xref: /illumos-gate/usr/src/uts/common/io/e1000api/e1000_api.c (revision 528737823843346cf95a4a701612f82089135554)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 	case E1000_DEV_ID_PCH_I218_LM2:
297 	case E1000_DEV_ID_PCH_I218_V2:
298 	case E1000_DEV_ID_PCH_I218_LM3:
299 	case E1000_DEV_ID_PCH_I218_V3:
300 		mac->type = e1000_pch_lpt;
301 		break;
302 	case E1000_DEV_ID_PCH_SPT_I219_LM:
303 	case E1000_DEV_ID_PCH_SPT_I219_V:
304 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 	case E1000_DEV_ID_PCH_SPT_I219_V2:
306 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
308 	case E1000_DEV_ID_PCH_SPT_I219_V4:
309 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
310 	case E1000_DEV_ID_PCH_SPT_I219_V5:
311 		mac->type = e1000_pch_spt;
312 		break;
313 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
314 	case E1000_DEV_ID_PCH_CNP_I219_V6:
315 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
316 	case E1000_DEV_ID_PCH_CNP_I219_V7:
317 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
318 	case E1000_DEV_ID_PCH_ICP_I219_V8:
319 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
320 	case E1000_DEV_ID_PCH_ICP_I219_V9:
321 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
322 	case E1000_DEV_ID_PCH_CMP_I219_V10:
323 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
324 	case E1000_DEV_ID_PCH_CMP_I219_V11:
325 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
326 	case E1000_DEV_ID_PCH_CMP_I219_V12:
327 		mac->type = e1000_pch_cnp;
328 		break;
329 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
330 	case E1000_DEV_ID_PCH_TGP_I219_V13:
331 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
332 	case E1000_DEV_ID_PCH_TGP_I219_V14:
333 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
334 		mac->type = e1000_pch_tgp;
335 		break;
336 	case E1000_DEV_ID_82575EB_COPPER:
337 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
338 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
339 		mac->type = e1000_82575;
340 		break;
341 	case E1000_DEV_ID_82576:
342 	case E1000_DEV_ID_82576_FIBER:
343 	case E1000_DEV_ID_82576_SERDES:
344 	case E1000_DEV_ID_82576_QUAD_COPPER:
345 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
346 	case E1000_DEV_ID_82576_NS:
347 	case E1000_DEV_ID_82576_NS_SERDES:
348 	case E1000_DEV_ID_82576_SERDES_QUAD:
349 		mac->type = e1000_82576;
350 		break;
351 	case E1000_DEV_ID_82580_COPPER:
352 	case E1000_DEV_ID_82580_FIBER:
353 	case E1000_DEV_ID_82580_SERDES:
354 	case E1000_DEV_ID_82580_SGMII:
355 	case E1000_DEV_ID_82580_COPPER_DUAL:
356 	case E1000_DEV_ID_82580_QUAD_FIBER:
357 	case E1000_DEV_ID_DH89XXCC_SGMII:
358 	case E1000_DEV_ID_DH89XXCC_SERDES:
359 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
360 	case E1000_DEV_ID_DH89XXCC_SFP:
361 		mac->type = e1000_82580;
362 		break;
363 	case E1000_DEV_ID_I350_COPPER:
364 	case E1000_DEV_ID_I350_FIBER:
365 	case E1000_DEV_ID_I350_SERDES:
366 	case E1000_DEV_ID_I350_SGMII:
367 	case E1000_DEV_ID_I350_DA4:
368 		mac->type = e1000_i350;
369 		break;
370 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
371 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
372 	case E1000_DEV_ID_I210_COPPER:
373 	case E1000_DEV_ID_I210_COPPER_OEM1:
374 	case E1000_DEV_ID_I210_COPPER_IT:
375 	case E1000_DEV_ID_I210_FIBER:
376 	case E1000_DEV_ID_I210_SERDES:
377 	case E1000_DEV_ID_I210_SGMII:
378 		mac->type = e1000_i210;
379 		break;
380 	case E1000_DEV_ID_I211_COPPER:
381 		mac->type = e1000_i211;
382 		break;
383 	case E1000_DEV_ID_82576_VF:
384 	case E1000_DEV_ID_82576_VF_HV:
385 		mac->type = e1000_vfadapt;
386 		break;
387 	case E1000_DEV_ID_I350_VF:
388 	case E1000_DEV_ID_I350_VF_HV:
389 		mac->type = e1000_vfadapt_i350;
390 		break;
391 
392 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
393 	case E1000_DEV_ID_I354_SGMII:
394 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
395 		mac->type = e1000_i354;
396 		break;
397 	default:
398 		/* Should never have loaded on this device */
399 		ret_val = -E1000_ERR_MAC_INIT;
400 		break;
401 	}
402 
403 	return ret_val;
404 }
405 
406 /**
407  *  e1000_setup_init_funcs - Initializes function pointers
408  *  @hw: pointer to the HW structure
409  *  @init_device: TRUE will initialize the rest of the function pointers
410  *		  getting the device ready for use.  FALSE will only set
411  *		  MAC type and the function pointers for the other init
412  *		  functions.  Passing FALSE will not generate any hardware
413  *		  reads or writes.
414  *
415  *  This function must be called by a driver in order to use the rest
416  *  of the 'shared' code files. Called by drivers only.
417  **/
418 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
419 {
420 	s32 ret_val;
421 
422 	/* Can't do much good without knowing the MAC type. */
423 	ret_val = e1000_set_mac_type(hw);
424 	if (ret_val) {
425 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
426 		goto out;
427 	}
428 
429 	if (!hw->hw_addr) {
430 		DEBUGOUT("ERROR: Registers not mapped\n");
431 		ret_val = -E1000_ERR_CONFIG;
432 		goto out;
433 	}
434 
435 	/*
436 	 * Init function pointers to generic implementations. We do this first
437 	 * allowing a driver module to override it afterward.
438 	 */
439 	e1000_init_mac_ops_generic(hw);
440 	e1000_init_phy_ops_generic(hw);
441 	e1000_init_nvm_ops_generic(hw);
442 	e1000_init_mbx_ops_generic(hw);
443 
444 	/*
445 	 * Set up the init function pointers. These are functions within the
446 	 * adapter family file that sets up function pointers for the rest of
447 	 * the functions in that family.
448 	 */
449 	switch (hw->mac.type) {
450 	case e1000_82542:
451 		e1000_init_function_pointers_82542(hw);
452 		break;
453 	case e1000_82543:
454 	case e1000_82544:
455 		e1000_init_function_pointers_82543(hw);
456 		break;
457 	case e1000_82540:
458 	case e1000_82545:
459 	case e1000_82545_rev_3:
460 	case e1000_82546:
461 	case e1000_82546_rev_3:
462 		e1000_init_function_pointers_82540(hw);
463 		break;
464 	case e1000_82541:
465 	case e1000_82541_rev_2:
466 	case e1000_82547:
467 	case e1000_82547_rev_2:
468 		e1000_init_function_pointers_82541(hw);
469 		break;
470 	case e1000_82571:
471 	case e1000_82572:
472 	case e1000_82573:
473 	case e1000_82574:
474 	case e1000_82583:
475 		e1000_init_function_pointers_82571(hw);
476 		break;
477 	case e1000_80003es2lan:
478 		e1000_init_function_pointers_80003es2lan(hw);
479 		break;
480 	case e1000_ich8lan:
481 	case e1000_ich9lan:
482 	case e1000_ich10lan:
483 	case e1000_pchlan:
484 	case e1000_pch2lan:
485 	case e1000_pch_lpt:
486 	case e1000_pch_spt:
487 	case e1000_pch_cnp:
488 	case e1000_pch_tgp:
489 		e1000_init_function_pointers_ich8lan(hw);
490 		break;
491 	case e1000_82575:
492 	case e1000_82576:
493 	case e1000_82580:
494 	case e1000_i350:
495 	case e1000_i354:
496 		e1000_init_function_pointers_82575(hw);
497 		break;
498 	case e1000_i210:
499 	case e1000_i211:
500 		e1000_init_function_pointers_i210(hw);
501 		break;
502 	case e1000_vfadapt:
503 		e1000_init_function_pointers_vf(hw);
504 		break;
505 	case e1000_vfadapt_i350:
506 		e1000_init_function_pointers_vf(hw);
507 		break;
508 	default:
509 		DEBUGOUT("Hardware not supported\n");
510 		ret_val = -E1000_ERR_CONFIG;
511 		break;
512 	}
513 
514 	/*
515 	 * Initialize the rest of the function pointers. These require some
516 	 * register reads/writes in some cases.
517 	 */
518 	if (!(ret_val) && init_device) {
519 		ret_val = e1000_init_mac_params(hw);
520 		if (ret_val)
521 			goto out;
522 
523 		ret_val = e1000_init_nvm_params(hw);
524 		if (ret_val)
525 			goto out;
526 
527 		ret_val = e1000_init_phy_params(hw);
528 		if (ret_val)
529 			goto out;
530 
531 		ret_val = e1000_init_mbx_params(hw);
532 		if (ret_val)
533 			goto out;
534 	}
535 
536 out:
537 	return ret_val;
538 }
539 
540 /**
541  *  e1000_get_bus_info - Obtain bus information for adapter
542  *  @hw: pointer to the HW structure
543  *
544  *  This will obtain information about the HW bus for which the
545  *  adapter is attached and stores it in the hw structure. This is a
546  *  function pointer entry point called by drivers.
547  **/
548 s32 e1000_get_bus_info(struct e1000_hw *hw)
549 {
550 	if (hw->mac.ops.get_bus_info)
551 		return hw->mac.ops.get_bus_info(hw);
552 
553 	return E1000_SUCCESS;
554 }
555 
556 /**
557  *  e1000_clear_vfta - Clear VLAN filter table
558  *  @hw: pointer to the HW structure
559  *
560  *  This clears the VLAN filter table on the adapter. This is a function
561  *  pointer entry point called by drivers.
562  **/
563 void e1000_clear_vfta(struct e1000_hw *hw)
564 {
565 	if (hw->mac.ops.clear_vfta)
566 		hw->mac.ops.clear_vfta(hw);
567 }
568 
569 /**
570  *  e1000_write_vfta - Write value to VLAN filter table
571  *  @hw: pointer to the HW structure
572  *  @offset: the 32-bit offset in which to write the value to.
573  *  @value: the 32-bit value to write at location offset.
574  *
575  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
576  *  table. This is a function pointer entry point called by drivers.
577  **/
578 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
579 {
580 	if (hw->mac.ops.write_vfta)
581 		hw->mac.ops.write_vfta(hw, offset, value);
582 }
583 
584 /**
585  *  e1000_update_mc_addr_list - Update Multicast addresses
586  *  @hw: pointer to the HW structure
587  *  @mc_addr_list: array of multicast addresses to program
588  *  @mc_addr_count: number of multicast addresses to program
589  *
590  *  Updates the Multicast Table Array.
591  *  The caller must have a packed mc_addr_list of multicast addresses.
592  **/
593 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
594 			       u32 mc_addr_count)
595 {
596 	if (hw->mac.ops.update_mc_addr_list)
597 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
598 						mc_addr_count);
599 }
600 
601 /**
602  *  e1000_force_mac_fc - Force MAC flow control
603  *  @hw: pointer to the HW structure
604  *
605  *  Force the MAC's flow control settings. Currently no func pointer exists
606  *  and all implementations are handled in the generic version of this
607  *  function.
608  **/
609 s32 e1000_force_mac_fc(struct e1000_hw *hw)
610 {
611 	return e1000_force_mac_fc_generic(hw);
612 }
613 
614 /**
615  *  e1000_check_for_link - Check/Store link connection
616  *  @hw: pointer to the HW structure
617  *
618  *  This checks the link condition of the adapter and stores the
619  *  results in the hw->mac structure. This is a function pointer entry
620  *  point called by drivers.
621  **/
622 s32 e1000_check_for_link(struct e1000_hw *hw)
623 {
624 	if (hw->mac.ops.check_for_link)
625 		return hw->mac.ops.check_for_link(hw);
626 
627 	return -E1000_ERR_CONFIG;
628 }
629 
630 /**
631  *  e1000_check_mng_mode - Check management mode
632  *  @hw: pointer to the HW structure
633  *
634  *  This checks if the adapter has manageability enabled.
635  *  This is a function pointer entry point called by drivers.
636  **/
637 bool e1000_check_mng_mode(struct e1000_hw *hw)
638 {
639 	if (hw->mac.ops.check_mng_mode)
640 		return hw->mac.ops.check_mng_mode(hw);
641 
642 	return FALSE;
643 }
644 
645 /**
646  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
647  *  @hw: pointer to the HW structure
648  *  @buffer: pointer to the host interface
649  *  @length: size of the buffer
650  *
651  *  Writes the DHCP information to the host interface.
652  **/
653 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
654 {
655 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
656 }
657 
658 /**
659  *  e1000_reset_hw - Reset hardware
660  *  @hw: pointer to the HW structure
661  *
662  *  This resets the hardware into a known state. This is a function pointer
663  *  entry point called by drivers.
664  **/
665 s32 e1000_reset_hw(struct e1000_hw *hw)
666 {
667 	if (hw->mac.ops.reset_hw)
668 		return hw->mac.ops.reset_hw(hw);
669 
670 	return -E1000_ERR_CONFIG;
671 }
672 
673 /**
674  *  e1000_init_hw - Initialize hardware
675  *  @hw: pointer to the HW structure
676  *
677  *  This inits the hardware readying it for operation. This is a function
678  *  pointer entry point called by drivers.
679  **/
680 s32 e1000_init_hw(struct e1000_hw *hw)
681 {
682 	if (hw->mac.ops.init_hw)
683 		return hw->mac.ops.init_hw(hw);
684 
685 	return -E1000_ERR_CONFIG;
686 }
687 
688 /**
689  *  e1000_setup_link - Configures link and flow control
690  *  @hw: pointer to the HW structure
691  *
692  *  This configures link and flow control settings for the adapter. This
693  *  is a function pointer entry point called by drivers. While modules can
694  *  also call this, they probably call their own version of this function.
695  **/
696 s32 e1000_setup_link(struct e1000_hw *hw)
697 {
698 	if (hw->mac.ops.setup_link)
699 		return hw->mac.ops.setup_link(hw);
700 
701 	return -E1000_ERR_CONFIG;
702 }
703 
704 /**
705  *  e1000_get_speed_and_duplex - Returns current speed and duplex
706  *  @hw: pointer to the HW structure
707  *  @speed: pointer to a 16-bit value to store the speed
708  *  @duplex: pointer to a 16-bit value to store the duplex.
709  *
710  *  This returns the speed and duplex of the adapter in the two 'out'
711  *  variables passed in. This is a function pointer entry point called
712  *  by drivers.
713  **/
714 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
715 {
716 	if (hw->mac.ops.get_link_up_info)
717 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
718 
719 	return -E1000_ERR_CONFIG;
720 }
721 
722 /**
723  *  e1000_setup_led - Configures SW controllable LED
724  *  @hw: pointer to the HW structure
725  *
726  *  This prepares the SW controllable LED for use and saves the current state
727  *  of the LED so it can be later restored. This is a function pointer entry
728  *  point called by drivers.
729  **/
730 s32 e1000_setup_led(struct e1000_hw *hw)
731 {
732 	if (hw->mac.ops.setup_led)
733 		return hw->mac.ops.setup_led(hw);
734 
735 	return E1000_SUCCESS;
736 }
737 
738 /**
739  *  e1000_cleanup_led - Restores SW controllable LED
740  *  @hw: pointer to the HW structure
741  *
742  *  This restores the SW controllable LED to the value saved off by
743  *  e1000_setup_led. This is a function pointer entry point called by drivers.
744  **/
745 s32 e1000_cleanup_led(struct e1000_hw *hw)
746 {
747 	if (hw->mac.ops.cleanup_led)
748 		return hw->mac.ops.cleanup_led(hw);
749 
750 	return E1000_SUCCESS;
751 }
752 
753 /**
754  *  e1000_blink_led - Blink SW controllable LED
755  *  @hw: pointer to the HW structure
756  *
757  *  This starts the adapter LED blinking. Request the LED to be setup first
758  *  and cleaned up after. This is a function pointer entry point called by
759  *  drivers.
760  **/
761 s32 e1000_blink_led(struct e1000_hw *hw)
762 {
763 	if (hw->mac.ops.blink_led)
764 		return hw->mac.ops.blink_led(hw);
765 
766 	return E1000_SUCCESS;
767 }
768 
769 /**
770  *  e1000_id_led_init - store LED configurations in SW
771  *  @hw: pointer to the HW structure
772  *
773  *  Initializes the LED config in SW. This is a function pointer entry point
774  *  called by drivers.
775  **/
776 s32 e1000_id_led_init(struct e1000_hw *hw)
777 {
778 	if (hw->mac.ops.id_led_init)
779 		return hw->mac.ops.id_led_init(hw);
780 
781 	return E1000_SUCCESS;
782 }
783 
784 /**
785  *  e1000_led_on - Turn on SW controllable LED
786  *  @hw: pointer to the HW structure
787  *
788  *  Turns the SW defined LED on. This is a function pointer entry point
789  *  called by drivers.
790  **/
791 s32 e1000_led_on(struct e1000_hw *hw)
792 {
793 	if (hw->mac.ops.led_on)
794 		return hw->mac.ops.led_on(hw);
795 
796 	return E1000_SUCCESS;
797 }
798 
799 /**
800  *  e1000_led_off - Turn off SW controllable LED
801  *  @hw: pointer to the HW structure
802  *
803  *  Turns the SW defined LED off. This is a function pointer entry point
804  *  called by drivers.
805  **/
806 s32 e1000_led_off(struct e1000_hw *hw)
807 {
808 	if (hw->mac.ops.led_off)
809 		return hw->mac.ops.led_off(hw);
810 
811 	return E1000_SUCCESS;
812 }
813 
814 /**
815  *  e1000_reset_adaptive - Reset adaptive IFS
816  *  @hw: pointer to the HW structure
817  *
818  *  Resets the adaptive IFS. Currently no func pointer exists and all
819  *  implementations are handled in the generic version of this function.
820  **/
821 void e1000_reset_adaptive(struct e1000_hw *hw)
822 {
823 	e1000_reset_adaptive_generic(hw);
824 }
825 
826 /**
827  *  e1000_update_adaptive - Update adaptive IFS
828  *  @hw: pointer to the HW structure
829  *
830  *  Updates adapter IFS. Currently no func pointer exists and all
831  *  implementations are handled in the generic version of this function.
832  **/
833 void e1000_update_adaptive(struct e1000_hw *hw)
834 {
835 	e1000_update_adaptive_generic(hw);
836 }
837 
838 /**
839  *  e1000_disable_pcie_master - Disable PCI-Express master access
840  *  @hw: pointer to the HW structure
841  *
842  *  Disables PCI-Express master access and verifies there are no pending
843  *  requests. Currently no func pointer exists and all implementations are
844  *  handled in the generic version of this function.
845  **/
846 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
847 {
848 	return e1000_disable_pcie_master_generic(hw);
849 }
850 
851 /**
852  *  e1000_config_collision_dist - Configure collision distance
853  *  @hw: pointer to the HW structure
854  *
855  *  Configures the collision distance to the default value and is used
856  *  during link setup.
857  **/
858 void e1000_config_collision_dist(struct e1000_hw *hw)
859 {
860 	if (hw->mac.ops.config_collision_dist)
861 		hw->mac.ops.config_collision_dist(hw);
862 }
863 
864 /**
865  *  e1000_rar_set - Sets a receive address register
866  *  @hw: pointer to the HW structure
867  *  @addr: address to set the RAR to
868  *  @index: the RAR to set
869  *
870  *  Sets a Receive Address Register (RAR) to the specified address.
871  **/
872 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
873 {
874 	if (hw->mac.ops.rar_set)
875 		return hw->mac.ops.rar_set(hw, addr, index);
876 
877 	return E1000_SUCCESS;
878 }
879 
880 /**
881  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
882  *  @hw: pointer to the HW structure
883  *
884  *  Ensures that the MDI/MDIX SW state is valid.
885  **/
886 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
887 {
888 	if (hw->mac.ops.validate_mdi_setting)
889 		return hw->mac.ops.validate_mdi_setting(hw);
890 
891 	return E1000_SUCCESS;
892 }
893 
894 /**
895  *  e1000_hash_mc_addr - Determines address location in multicast table
896  *  @hw: pointer to the HW structure
897  *  @mc_addr: Multicast address to hash.
898  *
899  *  This hashes an address to determine its location in the multicast
900  *  table. Currently no func pointer exists and all implementations
901  *  are handled in the generic version of this function.
902  **/
903 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
904 {
905 	return e1000_hash_mc_addr_generic(hw, mc_addr);
906 }
907 
908 /**
909  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
910  *  @hw: pointer to the HW structure
911  *
912  *  Enables packet filtering on transmit packets if manageability is enabled
913  *  and host interface is enabled.
914  *  Currently no func pointer exists and all implementations are handled in the
915  *  generic version of this function.
916  **/
917 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
918 {
919 	return e1000_enable_tx_pkt_filtering_generic(hw);
920 }
921 
922 /**
923  *  e1000_mng_host_if_write - Writes to the manageability host interface
924  *  @hw: pointer to the HW structure
925  *  @buffer: pointer to the host interface buffer
926  *  @length: size of the buffer
927  *  @offset: location in the buffer to write to
928  *  @sum: sum of the data (not checksum)
929  *
930  *  This function writes the buffer content at the offset given on the host if.
931  *  It also does alignment considerations to do the writes in most efficient
932  *  way.  Also fills up the sum of the buffer in *buffer parameter.
933  **/
934 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
935 			    u16 offset, u8 *sum)
936 {
937 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
938 }
939 
940 /**
941  *  e1000_mng_write_cmd_header - Writes manageability command header
942  *  @hw: pointer to the HW structure
943  *  @hdr: pointer to the host interface command header
944  *
945  *  Writes the command header after does the checksum calculation.
946  **/
947 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
948 			       struct e1000_host_mng_command_header *hdr)
949 {
950 	return e1000_mng_write_cmd_header_generic(hw, hdr);
951 }
952 
953 /**
954  *  e1000_mng_enable_host_if - Checks host interface is enabled
955  *  @hw: pointer to the HW structure
956  *
957  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
958  *
959  *  This function checks whether the HOST IF is enabled for command operation
960  *  and also checks whether the previous command is completed.  It busy waits
961  *  in case of previous command is not completed.
962  **/
963 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
964 {
965 	return e1000_mng_enable_host_if_generic(hw);
966 }
967 
968 /**
969  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
970  *  @hw: pointer to the HW structure
971  *  @itr: u32 indicating itr value
972  *
973  *  Set the OBFF timer based on the given interrupt rate.
974  **/
975 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
976 {
977 	if (hw->mac.ops.set_obff_timer)
978 		return hw->mac.ops.set_obff_timer(hw, itr);
979 
980 	return E1000_SUCCESS;
981 }
982 
983 /**
984  *  e1000_check_reset_block - Verifies PHY can be reset
985  *  @hw: pointer to the HW structure
986  *
987  *  Checks if the PHY is in a state that can be reset or if manageability
988  *  has it tied up. This is a function pointer entry point called by drivers.
989  **/
990 s32 e1000_check_reset_block(struct e1000_hw *hw)
991 {
992 	if (hw->phy.ops.check_reset_block)
993 		return hw->phy.ops.check_reset_block(hw);
994 
995 	return E1000_SUCCESS;
996 }
997 
998 /**
999  *  e1000_read_phy_reg - Reads PHY register
1000  *  @hw: pointer to the HW structure
1001  *  @offset: the register to read
1002  *  @data: the buffer to store the 16-bit read.
1003  *
1004  *  Reads the PHY register and returns the value in data.
1005  *  This is a function pointer entry point called by drivers.
1006  **/
1007 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1008 {
1009 	if (hw->phy.ops.read_reg)
1010 		return hw->phy.ops.read_reg(hw, offset, data);
1011 
1012 	return E1000_SUCCESS;
1013 }
1014 
1015 /**
1016  *  e1000_write_phy_reg - Writes PHY register
1017  *  @hw: pointer to the HW structure
1018  *  @offset: the register to write
1019  *  @data: the value to write.
1020  *
1021  *  Writes the PHY register at offset with the value in data.
1022  *  This is a function pointer entry point called by drivers.
1023  **/
1024 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1025 {
1026 	if (hw->phy.ops.write_reg)
1027 		return hw->phy.ops.write_reg(hw, offset, data);
1028 
1029 	return E1000_SUCCESS;
1030 }
1031 
1032 /**
1033  *  e1000_release_phy - Generic release PHY
1034  *  @hw: pointer to the HW structure
1035  *
1036  *  Return if silicon family does not require a semaphore when accessing the
1037  *  PHY.
1038  **/
1039 void e1000_release_phy(struct e1000_hw *hw)
1040 {
1041 	if (hw->phy.ops.release)
1042 		hw->phy.ops.release(hw);
1043 }
1044 
1045 /**
1046  *  e1000_acquire_phy - Generic acquire PHY
1047  *  @hw: pointer to the HW structure
1048  *
1049  *  Return success if silicon family does not require a semaphore when
1050  *  accessing the PHY.
1051  **/
1052 s32 e1000_acquire_phy(struct e1000_hw *hw)
1053 {
1054 	if (hw->phy.ops.acquire)
1055 		return hw->phy.ops.acquire(hw);
1056 
1057 	return E1000_SUCCESS;
1058 }
1059 
1060 /**
1061  *  e1000_cfg_on_link_up - Configure PHY upon link up
1062  *  @hw: pointer to the HW structure
1063  **/
1064 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1065 {
1066 	if (hw->phy.ops.cfg_on_link_up)
1067 		return hw->phy.ops.cfg_on_link_up(hw);
1068 
1069 	return E1000_SUCCESS;
1070 }
1071 
1072 /**
1073  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1074  *  @hw: pointer to the HW structure
1075  *  @offset: the register to read
1076  *  @data: the location to store the 16-bit value read.
1077  *
1078  *  Reads a register out of the Kumeran interface. Currently no func pointer
1079  *  exists and all implementations are handled in the generic version of
1080  *  this function.
1081  **/
1082 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1083 {
1084 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1085 }
1086 
1087 /**
1088  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1089  *  @hw: pointer to the HW structure
1090  *  @offset: the register to write
1091  *  @data: the value to write.
1092  *
1093  *  Writes a register to the Kumeran interface. Currently no func pointer
1094  *  exists and all implementations are handled in the generic version of
1095  *  this function.
1096  **/
1097 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1098 {
1099 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1100 }
1101 
1102 /**
1103  *  e1000_get_cable_length - Retrieves cable length estimation
1104  *  @hw: pointer to the HW structure
1105  *
1106  *  This function estimates the cable length and stores them in
1107  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1108  *  entry point called by drivers.
1109  **/
1110 s32 e1000_get_cable_length(struct e1000_hw *hw)
1111 {
1112 	if (hw->phy.ops.get_cable_length)
1113 		return hw->phy.ops.get_cable_length(hw);
1114 
1115 	return E1000_SUCCESS;
1116 }
1117 
1118 /**
1119  *  e1000_get_phy_info - Retrieves PHY information from registers
1120  *  @hw: pointer to the HW structure
1121  *
1122  *  This function gets some information from various PHY registers and
1123  *  populates hw->phy values with it. This is a function pointer entry
1124  *  point called by drivers.
1125  **/
1126 s32 e1000_get_phy_info(struct e1000_hw *hw)
1127 {
1128 	if (hw->phy.ops.get_info)
1129 		return hw->phy.ops.get_info(hw);
1130 
1131 	return E1000_SUCCESS;
1132 }
1133 
1134 /**
1135  *  e1000_phy_hw_reset - Hard PHY reset
1136  *  @hw: pointer to the HW structure
1137  *
1138  *  Performs a hard PHY reset. This is a function pointer entry point called
1139  *  by drivers.
1140  **/
1141 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1142 {
1143 	if (hw->phy.ops.reset)
1144 		return hw->phy.ops.reset(hw);
1145 
1146 	return E1000_SUCCESS;
1147 }
1148 
1149 /**
1150  *  e1000_phy_commit - Soft PHY reset
1151  *  @hw: pointer to the HW structure
1152  *
1153  *  Performs a soft PHY reset on those that apply. This is a function pointer
1154  *  entry point called by drivers.
1155  **/
1156 s32 e1000_phy_commit(struct e1000_hw *hw)
1157 {
1158 	if (hw->phy.ops.commit)
1159 		return hw->phy.ops.commit(hw);
1160 
1161 	return E1000_SUCCESS;
1162 }
1163 
1164 /**
1165  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1166  *  @hw: pointer to the HW structure
1167  *  @active: boolean used to enable/disable lplu
1168  *
1169  *  Success returns 0, Failure returns 1
1170  *
1171  *  The low power link up (lplu) state is set to the power management level D0
1172  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1173  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1174  *  is used during Dx states where the power conservation is most important.
1175  *  During driver activity, SmartSpeed should be enabled so performance is
1176  *  maintained.  This is a function pointer entry point called by drivers.
1177  **/
1178 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1179 {
1180 	if (hw->phy.ops.set_d0_lplu_state)
1181 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1182 
1183 	return E1000_SUCCESS;
1184 }
1185 
1186 /**
1187  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1188  *  @hw: pointer to the HW structure
1189  *  @active: boolean used to enable/disable lplu
1190  *
1191  *  Success returns 0, Failure returns 1
1192  *
1193  *  The low power link up (lplu) state is set to the power management level D3
1194  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1195  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1196  *  is used during Dx states where the power conservation is most important.
1197  *  During driver activity, SmartSpeed should be enabled so performance is
1198  *  maintained.  This is a function pointer entry point called by drivers.
1199  **/
1200 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1201 {
1202 	if (hw->phy.ops.set_d3_lplu_state)
1203 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1204 
1205 	return E1000_SUCCESS;
1206 }
1207 
1208 /**
1209  *  e1000_read_mac_addr - Reads MAC address
1210  *  @hw: pointer to the HW structure
1211  *
1212  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1213  *  Currently no func pointer exists and all implementations are handled in the
1214  *  generic version of this function.
1215  **/
1216 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1217 {
1218 	if (hw->mac.ops.read_mac_addr)
1219 		return hw->mac.ops.read_mac_addr(hw);
1220 
1221 	return e1000_read_mac_addr_generic(hw);
1222 }
1223 
1224 /**
1225  *  e1000_read_pba_string - Read device part number string
1226  *  @hw: pointer to the HW structure
1227  *  @pba_num: pointer to device part number
1228  *  @pba_num_size: size of part number buffer
1229  *
1230  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1231  *  the value in pba_num.
1232  *  Currently no func pointer exists and all implementations are handled in the
1233  *  generic version of this function.
1234  **/
1235 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1236 {
1237 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1238 }
1239 
1240 /**
1241  *  e1000_read_pba_length - Read device part number string length
1242  *  @hw: pointer to the HW structure
1243  *  @pba_num_size: size of part number buffer
1244  *
1245  *  Reads the product board assembly (PBA) number length from the EEPROM and
1246  *  stores the value in pba_num.
1247  *  Currently no func pointer exists and all implementations are handled in the
1248  *  generic version of this function.
1249  **/
1250 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1251 {
1252 	return e1000_read_pba_length_generic(hw, pba_num_size);
1253 }
1254 
1255 /**
1256  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1257  *  @hw: pointer to the HW structure
1258  *
1259  *  Validates the NVM checksum is correct. This is a function pointer entry
1260  *  point called by drivers.
1261  **/
1262 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1263 {
1264 	if (hw->nvm.ops.validate)
1265 		return hw->nvm.ops.validate(hw);
1266 
1267 	return -E1000_ERR_CONFIG;
1268 }
1269 
1270 /**
1271  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1272  *  @hw: pointer to the HW structure
1273  *
1274  *  Updates the NVM checksum. Currently no func pointer exists and all
1275  *  implementations are handled in the generic version of this function.
1276  **/
1277 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1278 {
1279 	if (hw->nvm.ops.update)
1280 		return hw->nvm.ops.update(hw);
1281 
1282 	return -E1000_ERR_CONFIG;
1283 }
1284 
1285 /**
1286  *  e1000_reload_nvm - Reloads EEPROM
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1290  *  extended control register.
1291  **/
1292 void e1000_reload_nvm(struct e1000_hw *hw)
1293 {
1294 	if (hw->nvm.ops.reload)
1295 		hw->nvm.ops.reload(hw);
1296 }
1297 
1298 /**
1299  *  e1000_read_nvm - Reads NVM (EEPROM)
1300  *  @hw: pointer to the HW structure
1301  *  @offset: the word offset to read
1302  *  @words: number of 16-bit words to read
1303  *  @data: pointer to the properly sized buffer for the data.
1304  *
1305  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1306  *  pointer entry point called by drivers.
1307  **/
1308 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1309 {
1310 	if (hw->nvm.ops.read)
1311 		return hw->nvm.ops.read(hw, offset, words, data);
1312 
1313 	return -E1000_ERR_CONFIG;
1314 }
1315 
1316 /**
1317  *  e1000_write_nvm - Writes to NVM (EEPROM)
1318  *  @hw: pointer to the HW structure
1319  *  @offset: the word offset to read
1320  *  @words: number of 16-bit words to write
1321  *  @data: pointer to the properly sized buffer for the data.
1322  *
1323  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1324  *  pointer entry point called by drivers.
1325  **/
1326 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1327 {
1328 	if (hw->nvm.ops.write)
1329 		return hw->nvm.ops.write(hw, offset, words, data);
1330 
1331 	return E1000_SUCCESS;
1332 }
1333 
1334 /**
1335  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1336  *  @hw: pointer to the HW structure
1337  *  @reg: 32bit register offset
1338  *  @offset: the register to write
1339  *  @data: the value to write.
1340  *
1341  *  Writes the PHY register at offset with the value in data.
1342  *  This is a function pointer entry point called by drivers.
1343  **/
1344 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1345 			      u8 data)
1346 {
1347 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1348 }
1349 
1350 /**
1351  * e1000_power_up_phy - Restores link in case of PHY power down
1352  * @hw: pointer to the HW structure
1353  *
1354  * The phy may be powered down to save power, to turn off link when the
1355  * driver is unloaded, or wake on lan is not enabled (among others).
1356  **/
1357 void e1000_power_up_phy(struct e1000_hw *hw)
1358 {
1359 	if (hw->phy.ops.power_up)
1360 		hw->phy.ops.power_up(hw);
1361 
1362 	e1000_setup_link(hw);
1363 }
1364 
1365 /**
1366  * e1000_power_down_phy - Power down PHY
1367  * @hw: pointer to the HW structure
1368  *
1369  * The phy may be powered down to save power, to turn off link when the
1370  * driver is unloaded, or wake on lan is not enabled (among others).
1371  **/
1372 void e1000_power_down_phy(struct e1000_hw *hw)
1373 {
1374 	if (hw->phy.ops.power_down)
1375 		hw->phy.ops.power_down(hw);
1376 }
1377 
1378 /**
1379  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1380  *  @hw: pointer to the HW structure
1381  *
1382  *  Power on the optics and PCS.
1383  **/
1384 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1385 {
1386 	if (hw->mac.ops.power_up_serdes)
1387 		hw->mac.ops.power_up_serdes(hw);
1388 }
1389 
1390 /**
1391  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1392  *  @hw: pointer to the HW structure
1393  *
1394  *  Shutdown the optics and PCS on driver unload.
1395  **/
1396 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1397 {
1398 	if (hw->mac.ops.shutdown_serdes)
1399 		hw->mac.ops.shutdown_serdes(hw);
1400 }
1401 
1402