xref: /illumos-gate/usr/src/uts/common/io/devpoll.c (revision 87bfe94c15340e9846f25201fa63446ac956d845)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/devops.h>
33 #include <sys/conf.h>
34 #include <sys/modctl.h>
35 #include <sys/sunddi.h>
36 #include <sys/stat.h>
37 #include <sys/poll_impl.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/mkdev.h>
41 #include <sys/debug.h>
42 #include <sys/file.h>
43 #include <sys/sysmacros.h>
44 #include <sys/systm.h>
45 #include <sys/bitmap.h>
46 #include <sys/devpoll.h>
47 #include <sys/rctl.h>
48 #include <sys/resource.h>
49 #include <sys/schedctl.h>
50 #include <sys/epoll.h>
51 
52 #define	RESERVED	1
53 
54 /* local data struct */
55 static	dp_entry_t	**devpolltbl;	/* dev poll entries */
56 static	size_t		dptblsize;
57 
58 static	kmutex_t	devpoll_lock;	/* lock protecting dev tbl */
59 int			devpoll_init;	/* is /dev/poll initialized already */
60 
61 /* device local functions */
62 
63 static int dpopen(dev_t *devp, int flag, int otyp, cred_t *credp);
64 static int dpwrite(dev_t dev, struct uio *uiop, cred_t *credp);
65 static int dpioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
66     int *rvalp);
67 static int dppoll(dev_t dev, short events, int anyyet, short *reventsp,
68     struct pollhead **phpp);
69 static int dpclose(dev_t dev, int flag, int otyp, cred_t *credp);
70 static dev_info_t *dpdevi;
71 
72 
73 static struct cb_ops    dp_cb_ops = {
74 	dpopen,			/* open */
75 	dpclose,		/* close */
76 	nodev,			/* strategy */
77 	nodev,			/* print */
78 	nodev,			/* dump */
79 	nodev,			/* read */
80 	dpwrite,		/* write */
81 	dpioctl,		/* ioctl */
82 	nodev,			/* devmap */
83 	nodev,			/* mmap */
84 	nodev,			/* segmap */
85 	dppoll,			/* poll */
86 	ddi_prop_op,		/* prop_op */
87 	(struct streamtab *)0,	/* streamtab */
88 	D_MP,			/* flags */
89 	CB_REV,			/* cb_ops revision */
90 	nodev,			/* aread */
91 	nodev			/* awrite */
92 };
93 
94 static int dpattach(dev_info_t *, ddi_attach_cmd_t);
95 static int dpdetach(dev_info_t *, ddi_detach_cmd_t);
96 static int dpinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
97 
98 static struct dev_ops dp_ops = {
99 	DEVO_REV,		/* devo_rev */
100 	0,			/* refcnt */
101 	dpinfo,			/* info */
102 	nulldev,		/* identify */
103 	nulldev,		/* probe */
104 	dpattach,		/* attach */
105 	dpdetach,		/* detach */
106 	nodev,			/* reset */
107 	&dp_cb_ops,		/* driver operations */
108 	(struct bus_ops *)NULL, /* bus operations */
109 	nulldev,		/* power */
110 	ddi_quiesce_not_needed,		/* quiesce */
111 };
112 
113 
114 static struct modldrv modldrv = {
115 	&mod_driverops,		/* type of module - a driver */
116 	"/dev/poll driver",
117 	&dp_ops,
118 };
119 
120 static struct modlinkage modlinkage = {
121 	MODREV_1,
122 	(void *)&modldrv,
123 	NULL
124 };
125 
126 static void pcachelink_assoc(pollcache_t *, pollcache_t *);
127 static void pcachelink_mark_stale(pollcache_t *);
128 static void pcachelink_purge_stale(pollcache_t *);
129 static void pcachelink_purge_all(pollcache_t *);
130 
131 
132 /*
133  * Locking Design
134  *
135  * The /dev/poll driver shares most of its code with poll sys call whose
136  * code is in common/syscall/poll.c. In poll(2) design, the pollcache
137  * structure is per lwp. An implicit assumption is made there that some
138  * portion of pollcache will never be touched by other lwps. E.g., in
139  * poll(2) design, no lwp will ever need to grow bitmap of other lwp.
140  * This assumption is not true for /dev/poll; hence the need for extra
141  * locking.
142  *
143  * To allow more parallelism, each /dev/poll file descriptor (indexed by
144  * minor number) has its own lock. Since read (dpioctl) is a much more
145  * frequent operation than write, we want to allow multiple reads on same
146  * /dev/poll fd. However, we prevent writes from being starved by giving
147  * priority to write operation. Theoretically writes can starve reads as
148  * well. But in practical sense this is not important because (1) writes
149  * happens less often than reads, and (2) write operation defines the
150  * content of poll fd a cache set. If writes happens so often that they
151  * can starve reads, that means the cached set is very unstable. It may
152  * not make sense to read an unstable cache set anyway. Therefore, the
153  * writers starving readers case is not handled in this design.
154  */
155 
156 int
157 _init()
158 {
159 	int	error;
160 
161 	dptblsize = DEVPOLLSIZE;
162 	devpolltbl = kmem_zalloc(sizeof (caddr_t) * dptblsize, KM_SLEEP);
163 	mutex_init(&devpoll_lock, NULL, MUTEX_DEFAULT, NULL);
164 	devpoll_init = 1;
165 	if ((error = mod_install(&modlinkage)) != 0) {
166 		kmem_free(devpolltbl, sizeof (caddr_t) * dptblsize);
167 		devpoll_init = 0;
168 	}
169 	return (error);
170 }
171 
172 int
173 _fini()
174 {
175 	int error;
176 
177 	if ((error = mod_remove(&modlinkage)) != 0) {
178 		return (error);
179 	}
180 	mutex_destroy(&devpoll_lock);
181 	kmem_free(devpolltbl, sizeof (caddr_t) * dptblsize);
182 	return (0);
183 }
184 
185 int
186 _info(struct modinfo *modinfop)
187 {
188 	return (mod_info(&modlinkage, modinfop));
189 }
190 
191 /*ARGSUSED*/
192 static int
193 dpattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
194 {
195 	if (ddi_create_minor_node(devi, "poll", S_IFCHR, 0, DDI_PSEUDO, 0)
196 	    == DDI_FAILURE) {
197 		ddi_remove_minor_node(devi, NULL);
198 		return (DDI_FAILURE);
199 	}
200 	dpdevi = devi;
201 	return (DDI_SUCCESS);
202 }
203 
204 static int
205 dpdetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
206 {
207 	if (cmd != DDI_DETACH)
208 		return (DDI_FAILURE);
209 
210 	ddi_remove_minor_node(devi, NULL);
211 	return (DDI_SUCCESS);
212 }
213 
214 /* ARGSUSED */
215 static int
216 dpinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
217 {
218 	int error;
219 
220 	switch (infocmd) {
221 	case DDI_INFO_DEVT2DEVINFO:
222 		*result = (void *)dpdevi;
223 		error = DDI_SUCCESS;
224 		break;
225 	case DDI_INFO_DEVT2INSTANCE:
226 		*result = (void *)0;
227 		error = DDI_SUCCESS;
228 		break;
229 	default:
230 		error = DDI_FAILURE;
231 	}
232 	return (error);
233 }
234 
235 /*
236  * dp_pcache_poll has similar logic to pcache_poll() in poll.c. The major
237  * differences are: (1) /dev/poll requires scanning the bitmap starting at
238  * where it was stopped last time, instead of always starting from 0,
239  * (2) since user may not have cleaned up the cached fds when they are
240  * closed, some polldats in cache may refer to closed or reused fds. We
241  * need to check for those cases.
242  *
243  * NOTE: Upon closing an fd, automatic poll cache cleanup is done for
244  *	 poll(2) caches but NOT for /dev/poll caches. So expect some
245  *	 stale entries!
246  */
247 static int
248 dp_pcache_poll(dp_entry_t *dpep, void *dpbuf,
249     pollcache_t *pcp, nfds_t nfds, int *fdcntp)
250 {
251 	int		start, ostart, end;
252 	int		fdcnt, fd;
253 	boolean_t	done;
254 	file_t		*fp;
255 	short		revent;
256 	boolean_t	no_wrap;
257 	pollhead_t	*php;
258 	polldat_t	*pdp;
259 	pollfd_t	*pfdp;
260 	epoll_event_t	*epoll;
261 	int		error = 0;
262 	short		mask = POLLRDHUP | POLLWRBAND;
263 	boolean_t	is_epoll = (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0;
264 
265 	ASSERT(MUTEX_HELD(&pcp->pc_lock));
266 	if (pcp->pc_bitmap == NULL) {
267 		/*
268 		 * No Need to search because no poll fd
269 		 * has been cached.
270 		 */
271 		return (error);
272 	}
273 
274 	if (is_epoll) {
275 		pfdp = NULL;
276 		epoll = (epoll_event_t *)dpbuf;
277 	} else {
278 		pfdp = (pollfd_t *)dpbuf;
279 		epoll = NULL;
280 	}
281 retry:
282 	start = ostart = pcp->pc_mapstart;
283 	end = pcp->pc_mapend;
284 	php = NULL;
285 
286 	if (start == 0) {
287 		/*
288 		 * started from every begining, no need to wrap around.
289 		 */
290 		no_wrap = B_TRUE;
291 	} else {
292 		no_wrap = B_FALSE;
293 	}
294 	done = B_FALSE;
295 	fdcnt = 0;
296 	while ((fdcnt < nfds) && !done) {
297 		php = NULL;
298 		revent = 0;
299 		/*
300 		 * Examine the bit map in a circular fashion
301 		 * to avoid starvation. Always resume from
302 		 * last stop. Scan till end of the map. Then
303 		 * wrap around.
304 		 */
305 		fd = bt_getlowbit(pcp->pc_bitmap, start, end);
306 		ASSERT(fd <= end);
307 		if (fd >= 0) {
308 			if (fd == end) {
309 				if (no_wrap) {
310 					done = B_TRUE;
311 				} else {
312 					start = 0;
313 					end = ostart - 1;
314 					no_wrap = B_TRUE;
315 				}
316 			} else {
317 				start = fd + 1;
318 			}
319 			pdp = pcache_lookup_fd(pcp, fd);
320 repoll:
321 			ASSERT(pdp != NULL);
322 			ASSERT(pdp->pd_fd == fd);
323 			if (pdp->pd_fp == NULL) {
324 				/*
325 				 * The fd is POLLREMOVed. This fd is
326 				 * logically no longer cached. So move
327 				 * on to the next one.
328 				 */
329 				continue;
330 			}
331 			if ((fp = getf(fd)) == NULL) {
332 				/*
333 				 * The fd has been closed, but user has not
334 				 * done a POLLREMOVE on this fd yet. Instead
335 				 * of cleaning it here implicitly, we return
336 				 * POLLNVAL. This is consistent with poll(2)
337 				 * polling a closed fd. Hope this will remind
338 				 * user to do a POLLREMOVE.
339 				 */
340 				if (!is_epoll && pfdp != NULL) {
341 					pfdp[fdcnt].fd = fd;
342 					pfdp[fdcnt].revents = POLLNVAL;
343 					fdcnt++;
344 					continue;
345 				}
346 
347 				/*
348 				 * In the epoll compatibility case, we actually
349 				 * perform the implicit removal to remain
350 				 * closer to the epoll semantics.
351 				 */
352 				if (is_epoll) {
353 					pdp->pd_fp = NULL;
354 					pdp->pd_events = 0;
355 
356 					if (pdp->pd_php != NULL) {
357 						pollhead_delete(pdp->pd_php,
358 						    pdp);
359 						pdp->pd_php = NULL;
360 					}
361 
362 					BT_CLEAR(pcp->pc_bitmap, fd);
363 					continue;
364 				}
365 			}
366 
367 			if (fp != pdp->pd_fp) {
368 				/*
369 				 * The user is polling on a cached fd which was
370 				 * closed and then reused.  Unfortunately there
371 				 * is no good way to communicate this fact to
372 				 * the consumer.
373 				 *
374 				 * If the file struct is also reused, we may
375 				 * not be able to detect the fd reuse at all.
376 				 * As long as this does not cause system
377 				 * failure and/or memory leaks, we will play
378 				 * along.  The man page states that if the user
379 				 * does not clean up closed fds, polling
380 				 * results will be indeterministic.
381 				 *
382 				 * XXX: perhaps log the detection of fd reuse?
383 				 */
384 				pdp->pd_fp = fp;
385 
386 				/*
387 				 * When this situation has been detected, it's
388 				 * likely that any existing pollhead is
389 				 * ill-suited to perform proper wake-ups.
390 				 *
391 				 * Clean up the old entry under the expectation
392 				 * that a valid one will be provided as part of
393 				 * the later VOP_POLL.
394 				 */
395 				if (pdp->pd_php != NULL) {
396 					pollhead_delete(pdp->pd_php, pdp);
397 					pdp->pd_php = NULL;
398 				}
399 			}
400 			/*
401 			 * XXX - pollrelock() logic needs to know which
402 			 * which pollcache lock to grab. It'd be a
403 			 * cleaner solution if we could pass pcp as
404 			 * an arguement in VOP_POLL interface instead
405 			 * of implicitly passing it using thread_t
406 			 * struct. On the other hand, changing VOP_POLL
407 			 * interface will require all driver/file system
408 			 * poll routine to change. May want to revisit
409 			 * the tradeoff later.
410 			 */
411 			curthread->t_pollcache = pcp;
412 			error = VOP_POLL(fp->f_vnode, pdp->pd_events, 0,
413 			    &revent, &php, NULL);
414 
415 			/*
416 			 * Recheck edge-triggered descriptors which lack a
417 			 * pollhead.  While this check is performed when an fd
418 			 * is added to the pollcache in dpwrite(), subsequent
419 			 * descriptor manipulation could cause a different
420 			 * resource to be present now.
421 			 */
422 			if ((pdp->pd_events & POLLET) && error == 0 &&
423 			    pdp->pd_php == NULL && php == NULL && revent != 0) {
424 				short levent = 0;
425 
426 				/*
427 				 * The same POLLET-only VOP_POLL is used in an
428 				 * attempt to coax a pollhead from older
429 				 * driver logic.
430 				 */
431 				error = VOP_POLL(fp->f_vnode, POLLET,
432 				    0, &levent, &php, NULL);
433 			}
434 
435 			curthread->t_pollcache = NULL;
436 			releasef(fd);
437 			if (error != 0) {
438 				break;
439 			}
440 
441 			/*
442 			 * layered devices (e.g. console driver)
443 			 * may change the vnode and thus the pollhead
444 			 * pointer out from underneath us.
445 			 */
446 			if (php != NULL && pdp->pd_php != NULL &&
447 			    php != pdp->pd_php) {
448 				pollhead_delete(pdp->pd_php, pdp);
449 				pdp->pd_php = php;
450 				pollhead_insert(php, pdp);
451 				/*
452 				 * The bit should still be set.
453 				 */
454 				ASSERT(BT_TEST(pcp->pc_bitmap, fd));
455 				goto retry;
456 			}
457 
458 			if (revent != 0) {
459 				if (pfdp != NULL) {
460 					pfdp[fdcnt].fd = fd;
461 					pfdp[fdcnt].events = pdp->pd_events;
462 					pfdp[fdcnt].revents = revent;
463 				} else if (epoll != NULL) {
464 					epoll_event_t *ep = &epoll[fdcnt];
465 
466 					ASSERT(epoll != NULL);
467 					ep->data.u64 = pdp->pd_epolldata;
468 
469 					/*
470 					 * Since POLLNVAL is a legal event for
471 					 * VOP_POLL handlers to emit, it must
472 					 * be translated epoll-legal.
473 					 */
474 					if (revent & POLLNVAL) {
475 						revent &= ~POLLNVAL;
476 						revent |= POLLERR;
477 					}
478 
479 					/*
480 					 * If any of the event bits are set for
481 					 * which poll and epoll representations
482 					 * differ, swizzle in the native epoll
483 					 * values.
484 					 */
485 					if (revent & mask) {
486 						ep->events = (revent & ~mask) |
487 						    ((revent & POLLRDHUP) ?
488 						    EPOLLRDHUP : 0) |
489 						    ((revent & POLLWRBAND) ?
490 						    EPOLLWRBAND : 0);
491 					} else {
492 						ep->events = revent;
493 					}
494 
495 					/*
496 					 * We define POLLWRNORM to be POLLOUT,
497 					 * but epoll has separate definitions
498 					 * for them; if POLLOUT is set and the
499 					 * user has asked for EPOLLWRNORM, set
500 					 * that as well.
501 					 */
502 					if ((revent & POLLOUT) &&
503 					    (pdp->pd_events & EPOLLWRNORM)) {
504 						ep->events |= EPOLLWRNORM;
505 					}
506 				} else {
507 					pollstate_t *ps =
508 					    curthread->t_pollstate;
509 					/*
510 					 * The devpoll handle itself is being
511 					 * polled.  Notify the caller of any
512 					 * readable event(s), leaving as much
513 					 * state as possible untouched.
514 					 */
515 					VERIFY(fdcnt == 0);
516 					VERIFY(ps != NULL);
517 
518 					/*
519 					 * If a call to pollunlock() fails
520 					 * during VOP_POLL, skip over the fd
521 					 * and continue polling.
522 					 *
523 					 * Otherwise, report that there is an
524 					 * event pending.
525 					 */
526 					if ((ps->ps_flags & POLLSTATE_ULFAIL)
527 					    != 0) {
528 						ps->ps_flags &=
529 						    ~POLLSTATE_ULFAIL;
530 						continue;
531 					} else {
532 						fdcnt++;
533 						break;
534 					}
535 				}
536 
537 				/* Handle special polling modes. */
538 				if (pdp->pd_events & POLLONESHOT) {
539 					/*
540 					 * If POLLONESHOT is set, perform the
541 					 * implicit POLLREMOVE.
542 					 */
543 					pdp->pd_fp = NULL;
544 					pdp->pd_events = 0;
545 
546 					if (pdp->pd_php != NULL) {
547 						pollhead_delete(pdp->pd_php,
548 						    pdp);
549 						pdp->pd_php = NULL;
550 					}
551 
552 					BT_CLEAR(pcp->pc_bitmap, fd);
553 				} else if (pdp->pd_events & POLLET) {
554 					/*
555 					 * Wire up the pollhead which should
556 					 * have been provided.  Edge-triggered
557 					 * polling cannot function properly
558 					 * with drivers which do not emit one.
559 					 */
560 					if (php != NULL &&
561 					    pdp->pd_php == NULL) {
562 						pollhead_insert(php, pdp);
563 						pdp->pd_php = php;
564 					}
565 
566 					/*
567 					 * If the driver has emitted a pollhead,
568 					 * clear the bit in the bitmap which
569 					 * effectively latches the edge on a
570 					 * pollwakeup() from the driver.
571 					 */
572 					if (pdp->pd_php != NULL) {
573 						BT_CLEAR(pcp->pc_bitmap, fd);
574 					}
575 				}
576 
577 				fdcnt++;
578 			} else if (php != NULL) {
579 				/*
580 				 * We clear a bit or cache a poll fd if
581 				 * the driver returns a poll head ptr,
582 				 * which is expected in the case of 0
583 				 * revents. Some buggy driver may return
584 				 * NULL php pointer with 0 revents. In
585 				 * this case, we just treat the driver as
586 				 * "noncachable" and not clearing the bit
587 				 * in bitmap.
588 				 */
589 				if ((pdp->pd_php != NULL) &&
590 				    ((pcp->pc_flag & PC_POLLWAKE) == 0)) {
591 					BT_CLEAR(pcp->pc_bitmap, fd);
592 				}
593 				if (pdp->pd_php == NULL) {
594 					pollhead_insert(php, pdp);
595 					pdp->pd_php = php;
596 					/*
597 					 * An event of interest may have
598 					 * arrived between the VOP_POLL() and
599 					 * the pollhead_insert(); check again.
600 					 */
601 					goto repoll;
602 				}
603 			}
604 		} else {
605 			/*
606 			 * No bit set in the range. Check for wrap around.
607 			 */
608 			if (!no_wrap) {
609 				start = 0;
610 				end = ostart - 1;
611 				no_wrap = B_TRUE;
612 			} else {
613 				done = B_TRUE;
614 			}
615 		}
616 	}
617 
618 	if (!done) {
619 		pcp->pc_mapstart = start;
620 	}
621 	ASSERT(*fdcntp == 0);
622 	*fdcntp = fdcnt;
623 	return (error);
624 }
625 
626 /*ARGSUSED*/
627 static int
628 dpopen(dev_t *devp, int flag, int otyp, cred_t *credp)
629 {
630 	minor_t		minordev;
631 	dp_entry_t	*dpep;
632 	pollcache_t	*pcp;
633 
634 	ASSERT(devpoll_init);
635 	ASSERT(dptblsize <= MAXMIN);
636 	mutex_enter(&devpoll_lock);
637 	for (minordev = 0; minordev < dptblsize; minordev++) {
638 		if (devpolltbl[minordev] == NULL) {
639 			devpolltbl[minordev] = (dp_entry_t *)RESERVED;
640 			break;
641 		}
642 	}
643 	if (minordev == dptblsize) {
644 		dp_entry_t	**newtbl;
645 		size_t		oldsize;
646 
647 		/*
648 		 * Used up every entry in the existing devpoll table.
649 		 * Grow the table by DEVPOLLSIZE.
650 		 */
651 		if ((oldsize = dptblsize) >= MAXMIN) {
652 			mutex_exit(&devpoll_lock);
653 			return (ENXIO);
654 		}
655 		dptblsize += DEVPOLLSIZE;
656 		if (dptblsize > MAXMIN) {
657 			dptblsize = MAXMIN;
658 		}
659 		newtbl = kmem_zalloc(sizeof (caddr_t) * dptblsize, KM_SLEEP);
660 		bcopy(devpolltbl, newtbl, sizeof (caddr_t) * oldsize);
661 		kmem_free(devpolltbl, sizeof (caddr_t) * oldsize);
662 		devpolltbl = newtbl;
663 		devpolltbl[minordev] = (dp_entry_t *)RESERVED;
664 	}
665 	mutex_exit(&devpoll_lock);
666 
667 	dpep = kmem_zalloc(sizeof (dp_entry_t), KM_SLEEP);
668 	/*
669 	 * allocate a pollcache skeleton here. Delay allocating bitmap
670 	 * structures until dpwrite() time, since we don't know the
671 	 * optimal size yet.  We also delay setting the pid until either
672 	 * dpwrite() or attempt to poll on the instance, allowing parents
673 	 * to create instances of /dev/poll for their children.  (In the
674 	 * epoll compatibility case, this check isn't performed to maintain
675 	 * semantic compatibility.)
676 	 */
677 	pcp = pcache_alloc();
678 	dpep->dpe_pcache = pcp;
679 	pcp->pc_pid = -1;
680 	*devp = makedevice(getmajor(*devp), minordev);  /* clone the driver */
681 	mutex_enter(&devpoll_lock);
682 	ASSERT(minordev < dptblsize);
683 	ASSERT(devpolltbl[minordev] == (dp_entry_t *)RESERVED);
684 	devpolltbl[minordev] = dpep;
685 	mutex_exit(&devpoll_lock);
686 	return (0);
687 }
688 
689 /*
690  * Write to dev/poll add/remove fd's to/from a cached poll fd set,
691  * or change poll events for a watched fd.
692  */
693 /*ARGSUSED*/
694 static int
695 dpwrite(dev_t dev, struct uio *uiop, cred_t *credp)
696 {
697 	minor_t		minor;
698 	dp_entry_t	*dpep;
699 	pollcache_t	*pcp;
700 	pollfd_t	*pollfdp, *pfdp;
701 	dvpoll_epollfd_t *epfdp;
702 	uintptr_t	limit;
703 	int		error, size;
704 	ssize_t		uiosize;
705 	size_t		copysize;
706 	nfds_t		pollfdnum;
707 	struct pollhead	*php = NULL;
708 	polldat_t	*pdp;
709 	int		fd;
710 	file_t		*fp;
711 	boolean_t	is_epoll, fds_added = B_FALSE;
712 
713 	minor = getminor(dev);
714 
715 	mutex_enter(&devpoll_lock);
716 	ASSERT(minor < dptblsize);
717 	dpep = devpolltbl[minor];
718 	ASSERT(dpep != NULL);
719 	mutex_exit(&devpoll_lock);
720 
721 	mutex_enter(&dpep->dpe_lock);
722 	pcp = dpep->dpe_pcache;
723 	is_epoll = (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0;
724 	size = (is_epoll) ? sizeof (dvpoll_epollfd_t) : sizeof (pollfd_t);
725 	mutex_exit(&dpep->dpe_lock);
726 
727 	if (!is_epoll && curproc->p_pid != pcp->pc_pid) {
728 		if (pcp->pc_pid != -1) {
729 			return (EACCES);
730 		}
731 
732 		pcp->pc_pid = curproc->p_pid;
733 	}
734 
735 	uiosize = uiop->uio_resid;
736 	pollfdnum = uiosize / size;
737 
738 	/*
739 	 * For epoll-enabled handles, restrict the allowed write size to 2.
740 	 * This corresponds to an epoll_ctl(3C) performing an EPOLL_CTL_MOD
741 	 * operation which is expanded into two operations (DEL and ADD).
742 	 *
743 	 * All other operations performed through epoll_ctl(3C) will consist of
744 	 * a single entry.
745 	 */
746 	if (is_epoll && pollfdnum > 2) {
747 		return (EINVAL);
748 	}
749 
750 	/*
751 	 * We want to make sure that pollfdnum isn't large enough to DoS us,
752 	 * but we also don't want to grab p_lock unnecessarily -- so we
753 	 * perform the full check against our resource limits if and only if
754 	 * pollfdnum is larger than the known-to-be-sane value of UINT8_MAX.
755 	 */
756 	if (pollfdnum > UINT8_MAX) {
757 		mutex_enter(&curproc->p_lock);
758 		if (pollfdnum >
759 		    (uint_t)rctl_enforced_value(rctlproc_legacy[RLIMIT_NOFILE],
760 		    curproc->p_rctls, curproc)) {
761 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
762 			    curproc->p_rctls, curproc, RCA_SAFE);
763 			mutex_exit(&curproc->p_lock);
764 			return (EINVAL);
765 		}
766 		mutex_exit(&curproc->p_lock);
767 	}
768 
769 	/*
770 	 * Copy in the pollfd array.  Walk through the array and add
771 	 * each polled fd to the cached set.
772 	 */
773 	pollfdp = kmem_alloc(uiosize, KM_SLEEP);
774 	limit = (uintptr_t)pollfdp + (pollfdnum * size);
775 
776 	/*
777 	 * Although /dev/poll uses the write(2) interface to cache fds, it's
778 	 * not supposed to function as a seekable device. To prevent offset
779 	 * from growing and eventually exceed the maximum, reset the offset
780 	 * here for every call.
781 	 */
782 	uiop->uio_loffset = 0;
783 
784 	/*
785 	 * Use uiocopy instead of uiomove when populating pollfdp, keeping
786 	 * uio_resid untouched for now.  Write syscalls will translate EINTR
787 	 * into a success if they detect "successfully transfered" data via an
788 	 * updated uio_resid.  Falsely suppressing such errors is disastrous.
789 	 */
790 	if ((error = uiocopy((caddr_t)pollfdp, uiosize, UIO_WRITE, uiop,
791 	    &copysize)) != 0) {
792 		kmem_free(pollfdp, uiosize);
793 		return (error);
794 	}
795 
796 	/*
797 	 * We are about to enter the core portion of dpwrite(). Make sure this
798 	 * write has exclusive access in this portion of the code, i.e., no
799 	 * other writers in this code.
800 	 *
801 	 * Waiting for all readers to drop their references to the dpe is
802 	 * unecessary since the pollcache itself is protected by pc_lock.
803 	 */
804 	mutex_enter(&dpep->dpe_lock);
805 	dpep->dpe_writerwait++;
806 	while ((dpep->dpe_flag & DP_WRITER_PRESENT) != 0) {
807 		ASSERT(dpep->dpe_refcnt != 0);
808 
809 		/*
810 		 * The epoll API does not allow EINTR as a result when making
811 		 * modifications to the set of polled fds.  Given that write
812 		 * activity is relatively quick and the size of accepted writes
813 		 * is limited above to two entries, a signal-ignorant wait is
814 		 * used here to avoid the EINTR.
815 		 */
816 		if (is_epoll) {
817 			cv_wait(&dpep->dpe_cv, &dpep->dpe_lock);
818 			continue;
819 		}
820 
821 		/*
822 		 * Non-epoll writers to /dev/poll handles can tolerate EINTR.
823 		 */
824 		if (!cv_wait_sig_swap(&dpep->dpe_cv, &dpep->dpe_lock)) {
825 			dpep->dpe_writerwait--;
826 			mutex_exit(&dpep->dpe_lock);
827 			kmem_free(pollfdp, uiosize);
828 			return (EINTR);
829 		}
830 	}
831 	dpep->dpe_writerwait--;
832 	dpep->dpe_flag |= DP_WRITER_PRESENT;
833 	dpep->dpe_refcnt++;
834 
835 	if (!is_epoll && (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0) {
836 		/*
837 		 * The epoll compat mode was enabled while we were waiting to
838 		 * establish write access. It is not safe to continue since
839 		 * state was prepared for non-epoll operation.
840 		 */
841 		error = EBUSY;
842 		goto bypass;
843 	}
844 	mutex_exit(&dpep->dpe_lock);
845 
846 	/*
847 	 * Since the dpwrite() may recursively walk an added /dev/poll handle,
848 	 * pollstate_enter() deadlock and loop detection must be used.
849 	 */
850 	(void) pollstate_create();
851 	VERIFY(pollstate_enter(pcp) == PSE_SUCCESS);
852 
853 	if (pcp->pc_bitmap == NULL) {
854 		pcache_create(pcp, pollfdnum);
855 	}
856 	for (pfdp = pollfdp; (uintptr_t)pfdp < limit;
857 	    pfdp = (pollfd_t *)((uintptr_t)pfdp + size)) {
858 		fd = pfdp->fd;
859 		if ((uint_t)fd >= P_FINFO(curproc)->fi_nfiles) {
860 			/*
861 			 * epoll semantics demand that we return EBADF if our
862 			 * specified fd is invalid.
863 			 */
864 			if (is_epoll) {
865 				error = EBADF;
866 				break;
867 			}
868 
869 			continue;
870 		}
871 
872 		pdp = pcache_lookup_fd(pcp, fd);
873 		if (pfdp->events != POLLREMOVE) {
874 
875 			fp = NULL;
876 
877 			if (pdp == NULL) {
878 				/*
879 				 * If we're in epoll compatibility mode, check
880 				 * that the fd is valid before allocating
881 				 * anything for it; epoll semantics demand that
882 				 * we return EBADF if our specified fd is
883 				 * invalid.
884 				 */
885 				if (is_epoll) {
886 					if ((fp = getf(fd)) == NULL) {
887 						error = EBADF;
888 						break;
889 					}
890 				}
891 
892 				pdp = pcache_alloc_fd(0);
893 				pdp->pd_fd = fd;
894 				pdp->pd_pcache = pcp;
895 				pcache_insert_fd(pcp, pdp, pollfdnum);
896 			} else {
897 				/*
898 				 * epoll semantics demand that we error out if
899 				 * a file descriptor is added twice, which we
900 				 * check (imperfectly) by checking if we both
901 				 * have the file descriptor cached and the
902 				 * file pointer that correponds to the file
903 				 * descriptor matches our cached value.  If
904 				 * there is a pointer mismatch, the file
905 				 * descriptor was closed without being removed.
906 				 * The converse is clearly not true, however,
907 				 * so to narrow the window by which a spurious
908 				 * EEXIST may be returned, we also check if
909 				 * this fp has been added to an epoll control
910 				 * descriptor in the past; if it hasn't, we
911 				 * know that this is due to fp reuse -- it's
912 				 * not a true EEXIST case.  (By performing this
913 				 * additional check, we limit the window of
914 				 * spurious EEXIST to situations where a single
915 				 * file descriptor is being used across two or
916 				 * more epoll control descriptors -- and even
917 				 * then, the file descriptor must be closed and
918 				 * reused in a relatively tight time span.)
919 				 */
920 				if (is_epoll) {
921 					if (pdp->pd_fp != NULL &&
922 					    (fp = getf(fd)) != NULL &&
923 					    fp == pdp->pd_fp &&
924 					    (fp->f_flag2 & FEPOLLED)) {
925 						error = EEXIST;
926 						releasef(fd);
927 						break;
928 					}
929 
930 					/*
931 					 * We have decided that the cached
932 					 * information was stale: it either
933 					 * didn't match, or the fp had never
934 					 * actually been epoll()'d on before.
935 					 * We need to now clear our pd_events
936 					 * to assure that we don't mistakenly
937 					 * operate on cached event disposition.
938 					 */
939 					pdp->pd_events = 0;
940 				}
941 			}
942 
943 			if (is_epoll) {
944 				epfdp = (dvpoll_epollfd_t *)pfdp;
945 				pdp->pd_epolldata = epfdp->dpep_data;
946 			}
947 
948 			ASSERT(pdp->pd_fd == fd);
949 			ASSERT(pdp->pd_pcache == pcp);
950 			if (fd >= pcp->pc_mapsize) {
951 				mutex_exit(&pcp->pc_lock);
952 				pcache_grow_map(pcp, fd);
953 				mutex_enter(&pcp->pc_lock);
954 			}
955 			if (fd > pcp->pc_mapend) {
956 				pcp->pc_mapend = fd;
957 			}
958 			if (fp == NULL && (fp = getf(fd)) == NULL) {
959 				/*
960 				 * The fd is not valid. Since we can't pass
961 				 * this error back in the write() call, set
962 				 * the bit in bitmap to force DP_POLL ioctl
963 				 * to examine it.
964 				 */
965 				BT_SET(pcp->pc_bitmap, fd);
966 				pdp->pd_events |= pfdp->events;
967 				continue;
968 			}
969 
970 			/*
971 			 * To (greatly) reduce EEXIST false positives, we
972 			 * denote that this fp has been epoll()'d.  We do this
973 			 * regardless of epoll compatibility mode, as the flag
974 			 * is harmless if not in epoll compatibility mode.
975 			 */
976 			fp->f_flag2 |= FEPOLLED;
977 
978 			/*
979 			 * Don't do VOP_POLL for an already cached fd with
980 			 * same poll events.
981 			 */
982 			if ((pdp->pd_events == pfdp->events) &&
983 			    (pdp->pd_fp == fp)) {
984 				/*
985 				 * the events are already cached
986 				 */
987 				releasef(fd);
988 				continue;
989 			}
990 
991 			/*
992 			 * do VOP_POLL and cache this poll fd.
993 			 */
994 			/*
995 			 * XXX - pollrelock() logic needs to know which
996 			 * which pollcache lock to grab. It'd be a
997 			 * cleaner solution if we could pass pcp as
998 			 * an arguement in VOP_POLL interface instead
999 			 * of implicitly passing it using thread_t
1000 			 * struct. On the other hand, changing VOP_POLL
1001 			 * interface will require all driver/file system
1002 			 * poll routine to change. May want to revisit
1003 			 * the tradeoff later.
1004 			 */
1005 			curthread->t_pollcache = pcp;
1006 			error = VOP_POLL(fp->f_vnode, pfdp->events, 0,
1007 			    &pfdp->revents, &php, NULL);
1008 
1009 			/*
1010 			 * Edge-triggered polling requires a pollhead in order
1011 			 * to initiate wake-ups properly.  Drivers which are
1012 			 * savvy to POLLET presence, which should include
1013 			 * everything in-gate, will always emit one, regardless
1014 			 * of revent status.  Older drivers which only emit a
1015 			 * pollhead if 'revents == 0' are given a second chance
1016 			 * here via a second VOP_POLL, with only POLLET set in
1017 			 * the events of interest.  These circumstances should
1018 			 * induce any cacheable drivers to emit a pollhead for
1019 			 * wake-ups.
1020 			 *
1021 			 * Drivers which never emit a pollhead will simply
1022 			 * disobey the exectation of edge-triggered behavior.
1023 			 * This includes recursive epoll which, even on Linux,
1024 			 * yields its events in a level-triggered fashion only.
1025 			 */
1026 			if ((pdp->pd_events & POLLET) && error == 0 &&
1027 			    php == NULL) {
1028 				short levent = 0;
1029 
1030 				error = VOP_POLL(fp->f_vnode, POLLET, 0,
1031 				    &levent, &php, NULL);
1032 			}
1033 
1034 			curthread->t_pollcache = NULL;
1035 			/*
1036 			 * We always set the bit when this fd is cached;
1037 			 * this forces the first DP_POLL to poll this fd.
1038 			 * Real performance gain comes from subsequent
1039 			 * DP_POLL.  We also attempt a pollhead_insert();
1040 			 * if it's not possible, we'll do it in dpioctl().
1041 			 */
1042 			BT_SET(pcp->pc_bitmap, fd);
1043 			if (error != 0) {
1044 				releasef(fd);
1045 				break;
1046 			}
1047 			pdp->pd_fp = fp;
1048 			pdp->pd_events |= pfdp->events;
1049 			if (php != NULL) {
1050 				if (pdp->pd_php == NULL) {
1051 					pollhead_insert(php, pdp);
1052 					pdp->pd_php = php;
1053 				} else {
1054 					if (pdp->pd_php != php) {
1055 						pollhead_delete(pdp->pd_php,
1056 						    pdp);
1057 						pollhead_insert(php, pdp);
1058 						pdp->pd_php = php;
1059 					}
1060 				}
1061 			}
1062 			fds_added = B_TRUE;
1063 			releasef(fd);
1064 		} else {
1065 			if (pdp == NULL || pdp->pd_fp == NULL) {
1066 				if (is_epoll) {
1067 					/*
1068 					 * As with the add case (above), epoll
1069 					 * semantics demand that we error out
1070 					 * in this case.
1071 					 */
1072 					error = ENOENT;
1073 					break;
1074 				}
1075 
1076 				continue;
1077 			}
1078 			ASSERT(pdp->pd_fd == fd);
1079 			pdp->pd_fp = NULL;
1080 			pdp->pd_events = 0;
1081 			ASSERT(pdp->pd_thread == NULL);
1082 			if (pdp->pd_php != NULL) {
1083 				pollhead_delete(pdp->pd_php, pdp);
1084 				pdp->pd_php = NULL;
1085 			}
1086 			BT_CLEAR(pcp->pc_bitmap, fd);
1087 		}
1088 	}
1089 	/*
1090 	 * Wake any pollcache waiters so they can check the new descriptors.
1091 	 *
1092 	 * Any fds added to an recursive-capable pollcache could themselves be
1093 	 * /dev/poll handles. To ensure that proper event propagation occurs,
1094 	 * parent pollcaches are woken too, so that they can create any needed
1095 	 * pollcache links.
1096 	 */
1097 	if (fds_added) {
1098 		cv_broadcast(&pcp->pc_cv);
1099 		pcache_wake_parents(pcp);
1100 	}
1101 	pollstate_exit(pcp);
1102 	mutex_enter(&dpep->dpe_lock);
1103 bypass:
1104 	dpep->dpe_flag &= ~DP_WRITER_PRESENT;
1105 	dpep->dpe_refcnt--;
1106 	cv_broadcast(&dpep->dpe_cv);
1107 	mutex_exit(&dpep->dpe_lock);
1108 	kmem_free(pollfdp, uiosize);
1109 	if (error == 0) {
1110 		/*
1111 		 * The state of uio_resid is updated only after the pollcache
1112 		 * is successfully modified.
1113 		 */
1114 		uioskip(uiop, copysize);
1115 	}
1116 	return (error);
1117 }
1118 
1119 #define	DP_SIGMASK_RESTORE(ksetp) {					\
1120 	if (ksetp != NULL) {						\
1121 		mutex_enter(&p->p_lock);				\
1122 		if (lwp->lwp_cursig == 0) {				\
1123 			t->t_hold = lwp->lwp_sigoldmask;		\
1124 			t->t_flag &= ~T_TOMASK;				\
1125 		}							\
1126 		mutex_exit(&p->p_lock);					\
1127 	}								\
1128 }
1129 
1130 /*ARGSUSED*/
1131 static int
1132 dpioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1133 {
1134 	minor_t		minor;
1135 	dp_entry_t	*dpep;
1136 	pollcache_t	*pcp;
1137 	hrtime_t	now;
1138 	int		error = 0;
1139 	boolean_t	is_epoll;
1140 	STRUCT_DECL(dvpoll, dvpoll);
1141 
1142 	if (cmd == DP_POLL || cmd == DP_PPOLL) {
1143 		/* do this now, before we sleep on DP_WRITER_PRESENT */
1144 		now = gethrtime();
1145 	}
1146 
1147 	minor = getminor(dev);
1148 	mutex_enter(&devpoll_lock);
1149 	ASSERT(minor < dptblsize);
1150 	dpep = devpolltbl[minor];
1151 	mutex_exit(&devpoll_lock);
1152 	ASSERT(dpep != NULL);
1153 	pcp = dpep->dpe_pcache;
1154 
1155 	mutex_enter(&dpep->dpe_lock);
1156 	is_epoll = (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0;
1157 
1158 	if (cmd == DP_EPOLLCOMPAT) {
1159 		if (dpep->dpe_refcnt != 0) {
1160 			/*
1161 			 * We can't turn on epoll compatibility while there
1162 			 * are outstanding operations.
1163 			 */
1164 			mutex_exit(&dpep->dpe_lock);
1165 			return (EBUSY);
1166 		}
1167 
1168 		/*
1169 		 * epoll compatibility is a one-way street: there's no way
1170 		 * to turn it off for a particular open.
1171 		 */
1172 		dpep->dpe_flag |= DP_ISEPOLLCOMPAT;
1173 
1174 		/* Record the epoll-enabled nature in the pollcache too */
1175 		mutex_enter(&pcp->pc_lock);
1176 		pcp->pc_flag |= PC_EPOLL;
1177 		mutex_exit(&pcp->pc_lock);
1178 
1179 		mutex_exit(&dpep->dpe_lock);
1180 		return (0);
1181 	}
1182 
1183 	if (!is_epoll && curproc->p_pid != pcp->pc_pid) {
1184 		if (pcp->pc_pid != -1) {
1185 			mutex_exit(&dpep->dpe_lock);
1186 			return (EACCES);
1187 		}
1188 
1189 		pcp->pc_pid = curproc->p_pid;
1190 	}
1191 
1192 	/* Wait until all writers have cleared the handle before continuing */
1193 	while ((dpep->dpe_flag & DP_WRITER_PRESENT) != 0 ||
1194 	    (dpep->dpe_writerwait != 0)) {
1195 		if (!cv_wait_sig_swap(&dpep->dpe_cv, &dpep->dpe_lock)) {
1196 			mutex_exit(&dpep->dpe_lock);
1197 			return (EINTR);
1198 		}
1199 	}
1200 	dpep->dpe_refcnt++;
1201 	mutex_exit(&dpep->dpe_lock);
1202 
1203 	switch (cmd) {
1204 	case	DP_POLL:
1205 	case	DP_PPOLL:
1206 	{
1207 		pollstate_t	*ps;
1208 		nfds_t		nfds;
1209 		int		fdcnt = 0;
1210 		size_t		size, fdsize, dpsize;
1211 		hrtime_t	deadline = 0;
1212 		k_sigset_t	*ksetp = NULL;
1213 		k_sigset_t	kset;
1214 		sigset_t	set;
1215 		kthread_t	*t = curthread;
1216 		klwp_t		*lwp = ttolwp(t);
1217 		struct proc	*p = ttoproc(curthread);
1218 
1219 		STRUCT_INIT(dvpoll, mode);
1220 
1221 		/*
1222 		 * The dp_setp member is only required/consumed for DP_PPOLL,
1223 		 * which otherwise uses the same structure as DP_POLL.
1224 		 */
1225 		if (cmd == DP_POLL) {
1226 			dpsize = (uintptr_t)STRUCT_FADDR(dvpoll, dp_setp) -
1227 			    (uintptr_t)STRUCT_FADDR(dvpoll, dp_fds);
1228 		} else {
1229 			ASSERT(cmd == DP_PPOLL);
1230 			dpsize = STRUCT_SIZE(dvpoll);
1231 		}
1232 
1233 		if ((mode & FKIOCTL) != 0) {
1234 			/* Kernel-internal ioctl call */
1235 			bcopy((caddr_t)arg, STRUCT_BUF(dvpoll), dpsize);
1236 			error = 0;
1237 		} else {
1238 			error = copyin((caddr_t)arg, STRUCT_BUF(dvpoll),
1239 			    dpsize);
1240 		}
1241 
1242 		if (error) {
1243 			DP_REFRELE(dpep);
1244 			return (EFAULT);
1245 		}
1246 
1247 		deadline = STRUCT_FGET(dvpoll, dp_timeout);
1248 		if (deadline > 0) {
1249 			/*
1250 			 * Convert the deadline from relative milliseconds
1251 			 * to absolute nanoseconds.  They must wait for at
1252 			 * least a tick.
1253 			 */
1254 			deadline = MSEC2NSEC(deadline);
1255 			deadline = MAX(deadline, nsec_per_tick);
1256 			deadline += now;
1257 		}
1258 
1259 		if (cmd == DP_PPOLL) {
1260 			void *setp = STRUCT_FGETP(dvpoll, dp_setp);
1261 
1262 			if (setp != NULL) {
1263 				if ((mode & FKIOCTL) != 0) {
1264 					/* Use the signal set directly */
1265 					ksetp = (k_sigset_t *)setp;
1266 				} else {
1267 					if (copyin(setp, &set, sizeof (set))) {
1268 						DP_REFRELE(dpep);
1269 						return (EFAULT);
1270 					}
1271 					sigutok(&set, &kset);
1272 					ksetp = &kset;
1273 				}
1274 
1275 				mutex_enter(&p->p_lock);
1276 				schedctl_finish_sigblock(t);
1277 				lwp->lwp_sigoldmask = t->t_hold;
1278 				t->t_hold = *ksetp;
1279 				t->t_flag |= T_TOMASK;
1280 
1281 				/*
1282 				 * Like ppoll() with a non-NULL sigset, we'll
1283 				 * call cv_reltimedwait_sig() just to check for
1284 				 * signals.  This call will return immediately
1285 				 * with either 0 (signalled) or -1 (no signal).
1286 				 * There are some conditions whereby we can
1287 				 * get 0 from cv_reltimedwait_sig() without
1288 				 * a true signal (e.g., a directed stop), so
1289 				 * we restore our signal mask in the unlikely
1290 				 * event that lwp_cursig is 0.
1291 				 */
1292 				if (!cv_reltimedwait_sig(&t->t_delay_cv,
1293 				    &p->p_lock, 0, TR_CLOCK_TICK)) {
1294 					if (lwp->lwp_cursig == 0) {
1295 						t->t_hold = lwp->lwp_sigoldmask;
1296 						t->t_flag &= ~T_TOMASK;
1297 					}
1298 
1299 					mutex_exit(&p->p_lock);
1300 
1301 					DP_REFRELE(dpep);
1302 					return (EINTR);
1303 				}
1304 
1305 				mutex_exit(&p->p_lock);
1306 			}
1307 		}
1308 
1309 		if ((nfds = STRUCT_FGET(dvpoll, dp_nfds)) == 0) {
1310 			/*
1311 			 * We are just using DP_POLL to sleep, so
1312 			 * we don't any of the devpoll apparatus.
1313 			 * Do not check for signals if we have a zero timeout.
1314 			 */
1315 			DP_REFRELE(dpep);
1316 			if (deadline == 0) {
1317 				DP_SIGMASK_RESTORE(ksetp);
1318 				return (0);
1319 			}
1320 
1321 			mutex_enter(&curthread->t_delay_lock);
1322 			while ((error =
1323 			    cv_timedwait_sig_hrtime(&curthread->t_delay_cv,
1324 			    &curthread->t_delay_lock, deadline)) > 0)
1325 				continue;
1326 			mutex_exit(&curthread->t_delay_lock);
1327 
1328 			DP_SIGMASK_RESTORE(ksetp);
1329 
1330 			return (error == 0 ? EINTR : 0);
1331 		}
1332 
1333 		if (is_epoll) {
1334 			size = nfds * (fdsize = sizeof (epoll_event_t));
1335 		} else {
1336 			size = nfds * (fdsize = sizeof (pollfd_t));
1337 		}
1338 
1339 		/*
1340 		 * XXX It would be nice not to have to alloc each time, but it
1341 		 * requires another per thread structure hook. This can be
1342 		 * implemented later if data suggests that it's necessary.
1343 		 */
1344 		ps = pollstate_create();
1345 
1346 		if (ps->ps_dpbufsize < size) {
1347 			/*
1348 			 * If nfds is larger than twice the current maximum
1349 			 * open file count, we'll silently clamp it.  This
1350 			 * only limits our exposure to allocating an
1351 			 * inordinate amount of kernel memory; it doesn't
1352 			 * otherwise affect the semantics.  (We have this
1353 			 * check at twice the maximum instead of merely the
1354 			 * maximum because some applications pass an nfds that
1355 			 * is only slightly larger than their limit.)
1356 			 */
1357 			mutex_enter(&p->p_lock);
1358 			if ((nfds >> 1) > p->p_fno_ctl) {
1359 				nfds = p->p_fno_ctl;
1360 				size = nfds * fdsize;
1361 			}
1362 			mutex_exit(&p->p_lock);
1363 
1364 			if (ps->ps_dpbufsize < size) {
1365 				kmem_free(ps->ps_dpbuf, ps->ps_dpbufsize);
1366 				ps->ps_dpbuf = kmem_zalloc(size, KM_SLEEP);
1367 				ps->ps_dpbufsize = size;
1368 			}
1369 		}
1370 
1371 		VERIFY(pollstate_enter(pcp) == PSE_SUCCESS);
1372 		for (;;) {
1373 			pcp->pc_flag &= ~PC_POLLWAKE;
1374 
1375 			/*
1376 			 * Mark all child pcachelinks as stale.
1377 			 * Those which are still part of the tree will be
1378 			 * marked as valid during the poll.
1379 			 */
1380 			pcachelink_mark_stale(pcp);
1381 
1382 			error = dp_pcache_poll(dpep, ps->ps_dpbuf,
1383 			    pcp, nfds, &fdcnt);
1384 			if (fdcnt > 0 || error != 0)
1385 				break;
1386 
1387 			/* Purge still-stale child pcachelinks */
1388 			pcachelink_purge_stale(pcp);
1389 
1390 			/*
1391 			 * A pollwake has happened since we polled cache.
1392 			 */
1393 			if (pcp->pc_flag & PC_POLLWAKE)
1394 				continue;
1395 
1396 			/*
1397 			 * Sleep until we are notified, signaled, or timed out.
1398 			 */
1399 			if (deadline == 0) {
1400 				/* immediate timeout; do not check signals */
1401 				break;
1402 			}
1403 
1404 			error = cv_timedwait_sig_hrtime(&pcp->pc_cv,
1405 			    &pcp->pc_lock, deadline);
1406 
1407 			/*
1408 			 * If we were awakened by a signal or timeout then
1409 			 * break the loop, else poll again.
1410 			 */
1411 			if (error <= 0) {
1412 				error = (error == 0) ? EINTR : 0;
1413 				break;
1414 			} else {
1415 				error = 0;
1416 			}
1417 		}
1418 		pollstate_exit(pcp);
1419 
1420 		DP_SIGMASK_RESTORE(ksetp);
1421 
1422 		if (error == 0 && fdcnt > 0) {
1423 			/*
1424 			 * It should be noted that FKIOCTL does not influence
1425 			 * the copyout (vs bcopy) of dp_fds at this time.
1426 			 */
1427 			if (copyout(ps->ps_dpbuf,
1428 			    STRUCT_FGETP(dvpoll, dp_fds), fdcnt * fdsize)) {
1429 				DP_REFRELE(dpep);
1430 				return (EFAULT);
1431 			}
1432 			*rvalp = fdcnt;
1433 		}
1434 		break;
1435 	}
1436 
1437 	case	DP_ISPOLLED:
1438 	{
1439 		pollfd_t	pollfd;
1440 		polldat_t	*pdp;
1441 
1442 		STRUCT_INIT(dvpoll, mode);
1443 		error = copyin((caddr_t)arg, &pollfd, sizeof (pollfd_t));
1444 		if (error) {
1445 			DP_REFRELE(dpep);
1446 			return (EFAULT);
1447 		}
1448 		mutex_enter(&pcp->pc_lock);
1449 		if (pcp->pc_hash == NULL) {
1450 			/*
1451 			 * No Need to search because no poll fd
1452 			 * has been cached.
1453 			 */
1454 			mutex_exit(&pcp->pc_lock);
1455 			DP_REFRELE(dpep);
1456 			return (0);
1457 		}
1458 		if (pollfd.fd < 0) {
1459 			mutex_exit(&pcp->pc_lock);
1460 			break;
1461 		}
1462 		pdp = pcache_lookup_fd(pcp, pollfd.fd);
1463 		if ((pdp != NULL) && (pdp->pd_fd == pollfd.fd) &&
1464 		    (pdp->pd_fp != NULL)) {
1465 			pollfd.revents = pdp->pd_events;
1466 			if (copyout(&pollfd, (caddr_t)arg, sizeof (pollfd_t))) {
1467 				mutex_exit(&pcp->pc_lock);
1468 				DP_REFRELE(dpep);
1469 				return (EFAULT);
1470 			}
1471 			*rvalp = 1;
1472 		}
1473 		mutex_exit(&pcp->pc_lock);
1474 		break;
1475 	}
1476 
1477 	default:
1478 		DP_REFRELE(dpep);
1479 		return (EINVAL);
1480 	}
1481 	DP_REFRELE(dpep);
1482 	return (error);
1483 }
1484 
1485 /*
1486  * Overview of Recursive Polling
1487  *
1488  * It is possible for /dev/poll to poll for events on file descriptors which
1489  * themselves are /dev/poll handles.  Pending events in the child handle are
1490  * represented as readable data via the POLLIN flag.  To limit surface area,
1491  * this recursion is presently allowed on only /dev/poll handles which have
1492  * been placed in epoll mode via the DP_EPOLLCOMPAT ioctl.  Recursion depth is
1493  * limited to 5 in order to be consistent with Linux epoll.
1494  *
1495  * Extending dppoll() for VOP_POLL:
1496  *
1497  * The recursive /dev/poll implementation begins by extending dppoll() to
1498  * report when resources contained in the pollcache have relevant event state.
1499  * At the highest level, it means calling dp_pcache_poll() so it indicates if
1500  * fd events are present without consuming them or altering the pollcache
1501  * bitmap.  This ensures that a subsequent DP_POLL operation on the bitmap will
1502  * yield the initiating event.  Additionally, the VOP_POLL should return in
1503  * such a way that dp_pcache_poll() does not clear the parent bitmap entry
1504  * which corresponds to the child /dev/poll fd.  This means that child
1505  * pollcaches will be checked during every poll which facilitates wake-up
1506  * behavior detailed below.
1507  *
1508  * Pollcache Links and Wake Events:
1509  *
1510  * Recursive /dev/poll avoids complicated pollcache locking constraints during
1511  * pollwakeup events by eschewing the traditional pollhead mechanism in favor
1512  * of a different approach.  For each pollcache at the root of a recursive
1513  * /dev/poll "tree", pcachelink_t structures are established to all child
1514  * /dev/poll pollcaches.  During pollnotify() in a child pollcache, the
1515  * linked list of pcachelink_t entries is walked, where those marked as valid
1516  * incur a cv_broadcast to their parent pollcache.  Most notably, these
1517  * pcachelink_t cv wakeups are performed without acquiring pc_lock on the
1518  * parent pollcache (which would require careful deadlock avoidance).  This
1519  * still allows the woken poll on the parent to discover the pertinent events
1520  * due to the fact that bitmap entires for the child pollcache are always
1521  * maintained by the dppoll() logic above.
1522  *
1523  * Depth Limiting and Loop Prevention:
1524  *
1525  * As each pollcache is encountered (either via DP_POLL or dppoll()), depth and
1526  * loop constraints are enforced via pollstate_enter().  The pollcache_t
1527  * pointer is compared against any existing entries in ps_pc_stack and is added
1528  * to the end if no match (and therefore loop) is found.  Once poll operations
1529  * for a given pollcache_t are complete, pollstate_exit() clears the pointer
1530  * from the list.  The pollstate_enter() and pollstate_exit() functions are
1531  * responsible for acquiring and releasing pc_lock, respectively.
1532  *
1533  * Deadlock Safety:
1534  *
1535  * Descending through a tree of recursive /dev/poll handles involves the tricky
1536  * business of sequentially entering multiple pollcache locks.  This tree
1537  * topology cannot define a lock acquisition order in such a way that it is
1538  * immune to deadlocks between threads.  The pollstate_enter() and
1539  * pollstate_exit() functions provide an interface for recursive /dev/poll
1540  * operations to safely lock pollcaches while failing gracefully in the face of
1541  * deadlocking topologies. (See pollstate_contend() for more detail about how
1542  * deadlocks are detected and resolved.)
1543  */
1544 
1545 /*ARGSUSED*/
1546 static int
1547 dppoll(dev_t dev, short events, int anyyet, short *reventsp,
1548     struct pollhead **phpp)
1549 {
1550 	minor_t		minor;
1551 	dp_entry_t	*dpep;
1552 	pollcache_t	*pcp;
1553 	int		res, rc = 0;
1554 
1555 	minor = getminor(dev);
1556 	mutex_enter(&devpoll_lock);
1557 	ASSERT(minor < dptblsize);
1558 	dpep = devpolltbl[minor];
1559 	ASSERT(dpep != NULL);
1560 	mutex_exit(&devpoll_lock);
1561 
1562 	mutex_enter(&dpep->dpe_lock);
1563 	if ((dpep->dpe_flag & DP_ISEPOLLCOMPAT) == 0) {
1564 		/* Poll recursion is not yet supported for non-epoll handles */
1565 		*reventsp = POLLERR;
1566 		mutex_exit(&dpep->dpe_lock);
1567 		return (0);
1568 	} else {
1569 		dpep->dpe_refcnt++;
1570 		pcp = dpep->dpe_pcache;
1571 		mutex_exit(&dpep->dpe_lock);
1572 	}
1573 
1574 	res = pollstate_enter(pcp);
1575 	if (res == PSE_SUCCESS) {
1576 		nfds_t		nfds = 1;
1577 		int		fdcnt = 0;
1578 		pollstate_t	*ps = curthread->t_pollstate;
1579 
1580 		/*
1581 		 * Recursive polling will only emit certain events.  Skip a
1582 		 * scan of the pollcache if those events are not of interest.
1583 		 */
1584 		if (events & (POLLIN|POLLRDNORM)) {
1585 			rc = dp_pcache_poll(dpep, NULL, pcp, nfds, &fdcnt);
1586 		} else {
1587 			rc = 0;
1588 			fdcnt = 0;
1589 		}
1590 
1591 		if (rc == 0 && fdcnt > 0) {
1592 			*reventsp = POLLIN|POLLRDNORM;
1593 		} else {
1594 			*reventsp = 0;
1595 		}
1596 		pcachelink_assoc(pcp, ps->ps_pc_stack[0]);
1597 		pollstate_exit(pcp);
1598 	} else {
1599 		switch (res) {
1600 		case PSE_FAIL_DEPTH:
1601 			rc = EINVAL;
1602 			break;
1603 		case PSE_FAIL_LOOP:
1604 		case PSE_FAIL_DEADLOCK:
1605 			rc = ELOOP;
1606 			break;
1607 		default:
1608 			/*
1609 			 * If anything else has gone awry, such as being polled
1610 			 * from an unexpected context, fall back to the
1611 			 * recursion-intolerant response.
1612 			 */
1613 			*reventsp = POLLERR;
1614 			rc = 0;
1615 			break;
1616 		}
1617 	}
1618 
1619 	DP_REFRELE(dpep);
1620 	return (rc);
1621 }
1622 
1623 /*
1624  * devpoll close should do enough clean up before the pollcache is deleted,
1625  * i.e., it should ensure no one still references the pollcache later.
1626  * There is no "permission" check in here. Any process having the last
1627  * reference of this /dev/poll fd can close.
1628  */
1629 /*ARGSUSED*/
1630 static int
1631 dpclose(dev_t dev, int flag, int otyp, cred_t *credp)
1632 {
1633 	minor_t		minor;
1634 	dp_entry_t	*dpep;
1635 	pollcache_t	*pcp;
1636 	int		i;
1637 	polldat_t	**hashtbl;
1638 	polldat_t	*pdp;
1639 
1640 	minor = getminor(dev);
1641 
1642 	mutex_enter(&devpoll_lock);
1643 	dpep = devpolltbl[minor];
1644 	ASSERT(dpep != NULL);
1645 	devpolltbl[minor] = NULL;
1646 	mutex_exit(&devpoll_lock);
1647 	pcp = dpep->dpe_pcache;
1648 	ASSERT(pcp != NULL);
1649 	/*
1650 	 * At this point, no other lwp can access this pollcache via the
1651 	 * /dev/poll fd. This pollcache is going away, so do the clean
1652 	 * up without the pc_lock.
1653 	 */
1654 	hashtbl = pcp->pc_hash;
1655 	for (i = 0; i < pcp->pc_hashsize; i++) {
1656 		for (pdp = hashtbl[i]; pdp; pdp = pdp->pd_hashnext) {
1657 			if (pdp->pd_php != NULL) {
1658 				pollhead_delete(pdp->pd_php, pdp);
1659 				pdp->pd_php = NULL;
1660 				pdp->pd_fp = NULL;
1661 			}
1662 		}
1663 	}
1664 	/*
1665 	 * pollwakeup() may still interact with this pollcache. Wait until
1666 	 * it is done.
1667 	 */
1668 	mutex_enter(&pcp->pc_no_exit);
1669 	ASSERT(pcp->pc_busy >= 0);
1670 	while (pcp->pc_busy > 0)
1671 		cv_wait(&pcp->pc_busy_cv, &pcp->pc_no_exit);
1672 	mutex_exit(&pcp->pc_no_exit);
1673 
1674 	/* Clean up any pollcache links created via recursive /dev/poll */
1675 	if (pcp->pc_parents != NULL || pcp->pc_children != NULL) {
1676 		/*
1677 		 * Because of the locking rules for pcachelink manipulation,
1678 		 * acquring pc_lock is required for this step.
1679 		 */
1680 		mutex_enter(&pcp->pc_lock);
1681 		pcachelink_purge_all(pcp);
1682 		mutex_exit(&pcp->pc_lock);
1683 	}
1684 
1685 	pcache_destroy(pcp);
1686 	ASSERT(dpep->dpe_refcnt == 0);
1687 	kmem_free(dpep, sizeof (dp_entry_t));
1688 	return (0);
1689 }
1690 
1691 static void
1692 pcachelink_locked_rele(pcachelink_t *pl)
1693 {
1694 	ASSERT(MUTEX_HELD(&pl->pcl_lock));
1695 	VERIFY(pl->pcl_refcnt >= 1);
1696 
1697 	pl->pcl_refcnt--;
1698 	if (pl->pcl_refcnt == 0) {
1699 		VERIFY(pl->pcl_state == PCL_INVALID);
1700 		ASSERT(pl->pcl_parent_pc == NULL);
1701 		ASSERT(pl->pcl_child_pc == NULL);
1702 		ASSERT(pl->pcl_parent_next == NULL);
1703 		ASSERT(pl->pcl_child_next == NULL);
1704 
1705 		pl->pcl_state = PCL_FREE;
1706 		mutex_destroy(&pl->pcl_lock);
1707 		kmem_free(pl, sizeof (pcachelink_t));
1708 	} else {
1709 		mutex_exit(&pl->pcl_lock);
1710 	}
1711 }
1712 
1713 /*
1714  * Associate parent and child pollcaches via a pcachelink_t.  If an existing
1715  * link (stale or valid) between the two is found, it will be reused.  If a
1716  * suitable link is not found for reuse, a new one will be allocated.
1717  */
1718 static void
1719 pcachelink_assoc(pollcache_t *child, pollcache_t *parent)
1720 {
1721 	pcachelink_t	*pl, **plpn;
1722 
1723 	ASSERT(MUTEX_HELD(&child->pc_lock));
1724 	ASSERT(MUTEX_HELD(&parent->pc_lock));
1725 
1726 	/* Search for an existing link we can reuse. */
1727 	plpn = &child->pc_parents;
1728 	for (pl = child->pc_parents; pl != NULL; pl = *plpn) {
1729 		mutex_enter(&pl->pcl_lock);
1730 		if (pl->pcl_state == PCL_INVALID) {
1731 			/* Clean any invalid links while walking the list */
1732 			*plpn = pl->pcl_parent_next;
1733 			pl->pcl_child_pc = NULL;
1734 			pl->pcl_parent_next = NULL;
1735 			pcachelink_locked_rele(pl);
1736 		} else if (pl->pcl_parent_pc == parent) {
1737 			/* Successfully found parent link */
1738 			ASSERT(pl->pcl_state == PCL_VALID ||
1739 			    pl->pcl_state == PCL_STALE);
1740 			pl->pcl_state = PCL_VALID;
1741 			mutex_exit(&pl->pcl_lock);
1742 			return;
1743 		} else {
1744 			plpn = &pl->pcl_parent_next;
1745 			mutex_exit(&pl->pcl_lock);
1746 		}
1747 	}
1748 
1749 	/* No existing link to the parent was found.  Create a fresh one. */
1750 	pl = kmem_zalloc(sizeof (pcachelink_t), KM_SLEEP);
1751 	mutex_init(&pl->pcl_lock,  NULL, MUTEX_DEFAULT, NULL);
1752 
1753 	pl->pcl_parent_pc = parent;
1754 	pl->pcl_child_next = parent->pc_children;
1755 	parent->pc_children = pl;
1756 	pl->pcl_refcnt++;
1757 
1758 	pl->pcl_child_pc = child;
1759 	pl->pcl_parent_next = child->pc_parents;
1760 	child->pc_parents = pl;
1761 	pl->pcl_refcnt++;
1762 
1763 	pl->pcl_state = PCL_VALID;
1764 }
1765 
1766 /*
1767  * Mark all child links in a pollcache as stale.  Any invalid child links found
1768  * during iteration are purged.
1769  */
1770 static void
1771 pcachelink_mark_stale(pollcache_t *pcp)
1772 {
1773 	pcachelink_t	*pl, **plpn;
1774 
1775 	ASSERT(MUTEX_HELD(&pcp->pc_lock));
1776 
1777 	plpn = &pcp->pc_children;
1778 	for (pl = pcp->pc_children; pl != NULL; pl = *plpn) {
1779 		mutex_enter(&pl->pcl_lock);
1780 		if (pl->pcl_state == PCL_INVALID) {
1781 			/*
1782 			 * Remove any invalid links while we are going to the
1783 			 * trouble of walking the list.
1784 			 */
1785 			*plpn = pl->pcl_child_next;
1786 			pl->pcl_parent_pc = NULL;
1787 			pl->pcl_child_next = NULL;
1788 			pcachelink_locked_rele(pl);
1789 		} else {
1790 			pl->pcl_state = PCL_STALE;
1791 			plpn = &pl->pcl_child_next;
1792 			mutex_exit(&pl->pcl_lock);
1793 		}
1794 	}
1795 }
1796 
1797 /*
1798  * Purge all stale (or invalid) child links from a pollcache.
1799  */
1800 static void
1801 pcachelink_purge_stale(pollcache_t *pcp)
1802 {
1803 	pcachelink_t	*pl, **plpn;
1804 
1805 	ASSERT(MUTEX_HELD(&pcp->pc_lock));
1806 
1807 	plpn = &pcp->pc_children;
1808 	for (pl = pcp->pc_children; pl != NULL; pl = *plpn) {
1809 		mutex_enter(&pl->pcl_lock);
1810 		switch (pl->pcl_state) {
1811 		case PCL_STALE:
1812 			pl->pcl_state = PCL_INVALID;
1813 			/* FALLTHROUGH */
1814 		case PCL_INVALID:
1815 			*plpn = pl->pcl_child_next;
1816 			pl->pcl_parent_pc = NULL;
1817 			pl->pcl_child_next = NULL;
1818 			pcachelink_locked_rele(pl);
1819 			break;
1820 		default:
1821 			plpn = &pl->pcl_child_next;
1822 			mutex_exit(&pl->pcl_lock);
1823 		}
1824 	}
1825 }
1826 
1827 /*
1828  * Purge all child and parent links from a pollcache, regardless of status.
1829  */
1830 static void
1831 pcachelink_purge_all(pollcache_t *pcp)
1832 {
1833 	pcachelink_t	*pl, **plpn;
1834 
1835 	ASSERT(MUTEX_HELD(&pcp->pc_lock));
1836 
1837 	plpn = &pcp->pc_parents;
1838 	for (pl = pcp->pc_parents; pl != NULL; pl = *plpn) {
1839 		mutex_enter(&pl->pcl_lock);
1840 		pl->pcl_state = PCL_INVALID;
1841 		*plpn = pl->pcl_parent_next;
1842 		pl->pcl_child_pc = NULL;
1843 		pl->pcl_parent_next = NULL;
1844 		pcachelink_locked_rele(pl);
1845 	}
1846 
1847 	plpn = &pcp->pc_children;
1848 	for (pl = pcp->pc_children; pl != NULL; pl = *plpn) {
1849 		mutex_enter(&pl->pcl_lock);
1850 		pl->pcl_state = PCL_INVALID;
1851 		*plpn = pl->pcl_child_next;
1852 		pl->pcl_parent_pc = NULL;
1853 		pl->pcl_child_next = NULL;
1854 		pcachelink_locked_rele(pl);
1855 	}
1856 
1857 	ASSERT(pcp->pc_parents == NULL);
1858 	ASSERT(pcp->pc_children == NULL);
1859 }
1860