xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision c12492cf73149aa0aa845af5d59966b0eb5aa910)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent Inc. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
27  * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
28  */
29 /* Copyright (c) 1990 Mentat Inc. */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/timod.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/suntpi.h>
43 #include <sys/xti_inet.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/sdt.h>
47 #include <sys/vtrace.h>
48 #include <sys/kmem.h>
49 #include <sys/ethernet.h>
50 #include <sys/cpuvar.h>
51 #include <sys/dlpi.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/tcp_cluster.h>
89 #include <inet/udp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_rts.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue_impl.h>
101 #include <sys/squeue.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_input_listener(). But briefly, the squeue is picked by
176  * ip_fanout based on the ring or the sender (if loopback).
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provisions for sockfs by marking tcp_issocket
202  * whenever we have only sockfs on top of TCP. This allows us to skip
203  * putting the tcp in acceptor hash since a sockfs listener can never
204  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205  * since eager has already been allocated and the accept now happens
206  * on acceptor STREAM. There is a big blob of comment on top of
207  * tcp_input_listener explaining the new accept. When socket is POP'd,
208  * sockfs sends us an ioctl to mark the fact and we go back to old
209  * behaviour. Once tcp_issocket is unset, its never set for the
210  * life of that connection.
211  *
212  * IPsec notes :
213  *
214  * Since a packet is always executed on the correct TCP perimeter
215  * all IPsec processing is defered to IP including checking new
216  * connections and setting IPSEC policies for new connection. The
217  * only exception is tcp_xmit_listeners_reset() which is called
218  * directly from IP and needs to policy check to see if TH_RST
219  * can be sent out.
220  */
221 
222 /*
223  * Values for squeue switch:
224  * 1: SQ_NODRAIN
225  * 2: SQ_PROCESS
226  * 3: SQ_FILL
227  */
228 int tcp_squeue_wput = 2;	/* /etc/systems */
229 int tcp_squeue_flag;
230 
231 /*
232  * To prevent memory hog, limit the number of entries in tcp_free_list
233  * to 1% of available memory / number of cpus
234  */
235 uint_t tcp_free_list_max_cnt = 0;
236 
237 #define	TIDUSZ	4096	/* transport interface data unit size */
238 
239 /*
240  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
241  */
242 #define	TCP_ACCEPTOR_FANOUT_SIZE		512
243 
244 #ifdef	_ILP32
245 #define	TCP_ACCEPTOR_HASH(accid)					\
246 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
247 #else
248 #define	TCP_ACCEPTOR_HASH(accid)					\
249 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 #endif	/* _ILP32 */
251 
252 /*
253  * Minimum number of connections which can be created per listener.  Used
254  * when the listener connection count is in effect.
255  */
256 static uint32_t tcp_min_conn_listener = 2;
257 
258 uint32_t tcp_early_abort = 30;
259 
260 /* TCP Timer control structure */
261 typedef struct tcpt_s {
262 	pfv_t	tcpt_pfv;	/* The routine we are to call */
263 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
264 } tcpt_t;
265 
266 /*
267  * Functions called directly via squeue having a prototype of edesc_t.
268  */
269 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
270     ip_recv_attr_t *ira);
271 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
272     ip_recv_attr_t *dummy);
273 
274 
275 /* Prototype for TCP functions */
276 static void	tcp_random_init(void);
277 int		tcp_random(void);
278 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
279 		    in_port_t dstport, uint_t srcid);
280 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
281 		    in_port_t dstport, uint32_t flowinfo,
282 		    uint_t srcid, uint32_t scope_id);
283 static void	tcp_iss_init(tcp_t *tcp);
284 static void	tcp_reinit(tcp_t *tcp);
285 static void	tcp_reinit_values(tcp_t *tcp);
286 
287 static int	tcp_wsrv(queue_t *q);
288 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
289 static void	tcp_update_zcopy(tcp_t *tcp);
290 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
291     ixa_notify_arg_t);
292 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
293 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
294 
295 static int	tcp_squeue_switch(int);
296 
297 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
298 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
299 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
300 
301 static void	tcp_squeue_add(squeue_t *);
302 
303 struct module_info tcp_rinfo =  {
304 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
305 };
306 
307 static struct module_info tcp_winfo =  {
308 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
309 };
310 
311 /*
312  * Entry points for TCP as a device. The normal case which supports
313  * the TCP functionality.
314  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
315  */
316 struct qinit tcp_rinitv4 = {
317 	NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
318 };
319 
320 struct qinit tcp_rinitv6 = {
321 	NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
322 };
323 
324 struct qinit tcp_winit = {
325 	tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
326 };
327 
328 /* Initial entry point for TCP in socket mode. */
329 struct qinit tcp_sock_winit = {
330 	tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
331 };
332 
333 /* TCP entry point during fallback */
334 struct qinit tcp_fallback_sock_winit = {
335 	tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
336 };
337 
338 /*
339  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
340  * an accept. Avoid allocating data structures since eager has already
341  * been created.
342  */
343 struct qinit tcp_acceptor_rinit = {
344 	NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
345 };
346 
347 struct qinit tcp_acceptor_winit = {
348 	tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
349 };
350 
351 /* For AF_INET aka /dev/tcp */
352 struct streamtab tcpinfov4 = {
353 	&tcp_rinitv4, &tcp_winit
354 };
355 
356 /* For AF_INET6 aka /dev/tcp6 */
357 struct streamtab tcpinfov6 = {
358 	&tcp_rinitv6, &tcp_winit
359 };
360 
361 /*
362  * Following assumes TPI alignment requirements stay along 32 bit
363  * boundaries
364  */
365 #define	ROUNDUP32(x) \
366 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
367 
368 /* Template for response to info request. */
369 struct T_info_ack tcp_g_t_info_ack = {
370 	T_INFO_ACK,		/* PRIM_type */
371 	0,			/* TSDU_size */
372 	T_INFINITE,		/* ETSDU_size */
373 	T_INVALID,		/* CDATA_size */
374 	T_INVALID,		/* DDATA_size */
375 	sizeof (sin_t),		/* ADDR_size */
376 	0,			/* OPT_size - not initialized here */
377 	TIDUSZ,			/* TIDU_size */
378 	T_COTS_ORD,		/* SERV_type */
379 	TCPS_IDLE,		/* CURRENT_state */
380 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
381 };
382 
383 struct T_info_ack tcp_g_t_info_ack_v6 = {
384 	T_INFO_ACK,		/* PRIM_type */
385 	0,			/* TSDU_size */
386 	T_INFINITE,		/* ETSDU_size */
387 	T_INVALID,		/* CDATA_size */
388 	T_INVALID,		/* DDATA_size */
389 	sizeof (sin6_t),	/* ADDR_size */
390 	0,			/* OPT_size - not initialized here */
391 	TIDUSZ,		/* TIDU_size */
392 	T_COTS_ORD,		/* SERV_type */
393 	TCPS_IDLE,		/* CURRENT_state */
394 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
395 };
396 
397 /*
398  * TCP tunables related declarations. Definitions are in tcp_tunables.c
399  */
400 extern mod_prop_info_t tcp_propinfo_tbl[];
401 extern int tcp_propinfo_count;
402 
403 #define	IS_VMLOANED_MBLK(mp) \
404 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
405 
406 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
407 
408 /*
409  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
410  * tunable settable via NDD.  Otherwise, the per-connection behavior is
411  * determined dynamically during tcp_set_destination(), which is the default.
412  */
413 boolean_t tcp_static_maxpsz = B_FALSE;
414 
415 /*
416  * If the receive buffer size is changed, this function is called to update
417  * the upper socket layer on the new delayed receive wake up threshold.
418  */
419 static void
420 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
421 {
422 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
423 
424 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
425 		conn_t *connp = tcp->tcp_connp;
426 		struct sock_proto_props sopp;
427 
428 		/*
429 		 * only increase rcvthresh upto default_threshold
430 		 */
431 		if (new_rcvthresh > default_threshold)
432 			new_rcvthresh = default_threshold;
433 
434 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
435 		sopp.sopp_rcvthresh = new_rcvthresh;
436 
437 		(*connp->conn_upcalls->su_set_proto_props)
438 		    (connp->conn_upper_handle, &sopp);
439 	}
440 }
441 
442 /*
443  * Figure out the value of window scale opton.  Note that the rwnd is
444  * ASSUMED to be rounded up to the nearest MSS before the calculation.
445  * We cannot find the scale value and then do a round up of tcp_rwnd
446  * because the scale value may not be correct after that.
447  *
448  * Set the compiler flag to make this function inline.
449  */
450 void
451 tcp_set_ws_value(tcp_t *tcp)
452 {
453 	int i;
454 	uint32_t rwnd = tcp->tcp_rwnd;
455 
456 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
457 	    i++, rwnd >>= 1)
458 		;
459 	tcp->tcp_rcv_ws = i;
460 }
461 
462 /*
463  * Remove cached/latched IPsec references.
464  */
465 void
466 tcp_ipsec_cleanup(tcp_t *tcp)
467 {
468 	conn_t		*connp = tcp->tcp_connp;
469 
470 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
471 
472 	if (connp->conn_latch != NULL) {
473 		IPLATCH_REFRELE(connp->conn_latch);
474 		connp->conn_latch = NULL;
475 	}
476 	if (connp->conn_latch_in_policy != NULL) {
477 		IPPOL_REFRELE(connp->conn_latch_in_policy);
478 		connp->conn_latch_in_policy = NULL;
479 	}
480 	if (connp->conn_latch_in_action != NULL) {
481 		IPACT_REFRELE(connp->conn_latch_in_action);
482 		connp->conn_latch_in_action = NULL;
483 	}
484 	if (connp->conn_policy != NULL) {
485 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
486 		connp->conn_policy = NULL;
487 	}
488 }
489 
490 /*
491  * Cleaup before placing on free list.
492  * Disassociate from the netstack/tcp_stack_t since the freelist
493  * is per squeue and not per netstack.
494  */
495 void
496 tcp_cleanup(tcp_t *tcp)
497 {
498 	mblk_t		*mp;
499 	conn_t		*connp = tcp->tcp_connp;
500 	tcp_stack_t	*tcps = tcp->tcp_tcps;
501 	netstack_t	*ns = tcps->tcps_netstack;
502 	mblk_t		*tcp_rsrv_mp;
503 
504 	tcp_bind_hash_remove(tcp);
505 
506 	/* Cleanup that which needs the netstack first */
507 	tcp_ipsec_cleanup(tcp);
508 	ixa_cleanup(connp->conn_ixa);
509 
510 	if (connp->conn_ht_iphc != NULL) {
511 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
512 		connp->conn_ht_iphc = NULL;
513 		connp->conn_ht_iphc_allocated = 0;
514 		connp->conn_ht_iphc_len = 0;
515 		connp->conn_ht_ulp = NULL;
516 		connp->conn_ht_ulp_len = 0;
517 		tcp->tcp_ipha = NULL;
518 		tcp->tcp_ip6h = NULL;
519 		tcp->tcp_tcpha = NULL;
520 	}
521 
522 	/* We clear any IP_OPTIONS and extension headers */
523 	ip_pkt_free(&connp->conn_xmit_ipp);
524 
525 	tcp_free(tcp);
526 
527 	/*
528 	 * Since we will bzero the entire structure, we need to
529 	 * remove it and reinsert it in global hash list. We
530 	 * know the walkers can't get to this conn because we
531 	 * had set CONDEMNED flag earlier and checked reference
532 	 * under conn_lock so walker won't pick it and when we
533 	 * go the ipcl_globalhash_remove() below, no walker
534 	 * can get to it.
535 	 */
536 	ipcl_globalhash_remove(connp);
537 
538 	/* Save some state */
539 	mp = tcp->tcp_timercache;
540 
541 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
542 
543 	if (connp->conn_cred != NULL) {
544 		crfree(connp->conn_cred);
545 		connp->conn_cred = NULL;
546 	}
547 	ipcl_conn_cleanup(connp);
548 	connp->conn_flags = IPCL_TCPCONN;
549 
550 	/*
551 	 * Now it is safe to decrement the reference counts.
552 	 * This might be the last reference on the netstack
553 	 * in which case it will cause the freeing of the IP Instance.
554 	 */
555 	connp->conn_netstack = NULL;
556 	connp->conn_ixa->ixa_ipst = NULL;
557 	netstack_rele(ns);
558 	ASSERT(tcps != NULL);
559 	tcp->tcp_tcps = NULL;
560 
561 	bzero(tcp, sizeof (tcp_t));
562 
563 	/* restore the state */
564 	tcp->tcp_timercache = mp;
565 
566 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
567 
568 	tcp->tcp_connp = connp;
569 
570 	ASSERT(connp->conn_tcp == tcp);
571 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
572 	connp->conn_state_flags = CONN_INCIPIENT;
573 	ASSERT(connp->conn_proto == IPPROTO_TCP);
574 	ASSERT(connp->conn_ref == 1);
575 }
576 
577 /*
578  * Adapt to the information, such as rtt and rtt_sd, provided from the
579  * DCE and IRE maintained by IP.
580  *
581  * Checks for multicast and broadcast destination address.
582  * Returns zero if ok; an errno on failure.
583  *
584  * Note that the MSS calculation here is based on the info given in
585  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
586  * will be handled in tcp_input_data() when TCP knows which options to use.
587  *
588  * Note on how TCP gets its parameters for a connection.
589  *
590  * When a tcp_t structure is allocated, it gets all the default parameters.
591  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
592  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
593  * default.
594  *
595  * An incoming SYN with a multicast or broadcast destination address is dropped
596  * in ip_fanout_v4/v6.
597  *
598  * An incoming SYN with a multicast or broadcast source address is always
599  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
600  * conn_connect.
601  * The same logic in tcp_set_destination also serves to
602  * reject an attempt to connect to a broadcast or multicast (destination)
603  * address.
604  */
605 int
606 tcp_set_destination(tcp_t *tcp)
607 {
608 	uint32_t	mss_max;
609 	uint32_t	mss;
610 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
611 	conn_t		*connp = tcp->tcp_connp;
612 	tcp_stack_t	*tcps = tcp->tcp_tcps;
613 	iulp_t		uinfo;
614 	int		error;
615 	uint32_t	flags;
616 
617 	flags = IPDF_LSO | IPDF_ZCOPY;
618 	/*
619 	 * Make sure we have a dce for the destination to avoid dce_ident
620 	 * contention for connected sockets.
621 	 */
622 	flags |= IPDF_UNIQUE_DCE;
623 
624 	if (!tcps->tcps_ignore_path_mtu)
625 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
626 
627 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
628 	mutex_enter(&connp->conn_lock);
629 	error = conn_connect(connp, &uinfo, flags);
630 	mutex_exit(&connp->conn_lock);
631 	if (error != 0)
632 		return (error);
633 
634 	error = tcp_build_hdrs(tcp);
635 	if (error != 0)
636 		return (error);
637 
638 	tcp->tcp_localnet = uinfo.iulp_localnet;
639 
640 	if (uinfo.iulp_rtt != 0) {
641 		tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt);
642 		tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd);
643 		tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
644 	}
645 	if (uinfo.iulp_ssthresh != 0)
646 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
647 	else
648 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
649 	if (uinfo.iulp_spipe > 0) {
650 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
651 		    tcps->tcps_max_buf);
652 		if (tcps->tcps_snd_lowat_fraction != 0) {
653 			connp->conn_sndlowat = connp->conn_sndbuf /
654 			    tcps->tcps_snd_lowat_fraction;
655 		}
656 		(void) tcp_maxpsz_set(tcp, B_TRUE);
657 	}
658 	/*
659 	 * Note that up till now, acceptor always inherits receive
660 	 * window from the listener.  But if there is a metrics
661 	 * associated with a host, we should use that instead of
662 	 * inheriting it from listener. Thus we need to pass this
663 	 * info back to the caller.
664 	 */
665 	if (uinfo.iulp_rpipe > 0) {
666 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
667 		    tcps->tcps_max_buf);
668 	}
669 
670 	if (uinfo.iulp_rtomax > 0) {
671 		tcp->tcp_second_timer_threshold =
672 		    uinfo.iulp_rtomax;
673 	}
674 
675 	/*
676 	 * Use the metric option settings, iulp_tstamp_ok and
677 	 * iulp_wscale_ok, only for active open. What this means
678 	 * is that if the other side uses timestamp or window
679 	 * scale option, TCP will also use those options. That
680 	 * is for passive open.  If the application sets a
681 	 * large window, window scale is enabled regardless of
682 	 * the value in iulp_wscale_ok.  This is the behavior
683 	 * since 2.6.  So we keep it.
684 	 * The only case left in passive open processing is the
685 	 * check for SACK.
686 	 * For ECN, it should probably be like SACK.  But the
687 	 * current value is binary, so we treat it like the other
688 	 * cases.  The metric only controls active open.For passive
689 	 * open, the ndd param, tcp_ecn_permitted, controls the
690 	 * behavior.
691 	 */
692 	if (!tcp_detached) {
693 		/*
694 		 * The if check means that the following can only
695 		 * be turned on by the metrics only IRE, but not off.
696 		 */
697 		if (uinfo.iulp_tstamp_ok)
698 			tcp->tcp_snd_ts_ok = B_TRUE;
699 		if (uinfo.iulp_wscale_ok)
700 			tcp->tcp_snd_ws_ok = B_TRUE;
701 		if (uinfo.iulp_sack == 2)
702 			tcp->tcp_snd_sack_ok = B_TRUE;
703 		if (uinfo.iulp_ecn_ok)
704 			tcp->tcp_ecn_ok = B_TRUE;
705 	} else {
706 		/*
707 		 * Passive open.
708 		 *
709 		 * As above, the if check means that SACK can only be
710 		 * turned on by the metric only IRE.
711 		 */
712 		if (uinfo.iulp_sack > 0) {
713 			tcp->tcp_snd_sack_ok = B_TRUE;
714 		}
715 	}
716 
717 	/*
718 	 * XXX Note that currently, iulp_mtu can be as small as 68
719 	 * because of PMTUd.  So tcp_mss may go to negative if combined
720 	 * length of all those options exceeds 28 bytes.  But because
721 	 * of the tcp_mss_min check below, we may not have a problem if
722 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
723 	 * the negative problem still exists.  And the check defeats PMTUd.
724 	 * In fact, if PMTUd finds that the MSS should be smaller than
725 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
726 	 * value.
727 	 *
728 	 * We do not deal with that now.  All those problems related to
729 	 * PMTUd will be fixed later.
730 	 */
731 	ASSERT(uinfo.iulp_mtu != 0);
732 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
733 
734 	/* Sanity check for MSS value. */
735 	if (connp->conn_ipversion == IPV4_VERSION)
736 		mss_max = tcps->tcps_mss_max_ipv4;
737 	else
738 		mss_max = tcps->tcps_mss_max_ipv6;
739 
740 	if (tcp->tcp_ipsec_overhead == 0)
741 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
742 
743 	mss -= tcp->tcp_ipsec_overhead;
744 
745 	if (mss < tcps->tcps_mss_min)
746 		mss = tcps->tcps_mss_min;
747 	if (mss > mss_max)
748 		mss = mss_max;
749 
750 	/* Note that this is the maximum MSS, excluding all options. */
751 	tcp->tcp_mss = mss;
752 
753 	/*
754 	 * Update the tcp connection with LSO capability.
755 	 */
756 	tcp_update_lso(tcp, connp->conn_ixa);
757 
758 	/*
759 	 * Initialize the ISS here now that we have the full connection ID.
760 	 * The RFC 1948 method of initial sequence number generation requires
761 	 * knowledge of the full connection ID before setting the ISS.
762 	 */
763 	tcp_iss_init(tcp);
764 
765 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
766 
767 	/*
768 	 * Make sure that conn is not marked incipient
769 	 * for incoming connections. A blind
770 	 * removal of incipient flag is cheaper than
771 	 * check and removal.
772 	 */
773 	mutex_enter(&connp->conn_lock);
774 	connp->conn_state_flags &= ~CONN_INCIPIENT;
775 	mutex_exit(&connp->conn_lock);
776 	return (0);
777 }
778 
779 /*
780  * tcp_clean_death / tcp_close_detached must not be called more than once
781  * on a tcp. Thus every function that potentially calls tcp_clean_death
782  * must check for the tcp state before calling tcp_clean_death.
783  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
784  * tcp_timer_handler, all check for the tcp state.
785  */
786 /* ARGSUSED */
787 void
788 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
789     ip_recv_attr_t *dummy)
790 {
791 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
792 
793 	freemsg(mp);
794 	if (tcp->tcp_state > TCPS_BOUND)
795 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
796 }
797 
798 /*
799  * We are dying for some reason.  Try to do it gracefully.  (May be called
800  * as writer.)
801  *
802  * Return -1 if the structure was not cleaned up (if the cleanup had to be
803  * done by a service procedure).
804  * TBD - Should the return value distinguish between the tcp_t being
805  * freed and it being reinitialized?
806  */
807 int
808 tcp_clean_death(tcp_t *tcp, int err)
809 {
810 	mblk_t	*mp;
811 	queue_t	*q;
812 	conn_t	*connp = tcp->tcp_connp;
813 	tcp_stack_t	*tcps = tcp->tcp_tcps;
814 
815 	if (tcp->tcp_fused)
816 		tcp_unfuse(tcp);
817 
818 	if (tcp->tcp_linger_tid != 0 &&
819 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
820 		tcp_stop_lingering(tcp);
821 	}
822 
823 	ASSERT(tcp != NULL);
824 	ASSERT((connp->conn_family == AF_INET &&
825 	    connp->conn_ipversion == IPV4_VERSION) ||
826 	    (connp->conn_family == AF_INET6 &&
827 	    (connp->conn_ipversion == IPV4_VERSION ||
828 	    connp->conn_ipversion == IPV6_VERSION)));
829 
830 	if (TCP_IS_DETACHED(tcp)) {
831 		if (tcp->tcp_hard_binding) {
832 			/*
833 			 * Its an eager that we are dealing with. We close the
834 			 * eager but in case a conn_ind has already gone to the
835 			 * listener, let tcp_accept_finish() send a discon_ind
836 			 * to the listener and drop the last reference. If the
837 			 * listener doesn't even know about the eager i.e. the
838 			 * conn_ind hasn't gone up, blow away the eager and drop
839 			 * the last reference as well. If the conn_ind has gone
840 			 * up, state should be BOUND. tcp_accept_finish
841 			 * will figure out that the connection has received a
842 			 * RST and will send a DISCON_IND to the application.
843 			 */
844 			tcp_closei_local(tcp);
845 			if (!tcp->tcp_tconnind_started) {
846 				CONN_DEC_REF(connp);
847 			} else {
848 				tcp->tcp_state = TCPS_BOUND;
849 				DTRACE_TCP6(state__change, void, NULL,
850 				    ip_xmit_attr_t *, connp->conn_ixa,
851 				    void, NULL, tcp_t *, tcp, void, NULL,
852 				    int32_t, TCPS_CLOSED);
853 			}
854 		} else {
855 			tcp_close_detached(tcp);
856 		}
857 		return (0);
858 	}
859 
860 	TCP_STAT(tcps, tcp_clean_death_nondetached);
861 
862 	/*
863 	 * The connection is dead.  Decrement listener connection counter if
864 	 * necessary.
865 	 */
866 	if (tcp->tcp_listen_cnt != NULL)
867 		TCP_DECR_LISTEN_CNT(tcp);
868 
869 	/*
870 	 * When a connection is moved to TIME_WAIT state, the connection
871 	 * counter is already decremented.  So no need to decrement here
872 	 * again.  See SET_TIME_WAIT() macro.
873 	 */
874 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
875 	    tcp->tcp_state < TCPS_TIME_WAIT) {
876 		TCPS_CONN_DEC(tcps);
877 	}
878 
879 	q = connp->conn_rq;
880 
881 	/* Trash all inbound data */
882 	if (!IPCL_IS_NONSTR(connp)) {
883 		ASSERT(q != NULL);
884 		flushq(q, FLUSHALL);
885 	}
886 
887 	/*
888 	 * If we are at least part way open and there is error
889 	 * (err==0 implies no error)
890 	 * notify our client by a T_DISCON_IND.
891 	 */
892 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
893 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
894 		    !TCP_IS_SOCKET(tcp)) {
895 			/*
896 			 * Send M_FLUSH according to TPI. Because sockets will
897 			 * (and must) ignore FLUSHR we do that only for TPI
898 			 * endpoints and sockets in STREAMS mode.
899 			 */
900 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
901 		}
902 		if (connp->conn_debug) {
903 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
904 			    "tcp_clean_death: discon err %d", err);
905 		}
906 		if (IPCL_IS_NONSTR(connp)) {
907 			/* Direct socket, use upcall */
908 			(*connp->conn_upcalls->su_disconnected)(
909 			    connp->conn_upper_handle, tcp->tcp_connid, err);
910 		} else {
911 			mp = mi_tpi_discon_ind(NULL, err, 0);
912 			if (mp != NULL) {
913 				putnext(q, mp);
914 			} else {
915 				if (connp->conn_debug) {
916 					(void) strlog(TCP_MOD_ID, 0, 1,
917 					    SL_ERROR|SL_TRACE,
918 					    "tcp_clean_death, sending M_ERROR");
919 				}
920 				(void) putnextctl1(q, M_ERROR, EPROTO);
921 			}
922 		}
923 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
924 			/* SYN_SENT or SYN_RCVD */
925 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
926 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
927 			/* ESTABLISHED or CLOSE_WAIT */
928 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
929 		}
930 	}
931 
932 	/*
933 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
934 	 * an upper handle is obtained when the SYN-ACK comes in. So it
935 	 * should receive the 'disconnected' upcall, but tcp_reinit should
936 	 * not be called since this is an eager.
937 	 */
938 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
939 		tcp_closei_local(tcp);
940 		tcp->tcp_state = TCPS_BOUND;
941 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
942 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
943 		    int32_t, TCPS_CLOSED);
944 		return (0);
945 	}
946 
947 	tcp_reinit(tcp);
948 	if (IPCL_IS_NONSTR(connp))
949 		(void) tcp_do_unbind(connp);
950 
951 	return (-1);
952 }
953 
954 /*
955  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
956  * to expire, stop the wait and finish the close.
957  */
958 void
959 tcp_stop_lingering(tcp_t *tcp)
960 {
961 	clock_t	delta = 0;
962 	tcp_stack_t	*tcps = tcp->tcp_tcps;
963 	conn_t		*connp = tcp->tcp_connp;
964 
965 	tcp->tcp_linger_tid = 0;
966 	if (tcp->tcp_state > TCPS_LISTEN) {
967 		tcp_acceptor_hash_remove(tcp);
968 		mutex_enter(&tcp->tcp_non_sq_lock);
969 		if (tcp->tcp_flow_stopped) {
970 			tcp_clrqfull(tcp);
971 		}
972 		mutex_exit(&tcp->tcp_non_sq_lock);
973 
974 		if (tcp->tcp_timer_tid != 0) {
975 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
976 			tcp->tcp_timer_tid = 0;
977 		}
978 		/*
979 		 * Need to cancel those timers which will not be used when
980 		 * TCP is detached.  This has to be done before the conn_wq
981 		 * is cleared.
982 		 */
983 		tcp_timers_stop(tcp);
984 
985 		tcp->tcp_detached = B_TRUE;
986 		connp->conn_rq = NULL;
987 		connp->conn_wq = NULL;
988 
989 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
990 			tcp_time_wait_append(tcp);
991 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
992 			goto finish;
993 		}
994 
995 		/*
996 		 * If delta is zero the timer event wasn't executed and was
997 		 * successfully canceled. In this case we need to restart it
998 		 * with the minimal delta possible.
999 		 */
1000 		if (delta >= 0) {
1001 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1002 			    delta ? delta : 1);
1003 		}
1004 	} else {
1005 		tcp_closei_local(tcp);
1006 		CONN_DEC_REF(connp);
1007 	}
1008 finish:
1009 	tcp->tcp_detached = B_TRUE;
1010 	connp->conn_rq = NULL;
1011 	connp->conn_wq = NULL;
1012 
1013 	/* Signal closing thread that it can complete close */
1014 	mutex_enter(&tcp->tcp_closelock);
1015 	tcp->tcp_closed = 1;
1016 	cv_signal(&tcp->tcp_closecv);
1017 	mutex_exit(&tcp->tcp_closelock);
1018 
1019 	/* If we have an upper handle (socket), release it */
1020 	if (IPCL_IS_NONSTR(connp)) {
1021 		ASSERT(connp->conn_upper_handle != NULL);
1022 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1023 		connp->conn_upper_handle = NULL;
1024 		connp->conn_upcalls = NULL;
1025 	}
1026 }
1027 
1028 void
1029 tcp_close_common(conn_t *connp, int flags)
1030 {
1031 	tcp_t		*tcp = connp->conn_tcp;
1032 	mblk_t		*mp = &tcp->tcp_closemp;
1033 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1034 	mblk_t		*bp;
1035 
1036 	ASSERT(connp->conn_ref >= 2);
1037 
1038 	/*
1039 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1040 	 * add any mp to the pending mp list, after this conn has
1041 	 * started closing.
1042 	 */
1043 	mutex_enter(&connp->conn_lock);
1044 	connp->conn_state_flags |= CONN_CLOSING;
1045 	if (connp->conn_oper_pending_ill != NULL)
1046 		conn_ioctl_cleanup_reqd = B_TRUE;
1047 	CONN_INC_REF_LOCKED(connp);
1048 	mutex_exit(&connp->conn_lock);
1049 	tcp->tcp_closeflags = (uint8_t)flags;
1050 	ASSERT(connp->conn_ref >= 3);
1051 
1052 	/*
1053 	 * tcp_closemp_used is used below without any protection of a lock
1054 	 * as we don't expect any one else to use it concurrently at this
1055 	 * point otherwise it would be a major defect.
1056 	 */
1057 
1058 	if (mp->b_prev == NULL)
1059 		tcp->tcp_closemp_used = B_TRUE;
1060 	else
1061 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1062 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1063 
1064 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1065 
1066 	/*
1067 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1068 	 * are re-written by tcp_close_output().
1069 	 */
1070 	if (conn_ioctl_cleanup_reqd)
1071 		conn_ioctl_cleanup(connp);
1072 
1073 	/*
1074 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1075 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1076 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1077 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1078 	 * was still in flight at the time, we wait for it here. See comments
1079 	 * for CONN_INC_IOCTLREF in ip.h for details.
1080 	 */
1081 	mutex_enter(&connp->conn_lock);
1082 	while (connp->conn_ioctlref > 0)
1083 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1084 	ASSERT(connp->conn_ioctlref == 0);
1085 	ASSERT(connp->conn_oper_pending_ill == NULL);
1086 	mutex_exit(&connp->conn_lock);
1087 
1088 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1089 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1090 
1091 	/*
1092 	 * For non-STREAMS sockets, the normal case is that the conn makes
1093 	 * an upcall when it's finally closed, so there is no need to wait
1094 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1095 	 * so it can properly deal with the thread being interrupted.
1096 	 */
1097 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1098 		goto nowait;
1099 
1100 	mutex_enter(&tcp->tcp_closelock);
1101 	while (!tcp->tcp_closed) {
1102 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1103 			/*
1104 			 * The cv_wait_sig() was interrupted. We now do the
1105 			 * following:
1106 			 *
1107 			 * 1) If the endpoint was lingering, we allow this
1108 			 * to be interrupted by cancelling the linger timeout
1109 			 * and closing normally.
1110 			 *
1111 			 * 2) Revert to calling cv_wait()
1112 			 *
1113 			 * We revert to using cv_wait() to avoid an
1114 			 * infinite loop which can occur if the calling
1115 			 * thread is higher priority than the squeue worker
1116 			 * thread and is bound to the same cpu.
1117 			 */
1118 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1119 				mutex_exit(&tcp->tcp_closelock);
1120 				/* Entering squeue, bump ref count. */
1121 				CONN_INC_REF(connp);
1122 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1123 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1124 				    tcp_linger_interrupted, connp, NULL,
1125 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1126 				mutex_enter(&tcp->tcp_closelock);
1127 			}
1128 			break;
1129 		}
1130 	}
1131 	while (!tcp->tcp_closed)
1132 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1133 	mutex_exit(&tcp->tcp_closelock);
1134 
1135 	/*
1136 	 * In the case of listener streams that have eagers in the q or q0
1137 	 * we wait for the eagers to drop their reference to us. conn_rq and
1138 	 * conn_wq of the eagers point to our queues. By waiting for the
1139 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1140 	 * up their queue pointers and also dropped their references to us.
1141 	 *
1142 	 * For non-STREAMS sockets we do not have to wait here; the
1143 	 * listener will instead make a su_closed upcall when the last
1144 	 * reference is dropped.
1145 	 */
1146 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1147 		mutex_enter(&connp->conn_lock);
1148 		while (connp->conn_ref != 1) {
1149 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1150 		}
1151 		mutex_exit(&connp->conn_lock);
1152 	}
1153 
1154 nowait:
1155 	connp->conn_cpid = NOPID;
1156 }
1157 
1158 /*
1159  * Called by tcp_close() routine via squeue when lingering is
1160  * interrupted by a signal.
1161  */
1162 
1163 /* ARGSUSED */
1164 static void
1165 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1166 {
1167 	conn_t	*connp = (conn_t *)arg;
1168 	tcp_t	*tcp = connp->conn_tcp;
1169 
1170 	freeb(mp);
1171 	if (tcp->tcp_linger_tid != 0 &&
1172 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1173 		tcp_stop_lingering(tcp);
1174 		tcp->tcp_client_errno = EINTR;
1175 	}
1176 }
1177 
1178 /*
1179  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1180  * Some stream heads get upset if they see these later on as anything but NULL.
1181  */
1182 void
1183 tcp_close_mpp(mblk_t **mpp)
1184 {
1185 	mblk_t	*mp;
1186 
1187 	if ((mp = *mpp) != NULL) {
1188 		do {
1189 			mp->b_next = NULL;
1190 			mp->b_prev = NULL;
1191 		} while ((mp = mp->b_cont) != NULL);
1192 
1193 		mp = *mpp;
1194 		*mpp = NULL;
1195 		freemsg(mp);
1196 	}
1197 }
1198 
1199 /* Do detached close. */
1200 void
1201 tcp_close_detached(tcp_t *tcp)
1202 {
1203 	if (tcp->tcp_fused)
1204 		tcp_unfuse(tcp);
1205 
1206 	/*
1207 	 * Clustering code serializes TCP disconnect callbacks and
1208 	 * cluster tcp list walks by blocking a TCP disconnect callback
1209 	 * if a cluster tcp list walk is in progress. This ensures
1210 	 * accurate accounting of TCPs in the cluster code even though
1211 	 * the TCP list walk itself is not atomic.
1212 	 */
1213 	tcp_closei_local(tcp);
1214 	CONN_DEC_REF(tcp->tcp_connp);
1215 }
1216 
1217 /*
1218  * The tcp_t is going away. Remove it from all lists and set it
1219  * to TCPS_CLOSED. The freeing up of memory is deferred until
1220  * tcp_inactive. This is needed since a thread in tcp_rput might have
1221  * done a CONN_INC_REF on this structure before it was removed from the
1222  * hashes.
1223  */
1224 void
1225 tcp_closei_local(tcp_t *tcp)
1226 {
1227 	conn_t		*connp = tcp->tcp_connp;
1228 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1229 	int32_t		oldstate;
1230 
1231 	if (!TCP_IS_SOCKET(tcp))
1232 		tcp_acceptor_hash_remove(tcp);
1233 
1234 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1235 	tcp->tcp_ibsegs = 0;
1236 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1237 	tcp->tcp_obsegs = 0;
1238 
1239 	/*
1240 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1241 	 * SYN with sequence number outside the TIME-WAIT connection's
1242 	 * window.  So we need to check for TIME-WAIT state here as the
1243 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1244 	 * macro
1245 	 */
1246 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1247 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1248 		TCPS_CONN_DEC(tcps);
1249 	}
1250 
1251 	/*
1252 	 * If we are an eager connection hanging off a listener that
1253 	 * hasn't formally accepted the connection yet, get off its
1254 	 * list and blow off any data that we have accumulated.
1255 	 */
1256 	if (tcp->tcp_listener != NULL) {
1257 		tcp_t	*listener = tcp->tcp_listener;
1258 		mutex_enter(&listener->tcp_eager_lock);
1259 		/*
1260 		 * tcp_tconnind_started == B_TRUE means that the
1261 		 * conn_ind has already gone to listener. At
1262 		 * this point, eager will be closed but we
1263 		 * leave it in listeners eager list so that
1264 		 * if listener decides to close without doing
1265 		 * accept, we can clean this up. In tcp_tli_accept
1266 		 * we take care of the case of accept on closed
1267 		 * eager.
1268 		 */
1269 		if (!tcp->tcp_tconnind_started) {
1270 			tcp_eager_unlink(tcp);
1271 			mutex_exit(&listener->tcp_eager_lock);
1272 			/*
1273 			 * We don't want to have any pointers to the
1274 			 * listener queue, after we have released our
1275 			 * reference on the listener
1276 			 */
1277 			ASSERT(tcp->tcp_detached);
1278 			connp->conn_rq = NULL;
1279 			connp->conn_wq = NULL;
1280 			CONN_DEC_REF(listener->tcp_connp);
1281 		} else {
1282 			mutex_exit(&listener->tcp_eager_lock);
1283 		}
1284 	}
1285 
1286 	/* Stop all the timers */
1287 	tcp_timers_stop(tcp);
1288 
1289 	if (tcp->tcp_state == TCPS_LISTEN) {
1290 		if (tcp->tcp_ip_addr_cache) {
1291 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1292 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1293 			tcp->tcp_ip_addr_cache = NULL;
1294 		}
1295 	}
1296 
1297 	/* Decrement listerner connection counter if necessary. */
1298 	if (tcp->tcp_listen_cnt != NULL)
1299 		TCP_DECR_LISTEN_CNT(tcp);
1300 
1301 	mutex_enter(&tcp->tcp_non_sq_lock);
1302 	if (tcp->tcp_flow_stopped)
1303 		tcp_clrqfull(tcp);
1304 	mutex_exit(&tcp->tcp_non_sq_lock);
1305 
1306 	tcp_bind_hash_remove(tcp);
1307 	/*
1308 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1309 	 * is trying to remove this tcp from the time wait list, we will
1310 	 * block in tcp_time_wait_remove while trying to acquire the
1311 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1312 	 * requires the ipcl_hash_remove to be ordered after the
1313 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1314 	 */
1315 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1316 		(void) tcp_time_wait_remove(tcp, NULL);
1317 	CL_INET_DISCONNECT(connp);
1318 	ipcl_hash_remove(connp);
1319 	oldstate = tcp->tcp_state;
1320 	tcp->tcp_state = TCPS_CLOSED;
1321 	/* Need to probe before ixa_cleanup() is called */
1322 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1323 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1324 	    int32_t, oldstate);
1325 	ixa_cleanup(connp->conn_ixa);
1326 
1327 	/*
1328 	 * Mark the conn as CONDEMNED
1329 	 */
1330 	mutex_enter(&connp->conn_lock);
1331 	connp->conn_state_flags |= CONN_CONDEMNED;
1332 	mutex_exit(&connp->conn_lock);
1333 
1334 	ASSERT(tcp->tcp_time_wait_next == NULL);
1335 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1336 	ASSERT(tcp->tcp_time_wait_expire == 0);
1337 
1338 	tcp_ipsec_cleanup(tcp);
1339 }
1340 
1341 /*
1342  * tcp is dying (called from ipcl_conn_destroy and error cases).
1343  * Free the tcp_t in either case.
1344  */
1345 void
1346 tcp_free(tcp_t *tcp)
1347 {
1348 	mblk_t		*mp;
1349 	conn_t		*connp = tcp->tcp_connp;
1350 
1351 	ASSERT(tcp != NULL);
1352 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1353 
1354 	connp->conn_rq = NULL;
1355 	connp->conn_wq = NULL;
1356 
1357 	tcp_close_mpp(&tcp->tcp_xmit_head);
1358 	tcp_close_mpp(&tcp->tcp_reass_head);
1359 	if (tcp->tcp_rcv_list != NULL) {
1360 		/* Free b_next chain */
1361 		tcp_close_mpp(&tcp->tcp_rcv_list);
1362 	}
1363 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1364 		freemsg(mp);
1365 	}
1366 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1367 		freemsg(mp);
1368 	}
1369 
1370 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1371 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1372 		freeb(tcp->tcp_fused_sigurg_mp);
1373 		tcp->tcp_fused_sigurg_mp = NULL;
1374 	}
1375 
1376 	if (tcp->tcp_ordrel_mp != NULL) {
1377 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1378 		freeb(tcp->tcp_ordrel_mp);
1379 		tcp->tcp_ordrel_mp = NULL;
1380 	}
1381 
1382 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1383 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1384 
1385 	if (tcp->tcp_hopopts != NULL) {
1386 		mi_free(tcp->tcp_hopopts);
1387 		tcp->tcp_hopopts = NULL;
1388 		tcp->tcp_hopoptslen = 0;
1389 	}
1390 	ASSERT(tcp->tcp_hopoptslen == 0);
1391 	if (tcp->tcp_dstopts != NULL) {
1392 		mi_free(tcp->tcp_dstopts);
1393 		tcp->tcp_dstopts = NULL;
1394 		tcp->tcp_dstoptslen = 0;
1395 	}
1396 	ASSERT(tcp->tcp_dstoptslen == 0);
1397 	if (tcp->tcp_rthdrdstopts != NULL) {
1398 		mi_free(tcp->tcp_rthdrdstopts);
1399 		tcp->tcp_rthdrdstopts = NULL;
1400 		tcp->tcp_rthdrdstoptslen = 0;
1401 	}
1402 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1403 	if (tcp->tcp_rthdr != NULL) {
1404 		mi_free(tcp->tcp_rthdr);
1405 		tcp->tcp_rthdr = NULL;
1406 		tcp->tcp_rthdrlen = 0;
1407 	}
1408 	ASSERT(tcp->tcp_rthdrlen == 0);
1409 
1410 	/*
1411 	 * Following is really a blowing away a union.
1412 	 * It happens to have exactly two members of identical size
1413 	 * the following code is enough.
1414 	 */
1415 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1416 
1417 	/*
1418 	 * If this is a non-STREAM socket still holding on to an upper
1419 	 * handle, release it. As a result of fallback we might also see
1420 	 * STREAMS based conns with upper handles, in which case there is
1421 	 * nothing to do other than clearing the field.
1422 	 */
1423 	if (connp->conn_upper_handle != NULL) {
1424 		if (IPCL_IS_NONSTR(connp)) {
1425 			(*connp->conn_upcalls->su_closed)(
1426 			    connp->conn_upper_handle);
1427 			tcp->tcp_detached = B_TRUE;
1428 		}
1429 		connp->conn_upper_handle = NULL;
1430 		connp->conn_upcalls = NULL;
1431 	}
1432 }
1433 
1434 /*
1435  * tcp_get_conn/tcp_free_conn
1436  *
1437  * tcp_get_conn is used to get a clean tcp connection structure.
1438  * It tries to reuse the connections put on the freelist by the
1439  * time_wait_collector failing which it goes to kmem_cache. This
1440  * way has two benefits compared to just allocating from and
1441  * freeing to kmem_cache.
1442  * 1) The time_wait_collector can free (which includes the cleanup)
1443  * outside the squeue. So when the interrupt comes, we have a clean
1444  * connection sitting in the freelist. Obviously, this buys us
1445  * performance.
1446  *
1447  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1448  * has multiple disadvantages - tying up the squeue during alloc.
1449  * But allocating the conn/tcp in IP land is also not the best since
1450  * we can't check the 'q' and 'q0' which are protected by squeue and
1451  * blindly allocate memory which might have to be freed here if we are
1452  * not allowed to accept the connection. By using the freelist and
1453  * putting the conn/tcp back in freelist, we don't pay a penalty for
1454  * allocating memory without checking 'q/q0' and freeing it if we can't
1455  * accept the connection.
1456  *
1457  * Care should be taken to put the conn back in the same squeue's freelist
1458  * from which it was allocated. Best results are obtained if conn is
1459  * allocated from listener's squeue and freed to the same. Time wait
1460  * collector will free up the freelist is the connection ends up sitting
1461  * there for too long.
1462  */
1463 void *
1464 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1465 {
1466 	tcp_t			*tcp = NULL;
1467 	conn_t			*connp = NULL;
1468 	squeue_t		*sqp = (squeue_t *)arg;
1469 	tcp_squeue_priv_t	*tcp_time_wait;
1470 	netstack_t		*ns;
1471 	mblk_t			*tcp_rsrv_mp = NULL;
1472 
1473 	tcp_time_wait =
1474 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1475 
1476 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1477 	tcp = tcp_time_wait->tcp_free_list;
1478 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1479 	if (tcp != NULL) {
1480 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1481 		tcp_time_wait->tcp_free_list_cnt--;
1482 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1483 		tcp->tcp_time_wait_next = NULL;
1484 		connp = tcp->tcp_connp;
1485 		connp->conn_flags |= IPCL_REUSED;
1486 
1487 		ASSERT(tcp->tcp_tcps == NULL);
1488 		ASSERT(connp->conn_netstack == NULL);
1489 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1490 		ns = tcps->tcps_netstack;
1491 		netstack_hold(ns);
1492 		connp->conn_netstack = ns;
1493 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1494 		tcp->tcp_tcps = tcps;
1495 		ipcl_globalhash_insert(connp);
1496 
1497 		connp->conn_ixa->ixa_notify_cookie = tcp;
1498 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1499 		connp->conn_recv = tcp_input_data;
1500 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1501 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1502 		return ((void *)connp);
1503 	}
1504 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1505 	/*
1506 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1507 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1508 	 */
1509 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1510 	if (tcp_rsrv_mp == NULL)
1511 		return (NULL);
1512 
1513 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1514 	    tcps->tcps_netstack)) == NULL) {
1515 		freeb(tcp_rsrv_mp);
1516 		return (NULL);
1517 	}
1518 
1519 	tcp = connp->conn_tcp;
1520 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1521 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1522 
1523 	tcp->tcp_tcps = tcps;
1524 
1525 	connp->conn_recv = tcp_input_data;
1526 	connp->conn_recvicmp = tcp_icmp_input;
1527 	connp->conn_verifyicmp = tcp_verifyicmp;
1528 
1529 	/*
1530 	 * Register tcp_notify to listen to capability changes detected by IP.
1531 	 * This upcall is made in the context of the call to conn_ip_output
1532 	 * thus it is inside the squeue.
1533 	 */
1534 	connp->conn_ixa->ixa_notify = tcp_notify;
1535 	connp->conn_ixa->ixa_notify_cookie = tcp;
1536 
1537 	return ((void *)connp);
1538 }
1539 
1540 /*
1541  * Handle connect to IPv4 destinations, including connections for AF_INET6
1542  * sockets connecting to IPv4 mapped IPv6 destinations.
1543  * Returns zero if OK, a positive errno, or a negative TLI error.
1544  */
1545 static int
1546 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1547     uint_t srcid)
1548 {
1549 	ipaddr_t	dstaddr = *dstaddrp;
1550 	uint16_t	lport;
1551 	conn_t		*connp = tcp->tcp_connp;
1552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1553 	int		error;
1554 
1555 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1556 
1557 	/* Check for attempt to connect to INADDR_ANY */
1558 	if (dstaddr == INADDR_ANY)  {
1559 		/*
1560 		 * SunOS 4.x and 4.3 BSD allow an application
1561 		 * to connect a TCP socket to INADDR_ANY.
1562 		 * When they do this, the kernel picks the
1563 		 * address of one interface and uses it
1564 		 * instead.  The kernel usually ends up
1565 		 * picking the address of the loopback
1566 		 * interface.  This is an undocumented feature.
1567 		 * However, we provide the same thing here
1568 		 * in order to have source and binary
1569 		 * compatibility with SunOS 4.x.
1570 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1571 		 * generate the T_CONN_CON.
1572 		 */
1573 		dstaddr = htonl(INADDR_LOOPBACK);
1574 		*dstaddrp = dstaddr;
1575 	}
1576 
1577 	/* Handle __sin6_src_id if socket not bound to an IP address */
1578 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1579 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1580 		    IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1581 			/* Mismatch - conn_laddr_v6 would be v6 address. */
1582 			return (EADDRNOTAVAIL);
1583 		}
1584 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1585 	}
1586 
1587 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1588 	connp->conn_fport = dstport;
1589 
1590 	/*
1591 	 * At this point the remote destination address and remote port fields
1592 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1593 	 * have to see which state tcp was in so we can take appropriate action.
1594 	 */
1595 	if (tcp->tcp_state == TCPS_IDLE) {
1596 		/*
1597 		 * We support a quick connect capability here, allowing
1598 		 * clients to transition directly from IDLE to SYN_SENT
1599 		 * tcp_bindi will pick an unused port, insert the connection
1600 		 * in the bind hash and transition to BOUND state.
1601 		 */
1602 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1603 		    tcp, B_TRUE);
1604 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1605 		    B_FALSE, B_FALSE);
1606 		if (lport == 0)
1607 			return (-TNOADDR);
1608 	}
1609 
1610 	/*
1611 	 * Lookup the route to determine a source address and the uinfo.
1612 	 * Setup TCP parameters based on the metrics/DCE.
1613 	 */
1614 	error = tcp_set_destination(tcp);
1615 	if (error != 0)
1616 		return (error);
1617 
1618 	/*
1619 	 * Don't let an endpoint connect to itself.
1620 	 */
1621 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1622 	    connp->conn_fport == connp->conn_lport)
1623 		return (-TBADADDR);
1624 
1625 	tcp->tcp_state = TCPS_SYN_SENT;
1626 
1627 	return (ipcl_conn_insert_v4(connp));
1628 }
1629 
1630 /*
1631  * Handle connect to IPv6 destinations.
1632  * Returns zero if OK, a positive errno, or a negative TLI error.
1633  */
1634 static int
1635 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1636     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1637 {
1638 	uint16_t	lport;
1639 	conn_t		*connp = tcp->tcp_connp;
1640 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1641 	int		error;
1642 
1643 	ASSERT(connp->conn_family == AF_INET6);
1644 
1645 	/*
1646 	 * If we're here, it means that the destination address is a native
1647 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1648 	 * reason why it might not be IPv6 is if the socket was bound to an
1649 	 * IPv4-mapped IPv6 address.
1650 	 */
1651 	if (connp->conn_ipversion != IPV6_VERSION)
1652 		return (-TBADADDR);
1653 
1654 	/*
1655 	 * Interpret a zero destination to mean loopback.
1656 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1657 	 * generate the T_CONN_CON.
1658 	 */
1659 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1660 		*dstaddrp = ipv6_loopback;
1661 
1662 	/* Handle __sin6_src_id if socket not bound to an IP address */
1663 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1664 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1665 		    IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1666 			/* Mismatch - conn_laddr_v6 would be v4-mapped. */
1667 			return (EADDRNOTAVAIL);
1668 		}
1669 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1670 	}
1671 
1672 	/*
1673 	 * Take care of the scope_id now.
1674 	 */
1675 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1676 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1677 		connp->conn_ixa->ixa_scopeid = scope_id;
1678 	} else {
1679 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1680 	}
1681 
1682 	connp->conn_flowinfo = flowinfo;
1683 	connp->conn_faddr_v6 = *dstaddrp;
1684 	connp->conn_fport = dstport;
1685 
1686 	/*
1687 	 * At this point the remote destination address and remote port fields
1688 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1689 	 * have to see which state tcp was in so we can take appropriate action.
1690 	 */
1691 	if (tcp->tcp_state == TCPS_IDLE) {
1692 		/*
1693 		 * We support a quick connect capability here, allowing
1694 		 * clients to transition directly from IDLE to SYN_SENT
1695 		 * tcp_bindi will pick an unused port, insert the connection
1696 		 * in the bind hash and transition to BOUND state.
1697 		 */
1698 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1699 		    tcp, B_TRUE);
1700 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1701 		    B_FALSE, B_FALSE);
1702 		if (lport == 0)
1703 			return (-TNOADDR);
1704 	}
1705 
1706 	/*
1707 	 * Lookup the route to determine a source address and the uinfo.
1708 	 * Setup TCP parameters based on the metrics/DCE.
1709 	 */
1710 	error = tcp_set_destination(tcp);
1711 	if (error != 0)
1712 		return (error);
1713 
1714 	/*
1715 	 * Don't let an endpoint connect to itself.
1716 	 */
1717 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1718 	    connp->conn_fport == connp->conn_lport)
1719 		return (-TBADADDR);
1720 
1721 	tcp->tcp_state = TCPS_SYN_SENT;
1722 
1723 	return (ipcl_conn_insert_v6(connp));
1724 }
1725 
1726 /*
1727  * Disconnect
1728  * Note that unlike other functions this returns a positive tli error
1729  * when it fails; it never returns an errno.
1730  */
1731 static int
1732 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1733 {
1734 	conn_t		*lconnp;
1735 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1736 	conn_t		*connp = tcp->tcp_connp;
1737 
1738 	/*
1739 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1740 	 * when the stream is in BOUND state. Do not send a reset,
1741 	 * since the destination IP address is not valid, and it can
1742 	 * be the initialized value of all zeros (broadcast address).
1743 	 */
1744 	if (tcp->tcp_state <= TCPS_BOUND) {
1745 		if (connp->conn_debug) {
1746 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1747 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1748 		}
1749 		return (TOUTSTATE);
1750 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1751 		TCPS_CONN_DEC(tcps);
1752 	}
1753 
1754 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1755 
1756 		/*
1757 		 * According to TPI, for non-listeners, ignore seqnum
1758 		 * and disconnect.
1759 		 * Following interpretation of -1 seqnum is historical
1760 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1761 		 * a valid seqnum should not be -1).
1762 		 *
1763 		 *	-1 means disconnect everything
1764 		 *	regardless even on a listener.
1765 		 */
1766 
1767 		int old_state = tcp->tcp_state;
1768 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1769 
1770 		/*
1771 		 * The connection can't be on the tcp_time_wait_head list
1772 		 * since it is not detached.
1773 		 */
1774 		ASSERT(tcp->tcp_time_wait_next == NULL);
1775 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1776 		ASSERT(tcp->tcp_time_wait_expire == 0);
1777 		/*
1778 		 * If it used to be a listener, check to make sure no one else
1779 		 * has taken the port before switching back to LISTEN state.
1780 		 */
1781 		if (connp->conn_ipversion == IPV4_VERSION) {
1782 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1783 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1784 		} else {
1785 			uint_t ifindex = 0;
1786 
1787 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1788 				ifindex = connp->conn_ixa->ixa_scopeid;
1789 
1790 			/* Allow conn_bound_if listeners? */
1791 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1792 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1793 			    ipst);
1794 		}
1795 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1796 			tcp->tcp_state = TCPS_LISTEN;
1797 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1798 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1799 			    NULL, int32_t, old_state);
1800 		} else if (old_state > TCPS_BOUND) {
1801 			tcp->tcp_conn_req_max = 0;
1802 			tcp->tcp_state = TCPS_BOUND;
1803 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1804 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1805 			    NULL, int32_t, old_state);
1806 
1807 			/*
1808 			 * If this end point is not going to become a listener,
1809 			 * decrement the listener connection count if
1810 			 * necessary.  Note that we do not do this if it is
1811 			 * going to be a listner (the above if case) since
1812 			 * then it may remove the counter struct.
1813 			 */
1814 			if (tcp->tcp_listen_cnt != NULL)
1815 				TCP_DECR_LISTEN_CNT(tcp);
1816 		}
1817 		if (lconnp != NULL)
1818 			CONN_DEC_REF(lconnp);
1819 		switch (old_state) {
1820 		case TCPS_SYN_SENT:
1821 		case TCPS_SYN_RCVD:
1822 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1823 			break;
1824 		case TCPS_ESTABLISHED:
1825 		case TCPS_CLOSE_WAIT:
1826 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1827 			break;
1828 		}
1829 
1830 		if (tcp->tcp_fused)
1831 			tcp_unfuse(tcp);
1832 
1833 		mutex_enter(&tcp->tcp_eager_lock);
1834 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1835 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1836 			tcp_eager_cleanup(tcp, 0);
1837 		}
1838 		mutex_exit(&tcp->tcp_eager_lock);
1839 
1840 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1841 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1842 
1843 		tcp_reinit(tcp);
1844 
1845 		return (0);
1846 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1847 		return (TBADSEQ);
1848 	}
1849 	return (0);
1850 }
1851 
1852 /*
1853  * Our client hereby directs us to reject the connection request
1854  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1855  * of sending the appropriate RST, not an ICMP error.
1856  */
1857 void
1858 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1859 {
1860 	t_scalar_t seqnum;
1861 	int	error;
1862 	conn_t	*connp = tcp->tcp_connp;
1863 
1864 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1865 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1866 		tcp_err_ack(tcp, mp, TPROTO, 0);
1867 		return;
1868 	}
1869 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1870 	error = tcp_disconnect_common(tcp, seqnum);
1871 	if (error != 0)
1872 		tcp_err_ack(tcp, mp, error, 0);
1873 	else {
1874 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1875 			/* Send M_FLUSH according to TPI */
1876 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1877 		}
1878 		mp = mi_tpi_ok_ack_alloc(mp);
1879 		if (mp != NULL)
1880 			putnext(connp->conn_rq, mp);
1881 	}
1882 }
1883 
1884 /*
1885  * Handle reinitialization of a tcp structure.
1886  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1887  */
1888 static void
1889 tcp_reinit(tcp_t *tcp)
1890 {
1891 	mblk_t		*mp;
1892 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1893 	conn_t		*connp  = tcp->tcp_connp;
1894 	int32_t		oldstate;
1895 
1896 	/* tcp_reinit should never be called for detached tcp_t's */
1897 	ASSERT(tcp->tcp_listener == NULL);
1898 	ASSERT((connp->conn_family == AF_INET &&
1899 	    connp->conn_ipversion == IPV4_VERSION) ||
1900 	    (connp->conn_family == AF_INET6 &&
1901 	    (connp->conn_ipversion == IPV4_VERSION ||
1902 	    connp->conn_ipversion == IPV6_VERSION)));
1903 
1904 	/* Cancel outstanding timers */
1905 	tcp_timers_stop(tcp);
1906 
1907 	/*
1908 	 * Reset everything in the state vector, after updating global
1909 	 * MIB data from instance counters.
1910 	 */
1911 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1912 	tcp->tcp_ibsegs = 0;
1913 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1914 	tcp->tcp_obsegs = 0;
1915 
1916 	tcp_close_mpp(&tcp->tcp_xmit_head);
1917 	if (tcp->tcp_snd_zcopy_aware)
1918 		tcp_zcopy_notify(tcp);
1919 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1920 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1921 	mutex_enter(&tcp->tcp_non_sq_lock);
1922 	if (tcp->tcp_flow_stopped &&
1923 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1924 		tcp_clrqfull(tcp);
1925 	}
1926 	mutex_exit(&tcp->tcp_non_sq_lock);
1927 	tcp_close_mpp(&tcp->tcp_reass_head);
1928 	tcp->tcp_reass_tail = NULL;
1929 	if (tcp->tcp_rcv_list != NULL) {
1930 		/* Free b_next chain */
1931 		tcp_close_mpp(&tcp->tcp_rcv_list);
1932 		tcp->tcp_rcv_last_head = NULL;
1933 		tcp->tcp_rcv_last_tail = NULL;
1934 		tcp->tcp_rcv_cnt = 0;
1935 	}
1936 	tcp->tcp_rcv_last_tail = NULL;
1937 
1938 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1939 		freemsg(mp);
1940 		tcp->tcp_urp_mp = NULL;
1941 	}
1942 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1943 		freemsg(mp);
1944 		tcp->tcp_urp_mark_mp = NULL;
1945 	}
1946 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1947 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1948 		freeb(tcp->tcp_fused_sigurg_mp);
1949 		tcp->tcp_fused_sigurg_mp = NULL;
1950 	}
1951 	if (tcp->tcp_ordrel_mp != NULL) {
1952 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1953 		freeb(tcp->tcp_ordrel_mp);
1954 		tcp->tcp_ordrel_mp = NULL;
1955 	}
1956 
1957 	/*
1958 	 * Following is a union with two members which are
1959 	 * identical types and size so the following cleanup
1960 	 * is enough.
1961 	 */
1962 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1963 
1964 	CL_INET_DISCONNECT(connp);
1965 
1966 	/*
1967 	 * The connection can't be on the tcp_time_wait_head list
1968 	 * since it is not detached.
1969 	 */
1970 	ASSERT(tcp->tcp_time_wait_next == NULL);
1971 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1972 	ASSERT(tcp->tcp_time_wait_expire == 0);
1973 
1974 	/*
1975 	 * Reset/preserve other values
1976 	 */
1977 	tcp_reinit_values(tcp);
1978 	ipcl_hash_remove(connp);
1979 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1980 	ixa_cleanup(connp->conn_ixa);
1981 	tcp_ipsec_cleanup(tcp);
1982 
1983 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1984 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1985 	oldstate = tcp->tcp_state;
1986 
1987 	if (tcp->tcp_conn_req_max != 0) {
1988 		/*
1989 		 * This is the case when a TLI program uses the same
1990 		 * transport end point to accept a connection.  This
1991 		 * makes the TCP both a listener and acceptor.  When
1992 		 * this connection is closed, we need to set the state
1993 		 * back to TCPS_LISTEN.  Make sure that the eager list
1994 		 * is reinitialized.
1995 		 *
1996 		 * Note that this stream is still bound to the four
1997 		 * tuples of the previous connection in IP.  If a new
1998 		 * SYN with different foreign address comes in, IP will
1999 		 * not find it and will send it to the global queue.  In
2000 		 * the global queue, TCP will do a tcp_lookup_listener()
2001 		 * to find this stream.  This works because this stream
2002 		 * is only removed from connected hash.
2003 		 *
2004 		 */
2005 		tcp->tcp_state = TCPS_LISTEN;
2006 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2007 		tcp->tcp_eager_next_drop_q0 = tcp;
2008 		tcp->tcp_eager_prev_drop_q0 = tcp;
2009 		/*
2010 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2011 		 * to pick a good squeue for the listener when the first SYN
2012 		 * arrives. tcp_input_listener_unbound sets it to
2013 		 * tcp_input_listener on that first SYN.
2014 		 */
2015 		connp->conn_recv = tcp_input_listener_unbound;
2016 
2017 		connp->conn_proto = IPPROTO_TCP;
2018 		connp->conn_faddr_v6 = ipv6_all_zeros;
2019 		connp->conn_fport = 0;
2020 
2021 		(void) ipcl_bind_insert(connp);
2022 	} else {
2023 		tcp->tcp_state = TCPS_BOUND;
2024 	}
2025 
2026 	/*
2027 	 * Initialize to default values
2028 	 */
2029 	tcp_init_values(tcp, NULL);
2030 
2031 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2032 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2033 	    int32_t, oldstate);
2034 
2035 	ASSERT(tcp->tcp_ptpbhn != NULL);
2036 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2037 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2038 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2039 }
2040 
2041 /*
2042  * Force values to zero that need be zero.
2043  * Do not touch values asociated with the BOUND or LISTEN state
2044  * since the connection will end up in that state after the reinit.
2045  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2046  * structure!
2047  */
2048 static void
2049 tcp_reinit_values(tcp_t *tcp)
2050 {
2051 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2052 	conn_t		*connp = tcp->tcp_connp;
2053 
2054 #ifndef	lint
2055 #define	DONTCARE(x)
2056 #define	PRESERVE(x)
2057 #else
2058 #define	DONTCARE(x)	((x) = (x))
2059 #define	PRESERVE(x)	((x) = (x))
2060 #endif	/* lint */
2061 
2062 	PRESERVE(tcp->tcp_bind_hash_port);
2063 	PRESERVE(tcp->tcp_bind_hash);
2064 	PRESERVE(tcp->tcp_ptpbhn);
2065 	PRESERVE(tcp->tcp_acceptor_hash);
2066 	PRESERVE(tcp->tcp_ptpahn);
2067 
2068 	/* Should be ASSERT NULL on these with new code! */
2069 	ASSERT(tcp->tcp_time_wait_next == NULL);
2070 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2071 	ASSERT(tcp->tcp_time_wait_expire == 0);
2072 	PRESERVE(tcp->tcp_state);
2073 	PRESERVE(connp->conn_rq);
2074 	PRESERVE(connp->conn_wq);
2075 
2076 	ASSERT(tcp->tcp_xmit_head == NULL);
2077 	ASSERT(tcp->tcp_xmit_last == NULL);
2078 	ASSERT(tcp->tcp_unsent == 0);
2079 	ASSERT(tcp->tcp_xmit_tail == NULL);
2080 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2081 
2082 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2083 	tcp->tcp_suna = 0;			/* Displayed in mib */
2084 	tcp->tcp_swnd = 0;
2085 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2086 
2087 	ASSERT(tcp->tcp_ibsegs == 0);
2088 	ASSERT(tcp->tcp_obsegs == 0);
2089 
2090 	if (connp->conn_ht_iphc != NULL) {
2091 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2092 		connp->conn_ht_iphc = NULL;
2093 		connp->conn_ht_iphc_allocated = 0;
2094 		connp->conn_ht_iphc_len = 0;
2095 		connp->conn_ht_ulp = NULL;
2096 		connp->conn_ht_ulp_len = 0;
2097 		tcp->tcp_ipha = NULL;
2098 		tcp->tcp_ip6h = NULL;
2099 		tcp->tcp_tcpha = NULL;
2100 	}
2101 
2102 	/* We clear any IP_OPTIONS and extension headers */
2103 	ip_pkt_free(&connp->conn_xmit_ipp);
2104 
2105 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2106 	DONTCARE(tcp->tcp_ipha);
2107 	DONTCARE(tcp->tcp_ip6h);
2108 	DONTCARE(tcp->tcp_tcpha);
2109 	tcp->tcp_valid_bits = 0;
2110 
2111 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2112 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2113 	tcp->tcp_last_rcv_lbolt = 0;
2114 
2115 	tcp->tcp_init_cwnd = 0;
2116 
2117 	tcp->tcp_urp_last_valid = 0;
2118 	tcp->tcp_hard_binding = 0;
2119 
2120 	tcp->tcp_fin_acked = 0;
2121 	tcp->tcp_fin_rcvd = 0;
2122 	tcp->tcp_fin_sent = 0;
2123 	tcp->tcp_ordrel_done = 0;
2124 
2125 	tcp->tcp_detached = 0;
2126 
2127 	tcp->tcp_snd_ws_ok = B_FALSE;
2128 	tcp->tcp_snd_ts_ok = B_FALSE;
2129 	tcp->tcp_zero_win_probe = 0;
2130 
2131 	tcp->tcp_loopback = 0;
2132 	tcp->tcp_localnet = 0;
2133 	tcp->tcp_syn_defense = 0;
2134 	tcp->tcp_set_timer = 0;
2135 
2136 	tcp->tcp_active_open = 0;
2137 	tcp->tcp_rexmit = B_FALSE;
2138 	tcp->tcp_xmit_zc_clean = B_FALSE;
2139 
2140 	tcp->tcp_snd_sack_ok = B_FALSE;
2141 	tcp->tcp_hwcksum = B_FALSE;
2142 
2143 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2144 
2145 	tcp->tcp_conn_def_q0 = 0;
2146 	tcp->tcp_ip_forward_progress = B_FALSE;
2147 	tcp->tcp_ecn_ok = B_FALSE;
2148 
2149 	tcp->tcp_cwr = B_FALSE;
2150 	tcp->tcp_ecn_echo_on = B_FALSE;
2151 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2152 
2153 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2154 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2155 
2156 	tcp->tcp_rcv_ws = 0;
2157 	tcp->tcp_snd_ws = 0;
2158 	tcp->tcp_ts_recent = 0;
2159 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2160 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2161 	tcp->tcp_initial_pmtu = 0;
2162 
2163 	ASSERT(tcp->tcp_reass_head == NULL);
2164 	ASSERT(tcp->tcp_reass_tail == NULL);
2165 
2166 	tcp->tcp_cwnd_cnt = 0;
2167 
2168 	ASSERT(tcp->tcp_rcv_list == NULL);
2169 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2170 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2171 	ASSERT(tcp->tcp_rcv_cnt == 0);
2172 
2173 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2174 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2175 	tcp->tcp_csuna = 0;
2176 
2177 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2178 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2179 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2180 	tcp->tcp_rtt_update = 0;
2181 
2182 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2183 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2184 
2185 	tcp->tcp_rack = 0;			/* Displayed in mib */
2186 	tcp->tcp_rack_cnt = 0;
2187 	tcp->tcp_rack_cur_max = 0;
2188 	tcp->tcp_rack_abs_max = 0;
2189 
2190 	tcp->tcp_max_swnd = 0;
2191 
2192 	ASSERT(tcp->tcp_listener == NULL);
2193 
2194 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2195 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2196 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2197 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2198 
2199 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2200 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2201 	PRESERVE(tcp->tcp_conn_req_max);
2202 	PRESERVE(tcp->tcp_conn_req_seqnum);
2203 
2204 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2205 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2206 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2207 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2208 
2209 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2210 	ASSERT(tcp->tcp_urp_mp == NULL);
2211 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2212 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2213 
2214 	ASSERT(tcp->tcp_eager_next_q == NULL);
2215 	ASSERT(tcp->tcp_eager_last_q == NULL);
2216 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2217 	    tcp->tcp_eager_prev_q0 == NULL) ||
2218 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2219 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2220 
2221 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2222 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2223 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2224 
2225 	DONTCARE(tcp->tcp_ka_rinterval);	/* Init in tcp_init_values */
2226 	DONTCARE(tcp->tcp_ka_abort_thres);	/* Init in tcp_init_values */
2227 	DONTCARE(tcp->tcp_ka_cnt);		/* Init in tcp_init_values */
2228 
2229 	tcp->tcp_client_errno = 0;
2230 
2231 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2232 
2233 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2234 
2235 	PRESERVE(connp->conn_bound_addr_v6);
2236 	tcp->tcp_last_sent_len = 0;
2237 	tcp->tcp_dupack_cnt = 0;
2238 
2239 	connp->conn_fport = 0;			/* Displayed in MIB */
2240 	PRESERVE(connp->conn_lport);
2241 
2242 	PRESERVE(tcp->tcp_acceptor_lockp);
2243 
2244 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2245 	PRESERVE(tcp->tcp_acceptor_id);
2246 	DONTCARE(tcp->tcp_ipsec_overhead);
2247 
2248 	PRESERVE(connp->conn_family);
2249 	/* Remove any remnants of mapped address binding */
2250 	if (connp->conn_family == AF_INET6) {
2251 		connp->conn_ipversion = IPV6_VERSION;
2252 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2253 	} else {
2254 		connp->conn_ipversion = IPV4_VERSION;
2255 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2256 	}
2257 
2258 	connp->conn_bound_if = 0;
2259 	connp->conn_recv_ancillary.crb_all = 0;
2260 	tcp->tcp_recvifindex = 0;
2261 	tcp->tcp_recvhops = 0;
2262 	tcp->tcp_closed = 0;
2263 	if (tcp->tcp_hopopts != NULL) {
2264 		mi_free(tcp->tcp_hopopts);
2265 		tcp->tcp_hopopts = NULL;
2266 		tcp->tcp_hopoptslen = 0;
2267 	}
2268 	ASSERT(tcp->tcp_hopoptslen == 0);
2269 	if (tcp->tcp_dstopts != NULL) {
2270 		mi_free(tcp->tcp_dstopts);
2271 		tcp->tcp_dstopts = NULL;
2272 		tcp->tcp_dstoptslen = 0;
2273 	}
2274 	ASSERT(tcp->tcp_dstoptslen == 0);
2275 	if (tcp->tcp_rthdrdstopts != NULL) {
2276 		mi_free(tcp->tcp_rthdrdstopts);
2277 		tcp->tcp_rthdrdstopts = NULL;
2278 		tcp->tcp_rthdrdstoptslen = 0;
2279 	}
2280 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2281 	if (tcp->tcp_rthdr != NULL) {
2282 		mi_free(tcp->tcp_rthdr);
2283 		tcp->tcp_rthdr = NULL;
2284 		tcp->tcp_rthdrlen = 0;
2285 	}
2286 	ASSERT(tcp->tcp_rthdrlen == 0);
2287 
2288 	/* Reset fusion-related fields */
2289 	tcp->tcp_fused = B_FALSE;
2290 	tcp->tcp_unfusable = B_FALSE;
2291 	tcp->tcp_fused_sigurg = B_FALSE;
2292 	tcp->tcp_loopback_peer = NULL;
2293 
2294 	tcp->tcp_lso = B_FALSE;
2295 
2296 	tcp->tcp_in_ack_unsent = 0;
2297 	tcp->tcp_cork = B_FALSE;
2298 	tcp->tcp_tconnind_started = B_FALSE;
2299 
2300 	PRESERVE(tcp->tcp_squeue_bytes);
2301 
2302 	tcp->tcp_closemp_used = B_FALSE;
2303 
2304 	PRESERVE(tcp->tcp_rsrv_mp);
2305 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2306 
2307 #ifdef DEBUG
2308 	DONTCARE(tcp->tcmp_stk[0]);
2309 #endif
2310 
2311 	PRESERVE(tcp->tcp_connid);
2312 
2313 	ASSERT(tcp->tcp_listen_cnt == NULL);
2314 	ASSERT(tcp->tcp_reass_tid == 0);
2315 
2316 #undef	DONTCARE
2317 #undef	PRESERVE
2318 }
2319 
2320 /*
2321  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2322  * NULL, certain values will be inheritted from it.
2323  */
2324 void
2325 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2326 {
2327 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2328 	conn_t		*connp = tcp->tcp_connp;
2329 
2330 	ASSERT((connp->conn_family == AF_INET &&
2331 	    connp->conn_ipversion == IPV4_VERSION) ||
2332 	    (connp->conn_family == AF_INET6 &&
2333 	    (connp->conn_ipversion == IPV4_VERSION ||
2334 	    connp->conn_ipversion == IPV6_VERSION)));
2335 
2336 	if (parent == NULL) {
2337 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2338 
2339 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2340 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2341 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2342 
2343 		tcp->tcp_first_ctimer_threshold =
2344 		    tcps->tcps_ip_notify_cinterval;
2345 		tcp->tcp_second_ctimer_threshold =
2346 		    tcps->tcps_ip_abort_cinterval;
2347 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2348 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2349 
2350 		tcp->tcp_fin_wait_2_flush_interval =
2351 		    tcps->tcps_fin_wait_2_flush_interval;
2352 
2353 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2354 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2355 		tcp->tcp_ka_cnt = 0;
2356 		tcp->tcp_ka_rinterval = 0;
2357 
2358 		/*
2359 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2360 		 * if parent is NULL.  But we need to inherit it from parent.
2361 		 */
2362 	} else {
2363 		/* Inherit various TCP parameters from the parent. */
2364 		tcp->tcp_naglim = parent->tcp_naglim;
2365 
2366 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2367 		tcp->tcp_rto_min = parent->tcp_rto_min;
2368 		tcp->tcp_rto_max = parent->tcp_rto_max;
2369 
2370 		tcp->tcp_first_ctimer_threshold =
2371 		    parent->tcp_first_ctimer_threshold;
2372 		tcp->tcp_second_ctimer_threshold =
2373 		    parent->tcp_second_ctimer_threshold;
2374 		tcp->tcp_first_timer_threshold =
2375 		    parent->tcp_first_timer_threshold;
2376 		tcp->tcp_second_timer_threshold =
2377 		    parent->tcp_second_timer_threshold;
2378 
2379 		tcp->tcp_fin_wait_2_flush_interval =
2380 		    parent->tcp_fin_wait_2_flush_interval;
2381 
2382 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2383 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2384 		tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2385 		tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2386 
2387 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2388 	}
2389 
2390 	/*
2391 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2392 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2393 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2394 	 * during first few transmissions of a connection as seen in slow
2395 	 * links.
2396 	 */
2397 	tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2;
2398 	tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1;
2399 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps,
2400 	    tcps->tcps_conn_grace_period);
2401 
2402 	tcp->tcp_timer_backoff = 0;
2403 	tcp->tcp_ms_we_have_waited = 0;
2404 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2405 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2406 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2407 
2408 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2409 
2410 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2411 
2412 	/* Reset fusion-related fields */
2413 	tcp->tcp_fused = B_FALSE;
2414 	tcp->tcp_unfusable = B_FALSE;
2415 	tcp->tcp_fused_sigurg = B_FALSE;
2416 	tcp->tcp_loopback_peer = NULL;
2417 
2418 	/* We rebuild the header template on the next connect/conn_request */
2419 
2420 	connp->conn_mlp_type = mlptSingle;
2421 
2422 	/*
2423 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2424 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2425 	 */
2426 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2427 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2428 
2429 	tcp->tcp_cork = B_FALSE;
2430 	/*
2431 	 * Init the tcp_debug option if it wasn't already set.  This value
2432 	 * determines whether TCP
2433 	 * calls strlog() to print out debug messages.  Doing this
2434 	 * initialization here means that this value is not inherited thru
2435 	 * tcp_reinit().
2436 	 */
2437 	if (!connp->conn_debug)
2438 		connp->conn_debug = tcps->tcps_dbg;
2439 }
2440 
2441 /*
2442  * Update the TCP connection according to change of PMTU.
2443  *
2444  * Path MTU might have changed by either increase or decrease, so need to
2445  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2446  * or negative MSS, since tcp_mss_set() will do it.
2447  */
2448 void
2449 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2450 {
2451 	uint32_t	pmtu;
2452 	int32_t		mss;
2453 	conn_t		*connp = tcp->tcp_connp;
2454 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2455 	iaflags_t	ixaflags;
2456 
2457 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2458 		return;
2459 
2460 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2461 		return;
2462 
2463 	/*
2464 	 * Always call ip_get_pmtu() to make sure that IP has updated
2465 	 * ixa_flags properly.
2466 	 */
2467 	pmtu = ip_get_pmtu(ixa);
2468 	ixaflags = ixa->ixa_flags;
2469 
2470 	/*
2471 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2472 	 * IPsec overhead if applied. Make sure to use the most recent
2473 	 * IPsec information.
2474 	 */
2475 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2476 
2477 	/*
2478 	 * Nothing to change, so just return.
2479 	 */
2480 	if (mss == tcp->tcp_mss)
2481 		return;
2482 
2483 	/*
2484 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2485 	 */
2486 	if (mss > tcp->tcp_mss && decrease_only)
2487 		return;
2488 
2489 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2490 
2491 	/*
2492 	 * Update ixa_fragsize and ixa_pmtu.
2493 	 */
2494 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2495 
2496 	/*
2497 	 * Adjust MSS and all relevant variables.
2498 	 */
2499 	tcp_mss_set(tcp, mss);
2500 
2501 	/*
2502 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2503 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2504 	 * has a (potentially different) min size we do the same. Make sure to
2505 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2506 	 * fragment the packet.
2507 	 *
2508 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2509 	 * when IPv6 fragmentation is needed.
2510 	 */
2511 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2512 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2513 
2514 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2515 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2516 
2517 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2518 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2519 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2520 	}
2521 	ixa->ixa_flags = ixaflags;
2522 }
2523 
2524 int
2525 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2526 {
2527 	conn_t	*connp = tcp->tcp_connp;
2528 	queue_t	*q = connp->conn_rq;
2529 	int32_t	mss = tcp->tcp_mss;
2530 	int	maxpsz;
2531 
2532 	if (TCP_IS_DETACHED(tcp))
2533 		return (mss);
2534 	if (tcp->tcp_fused) {
2535 		maxpsz = tcp_fuse_maxpsz(tcp);
2536 		mss = INFPSZ;
2537 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2538 		/*
2539 		 * Set the sd_qn_maxpsz according to the socket send buffer
2540 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2541 		 * instruct the stream head to copyin user data into contiguous
2542 		 * kernel-allocated buffers without breaking it up into smaller
2543 		 * chunks.  We round up the buffer size to the nearest SMSS.
2544 		 */
2545 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2546 		mss = INFPSZ;
2547 	} else {
2548 		/*
2549 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2550 		 * (and a multiple of the mss).  This instructs the stream
2551 		 * head to break down larger than SMSS writes into SMSS-
2552 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2553 		 */
2554 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2555 		if (maxpsz > connp->conn_sndbuf / 2) {
2556 			maxpsz = connp->conn_sndbuf / 2;
2557 			/* Round up to nearest mss */
2558 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2559 		}
2560 	}
2561 
2562 	(void) proto_set_maxpsz(q, connp, maxpsz);
2563 	if (!(IPCL_IS_NONSTR(connp)))
2564 		connp->conn_wq->q_maxpsz = maxpsz;
2565 	if (set_maxblk)
2566 		(void) proto_set_tx_maxblk(q, connp, mss);
2567 	return (mss);
2568 }
2569 
2570 /* For /dev/tcp aka AF_INET open */
2571 static int
2572 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2573 {
2574 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2575 }
2576 
2577 /* For /dev/tcp6 aka AF_INET6 open */
2578 static int
2579 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2580 {
2581 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2582 }
2583 
2584 conn_t *
2585 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2586     int *errorp)
2587 {
2588 	tcp_t		*tcp = NULL;
2589 	conn_t		*connp;
2590 	zoneid_t	zoneid;
2591 	tcp_stack_t	*tcps;
2592 	squeue_t	*sqp;
2593 
2594 	ASSERT(errorp != NULL);
2595 	/*
2596 	 * Find the proper zoneid and netstack.
2597 	 */
2598 	/*
2599 	 * Special case for install: miniroot needs to be able to
2600 	 * access files via NFS as though it were always in the
2601 	 * global zone.
2602 	 */
2603 	if (credp == kcred && nfs_global_client_only != 0) {
2604 		zoneid = GLOBAL_ZONEID;
2605 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2606 		    netstack_tcp;
2607 		ASSERT(tcps != NULL);
2608 	} else {
2609 		netstack_t *ns;
2610 		int err;
2611 
2612 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2613 			*errorp = err;
2614 			return (NULL);
2615 		}
2616 
2617 		ns = netstack_find_by_cred(credp);
2618 		ASSERT(ns != NULL);
2619 		tcps = ns->netstack_tcp;
2620 		ASSERT(tcps != NULL);
2621 
2622 		/*
2623 		 * For exclusive stacks we set the zoneid to zero
2624 		 * to make TCP operate as if in the global zone.
2625 		 */
2626 		if (tcps->tcps_netstack->netstack_stackid !=
2627 		    GLOBAL_NETSTACKID)
2628 			zoneid = GLOBAL_ZONEID;
2629 		else
2630 			zoneid = crgetzoneid(credp);
2631 	}
2632 
2633 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2634 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2635 	/*
2636 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2637 	 * so we drop it by one.
2638 	 */
2639 	netstack_rele(tcps->tcps_netstack);
2640 	if (connp == NULL) {
2641 		*errorp = ENOSR;
2642 		return (NULL);
2643 	}
2644 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2645 
2646 	connp->conn_sqp = sqp;
2647 	connp->conn_initial_sqp = connp->conn_sqp;
2648 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2649 	tcp = connp->conn_tcp;
2650 
2651 	/*
2652 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2653 	 * to do the following checks when necessary:
2654 	 *
2655 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2656 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2657 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2658 	 */
2659 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2660 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2661 
2662 	if (!tcps->tcps_dev_flow_ctl)
2663 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2664 
2665 	if (isv6) {
2666 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2667 		connp->conn_ipversion = IPV6_VERSION;
2668 		connp->conn_family = AF_INET6;
2669 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2670 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2671 	} else {
2672 		connp->conn_ipversion = IPV4_VERSION;
2673 		connp->conn_family = AF_INET;
2674 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2675 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2676 	}
2677 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2678 
2679 	crhold(credp);
2680 	connp->conn_cred = credp;
2681 	connp->conn_cpid = curproc->p_pid;
2682 	connp->conn_open_time = ddi_get_lbolt64();
2683 
2684 	/* Cache things in the ixa without any refhold */
2685 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2686 	connp->conn_ixa->ixa_cred = credp;
2687 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2688 
2689 	connp->conn_zoneid = zoneid;
2690 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2691 	connp->conn_ixa->ixa_zoneid = zoneid;
2692 	connp->conn_mlp_type = mlptSingle;
2693 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2694 	ASSERT(tcp->tcp_tcps == tcps);
2695 
2696 	/*
2697 	 * If the caller has the process-wide flag set, then default to MAC
2698 	 * exempt mode.  This allows read-down to unlabeled hosts.
2699 	 */
2700 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2701 		connp->conn_mac_mode = CONN_MAC_AWARE;
2702 
2703 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2704 
2705 	if (issocket) {
2706 		tcp->tcp_issocket = 1;
2707 	}
2708 
2709 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2710 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2711 	if (tcps->tcps_snd_lowat_fraction != 0) {
2712 		connp->conn_sndlowat = connp->conn_sndbuf /
2713 		    tcps->tcps_snd_lowat_fraction;
2714 	} else {
2715 		connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2716 	}
2717 	connp->conn_so_type = SOCK_STREAM;
2718 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2719 	    tcps->tcps_wroff_xtra;
2720 
2721 	SOCK_CONNID_INIT(tcp->tcp_connid);
2722 	/* DTrace ignores this - it isn't a tcp:::state-change */
2723 	tcp->tcp_state = TCPS_IDLE;
2724 	tcp_init_values(tcp, NULL);
2725 	return (connp);
2726 }
2727 
2728 static int
2729 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2730     boolean_t isv6)
2731 {
2732 	tcp_t		*tcp = NULL;
2733 	conn_t		*connp = NULL;
2734 	int		err;
2735 	vmem_t		*minor_arena = NULL;
2736 	dev_t		conn_dev;
2737 	boolean_t	issocket;
2738 
2739 	if (q->q_ptr != NULL)
2740 		return (0);
2741 
2742 	if (sflag == MODOPEN)
2743 		return (EINVAL);
2744 
2745 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2746 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2747 		minor_arena = ip_minor_arena_la;
2748 	} else {
2749 		/*
2750 		 * Either minor numbers in the large arena were exhausted
2751 		 * or a non socket application is doing the open.
2752 		 * Try to allocate from the small arena.
2753 		 */
2754 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2755 			return (EBUSY);
2756 		}
2757 		minor_arena = ip_minor_arena_sa;
2758 	}
2759 
2760 	ASSERT(minor_arena != NULL);
2761 
2762 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2763 
2764 	if (flag & SO_FALLBACK) {
2765 		/*
2766 		 * Non streams socket needs a stream to fallback to
2767 		 */
2768 		RD(q)->q_ptr = (void *)conn_dev;
2769 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2770 		WR(q)->q_ptr = (void *)minor_arena;
2771 		qprocson(q);
2772 		return (0);
2773 	} else if (flag & SO_ACCEPTOR) {
2774 		q->q_qinfo = &tcp_acceptor_rinit;
2775 		/*
2776 		 * the conn_dev and minor_arena will be subsequently used by
2777 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2778 		 * the minor device number for this connection from the q_ptr.
2779 		 */
2780 		RD(q)->q_ptr = (void *)conn_dev;
2781 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2782 		WR(q)->q_ptr = (void *)minor_arena;
2783 		qprocson(q);
2784 		return (0);
2785 	}
2786 
2787 	issocket = flag & SO_SOCKSTR;
2788 	connp = tcp_create_common(credp, isv6, issocket, &err);
2789 
2790 	if (connp == NULL) {
2791 		inet_minor_free(minor_arena, conn_dev);
2792 		q->q_ptr = WR(q)->q_ptr = NULL;
2793 		return (err);
2794 	}
2795 
2796 	connp->conn_rq = q;
2797 	connp->conn_wq = WR(q);
2798 	q->q_ptr = WR(q)->q_ptr = connp;
2799 
2800 	connp->conn_dev = conn_dev;
2801 	connp->conn_minor_arena = minor_arena;
2802 
2803 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2804 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2805 
2806 	tcp = connp->conn_tcp;
2807 
2808 	if (issocket) {
2809 		WR(q)->q_qinfo = &tcp_sock_winit;
2810 	} else {
2811 #ifdef  _ILP32
2812 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2813 #else
2814 		tcp->tcp_acceptor_id = conn_dev;
2815 #endif  /* _ILP32 */
2816 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2817 	}
2818 
2819 	/*
2820 	 * Put the ref for TCP. Ref for IP was already put
2821 	 * by ipcl_conn_create. Also Make the conn_t globally
2822 	 * visible to walkers
2823 	 */
2824 	mutex_enter(&connp->conn_lock);
2825 	CONN_INC_REF_LOCKED(connp);
2826 	ASSERT(connp->conn_ref == 2);
2827 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2828 	mutex_exit(&connp->conn_lock);
2829 
2830 	qprocson(q);
2831 	return (0);
2832 }
2833 
2834 /*
2835  * Build/update the tcp header template (in conn_ht_iphc) based on
2836  * conn_xmit_ipp. The headers include ip6_t, any extension
2837  * headers, and the maximum size tcp header (to avoid reallocation
2838  * on the fly for additional tcp options).
2839  *
2840  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2841  * Returns failure if can't allocate memory.
2842  */
2843 int
2844 tcp_build_hdrs(tcp_t *tcp)
2845 {
2846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2847 	conn_t		*connp = tcp->tcp_connp;
2848 	char		buf[TCP_MAX_HDR_LENGTH];
2849 	uint_t		buflen;
2850 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2851 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2852 	tcpha_t		*tcpha;
2853 	uint32_t	cksum;
2854 	int		error;
2855 
2856 	/*
2857 	 * We might be called after the connection is set up, and we might
2858 	 * have TS options already in the TCP header. Thus we  save any
2859 	 * existing tcp header.
2860 	 */
2861 	buflen = connp->conn_ht_ulp_len;
2862 	if (buflen != 0) {
2863 		bcopy(connp->conn_ht_ulp, buf, buflen);
2864 		extralen -= buflen - ulplen;
2865 		ulplen = buflen;
2866 	}
2867 
2868 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2869 	mutex_enter(&connp->conn_lock);
2870 	error = conn_build_hdr_template(connp, ulplen, extralen,
2871 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2872 	mutex_exit(&connp->conn_lock);
2873 	if (error != 0)
2874 		return (error);
2875 
2876 	/*
2877 	 * Any routing header/option has been massaged. The checksum difference
2878 	 * is stored in conn_sum for later use.
2879 	 */
2880 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2881 	tcp->tcp_tcpha = tcpha;
2882 
2883 	/* restore any old tcp header */
2884 	if (buflen != 0) {
2885 		bcopy(buf, connp->conn_ht_ulp, buflen);
2886 	} else {
2887 		tcpha->tha_sum = 0;
2888 		tcpha->tha_urp = 0;
2889 		tcpha->tha_ack = 0;
2890 		tcpha->tha_offset_and_reserved = (5 << 4);
2891 		tcpha->tha_lport = connp->conn_lport;
2892 		tcpha->tha_fport = connp->conn_fport;
2893 	}
2894 
2895 	/*
2896 	 * IP wants our header length in the checksum field to
2897 	 * allow it to perform a single pseudo-header+checksum
2898 	 * calculation on behalf of TCP.
2899 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2900 	 */
2901 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2902 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2903 	ASSERT(cksum < 0x10000);
2904 	tcpha->tha_sum = htons(cksum);
2905 
2906 	if (connp->conn_ipversion == IPV4_VERSION)
2907 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2908 	else
2909 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2910 
2911 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2912 	    connp->conn_wroff) {
2913 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2914 		    tcps->tcps_wroff_xtra;
2915 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2916 		    connp->conn_wroff);
2917 	}
2918 	return (0);
2919 }
2920 
2921 /*
2922  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2923  * We do not allow the receive window to shrink.  After setting rwnd,
2924  * set the flow control hiwat of the stream.
2925  *
2926  * This function is called in 2 cases:
2927  *
2928  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2929  *    connection (passive open) and in tcp_input_data() for active connect.
2930  *    This is called after tcp_mss_set() when the desired MSS value is known.
2931  *    This makes sure that our window size is a mutiple of the other side's
2932  *    MSS.
2933  * 2) Handling SO_RCVBUF option.
2934  *
2935  * It is ASSUMED that the requested size is a multiple of the current MSS.
2936  *
2937  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2938  * user requests so.
2939  */
2940 int
2941 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2942 {
2943 	uint32_t	mss = tcp->tcp_mss;
2944 	uint32_t	old_max_rwnd;
2945 	uint32_t	max_transmittable_rwnd;
2946 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2947 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2948 	conn_t		*connp = tcp->tcp_connp;
2949 
2950 	/*
2951 	 * Insist on a receive window that is at least
2952 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2953 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2954 	 * and delayed acknowledgement.
2955 	 */
2956 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2957 
2958 	if (tcp->tcp_fused) {
2959 		size_t sth_hiwat;
2960 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2961 
2962 		ASSERT(peer_tcp != NULL);
2963 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2964 		if (!tcp_detached) {
2965 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2966 			    sth_hiwat);
2967 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2968 		}
2969 
2970 		/* Caller could have changed tcp_rwnd; update tha_win */
2971 		if (tcp->tcp_tcpha != NULL) {
2972 			tcp->tcp_tcpha->tha_win =
2973 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2974 		}
2975 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2976 			tcp->tcp_cwnd_max = rwnd;
2977 
2978 		/*
2979 		 * In the fusion case, the maxpsz stream head value of
2980 		 * our peer is set according to its send buffer size
2981 		 * and our receive buffer size; since the latter may
2982 		 * have changed we need to update the peer's maxpsz.
2983 		 */
2984 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2985 		return (sth_hiwat);
2986 	}
2987 
2988 	if (tcp_detached)
2989 		old_max_rwnd = tcp->tcp_rwnd;
2990 	else
2991 		old_max_rwnd = connp->conn_rcvbuf;
2992 
2993 
2994 	/*
2995 	 * If window size info has already been exchanged, TCP should not
2996 	 * shrink the window.  Shrinking window is doable if done carefully.
2997 	 * We may add that support later.  But so far there is not a real
2998 	 * need to do that.
2999 	 */
3000 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3001 		/* MSS may have changed, do a round up again. */
3002 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3003 	}
3004 
3005 	/*
3006 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3007 	 * can be applied even before the window scale option is decided.
3008 	 */
3009 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3010 	if (rwnd > max_transmittable_rwnd) {
3011 		rwnd = max_transmittable_rwnd -
3012 		    (max_transmittable_rwnd % mss);
3013 		if (rwnd < mss)
3014 			rwnd = max_transmittable_rwnd;
3015 		/*
3016 		 * If we're over the limit we may have to back down tcp_rwnd.
3017 		 * The increment below won't work for us. So we set all three
3018 		 * here and the increment below will have no effect.
3019 		 */
3020 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3021 	}
3022 	if (tcp->tcp_localnet) {
3023 		tcp->tcp_rack_abs_max =
3024 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3025 	} else {
3026 		/*
3027 		 * For a remote host on a different subnet (through a router),
3028 		 * we ack every other packet to be conforming to RFC1122.
3029 		 * tcp_deferred_acks_max is default to 2.
3030 		 */
3031 		tcp->tcp_rack_abs_max =
3032 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3033 	}
3034 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3035 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3036 	else
3037 		tcp->tcp_rack_cur_max = 0;
3038 	/*
3039 	 * Increment the current rwnd by the amount the maximum grew (we
3040 	 * can not overwrite it since we might be in the middle of a
3041 	 * connection.)
3042 	 */
3043 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3044 	connp->conn_rcvbuf = rwnd;
3045 
3046 	/* Are we already connected? */
3047 	if (tcp->tcp_tcpha != NULL) {
3048 		tcp->tcp_tcpha->tha_win =
3049 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3050 	}
3051 
3052 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3053 		tcp->tcp_cwnd_max = rwnd;
3054 
3055 	if (tcp_detached)
3056 		return (rwnd);
3057 
3058 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3059 
3060 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3061 	return (rwnd);
3062 }
3063 
3064 int
3065 tcp_do_unbind(conn_t *connp)
3066 {
3067 	tcp_t *tcp = connp->conn_tcp;
3068 	int32_t oldstate;
3069 
3070 	switch (tcp->tcp_state) {
3071 	case TCPS_BOUND:
3072 	case TCPS_LISTEN:
3073 		break;
3074 	default:
3075 		return (-TOUTSTATE);
3076 	}
3077 
3078 	/*
3079 	 * Need to clean up all the eagers since after the unbind, segments
3080 	 * will no longer be delivered to this listener stream.
3081 	 */
3082 	mutex_enter(&tcp->tcp_eager_lock);
3083 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3084 		tcp_eager_cleanup(tcp, 0);
3085 	}
3086 	mutex_exit(&tcp->tcp_eager_lock);
3087 
3088 	/* Clean up the listener connection counter if necessary. */
3089 	if (tcp->tcp_listen_cnt != NULL)
3090 		TCP_DECR_LISTEN_CNT(tcp);
3091 	connp->conn_laddr_v6 = ipv6_all_zeros;
3092 	connp->conn_saddr_v6 = ipv6_all_zeros;
3093 	tcp_bind_hash_remove(tcp);
3094 	oldstate = tcp->tcp_state;
3095 	tcp->tcp_state = TCPS_IDLE;
3096 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3097 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3098 	    int32_t, oldstate);
3099 
3100 	ip_unbind(connp);
3101 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3102 
3103 	return (0);
3104 }
3105 
3106 /*
3107  * Collect protocol properties to send to the upper handle.
3108  */
3109 void
3110 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3111 {
3112 	conn_t *connp = tcp->tcp_connp;
3113 
3114 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3115 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3116 
3117 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3118 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3119 	    connp->conn_rcvbuf;
3120 	/*
3121 	 * Determine what write offset value to use depending on SACK and
3122 	 * whether the endpoint is fused or not.
3123 	 */
3124 	if (tcp->tcp_fused) {
3125 		ASSERT(tcp->tcp_loopback);
3126 		ASSERT(tcp->tcp_loopback_peer != NULL);
3127 		/*
3128 		 * For fused tcp loopback, set the stream head's write
3129 		 * offset value to zero since we won't be needing any room
3130 		 * for TCP/IP headers.  This would also improve performance
3131 		 * since it would reduce the amount of work done by kmem.
3132 		 * Non-fused tcp loopback case is handled separately below.
3133 		 */
3134 		sopp->sopp_wroff = 0;
3135 		/*
3136 		 * Update the peer's transmit parameters according to
3137 		 * our recently calculated high water mark value.
3138 		 */
3139 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3140 	} else if (tcp->tcp_snd_sack_ok) {
3141 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3142 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3143 	} else {
3144 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3145 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3146 	}
3147 
3148 	if (tcp->tcp_loopback) {
3149 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3150 		sopp->sopp_loopback = B_TRUE;
3151 	}
3152 }
3153 
3154 /*
3155  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3156  */
3157 boolean_t
3158 tcp_zcopy_check(tcp_t *tcp)
3159 {
3160 	conn_t		*connp = tcp->tcp_connp;
3161 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3162 	boolean_t	zc_enabled = B_FALSE;
3163 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3164 
3165 	if (do_tcpzcopy == 2)
3166 		zc_enabled = B_TRUE;
3167 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3168 		zc_enabled = B_TRUE;
3169 
3170 	tcp->tcp_snd_zcopy_on = zc_enabled;
3171 	if (!TCP_IS_DETACHED(tcp)) {
3172 		if (zc_enabled) {
3173 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3174 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3175 			    ZCVMSAFE);
3176 			TCP_STAT(tcps, tcp_zcopy_on);
3177 		} else {
3178 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3179 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3180 			    ZCVMUNSAFE);
3181 			TCP_STAT(tcps, tcp_zcopy_off);
3182 		}
3183 	}
3184 	return (zc_enabled);
3185 }
3186 
3187 /*
3188  * Backoff from a zero-copy message by copying data to a new allocated
3189  * message and freeing the original desballoca'ed segmapped message.
3190  *
3191  * This function is called by following two callers:
3192  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3193  *    the origial desballoca'ed message and notify sockfs. This is in re-
3194  *    transmit state.
3195  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3196  *    to be copied to new message.
3197  */
3198 mblk_t *
3199 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3200 {
3201 	mblk_t		*nbp;
3202 	mblk_t		*head = NULL;
3203 	mblk_t		*tail = NULL;
3204 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3205 
3206 	ASSERT(bp != NULL);
3207 	while (bp != NULL) {
3208 		if (IS_VMLOANED_MBLK(bp)) {
3209 			TCP_STAT(tcps, tcp_zcopy_backoff);
3210 			if ((nbp = copyb(bp)) == NULL) {
3211 				tcp->tcp_xmit_zc_clean = B_FALSE;
3212 				if (tail != NULL)
3213 					tail->b_cont = bp;
3214 				return ((head == NULL) ? bp : head);
3215 			}
3216 
3217 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3218 				if (fix_xmitlist)
3219 					tcp_zcopy_notify(tcp);
3220 				else
3221 					nbp->b_datap->db_struioflag |=
3222 					    STRUIO_ZCNOTIFY;
3223 			}
3224 			nbp->b_cont = bp->b_cont;
3225 
3226 			/*
3227 			 * Copy saved information and adjust tcp_xmit_tail
3228 			 * if needed.
3229 			 */
3230 			if (fix_xmitlist) {
3231 				nbp->b_prev = bp->b_prev;
3232 				nbp->b_next = bp->b_next;
3233 
3234 				if (tcp->tcp_xmit_tail == bp)
3235 					tcp->tcp_xmit_tail = nbp;
3236 			}
3237 
3238 			/* Free the original message. */
3239 			bp->b_prev = NULL;
3240 			bp->b_next = NULL;
3241 			freeb(bp);
3242 
3243 			bp = nbp;
3244 		}
3245 
3246 		if (head == NULL) {
3247 			head = bp;
3248 		}
3249 		if (tail == NULL) {
3250 			tail = bp;
3251 		} else {
3252 			tail->b_cont = bp;
3253 			tail = bp;
3254 		}
3255 
3256 		/* Move forward. */
3257 		bp = bp->b_cont;
3258 	}
3259 
3260 	if (fix_xmitlist) {
3261 		tcp->tcp_xmit_last = tail;
3262 		tcp->tcp_xmit_zc_clean = B_TRUE;
3263 	}
3264 
3265 	return (head);
3266 }
3267 
3268 void
3269 tcp_zcopy_notify(tcp_t *tcp)
3270 {
3271 	struct stdata	*stp;
3272 	conn_t		*connp;
3273 
3274 	if (tcp->tcp_detached)
3275 		return;
3276 	connp = tcp->tcp_connp;
3277 	if (IPCL_IS_NONSTR(connp)) {
3278 		(*connp->conn_upcalls->su_zcopy_notify)
3279 		    (connp->conn_upper_handle);
3280 		return;
3281 	}
3282 	stp = STREAM(connp->conn_rq);
3283 	mutex_enter(&stp->sd_lock);
3284 	stp->sd_flag |= STZCNOTIFY;
3285 	cv_broadcast(&stp->sd_zcopy_wait);
3286 	mutex_exit(&stp->sd_lock);
3287 }
3288 
3289 /*
3290  * Update the TCP connection according to change of LSO capability.
3291  */
3292 static void
3293 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3294 {
3295 	/*
3296 	 * We check against IPv4 header length to preserve the old behavior
3297 	 * of only enabling LSO when there are no IP options.
3298 	 * But this restriction might not be necessary at all. Before removing
3299 	 * it, need to verify how LSO is handled for source routing case, with
3300 	 * which IP does software checksum.
3301 	 *
3302 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3303 	 */
3304 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3305 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3306 		return;
3307 
3308 	/*
3309 	 * Either the LSO capability newly became usable, or it has changed.
3310 	 */
3311 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3312 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3313 
3314 		ASSERT(lsoc->ill_lso_max > 0);
3315 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3316 
3317 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3318 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3319 
3320 		/*
3321 		 * If LSO to be enabled, notify the STREAM header with larger
3322 		 * data block.
3323 		 */
3324 		if (!tcp->tcp_lso)
3325 			tcp->tcp_maxpsz_multiplier = 0;
3326 
3327 		tcp->tcp_lso = B_TRUE;
3328 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3329 	} else { /* LSO capability is not usable any more. */
3330 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3331 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3332 
3333 		/*
3334 		 * If LSO to be disabled, notify the STREAM header with smaller
3335 		 * data block. And need to restore fragsize to PMTU.
3336 		 */
3337 		if (tcp->tcp_lso) {
3338 			tcp->tcp_maxpsz_multiplier =
3339 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3340 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3341 			tcp->tcp_lso = B_FALSE;
3342 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3343 		}
3344 	}
3345 
3346 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3347 }
3348 
3349 /*
3350  * Update the TCP connection according to change of ZEROCOPY capability.
3351  */
3352 static void
3353 tcp_update_zcopy(tcp_t *tcp)
3354 {
3355 	conn_t		*connp = tcp->tcp_connp;
3356 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3357 
3358 	if (tcp->tcp_snd_zcopy_on) {
3359 		tcp->tcp_snd_zcopy_on = B_FALSE;
3360 		if (!TCP_IS_DETACHED(tcp)) {
3361 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3362 			    ZCVMUNSAFE);
3363 			TCP_STAT(tcps, tcp_zcopy_off);
3364 		}
3365 	} else {
3366 		tcp->tcp_snd_zcopy_on = B_TRUE;
3367 		if (!TCP_IS_DETACHED(tcp)) {
3368 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3369 			    ZCVMSAFE);
3370 			TCP_STAT(tcps, tcp_zcopy_on);
3371 		}
3372 	}
3373 }
3374 
3375 /*
3376  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3377  * so it's safe to update the TCP connection.
3378  */
3379 /* ARGSUSED1 */
3380 static void
3381 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3382     ixa_notify_arg_t narg)
3383 {
3384 	tcp_t		*tcp = (tcp_t *)arg;
3385 	conn_t		*connp = tcp->tcp_connp;
3386 
3387 	switch (ntype) {
3388 	case IXAN_LSO:
3389 		tcp_update_lso(tcp, connp->conn_ixa);
3390 		break;
3391 	case IXAN_PMTU:
3392 		tcp_update_pmtu(tcp, B_FALSE);
3393 		break;
3394 	case IXAN_ZCOPY:
3395 		tcp_update_zcopy(tcp);
3396 		break;
3397 	default:
3398 		break;
3399 	}
3400 }
3401 
3402 /*
3403  * The TCP write service routine should never be called...
3404  */
3405 /* ARGSUSED */
3406 static int
3407 tcp_wsrv(queue_t *q)
3408 {
3409 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3410 
3411 	TCP_STAT(tcps, tcp_wsrv_called);
3412 	return (0);
3413 }
3414 
3415 /*
3416  * Hash list lookup routine for tcp_t structures.
3417  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3418  */
3419 tcp_t *
3420 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3421 {
3422 	tf_t	*tf;
3423 	tcp_t	*tcp;
3424 
3425 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3426 	mutex_enter(&tf->tf_lock);
3427 	for (tcp = tf->tf_tcp; tcp != NULL;
3428 	    tcp = tcp->tcp_acceptor_hash) {
3429 		if (tcp->tcp_acceptor_id == id) {
3430 			CONN_INC_REF(tcp->tcp_connp);
3431 			mutex_exit(&tf->tf_lock);
3432 			return (tcp);
3433 		}
3434 	}
3435 	mutex_exit(&tf->tf_lock);
3436 	return (NULL);
3437 }
3438 
3439 /*
3440  * Hash list insertion routine for tcp_t structures.
3441  */
3442 void
3443 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3444 {
3445 	tf_t	*tf;
3446 	tcp_t	**tcpp;
3447 	tcp_t	*tcpnext;
3448 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3449 
3450 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3451 
3452 	if (tcp->tcp_ptpahn != NULL)
3453 		tcp_acceptor_hash_remove(tcp);
3454 	tcpp = &tf->tf_tcp;
3455 	mutex_enter(&tf->tf_lock);
3456 	tcpnext = tcpp[0];
3457 	if (tcpnext)
3458 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3459 	tcp->tcp_acceptor_hash = tcpnext;
3460 	tcp->tcp_ptpahn = tcpp;
3461 	tcpp[0] = tcp;
3462 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3463 	mutex_exit(&tf->tf_lock);
3464 }
3465 
3466 /*
3467  * Hash list removal routine for tcp_t structures.
3468  */
3469 void
3470 tcp_acceptor_hash_remove(tcp_t *tcp)
3471 {
3472 	tcp_t	*tcpnext;
3473 	kmutex_t *lockp;
3474 
3475 	/*
3476 	 * Extract the lock pointer in case there are concurrent
3477 	 * hash_remove's for this instance.
3478 	 */
3479 	lockp = tcp->tcp_acceptor_lockp;
3480 
3481 	if (tcp->tcp_ptpahn == NULL)
3482 		return;
3483 
3484 	ASSERT(lockp != NULL);
3485 	mutex_enter(lockp);
3486 	if (tcp->tcp_ptpahn) {
3487 		tcpnext = tcp->tcp_acceptor_hash;
3488 		if (tcpnext) {
3489 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3490 			tcp->tcp_acceptor_hash = NULL;
3491 		}
3492 		*tcp->tcp_ptpahn = tcpnext;
3493 		tcp->tcp_ptpahn = NULL;
3494 	}
3495 	mutex_exit(lockp);
3496 	tcp->tcp_acceptor_lockp = NULL;
3497 }
3498 
3499 /*
3500  * Type three generator adapted from the random() function in 4.4 BSD:
3501  */
3502 
3503 /*
3504  * Copyright (c) 1983, 1993
3505  *	The Regents of the University of California.  All rights reserved.
3506  *
3507  * Redistribution and use in source and binary forms, with or without
3508  * modification, are permitted provided that the following conditions
3509  * are met:
3510  * 1. Redistributions of source code must retain the above copyright
3511  *    notice, this list of conditions and the following disclaimer.
3512  * 2. Redistributions in binary form must reproduce the above copyright
3513  *    notice, this list of conditions and the following disclaimer in the
3514  *    documentation and/or other materials provided with the distribution.
3515  * 3. All advertising materials mentioning features or use of this software
3516  *    must display the following acknowledgement:
3517  *	This product includes software developed by the University of
3518  *	California, Berkeley and its contributors.
3519  * 4. Neither the name of the University nor the names of its contributors
3520  *    may be used to endorse or promote products derived from this software
3521  *    without specific prior written permission.
3522  *
3523  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3524  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3525  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3526  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3527  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3528  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3529  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3530  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3531  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3532  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3533  * SUCH DAMAGE.
3534  */
3535 
3536 /* Type 3 -- x**31 + x**3 + 1 */
3537 #define	DEG_3		31
3538 #define	SEP_3		3
3539 
3540 
3541 /* Protected by tcp_random_lock */
3542 static int tcp_randtbl[DEG_3 + 1];
3543 
3544 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3545 static int *tcp_random_rptr = &tcp_randtbl[1];
3546 
3547 static int *tcp_random_state = &tcp_randtbl[1];
3548 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3549 
3550 kmutex_t tcp_random_lock;
3551 
3552 void
3553 tcp_random_init(void)
3554 {
3555 	int i;
3556 	hrtime_t hrt;
3557 	time_t wallclock;
3558 	uint64_t result;
3559 
3560 	/*
3561 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3562 	 * a longlong, which may contain resolution down to nanoseconds.
3563 	 * The current time will either be a 32-bit or a 64-bit quantity.
3564 	 * XOR the two together in a 64-bit result variable.
3565 	 * Convert the result to a 32-bit value by multiplying the high-order
3566 	 * 32-bits by the low-order 32-bits.
3567 	 */
3568 
3569 	hrt = gethrtime();
3570 	(void) drv_getparm(TIME, &wallclock);
3571 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3572 	mutex_enter(&tcp_random_lock);
3573 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3574 	    (result & 0xffffffff);
3575 
3576 	for (i = 1; i < DEG_3; i++)
3577 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3578 		    + 12345;
3579 	tcp_random_fptr = &tcp_random_state[SEP_3];
3580 	tcp_random_rptr = &tcp_random_state[0];
3581 	mutex_exit(&tcp_random_lock);
3582 	for (i = 0; i < 10 * DEG_3; i++)
3583 		(void) tcp_random();
3584 }
3585 
3586 /*
3587  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3588  * This range is selected to be approximately centered on TCP_ISS / 2,
3589  * and easy to compute. We get this value by generating a 32-bit random
3590  * number, selecting out the high-order 17 bits, and then adding one so
3591  * that we never return zero.
3592  */
3593 int
3594 tcp_random(void)
3595 {
3596 	int i;
3597 
3598 	mutex_enter(&tcp_random_lock);
3599 	*tcp_random_fptr += *tcp_random_rptr;
3600 
3601 	/*
3602 	 * The high-order bits are more random than the low-order bits,
3603 	 * so we select out the high-order 17 bits and add one so that
3604 	 * we never return zero.
3605 	 */
3606 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3607 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3608 		tcp_random_fptr = tcp_random_state;
3609 		++tcp_random_rptr;
3610 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3611 		tcp_random_rptr = tcp_random_state;
3612 
3613 	mutex_exit(&tcp_random_lock);
3614 	return (i);
3615 }
3616 
3617 /*
3618  * Split this function out so that if the secret changes, I'm okay.
3619  *
3620  * Initialize the tcp_iss_cookie and tcp_iss_key.
3621  */
3622 
3623 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3624 
3625 void
3626 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3627 {
3628 	struct {
3629 		int32_t current_time;
3630 		uint32_t randnum;
3631 		uint16_t pad;
3632 		uint8_t ether[6];
3633 		uint8_t passwd[PASSWD_SIZE];
3634 	} tcp_iss_cookie;
3635 	time_t t;
3636 
3637 	/*
3638 	 * Start with the current absolute time.
3639 	 */
3640 	(void) drv_getparm(TIME, &t);
3641 	tcp_iss_cookie.current_time = t;
3642 
3643 	/*
3644 	 * XXX - Need a more random number per RFC 1750, not this crap.
3645 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3646 	 */
3647 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3648 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3649 
3650 	/*
3651 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3652 	 * as a good template.
3653 	 */
3654 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3655 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3656 
3657 	/*
3658 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3659 	 */
3660 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3661 
3662 	/*
3663 	 * See 4010593 if this section becomes a problem again,
3664 	 * but the local ethernet address is useful here.
3665 	 */
3666 	(void) localetheraddr(NULL,
3667 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3668 
3669 	/*
3670 	 * Hash 'em all together.  The MD5Final is called per-connection.
3671 	 */
3672 	mutex_enter(&tcps->tcps_iss_key_lock);
3673 	MD5Init(&tcps->tcps_iss_key);
3674 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3675 	    sizeof (tcp_iss_cookie));
3676 	mutex_exit(&tcps->tcps_iss_key_lock);
3677 }
3678 
3679 /*
3680  * Called by IP when IP is loaded into the kernel
3681  */
3682 void
3683 tcp_ddi_g_init(void)
3684 {
3685 	tcp_timercache = kmem_cache_create("tcp_timercache",
3686 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3687 	    NULL, NULL, NULL, NULL, NULL, 0);
3688 
3689 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3690 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3691 
3692 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3693 
3694 	/* Initialize the random number generator */
3695 	tcp_random_init();
3696 
3697 	/* A single callback independently of how many netstacks we have */
3698 	ip_squeue_init(tcp_squeue_add);
3699 
3700 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3701 
3702 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3703 
3704 	/*
3705 	 * We want to be informed each time a stack is created or
3706 	 * destroyed in the kernel, so we can maintain the
3707 	 * set of tcp_stack_t's.
3708 	 */
3709 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3710 }
3711 
3712 
3713 #define	INET_NAME	"ip"
3714 
3715 /*
3716  * Initialize the TCP stack instance.
3717  */
3718 static void *
3719 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3720 {
3721 	tcp_stack_t	*tcps;
3722 	int		i;
3723 	int		error = 0;
3724 	major_t		major;
3725 	size_t		arrsz;
3726 
3727 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3728 	tcps->tcps_netstack = ns;
3729 
3730 	/* Initialize locks */
3731 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3732 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3733 
3734 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3735 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3736 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3737 	tcps->tcps_min_anonpriv_port = 512;
3738 
3739 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3740 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3741 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3742 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3743 
3744 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3745 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3746 		    MUTEX_DEFAULT, NULL);
3747 	}
3748 
3749 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3750 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3751 		    MUTEX_DEFAULT, NULL);
3752 	}
3753 
3754 	/* TCP's IPsec code calls the packet dropper. */
3755 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3756 
3757 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3758 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3759 	    KM_SLEEP);
3760 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3761 
3762 	/*
3763 	 * Note: To really walk the device tree you need the devinfo
3764 	 * pointer to your device which is only available after probe/attach.
3765 	 * The following is safe only because it uses ddi_root_node()
3766 	 */
3767 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3768 	    tcp_opt_obj.odb_opt_arr_cnt);
3769 
3770 	/*
3771 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3772 	 * by the boot scripts.
3773 	 *
3774 	 * Use NULL name, as the name is caught by the new lockstats.
3775 	 *
3776 	 * Initialize with some random, non-guessable string, like the global
3777 	 * T_INFO_ACK.
3778 	 */
3779 
3780 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3781 	    sizeof (tcp_g_t_info_ack), tcps);
3782 
3783 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3784 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3785 
3786 	major = mod_name_to_major(INET_NAME);
3787 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3788 	ASSERT(error == 0);
3789 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3790 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3791 	cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3792 	cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3793 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3794 
3795 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3796 	tcps->tcps_reclaim = B_FALSE;
3797 	tcps->tcps_reclaim_tid = 0;
3798 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3799 
3800 	/*
3801 	 * ncpus is the current number of CPUs, which can be bigger than
3802 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3803 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3804 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3805 	 * there are many CPUs as we will be adding them 1 by 1.
3806 	 *
3807 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3808 	 * are not freed until the stack is going away.  So there is no need
3809 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3810 	 */
3811 	mutex_enter(&cpu_lock);
3812 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3813 	mutex_exit(&cpu_lock);
3814 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3815 	    KM_SLEEP);
3816 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3817 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3818 		    KM_SLEEP);
3819 	}
3820 
3821 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3822 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3823 	    offsetof(tcp_listener_t, tl_link));
3824 
3825 	return (tcps);
3826 }
3827 
3828 /*
3829  * Called when the IP module is about to be unloaded.
3830  */
3831 void
3832 tcp_ddi_g_destroy(void)
3833 {
3834 	tcp_g_kstat_fini(tcp_g_kstat);
3835 	tcp_g_kstat = NULL;
3836 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3837 
3838 	mutex_destroy(&tcp_random_lock);
3839 
3840 	kmem_cache_destroy(tcp_timercache);
3841 	kmem_cache_destroy(tcp_notsack_blk_cache);
3842 
3843 	netstack_unregister(NS_TCP);
3844 }
3845 
3846 /*
3847  * Free the TCP stack instance.
3848  */
3849 static void
3850 tcp_stack_fini(netstackid_t stackid, void *arg)
3851 {
3852 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3853 	int i;
3854 
3855 	freeb(tcps->tcps_ixa_cleanup_mp);
3856 	tcps->tcps_ixa_cleanup_mp = NULL;
3857 	cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3858 	cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3859 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3860 
3861 	/*
3862 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3863 	 * the timer.
3864 	 */
3865 	mutex_enter(&tcps->tcps_reclaim_lock);
3866 	tcps->tcps_reclaim = B_FALSE;
3867 	mutex_exit(&tcps->tcps_reclaim_lock);
3868 	if (tcps->tcps_reclaim_tid != 0)
3869 		(void) untimeout(tcps->tcps_reclaim_tid);
3870 	mutex_destroy(&tcps->tcps_reclaim_lock);
3871 
3872 	tcp_listener_conf_cleanup(tcps);
3873 
3874 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3875 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3876 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3877 
3878 	kmem_free(tcps->tcps_propinfo_tbl,
3879 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3880 	tcps->tcps_propinfo_tbl = NULL;
3881 
3882 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3883 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3884 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3885 	}
3886 
3887 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3888 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3889 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3890 	}
3891 
3892 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3893 	tcps->tcps_bind_fanout = NULL;
3894 
3895 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3896 	    TCP_ACCEPTOR_FANOUT_SIZE);
3897 	tcps->tcps_acceptor_fanout = NULL;
3898 
3899 	mutex_destroy(&tcps->tcps_iss_key_lock);
3900 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3901 
3902 	ip_drop_unregister(&tcps->tcps_dropper);
3903 
3904 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3905 	tcps->tcps_kstat = NULL;
3906 
3907 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3908 	tcps->tcps_mibkp = NULL;
3909 
3910 	ldi_ident_release(tcps->tcps_ldi_ident);
3911 	kmem_free(tcps, sizeof (*tcps));
3912 }
3913 
3914 /*
3915  * Generate ISS, taking into account NDD changes may happen halfway through.
3916  * (If the iss is not zero, set it.)
3917  */
3918 
3919 static void
3920 tcp_iss_init(tcp_t *tcp)
3921 {
3922 	MD5_CTX context;
3923 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3924 	uint32_t answer[4];
3925 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3926 	conn_t		*connp = tcp->tcp_connp;
3927 
3928 	tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3929 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3930 	switch (tcps->tcps_strong_iss) {
3931 	case 2:
3932 		mutex_enter(&tcps->tcps_iss_key_lock);
3933 		context = tcps->tcps_iss_key;
3934 		mutex_exit(&tcps->tcps_iss_key_lock);
3935 		arg.ports = connp->conn_ports;
3936 		arg.src = connp->conn_laddr_v6;
3937 		arg.dst = connp->conn_faddr_v6;
3938 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3939 		MD5Final((uchar_t *)answer, &context);
3940 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3941 		/*
3942 		 * Now that we've hashed into a unique per-connection sequence
3943 		 * space, add a random increment per strong_iss == 1.  So I
3944 		 * guess we'll have to...
3945 		 */
3946 		/* FALLTHRU */
3947 	case 1:
3948 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3949 		break;
3950 	default:
3951 		tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3952 		    tcps->tcps_iss_incr;
3953 		break;
3954 	}
3955 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3956 	tcp->tcp_fss = tcp->tcp_iss - 1;
3957 	tcp->tcp_suna = tcp->tcp_iss;
3958 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3959 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3960 	tcp->tcp_csuna = tcp->tcp_snxt;
3961 }
3962 
3963 /*
3964  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3965  * on the specified backing STREAMS q. Note, the caller may make the
3966  * decision to call based on the tcp_t.tcp_flow_stopped value which
3967  * when check outside the q's lock is only an advisory check ...
3968  */
3969 void
3970 tcp_setqfull(tcp_t *tcp)
3971 {
3972 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3973 	conn_t	*connp = tcp->tcp_connp;
3974 
3975 	if (tcp->tcp_closed)
3976 		return;
3977 
3978 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3979 	if (tcp->tcp_flow_stopped)
3980 		TCP_STAT(tcps, tcp_flwctl_on);
3981 }
3982 
3983 void
3984 tcp_clrqfull(tcp_t *tcp)
3985 {
3986 	conn_t  *connp = tcp->tcp_connp;
3987 
3988 	if (tcp->tcp_closed)
3989 		return;
3990 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3991 }
3992 
3993 static int
3994 tcp_squeue_switch(int val)
3995 {
3996 	int rval = SQ_FILL;
3997 
3998 	switch (val) {
3999 	case 1:
4000 		rval = SQ_NODRAIN;
4001 		break;
4002 	case 2:
4003 		rval = SQ_PROCESS;
4004 		break;
4005 	default:
4006 		break;
4007 	}
4008 	return (rval);
4009 }
4010 
4011 /*
4012  * This is called once for each squeue - globally for all stack
4013  * instances.
4014  */
4015 static void
4016 tcp_squeue_add(squeue_t *sqp)
4017 {
4018 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4019 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4020 
4021 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4022 	if (tcp_free_list_max_cnt == 0) {
4023 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4024 		    max_ncpus : boot_max_ncpus);
4025 
4026 		/*
4027 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4028 		 */
4029 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4030 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4031 	}
4032 	tcp_time_wait->tcp_free_list_cnt = 0;
4033 }
4034 /*
4035  * Return unix error is tli error is TSYSERR, otherwise return a negative
4036  * tli error.
4037  */
4038 int
4039 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4040     boolean_t bind_to_req_port_only)
4041 {
4042 	int error;
4043 	tcp_t *tcp = connp->conn_tcp;
4044 
4045 	if (tcp->tcp_state >= TCPS_BOUND) {
4046 		if (connp->conn_debug) {
4047 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4048 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4049 		}
4050 		return (-TOUTSTATE);
4051 	}
4052 
4053 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4054 	if (error != 0)
4055 		return (error);
4056 
4057 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4058 	tcp->tcp_conn_req_max = 0;
4059 	return (0);
4060 }
4061 
4062 /*
4063  * If the return value from this function is positive, it's a UNIX error.
4064  * Otherwise, if it's negative, then the absolute value is a TLI error.
4065  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4066  */
4067 int
4068 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4069     cred_t *cr, pid_t pid)
4070 {
4071 	tcp_t		*tcp = connp->conn_tcp;
4072 	sin_t		*sin = (sin_t *)sa;
4073 	sin6_t		*sin6 = (sin6_t *)sa;
4074 	ipaddr_t	*dstaddrp;
4075 	in_port_t	dstport;
4076 	uint_t		srcid;
4077 	int		error;
4078 	uint32_t	mss;
4079 	mblk_t		*syn_mp;
4080 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4081 	int32_t		oldstate;
4082 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4083 
4084 	oldstate = tcp->tcp_state;
4085 
4086 	switch (len) {
4087 	default:
4088 		/*
4089 		 * Should never happen
4090 		 */
4091 		return (EINVAL);
4092 
4093 	case sizeof (sin_t):
4094 		sin = (sin_t *)sa;
4095 		if (sin->sin_port == 0) {
4096 			return (-TBADADDR);
4097 		}
4098 		if (connp->conn_ipv6_v6only) {
4099 			return (EAFNOSUPPORT);
4100 		}
4101 		break;
4102 
4103 	case sizeof (sin6_t):
4104 		sin6 = (sin6_t *)sa;
4105 		if (sin6->sin6_port == 0) {
4106 			return (-TBADADDR);
4107 		}
4108 		break;
4109 	}
4110 	/*
4111 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4112 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4113 	 * need to this before we call tcp_bindi() so that the port lookup
4114 	 * code will look for ports in the correct port space (IPv4 and
4115 	 * IPv6 have separate port spaces).
4116 	 */
4117 	if (connp->conn_family == AF_INET6 &&
4118 	    connp->conn_ipversion == IPV6_VERSION &&
4119 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4120 		if (connp->conn_ipv6_v6only)
4121 			return (EADDRNOTAVAIL);
4122 
4123 		connp->conn_ipversion = IPV4_VERSION;
4124 	}
4125 
4126 	switch (tcp->tcp_state) {
4127 	case TCPS_LISTEN:
4128 		/*
4129 		 * Listening sockets are not allowed to issue connect().
4130 		 */
4131 		if (IPCL_IS_NONSTR(connp))
4132 			return (EOPNOTSUPP);
4133 		/* FALLTHRU */
4134 	case TCPS_IDLE:
4135 		/*
4136 		 * We support quick connect, refer to comments in
4137 		 * tcp_connect_*()
4138 		 */
4139 		/* FALLTHRU */
4140 	case TCPS_BOUND:
4141 		break;
4142 	default:
4143 		return (-TOUTSTATE);
4144 	}
4145 
4146 	/*
4147 	 * We update our cred/cpid based on the caller of connect
4148 	 */
4149 	if (connp->conn_cred != cr) {
4150 		crhold(cr);
4151 		crfree(connp->conn_cred);
4152 		connp->conn_cred = cr;
4153 	}
4154 	connp->conn_cpid = pid;
4155 
4156 	/* Cache things in the ixa without any refhold */
4157 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4158 	ixa->ixa_cred = cr;
4159 	ixa->ixa_cpid = pid;
4160 	if (is_system_labeled()) {
4161 		/* We need to restart with a label based on the cred */
4162 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4163 	}
4164 
4165 	if (connp->conn_family == AF_INET6) {
4166 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4167 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4168 			    sin6->sin6_port, sin6->sin6_flowinfo,
4169 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4170 		} else {
4171 			/*
4172 			 * Destination adress is mapped IPv6 address.
4173 			 * Source bound address should be unspecified or
4174 			 * IPv6 mapped address as well.
4175 			 */
4176 			if (!IN6_IS_ADDR_UNSPECIFIED(
4177 			    &connp->conn_bound_addr_v6) &&
4178 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4179 				return (EADDRNOTAVAIL);
4180 			}
4181 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4182 			dstport = sin6->sin6_port;
4183 			srcid = sin6->__sin6_src_id;
4184 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4185 			    srcid);
4186 		}
4187 	} else {
4188 		dstaddrp = &sin->sin_addr.s_addr;
4189 		dstport = sin->sin_port;
4190 		srcid = 0;
4191 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4192 	}
4193 
4194 	if (error != 0)
4195 		goto connect_failed;
4196 
4197 	CL_INET_CONNECT(connp, B_TRUE, error);
4198 	if (error != 0)
4199 		goto connect_failed;
4200 
4201 	/* connect succeeded */
4202 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4203 	tcp->tcp_active_open = 1;
4204 
4205 	/*
4206 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4207 	 */
4208 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4209 
4210 	/*
4211 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4212 	 * to the nearest MSS.
4213 	 *
4214 	 * We do the round up here because we need to get the interface MTU
4215 	 * first before we can do the round up.
4216 	 */
4217 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4218 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4219 	    tcps->tcps_recv_hiwat_minmss * mss);
4220 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4221 	tcp_set_ws_value(tcp);
4222 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4223 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4224 		tcp->tcp_snd_ws_ok = B_TRUE;
4225 
4226 	/*
4227 	 * Set tcp_snd_ts_ok to true
4228 	 * so that tcp_xmit_mp will
4229 	 * include the timestamp
4230 	 * option in the SYN segment.
4231 	 */
4232 	if (tcps->tcps_tstamp_always ||
4233 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4234 		tcp->tcp_snd_ts_ok = B_TRUE;
4235 	}
4236 
4237 	/*
4238 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4239 	 * the SACK metric is set.  So here we just check the per stack SACK
4240 	 * permitted param.
4241 	 */
4242 	if (tcps->tcps_sack_permitted == 2) {
4243 		ASSERT(tcp->tcp_num_sack_blk == 0);
4244 		ASSERT(tcp->tcp_notsack_list == NULL);
4245 		tcp->tcp_snd_sack_ok = B_TRUE;
4246 	}
4247 
4248 	/*
4249 	 * Should we use ECN?  Note that the current
4250 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4251 	 * is 1.  The reason for doing this is that there
4252 	 * are equipments out there that will drop ECN
4253 	 * enabled IP packets.  Setting it to 1 avoids
4254 	 * compatibility problems.
4255 	 */
4256 	if (tcps->tcps_ecn_permitted == 2)
4257 		tcp->tcp_ecn_ok = B_TRUE;
4258 
4259 	/* Trace change from BOUND -> SYN_SENT here */
4260 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4261 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4262 	    int32_t, TCPS_BOUND);
4263 
4264 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4265 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4266 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4267 	if (syn_mp != NULL) {
4268 		/*
4269 		 * We must bump the generation before sending the syn
4270 		 * to ensure that we use the right generation in case
4271 		 * this thread issues a "connected" up call.
4272 		 */
4273 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4274 		/*
4275 		 * DTrace sending the first SYN as a
4276 		 * tcp:::connect-request event.
4277 		 */
4278 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4279 		    ip_xmit_attr_t *, connp->conn_ixa,
4280 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4281 		    tcph_t *,
4282 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4283 		tcp_send_data(tcp, syn_mp);
4284 	}
4285 
4286 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4287 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4288 	return (0);
4289 
4290 connect_failed:
4291 	connp->conn_faddr_v6 = ipv6_all_zeros;
4292 	connp->conn_fport = 0;
4293 	tcp->tcp_state = oldstate;
4294 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4295 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4296 	return (error);
4297 }
4298 
4299 int
4300 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4301     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4302 {
4303 	tcp_t		*tcp = connp->conn_tcp;
4304 	int		error = 0;
4305 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4306 	int32_t		oldstate;
4307 
4308 	/* All Solaris components should pass a cred for this operation. */
4309 	ASSERT(cr != NULL);
4310 
4311 	if (tcp->tcp_state >= TCPS_BOUND) {
4312 		if ((tcp->tcp_state == TCPS_BOUND ||
4313 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4314 			/*
4315 			 * Handle listen() increasing backlog.
4316 			 * This is more "liberal" then what the TPI spec
4317 			 * requires but is needed to avoid a t_unbind
4318 			 * when handling listen() since the port number
4319 			 * might be "stolen" between the unbind and bind.
4320 			 */
4321 			goto do_listen;
4322 		}
4323 		if (connp->conn_debug) {
4324 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4325 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4326 		}
4327 		return (-TOUTSTATE);
4328 	} else {
4329 		if (sa == NULL) {
4330 			sin6_t	addr;
4331 			sin_t *sin;
4332 			sin6_t *sin6;
4333 
4334 			ASSERT(IPCL_IS_NONSTR(connp));
4335 			/* Do an implicit bind: Request for a generic port. */
4336 			if (connp->conn_family == AF_INET) {
4337 				len = sizeof (sin_t);
4338 				sin = (sin_t *)&addr;
4339 				*sin = sin_null;
4340 				sin->sin_family = AF_INET;
4341 			} else {
4342 				ASSERT(connp->conn_family == AF_INET6);
4343 				len = sizeof (sin6_t);
4344 				sin6 = (sin6_t *)&addr;
4345 				*sin6 = sin6_null;
4346 				sin6->sin6_family = AF_INET6;
4347 			}
4348 			sa = (struct sockaddr *)&addr;
4349 		}
4350 
4351 		error = tcp_bind_check(connp, sa, len, cr,
4352 		    bind_to_req_port_only);
4353 		if (error)
4354 			return (error);
4355 		/* Fall through and do the fanout insertion */
4356 	}
4357 
4358 do_listen:
4359 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4360 	tcp->tcp_conn_req_max = backlog;
4361 	if (tcp->tcp_conn_req_max) {
4362 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4363 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4364 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4365 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4366 		/*
4367 		 * If this is a listener, do not reset the eager list
4368 		 * and other stuffs.  Note that we don't check if the
4369 		 * existing eager list meets the new tcp_conn_req_max
4370 		 * requirement.
4371 		 */
4372 		if (tcp->tcp_state != TCPS_LISTEN) {
4373 			tcp->tcp_state = TCPS_LISTEN;
4374 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4375 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4376 			    void, NULL, int32_t, TCPS_BOUND);
4377 			/* Initialize the chain. Don't need the eager_lock */
4378 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4379 			tcp->tcp_eager_next_drop_q0 = tcp;
4380 			tcp->tcp_eager_prev_drop_q0 = tcp;
4381 			tcp->tcp_second_ctimer_threshold =
4382 			    tcps->tcps_ip_abort_linterval;
4383 		}
4384 	}
4385 
4386 	/*
4387 	 * We need to make sure that the conn_recv is set to a non-null
4388 	 * value before we insert the conn into the classifier table.
4389 	 * This is to avoid a race with an incoming packet which does an
4390 	 * ipcl_classify().
4391 	 * We initially set it to tcp_input_listener_unbound to try to
4392 	 * pick a good squeue for the listener when the first SYN arrives.
4393 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4394 	 * first SYN.
4395 	 */
4396 	connp->conn_recv = tcp_input_listener_unbound;
4397 
4398 	/* Insert the listener in the classifier table */
4399 	error = ip_laddr_fanout_insert(connp);
4400 	if (error != 0) {
4401 		/* Undo the bind - release the port number */
4402 		oldstate = tcp->tcp_state;
4403 		tcp->tcp_state = TCPS_IDLE;
4404 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4405 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4406 		    int32_t, oldstate);
4407 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4408 
4409 		connp->conn_laddr_v6 = ipv6_all_zeros;
4410 		connp->conn_saddr_v6 = ipv6_all_zeros;
4411 		connp->conn_ports = 0;
4412 
4413 		if (connp->conn_anon_port) {
4414 			zone_t		*zone;
4415 
4416 			zone = crgetzone(cr);
4417 			connp->conn_anon_port = B_FALSE;
4418 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4419 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4420 		}
4421 		connp->conn_mlp_type = mlptSingle;
4422 
4423 		tcp_bind_hash_remove(tcp);
4424 		return (error);
4425 	} else {
4426 		/*
4427 		 * If there is a connection limit, allocate and initialize
4428 		 * the counter struct.  Note that since listen can be called
4429 		 * multiple times, the struct may have been allready allocated.
4430 		 */
4431 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4432 		    tcp->tcp_listen_cnt == NULL) {
4433 			tcp_listen_cnt_t *tlc;
4434 			uint32_t ratio;
4435 
4436 			ratio = tcp_find_listener_conf(tcps,
4437 			    ntohs(connp->conn_lport));
4438 			if (ratio != 0) {
4439 				uint32_t mem_ratio, tot_buf;
4440 
4441 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4442 				    KM_SLEEP);
4443 				/*
4444 				 * Calculate the connection limit based on
4445 				 * the configured ratio and maxusers.  Maxusers
4446 				 * are calculated based on memory size,
4447 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4448 				 * and conn_sndbuf may change after a
4449 				 * connection is accepted.  So what we have
4450 				 * is only an approximation.
4451 				 */
4452 				if ((tot_buf = connp->conn_rcvbuf +
4453 				    connp->conn_sndbuf) < MB) {
4454 					mem_ratio = MB / tot_buf;
4455 					tlc->tlc_max = maxusers / ratio *
4456 					    mem_ratio;
4457 				} else {
4458 					mem_ratio = tot_buf / MB;
4459 					tlc->tlc_max = maxusers / ratio /
4460 					    mem_ratio;
4461 				}
4462 				/* At least we should allow two connections! */
4463 				if (tlc->tlc_max <= tcp_min_conn_listener)
4464 					tlc->tlc_max = tcp_min_conn_listener;
4465 				tlc->tlc_cnt = 1;
4466 				tlc->tlc_drop = 0;
4467 				tcp->tcp_listen_cnt = tlc;
4468 			}
4469 		}
4470 	}
4471 	return (error);
4472 }
4473