 	 */
189 	status = hermon_cq_refcnt_inc(sq_cq, HERMON_CQ_IS_NORMAL);
190 	if (status != DDI_SUCCESS) {
191 		status = IBT_CQ_HDL_INVALID;
192 		goto qpalloc_fail1;
193 	}
194 	status = hermon_cq_refcnt_inc(rq_cq, HERMON_CQ_IS_NORMAL);
195 	if (status != DDI_SUCCESS) {
196 		status = IBT_CQ_HDL_INVALID;
197 		goto qpalloc_fail2;
198 	}
199 
200 	/*
201 	 * Allocate an QP context entry.  This will be filled in with all
202 	 * the necessary parameters to define the Queue Pair.  Unlike
203 	 * other Hermon hardware resources, ownership is not immediately
204 	 * given to hardware in the final step here.  Instead, we must
205 	 * wait until the QP is later transitioned to the "Init" state before
206 	 * passing the QP to hardware.  If we fail here, we must undo all
207 	 * the reference count (CQ and PD).
208 	 */
209 	status = hermon_rsrc_alloc(state, HERMON_QPC, 1, sleepflag, &qpc);
210 	if (status != DDI_SUCCESS) {
211 		status = IBT_INSUFF_RESOURCE;
212 		goto qpalloc_fail3;
213 	}
214 
215 	/*
216 	 * Allocate the software structure for tracking the queue pair
217 	 * (i.e. the Hermon Queue Pair handle).  If we fail here, we must
218 	 * undo the reference counts and the previous resource allocation.
219 	 */
220 	status = hermon_rsrc_alloc(state, HERMON_QPHDL, 1, sleepflag, &rsrc);
221 	if (status != DDI_SUCCESS) {
222 		status = IBT_INSUFF_RESOURCE;
223 		goto qpalloc_fail4;
224 	}
225 	qp = (hermon_qphdl_t)rsrc->hr_addr;
226 	bzero(qp, sizeof (struct hermon_sw_qp_s));
227 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*qp))
228 
229 	/*
230 	 * Calculate the QP number from QPC index.  This routine handles
231 	 * all of the operations necessary to keep track of used, unused,
232 	 * and released QP numbers.
233 	 */
234 	status = hermon_qp_create_qpn(state, qp, qpc);
235 	if (status != DDI_SUCCESS) {
236 		status = IBT_INSUFF_RESOURCE;
237 		goto qpalloc_fail5;
238 	}
239 
240 	/*
241 	 * If this will be a user-mappable QP, then allocate an entry for
242 	 * the "userland resources database".  This will later be added to
243 	 * the database (after all further QP operations are successful).
244 	 * If we fail here, we must undo the reference counts and the
245 	 * previous resource allocation.
246 	 */
247 	if (qp_is_umap) {
248 		umapdb = hermon_umap_db_alloc(state->hs_instance, qp->qp_qpnum,
249 		    MLNX_UMAP_QPMEM_RSRC, (uint64_t)(uintptr_t)rsrc);
250 		if (umapdb == NULL) {
251 			status = IBT_INSUFF_RESOURCE;
252 			goto qpalloc_fail6;
253 		}
254 	}
255 
256 	/*
257 	 * Allocate the doorbell record.  Hermon just needs one for the RQ,
258 	 * if the QP is not associated with an SRQ, and use uarpg (above) as
259 	 * the uar index
260 	 */
261 
262 	if (!qp_srq_en) {
263 		status = hermon_dbr_alloc(state, uarpg, &qp->qp_rq_dbr_acchdl,
264 		    &qp->qp_rq_vdbr, &qp->qp_rq_pdbr, &qp->qp_rdbr_mapoffset);
265 		if (status != DDI_SUCCESS) {
266 			status = IBT_INSUFF_RESOURCE;
267 			goto qpalloc_fail6;
268 		}
269 	}
270 
271 	qp->qp_uses_lso = (attr_p->qp_flags & IBT_USES_LSO);
272 
273 	/*
274 	 * We verify that the requested number of SGL is valid (i.e.
275 	 * consistent with the device limits and/or software-configured
276 	 * limits).  If not, then obviously the same cleanup needs to be done.
277 	 */
278 	if (type == IBT_UD_RQP) {
279 		max_sgl = state->hs_ibtfinfo.hca_attr->hca_ud_send_sgl_sz;
280 		swq_type = HERMON_QP_WQ_TYPE_SENDQ_UD;
281 	} else {
282 		max_sgl = state->hs_ibtfinfo.hca_attr->hca_conn_send_sgl_sz;
283 		swq_type = HERMON_QP_WQ_TYPE_SENDQ_CONN;
284 	}
285 	max_recv_sgl = state->hs_ibtfinfo.hca_attr->hca_recv_sgl_sz;
286 	if ((attr_p->qp_sizes.cs_sq_sgl > max_sgl) ||
287 	    (!qp_srq_en && (attr_p->qp_sizes.cs_rq_sgl > max_recv_sgl))) {
288 		status = IBT_HCA_SGL_EXCEEDED;
289 		goto qpalloc_fail7;
290 	}
291 
292 	/*
293 	 * Determine this QP's WQE stride (for both the Send and Recv WQEs).
294 	 * This will depend on the requested number of SGLs.  Note: this
295 	 * has the side-effect of also calculating the real number of SGLs
296 	 * (for the calculated WQE size).
297 	 *
298 	 * For QP's on an SRQ, we set these to 0.
299 	 */
300 	if (qp_srq_en) {
301 		qp->qp_rq_log_wqesz = 0;
302 		qp->qp_rq_sgl = 0;
303 	} else {
304 		hermon_qp_sgl_to_logwqesz(state, attr_p->qp_sizes.cs_rq_sgl,
305 		    max_recv_sgl, HERMON_QP_WQ_TYPE_RECVQ,
306 		    &qp->qp_rq_log_wqesz, &qp->qp_rq_sgl);
307 	}
308 	hermon_qp_sgl_to_logwqesz(state, attr_p->qp_sizes.cs_sq_sgl,
309 	    max_sgl, swq_type, &qp->qp_sq_log_wqesz, &qp->qp_sq_sgl);
310 
311 	sq_wqe_size = 1 << qp->qp_sq_log_wqesz;
312 
313 	/* NOTE: currently policy in driver, later maybe IBTF interface */
314 	qp->qp_no_prefetch = 0;
315 
316 	/*
317 	 * for prefetching, we need to add the number of wqes in
318 	 * the 2k area plus one to the number requested, but
319 	 * ONLY for send queue.  If no_prefetch == 1 (prefetch off)
320 	 * it's exactly TWO wqes for the headroom
321 	 */
322 	if (qp->qp_no_prefetch)
323 		qp->qp_sq_headroom = 2 * sq_wqe_size;
324 	else
325 		qp->qp_sq_headroom = sq_wqe_size + HERMON_QP_OH_SIZE;
326 	/*
327 	 * hdrm wqes must be integral since both sq_wqe_size &
328 	 * HERMON_QP_OH_SIZE are power of 2
329 	 */
330 	qp->qp_sq_hdrmwqes = (qp->qp_sq_headroom / sq_wqe_size);
331 
332 
333 	/*
334 	 * Calculate the appropriate size for the work queues.
335 	 * For send queue, add in the headroom wqes to the calculation.
336 	 * Note:  All Hermon QP work queues must be a power-of-2 in size.  Also
337 	 * they may not be any smaller than HERMON_QP_MIN_SIZE.  This step is
338 	 * to round the requested size up to the next highest power-of-2
339 	 */
340 	/* first, adjust to a minimum and tell the caller the change */
341 	attr_p->qp_sizes.cs_sq = max(attr_p->qp_sizes.cs_sq,
342 	    HERMON_QP_MIN_SIZE);
343 	attr_p->qp_sizes.cs_rq = max(attr_p->qp_sizes.cs_rq,
344 	    HERMON_QP_MIN_SIZE);
345 	/*
346 	 * now, calculate the alloc size, taking into account
347 	 * the headroom for the sq
348 	 */
349 	log_qp_sq_size = highbit(attr_p->qp_sizes.cs_sq + qp->qp_sq_hdrmwqes);
350 	/* if the total is a power of two, reduce it */
351 	if (((attr_p->qp_sizes.cs_sq + qp->qp_sq_hdrmwqes)  &
352 	    (attr_p->qp_sizes.cs_sq + qp->qp_sq_hdrmwqes - 1)) == 0)	{
353 		log_qp_sq_size = log_qp_sq_size - 1;
354 	}
355 
356 	log_qp_rq_size = highbit(attr_p->qp_sizes.cs_rq);
357 	if ((attr_p->qp_sizes.cs_rq & (attr_p->qp_sizes.cs_rq - 1)) == 0) {
358 		log_qp_rq_size = log_qp_rq_size - 1;
359 	}
360 
361 	/*
362 	 * Next we verify that the rounded-up size is valid (i.e. consistent
363 	 * with the device limits and/or software-configured limits).  If not,
364 	 * then obviously we have a lot of cleanup to do before returning.
365 	 *
366 	 * NOTE: the first condition deals with the (test) case of cs_sq
367 	 * being just less than 2^32.  In this case, the headroom addition
368 	 * to the requested cs_sq will pass the test when it should not.
369 	 * This test no longer lets that case slip through the check.
370 	 */
371 	if ((attr_p->qp_sizes.cs_sq >
372 	    (1 << state->hs_cfg_profile->cp_log_max_qp_sz)) ||
373 	    (log_qp_sq_size > state->hs_cfg_profile->cp_log_max_qp_sz) ||
374 	    (!qp_srq_en && (log_qp_rq_size >
375 	    state->hs_cfg_profile->cp_log_max_qp_sz))) {
376 		status = IBT_HCA_WR_EXCEEDED;
377 		goto qpalloc_fail7;
378 	}
379 
380 	/*
381 	 * Allocate the memory for QP work queues. Since Hermon work queues
382 	 * are not allowed to cross a 32-bit (4GB) boundary, the alignment of
383 	 * the work queue memory is very important.  We used to allocate
384 	 * work queues (the combined receive and send queues) so that they
385 	 * would be aligned on their combined size.  That alignment guaranteed
386 	 * that they would never cross the 4GB boundary (Hermon work queues
387 	 * are on the order of MBs at maximum).  Now we are able to relax
388 	 * this alignment constraint by ensuring that the IB address assigned
389 	 * to the queue memory (as a result of the hermon_mr_register() call)
390 	 * is offset from zero.
391 	 * Previously, we had wanted to use the ddi_dma_mem_alloc() routine to
392 	 * guarantee the alignment, but when attempting to use IOMMU bypass
393 	 * mode we found that we were not allowed to specify any alignment
394 	 * that was more restrictive than the system page size.
395 	 * So we avoided this constraint by passing two alignment values,
396 	 * one for the memory allocation itself and the other for the DMA
397 	 * handle (for later bind).  This used to cause more memory than
398 	 * necessary to be allocated (in order to guarantee the more
399 	 * restrictive alignment contraint).  But by guaranteeing the
400 	 * zero-based IB virtual address for the queue, we are able to
401 	 * conserve this memory.
402 	 */
403 	sq_wqe_size = 1 << qp->qp_sq_log_wqesz;
404 	sq_depth    = 1 << log_qp_sq_size;
405 	sq_size	    = sq_depth * sq_wqe_size;
406 
407 	/* QP on SRQ sets these to 0 */
408 	if (qp_srq_en) {
409 		rq_wqe_size = 0;
410 		rq_size	    = 0;
411 	} else {
412 		rq_wqe_size = 1 << qp->qp_rq_log_wqesz;
413 		rq_depth    = 1 << log_qp_rq_size;
414 		rq_size	    = rq_depth * rq_wqe_size;
415 	}
416 
417 	qp->qp_wqinfo.qa_size = sq_size + rq_size;
418 
419 	qp->qp_wqinfo.qa_alloc_align = PAGESIZE;
420 	qp->qp_wqinfo.qa_bind_align  = PAGESIZE;
421 
422 	if (qp_is_umap) {
423 		qp->qp_wqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
424 	} else {
425 		qp->qp_wqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
426 	}
427 	status = hermon_queue_alloc(state, &qp->qp_wqinfo, sleepflag);
428 	if (status != DDI_SUCCESS) {
429 		status = IBT_INSUFF_RESOURCE;
430 		goto qpalloc_fail7;
431 	}
432 
433 	/*
434 	 * Sort WQs in memory according to stride (*q_wqe_size), largest first
435 	 * If they are equal, still put the SQ first
436 	 */
437 	qp->qp_sq_baseaddr = 0;
438 	qp->qp_rq_baseaddr = 0;
439 	if ((sq_wqe_size > rq_wqe_size) || (sq_wqe_size == rq_wqe_size)) {
440 		sq_buf = qp->qp_wqinfo.qa_buf_aligned;
441 
442 		/* if this QP is on an SRQ, set the rq_buf to NULL */
443 		if (qp_srq_en) {
444 			rq_buf = NULL;
445 		} else {
446 			rq_buf = (uint32_t *)((uintptr_t)sq_buf + sq_size);
447 			qp->qp_rq_baseaddr = sq_size;
448 		}
449 	} else {
450 		rq_buf = qp->qp_wqinfo.qa_buf_aligned;
451 		sq_buf = (uint32_t *)((uintptr_t)rq_buf + rq_size);
452 		qp->qp_sq_baseaddr = rq_size;
453 	}
454 
455 	if (qp_is_umap == 0) {
456 		qp->qp_sq_wqhdr = hermon_wrid_wqhdr_create(sq_depth);
457 		if (qp->qp_sq_wqhdr == NULL) {
458 			status = IBT_INSUFF_RESOURCE;
459 			goto qpalloc_fail8;
460 		}
461 		if (qp_srq_en) {
462 			qp->qp_rq_wqavl.wqa_wq = srq->srq_wq_wqhdr;
463 			qp->qp_rq_wqavl.wqa_srq_en = 1;
464 			qp->qp_rq_wqavl.wqa_srq = srq;
465 		} else {
466 			qp->qp_rq_wqhdr = hermon_wrid_wqhdr_create(rq_depth);
467 			if (qp->qp_rq_wqhdr == NULL) {
468 				status = IBT_INSUFF_RESOURCE;
469 				goto qpalloc_fail8;
470 			}
471 			qp->qp_rq_wqavl.wqa_wq = qp->qp_rq_wqhdr;
472 		}
473 		qp->qp_sq_wqavl.wqa_qpn = qp->qp_qpnum;
474 		qp->qp_sq_wqavl.wqa_type = HERMON_WR_SEND;
475 		qp->qp_sq_wqavl.wqa_wq = qp->qp_sq_wqhdr;
476 		qp->qp_rq_wqavl.wqa_qpn = qp->qp_qpnum;
477 		qp->qp_rq_wqavl.wqa_type = HERMON_WR_RECV;
478 	}
479 
480 	/*
481 	 * Register the memory for the QP work queues.  The memory for the
482 	 * QP must be registered in the Hermon cMPT tables.  This gives us the
483 	 * LKey to specify in the QP context later.  Note: The memory for
484 	 * Hermon work queues (both Send and Recv) must be contiguous and
485 	 * registered as a single memory region.  Note: If the QP memory is
486 	 * user-mappable, force DDI_DMA_CONSISTENT mapping. Also, in order to
487 	 * meet the alignment restriction, we pass the "mro_bind_override_addr"
488 	 * flag in the call to hermon_mr_register(). This guarantees that the
489 	 * resulting IB vaddr will be zero-based (modulo the offset into the
490 	 * first page). If we fail here, we still have the bunch of resource
491 	 * and reference count cleanup to do.
492 	 */
493 	flag = (sleepflag == HERMON_SLEEP) ? IBT_MR_SLEEP :
494 	    IBT_MR_NOSLEEP;
495 	mr_attr.mr_vaddr    = (uint64_t)(uintptr_t)qp->qp_wqinfo.qa_buf_aligned;
496 	mr_attr.mr_len	    = qp->qp_wqinfo.qa_size;
497 	mr_attr.mr_as	    = NULL;
498 	mr_attr.mr_flags    = flag;
499 	if (qp_is_umap) {
500 		mr_op.mro_bind_type = state->hs_cfg_profile->cp_iommu_bypass;
501 	} else {
502 		/* HERMON_QUEUE_LOCATION_NORMAL */
503 		mr_op.mro_bind_type =
504 		    state->hs_cfg_profile->cp_iommu_bypass;
505 	}
506 	mr_op.mro_bind_dmahdl = qp->qp_wqinfo.qa_dmahdl;
507 	mr_op.mro_bind_override_addr = 1;
508 	status = hermon_mr_register(state, pd, &mr_attr, &mr,
509 	    &mr_op, HERMON_QP_CMPT);
510 	if (status != DDI_SUCCESS) {
511 		status = IBT_INSUFF_RESOURCE;
512 		goto qpalloc_fail9;
513 	}
514 
515 	/*
516 	 * Calculate the offset between the kernel virtual address space
517 	 * and the IB virtual address space.  This will be used when
518 	 * posting work requests to properly initialize each WQE.
519 	 */
520 	qp_desc_off = (uint64_t)(uintptr_t)qp->qp_wqinfo.qa_buf_aligned -
521 	    (uint64_t)mr->mr_bindinfo.bi_addr;
522 
523 	/*
524 	 * Fill in all the return arguments (if necessary).  This includes
525 	 * real work queue sizes (in wqes), real SGLs, and QP number
526 	 */
527 	if (queuesz_p != NULL) {
528 		queuesz_p->cs_sq 	=
529 		    (1 << log_qp_sq_size) - qp->qp_sq_hdrmwqes;
530 		queuesz_p->cs_sq_sgl	= qp->qp_sq_sgl;
531 
532 		/* if this QP is on an SRQ, set these to 0 */
533 		if (qp_srq_en) {
534 			queuesz_p->cs_rq	= 0;
535 			queuesz_p->cs_rq_sgl	= 0;
536 		} else {
537 			queuesz_p->cs_rq	= (1 << log_qp_rq_size);
538 			queuesz_p->cs_rq_sgl	= qp->qp_rq_sgl;
539 		}
540 	}
541 	if (qpn != NULL) {
542 		*qpn = (ib_qpn_t)qp->qp_qpnum;
543 	}
544 
545 	/*
546 	 * Fill in the rest of the Hermon Queue Pair handle.
547 	 */
548 	qp->qp_qpcrsrcp		= qpc;
549 	qp->qp_rsrcp		= rsrc;
550 	qp->qp_state		= HERMON_QP_RESET;
551 	qp->qp_pdhdl		= pd;
552 	qp->qp_mrhdl		= mr;
553 	qp->qp_sq_sigtype	= (attr_p->qp_flags & IBT_WR_SIGNALED) ?
554 	    HERMON_QP_SQ_WR_SIGNALED : HERMON_QP_SQ_ALL_SIGNALED;
555 	qp->qp_is_special	= 0;
556 	qp->qp_is_umap		= qp_is_umap;
557 	qp->qp_uarpg		= uarpg;
558 	qp->qp_umap_dhp		= (devmap_cookie_t)NULL;
559 	qp->qp_sq_cqhdl		= sq_cq;
560 	qp->qp_sq_bufsz		= (1 << log_qp_sq_size);
561 	qp->qp_sq_logqsz	= log_qp_sq_size;
562 	qp->qp_sq_buf		= sq_buf;
563 	qp->qp_desc_off		= qp_desc_off;
564 	qp->qp_rq_cqhdl		= rq_cq;
565 	qp->qp_rq_buf		= rq_buf;
566 	qp->qp_rlky		= (attr_p->qp_flags & IBT_FAST_REG_RES_LKEY) !=
567 	    0;
568 
569 	/* if this QP is on an SRQ, set rq_bufsz to 0 */
570 	if (qp_srq_en) {
571 		qp->qp_rq_bufsz		= 0;
572 		qp->qp_rq_logqsz	= 0;
573 	} else {
574 		qp->qp_rq_bufsz		= (1 << log_qp_rq_size);
575 		qp->qp_rq_logqsz	= log_qp_rq_size;
576 	}
577 
578 	qp->qp_forward_sqd_event  = 0;
579 	qp->qp_sqd_still_draining = 0;
580 	qp->qp_hdlrarg		= (void *)ibt_qphdl;
581 	qp->qp_mcg_refcnt	= 0;
582 
583 	/*
584 	 * If this QP is to be associated with an SRQ, set the SRQ handle
585 	 */
586 	if (qp_srq_en) {
587 		qp->qp_srqhdl = srq;
588 		qp->qp_srq_en = HERMON_QP_SRQ_ENABLED;
589 		hermon_srq_refcnt_inc(qp->qp_srqhdl);
590 	} else {
591 		qp->qp_srqhdl = NULL;
592 		qp->qp_srq_en = HERMON_QP_SRQ_DISABLED;
593 	}
594 
595 	/* Determine the QP service type */
596 	if (type == IBT_RC_RQP) {
597 		qp->qp_serv_type = HERMON_QP_RC;
598 	} else if (type == IBT_UD_RQP) {
599 		qp->qp_serv_type = HERMON_QP_UD;
600 	} else {
601 		qp->qp_serv_type = HERMON_QP_UC;
602 	}
603 
604 	/*
605 	 * Initialize the RQ WQEs - unlike Arbel, no Rcv init is needed
606 	 */
607 
608 	/*
609 	 * Initialize the SQ WQEs - all that needs to be done is every 64 bytes
610 	 * set the quadword to all F's - high-order bit is owner (init to one)
611 	 * and the rest for the headroom definition of prefetching
612 	 *
613 	 */
614 	wqesz_shift = qp->qp_sq_log_wqesz;
615 	thewqesz    = 1 << wqesz_shift;
616 	thewqe = (uint64_t *)(void *)(qp->qp_sq_buf);
617 	if (qp_is_umap == 0) {
618 		for (i = 0; i < sq_depth; i++) {
619 			/*
620 			 * for each stride, go through and every 64 bytes
621 			 * write the init value - having set the address
622 			 * once, just keep incrementing it
623 			 */
624 			for (j = 0; j < thewqesz; j += 64, thewqe += 8) {
625 				*(uint32_t *)thewqe = 0xFFFFFFFF;
626 			}
627 		}
628 	}
629 
630 	/* Zero out the QP context */
631 	bzero(&qp->qpc, sizeof (hermon_hw_qpc_t));
632 
633 	/*
634 	 * Put QP handle in Hermon QPNum-to-QPHdl list.  Then fill in the
635 	 * "qphdl" and return success
636 	 */
637 	ASSERT(state->hs_qphdl[qpc->hr_indx] == NULL);
638 	state->hs_qphdl[qpc->hr_indx] = qp;
639 
640 	/*
641 	 * If this is a user-mappable QP, then we need to insert the previously
642 	 * allocated entry into the "userland resources database".  This will
643 	 * allow for later lookup during devmap() (i.e. mmap()) calls.
644 	 */
645 	if (qp_is_umap) {
646 		hermon_umap_db_add(umapdb);
647 	}
648 	mutex_init(&qp->qp_sq_lock, NULL, MUTEX_DRIVER,
649 	    DDI_INTR_PRI(state->hs_intrmsi_pri));
650 	mutex_init(&qp->qp_rq_lock, NULL, MUTEX_DRIVER,
651 	    DDI_INTR_PRI(state->hs_intrmsi_pri));
652 
653 	*qphdl = qp;
654 
655 	return (DDI_SUCCESS);
656 
657 /*
658  * The following is cleanup for all possible failure cases in this routine
659  */
660 qpalloc_fail9:
661 	hermon_queue_free(&qp->qp_wqinfo);
662 qpalloc_fail8:
663 	if (qp->qp_sq_wqhdr)
664 		hermon_wrid_wqhdr_destroy(qp->qp_sq_wqhdr);
665 	if (qp->qp_rq_wqhdr)
666 		hermon_wrid_wqhdr_destroy(qp->qp_rq_wqhdr);
667 qpalloc_fail7:
668 	if (qp_is_umap) {
669 		hermon_umap_db_free(umapdb);
670 	}
671 	if (!qp_srq_en) {
672 		hermon_dbr_free(state, uarpg, qp->qp_rq_vdbr);
673 	}
674 
675 qpalloc_fail6:
676 	/*
677 	 * Releasing the QPN will also free up the QPC context.  Update
678 	 * the QPC context pointer to indicate this.
679 	 */
680 	hermon_qp_release_qpn(state, qp->qp_qpn_hdl, HERMON_QPN_RELEASE);
681 	qpc = NULL;
682 qpalloc_fail5:
683 	hermon_rsrc_free(state, &rsrc);
684 qpalloc_fail4:
685 	if (qpc) {
686 		hermon_rsrc_free(state, &qpc);
687 	}
688 qpalloc_fail3:
689 	hermon_cq_refcnt_dec(rq_cq);
690 qpalloc_fail2:
691 	hermon_cq_refcnt_dec(sq_cq);
692 qpalloc_fail1:
693 	hermon_pd_refcnt_dec(pd);
694 qpalloc_fail:
695 	return (status);
696 }
697 
698 
699 
700 /*
701  * hermon_special_qp_alloc()
702  *    Context: Can be called only from user or kernel context.
703  */
704 int
705 hermon_special_qp_alloc(hermon_state_t *state, hermon_qp_info_t *qpinfo,
706     uint_t sleepflag)
707 {
708 	hermon_rsrc_t		*qpc, *rsrc;
709 	hermon_qphdl_t		qp;
710 	ibt_qp_alloc_attr_t	*attr_p;
711 	ibt_sqp_type_t		type;
712 	uint8_t			port;
713 	ibtl_qp_hdl_t		ibt_qphdl;
714 	ibt_chan_sizes_t	*queuesz_p;
715 	hermon_qphdl_t		*qphdl;
716 	ibt_mr_attr_t		mr_attr;
717 	hermon_mr_options_t	mr_op;
718 	hermon_pdhdl_t		pd;
719 	hermon_cqhdl_t		sq_cq, rq_cq;
720 	hermon_mrhdl_t		mr;
721 	uint64_t		qp_desc_off;
722 	uint64_t		*thewqe, thewqesz;
723 	uint32_t		*sq_buf, *rq_buf;
724 	uint32_t		log_qp_sq_size, log_qp_rq_size;
725 	uint32_t		sq_size, rq_size, max_sgl;
726 	uint32_t		uarpg;
727 	uint32_t		sq_depth;
728 	uint32_t		sq_wqe_size, rq_wqe_size, wqesz_shift;
729 	int			status, flag, i, j;
730 
731 	/*
732 	 * Extract the necessary info from the hermon_qp_info_t structure
733 	 */
734 	attr_p	  = qpinfo->qpi_attrp;
735 	type	  = qpinfo->qpi_type;
736 	port	  = qpinfo->qpi_port;
737 	ibt_qphdl = qpinfo->qpi_ibt_qphdl;
738 	queuesz_p = qpinfo->qpi_queueszp;
739 	qphdl	  = &qpinfo->qpi_qphdl;
740 
741 	/*
742 	 * Check for valid special QP type (only SMI & GSI supported)
743 	 */
744 	if ((type != IBT_SMI_SQP) && (type != IBT_GSI_SQP)) {
745 		status = IBT_QP_SPECIAL_TYPE_INVALID;
746 		goto spec_qpalloc_fail;
747 	}
748 
749 	/*
750 	 * Check for valid port number
751 	 */
752 	if (!hermon_portnum_is_valid(state, port)) {
753 		status = IBT_HCA_PORT_INVALID;
754 		goto spec_qpalloc_fail;
755 	}
756 	port = port - 1;
757 
758 	/*
759 	 * Check for valid PD handle pointer
760 	 */
761 	if (attr_p->qp_pd_hdl == NULL) {
762 		status = IBT_PD_HDL_INVALID;
763 		goto spec_qpalloc_fail;
764 	}
765 	pd = (hermon_pdhdl_t)attr_p->qp_pd_hdl;
766 
767 	/* Increment the reference count on the PD */
768 	hermon_pd_refcnt_inc(pd);
769 
770 	/*
771 	 * Check for valid CQ handle pointers
772 	 */
773 	if ((attr_p->qp_ibc_scq_hdl == NULL) ||
774 	    (attr_p->qp_ibc_rcq_hdl == NULL)) {
775 		status = IBT_CQ_HDL_INVALID;
776 		goto spec_qpalloc_fail1;
777 	}
778 	sq_cq = (hermon_cqhdl_t)attr_p->qp_ibc_scq_hdl;
779 	rq_cq = (hermon_cqhdl_t)attr_p->qp_ibc_rcq_hdl;
780 
781 	/*
782 	 * Increment the reference count on the CQs.  One or both of these
783 	 * could return error if we determine that the given CQ is already
784 	 * being used with a non-special QP (i.e. a normal QP).
785 	 */
786 	status = hermon_cq_refcnt_inc(sq_cq, HERMON_CQ_IS_SPECIAL);
787 	if (status != DDI_SUCCESS) {
788 		status = IBT_CQ_HDL_INVALID;
789 		goto spec_qpalloc_fail1;
790 	}
791 	status = hermon_cq_refcnt_inc(rq_cq, HERMON_CQ_IS_SPECIAL);
792 	if (status != DDI_SUCCESS) {
793 		status = IBT_CQ_HDL_INVALID;
794 		goto spec_qpalloc_fail2;
795 	}
796 
797 	/*
798 	 * Allocate the special QP resources.  Essentially, this allocation
799 	 * amounts to checking if the request special QP has already been
800 	 * allocated.  If successful, the QP context return is an actual
801 	 * QP context that has been "aliased" to act as a special QP of the
802 	 * appropriate type (and for the appropriate port).  Just as in
803 	 * hermon_qp_alloc() above, ownership for this QP context is not
804 	 * immediately given to hardware in the final step here.  Instead, we
805 	 * wait until the QP is later transitioned to the "Init" state before
806 	 * passing the QP to hardware.  If we fail here, we must undo all
807 	 * the reference count (CQ and PD).
808 	 */
809 	status = hermon_special_qp_rsrc_alloc(state, type, port, &qpc);
810 	if (status != DDI_SUCCESS) {
811 		goto spec_qpalloc_fail3;
812 	}
813 
814 	/*
815 	 * Allocate the software structure for tracking the special queue
816 	 * pair (i.e. the Hermon Queue Pair handle).  If we fail here, we
817 	 * must undo the reference counts and the previous resource allocation.
818 	 */
819 	status = hermon_rsrc_alloc(state, HERMON_QPHDL, 1, sleepflag, &rsrc);
820 	if (status != DDI_SUCCESS) {
821 		status = IBT_INSUFF_RESOURCE;
822 		goto spec_qpalloc_fail4;
823 	}
824 	qp = (hermon_qphdl_t)rsrc->hr_addr;
825 
826 	bzero(qp, sizeof (struct hermon_sw_qp_s));
827 
828 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*qp))
829 
830 	/*
831 	 * Actual QP number is a combination of the index of the QPC and
832 	 * the port number.  This is because the special QP contexts must
833 	 * be allocated two-at-a-time.
834 	 */
835 	qp->qp_qpnum = qpc->hr_indx + port;
836 	qp->qp_ring = qp->qp_qpnum << 8;
837 
838 	uarpg = state->hs_kernel_uar_index; /* must be for spec qp */
839 	/*
840 	 * Allocate the doorbell record.  Hermon uses only one for the RQ so
841 	 * alloc a qp doorbell, using uarpg (above) as the uar index
842 	 */
843 
844 	status = hermon_dbr_alloc(state, uarpg, &qp->qp_rq_dbr_acchdl,
845 	    &qp->qp_rq_vdbr, &qp->qp_rq_pdbr, &qp->qp_rdbr_mapoffset);
846 	if (status != DDI_SUCCESS) {
847 		status = IBT_INSUFF_RESOURCE;
848 		goto spec_qpalloc_fail5;
849 	}
850 	/*
851 	 * Calculate the appropriate size for the work queues.
852 	 * Note:  All Hermon QP work queues must be a power-of-2 in size.  Also
853 	 * they may not be any smaller than HERMON_QP_MIN_SIZE.  This step is
854 	 * to round the requested size up to the next highest power-of-2
855 	 */
856 	attr_p->qp_sizes.cs_sq =
857 	    max(attr_p->qp_sizes.cs_sq, HERMON_QP_MIN_SIZE);
858 	attr_p->qp_sizes.cs_rq =
859 	    max(attr_p->qp_sizes.cs_rq, HERMON_QP_MIN_SIZE);
860 	log_qp_sq_size = highbit(attr_p->qp_sizes.cs_sq);
861 	if ((attr_p->qp_sizes.cs_sq & (attr_p->qp_sizes.cs_sq - 1)) == 0) {
862 		log_qp_sq_size = log_qp_sq_size - 1;
863 	}
864 	log_qp_rq_size = highbit(attr_p->qp_sizes.cs_rq);
865 	if ((attr_p->qp_sizes.cs_rq & (attr_p->qp_sizes.cs_rq - 1)) == 0) {
866 		log_qp_rq_size = log_qp_rq_size - 1;
867 	}
868 
869 	/*
870 	 * Next we verify that the rounded-up size is valid (i.e. consistent
871 	 * with the device limits and/or software-configured limits).  If not,
872 	 * then obviously we have a bit of cleanup to do before returning.
873 	 */
874 	if ((log_qp_sq_size > state->hs_cfg_profile->cp_log_max_qp_sz) ||
875 	    (log_qp_rq_size > state->hs_cfg_profile->cp_log_max_qp_sz)) {
876 		status = IBT_HCA_WR_EXCEEDED;
877 		goto spec_qpalloc_fail5a;
878 	}
879 
880 	/*
881 	 * Next we verify that the requested number of SGL is valid (i.e.
882 	 * consistent with the device limits and/or software-configured
883 	 * limits).  If not, then obviously the same cleanup needs to be done.
884 	 */
885 	max_sgl = state->hs_cfg_profile->cp_wqe_real_max_sgl;
886 	if ((attr_p->qp_sizes.cs_sq_sgl > max_sgl) ||
887 	    (attr_p->qp_sizes.cs_rq_sgl > max_sgl)) {
888 		status = IBT_HCA_SGL_EXCEEDED;
889 		goto spec_qpalloc_fail5a;
890 	}
891 
892 	/*
893 	 * Determine this QP's WQE stride (for both the Send and Recv WQEs).
894 	 * This will depend on the requested number of SGLs.  Note: this
895 	 * has the side-effect of also calculating the real number of SGLs
896 	 * (for the calculated WQE size).
897 	 */
898 	hermon_qp_sgl_to_logwqesz(state, attr_p->qp_sizes.cs_rq_sgl,
899 	    max_sgl, HERMON_QP_WQ_TYPE_RECVQ,
900 	    &qp->qp_rq_log_wqesz, &qp->qp_rq_sgl);
901 	if (type == IBT_SMI_SQP) {
902 		hermon_qp_sgl_to_logwqesz(state, attr_p->qp_sizes.cs_sq_sgl,
903 		    max_sgl, HERMON_QP_WQ_TYPE_SENDMLX_QP0,
904 		    &qp->qp_sq_log_wqesz, &qp->qp_sq_sgl);
905 	} else {
906 		hermon_qp_sgl_to_logwqesz(state, attr_p->qp_sizes.cs_sq_sgl,
907 		    max_sgl, HERMON_QP_WQ_TYPE_SENDMLX_QP1,
908 		    &qp->qp_sq_log_wqesz, &qp->qp_sq_sgl);
909 	}
910 
911 	/*
912 	 * Allocate the memory for QP work queues. Since Hermon work queues
913 	 * are not allowed to cross a 32-bit (4GB) boundary, the alignment of
914 	 * the work queue memory is very important.  We used to allocate
915 	 * work queues (the combined receive and send queues) so that they
916 	 * would be aligned on their combined size.  That alignment guaranteed
917 	 * that they would never cross the 4GB boundary (Hermon work queues
918 	 * are on the order of MBs at maximum).  Now we are able to relax
919 	 * this alignment constraint by ensuring that the IB address assigned
920 	 * to the queue memory (as a result of the hermon_mr_register() call)
921 	 * is offset from zero.
922 	 * Previously, we had wanted to use the ddi_dma_mem_alloc() routine to
923 	 * guarantee the alignment, but when attempting to use IOMMU bypass
924 	 * mode we found that we were not allowed to specify any alignment
925 	 * that was more restrictive than the system page size.
926 	 * So we avoided this constraint by passing two alignment values,
927 	 * one for the memory allocation itself and the other for the DMA
928 	 * handle (for later bind).  This used to cause more memory than
929 	 * necessary to be allocated (in order to guarantee the more
930 	 * restrictive alignment contraint).  But by guaranteeing the
931 	 * zero-based IB virtual address for the queue, we are able to
932 	 * conserve this memory.
933 	 */
934 	sq_wqe_size = 1 << qp->qp_sq_log_wqesz;
935 	sq_depth    = 1 << log_qp_sq_size;
936 	sq_size	    = (1 << log_qp_sq_size) * sq_wqe_size;
937 
938 	rq_wqe_size = 1 << qp->qp_rq_log_wqesz;
939 	rq_size	    = (1 << log_qp_rq_size) * rq_wqe_size;
940 
941 	qp->qp_wqinfo.qa_size	  = sq_size + rq_size;
942 
943 	qp->qp_wqinfo.qa_alloc_align = PAGESIZE;
944 	qp->qp_wqinfo.qa_bind_align  = PAGESIZE;
945 	qp->qp_wqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
946 
947 	status = hermon_queue_alloc(state, &qp->qp_wqinfo, sleepflag);
948 	if (status != NULL) {
949 		status = IBT_INSUFF_RESOURCE;
950 		goto spec_qpalloc_fail5a;
951 	}
952 
953 	/*
954 	 * Sort WQs in memory according to depth, stride (*q_wqe_size),
955 	 * biggest first. If equal, the Send Queue still goes first
956 	 */
957 	qp->qp_sq_baseaddr = 0;
958 	qp->qp_rq_baseaddr = 0;
959 	if ((sq_wqe_size > rq_wqe_size) || (sq_wqe_size == rq_wqe_size)) {
960 		sq_buf = qp->qp_wqinfo.qa_buf_aligned;
961 		rq_buf = (uint32_t *)((uintptr_t)sq_buf + sq_size);
962 		qp->qp_rq_baseaddr = sq_size;
963 	} else {
964 		rq_buf = qp->qp_wqinfo.qa_buf_aligned;
965 		sq_buf = (uint32_t *)((uintptr_t)rq_buf + rq_size);
966 		qp->qp_sq_baseaddr = rq_size;
967 	}
968 
969 	qp->qp_sq_wqhdr = hermon_wrid_wqhdr_create(sq_depth);
970 	if (qp->qp_sq_wqhdr == NULL) {
971 		status = IBT_INSUFF_RESOURCE;
972 		goto spec_qpalloc_fail6;
973 	}
974 	qp->qp_rq_wqhdr = hermon_wrid_wqhdr_create(1 << log_qp_rq_size);
975 	if (qp->qp_rq_wqhdr == NULL) {
976 		status = IBT_INSUFF_RESOURCE;
977 		goto spec_qpalloc_fail6;
978 	}
979 	qp->qp_sq_wqavl.wqa_qpn = qp->qp_qpnum;
980 	qp->qp_sq_wqavl.wqa_type = HERMON_WR_SEND;
981 	qp->qp_sq_wqavl.wqa_wq = qp->qp_sq_wqhdr;
982 	qp->qp_rq_wqavl.wqa_qpn = qp->qp_qpnum;
983 	qp->qp_rq_wqavl.wqa_type = HERMON_WR_RECV;
984 	qp->qp_rq_wqavl.wqa_wq = qp->qp_rq_wqhdr;
985 
986 	/*
987 	 * Register the memory for the special QP work queues.  The memory for
988 	 * the special QP must be registered in the Hermon cMPT tables.  This
989 	 * gives us the LKey to specify in the QP context later.  Note: The
990 	 * memory for Hermon work queues (both Send and Recv) must be contiguous
991 	 * and registered as a single memory region. Also, in order to meet the
992 	 * alignment restriction, we pass the "mro_bind_override_addr" flag in
993 	 * the call to hermon_mr_register(). This guarantees that the resulting
994 	 * IB vaddr will be zero-based (modulo the offset into the first page).
995 	 * If we fail here, we have a bunch of resource and reference count
996 	 * cleanup to do.
997 	 */
998 	flag = (sleepflag == HERMON_SLEEP) ? IBT_MR_SLEEP :
999 	    IBT_MR_NOSLEEP;
1000 	mr_attr.mr_vaddr    = (uint64_t)(uintptr_t)qp->qp_wqinfo.qa_buf_aligned;
1001 	mr_attr.mr_len	    = qp->qp_wqinfo.qa_size;
1002 	mr_attr.mr_as	    = NULL;
1003 	mr_attr.mr_flags    = flag;
1004 
1005 	mr_op.mro_bind_type = state->hs_cfg_profile->cp_iommu_bypass;
1006 	mr_op.mro_bind_dmahdl = qp->qp_wqinfo.qa_dmahdl;
1007 	mr_op.mro_bind_override_addr = 1;
1008 
1009 	status = hermon_mr_register(state, pd, &mr_attr, &mr, &mr_op,
1010 	    HERMON_QP_CMPT);
1011 	if (status != DDI_SUCCESS) {
1012 		status = IBT_INSUFF_RESOURCE;
1013 		goto spec_qpalloc_fail6;
1014 	}
1015 
1016 	/*
1017 	 * Calculate the offset between the kernel virtual address space
1018 	 * and the IB virtual address space.  This will be used when
1019 	 * posting work requests to properly initialize each WQE.
1020 	 */
1021 	qp_desc_off = (uint64_t)(uintptr_t)qp->qp_wqinfo.qa_buf_aligned -
1022 	    (uint64_t)mr->mr_bindinfo.bi_addr;
1023 
1024 	/* set the prefetch - initially, not prefetching */
1025 	qp->qp_no_prefetch = 1;
1026 
1027 	if (qp->qp_no_prefetch)
1028 		qp->qp_sq_headroom = 2 * sq_wqe_size;
1029 	else
1030 		qp->qp_sq_headroom = sq_wqe_size + HERMON_QP_OH_SIZE;
1031 	/*
1032 	 * hdrm wqes must be integral since both sq_wqe_size &
1033 	 * HERMON_QP_OH_SIZE are power of 2
1034 	 */
1035 	qp->qp_sq_hdrmwqes = (qp->qp_sq_headroom / sq_wqe_size);
1036 	/*
1037 	 * Fill in all the return arguments (if necessary).  This includes
1038 	 * real work queue sizes, real SGLs, and QP number (which will be
1039 	 * either zero or one, depending on the special QP type)
1040 	 */
1041 	if (queuesz_p != NULL) {
1042 		queuesz_p->cs_sq	=
1043 		    (1 << log_qp_sq_size) - qp->qp_sq_hdrmwqes;
1044 		queuesz_p->cs_sq_sgl	= qp->qp_sq_sgl;
1045 		queuesz_p->cs_rq	= (1 << log_qp_rq_size);
1046 		queuesz_p->cs_rq_sgl	= qp->qp_rq_sgl;
1047 	}
1048 
1049 	/*
1050 	 * Fill in the rest of the Hermon Queue Pair handle.  We can update
1051 	 * the following fields for use in further operations on the QP.
1052 	 */
1053 	qp->qp_qpcrsrcp		= qpc;
1054 	qp->qp_rsrcp		= rsrc;
1055 	qp->qp_state		= HERMON_QP_RESET;
1056 	qp->qp_pdhdl		= pd;
1057 	qp->qp_mrhdl		= mr;
1058 	qp->qp_sq_sigtype	= (attr_p->qp_flags & IBT_WR_SIGNALED) ?
1059 	    HERMON_QP_SQ_WR_SIGNALED : HERMON_QP_SQ_ALL_SIGNALED;
1060 	qp->qp_is_special	= (type == IBT_SMI_SQP) ?
1061 	    HERMON_QP_SMI : HERMON_QP_GSI;
1062 	qp->qp_is_umap		= 0;
1063 	qp->qp_uarpg		= uarpg;
1064 	qp->qp_umap_dhp		= (devmap_cookie_t)NULL;
1065 	qp->qp_sq_cqhdl		= sq_cq;
1066 	qp->qp_sq_bufsz		= (1 << log_qp_sq_size);
1067 	qp->qp_sq_buf		= sq_buf;
1068 	qp->qp_sq_logqsz	= log_qp_sq_size;
1069 	qp->qp_desc_off		= qp_desc_off;
1070 	qp->qp_rq_cqhdl		= rq_cq;
1071 	qp->qp_rq_bufsz		= (1 << log_qp_rq_size);
1072 	qp->qp_rq_buf		= rq_buf;
1073 	qp->qp_rq_logqsz	= log_qp_rq_size;
1074 	qp->qp_portnum		= port;
1075 	qp->qp_pkeyindx		= 0;
1076 	qp->qp_forward_sqd_event  = 0;
1077 	qp->qp_sqd_still_draining = 0;
1078 	qp->qp_hdlrarg		= (void *)ibt_qphdl;
1079 	qp->qp_mcg_refcnt	= 0;
1080 	qp->qp_srq_en		= 0;
1081 	qp->qp_srqhdl		= NULL;
1082 
1083 	/* All special QPs are UD QP service type */
1084 	qp->qp_serv_type = HERMON_QP_UD;
1085 
1086 	/*
1087 	 * Initialize the RQ WQEs - unlike Arbel, no Rcv init is needed
1088 	 */
1089 
1090 	/*
1091 	 * Initialize the SQ WQEs - all that needs to be done is every 64 bytes
1092 	 * set the quadword to all F's - high-order bit is owner (init to one)
1093 	 * and the rest for the headroom definition of prefetching
1094 	 *
1095 	 */
1096 
1097 	wqesz_shift = qp->qp_sq_log_wqesz;
1098 	thewqesz    = 1 << wqesz_shift;
1099 	thewqe = (uint64_t *)(void *)(qp->qp_sq_buf);
1100 	for (i = 0; i < sq_depth; i++) {
1101 		/*
1102 		 * for each stride, go through and every 64 bytes write the
1103 		 * init value - having set the address once, just keep
1104 		 * incrementing it
1105 		 */
1106 		for (j = 0; j < thewqesz; j += 64, thewqe += 8) {
1107 			*(uint32_t *)thewqe = 0xFFFFFFFF;
1108 		}
1109 	}
1110 
1111 
1112 	/* Zero out the QP context */
1113 	bzero(&qp->qpc, sizeof (hermon_hw_qpc_t));
1114 
1115 	/*
1116 	 * Put QP handle in Hermon QPNum-to-QPHdl list.  Then fill in the
1117 	 * "qphdl" and return success
1118 	 */
1119 	ASSERT(state->hs_qphdl[qpc->hr_indx + port] == NULL);
1120 	state->hs_qphdl[qpc->hr_indx + port] = qp;
1121 
1122 	*qphdl = qp;
1123 
1124 	return (DDI_SUCCESS);
1125 
1126 /*
1127  * The following is cleanup for all possible failure cases in this routine
1128  */
1129 spec_qpalloc_fail6:
1130 	hermon_queue_free(&qp->qp_wqinfo);
1131 	if (qp->qp_sq_wqhdr)
1132 		hermon_wrid_wqhdr_destroy(qp->qp_sq_wqhdr);
1133 	if (qp->qp_rq_wqhdr)
1134 		hermon_wrid_wqhdr_destroy(qp->qp_rq_wqhdr);
1135 spec_qpalloc_fail5a:
1136 	hermon_dbr_free(state, uarpg, qp->qp_rq_vdbr);
1137 spec_qpalloc_fail5:
1138 	hermon_rsrc_free(state, &rsrc);
1139 spec_qpalloc_fail4:
1140 	if (hermon_special_qp_rsrc_free(state, type, port) != DDI_SUCCESS) {
1141 		HERMON_WARNING(state, "failed to free special QP rsrc");
1142 	}
1143 spec_qpalloc_fail3:
1144 	hermon_cq_refcnt_dec(rq_cq);
1145 spec_qpalloc_fail2:
1146 	hermon_cq_refcnt_dec(sq_cq);
1147 spec_qpalloc_fail1:
1148 	hermon_pd_refcnt_dec(pd);
1149 spec_qpalloc_fail:
1150 	return (status);
1151 }
1152 
1153 
1154 /*
1155  * hermon_qp_free()
1156  *    This function frees up the QP resources.  Depending on the value
1157  *    of the "free_qp_flags", the QP number may not be released until
1158  *    a subsequent call to hermon_qp_release_qpn().
1159  *
1160  *    Context: Can be called only from user or kernel context.
1161  */
1162 /* ARGSUSED */
1163 int
1164 hermon_qp_free(hermon_state_t *state, hermon_qphdl_t *qphdl,
1165     ibc_free_qp_flags_t free_qp_flags, ibc_qpn_hdl_t *qpnh,
1166     uint_t sleepflag)
1167 {
1168 	hermon_rsrc_t		*qpc, *rsrc;
1169 	hermon_umap_db_entry_t	*umapdb;
1170 	hermon_qpn_entry_t	*entry;
1171 	hermon_pdhdl_t		pd;
1172 	hermon_mrhdl_t		mr;
1173 	hermon_cqhdl_t		sq_cq, rq_cq;
1174 	hermon_srqhdl_t		srq;
1175 	hermon_qphdl_t		qp;
1176 	uint64_t		value;
1177 	uint_t			type, port;
1178 	uint_t			maxprot;
1179 	uint_t			qp_srq_en;
1180 	int			status;
1181 
1182 	/*
1183 	 * Pull all the necessary information from the Hermon Queue Pair
1184 	 * handle.  This is necessary here because the resource for the
1185 	 * QP handle is going to be freed up as part of this operation.
1186 	 */
1187 	qp	= *qphdl;
1188 	mutex_enter(&qp->qp_lock);
1189 	qpc	= qp->qp_qpcrsrcp;
1190 	rsrc	= qp->qp_rsrcp;
1191 	pd	= qp->qp_pdhdl;
1192 	srq	= qp->qp_srqhdl;
1193 	mr	= qp->qp_mrhdl;
1194 	rq_cq	= qp->qp_rq_cqhdl;
1195 	sq_cq	= qp->qp_sq_cqhdl;
1196 	port	= qp->qp_portnum;
1197 	qp_srq_en = qp->qp_srq_en;
1198 
1199 	/*
1200 	 * If the QP is part of an MCG, then we fail the qp_free
1201 	 */
1202 	if (qp->qp_mcg_refcnt != 0) {
1203 		mutex_exit(&qp->qp_lock);
1204 		status = ibc_get_ci_failure(0);
1205 		goto qpfree_fail;
1206 	}
1207 
1208 	/*
1209 	 * If the QP is not already in "Reset" state, then transition to
1210 	 * "Reset".  This is necessary because software does not reclaim
1211 	 * ownership of the QP context until the QP is in the "Reset" state.
1212 	 * If the ownership transfer fails for any reason, then it is an
1213 	 * indication that something (either in HW or SW) has gone seriously
1214 	 * wrong.  So we print a warning message and return.
1215 	 */
1216 	if (qp->qp_state != HERMON_QP_RESET) {
1217 		if (hermon_qp_to_reset(state, qp) != DDI_SUCCESS) {
1218 			mutex_exit(&qp->qp_lock);
1219 			HERMON_WARNING(state, "failed to reset QP context");
1220 			status = ibc_get_ci_failure(0);
1221 			goto qpfree_fail;
1222 		}
1223 		qp->qp_state = HERMON_QP_RESET;
1224 
1225 		/*
1226 		 * Do any additional handling necessary for the transition
1227 		 * to the "Reset" state (e.g. update the WRID lists)
1228 		 */
1229 		if (hermon_wrid_to_reset_handling(state, qp) != DDI_SUCCESS) {
1230 			mutex_exit(&qp->qp_lock);
1231 			HERMON_WARNING(state, "failed to reset QP WRID list");
1232 			status = ibc_get_ci_failure(0);
1233 			goto qpfree_fail;
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * If this was a user-mappable QP, then we need to remove its entry
1239 	 * from the "userland resources database".  If it is also currently
1240 	 * mmap()'d out to a user process, then we need to call
1241 	 * devmap_devmem_remap() to remap the QP memory to an invalid mapping.
1242 	 * We also need to invalidate the QP tracking information for the
1243 	 * user mapping.
1244 	 */
1245 	if (qp->qp_is_umap) {
1246 		status = hermon_umap_db_find(state->hs_instance, qp->qp_qpnum,
1247 		    MLNX_UMAP_QPMEM_RSRC, &value, HERMON_UMAP_DB_REMOVE,
1248 		    &umapdb);
1249 		if (status != DDI_SUCCESS) {
1250 			mutex_exit(&qp->qp_lock);
1251 			HERMON_WARNING(state, "failed to find in database");
1252 			return (ibc_get_ci_failure(0));
1253 		}
1254 		hermon_umap_db_free(umapdb);
1255 		if (qp->qp_umap_dhp != NULL) {
1256 			maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
1257 			status = devmap_devmem_remap(qp->qp_umap_dhp,
1258 			    state->hs_dip, 0, 0, qp->qp_wqinfo.qa_size,
1259 			    maxprot, DEVMAP_MAPPING_INVALID, NULL);
1260 			if (status != DDI_SUCCESS) {
1261 				mutex_exit(&qp->qp_lock);
1262 				HERMON_WARNING(state, "failed in QP memory "
1263 				    "devmap_devmem_remap()");
1264 				return (ibc_get_ci_failure(0));
1265 			}
1266 			qp->qp_umap_dhp = (devmap_cookie_t)NULL;
1267 		}
1268 	}
1269 
1270 
1271 	/*
1272 	 * Put NULL into the Hermon QPNum-to-QPHdl list.  This will allow any
1273 	 * in-progress events to detect that the QP corresponding to this
1274 	 * number has been freed.  Note: it does depend in whether we are
1275 	 * freeing a special QP or not.
1276 	 */
1277 	if (qp->qp_is_special) {
1278 		state->hs_qphdl[qpc->hr_indx + port] = NULL;
1279 	} else {
1280 		state->hs_qphdl[qpc->hr_indx] = NULL;
1281 	}
1282 
1283 	/*
1284 	 * Drop the QP lock
1285 	 *    At this point the lock is no longer necessary.  We cannot
1286 	 *    protect from multiple simultaneous calls to free the same QP.
1287 	 *    In addition, since the QP lock is contained in the QP "software
1288 	 *    handle" resource, which we will free (see below), it is
1289 	 *    important that we have no further references to that memory.
1290 	 */
1291 	mutex_exit(&qp->qp_lock);
1292 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*qp))
1293 
1294 	/*
1295 	 * Free the QP resources
1296 	 *    Start by deregistering and freeing the memory for work queues.
1297 	 *    Next free any previously allocated context information
1298 	 *    (depending on QP type)
1299 	 *    Finally, decrement the necessary reference counts.
1300 	 * If this fails for any reason, then it is an indication that
1301 	 * something (either in HW or SW) has gone seriously wrong.  So we
1302 	 * print a warning message and return.
1303 	 */
1304 	status = hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
1305 	    sleepflag);
1306 	if (status != DDI_SUCCESS) {
1307 		HERMON_WARNING(state, "failed to deregister QP memory");
1308 		status = ibc_get_ci_failure(0);
1309 		goto qpfree_fail;
1310 	}
1311 
1312 	/* Free the memory for the QP */
1313 	hermon_queue_free(&qp->qp_wqinfo);
1314 
1315 	if (qp->qp_sq_wqhdr)
1316 		hermon_wrid_wqhdr_destroy(qp->qp_sq_wqhdr);
1317 	if (qp->qp_rq_wqhdr)
1318 		hermon_wrid_wqhdr_destroy(qp->qp_rq_wqhdr);
1319 
1320 	/* Free the dbr */
1321 	if (!qp_srq_en) {
1322 		hermon_dbr_free(state, qp->qp_uarpg, qp->qp_rq_vdbr);
1323 	}
1324 
1325 	/*
1326 	 * Free up the remainder of the QP resources.  Note: we have a few
1327 	 * different resources to free up depending on whether the QP is a
1328 	 * special QP or not.  As described above, if any of these fail for
1329 	 * any reason it is an indication that something (either in HW or SW)
1330 	 * has gone seriously wrong.  So we print a warning message and
1331 	 * return.
1332 	 */
1333 	if (qp->qp_is_special) {
1334 		type = (qp->qp_is_special == HERMON_QP_SMI) ?
1335 		    IBT_SMI_SQP : IBT_GSI_SQP;
1336 
1337 		/* Free up resources for the special QP */
1338 		status = hermon_special_qp_rsrc_free(state, type, port);
1339 		if (status != DDI_SUCCESS) {
1340 			HERMON_WARNING(state, "failed to free special QP rsrc");
1341 			status = ibc_get_ci_failure(0);
1342 			goto qpfree_fail;
1343 		}
1344 
1345 	} else {
1346 		type = qp->qp_serv_type;
1347 
1348 		/*
1349 		 * Check the flags and determine whether to release the
1350 		 * QPN or not, based on their value.
1351 		 */
1352 		if (free_qp_flags == IBC_FREE_QP_ONLY) {
1353 			entry = qp->qp_qpn_hdl;
1354 			hermon_qp_release_qpn(state, qp->qp_qpn_hdl,
1355 			    HERMON_QPN_FREE_ONLY);
1356 			*qpnh = (ibc_qpn_hdl_t)entry;
1357 		} else {
1358 			hermon_qp_release_qpn(state, qp->qp_qpn_hdl,
1359 			    HERMON_QPN_RELEASE);
1360 		}
1361 	}
1362 	mutex_destroy(&qp->qp_sq_lock);
1363 	mutex_destroy(&qp->qp_rq_lock);
1364 
1365 	/* Free the Hermon Queue Pair handle */
1366 	hermon_rsrc_free(state, &rsrc);
1367 
1368 	/* Decrement the reference counts on CQs, PD and SRQ (if needed) */
1369 	hermon_cq_refcnt_dec(rq_cq);
1370 	hermon_cq_refcnt_dec(sq_cq);
1371 	hermon_pd_refcnt_dec(pd);
1372 	if (qp_srq_en == HERMON_QP_SRQ_ENABLED) {
1373 		hermon_srq_refcnt_dec(srq);
1374 	}
1375 
1376 	/* Set the qphdl pointer to NULL and return success */
1377 	*qphdl = NULL;
1378 
1379 	return (DDI_SUCCESS);
1380 
1381 qpfree_fail:
1382 	return (status);
1383 }
1384 
1385 
1386 /*
1387  * hermon_qp_query()
1388  *    Context: Can be called from interrupt or base context.
1389  */
1390 int
1391 hermon_qp_query(hermon_state_t *state, hermon_qphdl_t qp,
1392     ibt_qp_query_attr_t *attr_p)
1393 {
1394 	ibt_cep_state_t		qp_state;
1395 	ibt_qp_ud_attr_t	*ud;
1396 	ibt_qp_rc_attr_t	*rc;
1397 	ibt_qp_uc_attr_t	*uc;
1398 	ibt_cep_flags_t		enable_flags;
1399 	hermon_hw_addr_path_t	*qpc_path, *qpc_alt_path;
1400 	ibt_cep_path_t		*path_ptr, *alt_path_ptr;
1401 	hermon_hw_qpc_t		*qpc;
1402 	int			status;
1403 	uint_t			tmp_sched_q, tmp_alt_sched_q;
1404 
1405 	mutex_enter(&qp->qp_lock);
1406 
1407 	/*
1408 	 * Grab the temporary QPC entry from QP software state
1409 	 */
1410 	qpc = &qp->qpc;
1411 
1412 	/* Convert the current Hermon QP state to IBTF QP state */
1413 	switch (qp->qp_state) {
1414 	case HERMON_QP_RESET:
1415 		qp_state = IBT_STATE_RESET;		/* "Reset" */
1416 		break;
1417 	case HERMON_QP_INIT:
1418 		qp_state = IBT_STATE_INIT;		/* Initialized */
1419 		break;
1420 	case HERMON_QP_RTR:
1421 		qp_state = IBT_STATE_RTR;		/* Ready to Receive */
1422 		break;
1423 	case HERMON_QP_RTS:
1424 		qp_state = IBT_STATE_RTS;		/* Ready to Send */
1425 		break;
1426 	case HERMON_QP_SQERR:
1427 		qp_state = IBT_STATE_SQE;		/* Send Queue Error */
1428 		break;
1429 	case HERMON_QP_SQD:
1430 		if (qp->qp_sqd_still_draining) {
1431 			qp_state = IBT_STATE_SQDRAIN;	/* SQ Draining */
1432 		} else {
1433 			qp_state = IBT_STATE_SQD;	/* SQ Drained */
1434 		}
1435 		break;
1436 	case HERMON_QP_ERR:
1437 		qp_state = IBT_STATE_ERROR;		/* Error */
1438 		break;
1439 	default:
1440 		mutex_exit(&qp->qp_lock);
1441 		return (ibc_get_ci_failure(0));
1442 	}
1443 	attr_p->qp_info.qp_state = qp_state;
1444 
1445 	/* SRQ Hook. */
1446 	attr_p->qp_srq = NULL;
1447 
1448 	/*
1449 	 * The following QP information is always returned, regardless of
1450 	 * the current QP state.  Note: Some special handling is necessary
1451 	 * for calculating the QP number on special QP (QP0 and QP1).
1452 	 */
1453 	attr_p->qp_sq_cq    = qp->qp_sq_cqhdl->cq_hdlrarg;
1454 	attr_p->qp_rq_cq    = qp->qp_rq_cqhdl->cq_hdlrarg;
1455 	if (qp->qp_is_special) {
1456 		attr_p->qp_qpn = (qp->qp_is_special == HERMON_QP_SMI) ? 0 : 1;
1457 	} else {
1458 		attr_p->qp_qpn = (ib_qpn_t)qp->qp_qpnum;
1459 	}
1460 	attr_p->qp_sq_sgl   = qp->qp_sq_sgl;
1461 	attr_p->qp_rq_sgl   = qp->qp_rq_sgl;
1462 	attr_p->qp_info.qp_sq_sz = qp->qp_sq_bufsz - qp->qp_sq_hdrmwqes;
1463 	attr_p->qp_info.qp_rq_sz = qp->qp_rq_bufsz;
1464 
1465 	/*
1466 	 * If QP is currently in the "Reset" state, then only the above are
1467 	 * returned
1468 	 */
1469 	if (qp_state == IBT_STATE_RESET) {
1470 		mutex_exit(&qp->qp_lock);
1471 		return (DDI_SUCCESS);
1472 	}
1473 
1474 	/*
1475 	 * Post QUERY_QP command to firmware
1476 	 *
1477 	 * We do a HERMON_NOSLEEP here because we are holding the "qp_lock".
1478 	 * Since we may be in the interrupt context (or subsequently raised
1479 	 * to interrupt level by priority inversion), we do not want to block
1480 	 * in this routine waiting for success.
1481 	 */
1482 	tmp_sched_q = qpc->pri_addr_path.sched_q;
1483 	tmp_alt_sched_q = qpc->alt_addr_path.sched_q;
1484 	status = hermon_cmn_query_cmd_post(state, QUERY_QP, 0, qp->qp_qpnum,
1485 	    qpc, sizeof (hermon_hw_qpc_t), HERMON_CMD_NOSLEEP_SPIN);
1486 	if (status != HERMON_CMD_SUCCESS) {
1487 		mutex_exit(&qp->qp_lock);
1488 		cmn_err(CE_WARN, "hermon%d: hermon_qp_query: QUERY_QP "
1489 		    "command failed: %08x\n", state->hs_instance, status);
1490 		if (status == HERMON_CMD_INVALID_STATUS) {
1491 			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
1492 		}
1493 		return (ibc_get_ci_failure(0));
1494 	}
1495 	qpc->pri_addr_path.sched_q = tmp_sched_q;
1496 	qpc->alt_addr_path.sched_q = tmp_alt_sched_q;
1497 
1498 	/*
1499 	 * Fill in the additional QP info based on the QP's transport type.
1500 	 */
1501 	if (qp->qp_serv_type == HERMON_QP_UD) {
1502 
1503 		/* Fill in the UD-specific info */
1504 		ud = &attr_p->qp_info.qp_transport.ud;
1505 		ud->ud_qkey	= (ib_qkey_t)qpc->qkey;
1506 		ud->ud_sq_psn	= qpc->next_snd_psn;
1507 		ud->ud_pkey_ix	= qpc->pri_addr_path.pkey_indx;
1508 		/* port+1 for port 1/2 */
1509 		ud->ud_port	=
1510 		    (uint8_t)(((qpc->pri_addr_path.sched_q >> 6) & 0x01) + 1);
1511 
1512 		attr_p->qp_info.qp_trans = IBT_UD_SRV;
1513 
1514 	} else if (qp->qp_serv_type == HERMON_QP_RC) {
1515 
1516 		/* Fill in the RC-specific info */
1517 		rc = &attr_p->qp_info.qp_transport.rc;
1518 		rc->rc_sq_psn	= qpc->next_snd_psn;
1519 		rc->rc_rq_psn	= qpc->next_rcv_psn;
1520 		rc->rc_dst_qpn	= qpc->rem_qpn;
1521 
1522 		/* Grab the path migration state information */
1523 		if (qpc->pm_state == HERMON_QP_PMSTATE_MIGRATED) {
1524 			rc->rc_mig_state = IBT_STATE_MIGRATED;
1525 		} else if (qpc->pm_state == HERMON_QP_PMSTATE_REARM) {
1526 			rc->rc_mig_state = IBT_STATE_REARMED;
1527 		} else {
1528 			rc->rc_mig_state = IBT_STATE_ARMED;
1529 		}
1530 		rc->rc_rdma_ra_out = (1 << qpc->sra_max);
1531 		rc->rc_rdma_ra_in  = (1 << qpc->rra_max);
1532 		rc->rc_min_rnr_nak = qpc->min_rnr_nak;
1533 		rc->rc_path_mtu	   = qpc->mtu;
1534 		rc->rc_retry_cnt   = qpc->retry_cnt;
1535 
1536 		/* Get the common primary address path fields */
1537 		qpc_path = &qpc->pri_addr_path;
1538 		path_ptr = &rc->rc_path;
1539 		hermon_get_addr_path(state, qpc_path, &path_ptr->cep_adds_vect,
1540 		    HERMON_ADDRPATH_QP);
1541 
1542 		/* Fill in the additional primary address path fields */
1543 		path_ptr->cep_pkey_ix	   = qpc_path->pkey_indx;
1544 		path_ptr->cep_hca_port_num =
1545 		    path_ptr->cep_adds_vect.av_port_num =
1546 		    (uint8_t)(((qpc_path->sched_q >> 6) & 0x01) + 1);
1547 		path_ptr->cep_timeout	   = qpc_path->ack_timeout;
1548 
1549 		/* Get the common alternate address path fields */
1550 		qpc_alt_path = &qpc->alt_addr_path;
1551 		alt_path_ptr = &rc->rc_alt_path;
1552 		hermon_get_addr_path(state, qpc_alt_path,
1553 		    &alt_path_ptr->cep_adds_vect, HERMON_ADDRPATH_QP);
1554 
1555 		/* Fill in the additional alternate address path fields */
1556 		alt_path_ptr->cep_pkey_ix	= qpc_alt_path->pkey_indx;
1557 		alt_path_ptr->cep_hca_port_num	=
1558 		    alt_path_ptr->cep_adds_vect.av_port_num =
1559 		    (uint8_t)(((qpc_alt_path->sched_q >> 6) & 0x01) + 1);
1560 		alt_path_ptr->cep_timeout	= qpc_alt_path->ack_timeout;
1561 
1562 		/* Get the RNR retry time from primary path */
1563 		rc->rc_rnr_retry_cnt = qpc->rnr_retry;
1564 
1565 		/* Set the enable flags based on RDMA/Atomic enable bits */
1566 		enable_flags = IBT_CEP_NO_FLAGS;
1567 		enable_flags |= ((qpc->rre == 0) ? 0 : IBT_CEP_RDMA_RD);
1568 		enable_flags |= ((qpc->rwe == 0) ? 0 : IBT_CEP_RDMA_WR);
1569 		enable_flags |= ((qpc->rae == 0) ? 0 : IBT_CEP_ATOMIC);
1570 		attr_p->qp_info.qp_flags = enable_flags;
1571 
1572 		attr_p->qp_info.qp_trans = IBT_RC_SRV;
1573 
1574 	} else if (qp->qp_serv_type == HERMON_QP_UC) {
1575 
1576 		/* Fill in the UC-specific info */
1577 		uc = &attr_p->qp_info.qp_transport.uc;
1578 		uc->uc_sq_psn	= qpc->next_snd_psn;
1579 		uc->uc_rq_psn	= qpc->next_rcv_psn;
1580 		uc->uc_dst_qpn	= qpc->rem_qpn;
1581 
1582 		/* Grab the path migration state information */
1583 		if (qpc->pm_state == HERMON_QP_PMSTATE_MIGRATED) {
1584 			uc->uc_mig_state = IBT_STATE_MIGRATED;
1585 		} else if (qpc->pm_state == HERMON_QP_PMSTATE_REARM) {
1586 			uc->uc_mig_state = IBT_STATE_REARMED;
1587 		} else {
1588 			uc->uc_mig_state = IBT_STATE_ARMED;
1589 		}
1590 		uc->uc_path_mtu = qpc->mtu;
1591 
1592 		/* Get the common primary address path fields */
1593 		qpc_path = &qpc->pri_addr_path;
1594 		path_ptr = &uc->uc_path;
1595 		hermon_get_addr_path(state, qpc_path, &path_ptr->cep_adds_vect,
1596 		    HERMON_ADDRPATH_QP);
1597 
1598 		/* Fill in the additional primary address path fields */
1599 		path_ptr->cep_pkey_ix	   = qpc_path->pkey_indx;
1600 		path_ptr->cep_hca_port_num =
1601 		    path_ptr->cep_adds_vect.av_port_num =
1602 		    (uint8_t)(((qpc_path->sched_q >> 6) & 0x01) + 1);
1603 
1604 		/* Get the common alternate address path fields */
1605 		qpc_alt_path = &qpc->alt_addr_path;
1606 		alt_path_ptr = &uc->uc_alt_path;
1607 		hermon_get_addr_path(state, qpc_alt_path,
1608 		    &alt_path_ptr->cep_adds_vect, HERMON_ADDRPATH_QP);
1609 
1610 		/* Fill in the additional alternate address path fields */
1611 		alt_path_ptr->cep_pkey_ix	= qpc_alt_path->pkey_indx;
1612 		alt_path_ptr->cep_hca_port_num	=
1613 		    alt_path_ptr->cep_adds_vect.av_port_num =
1614 		    (uint8_t)(((qpc_alt_path->sched_q >> 6) & 0x01) + 1);
1615 
1616 		/*
1617 		 * Set the enable flags based on RDMA enable bits (by
1618 		 * definition UC doesn't support Atomic or RDMA Read)
1619 		 */
1620 		enable_flags = ((qpc->rwe == 0) ? 0 : IBT_CEP_RDMA_WR);
1621 		attr_p->qp_info.qp_flags = enable_flags;
1622 
1623 		attr_p->qp_info.qp_trans = IBT_UC_SRV;
1624 
1625 	} else {
1626 		HERMON_WARNING(state, "unexpected QP transport type");
1627 		mutex_exit(&qp->qp_lock);
1628 		return (ibc_get_ci_failure(0));
1629 	}
1630 
1631 	/*
1632 	 * Under certain circumstances it is possible for the Hermon hardware
1633 	 * to transition to one of the error states without software directly
1634 	 * knowing about it.  The QueryQP() call is the one place where we
1635 	 * have an opportunity to sample and update our view of the QP state.
1636 	 */
1637 	if (qpc->state == HERMON_QP_SQERR) {
1638 		attr_p->qp_info.qp_state = IBT_STATE_SQE;
1639 		qp->qp_state = HERMON_QP_SQERR;
1640 	}
1641 	if (qpc->state == HERMON_QP_ERR) {
1642 		attr_p->qp_info.qp_state = IBT_STATE_ERROR;
1643 		qp->qp_state = HERMON_QP_ERR;
1644 	}
1645 	mutex_exit(&qp->qp_lock);
1646 
1647 	return (DDI_SUCCESS);
1648 }
1649 
1650 
1651 /*
1652  * hermon_qp_create_qpn()
1653  *    Context: Can be called from interrupt or base context.
1654  */
1655 static int
1656 hermon_qp_create_qpn(hermon_state_t *state, hermon_qphdl_t qp,
1657     hermon_rsrc_t *qpc)
1658 {
1659 	hermon_qpn_entry_t	query;
1660 	hermon_qpn_entry_t	*entry;
1661 	avl_index_t		where;
1662 
1663 	/*
1664 	 * Build a query (for the AVL tree lookup) and attempt to find
1665 	 * a previously added entry that has a matching QPC index.  If
1666 	 * no matching entry is found, then allocate, initialize, and
1667 	 * add an entry to the AVL tree.
1668 	 * If a matching entry is found, then increment its QPN counter
1669 	 * and reference counter.
1670 	 */
1671 	query.qpn_indx = qpc->hr_indx;
1672 	mutex_enter(&state->hs_qpn_avl_lock);
1673 	entry = (hermon_qpn_entry_t *)avl_find(&state->hs_qpn_avl,
1674 	    &query, &where);
1675 	if (entry == NULL) {
1676 		/*
1677 		 * Allocate and initialize a QPN entry, then insert
1678 		 * it into the AVL tree.
1679 		 */
1680 		entry = (hermon_qpn_entry_t *)kmem_zalloc(
1681 		    sizeof (hermon_qpn_entry_t), KM_NOSLEEP);
1682 		if (entry == NULL) {
1683 			mutex_exit(&state->hs_qpn_avl_lock);
1684 			return (DDI_FAILURE);
1685 		}
1686 		_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*entry))
1687 
1688 		entry->qpn_indx	   = qpc->hr_indx;
1689 		entry->qpn_refcnt  = 0;
1690 		entry->qpn_counter = 0;
1691 
1692 		avl_insert(&state->hs_qpn_avl, entry, where);
1693 	}
1694 
1695 	/*
1696 	 * Make the AVL tree entry point to the QP context resource that
1697 	 * it will be responsible for tracking
1698 	 */
1699 	entry->qpn_qpc = qpc;
1700 
1701 	/*
1702 	 * Setup the QP handle to point to the AVL tree entry.  Then
1703 	 * generate the new QP number from the entry's QPN counter value
1704 	 * and the hardware's QP context table index.
1705 	 */
1706 	qp->qp_qpn_hdl	= entry;
1707 	qp->qp_qpnum	= ((entry->qpn_counter <<
1708 	    state->hs_cfg_profile->cp_log_num_qp) | qpc->hr_indx) &
1709 	    HERMON_QP_MAXNUMBER_MSK;
1710 	qp->qp_ring = qp->qp_qpnum << 8;
1711 
1712 	/*
1713 	 * Increment the reference counter and QPN counter.  The QPN
1714 	 * counter always indicates the next available number for use.
1715 	 */
1716 	entry->qpn_counter++;
1717 	entry->qpn_refcnt++;
1718 
1719 	mutex_exit(&state->hs_qpn_avl_lock);
1720 
1721 	return (DDI_SUCCESS);
1722 }
1723 
1724 
1725 /*
1726  * hermon_qp_release_qpn()
1727  *    Context: Can be called only from user or kernel context.
1728  */
1729 void
1730 hermon_qp_release_qpn(hermon_state_t *state, hermon_qpn_entry_t *entry,
1731     int flags)
1732 {
1733 	ASSERT(entry != NULL);
1734 
1735 	mutex_enter(&state->hs_qpn_avl_lock);
1736 
1737 	/*
1738 	 * If we are releasing the QP number here, then we decrement the
1739 	 * reference count and check for zero references.  If there are
1740 	 * zero references, then we free the QPC context (if it hadn't
1741 	 * already been freed during a HERMON_QPN_FREE_ONLY free, i.e. for
1742 	 * reuse with another similar QP number) and remove the tracking
1743 	 * structure from the QP number AVL tree and free the structure.
1744 	 * If we are not releasing the QP number here, then, as long as we
1745 	 * have not exhausted the usefulness of the QPC context (that is,
1746 	 * re-used it too many times without the reference count having
1747 	 * gone to zero), we free up the QPC context for use by another
1748 	 * thread (which will use it to construct a different QP number
1749 	 * from the same QPC table index).
1750 	 */
1751 	if (flags == HERMON_QPN_RELEASE) {
1752 		entry->qpn_refcnt--;
1753 
1754 		/*
1755 		 * If the reference count is zero, then we free the QPC
1756 		 * context (if it hadn't already been freed in an early
1757 		 * step, e.g. HERMON_QPN_FREE_ONLY) and remove/free the
1758 		 * tracking structure from the QP number AVL tree.
1759 		 */
1760 		if (entry->qpn_refcnt == 0) {
1761 			if (entry->qpn_qpc != NULL) {
1762 				hermon_rsrc_free(state, &entry->qpn_qpc);
1763 			}
1764 
1765 			/*
1766 			 * If the current entry has served it's useful
1767 			 * purpose (i.e. been reused the maximum allowable
1768 			 * number of times), then remove it from QP number
1769 			 * AVL tree and free it up.
1770 			 */
1771 			if (entry->qpn_counter >= (1 <<
1772 			    (24 - state->hs_cfg_profile->cp_log_num_qp))) {
1773 				avl_remove(&state->hs_qpn_avl, entry);
1774 				kmem_free(entry, sizeof (hermon_qpn_entry_t));
1775 			}
1776 		}
1777 
1778 	} else if (flags == HERMON_QPN_FREE_ONLY) {
1779 		/*
1780 		 * Even if we are not freeing the QP number, that will not
1781 		 * always prevent us from releasing the QPC context.  In fact,
1782 		 * since the QPC context only forms part of the whole QPN,
1783 		 * we want to free it up for use by other consumers.  But
1784 		 * if the reference count is non-zero (which it will always
1785 		 * be when we are doing HERMON_QPN_FREE_ONLY) and the counter
1786 		 * has reached its maximum value, then we cannot reuse the
1787 		 * QPC context until the reference count eventually reaches
1788 		 * zero (in HERMON_QPN_RELEASE, above).
1789 		 */
1790 		if (entry->qpn_counter < (1 <<
1791 		    (24 - state->hs_cfg_profile->cp_log_num_qp))) {
1792 			hermon_rsrc_free(state, &entry->qpn_qpc);
1793 		}
1794 	}
1795 	mutex_exit(&state->hs_qpn_avl_lock);
1796 }
1797 
1798 
1799 /*
1800  * hermon_qpn_avl_compare()
1801  *    Context: Can be called from user or kernel context.
1802  */
1803 static int
1804 hermon_qpn_avl_compare(const void *q, const void *e)
1805 {
1806 	hermon_qpn_entry_t	*entry, *query;
1807 
1808 	entry = (hermon_qpn_entry_t *)e;
1809 	query = (hermon_qpn_entry_t *)q;
1810 
1811 	if (query->qpn_indx < entry->qpn_indx) {
1812 		return (-1);
1813 	} else if (query->qpn_indx > entry->qpn_indx) {
1814 		return (+1);
1815 	} else {
1816 		return (0);
1817 	}
1818 }
1819 
1820 
1821 /*
1822  * hermon_qpn_avl_init()
1823  *    Context: Only called from attach() path context
1824  */
1825 void
1826 hermon_qpn_avl_init(hermon_state_t *state)
1827 {
1828 	/* Initialize the lock used for QP number (QPN) AVL tree access */
1829 	mutex_init(&state->hs_qpn_avl_lock, NULL, MUTEX_DRIVER,
1830 	    DDI_INTR_PRI(state->hs_intrmsi_pri));
1831 
1832 	/* Initialize the AVL tree for the QP number (QPN) storage */
1833 	avl_create(&state->hs_qpn_avl, hermon_qpn_avl_compare,
1834 	    sizeof (hermon_qpn_entry_t),
1835 	    offsetof(hermon_qpn_entry_t, qpn_avlnode));
1836 }
1837 
1838 
1839 /*
1840  * hermon_qpn_avl_fini()
1841  *    Context: Only called from attach() and/or detach() path contexts
1842  */
1843 void
1844 hermon_qpn_avl_fini(hermon_state_t *state)
1845 {
1846 	hermon_qpn_entry_t	*entry;
1847 	void			*cookie;
1848 
1849 	/*
1850 	 * Empty all entries (if necessary) and destroy the AVL tree
1851 	 * that was used for QP number (QPN) tracking.
1852 	 */
1853 	cookie = NULL;
1854 	while ((entry = (hermon_qpn_entry_t *)avl_destroy_nodes(
1855 	    &state->hs_qpn_avl, &cookie)) != NULL) {
1856 		kmem_free(entry, sizeof (hermon_qpn_entry_t));
1857 	}
1858 	avl_destroy(&state->hs_qpn_avl);
1859 
1860 	/* Destroy the lock used for QP number (QPN) AVL tree access */
1861 	mutex_destroy(&state->hs_qpn_avl_lock);
1862 }
1863 
1864 
1865 /*
1866  * hermon_qphdl_from_qpnum()
1867  *    Context: Can be called from interrupt or base context.
1868  *
1869  *    This routine is important because changing the unconstrained
1870  *    portion of the QP number is critical to the detection of a
1871  *    potential race condition in the QP event handler code (i.e. the case
1872  *    where a QP is freed and alloc'd again before an event for the
1873  *    "old" QP can be handled).
1874  *
1875  *    While this is not a perfect solution (not sure that one exists)
1876  *    it does help to mitigate the chance that this race condition will
1877  *    cause us to deliver a "stale" event to the new QP owner.  Note:
1878  *    this solution does not scale well because the number of constrained
1879  *    bits increases (and, hence, the number of unconstrained bits
1880  *    decreases) as the number of supported QPs grows.  For small and
1881  *    intermediate values, it should hopefully provide sufficient
1882  *    protection.
1883  */
1884 hermon_qphdl_t
1885 hermon_qphdl_from_qpnum(hermon_state_t *state, uint_t qpnum)
1886 {
1887 	uint_t	qpindx, qpmask;
1888 
1889 	/* Calculate the QP table index from the qpnum */
1890 	qpmask = (1 << state->hs_cfg_profile->cp_log_num_qp) - 1;
1891 	qpindx = qpnum & qpmask;
1892 	return (state->hs_qphdl[qpindx]);
1893 }
1894 
1895 
1896 /*
1897  * hermon_special_qp_rsrc_alloc
1898  *    Context: Can be called from interrupt or base context.
1899  */
1900 static int
1901 hermon_special_qp_rsrc_alloc(hermon_state_t *state, ibt_sqp_type_t type,
1902     uint_t port, hermon_rsrc_t **qp_rsrc)
1903 {
1904 	uint_t		mask, flags;
1905 	int		status;
1906 
1907 	mutex_enter(&state->hs_spec_qplock);
1908 	flags = state->hs_spec_qpflags;
1909 	if (type == IBT_SMI_SQP) {
1910 		/*
1911 		 * Check here to see if the driver has been configured
1912 		 * to instruct the Hermon firmware to handle all incoming
1913 		 * SMP messages (i.e. messages sent to SMA).  If so,
1914 		 * then we will treat QP0 as if it has already been
1915 		 * allocated (for internal use).  Otherwise, if we allow
1916 		 * the allocation to happen, it will cause unexpected
1917 		 * behaviors (e.g. Hermon SMA becomes unresponsive).
1918 		 */
1919 		if (state->hs_cfg_profile->cp_qp0_agents_in_fw != 0) {
1920 			mutex_exit(&state->hs_spec_qplock);
1921 			return (IBT_QP_IN_USE);
1922 		}
1923 
1924 		/*
1925 		 * If this is the first QP0 allocation, then post
1926 		 * a CONF_SPECIAL_QP firmware command
1927 		 */
1928 		if ((flags & HERMON_SPECIAL_QP0_RSRC_MASK) == 0) {
1929 			status = hermon_conf_special_qp_cmd_post(state,
1930 			    state->hs_spec_qp0->hr_indx, HERMON_CMD_QP_SMI,
1931 			    HERMON_CMD_NOSLEEP_SPIN,
1932 			    HERMON_CMD_SPEC_QP_OPMOD(
1933 			    state->hs_cfg_profile->cp_qp0_agents_in_fw,
1934 			    state->hs_cfg_profile->cp_qp1_agents_in_fw));
1935 			if (status != HERMON_CMD_SUCCESS) {
1936 				mutex_exit(&state->hs_spec_qplock);
1937 				cmn_err(CE_NOTE, "hermon%d: CONF_SPECIAL_QP "
1938 				    "command failed: %08x\n",
1939 				    state->hs_instance, status);
1940 				return (IBT_INSUFF_RESOURCE);
1941 			}
1942 		}
1943 
1944 		/*
1945 		 * Now check (and, if necessary, modify) the flags to indicate
1946 		 * whether the allocation was successful
1947 		 */
1948 		mask = (1 << (HERMON_SPECIAL_QP0_RSRC + port));
1949 		if (flags & mask) {
1950 			mutex_exit(&state->hs_spec_qplock);
1951 			return (IBT_QP_IN_USE);
1952 		}
1953 		state->hs_spec_qpflags |= mask;
1954 		*qp_rsrc = state->hs_spec_qp0;
1955 
1956 	} else {
1957 		/*
1958 		 * If this is the first QP1 allocation, then post
1959 		 * a CONF_SPECIAL_QP firmware command
1960 		 */
1961 		if ((flags & HERMON_SPECIAL_QP1_RSRC_MASK) == 0) {
1962 			status = hermon_conf_special_qp_cmd_post(state,
1963 			    state->hs_spec_qp1->hr_indx, HERMON_CMD_QP_GSI,
1964 			    HERMON_CMD_NOSLEEP_SPIN,
1965 			    HERMON_CMD_SPEC_QP_OPMOD(
1966 			    state->hs_cfg_profile->cp_qp0_agents_in_fw,
1967 			    state->hs_cfg_profile->cp_qp1_agents_in_fw));
1968 			if (status != HERMON_CMD_SUCCESS) {
1969 				mutex_exit(&state->hs_spec_qplock);
1970 				cmn_err(CE_NOTE, "hermon%d: CONF_SPECIAL_QP "
1971 				    "command failed: %08x\n",
1972 				    state->hs_instance, status);
1973 				return (IBT_INSUFF_RESOURCE);
1974 			}
1975 		}
1976 
1977 		/*
1978 		 * Now check (and, if necessary, modify) the flags to indicate
1979 		 * whether the allocation was successful
1980 		 */
1981 		mask = (1 << (HERMON_SPECIAL_QP1_RSRC + port));
1982 		if (flags & mask) {
1983 			mutex_exit(&state->hs_spec_qplock);
1984 			return (IBT_QP_IN_USE);
1985 		}
1986 		state->hs_spec_qpflags |= mask;
1987 		*qp_rsrc = state->hs_spec_qp1;
1988 	}
1989 
1990 	mutex_exit(&state->hs_spec_qplock);
1991 	return (DDI_SUCCESS);
1992 }
1993 
1994 
1995 /*
1996  * hermon_special_qp_rsrc_free
1997  *    Context: Can be called from interrupt or base context.
1998  */
1999 static int
2000 hermon_special_qp_rsrc_free(hermon_state_t *state, ibt_sqp_type_t type,
2001     uint_t port)
2002 {
2003 	uint_t		mask, flags;
2004 	int		status;
2005 
2006 	mutex_enter(&state->hs_spec_qplock);
2007 	if (type == IBT_SMI_SQP) {
2008 		mask = (1 << (HERMON_SPECIAL_QP0_RSRC + port));
2009 		state->hs_spec_qpflags &= ~mask;
2010 		flags = state->hs_spec_qpflags;
2011 
2012 		/*
2013 		 * If this is the last QP0 free, then post a CONF_SPECIAL_QP
2014 		 * NOW, If this is the last Special QP free, then post a
2015 		 * CONF_SPECIAL_QP firmware command - it'll stop them all
2016 		 */
2017 		if (flags) {
2018 			status = hermon_conf_special_qp_cmd_post(state, 0,
2019 			    HERMON_CMD_QP_SMI, HERMON_CMD_NOSLEEP_SPIN, 0);
2020 			if (status != HERMON_CMD_SUCCESS) {
2021 				mutex_exit(&state->hs_spec_qplock);
2022 				cmn_err(CE_NOTE, "hermon%d: CONF_SPECIAL_QP "
2023 				    "command failed: %08x\n",
2024 				    state->hs_instance, status);
2025 				if (status == HERMON_CMD_INVALID_STATUS) {
2026 					hermon_fm_ereport(state, HCA_SYS_ERR,
2027 					    HCA_ERR_SRV_LOST);
2028 				}
2029 				return (ibc_get_ci_failure(0));
2030 			}
2031 		}
2032 	} else {
2033 		mask = (1 << (HERMON_SPECIAL_QP1_RSRC + port));
2034 		state->hs_spec_qpflags &= ~mask;
2035 		flags = state->hs_spec_qpflags;
2036 
2037 		/*
2038 		 * If this is the last QP1 free, then post a CONF_SPECIAL_QP
2039 		 * NOW, if this is the last special QP free, then post a
2040 		 * CONF_SPECIAL_QP firmware command - it'll stop them all
2041 		 */
2042 		if (flags) {
2043 			status = hermon_conf_special_qp_cmd_post(state, 0,
2044 			    HERMON_CMD_QP_GSI, HERMON_CMD_NOSLEEP_SPIN, 0);
2045 			if (status != HERMON_CMD_SUCCESS) {
2046 				mutex_exit(&state->hs_spec_qplock);
2047 				cmn_err(CE_NOTE, "hermon%d: CONF_SPECIAL_QP "
2048 				    "command failed: %08x\n",
2049 				    state->hs_instance, status);
2050 				if (status == HERMON_CMD_INVALID_STATUS) {
2051 					hermon_fm_ereport(state, HCA_SYS_ERR,
2052 					    HCA_ERR_SRV_LOST);
2053 				}
2054 				return (ibc_get_ci_failure(0));
2055 			}
2056 		}
2057 	}
2058 
2059 	mutex_exit(&state->hs_spec_qplock);
2060 	return (DDI_SUCCESS);
2061 }
2062 
2063 
2064 /*
2065  * hermon_qp_sgl_to_logwqesz()
2066  *    Context: Can be called from interrupt or base context.
2067  */
2068 static void
2069 hermon_qp_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
2070     uint_t real_max_sgl, hermon_qp_wq_type_t wq_type,
2071     uint_t *logwqesz, uint_t *max_sgl)
2072 {
2073 	uint_t	max_size, log2, actual_sgl;
2074 
2075 	switch (wq_type) {
2076 	case HERMON_QP_WQ_TYPE_SENDQ_UD:
2077 		/*
2078 		 * Use requested maximum SGL to calculate max descriptor size
2079 		 * (while guaranteeing that the descriptor size is a
2080 		 * power-of-2 cachelines).
2081 		 */
2082 		max_size = (HERMON_QP_WQE_MLX_SND_HDRS + (num_sgl << 4));
2083 		log2 = highbit(max_size);
2084 		if ((max_size & (max_size - 1)) == 0) {
2085 			log2 = log2 - 1;
2086 		}
2087 
2088 		/* Make sure descriptor is at least the minimum size */
2089 		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
2090 
2091 		/* Calculate actual number of SGL (given WQE size) */
2092 		actual_sgl = ((1 << log2) -
2093 		    sizeof (hermon_hw_snd_wqe_ctrl_t)) >> 4;
2094 		break;
2095 
2096 	case HERMON_QP_WQ_TYPE_SENDQ_CONN:
2097 		/*
2098 		 * Use requested maximum SGL to calculate max descriptor size
2099 		 * (while guaranteeing that the descriptor size is a
2100 		 * power-of-2 cachelines).
2101 		 */
2102 		max_size = (HERMON_QP_WQE_MLX_SND_HDRS + (num_sgl << 4));
2103 		log2 = highbit(max_size);
2104 		if ((max_size & (max_size - 1)) == 0) {
2105 			log2 = log2 - 1;
2106 		}
2107 
2108 		/* Make sure descriptor is at least the minimum size */
2109 		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
2110 
2111 		/* Calculate actual number of SGL (given WQE size) */
2112 		actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_SND_HDRS) >> 4;
2113 		break;
2114 
2115 	case HERMON_QP_WQ_TYPE_RECVQ:
2116 		/*
2117 		 * Same as above (except for Recv WQEs)
2118 		 */
2119 		max_size = (HERMON_QP_WQE_MLX_RCV_HDRS + (num_sgl << 4));
2120 		log2 = highbit(max_size);
2121 		if ((max_size & (max_size - 1)) == 0) {
2122 			log2 = log2 - 1;
2123 		}
2124 
2125 		/* Make sure descriptor is at least the minimum size */
2126 		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
2127 
2128 		/* Calculate actual number of SGL (given WQE size) */
2129 		actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_RCV_HDRS) >> 4;
2130 		break;
2131 
2132 	case HERMON_QP_WQ_TYPE_SENDMLX_QP0:
2133 		/*
2134 		 * Same as above (except for MLX transport WQEs).  For these
2135 		 * WQEs we have to account for the space consumed by the
2136 		 * "inline" packet headers.  (This is smaller than for QP1
2137 		 * below because QP0 is not allowed to send packets with a GRH.
2138 		 */
2139 		max_size = (HERMON_QP_WQE_MLX_QP0_HDRS + (num_sgl << 4));
2140 		log2 = highbit(max_size);
2141 		if ((max_size & (max_size - 1)) == 0) {
2142 			log2 = log2 - 1;
2143 		}
2144 
2145 		/* Make sure descriptor is at least the minimum size */
2146 		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
2147 
2148 		/* Calculate actual number of SGL (given WQE size) */
2149 		actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_QP0_HDRS) >> 4;
2150 		break;
2151 
2152 	case HERMON_QP_WQ_TYPE_SENDMLX_QP1:
2153 		/*
2154 		 * Same as above.  For these WQEs we again have to account for
2155 		 * the space consumed by the "inline" packet headers.  (This
2156 		 * is larger than for QP0 above because we have to account for
2157 		 * the possibility of a GRH in each packet - and this
2158 		 * introduces an alignment issue that causes us to consume
2159 		 * an additional 8 bytes).
2160 		 */
2161 		max_size = (HERMON_QP_WQE_MLX_QP1_HDRS + (num_sgl << 4));
2162 		log2 = highbit(max_size);
2163 		if ((max_size & (max_size - 1)) == 0) {
2164 			log2 = log2 - 1;
2165 		}
2166 
2167 		/* Make sure descriptor is at least the minimum size */
2168 		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
2169 
2170 		/* Calculate actual number of SGL (given WQE size) */
2171 		actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_QP1_HDRS) >> 4;
2172 		break;
2173 
2174 	default:
2175 		HERMON_WARNING(state, "unexpected work queue type");
2176 		break;
2177 	}
2178 
2179 	/* Fill in the return values */
2180 	*logwqesz = log2;
2181 	*max_sgl  = min(real_max_sgl, actual_sgl);
2182 }
2183