xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision ab82c29b6e890d0f1241f9cd0cefda3430f46bd5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright (c) 2019 Joyent, Inc. All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/suntpi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/taskq.h>
52 
53 #include <sys/systm.h>
54 #include <sys/param.h>
55 #include <sys/kmem.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/vtrace.h>
59 #include <sys/isa_defs.h>
60 #include <sys/mac.h>
61 #include <net/if.h>
62 #include <net/if_arp.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <net/if_dl.h>
67 
68 #include <inet/common.h>
69 #include <inet/mi.h>
70 #include <inet/mib2.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/snmpcom.h>
74 #include <inet/optcom.h>
75 #include <inet/kstatcom.h>
76 
77 #include <netinet/igmp_var.h>
78 #include <netinet/ip6.h>
79 #include <netinet/icmp6.h>
80 #include <netinet/sctp.h>
81 
82 #include <inet/ip.h>
83 #include <inet/ip_impl.h>
84 #include <inet/ip6.h>
85 #include <inet/ip6_asp.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/ip_multi.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_rts.h>
93 #include <inet/ip_ndp.h>
94 #include <inet/ip_listutils.h>
95 #include <netinet/igmp.h>
96 #include <netinet/ip_mroute.h>
97 #include <inet/ipp_common.h>
98 #include <inet/cc.h>
99 
100 #include <net/pfkeyv2.h>
101 #include <inet/sadb.h>
102 #include <inet/ipsec_impl.h>
103 #include <inet/iptun/iptun_impl.h>
104 #include <inet/ipdrop.h>
105 #include <inet/ip_netinfo.h>
106 #include <inet/ilb_ip.h>
107 
108 #include <sys/ethernet.h>
109 #include <net/if_types.h>
110 #include <sys/cpuvar.h>
111 
112 #include <ipp/ipp.h>
113 #include <ipp/ipp_impl.h>
114 #include <ipp/ipgpc/ipgpc.h>
115 
116 #include <sys/pattr.h>
117 #include <inet/ipclassifier.h>
118 #include <inet/sctp_ip.h>
119 #include <inet/sctp/sctp_impl.h>
120 #include <inet/udp_impl.h>
121 #include <inet/rawip_impl.h>
122 #include <inet/rts_impl.h>
123 
124 #include <sys/tsol/label.h>
125 #include <sys/tsol/tnet.h>
126 
127 #include <sys/squeue_impl.h>
128 #include <inet/ip_arp.h>
129 
130 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
131 
132 /*
133  * Values for squeue switch:
134  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
135  * IP_SQUEUE_ENTER: SQ_PROCESS
136  * IP_SQUEUE_FILL: SQ_FILL
137  */
138 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
139 
140 int ip_squeue_flag;
141 
142 /*
143  * Setable in /etc/system
144  */
145 int ip_poll_normal_ms = 100;
146 int ip_poll_normal_ticks = 0;
147 int ip_modclose_ackwait_ms = 3000;
148 
149 /*
150  * It would be nice to have these present only in DEBUG systems, but the
151  * current design of the global symbol checking logic requires them to be
152  * unconditionally present.
153  */
154 uint_t ip_thread_data;			/* TSD key for debug support */
155 krwlock_t ip_thread_rwlock;
156 list_t	ip_thread_list;
157 
158 /*
159  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
160  */
161 
162 struct listptr_s {
163 	mblk_t	*lp_head;	/* pointer to the head of the list */
164 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
165 };
166 
167 typedef struct listptr_s listptr_t;
168 
169 /*
170  * This is used by ip_snmp_get_mib2_ip_route_media and
171  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
172  */
173 typedef struct iproutedata_s {
174 	uint_t		ird_idx;
175 	uint_t		ird_flags;	/* see below */
176 	listptr_t	ird_route;	/* ipRouteEntryTable */
177 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
178 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
179 } iproutedata_t;
180 
181 /* Include ire_testhidden and IRE_IF_CLONE routes */
182 #define	IRD_REPORT_ALL	0x01
183 
184 /*
185  * Cluster specific hooks. These should be NULL when booted as a non-cluster
186  */
187 
188 /*
189  * Hook functions to enable cluster networking
190  * On non-clustered systems these vectors must always be NULL.
191  *
192  * Hook function to Check ip specified ip address is a shared ip address
193  * in the cluster
194  *
195  */
196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
197     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
198 
199 /*
200  * Hook function to generate cluster wide ip fragment identifier
201  */
202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
203     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
204     void *args) = NULL;
205 
206 /*
207  * Hook function to generate cluster wide SPI.
208  */
209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
210     void *) = NULL;
211 
212 /*
213  * Hook function to verify if the SPI is already utlized.
214  */
215 
216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
217 
218 /*
219  * Hook function to delete the SPI from the cluster wide repository.
220  */
221 
222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
223 
224 /*
225  * Hook function to inform the cluster when packet received on an IDLE SA
226  */
227 
228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
229     in6_addr_t, in6_addr_t, void *) = NULL;
230 
231 /*
232  * Synchronization notes:
233  *
234  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
235  * MT level protection given by STREAMS. IP uses a combination of its own
236  * internal serialization mechanism and standard Solaris locking techniques.
237  * The internal serialization is per phyint.  This is used to serialize
238  * plumbing operations, IPMP operations, most set ioctls, etc.
239  *
240  * Plumbing is a long sequence of operations involving message
241  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
242  * involved in plumbing operations. A natural model is to serialize these
243  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
244  * parallel without any interference. But various set ioctls on hme0 are best
245  * serialized, along with IPMP operations and processing of DLPI control
246  * messages received from drivers on a per phyint basis. This serialization is
247  * provided by the ipsq_t and primitives operating on this. Details can
248  * be found in ip_if.c above the core primitives operating on ipsq_t.
249  *
250  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
251  * Simiarly lookup of an ire by a thread also returns a refheld ire.
252  * In addition ipif's and ill's referenced by the ire are also indirectly
253  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
254  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
255  * address of an ipif has to go through the ipsq_t. This ensures that only
256  * one such exclusive operation proceeds at any time on the ipif. It then
257  * waits for all refcnts
258  * associated with this ipif to come down to zero. The address is changed
259  * only after the ipif has been quiesced. Then the ipif is brought up again.
260  * More details are described above the comment in ip_sioctl_flags.
261  *
262  * Packet processing is based mostly on IREs and are fully multi-threaded
263  * using standard Solaris MT techniques.
264  *
265  * There are explicit locks in IP to handle:
266  * - The ip_g_head list maintained by mi_open_link() and friends.
267  *
268  * - The reassembly data structures (one lock per hash bucket)
269  *
270  * - conn_lock is meant to protect conn_t fields. The fields actually
271  *   protected by conn_lock are documented in the conn_t definition.
272  *
273  * - ire_lock to protect some of the fields of the ire, IRE tables
274  *   (one lock per hash bucket). Refer to ip_ire.c for details.
275  *
276  * - ndp_g_lock and ncec_lock for protecting NCEs.
277  *
278  * - ill_lock protects fields of the ill and ipif. Details in ip.h
279  *
280  * - ill_g_lock: This is a global reader/writer lock. Protects the following
281  *	* The AVL tree based global multi list of all ills.
282  *	* The linked list of all ipifs of an ill
283  *	* The <ipsq-xop> mapping
284  *	* <ill-phyint> association
285  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
286  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
287  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
288  *   writer for the actual duration of the insertion/deletion/change.
289  *
290  * - ill_lock:  This is a per ill mutex.
291  *   It protects some members of the ill_t struct; see ip.h for details.
292  *   It also protects the <ill-phyint> assoc.
293  *   It also protects the list of ipifs hanging off the ill.
294  *
295  * - ipsq_lock: This is a per ipsq_t mutex lock.
296  *   This protects some members of the ipsq_t struct; see ip.h for details.
297  *   It also protects the <ipsq-ipxop> mapping
298  *
299  * - ipx_lock: This is a per ipxop_t mutex lock.
300  *   This protects some members of the ipxop_t struct; see ip.h for details.
301  *
302  * - phyint_lock: This is a per phyint mutex lock. Protects just the
303  *   phyint_flags
304  *
305  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
306  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
307  *   uniqueness check also done atomically.
308  *
309  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
310  *   group list linked by ill_usesrc_grp_next. It also protects the
311  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
312  *   group is being added or deleted.  This lock is taken as a reader when
313  *   walking the list/group(eg: to get the number of members in a usesrc group).
314  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
315  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
316  *   example, it is not necessary to take this lock in the initial portion
317  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
318  *   operations are executed exclusively and that ensures that the "usesrc
319  *   group state" cannot change. The "usesrc group state" change can happen
320  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
321  *
322  * Changing <ill-phyint>, <ipsq-xop> assocications:
323  *
324  * To change the <ill-phyint> association, the ill_g_lock must be held
325  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
326  * must be held.
327  *
328  * To change the <ipsq-xop> association, the ill_g_lock must be held as
329  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
330  * This is only done when ills are added or removed from IPMP groups.
331  *
332  * To add or delete an ipif from the list of ipifs hanging off the ill,
333  * ill_g_lock (writer) and ill_lock must be held and the thread must be
334  * a writer on the associated ipsq.
335  *
336  * To add or delete an ill to the system, the ill_g_lock must be held as
337  * writer and the thread must be a writer on the associated ipsq.
338  *
339  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
340  * must be a writer on the associated ipsq.
341  *
342  * Lock hierarchy
343  *
344  * Some lock hierarchy scenarios are listed below.
345  *
346  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
347  * ill_g_lock -> ill_lock(s) -> phyint_lock
348  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
349  * ill_g_lock -> ip_addr_avail_lock
350  * conn_lock -> irb_lock -> ill_lock -> ire_lock
351  * ill_g_lock -> ip_g_nd_lock
352  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
353  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
354  * arl_lock -> ill_lock
355  * ips_ire_dep_lock -> irb_lock
356  *
357  * When more than 1 ill lock is needed to be held, all ill lock addresses
358  * are sorted on address and locked starting from highest addressed lock
359  * downward.
360  *
361  * Multicast scenarios
362  * ips_ill_g_lock -> ill_mcast_lock
363  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
364  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
365  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
366  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
367  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
368  *
369  * IPsec scenarios
370  *
371  * ipsa_lock -> ill_g_lock -> ill_lock
372  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
373  *
374  * Trusted Solaris scenarios
375  *
376  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
377  * igsa_lock -> gcdb_lock
378  * gcgrp_rwlock -> ire_lock
379  * gcgrp_rwlock -> gcdb_lock
380  *
381  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
382  *
383  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
384  * sq_lock -> conn_lock -> QLOCK(q)
385  * ill_lock -> ft_lock -> fe_lock
386  *
387  * Routing/forwarding table locking notes:
388  *
389  * Lock acquisition order: Radix tree lock, irb_lock.
390  * Requirements:
391  * i.  Walker must not hold any locks during the walker callback.
392  * ii  Walker must not see a truncated tree during the walk because of any node
393  *     deletion.
394  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
395  *     in many places in the code to walk the irb list. Thus even if all the
396  *     ires in a bucket have been deleted, we still can't free the radix node
397  *     until the ires have actually been inactive'd (freed).
398  *
399  * Tree traversal - Need to hold the global tree lock in read mode.
400  * Before dropping the global tree lock, need to either increment the ire_refcnt
401  * to ensure that the radix node can't be deleted.
402  *
403  * Tree add - Need to hold the global tree lock in write mode to add a
404  * radix node. To prevent the node from being deleted, increment the
405  * irb_refcnt, after the node is added to the tree. The ire itself is
406  * added later while holding the irb_lock, but not the tree lock.
407  *
408  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
409  * All associated ires must be inactive (i.e. freed), and irb_refcnt
410  * must be zero.
411  *
412  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
413  * global tree lock (read mode) for traversal.
414  *
415  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
416  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
417  *
418  * IPsec notes :
419  *
420  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
421  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
422  * ip_xmit_attr_t has the
423  * information used by the IPsec code for applying the right level of
424  * protection. The information initialized by IP in the ip_xmit_attr_t
425  * is determined by the per-socket policy or global policy in the system.
426  * For inbound datagrams, the ip_recv_attr_t
427  * starts out with nothing in it. It gets filled
428  * with the right information if it goes through the AH/ESP code, which
429  * happens if the incoming packet is secure. The information initialized
430  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
431  * the policy requirements needed by per-socket policy or global policy
432  * is met or not.
433  *
434  * For fully connected sockets i.e dst, src [addr, port] is known,
435  * conn_policy_cached is set indicating that policy has been cached.
436  * conn_in_enforce_policy may or may not be set depending on whether
437  * there is a global policy match or per-socket policy match.
438  * Policy inheriting happpens in ip_policy_set once the destination is known.
439  * Once the right policy is set on the conn_t, policy cannot change for
440  * this socket. This makes life simpler for TCP (UDP ?) where
441  * re-transmissions go out with the same policy. For symmetry, policy
442  * is cached for fully connected UDP sockets also. Thus if policy is cached,
443  * it also implies that policy is latched i.e policy cannot change
444  * on these sockets. As we have the right policy on the conn, we don't
445  * have to lookup global policy for every outbound and inbound datagram
446  * and thus serving as an optimization. Note that a global policy change
447  * does not affect fully connected sockets if they have policy. If fully
448  * connected sockets did not have any policy associated with it, global
449  * policy change may affect them.
450  *
451  * IP Flow control notes:
452  * ---------------------
453  * Non-TCP streams are flow controlled by IP. The way this is accomplished
454  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
455  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
456  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
457  * functions.
458  *
459  * Per Tx ring udp flow control:
460  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
461  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
462  *
463  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
464  * To achieve best performance, outgoing traffic need to be fanned out among
465  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
466  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
467  * the address of connp as fanout hint to mac_tx(). Under flow controlled
468  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
469  * cookie points to a specific Tx ring that is blocked. The cookie is used to
470  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
471  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
472  * connp's. The drain list is not a single list but a configurable number of
473  * lists.
474  *
475  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
476  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
477  * which is equal to 128. This array in turn contains a pointer to idl_t[],
478  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
479  * list will point to the list of connp's that are flow controlled.
480  *
481  *                      ---------------   -------   -------   -------
482  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
483  *                   |  ---------------   -------   -------   -------
484  *                   |  ---------------   -------   -------   -------
485  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
486  * ----------------  |  ---------------   -------   -------   -------
487  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
488  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
489  *                   |  ---------------   -------   -------   -------
490  *                   .        .              .         .         .
491  *                   |  ---------------   -------   -------   -------
492  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
493  *                      ---------------   -------   -------   -------
494  *                      ---------------   -------   -------   -------
495  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
496  *                   |  ---------------   -------   -------   -------
497  *                   |  ---------------   -------   -------   -------
498  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
499  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
500  * ----------------  |        .              .         .         .
501  *                   |  ---------------   -------   -------   -------
502  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
503  *                      ---------------   -------   -------   -------
504  *     .....
505  * ----------------
506  * |idl_tx_list[n]|-> ...
507  * ----------------
508  *
509  * When mac_tx() returns a cookie, the cookie is hashed into an index into
510  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
511  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
512  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
513  * Further, conn_blocked is set to indicate that the conn is blocked.
514  *
515  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
516  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
517  * is again hashed to locate the appropriate idl_tx_list, which is then
518  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
519  * the drain list and calls conn_drain_remove() to clear flow control (via
520  * calling su_txq_full() or clearing QFULL), and remove the conn from the
521  * drain list.
522  *
523  * Note that the drain list is not a single list but a (configurable) array of
524  * lists (8 elements by default).  Synchronization between drain insertion and
525  * flow control wakeup is handled by using idl_txl->txl_lock, and only
526  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
527  *
528  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
529  * On the send side, if the packet cannot be sent down to the driver by IP
530  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
531  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
532  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
533  * control has been relieved, the blocked conns in the 0'th drain list are
534  * drained as in the non-STREAMS case.
535  *
536  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
537  * is done when the conn is inserted into the drain list (conn_drain_insert())
538  * and cleared when the conn is removed from the it (conn_drain_remove()).
539  *
540  * IPQOS notes:
541  *
542  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
543  * and IPQoS modules. IPPF includes hooks in IP at different control points
544  * (callout positions) which direct packets to IPQoS modules for policy
545  * processing. Policies, if present, are global.
546  *
547  * The callout positions are located in the following paths:
548  *		o local_in (packets destined for this host)
549  *		o local_out (packets orginating from this host )
550  *		o fwd_in  (packets forwarded by this m/c - inbound)
551  *		o fwd_out (packets forwarded by this m/c - outbound)
552  * Hooks at these callout points can be enabled/disabled using the ndd variable
553  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
554  * By default all the callout positions are enabled.
555  *
556  * Outbound (local_out)
557  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
558  *
559  * Inbound (local_in)
560  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
561  *
562  * Forwarding (in and out)
563  * Hooks are placed in ire_recv_forward_v4/v6.
564  *
565  * IP Policy Framework processing (IPPF processing)
566  * Policy processing for a packet is initiated by ip_process, which ascertains
567  * that the classifier (ipgpc) is loaded and configured, failing which the
568  * packet resumes normal processing in IP. If the clasifier is present, the
569  * packet is acted upon by one or more IPQoS modules (action instances), per
570  * filters configured in ipgpc and resumes normal IP processing thereafter.
571  * An action instance can drop a packet in course of its processing.
572  *
573  * Zones notes:
574  *
575  * The partitioning rules for networking are as follows:
576  * 1) Packets coming from a zone must have a source address belonging to that
577  * zone.
578  * 2) Packets coming from a zone can only be sent on a physical interface on
579  * which the zone has an IP address.
580  * 3) Between two zones on the same machine, packet delivery is only allowed if
581  * there's a matching route for the destination and zone in the forwarding
582  * table.
583  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
584  * different zones can bind to the same port with the wildcard address
585  * (INADDR_ANY).
586  *
587  * The granularity of interface partitioning is at the logical interface level.
588  * Therefore, every zone has its own IP addresses, and incoming packets can be
589  * attributed to a zone unambiguously. A logical interface is placed into a zone
590  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
591  * structure. Rule (1) is implemented by modifying the source address selection
592  * algorithm so that the list of eligible addresses is filtered based on the
593  * sending process zone.
594  *
595  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
596  * across all zones, depending on their type. Here is the break-up:
597  *
598  * IRE type				Shared/exclusive
599  * --------				----------------
600  * IRE_BROADCAST			Exclusive
601  * IRE_DEFAULT (default routes)		Shared (*)
602  * IRE_LOCAL				Exclusive (x)
603  * IRE_LOOPBACK				Exclusive
604  * IRE_PREFIX (net routes)		Shared (*)
605  * IRE_IF_NORESOLVER (interface routes)	Exclusive
606  * IRE_IF_RESOLVER (interface routes)	Exclusive
607  * IRE_IF_CLONE (interface routes)	Exclusive
608  * IRE_HOST (host routes)		Shared (*)
609  *
610  * (*) A zone can only use a default or off-subnet route if the gateway is
611  * directly reachable from the zone, that is, if the gateway's address matches
612  * one of the zone's logical interfaces.
613  *
614  * (x) IRE_LOCAL are handled a bit differently.
615  * When ip_restrict_interzone_loopback is set (the default),
616  * ire_route_recursive restricts loopback using an IRE_LOCAL
617  * between zone to the case when L2 would have conceptually looped the packet
618  * back, i.e. the loopback which is required since neither Ethernet drivers
619  * nor Ethernet hardware loops them back. This is the case when the normal
620  * routes (ignoring IREs with different zoneids) would send out the packet on
621  * the same ill as the ill with which is IRE_LOCAL is associated.
622  *
623  * Multiple zones can share a common broadcast address; typically all zones
624  * share the 255.255.255.255 address. Incoming as well as locally originated
625  * broadcast packets must be dispatched to all the zones on the broadcast
626  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
627  * since some zones may not be on the 10.16.72/24 network. To handle this, each
628  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
629  * sent to every zone that has an IRE_BROADCAST entry for the destination
630  * address on the input ill, see ip_input_broadcast().
631  *
632  * Applications in different zones can join the same multicast group address.
633  * The same logic applies for multicast as for broadcast. ip_input_multicast
634  * dispatches packets to all zones that have members on the physical interface.
635  */
636 
637 /*
638  * Squeue Fanout flags:
639  *	0: No fanout.
640  *	1: Fanout across all squeues
641  */
642 boolean_t	ip_squeue_fanout = 0;
643 
644 /*
645  * Maximum dups allowed per packet.
646  */
647 uint_t ip_max_frag_dups = 10;
648 
649 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
650 		    cred_t *credp, boolean_t isv6);
651 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
652 
653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
654 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
655 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
656     ip_recv_attr_t *);
657 static void	icmp_options_update(ipha_t *);
658 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
659 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
660 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
661 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
662     ip_recv_attr_t *);
663 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
664 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
665     ip_recv_attr_t *);
666 
667 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
668 char		*ip_dot_addr(ipaddr_t, char *);
669 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
670 static char	*ip_dot_saddr(uchar_t *, char *);
671 static int	ip_lrput(queue_t *, mblk_t *);
672 ipaddr_t	ip_net_mask(ipaddr_t);
673 char		*ip_nv_lookup(nv_t *, int);
674 int		ip_rput(queue_t *, mblk_t *);
675 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
676 		    void *dummy_arg);
677 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
678 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
679 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
680 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
681 		    ip_stack_t *, boolean_t);
682 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
683 		    boolean_t);
684 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
688 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
689 		    ip_stack_t *ipst, boolean_t);
690 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
691 		    ip_stack_t *ipst, boolean_t);
692 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
693 		    ip_stack_t *ipst);
694 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
695 		    ip_stack_t *ipst);
696 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
697 		    ip_stack_t *ipst);
698 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
699 		    ip_stack_t *ipst);
700 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
701 		    ip_stack_t *ipst);
702 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
703 		    ip_stack_t *ipst);
704 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
705 		    ip_stack_t *ipst);
706 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
707 		    ip_stack_t *ipst);
708 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
709 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
710 static void	ip_snmp_get2_v4_media(ncec_t *, void *);
711 static void	ip_snmp_get2_v6_media(ncec_t *, void *);
712 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
713 
714 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
715 		    mblk_t *);
716 
717 static void	conn_drain_init(ip_stack_t *);
718 static void	conn_drain_fini(ip_stack_t *);
719 static void	conn_drain(conn_t *connp, boolean_t closing);
720 
721 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
722 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
723 
724 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
725 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
726 static void	ip_stack_fini(netstackid_t stackid, void *arg);
727 
728 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
729     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
730     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
731     const in6_addr_t *);
732 
733 static int	ip_squeue_switch(int);
734 
735 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
736 static void	ip_kstat_fini(netstackid_t, kstat_t *);
737 static int	ip_kstat_update(kstat_t *kp, int rw);
738 static void	*icmp_kstat_init(netstackid_t);
739 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
740 static int	icmp_kstat_update(kstat_t *kp, int rw);
741 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
742 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
743 
744 static void	ipobs_init(ip_stack_t *);
745 static void	ipobs_fini(ip_stack_t *);
746 
747 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
748 
749 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
750 
751 static long ip_rput_pullups;
752 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
753 
754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
756 
757 int	ip_debug;
758 
759 /*
760  * Multirouting/CGTP stuff
761  */
762 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
763 
764 /*
765  * IP tunables related declarations. Definitions are in ip_tunables.c
766  */
767 extern mod_prop_info_t ip_propinfo_tbl[];
768 extern int ip_propinfo_count;
769 
770 /*
771  * Table of IP ioctls encoding the various properties of the ioctl and
772  * indexed based on the last byte of the ioctl command. Occasionally there
773  * is a clash, and there is more than 1 ioctl with the same last byte.
774  * In such a case 1 ioctl is encoded in the ndx table and the remaining
775  * ioctls are encoded in the misc table. An entry in the ndx table is
776  * retrieved by indexing on the last byte of the ioctl command and comparing
777  * the ioctl command with the value in the ndx table. In the event of a
778  * mismatch the misc table is then searched sequentially for the desired
779  * ioctl command.
780  *
781  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
782  */
783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
784 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 
795 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
796 			MISC_CMD, ip_siocaddrt, NULL },
797 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
798 			MISC_CMD, ip_siocdelrt, NULL },
799 
800 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
801 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
802 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
803 			IF_CMD, ip_sioctl_get_addr, NULL },
804 
805 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
806 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
807 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
808 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
809 
810 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
811 			IPI_PRIV | IPI_WR,
812 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
813 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
814 			IPI_MODOK | IPI_GET_CMD,
815 			IF_CMD, ip_sioctl_get_flags, NULL },
816 
817 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
818 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
819 
820 	/* copyin size cannot be coded for SIOCGIFCONF */
821 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
822 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
823 
824 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
825 			IF_CMD, ip_sioctl_mtu, NULL },
826 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
827 			IF_CMD, ip_sioctl_get_mtu, NULL },
828 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
829 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
830 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
831 			IF_CMD, ip_sioctl_brdaddr, NULL },
832 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
833 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
834 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
835 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
836 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
837 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
838 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
839 			IF_CMD, ip_sioctl_metric, NULL },
840 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
841 
842 	/* See 166-168 below for extended SIOC*XARP ioctls */
843 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
844 			ARP_CMD, ip_sioctl_arp, NULL },
845 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
846 			ARP_CMD, ip_sioctl_arp, NULL },
847 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
848 			ARP_CMD, ip_sioctl_arp, NULL },
849 
850 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 
872 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
873 			MISC_CMD, if_unitsel, if_unitsel_restart },
874 
875 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 
894 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
895 			IPI_PRIV | IPI_WR | IPI_MODOK,
896 			IF_CMD, ip_sioctl_sifname, NULL },
897 
898 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 
912 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
913 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
914 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
915 			IF_CMD, ip_sioctl_get_muxid, NULL },
916 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
917 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
918 
919 	/* Both if and lif variants share same func */
920 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
921 			IF_CMD, ip_sioctl_get_lifindex, NULL },
922 	/* Both if and lif variants share same func */
923 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
924 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
925 
926 	/* copyin size cannot be coded for SIOCGIFCONF */
927 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
928 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
929 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 
947 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
948 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
949 			ip_sioctl_removeif_restart },
950 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
951 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
952 			LIF_CMD, ip_sioctl_addif, NULL },
953 #define	SIOCLIFADDR_NDX 112
954 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
955 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
956 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
957 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
958 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
959 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
960 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
961 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
962 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
963 			IPI_PRIV | IPI_WR,
964 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
965 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
966 			IPI_GET_CMD | IPI_MODOK,
967 			LIF_CMD, ip_sioctl_get_flags, NULL },
968 
969 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
970 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
971 
972 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
973 			ip_sioctl_get_lifconf, NULL },
974 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
975 			LIF_CMD, ip_sioctl_mtu, NULL },
976 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
977 			LIF_CMD, ip_sioctl_get_mtu, NULL },
978 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
979 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
980 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
981 			LIF_CMD, ip_sioctl_brdaddr, NULL },
982 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
983 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
984 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
985 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
986 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
987 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
988 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
989 			LIF_CMD, ip_sioctl_metric, NULL },
990 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
991 			IPI_PRIV | IPI_WR | IPI_MODOK,
992 			LIF_CMD, ip_sioctl_slifname,
993 			ip_sioctl_slifname_restart },
994 
995 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
996 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
997 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
998 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
999 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1000 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1001 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1002 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1003 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1004 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1005 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1006 			LIF_CMD, ip_sioctl_token, NULL },
1007 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1008 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1009 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1010 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1011 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1012 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1013 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1014 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1015 
1016 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1017 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1018 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1019 			LIF_CMD, ip_siocdelndp_v6, NULL },
1020 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1021 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1022 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1023 			LIF_CMD, ip_siocsetndp_v6, NULL },
1024 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1026 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027 			MISC_CMD, ip_sioctl_tonlink, NULL },
1028 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1029 			MISC_CMD, ip_sioctl_tmysite, NULL },
1030 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 
1033 	/* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1034 	/* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 	/* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 	/* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 
1039 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 
1041 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042 			LIF_CMD, ip_sioctl_get_binding, NULL },
1043 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044 			IPI_PRIV | IPI_WR,
1045 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1050 
1051 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1052 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 
1056 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 
1058 	/* These are handled in ip_sioctl_copyin_setup itself */
1059 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060 			MISC_CMD, NULL, NULL },
1061 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062 			MISC_CMD, NULL, NULL },
1063 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1064 
1065 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066 			ip_sioctl_get_lifconf, NULL },
1067 
1068 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069 			XARP_CMD, ip_sioctl_arp, NULL },
1070 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071 			XARP_CMD, ip_sioctl_arp, NULL },
1072 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073 			XARP_CMD, ip_sioctl_arp, NULL },
1074 
1075 	/* SIOCPOPSOCKFS is not handled by IP */
1076 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1077 
1078 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082 			ip_sioctl_slifzone_restart },
1083 	/* 172-174 are SCTP ioctls and not handled by IP */
1084 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088 			IPI_GET_CMD, LIF_CMD,
1089 			ip_sioctl_get_lifusesrc, 0 },
1090 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091 			IPI_PRIV | IPI_WR,
1092 			LIF_CMD, ip_sioctl_slifusesrc,
1093 			NULL },
1094 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095 			ip_sioctl_get_lifsrcof, NULL },
1096 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 	/* SIOCSENABLESDP is handled by SDP */
1106 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112 			ip_sioctl_ilb_cmd, NULL },
1113 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1118 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };
1122 
1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1124 
1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 	{ ND_GET,	0, 0, 0, NULL, NULL },
1131 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1133 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134 		MISC_CMD, mrt_ioctl},
1135 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136 		MISC_CMD, mrt_ioctl},
1137 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138 		MISC_CMD, mrt_ioctl}
1139 };
1140 
1141 int ip_misc_ioctl_count =
1142     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1143 
1144 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1145 					/* Settable in /etc/system */
1146 /* Defined in ip_ire.c */
1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1150 
1151 static nv_t	ire_nv_arr[] = {
1152 	{ IRE_BROADCAST, "BROADCAST" },
1153 	{ IRE_LOCAL, "LOCAL" },
1154 	{ IRE_LOOPBACK, "LOOPBACK" },
1155 	{ IRE_DEFAULT, "DEFAULT" },
1156 	{ IRE_PREFIX, "PREFIX" },
1157 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1158 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1159 	{ IRE_IF_CLONE, "IF_CLONE" },
1160 	{ IRE_HOST, "HOST" },
1161 	{ IRE_MULTICAST, "MULTICAST" },
1162 	{ IRE_NOROUTE, "NOROUTE" },
1163 	{ 0 }
1164 };
1165 
1166 nv_t	*ire_nv_tbl = ire_nv_arr;
1167 
1168 /* Simple ICMP IP Header Template */
1169 static ipha_t icmp_ipha = {
1170 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 };
1172 
1173 struct module_info ip_mod_info = {
1174 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175 	IP_MOD_LOWAT
1176 };
1177 
1178 /*
1179  * Duplicate static symbols within a module confuses mdb; so we avoid the
1180  * problem by making the symbols here distinct from those in udp.c.
1181  */
1182 
1183 /*
1184  * Entry points for IP as a device and as a module.
1185  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186  */
1187 static struct qinit iprinitv4 = {
1188 	ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1189 };
1190 
1191 struct qinit iprinitv6 = {
1192 	ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1193 };
1194 
1195 static struct qinit ipwinit = {
1196 	ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1197 };
1198 
1199 static struct qinit iplrinit = {
1200 	ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1201 };
1202 
1203 static struct qinit iplwinit = {
1204 	ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1205 };
1206 
1207 /* For AF_INET aka /dev/ip */
1208 struct streamtab ipinfov4 = {
1209 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1210 };
1211 
1212 /* For AF_INET6 aka /dev/ip6 */
1213 struct streamtab ipinfov6 = {
1214 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1215 };
1216 
1217 #ifdef	DEBUG
1218 boolean_t skip_sctp_cksum = B_FALSE;
1219 #endif
1220 
1221 /*
1222  * Generate an ICMP fragmentation needed message.
1223  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1224  * constructed by the caller.
1225  */
1226 void
1227 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1228 {
1229 	icmph_t	icmph;
1230 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1231 
1232 	mp = icmp_pkt_err_ok(mp, ira);
1233 	if (mp == NULL)
1234 		return;
1235 
1236 	bzero(&icmph, sizeof (icmph_t));
1237 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1238 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1239 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1240 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1241 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1242 
1243 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1244 }
1245 
1246 /*
1247  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1248  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1249  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1250  * Likewise, if the ICMP error is misformed (too short, etc), then it
1251  * returns NULL. The caller uses this to determine whether or not to send
1252  * to raw sockets.
1253  *
1254  * All error messages are passed to the matching transport stream.
1255  *
1256  * The following cases are handled by icmp_inbound:
1257  * 1) It needs to send a reply back and possibly delivering it
1258  *    to the "interested" upper clients.
1259  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1260  * 3) It needs to change some values in IP only.
1261  * 4) It needs to change some values in IP and upper layers e.g TCP
1262  *    by delivering an error to the upper layers.
1263  *
1264  * We handle the above three cases in the context of IPsec in the
1265  * following way :
1266  *
1267  * 1) Send the reply back in the same way as the request came in.
1268  *    If it came in encrypted, it goes out encrypted. If it came in
1269  *    clear, it goes out in clear. Thus, this will prevent chosen
1270  *    plain text attack.
1271  * 2) The client may or may not expect things to come in secure.
1272  *    If it comes in secure, the policy constraints are checked
1273  *    before delivering it to the upper layers. If it comes in
1274  *    clear, ipsec_inbound_accept_clear will decide whether to
1275  *    accept this in clear or not. In both the cases, if the returned
1276  *    message (IP header + 8 bytes) that caused the icmp message has
1277  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1278  *    sending up. If there are only 8 bytes of returned message, then
1279  *    upper client will not be notified.
1280  * 3) Check with global policy to see whether it matches the constaints.
1281  *    But this will be done only if icmp_accept_messages_in_clear is
1282  *    zero.
1283  * 4) If we need to change both in IP and ULP, then the decision taken
1284  *    while affecting the values in IP and while delivering up to TCP
1285  *    should be the same.
1286  *
1287  *	There are two cases.
1288  *
1289  *	a) If we reject data at the IP layer (ipsec_check_global_policy()
1290  *	   failed), we will not deliver it to the ULP, even though they
1291  *	   are *willing* to accept in *clear*. This is fine as our global
1292  *	   disposition to icmp messages asks us reject the datagram.
1293  *
1294  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1295  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1296  *	   to deliver it to ULP (policy failed), it can lead to
1297  *	   consistency problems. The cases known at this time are
1298  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1299  *	   values :
1300  *
1301  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1302  *	     and Upper layer rejects. Then the communication will
1303  *	     come to a stop. This is solved by making similar decisions
1304  *	     at both levels. Currently, when we are unable to deliver
1305  *	     to the Upper Layer (due to policy failures) while IP has
1306  *	     adjusted dce_pmtu, the next outbound datagram would
1307  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1308  *	     will be with the right level of protection. Thus the right
1309  *	     value will be communicated even if we are not able to
1310  *	     communicate when we get from the wire initially. But this
1311  *	     assumes there would be at least one outbound datagram after
1312  *	     IP has adjusted its dce_pmtu value. To make things
1313  *	     simpler, we accept in clear after the validation of
1314  *	     AH/ESP headers.
1315  *
1316  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1317  *	     upper layer depending on the level of protection the upper
1318  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1319  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1320  *	     should be accepted in clear when the Upper layer expects secure.
1321  *	     Thus the communication may get aborted by some bad ICMP
1322  *	     packets.
1323  */
1324 mblk_t *
1325 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1326 {
1327 	icmph_t		*icmph;
1328 	ipha_t		*ipha;		/* Outer header */
1329 	int		ip_hdr_length;	/* Outer header length */
1330 	boolean_t	interested;
1331 	ipif_t		*ipif;
1332 	uint32_t	ts;
1333 	uint32_t	*tsp;
1334 	timestruc_t	now;
1335 	ill_t		*ill = ira->ira_ill;
1336 	ip_stack_t	*ipst = ill->ill_ipst;
1337 	zoneid_t	zoneid = ira->ira_zoneid;
1338 	int		len_needed;
1339 	mblk_t		*mp_ret = NULL;
1340 
1341 	ipha = (ipha_t *)mp->b_rptr;
1342 
1343 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1344 
1345 	ip_hdr_length = ira->ira_ip_hdr_length;
1346 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1347 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1348 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1349 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1350 			freemsg(mp);
1351 			return (NULL);
1352 		}
1353 		/* Last chance to get real. */
1354 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1355 		if (ipha == NULL) {
1356 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1357 			freemsg(mp);
1358 			return (NULL);
1359 		}
1360 	}
1361 
1362 	/* The IP header will always be a multiple of four bytes */
1363 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1364 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1365 	    icmph->icmph_code));
1366 
1367 	/*
1368 	 * We will set "interested" to "true" if we should pass a copy to
1369 	 * the transport or if we handle the packet locally.
1370 	 */
1371 	interested = B_FALSE;
1372 	switch (icmph->icmph_type) {
1373 	case ICMP_ECHO_REPLY:
1374 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1375 		break;
1376 	case ICMP_DEST_UNREACHABLE:
1377 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1378 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1379 		interested = B_TRUE;	/* Pass up to transport */
1380 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1381 		break;
1382 	case ICMP_SOURCE_QUENCH:
1383 		interested = B_TRUE;	/* Pass up to transport */
1384 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1385 		break;
1386 	case ICMP_REDIRECT:
1387 		if (!ipst->ips_ip_ignore_redirect)
1388 			interested = B_TRUE;
1389 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1390 		break;
1391 	case ICMP_ECHO_REQUEST:
1392 		/*
1393 		 * Whether to respond to echo requests that come in as IP
1394 		 * broadcasts or as IP multicast is subject to debate
1395 		 * (what isn't?).  We aim to please, you pick it.
1396 		 * Default is do it.
1397 		 */
1398 		if (ira->ira_flags & IRAF_MULTICAST) {
1399 			/* multicast: respond based on tunable */
1400 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1401 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1402 			/* broadcast: respond based on tunable */
1403 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1404 		} else {
1405 			/* unicast: always respond */
1406 			interested = B_TRUE;
1407 		}
1408 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1409 		if (!interested) {
1410 			/* We never pass these to RAW sockets */
1411 			freemsg(mp);
1412 			return (NULL);
1413 		}
1414 
1415 		/* Check db_ref to make sure we can modify the packet. */
1416 		if (mp->b_datap->db_ref > 1) {
1417 			mblk_t	*mp1;
1418 
1419 			mp1 = copymsg(mp);
1420 			freemsg(mp);
1421 			if (!mp1) {
1422 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1423 				return (NULL);
1424 			}
1425 			mp = mp1;
1426 			ipha = (ipha_t *)mp->b_rptr;
1427 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1428 		}
1429 		icmph->icmph_type = ICMP_ECHO_REPLY;
1430 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1431 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1432 		return (NULL);
1433 
1434 	case ICMP_ROUTER_ADVERTISEMENT:
1435 	case ICMP_ROUTER_SOLICITATION:
1436 		break;
1437 	case ICMP_TIME_EXCEEDED:
1438 		interested = B_TRUE;	/* Pass up to transport */
1439 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1440 		break;
1441 	case ICMP_PARAM_PROBLEM:
1442 		interested = B_TRUE;	/* Pass up to transport */
1443 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1444 		break;
1445 	case ICMP_TIME_STAMP_REQUEST:
1446 		/* Response to Time Stamp Requests is local policy. */
1447 		if (ipst->ips_ip_g_resp_to_timestamp) {
1448 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1449 				interested =
1450 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1451 			else
1452 				interested = B_TRUE;
1453 		}
1454 		if (!interested) {
1455 			/* We never pass these to RAW sockets */
1456 			freemsg(mp);
1457 			return (NULL);
1458 		}
1459 
1460 		/* Make sure we have enough of the packet */
1461 		len_needed = ip_hdr_length + ICMPH_SIZE +
1462 		    3 * sizeof (uint32_t);
1463 
1464 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1465 			ipha = ip_pullup(mp, len_needed, ira);
1466 			if (ipha == NULL) {
1467 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1468 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1469 				    mp, ill);
1470 				freemsg(mp);
1471 				return (NULL);
1472 			}
1473 			/* Refresh following the pullup. */
1474 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1475 		}
1476 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1477 		/* Check db_ref to make sure we can modify the packet. */
1478 		if (mp->b_datap->db_ref > 1) {
1479 			mblk_t	*mp1;
1480 
1481 			mp1 = copymsg(mp);
1482 			freemsg(mp);
1483 			if (!mp1) {
1484 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1485 				return (NULL);
1486 			}
1487 			mp = mp1;
1488 			ipha = (ipha_t *)mp->b_rptr;
1489 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1490 		}
1491 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1492 		tsp = (uint32_t *)&icmph[1];
1493 		tsp++;		/* Skip past 'originate time' */
1494 		/* Compute # of milliseconds since midnight */
1495 		gethrestime(&now);
1496 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1497 		    NSEC2MSEC(now.tv_nsec);
1498 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1499 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1500 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1501 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1502 		return (NULL);
1503 
1504 	case ICMP_TIME_STAMP_REPLY:
1505 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1506 		break;
1507 	case ICMP_INFO_REQUEST:
1508 		/* Per RFC 1122 3.2.2.7, ignore this. */
1509 	case ICMP_INFO_REPLY:
1510 		break;
1511 	case ICMP_ADDRESS_MASK_REQUEST:
1512 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1513 			interested =
1514 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1515 		} else {
1516 			interested = B_TRUE;
1517 		}
1518 		if (!interested) {
1519 			/* We never pass these to RAW sockets */
1520 			freemsg(mp);
1521 			return (NULL);
1522 		}
1523 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1524 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1525 			ipha = ip_pullup(mp, len_needed, ira);
1526 			if (ipha == NULL) {
1527 				BUMP_MIB(ill->ill_ip_mib,
1528 				    ipIfStatsInTruncatedPkts);
1529 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1530 				    ill);
1531 				freemsg(mp);
1532 				return (NULL);
1533 			}
1534 			/* Refresh following the pullup. */
1535 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1536 		}
1537 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1538 		/* Check db_ref to make sure we can modify the packet. */
1539 		if (mp->b_datap->db_ref > 1) {
1540 			mblk_t	*mp1;
1541 
1542 			mp1 = copymsg(mp);
1543 			freemsg(mp);
1544 			if (!mp1) {
1545 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1546 				return (NULL);
1547 			}
1548 			mp = mp1;
1549 			ipha = (ipha_t *)mp->b_rptr;
1550 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1551 		}
1552 		/*
1553 		 * Need the ipif with the mask be the same as the source
1554 		 * address of the mask reply. For unicast we have a specific
1555 		 * ipif. For multicast/broadcast we only handle onlink
1556 		 * senders, and use the source address to pick an ipif.
1557 		 */
1558 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1559 		if (ipif == NULL) {
1560 			/* Broadcast or multicast */
1561 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1562 			if (ipif == NULL) {
1563 				freemsg(mp);
1564 				return (NULL);
1565 			}
1566 		}
1567 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1568 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1569 		ipif_refrele(ipif);
1570 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1571 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1572 		return (NULL);
1573 
1574 	case ICMP_ADDRESS_MASK_REPLY:
1575 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1576 		break;
1577 	default:
1578 		interested = B_TRUE;	/* Pass up to transport */
1579 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1580 		break;
1581 	}
1582 	/*
1583 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1584 	 * if there isn't one.
1585 	 */
1586 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1587 		/* If there is an ICMP client and we want one too, copy it. */
1588 
1589 		if (!interested) {
1590 			/* Caller will deliver to RAW sockets */
1591 			return (mp);
1592 		}
1593 		mp_ret = copymsg(mp);
1594 		if (mp_ret == NULL) {
1595 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1596 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1597 		}
1598 	} else if (!interested) {
1599 		/* Neither we nor raw sockets are interested. Drop packet now */
1600 		freemsg(mp);
1601 		return (NULL);
1602 	}
1603 
1604 	/*
1605 	 * ICMP error or redirect packet. Make sure we have enough of
1606 	 * the header and that db_ref == 1 since we might end up modifying
1607 	 * the packet.
1608 	 */
1609 	if (mp->b_cont != NULL) {
1610 		if (ip_pullup(mp, -1, ira) == NULL) {
1611 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1612 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1613 			    mp, ill);
1614 			freemsg(mp);
1615 			return (mp_ret);
1616 		}
1617 	}
1618 
1619 	if (mp->b_datap->db_ref > 1) {
1620 		mblk_t	*mp1;
1621 
1622 		mp1 = copymsg(mp);
1623 		if (mp1 == NULL) {
1624 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1625 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1626 			freemsg(mp);
1627 			return (mp_ret);
1628 		}
1629 		freemsg(mp);
1630 		mp = mp1;
1631 	}
1632 
1633 	/*
1634 	 * In case mp has changed, verify the message before any further
1635 	 * processes.
1636 	 */
1637 	ipha = (ipha_t *)mp->b_rptr;
1638 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1639 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1640 		freemsg(mp);
1641 		return (mp_ret);
1642 	}
1643 
1644 	switch (icmph->icmph_type) {
1645 	case ICMP_REDIRECT:
1646 		icmp_redirect_v4(mp, ipha, icmph, ira);
1647 		break;
1648 	case ICMP_DEST_UNREACHABLE:
1649 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1650 			/* Update DCE and adjust MTU is icmp header if needed */
1651 			icmp_inbound_too_big_v4(icmph, ira);
1652 		}
1653 		/* FALLTHROUGH */
1654 	default:
1655 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1656 		break;
1657 	}
1658 	return (mp_ret);
1659 }
1660 
1661 /*
1662  * Send an ICMP echo, timestamp or address mask reply.
1663  * The caller has already updated the payload part of the packet.
1664  * We handle the ICMP checksum, IP source address selection and feed
1665  * the packet into ip_output_simple.
1666  */
1667 static void
1668 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1669     ip_recv_attr_t *ira)
1670 {
1671 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1672 	ill_t		*ill = ira->ira_ill;
1673 	ip_stack_t	*ipst = ill->ill_ipst;
1674 	ip_xmit_attr_t	ixas;
1675 
1676 	/* Send out an ICMP packet */
1677 	icmph->icmph_checksum = 0;
1678 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1679 	/* Reset time to live. */
1680 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1681 	{
1682 		/* Swap source and destination addresses */
1683 		ipaddr_t tmp;
1684 
1685 		tmp = ipha->ipha_src;
1686 		ipha->ipha_src = ipha->ipha_dst;
1687 		ipha->ipha_dst = tmp;
1688 	}
1689 	ipha->ipha_ident = 0;
1690 	if (!IS_SIMPLE_IPH(ipha))
1691 		icmp_options_update(ipha);
1692 
1693 	bzero(&ixas, sizeof (ixas));
1694 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1695 	ixas.ixa_zoneid = ira->ira_zoneid;
1696 	ixas.ixa_cred = kcred;
1697 	ixas.ixa_cpid = NOPID;
1698 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1699 	ixas.ixa_ifindex = 0;
1700 	ixas.ixa_ipst = ipst;
1701 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1702 
1703 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1704 		/*
1705 		 * This packet should go out the same way as it
1706 		 * came in i.e in clear, independent of the IPsec policy
1707 		 * for transmitting packets.
1708 		 */
1709 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1710 	} else {
1711 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1712 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1713 			/* Note: mp already consumed and ip_drop_packet done */
1714 			return;
1715 		}
1716 	}
1717 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1718 		/*
1719 		 * Not one or our addresses (IRE_LOCALs), thus we let
1720 		 * ip_output_simple pick the source.
1721 		 */
1722 		ipha->ipha_src = INADDR_ANY;
1723 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1724 	}
1725 	/* Should we send with DF and use dce_pmtu? */
1726 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1727 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1728 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1729 	}
1730 
1731 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1732 
1733 	(void) ip_output_simple(mp, &ixas);
1734 	ixa_cleanup(&ixas);
1735 }
1736 
1737 /*
1738  * Verify the ICMP messages for either for ICMP error or redirect packet.
1739  * The caller should have fully pulled up the message. If it's a redirect
1740  * packet, only basic checks on IP header will be done; otherwise, verify
1741  * the packet by looking at the included ULP header.
1742  *
1743  * Called before icmp_inbound_error_fanout_v4 is called.
1744  */
1745 static boolean_t
1746 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1747 {
1748 	ill_t		*ill = ira->ira_ill;
1749 	int		hdr_length;
1750 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1751 	conn_t		*connp;
1752 	ipha_t		*ipha;	/* Inner IP header */
1753 
1754 	ipha = (ipha_t *)&icmph[1];
1755 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1756 		goto truncated;
1757 
1758 	hdr_length = IPH_HDR_LENGTH(ipha);
1759 
1760 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1761 		goto discard_pkt;
1762 
1763 	if (hdr_length < sizeof (ipha_t))
1764 		goto truncated;
1765 
1766 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1767 		goto truncated;
1768 
1769 	/*
1770 	 * Stop here for ICMP_REDIRECT.
1771 	 */
1772 	if (icmph->icmph_type == ICMP_REDIRECT)
1773 		return (B_TRUE);
1774 
1775 	/*
1776 	 * ICMP errors only.
1777 	 */
1778 	switch (ipha->ipha_protocol) {
1779 	case IPPROTO_UDP:
1780 		/*
1781 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1782 		 * transport header.
1783 		 */
1784 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1785 		    mp->b_wptr)
1786 			goto truncated;
1787 		break;
1788 	case IPPROTO_TCP: {
1789 		tcpha_t		*tcpha;
1790 
1791 		/*
1792 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1793 		 * transport header.
1794 		 */
1795 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1796 		    mp->b_wptr)
1797 			goto truncated;
1798 
1799 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1800 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1801 		    ipst);
1802 		if (connp == NULL)
1803 			goto discard_pkt;
1804 
1805 		if ((connp->conn_verifyicmp != NULL) &&
1806 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1807 			CONN_DEC_REF(connp);
1808 			goto discard_pkt;
1809 		}
1810 		CONN_DEC_REF(connp);
1811 		break;
1812 	}
1813 	case IPPROTO_SCTP:
1814 		/*
1815 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1816 		 * transport header.
1817 		 */
1818 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1819 		    mp->b_wptr)
1820 			goto truncated;
1821 		break;
1822 	case IPPROTO_ESP:
1823 	case IPPROTO_AH:
1824 		break;
1825 	case IPPROTO_ENCAP:
1826 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1827 		    mp->b_wptr)
1828 			goto truncated;
1829 		break;
1830 	default:
1831 		break;
1832 	}
1833 
1834 	return (B_TRUE);
1835 
1836 discard_pkt:
1837 	/* Bogus ICMP error. */
1838 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1839 	return (B_FALSE);
1840 
1841 truncated:
1842 	/* We pulled up everthing already. Must be truncated */
1843 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1844 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1845 	return (B_FALSE);
1846 }
1847 
1848 /* Table from RFC 1191 */
1849 static int icmp_frag_size_table[] =
1850 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1851 
1852 /*
1853  * Process received ICMP Packet too big.
1854  * Just handles the DCE create/update, including using the above table of
1855  * PMTU guesses. The caller is responsible for validating the packet before
1856  * passing it in and also to fanout the ICMP error to any matching transport
1857  * conns. Assumes the message has been fully pulled up and verified.
1858  *
1859  * Before getting here, the caller has called icmp_inbound_verify_v4()
1860  * that should have verified with ULP to prevent undoing the changes we're
1861  * going to make to DCE. For example, TCP might have verified that the packet
1862  * which generated error is in the send window.
1863  *
1864  * In some cases modified this MTU in the ICMP header packet; the caller
1865  * should pass to the matching ULP after this returns.
1866  */
1867 static void
1868 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1869 {
1870 	dce_t		*dce;
1871 	int		old_mtu;
1872 	int		mtu, orig_mtu;
1873 	ipaddr_t	dst;
1874 	boolean_t	disable_pmtud;
1875 	ill_t		*ill = ira->ira_ill;
1876 	ip_stack_t	*ipst = ill->ill_ipst;
1877 	uint_t		hdr_length;
1878 	ipha_t		*ipha;
1879 
1880 	/* Caller already pulled up everything. */
1881 	ipha = (ipha_t *)&icmph[1];
1882 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1883 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1884 	ASSERT(ill != NULL);
1885 
1886 	hdr_length = IPH_HDR_LENGTH(ipha);
1887 
1888 	/*
1889 	 * We handle path MTU for source routed packets since the DCE
1890 	 * is looked up using the final destination.
1891 	 */
1892 	dst = ip_get_dst(ipha);
1893 
1894 	dce = dce_lookup_and_add_v4(dst, ipst);
1895 	if (dce == NULL) {
1896 		/* Couldn't add a unique one - ENOMEM */
1897 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1898 		    ntohl(dst)));
1899 		return;
1900 	}
1901 
1902 	/* Check for MTU discovery advice as described in RFC 1191 */
1903 	mtu = ntohs(icmph->icmph_du_mtu);
1904 	orig_mtu = mtu;
1905 	disable_pmtud = B_FALSE;
1906 
1907 	mutex_enter(&dce->dce_lock);
1908 	if (dce->dce_flags & DCEF_PMTU)
1909 		old_mtu = dce->dce_pmtu;
1910 	else
1911 		old_mtu = ill->ill_mtu;
1912 
1913 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1914 		uint32_t length;
1915 		int	i;
1916 
1917 		/*
1918 		 * Use the table from RFC 1191 to figure out
1919 		 * the next "plateau" based on the length in
1920 		 * the original IP packet.
1921 		 */
1922 		length = ntohs(ipha->ipha_length);
1923 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1924 		    uint32_t, length);
1925 		if (old_mtu <= length &&
1926 		    old_mtu >= length - hdr_length) {
1927 			/*
1928 			 * Handle broken BSD 4.2 systems that
1929 			 * return the wrong ipha_length in ICMP
1930 			 * errors.
1931 			 */
1932 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1933 			    length, old_mtu));
1934 			length -= hdr_length;
1935 		}
1936 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1937 			if (length > icmp_frag_size_table[i])
1938 				break;
1939 		}
1940 		if (i == A_CNT(icmp_frag_size_table)) {
1941 			/* Smaller than IP_MIN_MTU! */
1942 			ip1dbg(("Too big for packet size %d\n",
1943 			    length));
1944 			disable_pmtud = B_TRUE;
1945 			mtu = ipst->ips_ip_pmtu_min;
1946 		} else {
1947 			mtu = icmp_frag_size_table[i];
1948 			ip1dbg(("Calculated mtu %d, packet size %d, "
1949 			    "before %d\n", mtu, length, old_mtu));
1950 			if (mtu < ipst->ips_ip_pmtu_min) {
1951 				mtu = ipst->ips_ip_pmtu_min;
1952 				disable_pmtud = B_TRUE;
1953 			}
1954 		}
1955 	}
1956 	if (disable_pmtud)
1957 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1958 	else
1959 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1960 
1961 	dce->dce_pmtu = MIN(old_mtu, mtu);
1962 	/* Prepare to send the new max frag size for the ULP. */
1963 	icmph->icmph_du_zero = 0;
1964 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1965 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1966 	    dce, int, orig_mtu, int, mtu);
1967 
1968 	/* We now have a PMTU for sure */
1969 	dce->dce_flags |= DCEF_PMTU;
1970 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1971 	mutex_exit(&dce->dce_lock);
1972 	/*
1973 	 * After dropping the lock the new value is visible to everyone.
1974 	 * Then we bump the generation number so any cached values reinspect
1975 	 * the dce_t.
1976 	 */
1977 	dce_increment_generation(dce);
1978 	dce_refrele(dce);
1979 }
1980 
1981 /*
1982  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1983  * calls this function.
1984  */
1985 static mblk_t *
1986 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1987 {
1988 	int length;
1989 
1990 	ASSERT(mp->b_datap->db_type == M_DATA);
1991 
1992 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1993 	ASSERT(mp->b_cont == NULL);
1994 
1995 	/*
1996 	 * The length that we want to overlay is the inner header
1997 	 * and what follows it.
1998 	 */
1999 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2000 
2001 	/*
2002 	 * Overlay the inner header and whatever follows it over the
2003 	 * outer header.
2004 	 */
2005 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2006 
2007 	/* Adjust for what we removed */
2008 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2009 	return (mp);
2010 }
2011 
2012 /*
2013  * Try to pass the ICMP message upstream in case the ULP cares.
2014  *
2015  * If the packet that caused the ICMP error is secure, we send
2016  * it to AH/ESP to make sure that the attached packet has a
2017  * valid association. ipha in the code below points to the
2018  * IP header of the packet that caused the error.
2019  *
2020  * For IPsec cases, we let the next-layer-up (which has access to
2021  * cached policy on the conn_t, or can query the SPD directly)
2022  * subtract out any IPsec overhead if they must.  We therefore make no
2023  * adjustments here for IPsec overhead.
2024  *
2025  * IFN could have been generated locally or by some router.
2026  *
2027  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2028  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2029  *	    This happens because IP adjusted its value of MTU on an
2030  *	    earlier IFN message and could not tell the upper layer,
2031  *	    the new adjusted value of MTU e.g. Packet was encrypted
2032  *	    or there was not enough information to fanout to upper
2033  *	    layers. Thus on the next outbound datagram, ire_send_wire
2034  *	    generates the IFN, where IPsec processing has *not* been
2035  *	    done.
2036  *
2037  *	    Note that we retain ixa_fragsize across IPsec thus once
2038  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2039  *	    no change the fragsize even if the path MTU changes before
2040  *	    we reach ip_output_post_ipsec.
2041  *
2042  *	    In the local case, IRAF_LOOPBACK will be set indicating
2043  *	    that IFN was generated locally.
2044  *
2045  * ROUTER : IFN could be secure or non-secure.
2046  *
2047  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2048  *	      packet in error has AH/ESP headers to validate the AH/ESP
2049  *	      headers. AH/ESP will verify whether there is a valid SA or
2050  *	      not and send it back. We will fanout again if we have more
2051  *	      data in the packet.
2052  *
2053  *	      If the packet in error does not have AH/ESP, we handle it
2054  *	      like any other case.
2055  *
2056  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2057  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2058  *	      valid SA or not and send it back. We will fanout again if
2059  *	      we have more data in the packet.
2060  *
2061  *	      If the packet in error does not have AH/ESP, we handle it
2062  *	      like any other case.
2063  *
2064  * The caller must have called icmp_inbound_verify_v4.
2065  */
2066 static void
2067 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2068 {
2069 	uint16_t	*up;	/* Pointer to ports in ULP header */
2070 	uint32_t	ports;	/* reversed ports for fanout */
2071 	ipha_t		ripha;	/* With reversed addresses */
2072 	ipha_t		*ipha;  /* Inner IP header */
2073 	uint_t		hdr_length; /* Inner IP header length */
2074 	tcpha_t		*tcpha;
2075 	conn_t		*connp;
2076 	ill_t		*ill = ira->ira_ill;
2077 	ip_stack_t	*ipst = ill->ill_ipst;
2078 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2079 	ill_t		*rill = ira->ira_rill;
2080 
2081 	/* Caller already pulled up everything. */
2082 	ipha = (ipha_t *)&icmph[1];
2083 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2084 	ASSERT(mp->b_cont == NULL);
2085 
2086 	hdr_length = IPH_HDR_LENGTH(ipha);
2087 	ira->ira_protocol = ipha->ipha_protocol;
2088 
2089 	/*
2090 	 * We need a separate IP header with the source and destination
2091 	 * addresses reversed to do fanout/classification because the ipha in
2092 	 * the ICMP error is in the form we sent it out.
2093 	 */
2094 	ripha.ipha_src = ipha->ipha_dst;
2095 	ripha.ipha_dst = ipha->ipha_src;
2096 	ripha.ipha_protocol = ipha->ipha_protocol;
2097 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2098 
2099 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2100 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2101 	    ntohl(ipha->ipha_dst),
2102 	    icmph->icmph_type, icmph->icmph_code));
2103 
2104 	switch (ipha->ipha_protocol) {
2105 	case IPPROTO_UDP:
2106 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2107 
2108 		/* Attempt to find a client stream based on port. */
2109 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2110 		    ntohs(up[0]), ntohs(up[1])));
2111 
2112 		/* Note that we send error to all matches. */
2113 		ira->ira_flags |= IRAF_ICMP_ERROR;
2114 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2115 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2116 		return;
2117 
2118 	case IPPROTO_TCP:
2119 		/*
2120 		 * Find a TCP client stream for this packet.
2121 		 * Note that we do a reverse lookup since the header is
2122 		 * in the form we sent it out.
2123 		 */
2124 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2125 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2126 		    ipst);
2127 		if (connp == NULL)
2128 			goto discard_pkt;
2129 
2130 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2131 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2132 			mp = ipsec_check_inbound_policy(mp, connp,
2133 			    ipha, NULL, ira);
2134 			if (mp == NULL) {
2135 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2136 				/* Note that mp is NULL */
2137 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2138 				CONN_DEC_REF(connp);
2139 				return;
2140 			}
2141 		}
2142 
2143 		ira->ira_flags |= IRAF_ICMP_ERROR;
2144 		ira->ira_ill = ira->ira_rill = NULL;
2145 		if (IPCL_IS_TCP(connp)) {
2146 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2147 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2148 			    SQTAG_TCP_INPUT_ICMP_ERR);
2149 		} else {
2150 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2151 			(connp->conn_recv)(connp, mp, NULL, ira);
2152 			CONN_DEC_REF(connp);
2153 		}
2154 		ira->ira_ill = ill;
2155 		ira->ira_rill = rill;
2156 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2157 		return;
2158 
2159 	case IPPROTO_SCTP:
2160 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2161 		/* Find a SCTP client stream for this packet. */
2162 		((uint16_t *)&ports)[0] = up[1];
2163 		((uint16_t *)&ports)[1] = up[0];
2164 
2165 		ira->ira_flags |= IRAF_ICMP_ERROR;
2166 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2167 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2168 		return;
2169 
2170 	case IPPROTO_ESP:
2171 	case IPPROTO_AH:
2172 		if (!ipsec_loaded(ipss)) {
2173 			ip_proto_not_sup(mp, ira);
2174 			return;
2175 		}
2176 
2177 		if (ipha->ipha_protocol == IPPROTO_ESP)
2178 			mp = ipsecesp_icmp_error(mp, ira);
2179 		else
2180 			mp = ipsecah_icmp_error(mp, ira);
2181 		if (mp == NULL)
2182 			return;
2183 
2184 		/* Just in case ipsec didn't preserve the NULL b_cont */
2185 		if (mp->b_cont != NULL) {
2186 			if (!pullupmsg(mp, -1))
2187 				goto discard_pkt;
2188 		}
2189 
2190 		/*
2191 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2192 		 * correct, but we don't use them any more here.
2193 		 *
2194 		 * If succesful, the mp has been modified to not include
2195 		 * the ESP/AH header so we can fanout to the ULP's icmp
2196 		 * error handler.
2197 		 */
2198 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2199 			goto truncated;
2200 
2201 		/* Verify the modified message before any further processes. */
2202 		ipha = (ipha_t *)mp->b_rptr;
2203 		hdr_length = IPH_HDR_LENGTH(ipha);
2204 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2205 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2206 			freemsg(mp);
2207 			return;
2208 		}
2209 
2210 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2211 		return;
2212 
2213 	case IPPROTO_ENCAP: {
2214 		/* Look for self-encapsulated packets that caused an error */
2215 		ipha_t *in_ipha;
2216 
2217 		/*
2218 		 * Caller has verified that length has to be
2219 		 * at least the size of IP header.
2220 		 */
2221 		ASSERT(hdr_length >= sizeof (ipha_t));
2222 		/*
2223 		 * Check the sanity of the inner IP header like
2224 		 * we did for the outer header.
2225 		 */
2226 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2227 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2228 			goto discard_pkt;
2229 		}
2230 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2231 			goto discard_pkt;
2232 		}
2233 		/* Check for Self-encapsulated tunnels */
2234 		if (in_ipha->ipha_src == ipha->ipha_src &&
2235 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2236 
2237 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2238 			    in_ipha);
2239 			if (mp == NULL)
2240 				goto discard_pkt;
2241 
2242 			/*
2243 			 * Just in case self_encap didn't preserve the NULL
2244 			 * b_cont
2245 			 */
2246 			if (mp->b_cont != NULL) {
2247 				if (!pullupmsg(mp, -1))
2248 					goto discard_pkt;
2249 			}
2250 			/*
2251 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2252 			 * longer correct, but we don't use them any more here.
2253 			 */
2254 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2255 				goto truncated;
2256 
2257 			/*
2258 			 * Verify the modified message before any further
2259 			 * processes.
2260 			 */
2261 			ipha = (ipha_t *)mp->b_rptr;
2262 			hdr_length = IPH_HDR_LENGTH(ipha);
2263 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2264 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2265 				freemsg(mp);
2266 				return;
2267 			}
2268 
2269 			/*
2270 			 * The packet in error is self-encapsualted.
2271 			 * And we are finding it further encapsulated
2272 			 * which we could not have possibly generated.
2273 			 */
2274 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2275 				goto discard_pkt;
2276 			}
2277 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2278 			return;
2279 		}
2280 		/* No self-encapsulated */
2281 	}
2282 	/* FALLTHROUGH */
2283 	case IPPROTO_IPV6:
2284 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2285 		    &ripha.ipha_dst, ipst)) != NULL) {
2286 			ira->ira_flags |= IRAF_ICMP_ERROR;
2287 			connp->conn_recvicmp(connp, mp, NULL, ira);
2288 			CONN_DEC_REF(connp);
2289 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2290 			return;
2291 		}
2292 		/*
2293 		 * No IP tunnel is interested, fallthrough and see
2294 		 * if a raw socket will want it.
2295 		 */
2296 		/* FALLTHROUGH */
2297 	default:
2298 		ira->ira_flags |= IRAF_ICMP_ERROR;
2299 		ip_fanout_proto_v4(mp, &ripha, ira);
2300 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2301 		return;
2302 	}
2303 	/* NOTREACHED */
2304 discard_pkt:
2305 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2306 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2307 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2308 	freemsg(mp);
2309 	return;
2310 
2311 truncated:
2312 	/* We pulled up everthing already. Must be truncated */
2313 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2314 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2315 	freemsg(mp);
2316 }
2317 
2318 /*
2319  * Common IP options parser.
2320  *
2321  * Setup routine: fill in *optp with options-parsing state, then
2322  * tail-call ipoptp_next to return the first option.
2323  */
2324 uint8_t
2325 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2326 {
2327 	uint32_t totallen; /* total length of all options */
2328 
2329 	totallen = ipha->ipha_version_and_hdr_length -
2330 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2331 	totallen <<= 2;
2332 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2333 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2334 	optp->ipoptp_flags = 0;
2335 	return (ipoptp_next(optp));
2336 }
2337 
2338 /* Like above but without an ipha_t */
2339 uint8_t
2340 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2341 {
2342 	optp->ipoptp_next = opt;
2343 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2344 	optp->ipoptp_flags = 0;
2345 	return (ipoptp_next(optp));
2346 }
2347 
2348 /*
2349  * Common IP options parser: extract next option.
2350  */
2351 uint8_t
2352 ipoptp_next(ipoptp_t *optp)
2353 {
2354 	uint8_t *end = optp->ipoptp_end;
2355 	uint8_t *cur = optp->ipoptp_next;
2356 	uint8_t opt, len, pointer;
2357 
2358 	/*
2359 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2360 	 * has been corrupted.
2361 	 */
2362 	ASSERT(cur <= end);
2363 
2364 	if (cur == end)
2365 		return (IPOPT_EOL);
2366 
2367 	opt = cur[IPOPT_OPTVAL];
2368 
2369 	/*
2370 	 * Skip any NOP options.
2371 	 */
2372 	while (opt == IPOPT_NOP) {
2373 		cur++;
2374 		if (cur == end)
2375 			return (IPOPT_EOL);
2376 		opt = cur[IPOPT_OPTVAL];
2377 	}
2378 
2379 	if (opt == IPOPT_EOL)
2380 		return (IPOPT_EOL);
2381 
2382 	/*
2383 	 * Option requiring a length.
2384 	 */
2385 	if ((cur + 1) >= end) {
2386 		optp->ipoptp_flags |= IPOPTP_ERROR;
2387 		return (IPOPT_EOL);
2388 	}
2389 	len = cur[IPOPT_OLEN];
2390 	if (len < 2) {
2391 		optp->ipoptp_flags |= IPOPTP_ERROR;
2392 		return (IPOPT_EOL);
2393 	}
2394 	optp->ipoptp_cur = cur;
2395 	optp->ipoptp_len = len;
2396 	optp->ipoptp_next = cur + len;
2397 	if (cur + len > end) {
2398 		optp->ipoptp_flags |= IPOPTP_ERROR;
2399 		return (IPOPT_EOL);
2400 	}
2401 
2402 	/*
2403 	 * For the options which require a pointer field, make sure
2404 	 * its there, and make sure it points to either something
2405 	 * inside this option, or the end of the option.
2406 	 */
2407 	pointer = IPOPT_EOL;
2408 	switch (opt) {
2409 	case IPOPT_RR:
2410 	case IPOPT_TS:
2411 	case IPOPT_LSRR:
2412 	case IPOPT_SSRR:
2413 		if (len <= IPOPT_OFFSET) {
2414 			optp->ipoptp_flags |= IPOPTP_ERROR;
2415 			return (opt);
2416 		}
2417 		pointer = cur[IPOPT_OFFSET];
2418 		if (pointer - 1 > len) {
2419 			optp->ipoptp_flags |= IPOPTP_ERROR;
2420 			return (opt);
2421 		}
2422 		break;
2423 	}
2424 
2425 	/*
2426 	 * Sanity check the pointer field based on the type of the
2427 	 * option.
2428 	 */
2429 	switch (opt) {
2430 	case IPOPT_RR:
2431 	case IPOPT_SSRR:
2432 	case IPOPT_LSRR:
2433 		if (pointer < IPOPT_MINOFF_SR)
2434 			optp->ipoptp_flags |= IPOPTP_ERROR;
2435 		break;
2436 	case IPOPT_TS:
2437 		if (pointer < IPOPT_MINOFF_IT)
2438 			optp->ipoptp_flags |= IPOPTP_ERROR;
2439 		/*
2440 		 * Note that the Internet Timestamp option also
2441 		 * contains two four bit fields (the Overflow field,
2442 		 * and the Flag field), which follow the pointer
2443 		 * field.  We don't need to check that these fields
2444 		 * fall within the length of the option because this
2445 		 * was implicitely done above.  We've checked that the
2446 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2447 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2448 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2449 		 */
2450 		ASSERT(len > IPOPT_POS_OV_FLG);
2451 		break;
2452 	}
2453 
2454 	return (opt);
2455 }
2456 
2457 /*
2458  * Use the outgoing IP header to create an IP_OPTIONS option the way
2459  * it was passed down from the application.
2460  *
2461  * This is compatible with BSD in that it returns
2462  * the reverse source route with the final destination
2463  * as the last entry. The first 4 bytes of the option
2464  * will contain the final destination.
2465  */
2466 int
2467 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2468 {
2469 	ipoptp_t	opts;
2470 	uchar_t		*opt;
2471 	uint8_t		optval;
2472 	uint8_t		optlen;
2473 	uint32_t	len = 0;
2474 	uchar_t		*buf1 = buf;
2475 	uint32_t	totallen;
2476 	ipaddr_t	dst;
2477 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2478 
2479 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2480 		return (0);
2481 
2482 	totallen = ipp->ipp_ipv4_options_len;
2483 	if (totallen & 0x3)
2484 		return (0);
2485 
2486 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2487 	len += IP_ADDR_LEN;
2488 	bzero(buf1, IP_ADDR_LEN);
2489 
2490 	dst = connp->conn_faddr_v4;
2491 
2492 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2493 	    optval != IPOPT_EOL;
2494 	    optval = ipoptp_next(&opts)) {
2495 		int	off;
2496 
2497 		opt = opts.ipoptp_cur;
2498 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2499 			break;
2500 		}
2501 		optlen = opts.ipoptp_len;
2502 
2503 		switch (optval) {
2504 		case IPOPT_SSRR:
2505 		case IPOPT_LSRR:
2506 
2507 			/*
2508 			 * Insert destination as the first entry in the source
2509 			 * route and move down the entries on step.
2510 			 * The last entry gets placed at buf1.
2511 			 */
2512 			buf[IPOPT_OPTVAL] = optval;
2513 			buf[IPOPT_OLEN] = optlen;
2514 			buf[IPOPT_OFFSET] = optlen;
2515 
2516 			off = optlen - IP_ADDR_LEN;
2517 			if (off < 0) {
2518 				/* No entries in source route */
2519 				break;
2520 			}
2521 			/* Last entry in source route if not already set */
2522 			if (dst == INADDR_ANY)
2523 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2524 			off -= IP_ADDR_LEN;
2525 
2526 			while (off > 0) {
2527 				bcopy(opt + off,
2528 				    buf + off + IP_ADDR_LEN,
2529 				    IP_ADDR_LEN);
2530 				off -= IP_ADDR_LEN;
2531 			}
2532 			/* ipha_dst into first slot */
2533 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2534 			    IP_ADDR_LEN);
2535 			buf += optlen;
2536 			len += optlen;
2537 			break;
2538 
2539 		default:
2540 			bcopy(opt, buf, optlen);
2541 			buf += optlen;
2542 			len += optlen;
2543 			break;
2544 		}
2545 	}
2546 done:
2547 	/* Pad the resulting options */
2548 	while (len & 0x3) {
2549 		*buf++ = IPOPT_EOL;
2550 		len++;
2551 	}
2552 	return (len);
2553 }
2554 
2555 /*
2556  * Update any record route or timestamp options to include this host.
2557  * Reverse any source route option.
2558  * This routine assumes that the options are well formed i.e. that they
2559  * have already been checked.
2560  */
2561 static void
2562 icmp_options_update(ipha_t *ipha)
2563 {
2564 	ipoptp_t	opts;
2565 	uchar_t		*opt;
2566 	uint8_t		optval;
2567 	ipaddr_t	src;		/* Our local address */
2568 	ipaddr_t	dst;
2569 
2570 	ip2dbg(("icmp_options_update\n"));
2571 	src = ipha->ipha_src;
2572 	dst = ipha->ipha_dst;
2573 
2574 	for (optval = ipoptp_first(&opts, ipha);
2575 	    optval != IPOPT_EOL;
2576 	    optval = ipoptp_next(&opts)) {
2577 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2578 		opt = opts.ipoptp_cur;
2579 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2580 		    optval, opts.ipoptp_len));
2581 		switch (optval) {
2582 			int off1, off2;
2583 		case IPOPT_SSRR:
2584 		case IPOPT_LSRR:
2585 			/*
2586 			 * Reverse the source route.  The first entry
2587 			 * should be the next to last one in the current
2588 			 * source route (the last entry is our address).
2589 			 * The last entry should be the final destination.
2590 			 */
2591 			off1 = IPOPT_MINOFF_SR - 1;
2592 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2593 			if (off2 < 0) {
2594 				/* No entries in source route */
2595 				ip1dbg((
2596 				    "icmp_options_update: bad src route\n"));
2597 				break;
2598 			}
2599 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2600 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2601 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2602 			off2 -= IP_ADDR_LEN;
2603 
2604 			while (off1 < off2) {
2605 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2606 				bcopy((char *)opt + off2, (char *)opt + off1,
2607 				    IP_ADDR_LEN);
2608 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2609 				off1 += IP_ADDR_LEN;
2610 				off2 -= IP_ADDR_LEN;
2611 			}
2612 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2613 			break;
2614 		}
2615 	}
2616 }
2617 
2618 /*
2619  * Process received ICMP Redirect messages.
2620  * Assumes the caller has verified that the headers are in the pulled up mblk.
2621  * Consumes mp.
2622  */
2623 static void
2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2625 {
2626 	ire_t		*ire, *nire;
2627 	ire_t		*prev_ire;
2628 	ipaddr_t	src, dst, gateway;
2629 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2630 	ipha_t		*inner_ipha;	/* Inner IP header */
2631 
2632 	/* Caller already pulled up everything. */
2633 	inner_ipha = (ipha_t *)&icmph[1];
2634 	src = ipha->ipha_src;
2635 	dst = inner_ipha->ipha_dst;
2636 	gateway = icmph->icmph_rd_gateway;
2637 	/* Make sure the new gateway is reachable somehow. */
2638 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2639 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2640 	/*
2641 	 * Make sure we had a route for the dest in question and that
2642 	 * that route was pointing to the old gateway (the source of the
2643 	 * redirect packet.)
2644 	 * We do longest match and then compare ire_gateway_addr below.
2645 	 */
2646 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2647 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2648 	/*
2649 	 * Check that
2650 	 *	the redirect was not from ourselves
2651 	 *	the new gateway and the old gateway are directly reachable
2652 	 */
2653 	if (prev_ire == NULL || ire == NULL ||
2654 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2655 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2656 	    !(ire->ire_type & IRE_IF_ALL) ||
2657 	    prev_ire->ire_gateway_addr != src) {
2658 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2659 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2660 		freemsg(mp);
2661 		if (ire != NULL)
2662 			ire_refrele(ire);
2663 		if (prev_ire != NULL)
2664 			ire_refrele(prev_ire);
2665 		return;
2666 	}
2667 
2668 	ire_refrele(prev_ire);
2669 	ire_refrele(ire);
2670 
2671 	/*
2672 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2673 	 * require TOS routing
2674 	 */
2675 	switch (icmph->icmph_code) {
2676 	case 0:
2677 	case 1:
2678 		/* TODO: TOS specificity for cases 2 and 3 */
2679 	case 2:
2680 	case 3:
2681 		break;
2682 	default:
2683 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2684 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2685 		freemsg(mp);
2686 		return;
2687 	}
2688 	/*
2689 	 * Create a Route Association.  This will allow us to remember that
2690 	 * someone we believe told us to use the particular gateway.
2691 	 */
2692 	ire = ire_create(
2693 	    (uchar_t *)&dst,			/* dest addr */
2694 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2695 	    (uchar_t *)&gateway,		/* gateway addr */
2696 	    IRE_HOST,
2697 	    NULL,				/* ill */
2698 	    ALL_ZONES,
2699 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2700 	    NULL,				/* tsol_gc_t */
2701 	    ipst);
2702 
2703 	if (ire == NULL) {
2704 		freemsg(mp);
2705 		return;
2706 	}
2707 	nire = ire_add(ire);
2708 	/* Check if it was a duplicate entry */
2709 	if (nire != NULL && nire != ire) {
2710 		ASSERT(nire->ire_identical_ref > 1);
2711 		ire_delete(nire);
2712 		ire_refrele(nire);
2713 		nire = NULL;
2714 	}
2715 	ire = nire;
2716 	if (ire != NULL) {
2717 		ire_refrele(ire);		/* Held in ire_add */
2718 
2719 		/* tell routing sockets that we received a redirect */
2720 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2721 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2722 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2723 	}
2724 
2725 	/*
2726 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2727 	 * This together with the added IRE has the effect of
2728 	 * modifying an existing redirect.
2729 	 */
2730 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2731 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2732 	if (prev_ire != NULL) {
2733 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2734 			ire_delete(prev_ire);
2735 		ire_refrele(prev_ire);
2736 	}
2737 
2738 	freemsg(mp);
2739 }
2740 
2741 /*
2742  * Generate an ICMP parameter problem message.
2743  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2744  * constructed by the caller.
2745  */
2746 static void
2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2748 {
2749 	icmph_t	icmph;
2750 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2751 
2752 	mp = icmp_pkt_err_ok(mp, ira);
2753 	if (mp == NULL)
2754 		return;
2755 
2756 	bzero(&icmph, sizeof (icmph_t));
2757 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2758 	icmph.icmph_pp_ptr = ptr;
2759 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2760 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2761 }
2762 
2763 /*
2764  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2765  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2766  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2767  * an icmp error packet can be sent.
2768  * Assigns an appropriate source address to the packet. If ipha_dst is
2769  * one of our addresses use it for source. Otherwise let ip_output_simple
2770  * pick the source address.
2771  */
2772 static void
2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2774 {
2775 	ipaddr_t dst;
2776 	icmph_t	*icmph;
2777 	ipha_t	*ipha;
2778 	uint_t	len_needed;
2779 	size_t	msg_len;
2780 	mblk_t	*mp1;
2781 	ipaddr_t src;
2782 	ire_t	*ire;
2783 	ip_xmit_attr_t ixas;
2784 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2785 
2786 	ipha = (ipha_t *)mp->b_rptr;
2787 
2788 	bzero(&ixas, sizeof (ixas));
2789 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2790 	ixas.ixa_zoneid = ira->ira_zoneid;
2791 	ixas.ixa_ifindex = 0;
2792 	ixas.ixa_ipst = ipst;
2793 	ixas.ixa_cred = kcred;
2794 	ixas.ixa_cpid = NOPID;
2795 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2796 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2797 
2798 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2799 		/*
2800 		 * Apply IPsec based on how IPsec was applied to
2801 		 * the packet that had the error.
2802 		 *
2803 		 * If it was an outbound packet that caused the ICMP
2804 		 * error, then the caller will have setup the IRA
2805 		 * appropriately.
2806 		 */
2807 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2808 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2809 			/* Note: mp already consumed and ip_drop_packet done */
2810 			return;
2811 		}
2812 	} else {
2813 		/*
2814 		 * This is in clear. The icmp message we are building
2815 		 * here should go out in clear, independent of our policy.
2816 		 */
2817 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2818 	}
2819 
2820 	/* Remember our eventual destination */
2821 	dst = ipha->ipha_src;
2822 
2823 	/*
2824 	 * If the packet was for one of our unicast addresses, make
2825 	 * sure we respond with that as the source. Otherwise
2826 	 * have ip_output_simple pick the source address.
2827 	 */
2828 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2829 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2830 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2831 	if (ire != NULL) {
2832 		ire_refrele(ire);
2833 		src = ipha->ipha_dst;
2834 	} else {
2835 		src = INADDR_ANY;
2836 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2837 	}
2838 
2839 	/*
2840 	 * Check if we can send back more then 8 bytes in addition to
2841 	 * the IP header.  We try to send 64 bytes of data and the internal
2842 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2843 	 */
2844 	len_needed = IPH_HDR_LENGTH(ipha);
2845 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2846 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2847 		if (!pullupmsg(mp, -1)) {
2848 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2849 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2850 			freemsg(mp);
2851 			return;
2852 		}
2853 		ipha = (ipha_t *)mp->b_rptr;
2854 
2855 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2856 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2857 			    len_needed));
2858 		} else {
2859 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2860 
2861 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2862 			len_needed += ip_hdr_length_v6(mp, ip6h);
2863 		}
2864 	}
2865 	len_needed += ipst->ips_ip_icmp_return;
2866 	msg_len = msgdsize(mp);
2867 	if (msg_len > len_needed) {
2868 		(void) adjmsg(mp, len_needed - msg_len);
2869 		msg_len = len_needed;
2870 	}
2871 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2872 	if (mp1 == NULL) {
2873 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2874 		freemsg(mp);
2875 		return;
2876 	}
2877 	mp1->b_cont = mp;
2878 	mp = mp1;
2879 
2880 	/*
2881 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2882 	 * node generates be accepted in peace by all on-host destinations.
2883 	 * If we do NOT assume that all on-host destinations trust
2884 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2885 	 * (Look for IXAF_TRUSTED_ICMP).
2886 	 */
2887 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2888 
2889 	ipha = (ipha_t *)mp->b_rptr;
2890 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2891 	*ipha = icmp_ipha;
2892 	ipha->ipha_src = src;
2893 	ipha->ipha_dst = dst;
2894 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2895 	msg_len += sizeof (icmp_ipha) + len;
2896 	if (msg_len > IP_MAXPACKET) {
2897 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2898 		msg_len = IP_MAXPACKET;
2899 	}
2900 	ipha->ipha_length = htons((uint16_t)msg_len);
2901 	icmph = (icmph_t *)&ipha[1];
2902 	bcopy(stuff, icmph, len);
2903 	icmph->icmph_checksum = 0;
2904 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2905 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2906 
2907 	(void) ip_output_simple(mp, &ixas);
2908 	ixa_cleanup(&ixas);
2909 }
2910 
2911 /*
2912  * Determine if an ICMP error packet can be sent given the rate limit.
2913  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2914  * in milliseconds) and a burst size. Burst size number of packets can
2915  * be sent arbitrarely closely spaced.
2916  * The state is tracked using two variables to implement an approximate
2917  * token bucket filter:
2918  *	icmp_pkt_err_last - lbolt value when the last burst started
2919  *	icmp_pkt_err_sent - number of packets sent in current burst
2920  */
2921 boolean_t
2922 icmp_err_rate_limit(ip_stack_t *ipst)
2923 {
2924 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2925 	uint_t refilled; /* Number of packets refilled in tbf since last */
2926 	/* Guard against changes by loading into local variable */
2927 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2928 
2929 	if (err_interval == 0)
2930 		return (B_FALSE);
2931 
2932 	if (ipst->ips_icmp_pkt_err_last > now) {
2933 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2934 		ipst->ips_icmp_pkt_err_last = 0;
2935 		ipst->ips_icmp_pkt_err_sent = 0;
2936 	}
2937 	/*
2938 	 * If we are in a burst update the token bucket filter.
2939 	 * Update the "last" time to be close to "now" but make sure
2940 	 * we don't loose precision.
2941 	 */
2942 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2943 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2944 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2945 			ipst->ips_icmp_pkt_err_sent = 0;
2946 		} else {
2947 			ipst->ips_icmp_pkt_err_sent -= refilled;
2948 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2949 		}
2950 	}
2951 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2952 		/* Start of new burst */
2953 		ipst->ips_icmp_pkt_err_last = now;
2954 	}
2955 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2956 		ipst->ips_icmp_pkt_err_sent++;
2957 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2958 		    ipst->ips_icmp_pkt_err_sent));
2959 		return (B_FALSE);
2960 	}
2961 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2962 	return (B_TRUE);
2963 }
2964 
2965 /*
2966  * Check if it is ok to send an IPv4 ICMP error packet in
2967  * response to the IPv4 packet in mp.
2968  * Free the message and return null if no
2969  * ICMP error packet should be sent.
2970  */
2971 static mblk_t *
2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2973 {
2974 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2975 	icmph_t	*icmph;
2976 	ipha_t	*ipha;
2977 	uint_t	len_needed;
2978 
2979 	if (!mp)
2980 		return (NULL);
2981 	ipha = (ipha_t *)mp->b_rptr;
2982 	if (ip_csum_hdr(ipha)) {
2983 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2984 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2985 		freemsg(mp);
2986 		return (NULL);
2987 	}
2988 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2989 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2990 	    CLASSD(ipha->ipha_dst) ||
2991 	    CLASSD(ipha->ipha_src) ||
2992 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2993 		/* Note: only errors to the fragment with offset 0 */
2994 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2995 		freemsg(mp);
2996 		return (NULL);
2997 	}
2998 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
2999 		/*
3000 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3001 		 * errors in response to any ICMP errors.
3002 		 */
3003 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3004 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3005 			if (!pullupmsg(mp, len_needed)) {
3006 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3007 				freemsg(mp);
3008 				return (NULL);
3009 			}
3010 			ipha = (ipha_t *)mp->b_rptr;
3011 		}
3012 		icmph = (icmph_t *)
3013 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3014 		switch (icmph->icmph_type) {
3015 		case ICMP_DEST_UNREACHABLE:
3016 		case ICMP_SOURCE_QUENCH:
3017 		case ICMP_TIME_EXCEEDED:
3018 		case ICMP_PARAM_PROBLEM:
3019 		case ICMP_REDIRECT:
3020 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3021 			freemsg(mp);
3022 			return (NULL);
3023 		default:
3024 			break;
3025 		}
3026 	}
3027 	/*
3028 	 * If this is a labeled system, then check to see if we're allowed to
3029 	 * send a response to this particular sender.  If not, then just drop.
3030 	 */
3031 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3032 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3033 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3034 		freemsg(mp);
3035 		return (NULL);
3036 	}
3037 	if (icmp_err_rate_limit(ipst)) {
3038 		/*
3039 		 * Only send ICMP error packets every so often.
3040 		 * This should be done on a per port/source basis,
3041 		 * but for now this will suffice.
3042 		 */
3043 		freemsg(mp);
3044 		return (NULL);
3045 	}
3046 	return (mp);
3047 }
3048 
3049 /*
3050  * Called when a packet was sent out the same link that it arrived on.
3051  * Check if it is ok to send a redirect and then send it.
3052  */
3053 void
3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3055     ip_recv_attr_t *ira)
3056 {
3057 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3058 	ipaddr_t	src, nhop;
3059 	mblk_t		*mp1;
3060 	ire_t		*nhop_ire;
3061 
3062 	/*
3063 	 * Check the source address to see if it originated
3064 	 * on the same logical subnet it is going back out on.
3065 	 * If so, we should be able to send it a redirect.
3066 	 * Avoid sending a redirect if the destination
3067 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3068 	 * or if the packet was source routed out this interface.
3069 	 *
3070 	 * We avoid sending a redirect if the
3071 	 * destination is directly connected
3072 	 * because it is possible that multiple
3073 	 * IP subnets may have been configured on
3074 	 * the link, and the source may not
3075 	 * be on the same subnet as ip destination,
3076 	 * even though they are on the same
3077 	 * physical link.
3078 	 */
3079 	if ((ire->ire_type & IRE_ONLINK) ||
3080 	    ip_source_routed(ipha, ipst))
3081 		return;
3082 
3083 	nhop_ire = ire_nexthop(ire);
3084 	if (nhop_ire == NULL)
3085 		return;
3086 
3087 	nhop = nhop_ire->ire_addr;
3088 
3089 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3090 		ire_t	*ire2;
3091 
3092 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3093 		mutex_enter(&nhop_ire->ire_lock);
3094 		ire2 = nhop_ire->ire_dep_parent;
3095 		if (ire2 != NULL)
3096 			ire_refhold(ire2);
3097 		mutex_exit(&nhop_ire->ire_lock);
3098 		ire_refrele(nhop_ire);
3099 		nhop_ire = ire2;
3100 	}
3101 	if (nhop_ire == NULL)
3102 		return;
3103 
3104 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3105 
3106 	src = ipha->ipha_src;
3107 
3108 	/*
3109 	 * We look at the interface ire for the nexthop,
3110 	 * to see if ipha_src is in the same subnet
3111 	 * as the nexthop.
3112 	 */
3113 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3114 		/*
3115 		 * The source is directly connected.
3116 		 */
3117 		mp1 = copymsg(mp);
3118 		if (mp1 != NULL) {
3119 			icmp_send_redirect(mp1, nhop, ira);
3120 		}
3121 	}
3122 	ire_refrele(nhop_ire);
3123 }
3124 
3125 /*
3126  * Generate an ICMP redirect message.
3127  */
3128 static void
3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3130 {
3131 	icmph_t	icmph;
3132 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3133 
3134 	mp = icmp_pkt_err_ok(mp, ira);
3135 	if (mp == NULL)
3136 		return;
3137 
3138 	bzero(&icmph, sizeof (icmph_t));
3139 	icmph.icmph_type = ICMP_REDIRECT;
3140 	icmph.icmph_code = 1;
3141 	icmph.icmph_rd_gateway = gateway;
3142 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3143 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3144 }
3145 
3146 /*
3147  * Generate an ICMP time exceeded message.
3148  */
3149 void
3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3151 {
3152 	icmph_t	icmph;
3153 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3154 
3155 	mp = icmp_pkt_err_ok(mp, ira);
3156 	if (mp == NULL)
3157 		return;
3158 
3159 	bzero(&icmph, sizeof (icmph_t));
3160 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3161 	icmph.icmph_code = code;
3162 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3163 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3164 }
3165 
3166 /*
3167  * Generate an ICMP unreachable message.
3168  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3169  * constructed by the caller.
3170  */
3171 void
3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3173 {
3174 	icmph_t	icmph;
3175 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3176 
3177 	mp = icmp_pkt_err_ok(mp, ira);
3178 	if (mp == NULL)
3179 		return;
3180 
3181 	bzero(&icmph, sizeof (icmph_t));
3182 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3183 	icmph.icmph_code = code;
3184 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3185 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3186 }
3187 
3188 /*
3189  * Latch in the IPsec state for a stream based the policy in the listener
3190  * and the actions in the ip_recv_attr_t.
3191  * Called directly from TCP and SCTP.
3192  */
3193 boolean_t
3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3195 {
3196 	ASSERT(lconnp->conn_policy != NULL);
3197 	ASSERT(connp->conn_policy == NULL);
3198 
3199 	IPPH_REFHOLD(lconnp->conn_policy);
3200 	connp->conn_policy = lconnp->conn_policy;
3201 
3202 	if (ira->ira_ipsec_action != NULL) {
3203 		if (connp->conn_latch == NULL) {
3204 			connp->conn_latch = iplatch_create();
3205 			if (connp->conn_latch == NULL)
3206 				return (B_FALSE);
3207 		}
3208 		ipsec_latch_inbound(connp, ira);
3209 	}
3210 	return (B_TRUE);
3211 }
3212 
3213 /*
3214  * Verify whether or not the IP address is a valid local address.
3215  * Could be a unicast, including one for a down interface.
3216  * If allow_mcbc then a multicast or broadcast address is also
3217  * acceptable.
3218  *
3219  * In the case of a broadcast/multicast address, however, the
3220  * upper protocol is expected to reset the src address
3221  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3222  * no packets are emitted with broadcast/multicast address as
3223  * source address (that violates hosts requirements RFC 1122)
3224  * The addresses valid for bind are:
3225  *	(1) - INADDR_ANY (0)
3226  *	(2) - IP address of an UP interface
3227  *	(3) - IP address of a DOWN interface
3228  *	(4) - valid local IP broadcast addresses. In this case
3229  *	the conn will only receive packets destined to
3230  *	the specified broadcast address.
3231  *	(5) - a multicast address. In this case
3232  *	the conn will only receive packets destined to
3233  *	the specified multicast address. Note: the
3234  *	application still has to issue an
3235  *	IP_ADD_MEMBERSHIP socket option.
3236  *
3237  * In all the above cases, the bound address must be valid in the current zone.
3238  * When the address is loopback, multicast or broadcast, there might be many
3239  * matching IREs so bind has to look up based on the zone.
3240  */
3241 ip_laddr_t
3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3243     ip_stack_t *ipst, boolean_t allow_mcbc)
3244 {
3245 	ire_t *src_ire;
3246 
3247 	ASSERT(src_addr != INADDR_ANY);
3248 
3249 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3250 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3251 
3252 	/*
3253 	 * If an address other than in6addr_any is requested,
3254 	 * we verify that it is a valid address for bind
3255 	 * Note: Following code is in if-else-if form for
3256 	 * readability compared to a condition check.
3257 	 */
3258 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3259 		/*
3260 		 * (2) Bind to address of local UP interface
3261 		 */
3262 		ire_refrele(src_ire);
3263 		return (IPVL_UNICAST_UP);
3264 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3265 		/*
3266 		 * (4) Bind to broadcast address
3267 		 */
3268 		ire_refrele(src_ire);
3269 		if (allow_mcbc)
3270 			return (IPVL_BCAST);
3271 		else
3272 			return (IPVL_BAD);
3273 	} else if (CLASSD(src_addr)) {
3274 		/* (5) bind to multicast address. */
3275 		if (src_ire != NULL)
3276 			ire_refrele(src_ire);
3277 
3278 		if (allow_mcbc)
3279 			return (IPVL_MCAST);
3280 		else
3281 			return (IPVL_BAD);
3282 	} else {
3283 		ipif_t *ipif;
3284 
3285 		/*
3286 		 * (3) Bind to address of local DOWN interface?
3287 		 * (ipif_lookup_addr() looks up all interfaces
3288 		 * but we do not get here for UP interfaces
3289 		 * - case (2) above)
3290 		 */
3291 		if (src_ire != NULL)
3292 			ire_refrele(src_ire);
3293 
3294 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3295 		if (ipif == NULL)
3296 			return (IPVL_BAD);
3297 
3298 		/* Not a useful source? */
3299 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3300 			ipif_refrele(ipif);
3301 			return (IPVL_BAD);
3302 		}
3303 		ipif_refrele(ipif);
3304 		return (IPVL_UNICAST_DOWN);
3305 	}
3306 }
3307 
3308 /*
3309  * Insert in the bind fanout for IPv4 and IPv6.
3310  * The caller should already have used ip_laddr_verify_v*() before calling
3311  * this.
3312  */
3313 int
3314 ip_laddr_fanout_insert(conn_t *connp)
3315 {
3316 	int		error;
3317 
3318 	/*
3319 	 * Allow setting new policies. For example, disconnects result
3320 	 * in us being called. As we would have set conn_policy_cached
3321 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3322 	 * can change after the disconnect.
3323 	 */
3324 	connp->conn_policy_cached = B_FALSE;
3325 
3326 	error = ipcl_bind_insert(connp);
3327 	if (error != 0) {
3328 		if (connp->conn_anon_port) {
3329 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3330 			    connp->conn_mlp_type, connp->conn_proto,
3331 			    ntohs(connp->conn_lport), B_FALSE);
3332 		}
3333 		connp->conn_mlp_type = mlptSingle;
3334 	}
3335 	return (error);
3336 }
3337 
3338 /*
3339  * Verify that both the source and destination addresses are valid. If
3340  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3341  * i.e. have no route to it.  Protocols like TCP want to verify destination
3342  * reachability, while tunnels do not.
3343  *
3344  * Determine the route, the interface, and (optionally) the source address
3345  * to use to reach a given destination.
3346  * Note that we allow connect to broadcast and multicast addresses when
3347  * IPDF_ALLOW_MCBC is set.
3348  * first_hop and dst_addr are normally the same, but if source routing
3349  * they will differ; in that case the first_hop is what we'll use for the
3350  * routing lookup but the dce and label checks will be done on dst_addr,
3351  *
3352  * If uinfo is set, then we fill in the best available information
3353  * we have for the destination. This is based on (in priority order) any
3354  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3355  * ill_mtu/ill_mc_mtu.
3356  *
3357  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3358  * always do the label check on dst_addr.
3359  */
3360 int
3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3362     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3363 {
3364 	ire_t		*ire = NULL;
3365 	int		error = 0;
3366 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3367 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3368 	ip_stack_t	*ipst = ixa->ixa_ipst;
3369 	dce_t		*dce;
3370 	uint_t		pmtu;
3371 	uint_t		generation;
3372 	nce_t		*nce;
3373 	ill_t		*ill = NULL;
3374 	boolean_t	multirt = B_FALSE;
3375 
3376 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3377 
3378 	/*
3379 	 * We never send to zero; the ULPs map it to the loopback address.
3380 	 * We can't allow it since we use zero to mean unitialized in some
3381 	 * places.
3382 	 */
3383 	ASSERT(dst_addr != INADDR_ANY);
3384 
3385 	if (is_system_labeled()) {
3386 		ts_label_t *tsl = NULL;
3387 
3388 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3389 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3390 		if (error != 0)
3391 			return (error);
3392 		if (tsl != NULL) {
3393 			/* Update the label */
3394 			ip_xmit_attr_replace_tsl(ixa, tsl);
3395 		}
3396 	}
3397 
3398 	setsrc = INADDR_ANY;
3399 	/*
3400 	 * Select a route; For IPMP interfaces, we would only select
3401 	 * a "hidden" route (i.e., going through a specific under_ill)
3402 	 * if ixa_ifindex has been specified.
3403 	 */
3404 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3405 	    &generation, &setsrc, &error, &multirt);
3406 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3407 	if (error != 0)
3408 		goto bad_addr;
3409 
3410 	/*
3411 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3412 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3413 	 * Otherwise the destination needn't be reachable.
3414 	 *
3415 	 * If we match on a reject or black hole, then we've got a
3416 	 * local failure.  May as well fail out the connect() attempt,
3417 	 * since it's never going to succeed.
3418 	 */
3419 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3420 		/*
3421 		 * If we're verifying destination reachability, we always want
3422 		 * to complain here.
3423 		 *
3424 		 * If we're not verifying destination reachability but the
3425 		 * destination has a route, we still want to fail on the
3426 		 * temporary address and broadcast address tests.
3427 		 *
3428 		 * In both cases do we let the code continue so some reasonable
3429 		 * information is returned to the caller. That enables the
3430 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3431 		 * use the generation mismatch path to check for the unreachable
3432 		 * case thereby avoiding any specific check in the main path.
3433 		 */
3434 		ASSERT(generation == IRE_GENERATION_VERIFY);
3435 		if (flags & IPDF_VERIFY_DST) {
3436 			/*
3437 			 * Set errno but continue to set up ixa_ire to be
3438 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3439 			 * That allows callers to use ip_output to get an
3440 			 * ICMP error back.
3441 			 */
3442 			if (!(ire->ire_type & IRE_HOST))
3443 				error = ENETUNREACH;
3444 			else
3445 				error = EHOSTUNREACH;
3446 		}
3447 	}
3448 
3449 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3450 	    !(flags & IPDF_ALLOW_MCBC)) {
3451 		ire_refrele(ire);
3452 		ire = ire_reject(ipst, B_FALSE);
3453 		generation = IRE_GENERATION_VERIFY;
3454 		error = ENETUNREACH;
3455 	}
3456 
3457 	/* Cache things */
3458 	if (ixa->ixa_ire != NULL)
3459 		ire_refrele_notr(ixa->ixa_ire);
3460 #ifdef DEBUG
3461 	ire_refhold_notr(ire);
3462 	ire_refrele(ire);
3463 #endif
3464 	ixa->ixa_ire = ire;
3465 	ixa->ixa_ire_generation = generation;
3466 
3467 	/*
3468 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3469 	 * since some callers will send a packet to conn_ip_output() even if
3470 	 * there's an error.
3471 	 */
3472 	if (flags & IPDF_UNIQUE_DCE) {
3473 		/* Fallback to the default dce if allocation fails */
3474 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3475 		if (dce != NULL)
3476 			generation = dce->dce_generation;
3477 		else
3478 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3479 	} else {
3480 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3481 	}
3482 	ASSERT(dce != NULL);
3483 	if (ixa->ixa_dce != NULL)
3484 		dce_refrele_notr(ixa->ixa_dce);
3485 #ifdef DEBUG
3486 	dce_refhold_notr(dce);
3487 	dce_refrele(dce);
3488 #endif
3489 	ixa->ixa_dce = dce;
3490 	ixa->ixa_dce_generation = generation;
3491 
3492 	/*
3493 	 * For multicast with multirt we have a flag passed back from
3494 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3495 	 * possible multicast address.
3496 	 * We also need a flag for multicast since we can't check
3497 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3498 	 */
3499 	if (multirt) {
3500 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3501 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3502 	} else {
3503 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3504 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3505 	}
3506 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3507 		/* Get an nce to cache. */
3508 		nce = ire_to_nce(ire, firsthop, NULL);
3509 		if (nce == NULL) {
3510 			/* Allocation failure? */
3511 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3512 		} else {
3513 			if (ixa->ixa_nce != NULL)
3514 				nce_refrele(ixa->ixa_nce);
3515 			ixa->ixa_nce = nce;
3516 		}
3517 	}
3518 
3519 	/*
3520 	 * If the source address is a loopback address, the
3521 	 * destination had best be local or multicast.
3522 	 * If we are sending to an IRE_LOCAL using a loopback source then
3523 	 * it had better be the same zoneid.
3524 	 */
3525 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3526 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3527 			ire = NULL;	/* Stored in ixa_ire */
3528 			error = EADDRNOTAVAIL;
3529 			goto bad_addr;
3530 		}
3531 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3532 			ire = NULL;	/* Stored in ixa_ire */
3533 			error = EADDRNOTAVAIL;
3534 			goto bad_addr;
3535 		}
3536 	}
3537 	if (ire->ire_type & IRE_BROADCAST) {
3538 		/*
3539 		 * If the ULP didn't have a specified source, then we
3540 		 * make sure we reselect the source when sending
3541 		 * broadcasts out different interfaces.
3542 		 */
3543 		if (flags & IPDF_SELECT_SRC)
3544 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3545 		else
3546 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3547 	}
3548 
3549 	/*
3550 	 * Does the caller want us to pick a source address?
3551 	 */
3552 	if (flags & IPDF_SELECT_SRC) {
3553 		ipaddr_t	src_addr;
3554 
3555 		/*
3556 		 * We use use ire_nexthop_ill to avoid the under ipmp
3557 		 * interface for source address selection. Note that for ipmp
3558 		 * probe packets, ixa_ifindex would have been specified, and
3559 		 * the ip_select_route() invocation would have picked an ire
3560 		 * will ire_ill pointing at an under interface.
3561 		 */
3562 		ill = ire_nexthop_ill(ire);
3563 
3564 		/* If unreachable we have no ill but need some source */
3565 		if (ill == NULL) {
3566 			src_addr = htonl(INADDR_LOOPBACK);
3567 			/* Make sure we look for a better source address */
3568 			generation = SRC_GENERATION_VERIFY;
3569 		} else {
3570 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3571 			    ixa->ixa_multicast_ifaddr, zoneid,
3572 			    ipst, &src_addr, &generation, NULL);
3573 			if (error != 0) {
3574 				ire = NULL;	/* Stored in ixa_ire */
3575 				goto bad_addr;
3576 			}
3577 		}
3578 
3579 		/*
3580 		 * We allow the source address to to down.
3581 		 * However, we check that we don't use the loopback address
3582 		 * as a source when sending out on the wire.
3583 		 */
3584 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3585 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3586 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3587 			ire = NULL;	/* Stored in ixa_ire */
3588 			error = EADDRNOTAVAIL;
3589 			goto bad_addr;
3590 		}
3591 
3592 		*src_addrp = src_addr;
3593 		ixa->ixa_src_generation = generation;
3594 	}
3595 
3596 	/*
3597 	 * Make sure we don't leave an unreachable ixa_nce in place
3598 	 * since ip_select_route is used when we unplumb i.e., remove
3599 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3600 	 */
3601 	nce = ixa->ixa_nce;
3602 	if (nce != NULL && nce->nce_is_condemned) {
3603 		nce_refrele(nce);
3604 		ixa->ixa_nce = NULL;
3605 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3606 	}
3607 
3608 	/*
3609 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3610 	 * However, we can't do it for IPv4 multicast or broadcast.
3611 	 */
3612 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3613 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3614 
3615 	/*
3616 	 * Set initial value for fragmentation limit. Either conn_ip_output
3617 	 * or ULP might updates it when there are routing changes.
3618 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3619 	 */
3620 	pmtu = ip_get_pmtu(ixa);
3621 	ixa->ixa_fragsize = pmtu;
3622 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3623 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3624 		ixa->ixa_pmtu = pmtu;
3625 
3626 	/*
3627 	 * Extract information useful for some transports.
3628 	 * First we look for DCE metrics. Then we take what we have in
3629 	 * the metrics in the route, where the offlink is used if we have
3630 	 * one.
3631 	 */
3632 	if (uinfo != NULL) {
3633 		bzero(uinfo, sizeof (*uinfo));
3634 
3635 		if (dce->dce_flags & DCEF_UINFO)
3636 			*uinfo = dce->dce_uinfo;
3637 
3638 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3639 
3640 		/* Allow ire_metrics to decrease the path MTU from above */
3641 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3642 			uinfo->iulp_mtu = pmtu;
3643 
3644 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3645 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3646 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3647 	}
3648 
3649 	if (ill != NULL)
3650 		ill_refrele(ill);
3651 
3652 	return (error);
3653 
3654 bad_addr:
3655 	if (ire != NULL)
3656 		ire_refrele(ire);
3657 
3658 	if (ill != NULL)
3659 		ill_refrele(ill);
3660 
3661 	/*
3662 	 * Make sure we don't leave an unreachable ixa_nce in place
3663 	 * since ip_select_route is used when we unplumb i.e., remove
3664 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3665 	 */
3666 	nce = ixa->ixa_nce;
3667 	if (nce != NULL && nce->nce_is_condemned) {
3668 		nce_refrele(nce);
3669 		ixa->ixa_nce = NULL;
3670 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3671 	}
3672 
3673 	return (error);
3674 }
3675 
3676 
3677 /*
3678  * Get the base MTU for the case when path MTU discovery is not used.
3679  * Takes the MTU of the IRE into account.
3680  */
3681 uint_t
3682 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3683 {
3684 	uint_t mtu;
3685 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3686 
3687 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3688 		mtu = ill->ill_mc_mtu;
3689 	else
3690 		mtu = ill->ill_mtu;
3691 
3692 	if (iremtu != 0 && iremtu < mtu)
3693 		mtu = iremtu;
3694 
3695 	return (mtu);
3696 }
3697 
3698 /*
3699  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3700  * Assumes that ixa_ire, dce, and nce have already been set up.
3701  *
3702  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3703  * We avoid path MTU discovery if it is disabled with ndd.
3704  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3705  *
3706  * NOTE: We also used to turn it off for source routed packets. That
3707  * is no longer required since the dce is per final destination.
3708  */
3709 uint_t
3710 ip_get_pmtu(ip_xmit_attr_t *ixa)
3711 {
3712 	ip_stack_t	*ipst = ixa->ixa_ipst;
3713 	dce_t		*dce;
3714 	nce_t		*nce;
3715 	ire_t		*ire;
3716 	uint_t		pmtu;
3717 
3718 	ire = ixa->ixa_ire;
3719 	dce = ixa->ixa_dce;
3720 	nce = ixa->ixa_nce;
3721 
3722 	/*
3723 	 * If path MTU discovery has been turned off by ndd, then we ignore
3724 	 * any dce_pmtu and for IPv4 we will not set DF.
3725 	 */
3726 	if (!ipst->ips_ip_path_mtu_discovery)
3727 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3728 
3729 	pmtu = IP_MAXPACKET;
3730 	/*
3731 	 * Decide whether whether IPv4 sets DF
3732 	 * For IPv6 "no DF" means to use the 1280 mtu
3733 	 */
3734 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3735 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3736 	} else {
3737 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3738 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3739 			pmtu = IPV6_MIN_MTU;
3740 	}
3741 
3742 	/* Check if the PMTU is to old before we use it */
3743 	if ((dce->dce_flags & DCEF_PMTU) &&
3744 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3745 	    ipst->ips_ip_pathmtu_interval) {
3746 		/*
3747 		 * Older than 20 minutes. Drop the path MTU information.
3748 		 */
3749 		mutex_enter(&dce->dce_lock);
3750 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3751 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3752 		mutex_exit(&dce->dce_lock);
3753 		dce_increment_generation(dce);
3754 	}
3755 
3756 	/* The metrics on the route can lower the path MTU */
3757 	if (ire->ire_metrics.iulp_mtu != 0 &&
3758 	    ire->ire_metrics.iulp_mtu < pmtu)
3759 		pmtu = ire->ire_metrics.iulp_mtu;
3760 
3761 	/*
3762 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3763 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3764 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3765 	 */
3766 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3767 		if (dce->dce_flags & DCEF_PMTU) {
3768 			if (dce->dce_pmtu < pmtu)
3769 				pmtu = dce->dce_pmtu;
3770 
3771 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3772 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3773 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3774 			} else {
3775 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3776 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3777 			}
3778 		} else {
3779 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3780 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3781 		}
3782 	}
3783 
3784 	/*
3785 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3786 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3787 	 * mtu as IRE_LOOPBACK.
3788 	 */
3789 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3790 		uint_t loopback_mtu;
3791 
3792 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3793 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3794 
3795 		if (loopback_mtu < pmtu)
3796 			pmtu = loopback_mtu;
3797 	} else if (nce != NULL) {
3798 		/*
3799 		 * Make sure we don't exceed the interface MTU.
3800 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3801 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3802 		 * to tell the transport something larger than zero.
3803 		 */
3804 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3805 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3806 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3807 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3808 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3809 				/*
3810 				 * for interfaces in an IPMP group, the mtu of
3811 				 * the nce_ill (under_ill) could be different
3812 				 * from the mtu of the ncec_ill, so we take the
3813 				 * min of the two.
3814 				 */
3815 				pmtu = nce->nce_ill->ill_mc_mtu;
3816 			}
3817 		} else {
3818 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3819 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3820 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3821 			    nce->nce_ill->ill_mtu < pmtu) {
3822 				/*
3823 				 * for interfaces in an IPMP group, the mtu of
3824 				 * the nce_ill (under_ill) could be different
3825 				 * from the mtu of the ncec_ill, so we take the
3826 				 * min of the two.
3827 				 */
3828 				pmtu = nce->nce_ill->ill_mtu;
3829 			}
3830 		}
3831 	}
3832 
3833 	/*
3834 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3835 	 * Only applies to IPv6.
3836 	 */
3837 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3838 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3839 			switch (ixa->ixa_use_min_mtu) {
3840 			case IPV6_USE_MIN_MTU_MULTICAST:
3841 				if (ire->ire_type & IRE_MULTICAST)
3842 					pmtu = IPV6_MIN_MTU;
3843 				break;
3844 			case IPV6_USE_MIN_MTU_ALWAYS:
3845 				pmtu = IPV6_MIN_MTU;
3846 				break;
3847 			case IPV6_USE_MIN_MTU_NEVER:
3848 				break;
3849 			}
3850 		} else {
3851 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3852 			if (ire->ire_type & IRE_MULTICAST)
3853 				pmtu = IPV6_MIN_MTU;
3854 		}
3855 	}
3856 
3857 	/*
3858 	 * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3859 	 * fragment header in every packet. We compensate for those cases by
3860 	 * returning a smaller path MTU to the ULP.
3861 	 *
3862 	 * In the case of CGTP then ip_output will add a fragment header.
3863 	 * Make sure there is room for it by telling a smaller number
3864 	 * to the transport.
3865 	 *
3866 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3867 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3868 	 * which is the size of the packets it can send.
3869 	 */
3870 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3871 		if ((ire->ire_flags & RTF_MULTIRT) ||
3872 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3873 			pmtu -= sizeof (ip6_frag_t);
3874 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3875 		}
3876 	}
3877 
3878 	return (pmtu);
3879 }
3880 
3881 /*
3882  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3883  * the final piece where we don't.  Return a pointer to the first mblk in the
3884  * result, and update the pointer to the next mblk to chew on.  If anything
3885  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3886  * NULL pointer.
3887  */
3888 mblk_t *
3889 ip_carve_mp(mblk_t **mpp, ssize_t len)
3890 {
3891 	mblk_t	*mp0;
3892 	mblk_t	*mp1;
3893 	mblk_t	*mp2;
3894 
3895 	if (!len || !mpp || !(mp0 = *mpp))
3896 		return (NULL);
3897 	/* If we aren't going to consume the first mblk, we need a dup. */
3898 	if (mp0->b_wptr - mp0->b_rptr > len) {
3899 		mp1 = dupb(mp0);
3900 		if (mp1) {
3901 			/* Partition the data between the two mblks. */
3902 			mp1->b_wptr = mp1->b_rptr + len;
3903 			mp0->b_rptr = mp1->b_wptr;
3904 			/*
3905 			 * after adjustments if mblk not consumed is now
3906 			 * unaligned, try to align it. If this fails free
3907 			 * all messages and let upper layer recover.
3908 			 */
3909 			if (!OK_32PTR(mp0->b_rptr)) {
3910 				if (!pullupmsg(mp0, -1)) {
3911 					freemsg(mp0);
3912 					freemsg(mp1);
3913 					*mpp = NULL;
3914 					return (NULL);
3915 				}
3916 			}
3917 		}
3918 		return (mp1);
3919 	}
3920 	/* Eat through as many mblks as we need to get len bytes. */
3921 	len -= mp0->b_wptr - mp0->b_rptr;
3922 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3923 		if (mp2->b_wptr - mp2->b_rptr > len) {
3924 			/*
3925 			 * We won't consume the entire last mblk.  Like
3926 			 * above, dup and partition it.
3927 			 */
3928 			mp1->b_cont = dupb(mp2);
3929 			mp1 = mp1->b_cont;
3930 			if (!mp1) {
3931 				/*
3932 				 * Trouble.  Rather than go to a lot of
3933 				 * trouble to clean up, we free the messages.
3934 				 * This won't be any worse than losing it on
3935 				 * the wire.
3936 				 */
3937 				freemsg(mp0);
3938 				freemsg(mp2);
3939 				*mpp = NULL;
3940 				return (NULL);
3941 			}
3942 			mp1->b_wptr = mp1->b_rptr + len;
3943 			mp2->b_rptr = mp1->b_wptr;
3944 			/*
3945 			 * after adjustments if mblk not consumed is now
3946 			 * unaligned, try to align it. If this fails free
3947 			 * all messages and let upper layer recover.
3948 			 */
3949 			if (!OK_32PTR(mp2->b_rptr)) {
3950 				if (!pullupmsg(mp2, -1)) {
3951 					freemsg(mp0);
3952 					freemsg(mp2);
3953 					*mpp = NULL;
3954 					return (NULL);
3955 				}
3956 			}
3957 			*mpp = mp2;
3958 			return (mp0);
3959 		}
3960 		/* Decrement len by the amount we just got. */
3961 		len -= mp2->b_wptr - mp2->b_rptr;
3962 	}
3963 	/*
3964 	 * len should be reduced to zero now.  If not our caller has
3965 	 * screwed up.
3966 	 */
3967 	if (len) {
3968 		/* Shouldn't happen! */
3969 		freemsg(mp0);
3970 		*mpp = NULL;
3971 		return (NULL);
3972 	}
3973 	/*
3974 	 * We consumed up to exactly the end of an mblk.  Detach the part
3975 	 * we are returning from the rest of the chain.
3976 	 */
3977 	mp1->b_cont = NULL;
3978 	*mpp = mp2;
3979 	return (mp0);
3980 }
3981 
3982 /* The ill stream is being unplumbed. Called from ip_close */
3983 int
3984 ip_modclose(ill_t *ill)
3985 {
3986 	boolean_t success;
3987 	ipsq_t	*ipsq;
3988 	ipif_t	*ipif;
3989 	queue_t	*q = ill->ill_rq;
3990 	ip_stack_t	*ipst = ill->ill_ipst;
3991 	int	i;
3992 	arl_ill_common_t *ai = ill->ill_common;
3993 
3994 	/*
3995 	 * The punlink prior to this may have initiated a capability
3996 	 * negotiation. But ipsq_enter will block until that finishes or
3997 	 * times out.
3998 	 */
3999 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
4000 
4001 	/*
4002 	 * Open/close/push/pop is guaranteed to be single threaded
4003 	 * per stream by STREAMS. FS guarantees that all references
4004 	 * from top are gone before close is called. So there can't
4005 	 * be another close thread that has set CONDEMNED on this ill.
4006 	 * and cause ipsq_enter to return failure.
4007 	 */
4008 	ASSERT(success);
4009 	ipsq = ill->ill_phyint->phyint_ipsq;
4010 
4011 	/*
4012 	 * Mark it condemned. No new reference will be made to this ill.
4013 	 * Lookup functions will return an error. Threads that try to
4014 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4015 	 * that the refcnt will drop down to zero.
4016 	 */
4017 	mutex_enter(&ill->ill_lock);
4018 	ill->ill_state_flags |= ILL_CONDEMNED;
4019 	for (ipif = ill->ill_ipif; ipif != NULL;
4020 	    ipif = ipif->ipif_next) {
4021 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4022 	}
4023 	/*
4024 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4025 	 * returns  error if ILL_CONDEMNED is set
4026 	 */
4027 	cv_broadcast(&ill->ill_cv);
4028 	mutex_exit(&ill->ill_lock);
4029 
4030 	/*
4031 	 * Send all the deferred DLPI messages downstream which came in
4032 	 * during the small window right before ipsq_enter(). We do this
4033 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4034 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4035 	 */
4036 	ill_dlpi_send_deferred(ill);
4037 
4038 	/*
4039 	 * Shut down fragmentation reassembly.
4040 	 * ill_frag_timer won't start a timer again.
4041 	 * Now cancel any existing timer
4042 	 */
4043 	(void) untimeout(ill->ill_frag_timer_id);
4044 	(void) ill_frag_timeout(ill, 0);
4045 
4046 	/*
4047 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4048 	 * this ill. Then wait for the refcnts to drop to zero.
4049 	 * ill_is_freeable checks whether the ill is really quiescent.
4050 	 * Then make sure that threads that are waiting to enter the
4051 	 * ipsq have seen the error returned by ipsq_enter and have
4052 	 * gone away. Then we call ill_delete_tail which does the
4053 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4054 	 */
4055 	ill_delete(ill);
4056 	mutex_enter(&ill->ill_lock);
4057 	while (!ill_is_freeable(ill))
4058 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4059 
4060 	while (ill->ill_waiters)
4061 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4062 
4063 	mutex_exit(&ill->ill_lock);
4064 
4065 	/*
4066 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4067 	 * it held until the end of the function since the cleanup
4068 	 * below needs to be able to use the ip_stack_t.
4069 	 */
4070 	netstack_hold(ipst->ips_netstack);
4071 
4072 	/* qprocsoff is done via ill_delete_tail */
4073 	ill_delete_tail(ill);
4074 	/*
4075 	 * synchronously wait for arp stream to unbind. After this, we
4076 	 * cannot get any data packets up from the driver.
4077 	 */
4078 	arp_unbind_complete(ill);
4079 	ASSERT(ill->ill_ipst == NULL);
4080 
4081 	/*
4082 	 * Walk through all conns and qenable those that have queued data.
4083 	 * Close synchronization needs this to
4084 	 * be done to ensure that all upper layers blocked
4085 	 * due to flow control to the closing device
4086 	 * get unblocked.
4087 	 */
4088 	ip1dbg(("ip_wsrv: walking\n"));
4089 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4090 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4091 	}
4092 
4093 	/*
4094 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4095 	 * stream is being torn down before ARP was plumbed (e.g.,
4096 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4097 	 * an error
4098 	 */
4099 	if (ai != NULL) {
4100 		ASSERT(!ill->ill_isv6);
4101 		mutex_enter(&ai->ai_lock);
4102 		ai->ai_ill = NULL;
4103 		if (ai->ai_arl == NULL) {
4104 			mutex_destroy(&ai->ai_lock);
4105 			kmem_free(ai, sizeof (*ai));
4106 		} else {
4107 			cv_signal(&ai->ai_ill_unplumb_done);
4108 			mutex_exit(&ai->ai_lock);
4109 		}
4110 	}
4111 
4112 	mutex_enter(&ipst->ips_ip_mi_lock);
4113 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4114 	mutex_exit(&ipst->ips_ip_mi_lock);
4115 
4116 	/*
4117 	 * credp could be null if the open didn't succeed and ip_modopen
4118 	 * itself calls ip_close.
4119 	 */
4120 	if (ill->ill_credp != NULL)
4121 		crfree(ill->ill_credp);
4122 
4123 	mutex_destroy(&ill->ill_saved_ire_lock);
4124 	mutex_destroy(&ill->ill_lock);
4125 	rw_destroy(&ill->ill_mcast_lock);
4126 	mutex_destroy(&ill->ill_mcast_serializer);
4127 	list_destroy(&ill->ill_nce);
4128 
4129 	/*
4130 	 * Now we are done with the module close pieces that
4131 	 * need the netstack_t.
4132 	 */
4133 	netstack_rele(ipst->ips_netstack);
4134 
4135 	mi_close_free((IDP)ill);
4136 	q->q_ptr = WR(q)->q_ptr = NULL;
4137 
4138 	ipsq_exit(ipsq);
4139 
4140 	return (0);
4141 }
4142 
4143 /*
4144  * This is called as part of close() for IP, UDP, ICMP, and RTS
4145  * in order to quiesce the conn.
4146  */
4147 void
4148 ip_quiesce_conn(conn_t *connp)
4149 {
4150 	boolean_t	drain_cleanup_reqd = B_FALSE;
4151 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4152 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4153 	ip_stack_t	*ipst;
4154 
4155 	ASSERT(!IPCL_IS_TCP(connp));
4156 	ipst = connp->conn_netstack->netstack_ip;
4157 
4158 	/*
4159 	 * Mark the conn as closing, and this conn must not be
4160 	 * inserted in future into any list. Eg. conn_drain_insert(),
4161 	 * won't insert this conn into the conn_drain_list.
4162 	 *
4163 	 * conn_idl, and conn_ilg cannot get set henceforth.
4164 	 */
4165 	mutex_enter(&connp->conn_lock);
4166 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4167 	connp->conn_state_flags |= CONN_CLOSING;
4168 	if (connp->conn_idl != NULL)
4169 		drain_cleanup_reqd = B_TRUE;
4170 	if (connp->conn_oper_pending_ill != NULL)
4171 		conn_ioctl_cleanup_reqd = B_TRUE;
4172 	if (connp->conn_dhcpinit_ill != NULL) {
4173 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4174 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4175 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4176 		connp->conn_dhcpinit_ill = NULL;
4177 	}
4178 	if (connp->conn_ilg != NULL)
4179 		ilg_cleanup_reqd = B_TRUE;
4180 	mutex_exit(&connp->conn_lock);
4181 
4182 	if (conn_ioctl_cleanup_reqd)
4183 		conn_ioctl_cleanup(connp);
4184 
4185 	if (is_system_labeled() && connp->conn_anon_port) {
4186 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4187 		    connp->conn_mlp_type, connp->conn_proto,
4188 		    ntohs(connp->conn_lport), B_FALSE);
4189 		connp->conn_anon_port = 0;
4190 	}
4191 	connp->conn_mlp_type = mlptSingle;
4192 
4193 	/*
4194 	 * Remove this conn from any fanout list it is on.
4195 	 * and then wait for any threads currently operating
4196 	 * on this endpoint to finish
4197 	 */
4198 	ipcl_hash_remove(connp);
4199 
4200 	/*
4201 	 * Remove this conn from the drain list, and do any other cleanup that
4202 	 * may be required.  (TCP conns are never flow controlled, and
4203 	 * conn_idl will be NULL.)
4204 	 */
4205 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4206 		idl_t *idl = connp->conn_idl;
4207 
4208 		mutex_enter(&idl->idl_lock);
4209 		conn_drain(connp, B_TRUE);
4210 		mutex_exit(&idl->idl_lock);
4211 	}
4212 
4213 	if (connp == ipst->ips_ip_g_mrouter)
4214 		(void) ip_mrouter_done(ipst);
4215 
4216 	if (ilg_cleanup_reqd)
4217 		ilg_delete_all(connp);
4218 
4219 	/*
4220 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4221 	 * callers from write side can't be there now because close
4222 	 * is in progress. The only other caller is ipcl_walk
4223 	 * which checks for the condemned flag.
4224 	 */
4225 	mutex_enter(&connp->conn_lock);
4226 	connp->conn_state_flags |= CONN_CONDEMNED;
4227 	while (connp->conn_ref != 1)
4228 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4229 	connp->conn_state_flags |= CONN_QUIESCED;
4230 	mutex_exit(&connp->conn_lock);
4231 }
4232 
4233 /* ARGSUSED */
4234 int
4235 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4236 {
4237 	conn_t		*connp;
4238 
4239 	/*
4240 	 * Call the appropriate delete routine depending on whether this is
4241 	 * a module or device.
4242 	 */
4243 	if (WR(q)->q_next != NULL) {
4244 		/* This is a module close */
4245 		return (ip_modclose((ill_t *)q->q_ptr));
4246 	}
4247 
4248 	connp = q->q_ptr;
4249 	ip_quiesce_conn(connp);
4250 
4251 	qprocsoff(q);
4252 
4253 	/*
4254 	 * Now we are truly single threaded on this stream, and can
4255 	 * delete the things hanging off the connp, and finally the connp.
4256 	 * We removed this connp from the fanout list, it cannot be
4257 	 * accessed thru the fanouts, and we already waited for the
4258 	 * conn_ref to drop to 0. We are already in close, so
4259 	 * there cannot be any other thread from the top. qprocsoff
4260 	 * has completed, and service has completed or won't run in
4261 	 * future.
4262 	 */
4263 	ASSERT(connp->conn_ref == 1);
4264 
4265 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4266 
4267 	connp->conn_ref--;
4268 	ipcl_conn_destroy(connp);
4269 
4270 	q->q_ptr = WR(q)->q_ptr = NULL;
4271 	return (0);
4272 }
4273 
4274 /*
4275  * Wapper around putnext() so that ip_rts_request can merely use
4276  * conn_recv.
4277  */
4278 /*ARGSUSED2*/
4279 static void
4280 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4281 {
4282 	conn_t *connp = (conn_t *)arg1;
4283 
4284 	putnext(connp->conn_rq, mp);
4285 }
4286 
4287 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4288 /* ARGSUSED */
4289 static void
4290 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4291 {
4292 	freemsg(mp);
4293 }
4294 
4295 /*
4296  * Called when the module is about to be unloaded
4297  */
4298 void
4299 ip_ddi_destroy(void)
4300 {
4301 	/* This needs to be called before destroying any transports. */
4302 	mutex_enter(&cpu_lock);
4303 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4304 	mutex_exit(&cpu_lock);
4305 
4306 	tnet_fini();
4307 
4308 	icmp_ddi_g_destroy();
4309 	rts_ddi_g_destroy();
4310 	udp_ddi_g_destroy();
4311 	sctp_ddi_g_destroy();
4312 	tcp_ddi_g_destroy();
4313 	ilb_ddi_g_destroy();
4314 	dce_g_destroy();
4315 	ipsec_policy_g_destroy();
4316 	ipcl_g_destroy();
4317 	ip_net_g_destroy();
4318 	ip_ire_g_fini();
4319 	inet_minor_destroy(ip_minor_arena_sa);
4320 #if defined(_LP64)
4321 	inet_minor_destroy(ip_minor_arena_la);
4322 #endif
4323 
4324 #ifdef DEBUG
4325 	list_destroy(&ip_thread_list);
4326 	rw_destroy(&ip_thread_rwlock);
4327 	tsd_destroy(&ip_thread_data);
4328 #endif
4329 
4330 	netstack_unregister(NS_IP);
4331 }
4332 
4333 /*
4334  * First step in cleanup.
4335  */
4336 /* ARGSUSED */
4337 static void
4338 ip_stack_shutdown(netstackid_t stackid, void *arg)
4339 {
4340 	ip_stack_t *ipst = (ip_stack_t *)arg;
4341 	kt_did_t ktid;
4342 
4343 #ifdef NS_DEBUG
4344 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4345 #endif
4346 
4347 	/*
4348 	 * Perform cleanup for special interfaces (loopback and IPMP).
4349 	 */
4350 	ip_interface_cleanup(ipst);
4351 
4352 	/*
4353 	 * The *_hook_shutdown()s start the process of notifying any
4354 	 * consumers that things are going away.... nothing is destroyed.
4355 	 */
4356 	ipv4_hook_shutdown(ipst);
4357 	ipv6_hook_shutdown(ipst);
4358 	arp_hook_shutdown(ipst);
4359 
4360 	mutex_enter(&ipst->ips_capab_taskq_lock);
4361 	ktid = ipst->ips_capab_taskq_thread->t_did;
4362 	ipst->ips_capab_taskq_quit = B_TRUE;
4363 	cv_signal(&ipst->ips_capab_taskq_cv);
4364 	mutex_exit(&ipst->ips_capab_taskq_lock);
4365 
4366 	/*
4367 	 * In rare occurrences, particularly on virtual hardware where CPUs can
4368 	 * be de-scheduled, the thread that we just signaled will not run until
4369 	 * after we have gotten through parts of ip_stack_fini. If that happens
4370 	 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4371 	 * from cv_wait which no longer exists.
4372 	 */
4373 	thread_join(ktid);
4374 }
4375 
4376 /*
4377  * Free the IP stack instance.
4378  */
4379 static void
4380 ip_stack_fini(netstackid_t stackid, void *arg)
4381 {
4382 	ip_stack_t *ipst = (ip_stack_t *)arg;
4383 	int ret;
4384 
4385 #ifdef NS_DEBUG
4386 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4387 #endif
4388 	/*
4389 	 * At this point, all of the notifications that the events and
4390 	 * protocols are going away have been run, meaning that we can
4391 	 * now set about starting to clean things up.
4392 	 */
4393 	ipobs_fini(ipst);
4394 	ipv4_hook_destroy(ipst);
4395 	ipv6_hook_destroy(ipst);
4396 	arp_hook_destroy(ipst);
4397 	ip_net_destroy(ipst);
4398 
4399 	ipmp_destroy(ipst);
4400 
4401 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4402 	ipst->ips_ip_mibkp = NULL;
4403 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4404 	ipst->ips_icmp_mibkp = NULL;
4405 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4406 	ipst->ips_ip_kstat = NULL;
4407 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4408 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4409 	ipst->ips_ip6_kstat = NULL;
4410 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4411 
4412 	kmem_free(ipst->ips_propinfo_tbl,
4413 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4414 	ipst->ips_propinfo_tbl = NULL;
4415 
4416 	dce_stack_destroy(ipst);
4417 	ip_mrouter_stack_destroy(ipst);
4418 
4419 	/*
4420 	 * Quiesce all of our timers. Note we set the quiesce flags before we
4421 	 * call untimeout. The slowtimers may actually kick off another instance
4422 	 * of the non-slow timers.
4423 	 */
4424 	mutex_enter(&ipst->ips_igmp_timer_lock);
4425 	ipst->ips_igmp_timer_quiesce = B_TRUE;
4426 	mutex_exit(&ipst->ips_igmp_timer_lock);
4427 
4428 	mutex_enter(&ipst->ips_mld_timer_lock);
4429 	ipst->ips_mld_timer_quiesce = B_TRUE;
4430 	mutex_exit(&ipst->ips_mld_timer_lock);
4431 
4432 	mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4433 	ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4434 	mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4435 
4436 	mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4437 	ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4438 	mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4439 
4440 	ret = untimeout(ipst->ips_igmp_timeout_id);
4441 	if (ret == -1) {
4442 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4443 	} else {
4444 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4445 		ipst->ips_igmp_timeout_id = 0;
4446 	}
4447 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4448 	if (ret == -1) {
4449 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4450 	} else {
4451 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4452 		ipst->ips_igmp_slowtimeout_id = 0;
4453 	}
4454 	ret = untimeout(ipst->ips_mld_timeout_id);
4455 	if (ret == -1) {
4456 		ASSERT(ipst->ips_mld_timeout_id == 0);
4457 	} else {
4458 		ASSERT(ipst->ips_mld_timeout_id != 0);
4459 		ipst->ips_mld_timeout_id = 0;
4460 	}
4461 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4462 	if (ret == -1) {
4463 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4464 	} else {
4465 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4466 		ipst->ips_mld_slowtimeout_id = 0;
4467 	}
4468 
4469 	ip_ire_fini(ipst);
4470 	ip6_asp_free(ipst);
4471 	conn_drain_fini(ipst);
4472 	ipcl_destroy(ipst);
4473 
4474 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4475 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4476 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4477 	ipst->ips_ndp4 = NULL;
4478 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4479 	ipst->ips_ndp6 = NULL;
4480 
4481 	if (ipst->ips_loopback_ksp != NULL) {
4482 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4483 		ipst->ips_loopback_ksp = NULL;
4484 	}
4485 
4486 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4487 	cv_destroy(&ipst->ips_capab_taskq_cv);
4488 
4489 	rw_destroy(&ipst->ips_srcid_lock);
4490 
4491 	mutex_destroy(&ipst->ips_ip_mi_lock);
4492 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4493 
4494 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4495 	mutex_destroy(&ipst->ips_mld_timer_lock);
4496 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4497 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4498 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4499 	rw_destroy(&ipst->ips_ill_g_lock);
4500 
4501 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4502 	ipst->ips_phyint_g_list = NULL;
4503 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4504 	ipst->ips_ill_g_heads = NULL;
4505 
4506 	ldi_ident_release(ipst->ips_ldi_ident);
4507 	kmem_free(ipst, sizeof (*ipst));
4508 }
4509 
4510 /*
4511  * This function is called from the TSD destructor, and is used to debug
4512  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4513  * details.
4514  */
4515 static void
4516 ip_thread_exit(void *phash)
4517 {
4518 	th_hash_t *thh = phash;
4519 
4520 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4521 	list_remove(&ip_thread_list, thh);
4522 	rw_exit(&ip_thread_rwlock);
4523 	mod_hash_destroy_hash(thh->thh_hash);
4524 	kmem_free(thh, sizeof (*thh));
4525 }
4526 
4527 /*
4528  * Called when the IP kernel module is loaded into the kernel
4529  */
4530 void
4531 ip_ddi_init(void)
4532 {
4533 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4534 
4535 	/*
4536 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4537 	 * initial devices: ip, ip6, tcp, tcp6.
4538 	 */
4539 	/*
4540 	 * If this is a 64-bit kernel, then create two separate arenas -
4541 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4542 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4543 	 */
4544 	ip_minor_arena_la = NULL;
4545 	ip_minor_arena_sa = NULL;
4546 #if defined(_LP64)
4547 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4548 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4549 		cmn_err(CE_PANIC,
4550 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4551 	}
4552 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4553 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4554 		cmn_err(CE_PANIC,
4555 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4556 	}
4557 #else
4558 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4559 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4560 		cmn_err(CE_PANIC,
4561 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4562 	}
4563 #endif
4564 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4565 
4566 	ipcl_g_init();
4567 	ip_ire_g_init();
4568 	ip_net_g_init();
4569 
4570 #ifdef DEBUG
4571 	tsd_create(&ip_thread_data, ip_thread_exit);
4572 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4573 	list_create(&ip_thread_list, sizeof (th_hash_t),
4574 	    offsetof(th_hash_t, thh_link));
4575 #endif
4576 	ipsec_policy_g_init();
4577 	tcp_ddi_g_init();
4578 	sctp_ddi_g_init();
4579 	dce_g_init();
4580 
4581 	/*
4582 	 * We want to be informed each time a stack is created or
4583 	 * destroyed in the kernel, so we can maintain the
4584 	 * set of udp_stack_t's.
4585 	 */
4586 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4587 	    ip_stack_fini);
4588 
4589 	tnet_init();
4590 
4591 	udp_ddi_g_init();
4592 	rts_ddi_g_init();
4593 	icmp_ddi_g_init();
4594 	ilb_ddi_g_init();
4595 
4596 	/* This needs to be called after all transports are initialized. */
4597 	mutex_enter(&cpu_lock);
4598 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4599 	mutex_exit(&cpu_lock);
4600 }
4601 
4602 /*
4603  * Initialize the IP stack instance.
4604  */
4605 static void *
4606 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4607 {
4608 	ip_stack_t	*ipst;
4609 	size_t		arrsz;
4610 	major_t		major;
4611 
4612 #ifdef NS_DEBUG
4613 	printf("ip_stack_init(stack %d)\n", stackid);
4614 #endif
4615 
4616 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4617 	ipst->ips_netstack = ns;
4618 
4619 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4620 	    KM_SLEEP);
4621 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4622 	    KM_SLEEP);
4623 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4624 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4625 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4626 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4627 
4628 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4629 	ipst->ips_igmp_deferred_next = INFINITY;
4630 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4631 	ipst->ips_mld_deferred_next = INFINITY;
4632 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4633 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4634 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4635 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4636 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4637 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4638 
4639 	ipcl_init(ipst);
4640 	ip_ire_init(ipst);
4641 	ip6_asp_init(ipst);
4642 	ipif_init(ipst);
4643 	conn_drain_init(ipst);
4644 	ip_mrouter_stack_init(ipst);
4645 	dce_stack_init(ipst);
4646 
4647 	ipst->ips_ip_multirt_log_interval = 1000;
4648 
4649 	ipst->ips_ill_index = 1;
4650 
4651 	ipst->ips_saved_ip_forwarding = -1;
4652 	ipst->ips_reg_vif_num = ALL_VIFS;	/* Index to Register vif */
4653 
4654 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4655 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4656 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4657 
4658 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4659 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4660 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4661 	ipst->ips_ip6_kstat =
4662 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4663 
4664 	ipst->ips_ip_src_id = 1;
4665 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4666 
4667 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4668 
4669 	ip_net_init(ipst, ns);
4670 	ipv4_hook_init(ipst);
4671 	ipv6_hook_init(ipst);
4672 	arp_hook_init(ipst);
4673 	ipmp_init(ipst);
4674 	ipobs_init(ipst);
4675 
4676 	/*
4677 	 * Create the taskq dispatcher thread and initialize related stuff.
4678 	 */
4679 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4680 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4681 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4682 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4683 
4684 	major = mod_name_to_major(INET_NAME);
4685 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4686 	return (ipst);
4687 }
4688 
4689 /*
4690  * Allocate and initialize a DLPI template of the specified length.  (May be
4691  * called as writer.)
4692  */
4693 mblk_t *
4694 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4695 {
4696 	mblk_t	*mp;
4697 
4698 	mp = allocb(len, BPRI_MED);
4699 	if (!mp)
4700 		return (NULL);
4701 
4702 	/*
4703 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4704 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4705 	 * that other DLPI are M_PROTO.
4706 	 */
4707 	if (prim == DL_INFO_REQ) {
4708 		mp->b_datap->db_type = M_PCPROTO;
4709 	} else {
4710 		mp->b_datap->db_type = M_PROTO;
4711 	}
4712 
4713 	mp->b_wptr = mp->b_rptr + len;
4714 	bzero(mp->b_rptr, len);
4715 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4716 	return (mp);
4717 }
4718 
4719 /*
4720  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4721  */
4722 mblk_t *
4723 ip_dlnotify_alloc(uint_t notification, uint_t data)
4724 {
4725 	dl_notify_ind_t	*notifyp;
4726 	mblk_t		*mp;
4727 
4728 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4729 		return (NULL);
4730 
4731 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4732 	notifyp->dl_notification = notification;
4733 	notifyp->dl_data = data;
4734 	return (mp);
4735 }
4736 
4737 mblk_t *
4738 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4739 {
4740 	dl_notify_ind_t	*notifyp;
4741 	mblk_t		*mp;
4742 
4743 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4744 		return (NULL);
4745 
4746 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4747 	notifyp->dl_notification = notification;
4748 	notifyp->dl_data1 = data1;
4749 	notifyp->dl_data2 = data2;
4750 	return (mp);
4751 }
4752 
4753 /*
4754  * Debug formatting routine.  Returns a character string representation of the
4755  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4756  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4757  *
4758  * Once the ndd table-printing interfaces are removed, this can be changed to
4759  * standard dotted-decimal form.
4760  */
4761 char *
4762 ip_dot_addr(ipaddr_t addr, char *buf)
4763 {
4764 	uint8_t *ap = (uint8_t *)&addr;
4765 
4766 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4767 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4768 	return (buf);
4769 }
4770 
4771 /*
4772  * Write the given MAC address as a printable string in the usual colon-
4773  * separated format.
4774  */
4775 const char *
4776 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4777 {
4778 	char *bp;
4779 
4780 	if (alen == 0 || buflen < 4)
4781 		return ("?");
4782 	bp = buf;
4783 	for (;;) {
4784 		/*
4785 		 * If there are more MAC address bytes available, but we won't
4786 		 * have any room to print them, then add "..." to the string
4787 		 * instead.  See below for the 'magic number' explanation.
4788 		 */
4789 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4790 			(void) strcpy(bp, "...");
4791 			break;
4792 		}
4793 		(void) sprintf(bp, "%02x", *addr++);
4794 		bp += 2;
4795 		if (--alen == 0)
4796 			break;
4797 		*bp++ = ':';
4798 		buflen -= 3;
4799 		/*
4800 		 * At this point, based on the first 'if' statement above,
4801 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4802 		 * buflen >= 4.  The first case leaves room for the final "xx"
4803 		 * number and trailing NUL byte.  The second leaves room for at
4804 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4805 		 * that statement.
4806 		 */
4807 	}
4808 	return (buf);
4809 }
4810 
4811 /*
4812  * Called when it is conceptually a ULP that would sent the packet
4813  * e.g., port unreachable and protocol unreachable. Check that the packet
4814  * would have passed the IPsec global policy before sending the error.
4815  *
4816  * Send an ICMP error after patching up the packet appropriately.
4817  * Uses ip_drop_input and bumps the appropriate MIB.
4818  */
4819 void
4820 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4821     ip_recv_attr_t *ira)
4822 {
4823 	ipha_t		*ipha;
4824 	boolean_t	secure;
4825 	ill_t		*ill = ira->ira_ill;
4826 	ip_stack_t	*ipst = ill->ill_ipst;
4827 	netstack_t	*ns = ipst->ips_netstack;
4828 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4829 
4830 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4831 
4832 	/*
4833 	 * We are generating an icmp error for some inbound packet.
4834 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4835 	 * Before we generate an error, check with global policy
4836 	 * to see whether this is allowed to enter the system. As
4837 	 * there is no "conn", we are checking with global policy.
4838 	 */
4839 	ipha = (ipha_t *)mp->b_rptr;
4840 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4841 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4842 		if (mp == NULL)
4843 			return;
4844 	}
4845 
4846 	/* We never send errors for protocols that we do implement */
4847 	if (ira->ira_protocol == IPPROTO_ICMP ||
4848 	    ira->ira_protocol == IPPROTO_IGMP) {
4849 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4850 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4851 		freemsg(mp);
4852 		return;
4853 	}
4854 	/*
4855 	 * Have to correct checksum since
4856 	 * the packet might have been
4857 	 * fragmented and the reassembly code in ip_rput
4858 	 * does not restore the IP checksum.
4859 	 */
4860 	ipha->ipha_hdr_checksum = 0;
4861 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4862 
4863 	switch (icmp_type) {
4864 	case ICMP_DEST_UNREACHABLE:
4865 		switch (icmp_code) {
4866 		case ICMP_PROTOCOL_UNREACHABLE:
4867 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4868 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4869 			break;
4870 		case ICMP_PORT_UNREACHABLE:
4871 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4872 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4873 			break;
4874 		}
4875 
4876 		icmp_unreachable(mp, icmp_code, ira);
4877 		break;
4878 	default:
4879 #ifdef DEBUG
4880 		panic("ip_fanout_send_icmp_v4: wrong type");
4881 		/*NOTREACHED*/
4882 #else
4883 		freemsg(mp);
4884 		break;
4885 #endif
4886 	}
4887 }
4888 
4889 /*
4890  * Used to send an ICMP error message when a packet is received for
4891  * a protocol that is not supported. The mblk passed as argument
4892  * is consumed by this function.
4893  */
4894 void
4895 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4896 {
4897 	ipha_t		*ipha;
4898 
4899 	ipha = (ipha_t *)mp->b_rptr;
4900 	if (ira->ira_flags & IRAF_IS_IPV4) {
4901 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4902 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4903 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4904 	} else {
4905 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4906 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4907 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4908 	}
4909 }
4910 
4911 /*
4912  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4913  * Handles IPv4 and IPv6.
4914  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4915  * Caller is responsible for dropping references to the conn.
4916  */
4917 void
4918 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4919     ip_recv_attr_t *ira)
4920 {
4921 	ill_t		*ill = ira->ira_ill;
4922 	ip_stack_t	*ipst = ill->ill_ipst;
4923 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4924 	boolean_t	secure;
4925 	uint_t		protocol = ira->ira_protocol;
4926 	iaflags_t	iraflags = ira->ira_flags;
4927 	queue_t		*rq;
4928 
4929 	secure = iraflags & IRAF_IPSEC_SECURE;
4930 
4931 	rq = connp->conn_rq;
4932 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4933 		switch (protocol) {
4934 		case IPPROTO_ICMPV6:
4935 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4936 			break;
4937 		case IPPROTO_ICMP:
4938 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4939 			break;
4940 		default:
4941 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4942 			break;
4943 		}
4944 		freemsg(mp);
4945 		return;
4946 	}
4947 
4948 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4949 
4950 	if (((iraflags & IRAF_IS_IPV4) ?
4951 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4952 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4953 	    secure) {
4954 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4955 		    ip6h, ira);
4956 		if (mp == NULL) {
4957 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4958 			/* Note that mp is NULL */
4959 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4960 			return;
4961 		}
4962 	}
4963 
4964 	if (iraflags & IRAF_ICMP_ERROR) {
4965 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4966 	} else {
4967 		ill_t *rill = ira->ira_rill;
4968 
4969 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4970 		ira->ira_ill = ira->ira_rill = NULL;
4971 		/* Send it upstream */
4972 		(connp->conn_recv)(connp, mp, NULL, ira);
4973 		ira->ira_ill = ill;
4974 		ira->ira_rill = rill;
4975 	}
4976 }
4977 
4978 /*
4979  * Handle protocols with which IP is less intimate.  There
4980  * can be more than one stream bound to a particular
4981  * protocol.  When this is the case, normally each one gets a copy
4982  * of any incoming packets.
4983  *
4984  * IPsec NOTE :
4985  *
4986  * Don't allow a secure packet going up a non-secure connection.
4987  * We don't allow this because
4988  *
4989  * 1) Reply might go out in clear which will be dropped at
4990  *    the sending side.
4991  * 2) If the reply goes out in clear it will give the
4992  *    adversary enough information for getting the key in
4993  *    most of the cases.
4994  *
4995  * Moreover getting a secure packet when we expect clear
4996  * implies that SA's were added without checking for
4997  * policy on both ends. This should not happen once ISAKMP
4998  * is used to negotiate SAs as SAs will be added only after
4999  * verifying the policy.
5000  *
5001  * Zones notes:
5002  * Earlier in ip_input on a system with multiple shared-IP zones we
5003  * duplicate the multicast and broadcast packets and send them up
5004  * with each explicit zoneid that exists on that ill.
5005  * This means that here we can match the zoneid with SO_ALLZONES being special.
5006  */
5007 void
5008 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5009 {
5010 	mblk_t		*mp1;
5011 	ipaddr_t	laddr;
5012 	conn_t		*connp, *first_connp, *next_connp;
5013 	connf_t		*connfp;
5014 	ill_t		*ill = ira->ira_ill;
5015 	ip_stack_t	*ipst = ill->ill_ipst;
5016 
5017 	laddr = ipha->ipha_dst;
5018 
5019 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5020 	mutex_enter(&connfp->connf_lock);
5021 	connp = connfp->connf_head;
5022 	for (connp = connfp->connf_head; connp != NULL;
5023 	    connp = connp->conn_next) {
5024 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5025 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5026 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5027 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5028 			break;
5029 		}
5030 	}
5031 
5032 	if (connp == NULL) {
5033 		/*
5034 		 * No one bound to these addresses.  Is
5035 		 * there a client that wants all
5036 		 * unclaimed datagrams?
5037 		 */
5038 		mutex_exit(&connfp->connf_lock);
5039 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5040 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5041 		return;
5042 	}
5043 
5044 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5045 
5046 	CONN_INC_REF(connp);
5047 	first_connp = connp;
5048 	connp = connp->conn_next;
5049 
5050 	for (;;) {
5051 		while (connp != NULL) {
5052 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5053 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5054 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5055 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5056 			    ira, connp)))
5057 				break;
5058 			connp = connp->conn_next;
5059 		}
5060 
5061 		if (connp == NULL) {
5062 			/* No more interested clients */
5063 			connp = first_connp;
5064 			break;
5065 		}
5066 		if (((mp1 = dupmsg(mp)) == NULL) &&
5067 		    ((mp1 = copymsg(mp)) == NULL)) {
5068 			/* Memory allocation failed */
5069 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5070 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5071 			connp = first_connp;
5072 			break;
5073 		}
5074 
5075 		CONN_INC_REF(connp);
5076 		mutex_exit(&connfp->connf_lock);
5077 
5078 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5079 		    ira);
5080 
5081 		mutex_enter(&connfp->connf_lock);
5082 		/* Follow the next pointer before releasing the conn. */
5083 		next_connp = connp->conn_next;
5084 		CONN_DEC_REF(connp);
5085 		connp = next_connp;
5086 	}
5087 
5088 	/* Last one.  Send it upstream. */
5089 	mutex_exit(&connfp->connf_lock);
5090 
5091 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5092 
5093 	CONN_DEC_REF(connp);
5094 }
5095 
5096 /*
5097  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5098  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5099  * is not consumed.
5100  *
5101  * One of three things can happen, all of which affect the passed-in mblk:
5102  *
5103  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5104  *
5105  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5106  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5107  *
5108  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5109  */
5110 mblk_t *
5111 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5112 {
5113 	int shift, plen, iph_len;
5114 	ipha_t *ipha;
5115 	udpha_t *udpha;
5116 	uint32_t *spi;
5117 	uint32_t esp_ports;
5118 	uint8_t *orptr;
5119 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5120 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5121 
5122 	ipha = (ipha_t *)mp->b_rptr;
5123 	iph_len = ira->ira_ip_hdr_length;
5124 	plen = ira->ira_pktlen;
5125 
5126 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5127 		/*
5128 		 * Most likely a keepalive for the benefit of an intervening
5129 		 * NAT.  These aren't for us, per se, so drop it.
5130 		 *
5131 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5132 		 * byte packets (keepalives are 1-byte), but we'll drop them
5133 		 * also.
5134 		 */
5135 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5136 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5137 		return (NULL);
5138 	}
5139 
5140 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5141 		/* might as well pull it all up - it might be ESP. */
5142 		if (!pullupmsg(mp, -1)) {
5143 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5144 			    DROPPER(ipss, ipds_esp_nomem),
5145 			    &ipss->ipsec_dropper);
5146 			return (NULL);
5147 		}
5148 
5149 		ipha = (ipha_t *)mp->b_rptr;
5150 	}
5151 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5152 	if (*spi == 0) {
5153 		/* UDP packet - remove 0-spi. */
5154 		shift = sizeof (uint32_t);
5155 	} else {
5156 		/* ESP-in-UDP packet - reduce to ESP. */
5157 		ipha->ipha_protocol = IPPROTO_ESP;
5158 		shift = sizeof (udpha_t);
5159 	}
5160 
5161 	/* Fix IP header */
5162 	ira->ira_pktlen = (plen - shift);
5163 	ipha->ipha_length = htons(ira->ira_pktlen);
5164 	ipha->ipha_hdr_checksum = 0;
5165 
5166 	orptr = mp->b_rptr;
5167 	mp->b_rptr += shift;
5168 
5169 	udpha = (udpha_t *)(orptr + iph_len);
5170 	if (*spi == 0) {
5171 		ASSERT((uint8_t *)ipha == orptr);
5172 		udpha->uha_length = htons(plen - shift - iph_len);
5173 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5174 		esp_ports = 0;
5175 	} else {
5176 		esp_ports = *((uint32_t *)udpha);
5177 		ASSERT(esp_ports != 0);
5178 	}
5179 	ovbcopy(orptr, orptr + shift, iph_len);
5180 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5181 		ipha = (ipha_t *)(orptr + shift);
5182 
5183 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5184 		ira->ira_esp_udp_ports = esp_ports;
5185 		ip_fanout_v4(mp, ipha, ira);
5186 		return (NULL);
5187 	}
5188 	return (mp);
5189 }
5190 
5191 /*
5192  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5193  * Handles IPv4 and IPv6.
5194  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5195  * Caller is responsible for dropping references to the conn.
5196  */
5197 void
5198 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5199     ip_recv_attr_t *ira)
5200 {
5201 	ill_t		*ill = ira->ira_ill;
5202 	ip_stack_t	*ipst = ill->ill_ipst;
5203 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5204 	boolean_t	secure;
5205 	iaflags_t	iraflags = ira->ira_flags;
5206 
5207 	secure = iraflags & IRAF_IPSEC_SECURE;
5208 
5209 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5210 	    !canputnext(connp->conn_rq)) {
5211 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5212 		freemsg(mp);
5213 		return;
5214 	}
5215 
5216 	if (((iraflags & IRAF_IS_IPV4) ?
5217 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5218 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5219 	    secure) {
5220 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5221 		    ip6h, ira);
5222 		if (mp == NULL) {
5223 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5224 			/* Note that mp is NULL */
5225 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5226 			return;
5227 		}
5228 	}
5229 
5230 	/*
5231 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5232 	 * check. Only ip_fanout_v4 has that check.
5233 	 */
5234 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5235 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5236 	} else {
5237 		ill_t *rill = ira->ira_rill;
5238 
5239 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5240 		ira->ira_ill = ira->ira_rill = NULL;
5241 		/* Send it upstream */
5242 		(connp->conn_recv)(connp, mp, NULL, ira);
5243 		ira->ira_ill = ill;
5244 		ira->ira_rill = rill;
5245 	}
5246 }
5247 
5248 /*
5249  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5250  * (Unicast fanout is handled in ip_input_v4.)
5251  *
5252  * If SO_REUSEADDR is set all multicast and broadcast packets
5253  * will be delivered to all conns bound to the same port.
5254  *
5255  * If there is at least one matching AF_INET receiver, then we will
5256  * ignore any AF_INET6 receivers.
5257  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5258  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5259  * packets.
5260  *
5261  * Zones notes:
5262  * Earlier in ip_input on a system with multiple shared-IP zones we
5263  * duplicate the multicast and broadcast packets and send them up
5264  * with each explicit zoneid that exists on that ill.
5265  * This means that here we can match the zoneid with SO_ALLZONES being special.
5266  */
5267 void
5268 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5269     ip_recv_attr_t *ira)
5270 {
5271 	ipaddr_t	laddr;
5272 	in6_addr_t	v6faddr;
5273 	conn_t		*connp;
5274 	connf_t		*connfp;
5275 	ipaddr_t	faddr;
5276 	ill_t		*ill = ira->ira_ill;
5277 	ip_stack_t	*ipst = ill->ill_ipst;
5278 
5279 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5280 
5281 	laddr = ipha->ipha_dst;
5282 	faddr = ipha->ipha_src;
5283 
5284 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5285 	mutex_enter(&connfp->connf_lock);
5286 	connp = connfp->connf_head;
5287 
5288 	/*
5289 	 * If SO_REUSEADDR has been set on the first we send the
5290 	 * packet to all clients that have joined the group and
5291 	 * match the port.
5292 	 */
5293 	while (connp != NULL) {
5294 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5295 		    conn_wantpacket(connp, ira, ipha) &&
5296 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5297 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5298 			break;
5299 		connp = connp->conn_next;
5300 	}
5301 
5302 	if (connp == NULL)
5303 		goto notfound;
5304 
5305 	CONN_INC_REF(connp);
5306 
5307 	if (connp->conn_reuseaddr) {
5308 		conn_t		*first_connp = connp;
5309 		conn_t		*next_connp;
5310 		mblk_t		*mp1;
5311 
5312 		connp = connp->conn_next;
5313 		for (;;) {
5314 			while (connp != NULL) {
5315 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5316 				    fport, faddr) &&
5317 				    conn_wantpacket(connp, ira, ipha) &&
5318 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5319 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5320 				    ira, connp)))
5321 					break;
5322 				connp = connp->conn_next;
5323 			}
5324 			if (connp == NULL) {
5325 				/* No more interested clients */
5326 				connp = first_connp;
5327 				break;
5328 			}
5329 			if (((mp1 = dupmsg(mp)) == NULL) &&
5330 			    ((mp1 = copymsg(mp)) == NULL)) {
5331 				/* Memory allocation failed */
5332 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5333 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5334 				connp = first_connp;
5335 				break;
5336 			}
5337 			CONN_INC_REF(connp);
5338 			mutex_exit(&connfp->connf_lock);
5339 
5340 			IP_STAT(ipst, ip_udp_fanmb);
5341 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5342 			    NULL, ira);
5343 			mutex_enter(&connfp->connf_lock);
5344 			/* Follow the next pointer before releasing the conn */
5345 			next_connp = connp->conn_next;
5346 			CONN_DEC_REF(connp);
5347 			connp = next_connp;
5348 		}
5349 	}
5350 
5351 	/* Last one.  Send it upstream. */
5352 	mutex_exit(&connfp->connf_lock);
5353 	IP_STAT(ipst, ip_udp_fanmb);
5354 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5355 	CONN_DEC_REF(connp);
5356 	return;
5357 
5358 notfound:
5359 	mutex_exit(&connfp->connf_lock);
5360 	/*
5361 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5362 	 * have already been matched above, since they live in the IPv4
5363 	 * fanout tables. This implies we only need to
5364 	 * check for IPv6 in6addr_any endpoints here.
5365 	 * Thus we compare using ipv6_all_zeros instead of the destination
5366 	 * address, except for the multicast group membership lookup which
5367 	 * uses the IPv4 destination.
5368 	 */
5369 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5370 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5371 	mutex_enter(&connfp->connf_lock);
5372 	connp = connfp->connf_head;
5373 	/*
5374 	 * IPv4 multicast packet being delivered to an AF_INET6
5375 	 * in6addr_any endpoint.
5376 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5377 	 * and not conn_wantpacket_v6() since any multicast membership is
5378 	 * for an IPv4-mapped multicast address.
5379 	 */
5380 	while (connp != NULL) {
5381 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5382 		    fport, v6faddr) &&
5383 		    conn_wantpacket(connp, ira, ipha) &&
5384 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5385 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5386 			break;
5387 		connp = connp->conn_next;
5388 	}
5389 
5390 	if (connp == NULL) {
5391 		/*
5392 		 * No one bound to this port.  Is
5393 		 * there a client that wants all
5394 		 * unclaimed datagrams?
5395 		 */
5396 		mutex_exit(&connfp->connf_lock);
5397 
5398 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5399 		    NULL) {
5400 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5401 			ip_fanout_proto_v4(mp, ipha, ira);
5402 		} else {
5403 			/*
5404 			 * We used to attempt to send an icmp error here, but
5405 			 * since this is known to be a multicast packet
5406 			 * and we don't send icmp errors in response to
5407 			 * multicast, just drop the packet and give up sooner.
5408 			 */
5409 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5410 			freemsg(mp);
5411 		}
5412 		return;
5413 	}
5414 	CONN_INC_REF(connp);
5415 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5416 
5417 	/*
5418 	 * If SO_REUSEADDR has been set on the first we send the
5419 	 * packet to all clients that have joined the group and
5420 	 * match the port.
5421 	 */
5422 	if (connp->conn_reuseaddr) {
5423 		conn_t		*first_connp = connp;
5424 		conn_t		*next_connp;
5425 		mblk_t		*mp1;
5426 
5427 		connp = connp->conn_next;
5428 		for (;;) {
5429 			while (connp != NULL) {
5430 				if (IPCL_UDP_MATCH_V6(connp, lport,
5431 				    ipv6_all_zeros, fport, v6faddr) &&
5432 				    conn_wantpacket(connp, ira, ipha) &&
5433 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5434 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5435 				    ira, connp)))
5436 					break;
5437 				connp = connp->conn_next;
5438 			}
5439 			if (connp == NULL) {
5440 				/* No more interested clients */
5441 				connp = first_connp;
5442 				break;
5443 			}
5444 			if (((mp1 = dupmsg(mp)) == NULL) &&
5445 			    ((mp1 = copymsg(mp)) == NULL)) {
5446 				/* Memory allocation failed */
5447 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5448 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5449 				connp = first_connp;
5450 				break;
5451 			}
5452 			CONN_INC_REF(connp);
5453 			mutex_exit(&connfp->connf_lock);
5454 
5455 			IP_STAT(ipst, ip_udp_fanmb);
5456 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5457 			    NULL, ira);
5458 			mutex_enter(&connfp->connf_lock);
5459 			/* Follow the next pointer before releasing the conn */
5460 			next_connp = connp->conn_next;
5461 			CONN_DEC_REF(connp);
5462 			connp = next_connp;
5463 		}
5464 	}
5465 
5466 	/* Last one.  Send it upstream. */
5467 	mutex_exit(&connfp->connf_lock);
5468 	IP_STAT(ipst, ip_udp_fanmb);
5469 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5470 	CONN_DEC_REF(connp);
5471 }
5472 
5473 /*
5474  * Split an incoming packet's IPv4 options into the label and the other options.
5475  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5476  * clearing out any leftover label or options.
5477  * Otherwise it just makes ipp point into the packet.
5478  *
5479  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5480  */
5481 int
5482 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5483 {
5484 	uchar_t		*opt;
5485 	uint32_t	totallen;
5486 	uint32_t	optval;
5487 	uint32_t	optlen;
5488 
5489 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5490 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5491 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5492 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5493 
5494 	/*
5495 	 * Get length (in 4 byte octets) of IP header options.
5496 	 */
5497 	totallen = ipha->ipha_version_and_hdr_length -
5498 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5499 
5500 	if (totallen == 0) {
5501 		if (!allocate)
5502 			return (0);
5503 
5504 		/* Clear out anything from a previous packet */
5505 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5506 			kmem_free(ipp->ipp_ipv4_options,
5507 			    ipp->ipp_ipv4_options_len);
5508 			ipp->ipp_ipv4_options = NULL;
5509 			ipp->ipp_ipv4_options_len = 0;
5510 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5511 		}
5512 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5513 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5514 			ipp->ipp_label_v4 = NULL;
5515 			ipp->ipp_label_len_v4 = 0;
5516 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5517 		}
5518 		return (0);
5519 	}
5520 
5521 	totallen <<= 2;
5522 	opt = (uchar_t *)&ipha[1];
5523 	if (!is_system_labeled()) {
5524 
5525 	copyall:
5526 		if (!allocate) {
5527 			if (totallen != 0) {
5528 				ipp->ipp_ipv4_options = opt;
5529 				ipp->ipp_ipv4_options_len = totallen;
5530 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5531 			}
5532 			return (0);
5533 		}
5534 		/* Just copy all of options */
5535 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5536 			if (totallen == ipp->ipp_ipv4_options_len) {
5537 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5538 				return (0);
5539 			}
5540 			kmem_free(ipp->ipp_ipv4_options,
5541 			    ipp->ipp_ipv4_options_len);
5542 			ipp->ipp_ipv4_options = NULL;
5543 			ipp->ipp_ipv4_options_len = 0;
5544 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5545 		}
5546 		if (totallen == 0)
5547 			return (0);
5548 
5549 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5550 		if (ipp->ipp_ipv4_options == NULL)
5551 			return (ENOMEM);
5552 		ipp->ipp_ipv4_options_len = totallen;
5553 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5554 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5555 		return (0);
5556 	}
5557 
5558 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5559 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5560 		ipp->ipp_label_v4 = NULL;
5561 		ipp->ipp_label_len_v4 = 0;
5562 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5563 	}
5564 
5565 	/*
5566 	 * Search for CIPSO option.
5567 	 * We assume CIPSO is first in options if it is present.
5568 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5569 	 * prior to the CIPSO option.
5570 	 */
5571 	while (totallen != 0) {
5572 		switch (optval = opt[IPOPT_OPTVAL]) {
5573 		case IPOPT_EOL:
5574 			return (0);
5575 		case IPOPT_NOP:
5576 			optlen = 1;
5577 			break;
5578 		default:
5579 			if (totallen <= IPOPT_OLEN)
5580 				return (EINVAL);
5581 			optlen = opt[IPOPT_OLEN];
5582 			if (optlen < 2)
5583 				return (EINVAL);
5584 		}
5585 		if (optlen > totallen)
5586 			return (EINVAL);
5587 
5588 		switch (optval) {
5589 		case IPOPT_COMSEC:
5590 			if (!allocate) {
5591 				ipp->ipp_label_v4 = opt;
5592 				ipp->ipp_label_len_v4 = optlen;
5593 				ipp->ipp_fields |= IPPF_LABEL_V4;
5594 			} else {
5595 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5596 				    KM_NOSLEEP);
5597 				if (ipp->ipp_label_v4 == NULL)
5598 					return (ENOMEM);
5599 				ipp->ipp_label_len_v4 = optlen;
5600 				ipp->ipp_fields |= IPPF_LABEL_V4;
5601 				bcopy(opt, ipp->ipp_label_v4, optlen);
5602 			}
5603 			totallen -= optlen;
5604 			opt += optlen;
5605 
5606 			/* Skip padding bytes until we get to a multiple of 4 */
5607 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5608 				totallen--;
5609 				opt++;
5610 			}
5611 			/* Remaining as ipp_ipv4_options */
5612 			goto copyall;
5613 		}
5614 		totallen -= optlen;
5615 		opt += optlen;
5616 	}
5617 	/* No CIPSO found; return everything as ipp_ipv4_options */
5618 	totallen = ipha->ipha_version_and_hdr_length -
5619 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5620 	totallen <<= 2;
5621 	opt = (uchar_t *)&ipha[1];
5622 	goto copyall;
5623 }
5624 
5625 /*
5626  * Efficient versions of lookup for an IRE when we only
5627  * match the address.
5628  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5629  * Does not handle multicast addresses.
5630  */
5631 uint_t
5632 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5633 {
5634 	ire_t *ire;
5635 	uint_t result;
5636 
5637 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5638 	ASSERT(ire != NULL);
5639 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5640 		result = IRE_NOROUTE;
5641 	else
5642 		result = ire->ire_type;
5643 	ire_refrele(ire);
5644 	return (result);
5645 }
5646 
5647 /*
5648  * Efficient versions of lookup for an IRE when we only
5649  * match the address.
5650  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5651  * Does not handle multicast addresses.
5652  */
5653 uint_t
5654 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5655 {
5656 	ire_t *ire;
5657 	uint_t result;
5658 
5659 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5660 	ASSERT(ire != NULL);
5661 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5662 		result = IRE_NOROUTE;
5663 	else
5664 		result = ire->ire_type;
5665 	ire_refrele(ire);
5666 	return (result);
5667 }
5668 
5669 /*
5670  * Nobody should be sending
5671  * packets up this stream
5672  */
5673 static int
5674 ip_lrput(queue_t *q, mblk_t *mp)
5675 {
5676 	switch (mp->b_datap->db_type) {
5677 	case M_FLUSH:
5678 		/* Turn around */
5679 		if (*mp->b_rptr & FLUSHW) {
5680 			*mp->b_rptr &= ~FLUSHR;
5681 			qreply(q, mp);
5682 			return (0);
5683 		}
5684 		break;
5685 	}
5686 	freemsg(mp);
5687 	return (0);
5688 }
5689 
5690 /* Nobody should be sending packets down this stream */
5691 /* ARGSUSED */
5692 int
5693 ip_lwput(queue_t *q, mblk_t *mp)
5694 {
5695 	freemsg(mp);
5696 	return (0);
5697 }
5698 
5699 /*
5700  * Move the first hop in any source route to ipha_dst and remove that part of
5701  * the source route.  Called by other protocols.  Errors in option formatting
5702  * are ignored - will be handled by ip_output_options. Return the final
5703  * destination (either ipha_dst or the last entry in a source route.)
5704  */
5705 ipaddr_t
5706 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5707 {
5708 	ipoptp_t	opts;
5709 	uchar_t		*opt;
5710 	uint8_t		optval;
5711 	uint8_t		optlen;
5712 	ipaddr_t	dst;
5713 	int		i;
5714 	ip_stack_t	*ipst = ns->netstack_ip;
5715 
5716 	ip2dbg(("ip_massage_options\n"));
5717 	dst = ipha->ipha_dst;
5718 	for (optval = ipoptp_first(&opts, ipha);
5719 	    optval != IPOPT_EOL;
5720 	    optval = ipoptp_next(&opts)) {
5721 		opt = opts.ipoptp_cur;
5722 		switch (optval) {
5723 			uint8_t off;
5724 		case IPOPT_SSRR:
5725 		case IPOPT_LSRR:
5726 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5727 				ip1dbg(("ip_massage_options: bad src route\n"));
5728 				break;
5729 			}
5730 			optlen = opts.ipoptp_len;
5731 			off = opt[IPOPT_OFFSET];
5732 			off--;
5733 		redo_srr:
5734 			if (optlen < IP_ADDR_LEN ||
5735 			    off > optlen - IP_ADDR_LEN) {
5736 				/* End of source route */
5737 				ip1dbg(("ip_massage_options: end of SR\n"));
5738 				break;
5739 			}
5740 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5741 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5742 			    ntohl(dst)));
5743 			/*
5744 			 * Check if our address is present more than
5745 			 * once as consecutive hops in source route.
5746 			 * XXX verify per-interface ip_forwarding
5747 			 * for source route?
5748 			 */
5749 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5750 				off += IP_ADDR_LEN;
5751 				goto redo_srr;
5752 			}
5753 			if (dst == htonl(INADDR_LOOPBACK)) {
5754 				ip1dbg(("ip_massage_options: loopback addr in "
5755 				    "source route!\n"));
5756 				break;
5757 			}
5758 			/*
5759 			 * Update ipha_dst to be the first hop and remove the
5760 			 * first hop from the source route (by overwriting
5761 			 * part of the option with NOP options).
5762 			 */
5763 			ipha->ipha_dst = dst;
5764 			/* Put the last entry in dst */
5765 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5766 			    3;
5767 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5768 
5769 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5770 			    ntohl(dst)));
5771 			/* Move down and overwrite */
5772 			opt[IP_ADDR_LEN] = opt[0];
5773 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5774 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5775 			for (i = 0; i < IP_ADDR_LEN; i++)
5776 				opt[i] = IPOPT_NOP;
5777 			break;
5778 		}
5779 	}
5780 	return (dst);
5781 }
5782 
5783 /*
5784  * Return the network mask
5785  * associated with the specified address.
5786  */
5787 ipaddr_t
5788 ip_net_mask(ipaddr_t addr)
5789 {
5790 	uchar_t	*up = (uchar_t *)&addr;
5791 	ipaddr_t mask = 0;
5792 	uchar_t	*maskp = (uchar_t *)&mask;
5793 
5794 #if defined(__i386) || defined(__amd64)
5795 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5796 #endif
5797 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5798 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5799 #endif
5800 	if (CLASSD(addr)) {
5801 		maskp[0] = 0xF0;
5802 		return (mask);
5803 	}
5804 
5805 	/* We assume Class E default netmask to be 32 */
5806 	if (CLASSE(addr))
5807 		return (0xffffffffU);
5808 
5809 	if (addr == 0)
5810 		return (0);
5811 	maskp[0] = 0xFF;
5812 	if ((up[0] & 0x80) == 0)
5813 		return (mask);
5814 
5815 	maskp[1] = 0xFF;
5816 	if ((up[0] & 0xC0) == 0x80)
5817 		return (mask);
5818 
5819 	maskp[2] = 0xFF;
5820 	if ((up[0] & 0xE0) == 0xC0)
5821 		return (mask);
5822 
5823 	/* Otherwise return no mask */
5824 	return ((ipaddr_t)0);
5825 }
5826 
5827 /* Name/Value Table Lookup Routine */
5828 char *
5829 ip_nv_lookup(nv_t *nv, int value)
5830 {
5831 	if (!nv)
5832 		return (NULL);
5833 	for (; nv->nv_name; nv++) {
5834 		if (nv->nv_value == value)
5835 			return (nv->nv_name);
5836 	}
5837 	return ("unknown");
5838 }
5839 
5840 static int
5841 ip_wait_for_info_ack(ill_t *ill)
5842 {
5843 	int err;
5844 
5845 	mutex_enter(&ill->ill_lock);
5846 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5847 		/*
5848 		 * Return value of 0 indicates a pending signal.
5849 		 */
5850 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5851 		if (err == 0) {
5852 			mutex_exit(&ill->ill_lock);
5853 			return (EINTR);
5854 		}
5855 	}
5856 	mutex_exit(&ill->ill_lock);
5857 	/*
5858 	 * ip_rput_other could have set an error  in ill_error on
5859 	 * receipt of M_ERROR.
5860 	 */
5861 	return (ill->ill_error);
5862 }
5863 
5864 /*
5865  * This is a module open, i.e. this is a control stream for access
5866  * to a DLPI device.  We allocate an ill_t as the instance data in
5867  * this case.
5868  */
5869 static int
5870 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5871 {
5872 	ill_t	*ill;
5873 	int	err;
5874 	zoneid_t zoneid;
5875 	netstack_t *ns;
5876 	ip_stack_t *ipst;
5877 
5878 	/*
5879 	 * Prevent unprivileged processes from pushing IP so that
5880 	 * they can't send raw IP.
5881 	 */
5882 	if (secpolicy_net_rawaccess(credp) != 0)
5883 		return (EPERM);
5884 
5885 	ns = netstack_find_by_cred(credp);
5886 	ASSERT(ns != NULL);
5887 	ipst = ns->netstack_ip;
5888 	ASSERT(ipst != NULL);
5889 
5890 	/*
5891 	 * For exclusive stacks we set the zoneid to zero
5892 	 * to make IP operate as if in the global zone.
5893 	 */
5894 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5895 		zoneid = GLOBAL_ZONEID;
5896 	else
5897 		zoneid = crgetzoneid(credp);
5898 
5899 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5900 	q->q_ptr = WR(q)->q_ptr = ill;
5901 	ill->ill_ipst = ipst;
5902 	ill->ill_zoneid = zoneid;
5903 
5904 	/*
5905 	 * ill_init initializes the ill fields and then sends down
5906 	 * down a DL_INFO_REQ after calling qprocson.
5907 	 */
5908 	err = ill_init(q, ill);
5909 
5910 	if (err != 0) {
5911 		mi_free(ill);
5912 		netstack_rele(ipst->ips_netstack);
5913 		q->q_ptr = NULL;
5914 		WR(q)->q_ptr = NULL;
5915 		return (err);
5916 	}
5917 
5918 	/*
5919 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5920 	 *
5921 	 * ill_init initializes the ipsq marking this thread as
5922 	 * writer
5923 	 */
5924 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5925 	err = ip_wait_for_info_ack(ill);
5926 	if (err == 0)
5927 		ill->ill_credp = credp;
5928 	else
5929 		goto fail;
5930 
5931 	crhold(credp);
5932 
5933 	mutex_enter(&ipst->ips_ip_mi_lock);
5934 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5935 	    sflag, credp);
5936 	mutex_exit(&ipst->ips_ip_mi_lock);
5937 fail:
5938 	if (err) {
5939 		(void) ip_close(q, 0, credp);
5940 		return (err);
5941 	}
5942 	return (0);
5943 }
5944 
5945 /* For /dev/ip aka AF_INET open */
5946 int
5947 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5948 {
5949 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5950 }
5951 
5952 /* For /dev/ip6 aka AF_INET6 open */
5953 int
5954 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5955 {
5956 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5957 }
5958 
5959 /* IP open routine. */
5960 int
5961 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5962     boolean_t isv6)
5963 {
5964 	conn_t		*connp;
5965 	major_t		maj;
5966 	zoneid_t	zoneid;
5967 	netstack_t	*ns;
5968 	ip_stack_t	*ipst;
5969 
5970 	/* Allow reopen. */
5971 	if (q->q_ptr != NULL)
5972 		return (0);
5973 
5974 	if (sflag & MODOPEN) {
5975 		/* This is a module open */
5976 		return (ip_modopen(q, devp, flag, sflag, credp));
5977 	}
5978 
5979 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5980 		/*
5981 		 * Non streams based socket looking for a stream
5982 		 * to access IP
5983 		 */
5984 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5985 		    credp, isv6));
5986 	}
5987 
5988 	ns = netstack_find_by_cred(credp);
5989 	ASSERT(ns != NULL);
5990 	ipst = ns->netstack_ip;
5991 	ASSERT(ipst != NULL);
5992 
5993 	/*
5994 	 * For exclusive stacks we set the zoneid to zero
5995 	 * to make IP operate as if in the global zone.
5996 	 */
5997 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5998 		zoneid = GLOBAL_ZONEID;
5999 	else
6000 		zoneid = crgetzoneid(credp);
6001 
6002 	/*
6003 	 * We are opening as a device. This is an IP client stream, and we
6004 	 * allocate an conn_t as the instance data.
6005 	 */
6006 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6007 
6008 	/*
6009 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6010 	 * done by netstack_find_by_cred()
6011 	 */
6012 	netstack_rele(ipst->ips_netstack);
6013 
6014 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6015 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6016 	connp->conn_ixa->ixa_zoneid = zoneid;
6017 	connp->conn_zoneid = zoneid;
6018 
6019 	connp->conn_rq = q;
6020 	q->q_ptr = WR(q)->q_ptr = connp;
6021 
6022 	/* Minor tells us which /dev entry was opened */
6023 	if (isv6) {
6024 		connp->conn_family = AF_INET6;
6025 		connp->conn_ipversion = IPV6_VERSION;
6026 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6027 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6028 	} else {
6029 		connp->conn_family = AF_INET;
6030 		connp->conn_ipversion = IPV4_VERSION;
6031 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6032 	}
6033 
6034 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6035 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6036 		connp->conn_minor_arena = ip_minor_arena_la;
6037 	} else {
6038 		/*
6039 		 * Either minor numbers in the large arena were exhausted
6040 		 * or a non socket application is doing the open.
6041 		 * Try to allocate from the small arena.
6042 		 */
6043 		if ((connp->conn_dev =
6044 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6045 			/* CONN_DEC_REF takes care of netstack_rele() */
6046 			q->q_ptr = WR(q)->q_ptr = NULL;
6047 			CONN_DEC_REF(connp);
6048 			return (EBUSY);
6049 		}
6050 		connp->conn_minor_arena = ip_minor_arena_sa;
6051 	}
6052 
6053 	maj = getemajor(*devp);
6054 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6055 
6056 	/*
6057 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6058 	 */
6059 	connp->conn_cred = credp;
6060 	connp->conn_cpid = curproc->p_pid;
6061 	/* Cache things in ixa without an extra refhold */
6062 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6063 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6064 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6065 	if (is_system_labeled())
6066 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6067 
6068 	/*
6069 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6070 	 */
6071 	connp->conn_recv = ip_conn_input;
6072 	connp->conn_recvicmp = ip_conn_input_icmp;
6073 
6074 	crhold(connp->conn_cred);
6075 
6076 	/*
6077 	 * If the caller has the process-wide flag set, then default to MAC
6078 	 * exempt mode.  This allows read-down to unlabeled hosts.
6079 	 */
6080 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6081 		connp->conn_mac_mode = CONN_MAC_AWARE;
6082 
6083 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6084 
6085 	connp->conn_rq = q;
6086 	connp->conn_wq = WR(q);
6087 
6088 	/* Non-zero default values */
6089 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6090 
6091 	/*
6092 	 * Make the conn globally visible to walkers
6093 	 */
6094 	ASSERT(connp->conn_ref == 1);
6095 	mutex_enter(&connp->conn_lock);
6096 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6097 	mutex_exit(&connp->conn_lock);
6098 
6099 	qprocson(q);
6100 
6101 	return (0);
6102 }
6103 
6104 /*
6105  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6106  * all of them are copied to the conn_t. If the req is "zero", the policy is
6107  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6108  * fields.
6109  * We keep only the latest setting of the policy and thus policy setting
6110  * is not incremental/cumulative.
6111  *
6112  * Requests to set policies with multiple alternative actions will
6113  * go through a different API.
6114  */
6115 int
6116 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6117 {
6118 	uint_t ah_req = 0;
6119 	uint_t esp_req = 0;
6120 	uint_t se_req = 0;
6121 	ipsec_act_t *actp = NULL;
6122 	uint_t nact;
6123 	ipsec_policy_head_t *ph;
6124 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6125 	int error = 0;
6126 	netstack_t	*ns = connp->conn_netstack;
6127 	ip_stack_t	*ipst = ns->netstack_ip;
6128 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6129 
6130 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6131 
6132 	/*
6133 	 * The IP_SEC_OPT option does not allow variable length parameters,
6134 	 * hence a request cannot be NULL.
6135 	 */
6136 	if (req == NULL)
6137 		return (EINVAL);
6138 
6139 	ah_req = req->ipsr_ah_req;
6140 	esp_req = req->ipsr_esp_req;
6141 	se_req = req->ipsr_self_encap_req;
6142 
6143 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6144 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6145 		return (EINVAL);
6146 
6147 	/*
6148 	 * Are we dealing with a request to reset the policy (i.e.
6149 	 * zero requests).
6150 	 */
6151 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6152 	    (esp_req & REQ_MASK) == 0 &&
6153 	    (se_req & REQ_MASK) == 0);
6154 
6155 	if (!is_pol_reset) {
6156 		/*
6157 		 * If we couldn't load IPsec, fail with "protocol
6158 		 * not supported".
6159 		 * IPsec may not have been loaded for a request with zero
6160 		 * policies, so we don't fail in this case.
6161 		 */
6162 		mutex_enter(&ipss->ipsec_loader_lock);
6163 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6164 			mutex_exit(&ipss->ipsec_loader_lock);
6165 			return (EPROTONOSUPPORT);
6166 		}
6167 		mutex_exit(&ipss->ipsec_loader_lock);
6168 
6169 		/*
6170 		 * Test for valid requests. Invalid algorithms
6171 		 * need to be tested by IPsec code because new
6172 		 * algorithms can be added dynamically.
6173 		 */
6174 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6175 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6176 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6177 			return (EINVAL);
6178 		}
6179 
6180 		/*
6181 		 * Only privileged users can issue these
6182 		 * requests.
6183 		 */
6184 		if (((ah_req & IPSEC_PREF_NEVER) ||
6185 		    (esp_req & IPSEC_PREF_NEVER) ||
6186 		    (se_req & IPSEC_PREF_NEVER)) &&
6187 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6188 			return (EPERM);
6189 		}
6190 
6191 		/*
6192 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6193 		 * are mutually exclusive.
6194 		 */
6195 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6196 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6197 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6198 			/* Both of them are set */
6199 			return (EINVAL);
6200 		}
6201 	}
6202 
6203 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6204 
6205 	/*
6206 	 * If we have already cached policies in conn_connect(), don't
6207 	 * let them change now. We cache policies for connections
6208 	 * whose src,dst [addr, port] is known.
6209 	 */
6210 	if (connp->conn_policy_cached) {
6211 		return (EINVAL);
6212 	}
6213 
6214 	/*
6215 	 * We have a zero policies, reset the connection policy if already
6216 	 * set. This will cause the connection to inherit the
6217 	 * global policy, if any.
6218 	 */
6219 	if (is_pol_reset) {
6220 		if (connp->conn_policy != NULL) {
6221 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6222 			connp->conn_policy = NULL;
6223 		}
6224 		connp->conn_in_enforce_policy = B_FALSE;
6225 		connp->conn_out_enforce_policy = B_FALSE;
6226 		return (0);
6227 	}
6228 
6229 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6230 	    ipst->ips_netstack);
6231 	if (ph == NULL)
6232 		goto enomem;
6233 
6234 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6235 	if (actp == NULL)
6236 		goto enomem;
6237 
6238 	/*
6239 	 * Always insert IPv4 policy entries, since they can also apply to
6240 	 * ipv6 sockets being used in ipv4-compat mode.
6241 	 */
6242 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6243 	    IPSEC_TYPE_INBOUND, ns))
6244 		goto enomem;
6245 	is_pol_inserted = B_TRUE;
6246 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6247 	    IPSEC_TYPE_OUTBOUND, ns))
6248 		goto enomem;
6249 
6250 	/*
6251 	 * We're looking at a v6 socket, also insert the v6-specific
6252 	 * entries.
6253 	 */
6254 	if (connp->conn_family == AF_INET6) {
6255 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6256 		    IPSEC_TYPE_INBOUND, ns))
6257 			goto enomem;
6258 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6259 		    IPSEC_TYPE_OUTBOUND, ns))
6260 			goto enomem;
6261 	}
6262 
6263 	ipsec_actvec_free(actp, nact);
6264 
6265 	/*
6266 	 * If the requests need security, set enforce_policy.
6267 	 * If the requests are IPSEC_PREF_NEVER, one should
6268 	 * still set conn_out_enforce_policy so that ip_set_destination
6269 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6270 	 * for connections that we don't cache policy in at connect time,
6271 	 * if global policy matches in ip_output_attach_policy, we
6272 	 * don't wrongly inherit global policy. Similarly, we need
6273 	 * to set conn_in_enforce_policy also so that we don't verify
6274 	 * policy wrongly.
6275 	 */
6276 	if ((ah_req & REQ_MASK) != 0 ||
6277 	    (esp_req & REQ_MASK) != 0 ||
6278 	    (se_req & REQ_MASK) != 0) {
6279 		connp->conn_in_enforce_policy = B_TRUE;
6280 		connp->conn_out_enforce_policy = B_TRUE;
6281 	}
6282 
6283 	return (error);
6284 #undef REQ_MASK
6285 
6286 	/*
6287 	 * Common memory-allocation-failure exit path.
6288 	 */
6289 enomem:
6290 	if (actp != NULL)
6291 		ipsec_actvec_free(actp, nact);
6292 	if (is_pol_inserted)
6293 		ipsec_polhead_flush(ph, ns);
6294 	return (ENOMEM);
6295 }
6296 
6297 /*
6298  * Set socket options for joining and leaving multicast groups.
6299  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6300  * The caller has already check that the option name is consistent with
6301  * the address family of the socket.
6302  */
6303 int
6304 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6305     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6306 {
6307 	int		*i1 = (int *)invalp;
6308 	int		error = 0;
6309 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6310 	struct ip_mreq	*v4_mreqp;
6311 	struct ipv6_mreq *v6_mreqp;
6312 	struct group_req *greqp;
6313 	ire_t *ire;
6314 	boolean_t done = B_FALSE;
6315 	ipaddr_t ifaddr;
6316 	in6_addr_t v6group;
6317 	uint_t ifindex;
6318 	boolean_t mcast_opt = B_TRUE;
6319 	mcast_record_t fmode;
6320 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6321 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6322 
6323 	switch (name) {
6324 	case IP_ADD_MEMBERSHIP:
6325 	case IPV6_JOIN_GROUP:
6326 		mcast_opt = B_FALSE;
6327 		/* FALLTHROUGH */
6328 	case MCAST_JOIN_GROUP:
6329 		fmode = MODE_IS_EXCLUDE;
6330 		optfn = ip_opt_add_group;
6331 		break;
6332 
6333 	case IP_DROP_MEMBERSHIP:
6334 	case IPV6_LEAVE_GROUP:
6335 		mcast_opt = B_FALSE;
6336 		/* FALLTHROUGH */
6337 	case MCAST_LEAVE_GROUP:
6338 		fmode = MODE_IS_INCLUDE;
6339 		optfn = ip_opt_delete_group;
6340 		break;
6341 	default:
6342 		/* Should not be reached. */
6343 		fmode = MODE_IS_INCLUDE;
6344 		optfn = NULL;
6345 		ASSERT(0);
6346 	}
6347 
6348 	if (mcast_opt) {
6349 		struct sockaddr_in *sin;
6350 		struct sockaddr_in6 *sin6;
6351 
6352 		greqp = (struct group_req *)i1;
6353 		if (greqp->gr_group.ss_family == AF_INET) {
6354 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6355 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6356 		} else {
6357 			if (!inet6)
6358 				return (EINVAL);	/* Not on INET socket */
6359 
6360 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6361 			v6group = sin6->sin6_addr;
6362 		}
6363 		ifaddr = INADDR_ANY;
6364 		ifindex = greqp->gr_interface;
6365 	} else if (inet6) {
6366 		v6_mreqp = (struct ipv6_mreq *)i1;
6367 		v6group = v6_mreqp->ipv6mr_multiaddr;
6368 		ifaddr = INADDR_ANY;
6369 		ifindex = v6_mreqp->ipv6mr_interface;
6370 	} else {
6371 		v4_mreqp = (struct ip_mreq *)i1;
6372 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6373 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6374 		ifindex = 0;
6375 	}
6376 
6377 	/*
6378 	 * In the multirouting case, we need to replicate
6379 	 * the request on all interfaces that will take part
6380 	 * in replication.  We do so because multirouting is
6381 	 * reflective, thus we will probably receive multi-
6382 	 * casts on those interfaces.
6383 	 * The ip_multirt_apply_membership() succeeds if
6384 	 * the operation succeeds on at least one interface.
6385 	 */
6386 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6387 		ipaddr_t group;
6388 
6389 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6390 
6391 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6392 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6393 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6394 	} else {
6395 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6396 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6397 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6398 	}
6399 	if (ire != NULL) {
6400 		if (ire->ire_flags & RTF_MULTIRT) {
6401 			error = ip_multirt_apply_membership(optfn, ire, connp,
6402 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6403 			done = B_TRUE;
6404 		}
6405 		ire_refrele(ire);
6406 	}
6407 
6408 	if (!done) {
6409 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6410 		    fmode, &ipv6_all_zeros);
6411 	}
6412 	return (error);
6413 }
6414 
6415 /*
6416  * Set socket options for joining and leaving multicast groups
6417  * for specific sources.
6418  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6419  * The caller has already check that the option name is consistent with
6420  * the address family of the socket.
6421  */
6422 int
6423 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6424     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6425 {
6426 	int		*i1 = (int *)invalp;
6427 	int		error = 0;
6428 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6429 	struct ip_mreq_source *imreqp;
6430 	struct group_source_req *gsreqp;
6431 	in6_addr_t v6group, v6src;
6432 	uint32_t ifindex;
6433 	ipaddr_t ifaddr;
6434 	boolean_t mcast_opt = B_TRUE;
6435 	mcast_record_t fmode;
6436 	ire_t *ire;
6437 	boolean_t done = B_FALSE;
6438 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6439 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6440 
6441 	switch (name) {
6442 	case IP_BLOCK_SOURCE:
6443 		mcast_opt = B_FALSE;
6444 		/* FALLTHROUGH */
6445 	case MCAST_BLOCK_SOURCE:
6446 		fmode = MODE_IS_EXCLUDE;
6447 		optfn = ip_opt_add_group;
6448 		break;
6449 
6450 	case IP_UNBLOCK_SOURCE:
6451 		mcast_opt = B_FALSE;
6452 		/* FALLTHROUGH */
6453 	case MCAST_UNBLOCK_SOURCE:
6454 		fmode = MODE_IS_EXCLUDE;
6455 		optfn = ip_opt_delete_group;
6456 		break;
6457 
6458 	case IP_ADD_SOURCE_MEMBERSHIP:
6459 		mcast_opt = B_FALSE;
6460 		/* FALLTHROUGH */
6461 	case MCAST_JOIN_SOURCE_GROUP:
6462 		fmode = MODE_IS_INCLUDE;
6463 		optfn = ip_opt_add_group;
6464 		break;
6465 
6466 	case IP_DROP_SOURCE_MEMBERSHIP:
6467 		mcast_opt = B_FALSE;
6468 		/* FALLTHROUGH */
6469 	case MCAST_LEAVE_SOURCE_GROUP:
6470 		fmode = MODE_IS_INCLUDE;
6471 		optfn = ip_opt_delete_group;
6472 		break;
6473 	default:
6474 		/* Should not be reached. */
6475 		optfn = NULL;
6476 		fmode = 0;
6477 		ASSERT(0);
6478 	}
6479 
6480 	if (mcast_opt) {
6481 		gsreqp = (struct group_source_req *)i1;
6482 		ifindex = gsreqp->gsr_interface;
6483 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6484 			struct sockaddr_in *s;
6485 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6486 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6487 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6488 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6489 		} else {
6490 			struct sockaddr_in6 *s6;
6491 
6492 			if (!inet6)
6493 				return (EINVAL);	/* Not on INET socket */
6494 
6495 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6496 			v6group = s6->sin6_addr;
6497 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6498 			v6src = s6->sin6_addr;
6499 		}
6500 		ifaddr = INADDR_ANY;
6501 	} else {
6502 		imreqp = (struct ip_mreq_source *)i1;
6503 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6504 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6505 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6506 		ifindex = 0;
6507 	}
6508 
6509 	/*
6510 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6511 	 */
6512 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6513 		v6src = ipv6_all_zeros;
6514 
6515 	/*
6516 	 * In the multirouting case, we need to replicate
6517 	 * the request as noted in the mcast cases above.
6518 	 */
6519 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6520 		ipaddr_t group;
6521 
6522 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6523 
6524 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6525 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6526 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6527 	} else {
6528 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6529 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6530 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6531 	}
6532 	if (ire != NULL) {
6533 		if (ire->ire_flags & RTF_MULTIRT) {
6534 			error = ip_multirt_apply_membership(optfn, ire, connp,
6535 			    checkonly, &v6group, fmode, &v6src);
6536 			done = B_TRUE;
6537 		}
6538 		ire_refrele(ire);
6539 	}
6540 	if (!done) {
6541 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6542 		    fmode, &v6src);
6543 	}
6544 	return (error);
6545 }
6546 
6547 /*
6548  * Given a destination address and a pointer to where to put the information
6549  * this routine fills in the mtuinfo.
6550  * The socket must be connected.
6551  * For sctp conn_faddr is the primary address.
6552  */
6553 int
6554 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6555 {
6556 	uint32_t	pmtu = IP_MAXPACKET;
6557 	uint_t		scopeid;
6558 
6559 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6560 		return (-1);
6561 
6562 	/* In case we never sent or called ip_set_destination_v4/v6 */
6563 	if (ixa->ixa_ire != NULL)
6564 		pmtu = ip_get_pmtu(ixa);
6565 
6566 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6567 		scopeid = ixa->ixa_scopeid;
6568 	else
6569 		scopeid = 0;
6570 
6571 	bzero(mtuinfo, sizeof (*mtuinfo));
6572 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6573 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6574 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6575 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6576 	mtuinfo->ip6m_mtu = pmtu;
6577 
6578 	return (sizeof (struct ip6_mtuinfo));
6579 }
6580 
6581 /*
6582  * When the src multihoming is changed from weak to [strong, preferred]
6583  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6584  * and identify routes that were created by user-applications in the
6585  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6586  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6587  * is selected by finding an interface route for the gateway.
6588  */
6589 /* ARGSUSED */
6590 void
6591 ip_ire_rebind_walker(ire_t *ire, void *notused)
6592 {
6593 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6594 		return;
6595 	ire_rebind(ire);
6596 	ire_delete(ire);
6597 }
6598 
6599 /*
6600  * When the src multihoming is changed from  [strong, preferred] to weak,
6601  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6602  * set any entries that were created by user-applications in the unbound state
6603  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6604  */
6605 /* ARGSUSED */
6606 void
6607 ip_ire_unbind_walker(ire_t *ire, void *notused)
6608 {
6609 	ire_t *new_ire;
6610 
6611 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6612 		return;
6613 	if (ire->ire_ipversion == IPV6_VERSION) {
6614 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6615 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6616 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6617 	} else {
6618 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6619 		    (uchar_t *)&ire->ire_mask,
6620 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6621 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6622 	}
6623 	if (new_ire == NULL)
6624 		return;
6625 	new_ire->ire_unbound = B_TRUE;
6626 	/*
6627 	 * The bound ire must first be deleted so that we don't return
6628 	 * the existing one on the attempt to add the unbound new_ire.
6629 	 */
6630 	ire_delete(ire);
6631 	new_ire = ire_add(new_ire);
6632 	if (new_ire != NULL)
6633 		ire_refrele(new_ire);
6634 }
6635 
6636 /*
6637  * When the settings of ip*_strict_src_multihoming tunables are changed,
6638  * all cached routes need to be recomputed. This recomputation needs to be
6639  * done when going from weaker to stronger modes so that the cached ire
6640  * for the connection does not violate the current ip*_strict_src_multihoming
6641  * setting. It also needs to be done when going from stronger to weaker modes,
6642  * so that we fall back to matching on the longest-matching-route (as opposed
6643  * to a shorter match that may have been selected in the strong mode
6644  * to satisfy src_multihoming settings).
6645  *
6646  * The cached ixa_ire entires for all conn_t entries are marked as
6647  * "verify" so that they will be recomputed for the next packet.
6648  */
6649 void
6650 conn_ire_revalidate(conn_t *connp, void *arg)
6651 {
6652 	boolean_t isv6 = (boolean_t)arg;
6653 
6654 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6655 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6656 		return;
6657 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6658 }
6659 
6660 /*
6661  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6662  * When an ipf is passed here for the first time, if
6663  * we already have in-order fragments on the queue, we convert from the fast-
6664  * path reassembly scheme to the hard-case scheme.  From then on, additional
6665  * fragments are reassembled here.  We keep track of the start and end offsets
6666  * of each piece, and the number of holes in the chain.  When the hole count
6667  * goes to zero, we are done!
6668  *
6669  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6670  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6671  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6672  * after the call to ip_reassemble().
6673  */
6674 int
6675 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6676     size_t msg_len)
6677 {
6678 	uint_t	end;
6679 	mblk_t	*next_mp;
6680 	mblk_t	*mp1;
6681 	uint_t	offset;
6682 	boolean_t incr_dups = B_TRUE;
6683 	boolean_t offset_zero_seen = B_FALSE;
6684 	boolean_t pkt_boundary_checked = B_FALSE;
6685 
6686 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6687 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6688 
6689 	/* Add in byte count */
6690 	ipf->ipf_count += msg_len;
6691 	if (ipf->ipf_end) {
6692 		/*
6693 		 * We were part way through in-order reassembly, but now there
6694 		 * is a hole.  We walk through messages already queued, and
6695 		 * mark them for hard case reassembly.  We know that up till
6696 		 * now they were in order starting from offset zero.
6697 		 */
6698 		offset = 0;
6699 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6700 			IP_REASS_SET_START(mp1, offset);
6701 			if (offset == 0) {
6702 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6703 				offset = -ipf->ipf_nf_hdr_len;
6704 			}
6705 			offset += mp1->b_wptr - mp1->b_rptr;
6706 			IP_REASS_SET_END(mp1, offset);
6707 		}
6708 		/* One hole at the end. */
6709 		ipf->ipf_hole_cnt = 1;
6710 		/* Brand it as a hard case, forever. */
6711 		ipf->ipf_end = 0;
6712 	}
6713 	/* Walk through all the new pieces. */
6714 	do {
6715 		end = start + (mp->b_wptr - mp->b_rptr);
6716 		/*
6717 		 * If start is 0, decrease 'end' only for the first mblk of
6718 		 * the fragment. Otherwise 'end' can get wrong value in the
6719 		 * second pass of the loop if first mblk is exactly the
6720 		 * size of ipf_nf_hdr_len.
6721 		 */
6722 		if (start == 0 && !offset_zero_seen) {
6723 			/* First segment */
6724 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6725 			end -= ipf->ipf_nf_hdr_len;
6726 			offset_zero_seen = B_TRUE;
6727 		}
6728 		next_mp = mp->b_cont;
6729 		/*
6730 		 * We are checking to see if there is any interesing data
6731 		 * to process.  If there isn't and the mblk isn't the
6732 		 * one which carries the unfragmentable header then we
6733 		 * drop it.  It's possible to have just the unfragmentable
6734 		 * header come through without any data.  That needs to be
6735 		 * saved.
6736 		 *
6737 		 * If the assert at the top of this function holds then the
6738 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6739 		 * is infrequently traveled enough that the test is left in
6740 		 * to protect against future code changes which break that
6741 		 * invariant.
6742 		 */
6743 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6744 			/* Empty.  Blast it. */
6745 			IP_REASS_SET_START(mp, 0);
6746 			IP_REASS_SET_END(mp, 0);
6747 			/*
6748 			 * If the ipf points to the mblk we are about to free,
6749 			 * update ipf to point to the next mblk (or NULL
6750 			 * if none).
6751 			 */
6752 			if (ipf->ipf_mp->b_cont == mp)
6753 				ipf->ipf_mp->b_cont = next_mp;
6754 			freeb(mp);
6755 			continue;
6756 		}
6757 		mp->b_cont = NULL;
6758 		IP_REASS_SET_START(mp, start);
6759 		IP_REASS_SET_END(mp, end);
6760 		if (!ipf->ipf_tail_mp) {
6761 			ipf->ipf_tail_mp = mp;
6762 			ipf->ipf_mp->b_cont = mp;
6763 			if (start == 0 || !more) {
6764 				ipf->ipf_hole_cnt = 1;
6765 				/*
6766 				 * if the first fragment comes in more than one
6767 				 * mblk, this loop will be executed for each
6768 				 * mblk. Need to adjust hole count so exiting
6769 				 * this routine will leave hole count at 1.
6770 				 */
6771 				if (next_mp)
6772 					ipf->ipf_hole_cnt++;
6773 			} else
6774 				ipf->ipf_hole_cnt = 2;
6775 			continue;
6776 		} else if (ipf->ipf_last_frag_seen && !more &&
6777 		    !pkt_boundary_checked) {
6778 			/*
6779 			 * We check datagram boundary only if this fragment
6780 			 * claims to be the last fragment and we have seen a
6781 			 * last fragment in the past too. We do this only
6782 			 * once for a given fragment.
6783 			 *
6784 			 * start cannot be 0 here as fragments with start=0
6785 			 * and MF=0 gets handled as a complete packet. These
6786 			 * fragments should not reach here.
6787 			 */
6788 
6789 			if (start + msgdsize(mp) !=
6790 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6791 				/*
6792 				 * We have two fragments both of which claim
6793 				 * to be the last fragment but gives conflicting
6794 				 * information about the whole datagram size.
6795 				 * Something fishy is going on. Drop the
6796 				 * fragment and free up the reassembly list.
6797 				 */
6798 				return (IP_REASS_FAILED);
6799 			}
6800 
6801 			/*
6802 			 * We shouldn't come to this code block again for this
6803 			 * particular fragment.
6804 			 */
6805 			pkt_boundary_checked = B_TRUE;
6806 		}
6807 
6808 		/* New stuff at or beyond tail? */
6809 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6810 		if (start >= offset) {
6811 			if (ipf->ipf_last_frag_seen) {
6812 				/* current fragment is beyond last fragment */
6813 				return (IP_REASS_FAILED);
6814 			}
6815 			/* Link it on end. */
6816 			ipf->ipf_tail_mp->b_cont = mp;
6817 			ipf->ipf_tail_mp = mp;
6818 			if (more) {
6819 				if (start != offset)
6820 					ipf->ipf_hole_cnt++;
6821 			} else if (start == offset && next_mp == NULL)
6822 					ipf->ipf_hole_cnt--;
6823 			continue;
6824 		}
6825 		mp1 = ipf->ipf_mp->b_cont;
6826 		offset = IP_REASS_START(mp1);
6827 		/* New stuff at the front? */
6828 		if (start < offset) {
6829 			if (start == 0) {
6830 				if (end >= offset) {
6831 					/* Nailed the hole at the begining. */
6832 					ipf->ipf_hole_cnt--;
6833 				}
6834 			} else if (end < offset) {
6835 				/*
6836 				 * A hole, stuff, and a hole where there used
6837 				 * to be just a hole.
6838 				 */
6839 				ipf->ipf_hole_cnt++;
6840 			}
6841 			mp->b_cont = mp1;
6842 			/* Check for overlap. */
6843 			while (end > offset) {
6844 				if (end < IP_REASS_END(mp1)) {
6845 					mp->b_wptr -= end - offset;
6846 					IP_REASS_SET_END(mp, offset);
6847 					BUMP_MIB(ill->ill_ip_mib,
6848 					    ipIfStatsReasmPartDups);
6849 					break;
6850 				}
6851 				/* Did we cover another hole? */
6852 				if ((mp1->b_cont &&
6853 				    IP_REASS_END(mp1) !=
6854 				    IP_REASS_START(mp1->b_cont) &&
6855 				    end >= IP_REASS_START(mp1->b_cont)) ||
6856 				    (!ipf->ipf_last_frag_seen && !more)) {
6857 					ipf->ipf_hole_cnt--;
6858 				}
6859 				/* Clip out mp1. */
6860 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6861 					/*
6862 					 * After clipping out mp1, this guy
6863 					 * is now hanging off the end.
6864 					 */
6865 					ipf->ipf_tail_mp = mp;
6866 				}
6867 				IP_REASS_SET_START(mp1, 0);
6868 				IP_REASS_SET_END(mp1, 0);
6869 				/* Subtract byte count */
6870 				ipf->ipf_count -= mp1->b_datap->db_lim -
6871 				    mp1->b_datap->db_base;
6872 				freeb(mp1);
6873 				BUMP_MIB(ill->ill_ip_mib,
6874 				    ipIfStatsReasmPartDups);
6875 				mp1 = mp->b_cont;
6876 				if (!mp1)
6877 					break;
6878 				offset = IP_REASS_START(mp1);
6879 			}
6880 			ipf->ipf_mp->b_cont = mp;
6881 			continue;
6882 		}
6883 		/*
6884 		 * The new piece starts somewhere between the start of the head
6885 		 * and before the end of the tail.
6886 		 */
6887 		for (; mp1; mp1 = mp1->b_cont) {
6888 			offset = IP_REASS_END(mp1);
6889 			if (start < offset) {
6890 				if (end <= offset) {
6891 					/* Nothing new. */
6892 					IP_REASS_SET_START(mp, 0);
6893 					IP_REASS_SET_END(mp, 0);
6894 					/* Subtract byte count */
6895 					ipf->ipf_count -= mp->b_datap->db_lim -
6896 					    mp->b_datap->db_base;
6897 					if (incr_dups) {
6898 						ipf->ipf_num_dups++;
6899 						incr_dups = B_FALSE;
6900 					}
6901 					freeb(mp);
6902 					BUMP_MIB(ill->ill_ip_mib,
6903 					    ipIfStatsReasmDuplicates);
6904 					break;
6905 				}
6906 				/*
6907 				 * Trim redundant stuff off beginning of new
6908 				 * piece.
6909 				 */
6910 				IP_REASS_SET_START(mp, offset);
6911 				mp->b_rptr += offset - start;
6912 				BUMP_MIB(ill->ill_ip_mib,
6913 				    ipIfStatsReasmPartDups);
6914 				start = offset;
6915 				if (!mp1->b_cont) {
6916 					/*
6917 					 * After trimming, this guy is now
6918 					 * hanging off the end.
6919 					 */
6920 					mp1->b_cont = mp;
6921 					ipf->ipf_tail_mp = mp;
6922 					if (!more) {
6923 						ipf->ipf_hole_cnt--;
6924 					}
6925 					break;
6926 				}
6927 			}
6928 			if (start >= IP_REASS_START(mp1->b_cont))
6929 				continue;
6930 			/* Fill a hole */
6931 			if (start > offset)
6932 				ipf->ipf_hole_cnt++;
6933 			mp->b_cont = mp1->b_cont;
6934 			mp1->b_cont = mp;
6935 			mp1 = mp->b_cont;
6936 			offset = IP_REASS_START(mp1);
6937 			if (end >= offset) {
6938 				ipf->ipf_hole_cnt--;
6939 				/* Check for overlap. */
6940 				while (end > offset) {
6941 					if (end < IP_REASS_END(mp1)) {
6942 						mp->b_wptr -= end - offset;
6943 						IP_REASS_SET_END(mp, offset);
6944 						/*
6945 						 * TODO we might bump
6946 						 * this up twice if there is
6947 						 * overlap at both ends.
6948 						 */
6949 						BUMP_MIB(ill->ill_ip_mib,
6950 						    ipIfStatsReasmPartDups);
6951 						break;
6952 					}
6953 					/* Did we cover another hole? */
6954 					if ((mp1->b_cont &&
6955 					    IP_REASS_END(mp1)
6956 					    != IP_REASS_START(mp1->b_cont) &&
6957 					    end >=
6958 					    IP_REASS_START(mp1->b_cont)) ||
6959 					    (!ipf->ipf_last_frag_seen &&
6960 					    !more)) {
6961 						ipf->ipf_hole_cnt--;
6962 					}
6963 					/* Clip out mp1. */
6964 					if ((mp->b_cont = mp1->b_cont) ==
6965 					    NULL) {
6966 						/*
6967 						 * After clipping out mp1,
6968 						 * this guy is now hanging
6969 						 * off the end.
6970 						 */
6971 						ipf->ipf_tail_mp = mp;
6972 					}
6973 					IP_REASS_SET_START(mp1, 0);
6974 					IP_REASS_SET_END(mp1, 0);
6975 					/* Subtract byte count */
6976 					ipf->ipf_count -=
6977 					    mp1->b_datap->db_lim -
6978 					    mp1->b_datap->db_base;
6979 					freeb(mp1);
6980 					BUMP_MIB(ill->ill_ip_mib,
6981 					    ipIfStatsReasmPartDups);
6982 					mp1 = mp->b_cont;
6983 					if (!mp1)
6984 						break;
6985 					offset = IP_REASS_START(mp1);
6986 				}
6987 			}
6988 			break;
6989 		}
6990 	} while (start = end, mp = next_mp);
6991 
6992 	/* Fragment just processed could be the last one. Remember this fact */
6993 	if (!more)
6994 		ipf->ipf_last_frag_seen = B_TRUE;
6995 
6996 	/* Still got holes? */
6997 	if (ipf->ipf_hole_cnt)
6998 		return (IP_REASS_PARTIAL);
6999 	/* Clean up overloaded fields to avoid upstream disasters. */
7000 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
7001 		IP_REASS_SET_START(mp1, 0);
7002 		IP_REASS_SET_END(mp1, 0);
7003 	}
7004 	return (IP_REASS_COMPLETE);
7005 }
7006 
7007 /*
7008  * Fragmentation reassembly.  Each ILL has a hash table for
7009  * queuing packets undergoing reassembly for all IPIFs
7010  * associated with the ILL.  The hash is based on the packet
7011  * IP ident field.  The ILL frag hash table was allocated
7012  * as a timer block at the time the ILL was created.  Whenever
7013  * there is anything on the reassembly queue, the timer will
7014  * be running.  Returns the reassembled packet if reassembly completes.
7015  */
7016 mblk_t *
7017 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7018 {
7019 	uint32_t	frag_offset_flags;
7020 	mblk_t		*t_mp;
7021 	ipaddr_t	dst;
7022 	uint8_t		proto = ipha->ipha_protocol;
7023 	uint32_t	sum_val;
7024 	uint16_t	sum_flags;
7025 	ipf_t		*ipf;
7026 	ipf_t		**ipfp;
7027 	ipfb_t		*ipfb;
7028 	uint16_t	ident;
7029 	uint32_t	offset;
7030 	ipaddr_t	src;
7031 	uint_t		hdr_length;
7032 	uint32_t	end;
7033 	mblk_t		*mp1;
7034 	mblk_t		*tail_mp;
7035 	size_t		count;
7036 	size_t		msg_len;
7037 	uint8_t		ecn_info = 0;
7038 	uint32_t	packet_size;
7039 	boolean_t	pruned = B_FALSE;
7040 	ill_t		*ill = ira->ira_ill;
7041 	ip_stack_t	*ipst = ill->ill_ipst;
7042 
7043 	/*
7044 	 * Drop the fragmented as early as possible, if
7045 	 * we don't have resource(s) to re-assemble.
7046 	 */
7047 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7048 		freemsg(mp);
7049 		return (NULL);
7050 	}
7051 
7052 	/* Check for fragmentation offset; return if there's none */
7053 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7054 	    (IPH_MF | IPH_OFFSET)) == 0)
7055 		return (mp);
7056 
7057 	/*
7058 	 * We utilize hardware computed checksum info only for UDP since
7059 	 * IP fragmentation is a normal occurrence for the protocol.  In
7060 	 * addition, checksum offload support for IP fragments carrying
7061 	 * UDP payload is commonly implemented across network adapters.
7062 	 */
7063 	ASSERT(ira->ira_rill != NULL);
7064 	if (proto == IPPROTO_UDP && dohwcksum &&
7065 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7066 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7067 		mblk_t *mp1 = mp->b_cont;
7068 		int32_t len;
7069 
7070 		/* Record checksum information from the packet */
7071 		sum_val = (uint32_t)DB_CKSUM16(mp);
7072 		sum_flags = DB_CKSUMFLAGS(mp);
7073 
7074 		/* IP payload offset from beginning of mblk */
7075 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7076 
7077 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7078 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7079 		    offset >= DB_CKSUMSTART(mp) &&
7080 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7081 			uint32_t adj;
7082 			/*
7083 			 * Partial checksum has been calculated by hardware
7084 			 * and attached to the packet; in addition, any
7085 			 * prepended extraneous data is even byte aligned.
7086 			 * If any such data exists, we adjust the checksum;
7087 			 * this would also handle any postpended data.
7088 			 */
7089 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7090 			    mp, mp1, len, adj);
7091 
7092 			/* One's complement subtract extraneous checksum */
7093 			if (adj >= sum_val)
7094 				sum_val = ~(adj - sum_val) & 0xFFFF;
7095 			else
7096 				sum_val -= adj;
7097 		}
7098 	} else {
7099 		sum_val = 0;
7100 		sum_flags = 0;
7101 	}
7102 
7103 	/* Clear hardware checksumming flag */
7104 	DB_CKSUMFLAGS(mp) = 0;
7105 
7106 	ident = ipha->ipha_ident;
7107 	offset = (frag_offset_flags << 3) & 0xFFFF;
7108 	src = ipha->ipha_src;
7109 	dst = ipha->ipha_dst;
7110 	hdr_length = IPH_HDR_LENGTH(ipha);
7111 	end = ntohs(ipha->ipha_length) - hdr_length;
7112 
7113 	/* If end == 0 then we have a packet with no data, so just free it */
7114 	if (end == 0) {
7115 		freemsg(mp);
7116 		return (NULL);
7117 	}
7118 
7119 	/* Record the ECN field info. */
7120 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7121 	if (offset != 0) {
7122 		/*
7123 		 * If this isn't the first piece, strip the header, and
7124 		 * add the offset to the end value.
7125 		 */
7126 		mp->b_rptr += hdr_length;
7127 		end += offset;
7128 	}
7129 
7130 	/* Handle vnic loopback of fragments */
7131 	if (mp->b_datap->db_ref > 2)
7132 		msg_len = 0;
7133 	else
7134 		msg_len = MBLKSIZE(mp);
7135 
7136 	tail_mp = mp;
7137 	while (tail_mp->b_cont != NULL) {
7138 		tail_mp = tail_mp->b_cont;
7139 		if (tail_mp->b_datap->db_ref <= 2)
7140 			msg_len += MBLKSIZE(tail_mp);
7141 	}
7142 
7143 	/* If the reassembly list for this ILL will get too big, prune it */
7144 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7145 	    ipst->ips_ip_reass_queue_bytes) {
7146 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7147 		    uint_t, ill->ill_frag_count,
7148 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7149 		ill_frag_prune(ill,
7150 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7151 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7152 		pruned = B_TRUE;
7153 	}
7154 
7155 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7156 	mutex_enter(&ipfb->ipfb_lock);
7157 
7158 	ipfp = &ipfb->ipfb_ipf;
7159 	/* Try to find an existing fragment queue for this packet. */
7160 	for (;;) {
7161 		ipf = ipfp[0];
7162 		if (ipf != NULL) {
7163 			/*
7164 			 * It has to match on ident and src/dst address.
7165 			 */
7166 			if (ipf->ipf_ident == ident &&
7167 			    ipf->ipf_src == src &&
7168 			    ipf->ipf_dst == dst &&
7169 			    ipf->ipf_protocol == proto) {
7170 				/*
7171 				 * If we have received too many
7172 				 * duplicate fragments for this packet
7173 				 * free it.
7174 				 */
7175 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7176 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7177 					freemsg(mp);
7178 					mutex_exit(&ipfb->ipfb_lock);
7179 					return (NULL);
7180 				}
7181 				/* Found it. */
7182 				break;
7183 			}
7184 			ipfp = &ipf->ipf_hash_next;
7185 			continue;
7186 		}
7187 
7188 		/*
7189 		 * If we pruned the list, do we want to store this new
7190 		 * fragment?. We apply an optimization here based on the
7191 		 * fact that most fragments will be received in order.
7192 		 * So if the offset of this incoming fragment is zero,
7193 		 * it is the first fragment of a new packet. We will
7194 		 * keep it.  Otherwise drop the fragment, as we have
7195 		 * probably pruned the packet already (since the
7196 		 * packet cannot be found).
7197 		 */
7198 		if (pruned && offset != 0) {
7199 			mutex_exit(&ipfb->ipfb_lock);
7200 			freemsg(mp);
7201 			return (NULL);
7202 		}
7203 
7204 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7205 			/*
7206 			 * Too many fragmented packets in this hash
7207 			 * bucket. Free the oldest.
7208 			 */
7209 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7210 		}
7211 
7212 		/* New guy.  Allocate a frag message. */
7213 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7214 		if (mp1 == NULL) {
7215 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7216 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7217 			freemsg(mp);
7218 reass_done:
7219 			mutex_exit(&ipfb->ipfb_lock);
7220 			return (NULL);
7221 		}
7222 
7223 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7224 		mp1->b_cont = mp;
7225 
7226 		/* Initialize the fragment header. */
7227 		ipf = (ipf_t *)mp1->b_rptr;
7228 		ipf->ipf_mp = mp1;
7229 		ipf->ipf_ptphn = ipfp;
7230 		ipfp[0] = ipf;
7231 		ipf->ipf_hash_next = NULL;
7232 		ipf->ipf_ident = ident;
7233 		ipf->ipf_protocol = proto;
7234 		ipf->ipf_src = src;
7235 		ipf->ipf_dst = dst;
7236 		ipf->ipf_nf_hdr_len = 0;
7237 		/* Record reassembly start time. */
7238 		ipf->ipf_timestamp = gethrestime_sec();
7239 		/* Record ipf generation and account for frag header */
7240 		ipf->ipf_gen = ill->ill_ipf_gen++;
7241 		ipf->ipf_count = MBLKSIZE(mp1);
7242 		ipf->ipf_last_frag_seen = B_FALSE;
7243 		ipf->ipf_ecn = ecn_info;
7244 		ipf->ipf_num_dups = 0;
7245 		ipfb->ipfb_frag_pkts++;
7246 		ipf->ipf_checksum = 0;
7247 		ipf->ipf_checksum_flags = 0;
7248 
7249 		/* Store checksum value in fragment header */
7250 		if (sum_flags != 0) {
7251 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7252 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7253 			ipf->ipf_checksum = sum_val;
7254 			ipf->ipf_checksum_flags = sum_flags;
7255 		}
7256 
7257 		/*
7258 		 * We handle reassembly two ways.  In the easy case,
7259 		 * where all the fragments show up in order, we do
7260 		 * minimal bookkeeping, and just clip new pieces on
7261 		 * the end.  If we ever see a hole, then we go off
7262 		 * to ip_reassemble which has to mark the pieces and
7263 		 * keep track of the number of holes, etc.  Obviously,
7264 		 * the point of having both mechanisms is so we can
7265 		 * handle the easy case as efficiently as possible.
7266 		 */
7267 		if (offset == 0) {
7268 			/* Easy case, in-order reassembly so far. */
7269 			ipf->ipf_count += msg_len;
7270 			ipf->ipf_tail_mp = tail_mp;
7271 			/*
7272 			 * Keep track of next expected offset in
7273 			 * ipf_end.
7274 			 */
7275 			ipf->ipf_end = end;
7276 			ipf->ipf_nf_hdr_len = hdr_length;
7277 		} else {
7278 			/* Hard case, hole at the beginning. */
7279 			ipf->ipf_tail_mp = NULL;
7280 			/*
7281 			 * ipf_end == 0 means that we have given up
7282 			 * on easy reassembly.
7283 			 */
7284 			ipf->ipf_end = 0;
7285 
7286 			/* Forget checksum offload from now on */
7287 			ipf->ipf_checksum_flags = 0;
7288 
7289 			/*
7290 			 * ipf_hole_cnt is set by ip_reassemble.
7291 			 * ipf_count is updated by ip_reassemble.
7292 			 * No need to check for return value here
7293 			 * as we don't expect reassembly to complete
7294 			 * or fail for the first fragment itself.
7295 			 */
7296 			(void) ip_reassemble(mp, ipf,
7297 			    (frag_offset_flags & IPH_OFFSET) << 3,
7298 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7299 		}
7300 		/* Update per ipfb and ill byte counts */
7301 		ipfb->ipfb_count += ipf->ipf_count;
7302 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7303 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7304 		/* If the frag timer wasn't already going, start it. */
7305 		mutex_enter(&ill->ill_lock);
7306 		ill_frag_timer_start(ill);
7307 		mutex_exit(&ill->ill_lock);
7308 		goto reass_done;
7309 	}
7310 
7311 	/*
7312 	 * If the packet's flag has changed (it could be coming up
7313 	 * from an interface different than the previous, therefore
7314 	 * possibly different checksum capability), then forget about
7315 	 * any stored checksum states.  Otherwise add the value to
7316 	 * the existing one stored in the fragment header.
7317 	 */
7318 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7319 		sum_val += ipf->ipf_checksum;
7320 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7321 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7322 		ipf->ipf_checksum = sum_val;
7323 	} else if (ipf->ipf_checksum_flags != 0) {
7324 		/* Forget checksum offload from now on */
7325 		ipf->ipf_checksum_flags = 0;
7326 	}
7327 
7328 	/*
7329 	 * We have a new piece of a datagram which is already being
7330 	 * reassembled.  Update the ECN info if all IP fragments
7331 	 * are ECN capable.  If there is one which is not, clear
7332 	 * all the info.  If there is at least one which has CE
7333 	 * code point, IP needs to report that up to transport.
7334 	 */
7335 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7336 		if (ecn_info == IPH_ECN_CE)
7337 			ipf->ipf_ecn = IPH_ECN_CE;
7338 	} else {
7339 		ipf->ipf_ecn = IPH_ECN_NECT;
7340 	}
7341 	if (offset && ipf->ipf_end == offset) {
7342 		/* The new fragment fits at the end */
7343 		ipf->ipf_tail_mp->b_cont = mp;
7344 		/* Update the byte count */
7345 		ipf->ipf_count += msg_len;
7346 		/* Update per ipfb and ill byte counts */
7347 		ipfb->ipfb_count += msg_len;
7348 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7349 		atomic_add_32(&ill->ill_frag_count, msg_len);
7350 		if (frag_offset_flags & IPH_MF) {
7351 			/* More to come. */
7352 			ipf->ipf_end = end;
7353 			ipf->ipf_tail_mp = tail_mp;
7354 			goto reass_done;
7355 		}
7356 	} else {
7357 		/* Go do the hard cases. */
7358 		int ret;
7359 
7360 		if (offset == 0)
7361 			ipf->ipf_nf_hdr_len = hdr_length;
7362 
7363 		/* Save current byte count */
7364 		count = ipf->ipf_count;
7365 		ret = ip_reassemble(mp, ipf,
7366 		    (frag_offset_flags & IPH_OFFSET) << 3,
7367 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7368 		/* Count of bytes added and subtracted (freeb()ed) */
7369 		count = ipf->ipf_count - count;
7370 		if (count) {
7371 			/* Update per ipfb and ill byte counts */
7372 			ipfb->ipfb_count += count;
7373 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7374 			atomic_add_32(&ill->ill_frag_count, count);
7375 		}
7376 		if (ret == IP_REASS_PARTIAL) {
7377 			goto reass_done;
7378 		} else if (ret == IP_REASS_FAILED) {
7379 			/* Reassembly failed. Free up all resources */
7380 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7381 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7382 				IP_REASS_SET_START(t_mp, 0);
7383 				IP_REASS_SET_END(t_mp, 0);
7384 			}
7385 			freemsg(mp);
7386 			goto reass_done;
7387 		}
7388 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7389 	}
7390 	/*
7391 	 * We have completed reassembly.  Unhook the frag header from
7392 	 * the reassembly list.
7393 	 *
7394 	 * Before we free the frag header, record the ECN info
7395 	 * to report back to the transport.
7396 	 */
7397 	ecn_info = ipf->ipf_ecn;
7398 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7399 	ipfp = ipf->ipf_ptphn;
7400 
7401 	/* We need to supply these to caller */
7402 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7403 		sum_val = ipf->ipf_checksum;
7404 	else
7405 		sum_val = 0;
7406 
7407 	mp1 = ipf->ipf_mp;
7408 	count = ipf->ipf_count;
7409 	ipf = ipf->ipf_hash_next;
7410 	if (ipf != NULL)
7411 		ipf->ipf_ptphn = ipfp;
7412 	ipfp[0] = ipf;
7413 	atomic_add_32(&ill->ill_frag_count, -count);
7414 	ASSERT(ipfb->ipfb_count >= count);
7415 	ipfb->ipfb_count -= count;
7416 	ipfb->ipfb_frag_pkts--;
7417 	mutex_exit(&ipfb->ipfb_lock);
7418 	/* Ditch the frag header. */
7419 	mp = mp1->b_cont;
7420 
7421 	freeb(mp1);
7422 
7423 	/* Restore original IP length in header. */
7424 	packet_size = (uint32_t)msgdsize(mp);
7425 	if (packet_size > IP_MAXPACKET) {
7426 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7427 		ip_drop_input("Reassembled packet too large", mp, ill);
7428 		freemsg(mp);
7429 		return (NULL);
7430 	}
7431 
7432 	if (DB_REF(mp) > 1) {
7433 		mblk_t *mp2 = copymsg(mp);
7434 
7435 		if (mp2 == NULL) {
7436 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7437 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7438 			freemsg(mp);
7439 			return (NULL);
7440 		}
7441 		freemsg(mp);
7442 		mp = mp2;
7443 	}
7444 	ipha = (ipha_t *)mp->b_rptr;
7445 
7446 	ipha->ipha_length = htons((uint16_t)packet_size);
7447 	/* We're now complete, zip the frag state */
7448 	ipha->ipha_fragment_offset_and_flags = 0;
7449 	/* Record the ECN info. */
7450 	ipha->ipha_type_of_service &= 0xFC;
7451 	ipha->ipha_type_of_service |= ecn_info;
7452 
7453 	/* Update the receive attributes */
7454 	ira->ira_pktlen = packet_size;
7455 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7456 
7457 	/* Reassembly is successful; set checksum information in packet */
7458 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7459 	DB_CKSUMFLAGS(mp) = sum_flags;
7460 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7461 
7462 	return (mp);
7463 }
7464 
7465 /*
7466  * Pullup function that should be used for IP input in order to
7467  * ensure we do not loose the L2 source address; we need the l2 source
7468  * address for IP_RECVSLLA and for ndp_input.
7469  *
7470  * We return either NULL or b_rptr.
7471  */
7472 void *
7473 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7474 {
7475 	ill_t		*ill = ira->ira_ill;
7476 
7477 	if (ip_rput_pullups++ == 0) {
7478 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7479 		    "ip_pullup: %s forced us to "
7480 		    " pullup pkt, hdr len %ld, hdr addr %p",
7481 		    ill->ill_name, len, (void *)mp->b_rptr);
7482 	}
7483 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7484 		ip_setl2src(mp, ira, ira->ira_rill);
7485 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7486 	if (!pullupmsg(mp, len))
7487 		return (NULL);
7488 	else
7489 		return (mp->b_rptr);
7490 }
7491 
7492 /*
7493  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7494  * When called from the ULP ira_rill will be NULL hence the caller has to
7495  * pass in the ill.
7496  */
7497 /* ARGSUSED */
7498 void
7499 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7500 {
7501 	const uchar_t *addr;
7502 	int alen;
7503 
7504 	if (ira->ira_flags & IRAF_L2SRC_SET)
7505 		return;
7506 
7507 	ASSERT(ill != NULL);
7508 	alen = ill->ill_phys_addr_length;
7509 	ASSERT(alen <= sizeof (ira->ira_l2src));
7510 	if (ira->ira_mhip != NULL &&
7511 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7512 		bcopy(addr, ira->ira_l2src, alen);
7513 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7514 	    (addr = ill->ill_phys_addr) != NULL) {
7515 		bcopy(addr, ira->ira_l2src, alen);
7516 	} else {
7517 		bzero(ira->ira_l2src, alen);
7518 	}
7519 	ira->ira_flags |= IRAF_L2SRC_SET;
7520 }
7521 
7522 /*
7523  * check ip header length and align it.
7524  */
7525 mblk_t *
7526 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7527 {
7528 	ill_t	*ill = ira->ira_ill;
7529 	ssize_t len;
7530 
7531 	len = MBLKL(mp);
7532 
7533 	if (!OK_32PTR(mp->b_rptr))
7534 		IP_STAT(ill->ill_ipst, ip_notaligned);
7535 	else
7536 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7537 
7538 	/* Guard against bogus device drivers */
7539 	if (len < 0) {
7540 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7541 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7542 		freemsg(mp);
7543 		return (NULL);
7544 	}
7545 
7546 	if (len == 0) {
7547 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7548 		mblk_t *mp1 = mp->b_cont;
7549 
7550 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7551 			ip_setl2src(mp, ira, ira->ira_rill);
7552 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7553 
7554 		freeb(mp);
7555 		mp = mp1;
7556 		if (mp == NULL)
7557 			return (NULL);
7558 
7559 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7560 			return (mp);
7561 	}
7562 	if (ip_pullup(mp, min_size, ira) == NULL) {
7563 		if (msgdsize(mp) < min_size) {
7564 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7565 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7566 		} else {
7567 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7568 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7569 		}
7570 		freemsg(mp);
7571 		return (NULL);
7572 	}
7573 	return (mp);
7574 }
7575 
7576 /*
7577  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7578  */
7579 mblk_t *
7580 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7581     uint_t min_size, ip_recv_attr_t *ira)
7582 {
7583 	ill_t	*ill = ira->ira_ill;
7584 
7585 	/*
7586 	 * Make sure we have data length consistent
7587 	 * with the IP header.
7588 	 */
7589 	if (mp->b_cont == NULL) {
7590 		/* pkt_len is based on ipha_len, not the mblk length */
7591 		if (pkt_len < min_size) {
7592 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7593 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7594 			freemsg(mp);
7595 			return (NULL);
7596 		}
7597 		if (len < 0) {
7598 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7599 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7600 			freemsg(mp);
7601 			return (NULL);
7602 		}
7603 		/* Drop any pad */
7604 		mp->b_wptr = rptr + pkt_len;
7605 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7606 		ASSERT(pkt_len >= min_size);
7607 		if (pkt_len < min_size) {
7608 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7609 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7610 			freemsg(mp);
7611 			return (NULL);
7612 		}
7613 		if (len < 0) {
7614 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7615 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7616 			freemsg(mp);
7617 			return (NULL);
7618 		}
7619 		/* Drop any pad */
7620 		(void) adjmsg(mp, -len);
7621 		/*
7622 		 * adjmsg may have freed an mblk from the chain, hence
7623 		 * invalidate any hw checksum here. This will force IP to
7624 		 * calculate the checksum in sw, but only for this packet.
7625 		 */
7626 		DB_CKSUMFLAGS(mp) = 0;
7627 		IP_STAT(ill->ill_ipst, ip_multimblk);
7628 	}
7629 	return (mp);
7630 }
7631 
7632 /*
7633  * Check that the IPv4 opt_len is consistent with the packet and pullup
7634  * the options.
7635  */
7636 mblk_t *
7637 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7638     ip_recv_attr_t *ira)
7639 {
7640 	ill_t	*ill = ira->ira_ill;
7641 	ssize_t len;
7642 
7643 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7644 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7645 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7646 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7647 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7648 		freemsg(mp);
7649 		return (NULL);
7650 	}
7651 
7652 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7653 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7654 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7655 		freemsg(mp);
7656 		return (NULL);
7657 	}
7658 	/*
7659 	 * Recompute complete header length and make sure we
7660 	 * have access to all of it.
7661 	 */
7662 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7663 	if (len > (mp->b_wptr - mp->b_rptr)) {
7664 		if (len > pkt_len) {
7665 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7666 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7667 			freemsg(mp);
7668 			return (NULL);
7669 		}
7670 		if (ip_pullup(mp, len, ira) == NULL) {
7671 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7672 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7673 			freemsg(mp);
7674 			return (NULL);
7675 		}
7676 	}
7677 	return (mp);
7678 }
7679 
7680 /*
7681  * Returns a new ire, or the same ire, or NULL.
7682  * If a different IRE is returned, then it is held; the caller
7683  * needs to release it.
7684  * In no case is there any hold/release on the ire argument.
7685  */
7686 ire_t *
7687 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7688 {
7689 	ire_t		*new_ire;
7690 	ill_t		*ire_ill;
7691 	uint_t		ifindex;
7692 	ip_stack_t	*ipst = ill->ill_ipst;
7693 	boolean_t	strict_check = B_FALSE;
7694 
7695 	/*
7696 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7697 	 * issue (e.g. packet received on an underlying interface matched an
7698 	 * IRE_LOCAL on its associated group interface).
7699 	 */
7700 	ASSERT(ire->ire_ill != NULL);
7701 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7702 		return (ire);
7703 
7704 	/*
7705 	 * Do another ire lookup here, using the ingress ill, to see if the
7706 	 * interface is in a usesrc group.
7707 	 * As long as the ills belong to the same group, we don't consider
7708 	 * them to be arriving on the wrong interface. Thus, if the switch
7709 	 * is doing inbound load spreading, we won't drop packets when the
7710 	 * ip*_strict_dst_multihoming switch is on.
7711 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7712 	 * where the local address may not be unique. In this case we were
7713 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7714 	 * actually returned. The new lookup, which is more specific, should
7715 	 * only find the IRE_LOCAL associated with the ingress ill if one
7716 	 * exists.
7717 	 */
7718 	if (ire->ire_ipversion == IPV4_VERSION) {
7719 		if (ipst->ips_ip_strict_dst_multihoming)
7720 			strict_check = B_TRUE;
7721 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7722 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7723 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7724 	} else {
7725 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7726 		if (ipst->ips_ipv6_strict_dst_multihoming)
7727 			strict_check = B_TRUE;
7728 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7729 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7730 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7731 	}
7732 	/*
7733 	 * If the same ire that was returned in ip_input() is found then this
7734 	 * is an indication that usesrc groups are in use. The packet
7735 	 * arrived on a different ill in the group than the one associated with
7736 	 * the destination address.  If a different ire was found then the same
7737 	 * IP address must be hosted on multiple ills. This is possible with
7738 	 * unnumbered point2point interfaces. We switch to use this new ire in
7739 	 * order to have accurate interface statistics.
7740 	 */
7741 	if (new_ire != NULL) {
7742 		/* Note: held in one case but not the other? Caller handles */
7743 		if (new_ire != ire)
7744 			return (new_ire);
7745 		/* Unchanged */
7746 		ire_refrele(new_ire);
7747 		return (ire);
7748 	}
7749 
7750 	/*
7751 	 * Chase pointers once and store locally.
7752 	 */
7753 	ASSERT(ire->ire_ill != NULL);
7754 	ire_ill = ire->ire_ill;
7755 	ifindex = ill->ill_usesrc_ifindex;
7756 
7757 	/*
7758 	 * Check if it's a legal address on the 'usesrc' interface.
7759 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7760 	 * can just check phyint_ifindex.
7761 	 */
7762 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7763 		return (ire);
7764 	}
7765 
7766 	/*
7767 	 * If the ip*_strict_dst_multihoming switch is on then we can
7768 	 * only accept this packet if the interface is marked as routing.
7769 	 */
7770 	if (!(strict_check))
7771 		return (ire);
7772 
7773 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7774 		return (ire);
7775 	}
7776 	return (NULL);
7777 }
7778 
7779 /*
7780  * This function is used to construct a mac_header_info_s from a
7781  * DL_UNITDATA_IND message.
7782  * The address fields in the mhi structure points into the message,
7783  * thus the caller can't use those fields after freeing the message.
7784  *
7785  * We determine whether the packet received is a non-unicast packet
7786  * and in doing so, determine whether or not it is broadcast vs multicast.
7787  * For it to be a broadcast packet, we must have the appropriate mblk_t
7788  * hanging off the ill_t.  If this is either not present or doesn't match
7789  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7790  * to be multicast.  Thus NICs that have no broadcast address (or no
7791  * capability for one, such as point to point links) cannot return as
7792  * the packet being broadcast.
7793  */
7794 void
7795 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7796 {
7797 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7798 	mblk_t *bmp;
7799 	uint_t extra_offset;
7800 
7801 	bzero(mhip, sizeof (struct mac_header_info_s));
7802 
7803 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7804 
7805 	if (ill->ill_sap_length < 0)
7806 		extra_offset = 0;
7807 	else
7808 		extra_offset = ill->ill_sap_length;
7809 
7810 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7811 	    extra_offset;
7812 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7813 	    extra_offset;
7814 
7815 	if (!ind->dl_group_address)
7816 		return;
7817 
7818 	/* Multicast or broadcast */
7819 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7820 
7821 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7822 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7823 	    (bmp = ill->ill_bcast_mp) != NULL) {
7824 		dl_unitdata_req_t *dlur;
7825 		uint8_t *bphys_addr;
7826 
7827 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7828 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7829 		    extra_offset;
7830 
7831 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7832 		    ind->dl_dest_addr_length) == 0)
7833 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7834 	}
7835 }
7836 
7837 /*
7838  * This function is used to construct a mac_header_info_s from a
7839  * M_DATA fastpath message from a DLPI driver.
7840  * The address fields in the mhi structure points into the message,
7841  * thus the caller can't use those fields after freeing the message.
7842  *
7843  * We determine whether the packet received is a non-unicast packet
7844  * and in doing so, determine whether or not it is broadcast vs multicast.
7845  * For it to be a broadcast packet, we must have the appropriate mblk_t
7846  * hanging off the ill_t.  If this is either not present or doesn't match
7847  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7848  * to be multicast.  Thus NICs that have no broadcast address (or no
7849  * capability for one, such as point to point links) cannot return as
7850  * the packet being broadcast.
7851  */
7852 void
7853 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7854 {
7855 	mblk_t *bmp;
7856 	struct ether_header *pether;
7857 
7858 	bzero(mhip, sizeof (struct mac_header_info_s));
7859 
7860 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7861 
7862 	pether = (struct ether_header *)((char *)mp->b_rptr
7863 	    - sizeof (struct ether_header));
7864 
7865 	/*
7866 	 * Make sure the interface is an ethernet type, since we don't
7867 	 * know the header format for anything but Ethernet. Also make
7868 	 * sure we are pointing correctly above db_base.
7869 	 */
7870 	if (ill->ill_type != IFT_ETHER)
7871 		return;
7872 
7873 retry:
7874 	if ((uchar_t *)pether < mp->b_datap->db_base)
7875 		return;
7876 
7877 	/* Is there a VLAN tag? */
7878 	if (ill->ill_isv6) {
7879 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7880 			pether = (struct ether_header *)((char *)pether - 4);
7881 			goto retry;
7882 		}
7883 	} else {
7884 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7885 			pether = (struct ether_header *)((char *)pether - 4);
7886 			goto retry;
7887 		}
7888 	}
7889 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7890 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7891 
7892 	if (!(mhip->mhi_daddr[0] & 0x01))
7893 		return;
7894 
7895 	/* Multicast or broadcast */
7896 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7897 
7898 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7899 		dl_unitdata_req_t *dlur;
7900 		uint8_t *bphys_addr;
7901 		uint_t	addrlen;
7902 
7903 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7904 		addrlen = dlur->dl_dest_addr_length;
7905 		if (ill->ill_sap_length < 0) {
7906 			bphys_addr = (uchar_t *)dlur +
7907 			    dlur->dl_dest_addr_offset;
7908 			addrlen += ill->ill_sap_length;
7909 		} else {
7910 			bphys_addr = (uchar_t *)dlur +
7911 			    dlur->dl_dest_addr_offset +
7912 			    ill->ill_sap_length;
7913 			addrlen -= ill->ill_sap_length;
7914 		}
7915 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7916 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7917 	}
7918 }
7919 
7920 /*
7921  * Handle anything but M_DATA messages
7922  * We see the DL_UNITDATA_IND which are part
7923  * of the data path, and also the other messages from the driver.
7924  */
7925 void
7926 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7927 {
7928 	mblk_t		*first_mp;
7929 	struct iocblk   *iocp;
7930 	struct mac_header_info_s mhi;
7931 
7932 	switch (DB_TYPE(mp)) {
7933 	case M_PROTO:
7934 	case M_PCPROTO: {
7935 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7936 		    DL_UNITDATA_IND) {
7937 			/* Go handle anything other than data elsewhere. */
7938 			ip_rput_dlpi(ill, mp);
7939 			return;
7940 		}
7941 
7942 		first_mp = mp;
7943 		mp = first_mp->b_cont;
7944 		first_mp->b_cont = NULL;
7945 
7946 		if (mp == NULL) {
7947 			freeb(first_mp);
7948 			return;
7949 		}
7950 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7951 		if (ill->ill_isv6)
7952 			ip_input_v6(ill, NULL, mp, &mhi);
7953 		else
7954 			ip_input(ill, NULL, mp, &mhi);
7955 
7956 		/* Ditch the DLPI header. */
7957 		freeb(first_mp);
7958 		return;
7959 	}
7960 	case M_IOCACK:
7961 		iocp = (struct iocblk *)mp->b_rptr;
7962 		switch (iocp->ioc_cmd) {
7963 		case DL_IOC_HDR_INFO:
7964 			ill_fastpath_ack(ill, mp);
7965 			return;
7966 		default:
7967 			putnext(ill->ill_rq, mp);
7968 			return;
7969 		}
7970 		/* FALLTHROUGH */
7971 	case M_ERROR:
7972 	case M_HANGUP:
7973 		mutex_enter(&ill->ill_lock);
7974 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7975 			mutex_exit(&ill->ill_lock);
7976 			freemsg(mp);
7977 			return;
7978 		}
7979 		ill_refhold_locked(ill);
7980 		mutex_exit(&ill->ill_lock);
7981 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7982 		    B_FALSE);
7983 		return;
7984 	case M_CTL:
7985 		putnext(ill->ill_rq, mp);
7986 		return;
7987 	case M_IOCNAK:
7988 		ip1dbg(("got iocnak "));
7989 		iocp = (struct iocblk *)mp->b_rptr;
7990 		switch (iocp->ioc_cmd) {
7991 		case DL_IOC_HDR_INFO:
7992 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7993 			return;
7994 		default:
7995 			break;
7996 		}
7997 		/* FALLTHROUGH */
7998 	default:
7999 		putnext(ill->ill_rq, mp);
8000 		return;
8001 	}
8002 }
8003 
8004 /* Read side put procedure.  Packets coming from the wire arrive here. */
8005 int
8006 ip_rput(queue_t *q, mblk_t *mp)
8007 {
8008 	ill_t	*ill;
8009 	union DL_primitives *dl;
8010 
8011 	ill = (ill_t *)q->q_ptr;
8012 
8013 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8014 		/*
8015 		 * If things are opening or closing, only accept high-priority
8016 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
8017 		 * created; on close, things hanging off the ill may have been
8018 		 * freed already.)
8019 		 */
8020 		dl = (union DL_primitives *)mp->b_rptr;
8021 		if (DB_TYPE(mp) != M_PCPROTO ||
8022 		    dl->dl_primitive == DL_UNITDATA_IND) {
8023 			inet_freemsg(mp);
8024 			return (0);
8025 		}
8026 	}
8027 	if (DB_TYPE(mp) == M_DATA) {
8028 		struct mac_header_info_s mhi;
8029 
8030 		ip_mdata_to_mhi(ill, mp, &mhi);
8031 		ip_input(ill, NULL, mp, &mhi);
8032 	} else {
8033 		ip_rput_notdata(ill, mp);
8034 	}
8035 	return (0);
8036 }
8037 
8038 /*
8039  * Move the information to a copy.
8040  */
8041 mblk_t *
8042 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8043 {
8044 	mblk_t		*mp1;
8045 	ill_t		*ill = ira->ira_ill;
8046 	ip_stack_t	*ipst = ill->ill_ipst;
8047 
8048 	IP_STAT(ipst, ip_db_ref);
8049 
8050 	/* Make sure we have ira_l2src before we loose the original mblk */
8051 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8052 		ip_setl2src(mp, ira, ira->ira_rill);
8053 
8054 	mp1 = copymsg(mp);
8055 	if (mp1 == NULL) {
8056 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8057 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8058 		freemsg(mp);
8059 		return (NULL);
8060 	}
8061 	/* preserve the hardware checksum flags and data, if present */
8062 	if (DB_CKSUMFLAGS(mp) != 0) {
8063 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8064 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8065 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8066 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8067 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8068 	}
8069 	freemsg(mp);
8070 	return (mp1);
8071 }
8072 
8073 static void
8074 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8075     t_uscalar_t err)
8076 {
8077 	if (dl_err == DL_SYSERR) {
8078 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8079 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8080 		    ill->ill_name, dl_primstr(prim), err);
8081 		return;
8082 	}
8083 
8084 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8085 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8086 	    dl_errstr(dl_err));
8087 }
8088 
8089 /*
8090  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8091  * than DL_UNITDATA_IND messages. If we need to process this message
8092  * exclusively, we call qwriter_ip, in which case we also need to call
8093  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8094  */
8095 void
8096 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8097 {
8098 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8099 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8100 	queue_t		*q = ill->ill_rq;
8101 	t_uscalar_t	prim = dloa->dl_primitive;
8102 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8103 
8104 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8105 	    char *, dl_primstr(prim), ill_t *, ill);
8106 	ip1dbg(("ip_rput_dlpi"));
8107 
8108 	/*
8109 	 * If we received an ACK but didn't send a request for it, then it
8110 	 * can't be part of any pending operation; discard up-front.
8111 	 */
8112 	switch (prim) {
8113 	case DL_ERROR_ACK:
8114 		reqprim = dlea->dl_error_primitive;
8115 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8116 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8117 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8118 		    dlea->dl_unix_errno));
8119 		break;
8120 	case DL_OK_ACK:
8121 		reqprim = dloa->dl_correct_primitive;
8122 		break;
8123 	case DL_INFO_ACK:
8124 		reqprim = DL_INFO_REQ;
8125 		break;
8126 	case DL_BIND_ACK:
8127 		reqprim = DL_BIND_REQ;
8128 		break;
8129 	case DL_PHYS_ADDR_ACK:
8130 		reqprim = DL_PHYS_ADDR_REQ;
8131 		break;
8132 	case DL_NOTIFY_ACK:
8133 		reqprim = DL_NOTIFY_REQ;
8134 		break;
8135 	case DL_CAPABILITY_ACK:
8136 		reqprim = DL_CAPABILITY_REQ;
8137 		break;
8138 	}
8139 
8140 	if (prim != DL_NOTIFY_IND) {
8141 		if (reqprim == DL_PRIM_INVAL ||
8142 		    !ill_dlpi_pending(ill, reqprim)) {
8143 			/* Not a DLPI message we support or expected */
8144 			freemsg(mp);
8145 			return;
8146 		}
8147 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8148 		    dl_primstr(reqprim)));
8149 	}
8150 
8151 	switch (reqprim) {
8152 	case DL_UNBIND_REQ:
8153 		/*
8154 		 * NOTE: we mark the unbind as complete even if we got a
8155 		 * DL_ERROR_ACK, since there's not much else we can do.
8156 		 */
8157 		mutex_enter(&ill->ill_lock);
8158 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8159 		cv_signal(&ill->ill_cv);
8160 		mutex_exit(&ill->ill_lock);
8161 		break;
8162 
8163 	case DL_ENABMULTI_REQ:
8164 		if (prim == DL_OK_ACK) {
8165 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8166 				ill->ill_dlpi_multicast_state = IDS_OK;
8167 		}
8168 		break;
8169 	}
8170 
8171 	/*
8172 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8173 	 * need to become writer to continue to process it.  Because an
8174 	 * exclusive operation doesn't complete until replies to all queued
8175 	 * DLPI messages have been received, we know we're in the middle of an
8176 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8177 	 *
8178 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8179 	 * Since this is on the ill stream we unconditionally bump up the
8180 	 * refcount without doing ILL_CAN_LOOKUP().
8181 	 */
8182 	ill_refhold(ill);
8183 	if (prim == DL_NOTIFY_IND)
8184 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8185 	else
8186 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8187 }
8188 
8189 /*
8190  * Handling of DLPI messages that require exclusive access to the ipsq.
8191  *
8192  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8193  * happen here. (along with mi_copy_done)
8194  */
8195 /* ARGSUSED */
8196 static void
8197 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8198 {
8199 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8200 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8201 	int		err = 0;
8202 	ill_t		*ill = (ill_t *)q->q_ptr;
8203 	ipif_t		*ipif = NULL;
8204 	mblk_t		*mp1 = NULL;
8205 	conn_t		*connp = NULL;
8206 	t_uscalar_t	paddrreq;
8207 	mblk_t		*mp_hw;
8208 	boolean_t	success;
8209 	boolean_t	ioctl_aborted = B_FALSE;
8210 	boolean_t	log = B_TRUE;
8211 
8212 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8213 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8214 
8215 	ip1dbg(("ip_rput_dlpi_writer .."));
8216 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8217 	ASSERT(IAM_WRITER_ILL(ill));
8218 
8219 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8220 	/*
8221 	 * The current ioctl could have been aborted by the user and a new
8222 	 * ioctl to bring up another ill could have started. We could still
8223 	 * get a response from the driver later.
8224 	 */
8225 	if (ipif != NULL && ipif->ipif_ill != ill)
8226 		ioctl_aborted = B_TRUE;
8227 
8228 	switch (dloa->dl_primitive) {
8229 	case DL_ERROR_ACK:
8230 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8231 		    dl_primstr(dlea->dl_error_primitive)));
8232 
8233 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8234 		    char *, dl_primstr(dlea->dl_error_primitive),
8235 		    ill_t *, ill);
8236 
8237 		switch (dlea->dl_error_primitive) {
8238 		case DL_DISABMULTI_REQ:
8239 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8240 			break;
8241 		case DL_PROMISCON_REQ:
8242 		case DL_PROMISCOFF_REQ:
8243 		case DL_UNBIND_REQ:
8244 		case DL_ATTACH_REQ:
8245 		case DL_INFO_REQ:
8246 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8247 			break;
8248 		case DL_NOTIFY_REQ:
8249 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8250 			log = B_FALSE;
8251 			break;
8252 		case DL_PHYS_ADDR_REQ:
8253 			/*
8254 			 * For IPv6 only, there are two additional
8255 			 * phys_addr_req's sent to the driver to get the
8256 			 * IPv6 token and lla. This allows IP to acquire
8257 			 * the hardware address format for a given interface
8258 			 * without having built in knowledge of the hardware
8259 			 * address. ill_phys_addr_pend keeps track of the last
8260 			 * DL_PAR sent so we know which response we are
8261 			 * dealing with. ill_dlpi_done will update
8262 			 * ill_phys_addr_pend when it sends the next req.
8263 			 * We don't complete the IOCTL until all three DL_PARs
8264 			 * have been attempted, so set *_len to 0 and break.
8265 			 */
8266 			paddrreq = ill->ill_phys_addr_pend;
8267 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8268 			if (paddrreq == DL_IPV6_TOKEN) {
8269 				ill->ill_token_length = 0;
8270 				log = B_FALSE;
8271 				break;
8272 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8273 				ill->ill_nd_lla_len = 0;
8274 				log = B_FALSE;
8275 				break;
8276 			}
8277 			/*
8278 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8279 			 * We presumably have an IOCTL hanging out waiting
8280 			 * for completion. Find it and complete the IOCTL
8281 			 * with the error noted.
8282 			 * However, ill_dl_phys was called on an ill queue
8283 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8284 			 * set. But the ioctl is known to be pending on ill_wq.
8285 			 */
8286 			if (!ill->ill_ifname_pending)
8287 				break;
8288 			ill->ill_ifname_pending = 0;
8289 			if (!ioctl_aborted)
8290 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8291 			if (mp1 != NULL) {
8292 				/*
8293 				 * This operation (SIOCSLIFNAME) must have
8294 				 * happened on the ill. Assert there is no conn
8295 				 */
8296 				ASSERT(connp == NULL);
8297 				q = ill->ill_wq;
8298 			}
8299 			break;
8300 		case DL_BIND_REQ:
8301 			ill_dlpi_done(ill, DL_BIND_REQ);
8302 			if (ill->ill_ifname_pending)
8303 				break;
8304 			mutex_enter(&ill->ill_lock);
8305 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8306 			mutex_exit(&ill->ill_lock);
8307 			/*
8308 			 * Something went wrong with the bind.  We presumably
8309 			 * have an IOCTL hanging out waiting for completion.
8310 			 * Find it, take down the interface that was coming
8311 			 * up, and complete the IOCTL with the error noted.
8312 			 */
8313 			if (!ioctl_aborted)
8314 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8315 			if (mp1 != NULL) {
8316 				/*
8317 				 * This might be a result of a DL_NOTE_REPLUMB
8318 				 * notification. In that case, connp is NULL.
8319 				 */
8320 				if (connp != NULL)
8321 					q = CONNP_TO_WQ(connp);
8322 
8323 				(void) ipif_down(ipif, NULL, NULL);
8324 				/* error is set below the switch */
8325 			}
8326 			break;
8327 		case DL_ENABMULTI_REQ:
8328 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8329 
8330 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8331 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8332 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8333 
8334 				printf("ip: joining multicasts failed (%d)"
8335 				    " on %s - will use link layer "
8336 				    "broadcasts for multicast\n",
8337 				    dlea->dl_errno, ill->ill_name);
8338 
8339 				/*
8340 				 * Set up for multi_bcast; We are the
8341 				 * writer, so ok to access ill->ill_ipif
8342 				 * without any lock.
8343 				 */
8344 				mutex_enter(&ill->ill_phyint->phyint_lock);
8345 				ill->ill_phyint->phyint_flags |=
8346 				    PHYI_MULTI_BCAST;
8347 				mutex_exit(&ill->ill_phyint->phyint_lock);
8348 
8349 			}
8350 			freemsg(mp);	/* Don't want to pass this up */
8351 			return;
8352 		case DL_CAPABILITY_REQ:
8353 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8354 			    "DL_CAPABILITY REQ\n"));
8355 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8356 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8357 			ill_capability_done(ill);
8358 			freemsg(mp);
8359 			return;
8360 		}
8361 		/*
8362 		 * Note the error for IOCTL completion (mp1 is set when
8363 		 * ready to complete ioctl). If ill_ifname_pending_err is
8364 		 * set, an error occured during plumbing (ill_ifname_pending),
8365 		 * so we want to report that error.
8366 		 *
8367 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8368 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8369 		 * expected to get errack'd if the driver doesn't support
8370 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8371 		 * if these error conditions are encountered.
8372 		 */
8373 		if (mp1 != NULL) {
8374 			if (ill->ill_ifname_pending_err != 0)  {
8375 				err = ill->ill_ifname_pending_err;
8376 				ill->ill_ifname_pending_err = 0;
8377 			} else {
8378 				err = dlea->dl_unix_errno ?
8379 				    dlea->dl_unix_errno : ENXIO;
8380 			}
8381 		/*
8382 		 * If we're plumbing an interface and an error hasn't already
8383 		 * been saved, set ill_ifname_pending_err to the error passed
8384 		 * up. Ignore the error if log is B_FALSE (see comment above).
8385 		 */
8386 		} else if (log && ill->ill_ifname_pending &&
8387 		    ill->ill_ifname_pending_err == 0) {
8388 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8389 			    dlea->dl_unix_errno : ENXIO;
8390 		}
8391 
8392 		if (log)
8393 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8394 			    dlea->dl_errno, dlea->dl_unix_errno);
8395 		break;
8396 	case DL_CAPABILITY_ACK:
8397 		ill_capability_ack(ill, mp);
8398 		/*
8399 		 * The message has been handed off to ill_capability_ack
8400 		 * and must not be freed below
8401 		 */
8402 		mp = NULL;
8403 		break;
8404 
8405 	case DL_INFO_ACK:
8406 		/* Call a routine to handle this one. */
8407 		ill_dlpi_done(ill, DL_INFO_REQ);
8408 		ip_ll_subnet_defaults(ill, mp);
8409 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8410 		return;
8411 	case DL_BIND_ACK:
8412 		/*
8413 		 * We should have an IOCTL waiting on this unless
8414 		 * sent by ill_dl_phys, in which case just return
8415 		 */
8416 		ill_dlpi_done(ill, DL_BIND_REQ);
8417 
8418 		if (ill->ill_ifname_pending) {
8419 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8420 			    ill_t *, ill, mblk_t *, mp);
8421 			break;
8422 		}
8423 		mutex_enter(&ill->ill_lock);
8424 		ill->ill_dl_up = 1;
8425 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8426 		mutex_exit(&ill->ill_lock);
8427 
8428 		if (!ioctl_aborted)
8429 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8430 		if (mp1 == NULL) {
8431 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8432 			break;
8433 		}
8434 		/*
8435 		 * mp1 was added by ill_dl_up(). if that is a result of
8436 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8437 		 */
8438 		if (connp != NULL)
8439 			q = CONNP_TO_WQ(connp);
8440 		/*
8441 		 * We are exclusive. So nothing can change even after
8442 		 * we get the pending mp.
8443 		 */
8444 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8445 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8446 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8447 
8448 		/*
8449 		 * Now bring up the resolver; when that is complete, we'll
8450 		 * create IREs.  Note that we intentionally mirror what
8451 		 * ipif_up() would have done, because we got here by way of
8452 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8453 		 */
8454 		if (ill->ill_isv6) {
8455 			/*
8456 			 * v6 interfaces.
8457 			 * Unlike ARP which has to do another bind
8458 			 * and attach, once we get here we are
8459 			 * done with NDP
8460 			 */
8461 			(void) ipif_resolver_up(ipif, Res_act_initial);
8462 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8463 				err = ipif_up_done_v6(ipif);
8464 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8465 			/*
8466 			 * ARP and other v4 external resolvers.
8467 			 * Leave the pending mblk intact so that
8468 			 * the ioctl completes in ip_rput().
8469 			 */
8470 			if (connp != NULL)
8471 				mutex_enter(&connp->conn_lock);
8472 			mutex_enter(&ill->ill_lock);
8473 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8474 			mutex_exit(&ill->ill_lock);
8475 			if (connp != NULL)
8476 				mutex_exit(&connp->conn_lock);
8477 			if (success) {
8478 				err = ipif_resolver_up(ipif, Res_act_initial);
8479 				if (err == EINPROGRESS) {
8480 					freemsg(mp);
8481 					return;
8482 				}
8483 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8484 			} else {
8485 				/* The conn has started closing */
8486 				err = EINTR;
8487 			}
8488 		} else {
8489 			/*
8490 			 * This one is complete. Reply to pending ioctl.
8491 			 */
8492 			(void) ipif_resolver_up(ipif, Res_act_initial);
8493 			err = ipif_up_done(ipif);
8494 		}
8495 
8496 		if ((err == 0) && (ill->ill_up_ipifs)) {
8497 			err = ill_up_ipifs(ill, q, mp1);
8498 			if (err == EINPROGRESS) {
8499 				freemsg(mp);
8500 				return;
8501 			}
8502 		}
8503 
8504 		/*
8505 		 * If we have a moved ipif to bring up, and everything has
8506 		 * succeeded to this point, bring it up on the IPMP ill.
8507 		 * Otherwise, leave it down -- the admin can try to bring it
8508 		 * up by hand if need be.
8509 		 */
8510 		if (ill->ill_move_ipif != NULL) {
8511 			if (err != 0) {
8512 				ill->ill_move_ipif = NULL;
8513 			} else {
8514 				ipif = ill->ill_move_ipif;
8515 				ill->ill_move_ipif = NULL;
8516 				err = ipif_up(ipif, q, mp1);
8517 				if (err == EINPROGRESS) {
8518 					freemsg(mp);
8519 					return;
8520 				}
8521 			}
8522 		}
8523 		break;
8524 
8525 	case DL_NOTIFY_IND: {
8526 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8527 		uint_t orig_mtu, orig_mc_mtu;
8528 
8529 		switch (notify->dl_notification) {
8530 		case DL_NOTE_PHYS_ADDR:
8531 			err = ill_set_phys_addr(ill, mp);
8532 			break;
8533 
8534 		case DL_NOTE_REPLUMB:
8535 			/*
8536 			 * Directly return after calling ill_replumb().
8537 			 * Note that we should not free mp as it is reused
8538 			 * in the ill_replumb() function.
8539 			 */
8540 			err = ill_replumb(ill, mp);
8541 			return;
8542 
8543 		case DL_NOTE_FASTPATH_FLUSH:
8544 			nce_flush(ill, B_FALSE);
8545 			break;
8546 
8547 		case DL_NOTE_SDU_SIZE:
8548 		case DL_NOTE_SDU_SIZE2:
8549 			/*
8550 			 * The dce and fragmentation code can cope with
8551 			 * this changing while packets are being sent.
8552 			 * When packets are sent ip_output will discover
8553 			 * a change.
8554 			 *
8555 			 * Change the MTU size of the interface.
8556 			 */
8557 			mutex_enter(&ill->ill_lock);
8558 			orig_mtu = ill->ill_mtu;
8559 			orig_mc_mtu = ill->ill_mc_mtu;
8560 			switch (notify->dl_notification) {
8561 			case DL_NOTE_SDU_SIZE:
8562 				ill->ill_current_frag =
8563 				    (uint_t)notify->dl_data;
8564 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8565 				break;
8566 			case DL_NOTE_SDU_SIZE2:
8567 				ill->ill_current_frag =
8568 				    (uint_t)notify->dl_data1;
8569 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8570 				break;
8571 			}
8572 			if (ill->ill_current_frag > ill->ill_max_frag)
8573 				ill->ill_max_frag = ill->ill_current_frag;
8574 
8575 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8576 				ill->ill_mtu = ill->ill_current_frag;
8577 
8578 				/*
8579 				 * If ill_user_mtu was set (via
8580 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8581 				 */
8582 				if (ill->ill_user_mtu != 0 &&
8583 				    ill->ill_user_mtu < ill->ill_mtu)
8584 					ill->ill_mtu = ill->ill_user_mtu;
8585 
8586 				if (ill->ill_user_mtu != 0 &&
8587 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8588 					ill->ill_mc_mtu = ill->ill_user_mtu;
8589 
8590 				if (ill->ill_isv6) {
8591 					if (ill->ill_mtu < IPV6_MIN_MTU)
8592 						ill->ill_mtu = IPV6_MIN_MTU;
8593 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8594 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8595 				} else {
8596 					if (ill->ill_mtu < IP_MIN_MTU)
8597 						ill->ill_mtu = IP_MIN_MTU;
8598 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8599 						ill->ill_mc_mtu = IP_MIN_MTU;
8600 				}
8601 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8602 				ill->ill_mc_mtu = ill->ill_mtu;
8603 			}
8604 
8605 			mutex_exit(&ill->ill_lock);
8606 			/*
8607 			 * Make sure all dce_generation checks find out
8608 			 * that ill_mtu/ill_mc_mtu has changed.
8609 			 */
8610 			if (orig_mtu != ill->ill_mtu ||
8611 			    orig_mc_mtu != ill->ill_mc_mtu) {
8612 				dce_increment_all_generations(ill->ill_isv6,
8613 				    ill->ill_ipst);
8614 			}
8615 
8616 			/*
8617 			 * Refresh IPMP meta-interface MTU if necessary.
8618 			 */
8619 			if (IS_UNDER_IPMP(ill))
8620 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8621 			break;
8622 
8623 		case DL_NOTE_LINK_UP:
8624 		case DL_NOTE_LINK_DOWN: {
8625 			/*
8626 			 * We are writer. ill / phyint / ipsq assocs stable.
8627 			 * The RUNNING flag reflects the state of the link.
8628 			 */
8629 			phyint_t *phyint = ill->ill_phyint;
8630 			uint64_t new_phyint_flags;
8631 			boolean_t changed = B_FALSE;
8632 			boolean_t went_up;
8633 
8634 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8635 			mutex_enter(&phyint->phyint_lock);
8636 
8637 			new_phyint_flags = went_up ?
8638 			    phyint->phyint_flags | PHYI_RUNNING :
8639 			    phyint->phyint_flags & ~PHYI_RUNNING;
8640 
8641 			if (IS_IPMP(ill)) {
8642 				new_phyint_flags = went_up ?
8643 				    new_phyint_flags & ~PHYI_FAILED :
8644 				    new_phyint_flags | PHYI_FAILED;
8645 			}
8646 
8647 			if (new_phyint_flags != phyint->phyint_flags) {
8648 				phyint->phyint_flags = new_phyint_flags;
8649 				changed = B_TRUE;
8650 			}
8651 			mutex_exit(&phyint->phyint_lock);
8652 			/*
8653 			 * ill_restart_dad handles the DAD restart and routing
8654 			 * socket notification logic.
8655 			 */
8656 			if (changed) {
8657 				ill_restart_dad(phyint->phyint_illv4, went_up);
8658 				ill_restart_dad(phyint->phyint_illv6, went_up);
8659 			}
8660 			break;
8661 		}
8662 		case DL_NOTE_PROMISC_ON_PHYS: {
8663 			phyint_t *phyint = ill->ill_phyint;
8664 
8665 			mutex_enter(&phyint->phyint_lock);
8666 			phyint->phyint_flags |= PHYI_PROMISC;
8667 			mutex_exit(&phyint->phyint_lock);
8668 			break;
8669 		}
8670 		case DL_NOTE_PROMISC_OFF_PHYS: {
8671 			phyint_t *phyint = ill->ill_phyint;
8672 
8673 			mutex_enter(&phyint->phyint_lock);
8674 			phyint->phyint_flags &= ~PHYI_PROMISC;
8675 			mutex_exit(&phyint->phyint_lock);
8676 			break;
8677 		}
8678 		case DL_NOTE_CAPAB_RENEG:
8679 			/*
8680 			 * Something changed on the driver side.
8681 			 * It wants us to renegotiate the capabilities
8682 			 * on this ill. One possible cause is the aggregation
8683 			 * interface under us where a port got added or
8684 			 * went away.
8685 			 *
8686 			 * If the capability negotiation is already done
8687 			 * or is in progress, reset the capabilities and
8688 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8689 			 * so that when the ack comes back, we can start
8690 			 * the renegotiation process.
8691 			 *
8692 			 * Note that if ill_capab_reneg is already B_TRUE
8693 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8694 			 * the capability resetting request has been sent
8695 			 * and the renegotiation has not been started yet;
8696 			 * nothing needs to be done in this case.
8697 			 */
8698 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8699 			ill_capability_reset(ill, B_TRUE);
8700 			ipsq_current_finish(ipsq);
8701 			break;
8702 
8703 		case DL_NOTE_ALLOWED_IPS:
8704 			ill_set_allowed_ips(ill, mp);
8705 			break;
8706 		default:
8707 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8708 			    "type 0x%x for DL_NOTIFY_IND\n",
8709 			    notify->dl_notification));
8710 			break;
8711 		}
8712 
8713 		/*
8714 		 * As this is an asynchronous operation, we
8715 		 * should not call ill_dlpi_done
8716 		 */
8717 		break;
8718 	}
8719 	case DL_NOTIFY_ACK: {
8720 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8721 
8722 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8723 			ill->ill_note_link = 1;
8724 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8725 		break;
8726 	}
8727 	case DL_PHYS_ADDR_ACK: {
8728 		/*
8729 		 * As part of plumbing the interface via SIOCSLIFNAME,
8730 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8731 		 * whose answers we receive here.  As each answer is received,
8732 		 * we call ill_dlpi_done() to dispatch the next request as
8733 		 * we're processing the current one.  Once all answers have
8734 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8735 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8736 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8737 		 * available, but we know the ioctl is pending on ill_wq.)
8738 		 */
8739 		uint_t	paddrlen, paddroff;
8740 		uint8_t	*addr;
8741 
8742 		paddrreq = ill->ill_phys_addr_pend;
8743 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8744 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8745 		addr = mp->b_rptr + paddroff;
8746 
8747 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8748 		if (paddrreq == DL_IPV6_TOKEN) {
8749 			/*
8750 			 * bcopy to low-order bits of ill_token
8751 			 *
8752 			 * XXX Temporary hack - currently, all known tokens
8753 			 * are 64 bits, so I'll cheat for the moment.
8754 			 */
8755 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8756 			ill->ill_token_length = paddrlen;
8757 			break;
8758 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8759 			ASSERT(ill->ill_nd_lla_mp == NULL);
8760 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8761 			mp = NULL;
8762 			break;
8763 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8764 			ASSERT(ill->ill_dest_addr_mp == NULL);
8765 			ill->ill_dest_addr_mp = mp;
8766 			ill->ill_dest_addr = addr;
8767 			mp = NULL;
8768 			if (ill->ill_isv6) {
8769 				ill_setdesttoken(ill);
8770 				ipif_setdestlinklocal(ill->ill_ipif);
8771 			}
8772 			break;
8773 		}
8774 
8775 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8776 		ASSERT(ill->ill_phys_addr_mp == NULL);
8777 		if (!ill->ill_ifname_pending)
8778 			break;
8779 		ill->ill_ifname_pending = 0;
8780 		if (!ioctl_aborted)
8781 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8782 		if (mp1 != NULL) {
8783 			ASSERT(connp == NULL);
8784 			q = ill->ill_wq;
8785 		}
8786 		/*
8787 		 * If any error acks received during the plumbing sequence,
8788 		 * ill_ifname_pending_err will be set. Break out and send up
8789 		 * the error to the pending ioctl.
8790 		 */
8791 		if (ill->ill_ifname_pending_err != 0) {
8792 			err = ill->ill_ifname_pending_err;
8793 			ill->ill_ifname_pending_err = 0;
8794 			break;
8795 		}
8796 
8797 		ill->ill_phys_addr_mp = mp;
8798 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8799 		mp = NULL;
8800 
8801 		/*
8802 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8803 		 * provider doesn't support physical addresses.  We check both
8804 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8805 		 * not have physical addresses, but historically adversises a
8806 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8807 		 * its DL_PHYS_ADDR_ACK.
8808 		 */
8809 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8810 			ill->ill_phys_addr = NULL;
8811 		} else if (paddrlen != ill->ill_phys_addr_length) {
8812 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8813 			    paddrlen, ill->ill_phys_addr_length));
8814 			err = EINVAL;
8815 			break;
8816 		}
8817 
8818 		if (ill->ill_nd_lla_mp == NULL) {
8819 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8820 				err = ENOMEM;
8821 				break;
8822 			}
8823 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8824 		}
8825 
8826 		if (ill->ill_isv6) {
8827 			ill_setdefaulttoken(ill);
8828 			ipif_setlinklocal(ill->ill_ipif);
8829 		}
8830 		break;
8831 	}
8832 	case DL_OK_ACK:
8833 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8834 		    dl_primstr((int)dloa->dl_correct_primitive),
8835 		    dloa->dl_correct_primitive));
8836 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8837 		    char *, dl_primstr(dloa->dl_correct_primitive),
8838 		    ill_t *, ill);
8839 
8840 		switch (dloa->dl_correct_primitive) {
8841 		case DL_ENABMULTI_REQ:
8842 		case DL_DISABMULTI_REQ:
8843 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8844 			break;
8845 		case DL_PROMISCON_REQ:
8846 		case DL_PROMISCOFF_REQ:
8847 		case DL_UNBIND_REQ:
8848 		case DL_ATTACH_REQ:
8849 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8850 			break;
8851 		}
8852 		break;
8853 	default:
8854 		break;
8855 	}
8856 
8857 	freemsg(mp);
8858 	if (mp1 == NULL)
8859 		return;
8860 
8861 	/*
8862 	 * The operation must complete without EINPROGRESS since
8863 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8864 	 * the operation will be stuck forever inside the IPSQ.
8865 	 */
8866 	ASSERT(err != EINPROGRESS);
8867 
8868 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8869 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8870 	    ipif_t *, NULL);
8871 
8872 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8873 	case 0:
8874 		ipsq_current_finish(ipsq);
8875 		break;
8876 
8877 	case SIOCSLIFNAME:
8878 	case IF_UNITSEL: {
8879 		ill_t *ill_other = ILL_OTHER(ill);
8880 
8881 		/*
8882 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8883 		 * ill has a peer which is in an IPMP group, then place ill
8884 		 * into the same group.  One catch: although ifconfig plumbs
8885 		 * the appropriate IPMP meta-interface prior to plumbing this
8886 		 * ill, it is possible for multiple ifconfig applications to
8887 		 * race (or for another application to adjust plumbing), in
8888 		 * which case the IPMP meta-interface we need will be missing.
8889 		 * If so, kick the phyint out of the group.
8890 		 */
8891 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8892 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8893 			ipmp_illgrp_t	*illg;
8894 
8895 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8896 			if (illg == NULL)
8897 				ipmp_phyint_leave_grp(ill->ill_phyint);
8898 			else
8899 				ipmp_ill_join_illgrp(ill, illg);
8900 		}
8901 
8902 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8903 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8904 		else
8905 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8906 		break;
8907 	}
8908 	case SIOCLIFADDIF:
8909 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8910 		break;
8911 
8912 	default:
8913 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8914 		break;
8915 	}
8916 }
8917 
8918 /*
8919  * ip_rput_other is called by ip_rput to handle messages modifying the global
8920  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8921  */
8922 /* ARGSUSED */
8923 void
8924 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8925 {
8926 	ill_t		*ill = q->q_ptr;
8927 	struct iocblk	*iocp;
8928 
8929 	ip1dbg(("ip_rput_other "));
8930 	if (ipsq != NULL) {
8931 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8932 		ASSERT(ipsq->ipsq_xop ==
8933 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8934 	}
8935 
8936 	switch (mp->b_datap->db_type) {
8937 	case M_ERROR:
8938 	case M_HANGUP:
8939 		/*
8940 		 * The device has a problem.  We force the ILL down.  It can
8941 		 * be brought up again manually using SIOCSIFFLAGS (via
8942 		 * ifconfig or equivalent).
8943 		 */
8944 		ASSERT(ipsq != NULL);
8945 		if (mp->b_rptr < mp->b_wptr)
8946 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8947 		if (ill->ill_error == 0)
8948 			ill->ill_error = ENXIO;
8949 		if (!ill_down_start(q, mp))
8950 			return;
8951 		ipif_all_down_tail(ipsq, q, mp, NULL);
8952 		break;
8953 	case M_IOCNAK: {
8954 		iocp = (struct iocblk *)mp->b_rptr;
8955 
8956 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8957 		/*
8958 		 * If this was the first attempt, turn off the fastpath
8959 		 * probing.
8960 		 */
8961 		mutex_enter(&ill->ill_lock);
8962 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8963 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8964 			mutex_exit(&ill->ill_lock);
8965 			/*
8966 			 * don't flush the nce_t entries: we use them
8967 			 * as an index to the ncec itself.
8968 			 */
8969 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8970 			    ill->ill_name));
8971 		} else {
8972 			mutex_exit(&ill->ill_lock);
8973 		}
8974 		freemsg(mp);
8975 		break;
8976 	}
8977 	default:
8978 		ASSERT(0);
8979 		break;
8980 	}
8981 }
8982 
8983 /*
8984  * Update any source route, record route or timestamp options
8985  * When it fails it has consumed the message and BUMPed the MIB.
8986  */
8987 boolean_t
8988 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8989     ip_recv_attr_t *ira)
8990 {
8991 	ipoptp_t	opts;
8992 	uchar_t		*opt;
8993 	uint8_t		optval;
8994 	uint8_t		optlen;
8995 	ipaddr_t	dst;
8996 	ipaddr_t	ifaddr;
8997 	uint32_t	ts;
8998 	timestruc_t	now;
8999 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9000 
9001 	ip2dbg(("ip_forward_options\n"));
9002 	dst = ipha->ipha_dst;
9003 	opt = NULL;
9004 
9005 	for (optval = ipoptp_first(&opts, ipha);
9006 	    optval != IPOPT_EOL;
9007 	    optval = ipoptp_next(&opts)) {
9008 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9009 		opt = opts.ipoptp_cur;
9010 		optlen = opts.ipoptp_len;
9011 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
9012 		    optval, opts.ipoptp_len));
9013 		switch (optval) {
9014 			uint32_t off;
9015 		case IPOPT_SSRR:
9016 		case IPOPT_LSRR:
9017 			/* Check if adminstratively disabled */
9018 			if (!ipst->ips_ip_forward_src_routed) {
9019 				BUMP_MIB(dst_ill->ill_ip_mib,
9020 				    ipIfStatsForwProhibits);
9021 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9022 				    mp, dst_ill);
9023 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9024 				    ira);
9025 				return (B_FALSE);
9026 			}
9027 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9028 				/*
9029 				 * Must be partial since ip_input_options
9030 				 * checked for strict.
9031 				 */
9032 				break;
9033 			}
9034 			off = opt[IPOPT_OFFSET];
9035 			off--;
9036 		redo_srr:
9037 			if (optlen < IP_ADDR_LEN ||
9038 			    off > optlen - IP_ADDR_LEN) {
9039 				/* End of source route */
9040 				ip1dbg((
9041 				    "ip_forward_options: end of SR\n"));
9042 				break;
9043 			}
9044 			/* Pick a reasonable address on the outbound if */
9045 			ASSERT(dst_ill != NULL);
9046 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9047 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9048 			    NULL) != 0) {
9049 				/* No source! Shouldn't happen */
9050 				ifaddr = INADDR_ANY;
9051 			}
9052 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9053 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9054 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9055 			    ntohl(dst)));
9056 
9057 			/*
9058 			 * Check if our address is present more than
9059 			 * once as consecutive hops in source route.
9060 			 */
9061 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9062 				off += IP_ADDR_LEN;
9063 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9064 				goto redo_srr;
9065 			}
9066 			ipha->ipha_dst = dst;
9067 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9068 			break;
9069 		case IPOPT_RR:
9070 			off = opt[IPOPT_OFFSET];
9071 			off--;
9072 			if (optlen < IP_ADDR_LEN ||
9073 			    off > optlen - IP_ADDR_LEN) {
9074 				/* No more room - ignore */
9075 				ip1dbg((
9076 				    "ip_forward_options: end of RR\n"));
9077 				break;
9078 			}
9079 			/* Pick a reasonable address on the outbound if */
9080 			ASSERT(dst_ill != NULL);
9081 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9082 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9083 			    NULL) != 0) {
9084 				/* No source! Shouldn't happen */
9085 				ifaddr = INADDR_ANY;
9086 			}
9087 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9088 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9089 			break;
9090 		case IPOPT_TS:
9091 			off = 0;
9092 			/* Insert timestamp if there is room */
9093 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9094 			case IPOPT_TS_TSONLY:
9095 				off = IPOPT_TS_TIMELEN;
9096 				break;
9097 			case IPOPT_TS_PRESPEC:
9098 			case IPOPT_TS_PRESPEC_RFC791:
9099 				/* Verify that the address matched */
9100 				off = opt[IPOPT_OFFSET] - 1;
9101 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9102 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9103 					/* Not for us */
9104 					break;
9105 				}
9106 				/* FALLTHROUGH */
9107 			case IPOPT_TS_TSANDADDR:
9108 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9109 				break;
9110 			default:
9111 				/*
9112 				 * ip_*put_options should have already
9113 				 * dropped this packet.
9114 				 */
9115 				cmn_err(CE_PANIC, "ip_forward_options: "
9116 				    "unknown IT - bug in ip_input_options?\n");
9117 			}
9118 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9119 				/* Increase overflow counter */
9120 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9121 				opt[IPOPT_POS_OV_FLG] =
9122 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9123 				    (off << 4));
9124 				break;
9125 			}
9126 			off = opt[IPOPT_OFFSET] - 1;
9127 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9128 			case IPOPT_TS_PRESPEC:
9129 			case IPOPT_TS_PRESPEC_RFC791:
9130 			case IPOPT_TS_TSANDADDR:
9131 				/* Pick a reasonable addr on the outbound if */
9132 				ASSERT(dst_ill != NULL);
9133 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9134 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9135 				    NULL, NULL) != 0) {
9136 					/* No source! Shouldn't happen */
9137 					ifaddr = INADDR_ANY;
9138 				}
9139 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9140 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9141 				/* FALLTHROUGH */
9142 			case IPOPT_TS_TSONLY:
9143 				off = opt[IPOPT_OFFSET] - 1;
9144 				/* Compute # of milliseconds since midnight */
9145 				gethrestime(&now);
9146 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9147 				    NSEC2MSEC(now.tv_nsec);
9148 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9149 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9150 				break;
9151 			}
9152 			break;
9153 		}
9154 	}
9155 	return (B_TRUE);
9156 }
9157 
9158 /*
9159  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9160  * returns 'true' if there are still fragments left on the queue, in
9161  * which case we restart the timer.
9162  */
9163 void
9164 ill_frag_timer(void *arg)
9165 {
9166 	ill_t	*ill = (ill_t *)arg;
9167 	boolean_t frag_pending;
9168 	ip_stack_t *ipst = ill->ill_ipst;
9169 	time_t	timeout;
9170 
9171 	mutex_enter(&ill->ill_lock);
9172 	ASSERT(!ill->ill_fragtimer_executing);
9173 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9174 		ill->ill_frag_timer_id = 0;
9175 		mutex_exit(&ill->ill_lock);
9176 		return;
9177 	}
9178 	ill->ill_fragtimer_executing = 1;
9179 	mutex_exit(&ill->ill_lock);
9180 
9181 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9182 	    ipst->ips_ip_reassembly_timeout);
9183 
9184 	frag_pending = ill_frag_timeout(ill, timeout);
9185 
9186 	/*
9187 	 * Restart the timer, if we have fragments pending or if someone
9188 	 * wanted us to be scheduled again.
9189 	 */
9190 	mutex_enter(&ill->ill_lock);
9191 	ill->ill_fragtimer_executing = 0;
9192 	ill->ill_frag_timer_id = 0;
9193 	if (frag_pending || ill->ill_fragtimer_needrestart)
9194 		ill_frag_timer_start(ill);
9195 	mutex_exit(&ill->ill_lock);
9196 }
9197 
9198 void
9199 ill_frag_timer_start(ill_t *ill)
9200 {
9201 	ip_stack_t *ipst = ill->ill_ipst;
9202 	clock_t	timeo_ms;
9203 
9204 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9205 
9206 	/* If the ill is closing or opening don't proceed */
9207 	if (ill->ill_state_flags & ILL_CONDEMNED)
9208 		return;
9209 
9210 	if (ill->ill_fragtimer_executing) {
9211 		/*
9212 		 * ill_frag_timer is currently executing. Just record the
9213 		 * the fact that we want the timer to be restarted.
9214 		 * ill_frag_timer will post a timeout before it returns,
9215 		 * ensuring it will be called again.
9216 		 */
9217 		ill->ill_fragtimer_needrestart = 1;
9218 		return;
9219 	}
9220 
9221 	if (ill->ill_frag_timer_id == 0) {
9222 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9223 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9224 
9225 		/*
9226 		 * The timer is neither running nor is the timeout handler
9227 		 * executing. Post a timeout so that ill_frag_timer will be
9228 		 * called
9229 		 */
9230 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9231 		    MSEC_TO_TICK(timeo_ms >> 1));
9232 		ill->ill_fragtimer_needrestart = 0;
9233 	}
9234 }
9235 
9236 /*
9237  * Update any source route, record route or timestamp options.
9238  * Check that we are at end of strict source route.
9239  * The options have already been checked for sanity in ip_input_options().
9240  */
9241 boolean_t
9242 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9243 {
9244 	ipoptp_t	opts;
9245 	uchar_t		*opt;
9246 	uint8_t		optval;
9247 	uint8_t		optlen;
9248 	ipaddr_t	dst;
9249 	ipaddr_t	ifaddr;
9250 	uint32_t	ts;
9251 	timestruc_t	now;
9252 	ill_t		*ill = ira->ira_ill;
9253 	ip_stack_t	*ipst = ill->ill_ipst;
9254 
9255 	ip2dbg(("ip_input_local_options\n"));
9256 	opt = NULL;
9257 
9258 	for (optval = ipoptp_first(&opts, ipha);
9259 	    optval != IPOPT_EOL;
9260 	    optval = ipoptp_next(&opts)) {
9261 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9262 		opt = opts.ipoptp_cur;
9263 		optlen = opts.ipoptp_len;
9264 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9265 		    optval, optlen));
9266 		switch (optval) {
9267 			uint32_t off;
9268 		case IPOPT_SSRR:
9269 		case IPOPT_LSRR:
9270 			off = opt[IPOPT_OFFSET];
9271 			off--;
9272 			if (optlen < IP_ADDR_LEN ||
9273 			    off > optlen - IP_ADDR_LEN) {
9274 				/* End of source route */
9275 				ip1dbg(("ip_input_local_options: end of SR\n"));
9276 				break;
9277 			}
9278 			/*
9279 			 * This will only happen if two consecutive entries
9280 			 * in the source route contains our address or if
9281 			 * it is a packet with a loose source route which
9282 			 * reaches us before consuming the whole source route
9283 			 */
9284 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9285 			if (optval == IPOPT_SSRR) {
9286 				goto bad_src_route;
9287 			}
9288 			/*
9289 			 * Hack: instead of dropping the packet truncate the
9290 			 * source route to what has been used by filling the
9291 			 * rest with IPOPT_NOP.
9292 			 */
9293 			opt[IPOPT_OLEN] = (uint8_t)off;
9294 			while (off < optlen) {
9295 				opt[off++] = IPOPT_NOP;
9296 			}
9297 			break;
9298 		case IPOPT_RR:
9299 			off = opt[IPOPT_OFFSET];
9300 			off--;
9301 			if (optlen < IP_ADDR_LEN ||
9302 			    off > optlen - IP_ADDR_LEN) {
9303 				/* No more room - ignore */
9304 				ip1dbg((
9305 				    "ip_input_local_options: end of RR\n"));
9306 				break;
9307 			}
9308 			/* Pick a reasonable address on the outbound if */
9309 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9310 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9311 			    NULL) != 0) {
9312 				/* No source! Shouldn't happen */
9313 				ifaddr = INADDR_ANY;
9314 			}
9315 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9316 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9317 			break;
9318 		case IPOPT_TS:
9319 			off = 0;
9320 			/* Insert timestamp if there is romm */
9321 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9322 			case IPOPT_TS_TSONLY:
9323 				off = IPOPT_TS_TIMELEN;
9324 				break;
9325 			case IPOPT_TS_PRESPEC:
9326 			case IPOPT_TS_PRESPEC_RFC791:
9327 				/* Verify that the address matched */
9328 				off = opt[IPOPT_OFFSET] - 1;
9329 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9330 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9331 					/* Not for us */
9332 					break;
9333 				}
9334 				/* FALLTHROUGH */
9335 			case IPOPT_TS_TSANDADDR:
9336 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9337 				break;
9338 			default:
9339 				/*
9340 				 * ip_*put_options should have already
9341 				 * dropped this packet.
9342 				 */
9343 				cmn_err(CE_PANIC, "ip_input_local_options: "
9344 				    "unknown IT - bug in ip_input_options?\n");
9345 			}
9346 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9347 				/* Increase overflow counter */
9348 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9349 				opt[IPOPT_POS_OV_FLG] =
9350 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9351 				    (off << 4));
9352 				break;
9353 			}
9354 			off = opt[IPOPT_OFFSET] - 1;
9355 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9356 			case IPOPT_TS_PRESPEC:
9357 			case IPOPT_TS_PRESPEC_RFC791:
9358 			case IPOPT_TS_TSANDADDR:
9359 				/* Pick a reasonable addr on the outbound if */
9360 				if (ip_select_source_v4(ill, INADDR_ANY,
9361 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9362 				    &ifaddr, NULL, NULL) != 0) {
9363 					/* No source! Shouldn't happen */
9364 					ifaddr = INADDR_ANY;
9365 				}
9366 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9367 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9368 				/* FALLTHROUGH */
9369 			case IPOPT_TS_TSONLY:
9370 				off = opt[IPOPT_OFFSET] - 1;
9371 				/* Compute # of milliseconds since midnight */
9372 				gethrestime(&now);
9373 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9374 				    NSEC2MSEC(now.tv_nsec);
9375 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9376 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9377 				break;
9378 			}
9379 			break;
9380 		}
9381 	}
9382 	return (B_TRUE);
9383 
9384 bad_src_route:
9385 	/* make sure we clear any indication of a hardware checksum */
9386 	DB_CKSUMFLAGS(mp) = 0;
9387 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9388 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9389 	return (B_FALSE);
9390 
9391 }
9392 
9393 /*
9394  * Process IP options in an inbound packet.  Always returns the nexthop.
9395  * Normally this is the passed in nexthop, but if there is an option
9396  * that effects the nexthop (such as a source route) that will be returned.
9397  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9398  * and mp freed.
9399  */
9400 ipaddr_t
9401 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9402     ip_recv_attr_t *ira, int *errorp)
9403 {
9404 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9405 	ipoptp_t	opts;
9406 	uchar_t		*opt;
9407 	uint8_t		optval;
9408 	uint8_t		optlen;
9409 	intptr_t	code = 0;
9410 	ire_t		*ire;
9411 
9412 	ip2dbg(("ip_input_options\n"));
9413 	opt = NULL;
9414 	*errorp = 0;
9415 	for (optval = ipoptp_first(&opts, ipha);
9416 	    optval != IPOPT_EOL;
9417 	    optval = ipoptp_next(&opts)) {
9418 		opt = opts.ipoptp_cur;
9419 		optlen = opts.ipoptp_len;
9420 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9421 		    optval, optlen));
9422 		/*
9423 		 * Note: we need to verify the checksum before we
9424 		 * modify anything thus this routine only extracts the next
9425 		 * hop dst from any source route.
9426 		 */
9427 		switch (optval) {
9428 			uint32_t off;
9429 		case IPOPT_SSRR:
9430 		case IPOPT_LSRR:
9431 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9432 				if (optval == IPOPT_SSRR) {
9433 					ip1dbg(("ip_input_options: not next"
9434 					    " strict source route 0x%x\n",
9435 					    ntohl(dst)));
9436 					code = (char *)&ipha->ipha_dst -
9437 					    (char *)ipha;
9438 					goto param_prob; /* RouterReq's */
9439 				}
9440 				ip2dbg(("ip_input_options: "
9441 				    "not next source route 0x%x\n",
9442 				    ntohl(dst)));
9443 				break;
9444 			}
9445 
9446 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9447 				ip1dbg((
9448 				    "ip_input_options: bad option offset\n"));
9449 				code = (char *)&opt[IPOPT_OLEN] -
9450 				    (char *)ipha;
9451 				goto param_prob;
9452 			}
9453 			off = opt[IPOPT_OFFSET];
9454 			off--;
9455 		redo_srr:
9456 			if (optlen < IP_ADDR_LEN ||
9457 			    off > optlen - IP_ADDR_LEN) {
9458 				/* End of source route */
9459 				ip1dbg(("ip_input_options: end of SR\n"));
9460 				break;
9461 			}
9462 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9463 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9464 			    ntohl(dst)));
9465 
9466 			/*
9467 			 * Check if our address is present more than
9468 			 * once as consecutive hops in source route.
9469 			 * XXX verify per-interface ip_forwarding
9470 			 * for source route?
9471 			 */
9472 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9473 				off += IP_ADDR_LEN;
9474 				goto redo_srr;
9475 			}
9476 
9477 			if (dst == htonl(INADDR_LOOPBACK)) {
9478 				ip1dbg(("ip_input_options: loopback addr in "
9479 				    "source route!\n"));
9480 				goto bad_src_route;
9481 			}
9482 			/*
9483 			 * For strict: verify that dst is directly
9484 			 * reachable.
9485 			 */
9486 			if (optval == IPOPT_SSRR) {
9487 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9488 				    IRE_INTERFACE, NULL, ALL_ZONES,
9489 				    ira->ira_tsl,
9490 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9491 				    NULL);
9492 				if (ire == NULL) {
9493 					ip1dbg(("ip_input_options: SSRR not "
9494 					    "directly reachable: 0x%x\n",
9495 					    ntohl(dst)));
9496 					goto bad_src_route;
9497 				}
9498 				ire_refrele(ire);
9499 			}
9500 			/*
9501 			 * Defer update of the offset and the record route
9502 			 * until the packet is forwarded.
9503 			 */
9504 			break;
9505 		case IPOPT_RR:
9506 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9507 				ip1dbg((
9508 				    "ip_input_options: bad option offset\n"));
9509 				code = (char *)&opt[IPOPT_OLEN] -
9510 				    (char *)ipha;
9511 				goto param_prob;
9512 			}
9513 			break;
9514 		case IPOPT_TS:
9515 			/*
9516 			 * Verify that length >= 5 and that there is either
9517 			 * room for another timestamp or that the overflow
9518 			 * counter is not maxed out.
9519 			 */
9520 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9521 			if (optlen < IPOPT_MINLEN_IT) {
9522 				goto param_prob;
9523 			}
9524 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9525 				ip1dbg((
9526 				    "ip_input_options: bad option offset\n"));
9527 				code = (char *)&opt[IPOPT_OFFSET] -
9528 				    (char *)ipha;
9529 				goto param_prob;
9530 			}
9531 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9532 			case IPOPT_TS_TSONLY:
9533 				off = IPOPT_TS_TIMELEN;
9534 				break;
9535 			case IPOPT_TS_TSANDADDR:
9536 			case IPOPT_TS_PRESPEC:
9537 			case IPOPT_TS_PRESPEC_RFC791:
9538 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9539 				break;
9540 			default:
9541 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9542 				    (char *)ipha;
9543 				goto param_prob;
9544 			}
9545 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9546 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9547 				/*
9548 				 * No room and the overflow counter is 15
9549 				 * already.
9550 				 */
9551 				goto param_prob;
9552 			}
9553 			break;
9554 		}
9555 	}
9556 
9557 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9558 		return (dst);
9559 	}
9560 
9561 	ip1dbg(("ip_input_options: error processing IP options."));
9562 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9563 
9564 param_prob:
9565 	/* make sure we clear any indication of a hardware checksum */
9566 	DB_CKSUMFLAGS(mp) = 0;
9567 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9568 	icmp_param_problem(mp, (uint8_t)code, ira);
9569 	*errorp = -1;
9570 	return (dst);
9571 
9572 bad_src_route:
9573 	/* make sure we clear any indication of a hardware checksum */
9574 	DB_CKSUMFLAGS(mp) = 0;
9575 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9576 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9577 	*errorp = -1;
9578 	return (dst);
9579 }
9580 
9581 /*
9582  * IP & ICMP info in >=14 msg's ...
9583  *  - ip fixed part (mib2_ip_t)
9584  *  - icmp fixed part (mib2_icmp_t)
9585  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9586  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9587  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9588  *  - ipRouteAttributeTable (ip 102)	labeled routes
9589  *  - ip multicast membership (ip_member_t)
9590  *  - ip multicast source filtering (ip_grpsrc_t)
9591  *  - igmp fixed part (struct igmpstat)
9592  *  - multicast routing stats (struct mrtstat)
9593  *  - multicast routing vifs (array of struct vifctl)
9594  *  - multicast routing routes (array of struct mfcctl)
9595  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9596  *					One per ill plus one generic
9597  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9598  *					One per ill plus one generic
9599  *  - ipv6RouteEntry			all IPv6 IREs
9600  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9601  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9602  *  - ipv6AddrEntry			all IPv6 ipifs
9603  *  - ipv6 multicast membership (ipv6_member_t)
9604  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9605  *
9606  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9607  * already filled in by the caller.
9608  * If legacy_req is true then MIB structures needs to be truncated to their
9609  * legacy sizes before being returned.
9610  * Return value of 0 indicates that no messages were sent and caller
9611  * should free mpctl.
9612  */
9613 int
9614 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9615 {
9616 	ip_stack_t *ipst;
9617 	sctp_stack_t *sctps;
9618 
9619 	if (q->q_next != NULL) {
9620 		ipst = ILLQ_TO_IPST(q);
9621 	} else {
9622 		ipst = CONNQ_TO_IPST(q);
9623 	}
9624 	ASSERT(ipst != NULL);
9625 	sctps = ipst->ips_netstack->netstack_sctp;
9626 
9627 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9628 		return (0);
9629 	}
9630 
9631 	/*
9632 	 * For the purposes of the (broken) packet shell use
9633 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9634 	 * to make TCP and UDP appear first in the list of mib items.
9635 	 * TBD: We could expand this and use it in netstat so that
9636 	 * the kernel doesn't have to produce large tables (connections,
9637 	 * routes, etc) when netstat only wants the statistics or a particular
9638 	 * table.
9639 	 */
9640 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9641 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9642 			return (1);
9643 		}
9644 	}
9645 
9646 	if (level != MIB2_TCP) {
9647 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9648 			return (1);
9649 		}
9650 		if (level == MIB2_UDP) {
9651 			goto done;
9652 		}
9653 	}
9654 
9655 	if (level != MIB2_UDP) {
9656 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9657 			return (1);
9658 		}
9659 		if (level == MIB2_TCP) {
9660 			goto done;
9661 		}
9662 	}
9663 
9664 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9665 	    ipst, legacy_req)) == NULL) {
9666 		return (1);
9667 	}
9668 
9669 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9670 	    legacy_req)) == NULL) {
9671 		return (1);
9672 	}
9673 
9674 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9675 		return (1);
9676 	}
9677 
9678 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9679 		return (1);
9680 	}
9681 
9682 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9683 		return (1);
9684 	}
9685 
9686 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9687 		return (1);
9688 	}
9689 
9690 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9691 	    legacy_req)) == NULL) {
9692 		return (1);
9693 	}
9694 
9695 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9696 	    legacy_req)) == NULL) {
9697 		return (1);
9698 	}
9699 
9700 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9701 		return (1);
9702 	}
9703 
9704 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9705 		return (1);
9706 	}
9707 
9708 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9709 		return (1);
9710 	}
9711 
9712 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9713 		return (1);
9714 	}
9715 
9716 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9717 		return (1);
9718 	}
9719 
9720 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9721 		return (1);
9722 	}
9723 
9724 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9725 	if (mpctl == NULL)
9726 		return (1);
9727 
9728 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9729 	if (mpctl == NULL)
9730 		return (1);
9731 
9732 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9733 		return (1);
9734 	}
9735 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9736 		return (1);
9737 	}
9738 done:
9739 	freemsg(mpctl);
9740 	return (1);
9741 }
9742 
9743 /* Get global (legacy) IPv4 statistics */
9744 static mblk_t *
9745 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9746     ip_stack_t *ipst, boolean_t legacy_req)
9747 {
9748 	mib2_ip_t		old_ip_mib;
9749 	struct opthdr		*optp;
9750 	mblk_t			*mp2ctl;
9751 	mib2_ipAddrEntry_t	mae;
9752 
9753 	/*
9754 	 * make a copy of the original message
9755 	 */
9756 	mp2ctl = copymsg(mpctl);
9757 
9758 	/* fixed length IP structure... */
9759 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9760 	optp->level = MIB2_IP;
9761 	optp->name = 0;
9762 	SET_MIB(old_ip_mib.ipForwarding,
9763 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9764 	SET_MIB(old_ip_mib.ipDefaultTTL,
9765 	    (uint32_t)ipst->ips_ip_def_ttl);
9766 	SET_MIB(old_ip_mib.ipReasmTimeout,
9767 	    ipst->ips_ip_reassembly_timeout);
9768 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9769 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9770 	    sizeof (mib2_ipAddrEntry_t));
9771 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9772 	    sizeof (mib2_ipRouteEntry_t));
9773 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9774 	    sizeof (mib2_ipNetToMediaEntry_t));
9775 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9776 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9777 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9778 	    sizeof (mib2_ipAttributeEntry_t));
9779 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9780 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9781 
9782 	/*
9783 	 * Grab the statistics from the new IP MIB
9784 	 */
9785 	SET_MIB(old_ip_mib.ipInReceives,
9786 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9787 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9788 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9789 	SET_MIB(old_ip_mib.ipForwDatagrams,
9790 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9791 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9792 	    ipmib->ipIfStatsInUnknownProtos);
9793 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9794 	SET_MIB(old_ip_mib.ipInDelivers,
9795 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9796 	SET_MIB(old_ip_mib.ipOutRequests,
9797 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9798 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9799 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9800 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9801 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9802 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9803 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9804 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9805 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9806 
9807 	/* ipRoutingDiscards is not being used */
9808 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9809 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9810 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9811 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9812 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9813 	    ipmib->ipIfStatsReasmDuplicates);
9814 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9815 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9816 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9817 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9818 	SET_MIB(old_ip_mib.rawipInOverflows,
9819 	    ipmib->rawipIfStatsInOverflows);
9820 
9821 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9822 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9823 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9824 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9825 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9826 	    ipmib->ipIfStatsOutSwitchIPVersion);
9827 
9828 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9829 	    (int)sizeof (old_ip_mib))) {
9830 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9831 		    (uint_t)sizeof (old_ip_mib)));
9832 	}
9833 
9834 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9835 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9836 	    (int)optp->level, (int)optp->name, (int)optp->len));
9837 	qreply(q, mpctl);
9838 	return (mp2ctl);
9839 }
9840 
9841 /* Per interface IPv4 statistics */
9842 static mblk_t *
9843 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9844     boolean_t legacy_req)
9845 {
9846 	struct opthdr		*optp;
9847 	mblk_t			*mp2ctl;
9848 	ill_t			*ill;
9849 	ill_walk_context_t	ctx;
9850 	mblk_t			*mp_tail = NULL;
9851 	mib2_ipIfStatsEntry_t	global_ip_mib;
9852 	mib2_ipAddrEntry_t	mae;
9853 
9854 	/*
9855 	 * Make a copy of the original message
9856 	 */
9857 	mp2ctl = copymsg(mpctl);
9858 
9859 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9860 	optp->level = MIB2_IP;
9861 	optp->name = MIB2_IP_TRAFFIC_STATS;
9862 	/* Include "unknown interface" ip_mib */
9863 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9864 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9865 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9866 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9867 	    (ipst->ips_ip_forwarding ? 1 : 2));
9868 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9869 	    (uint32_t)ipst->ips_ip_def_ttl);
9870 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9871 	    sizeof (mib2_ipIfStatsEntry_t));
9872 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9873 	    sizeof (mib2_ipAddrEntry_t));
9874 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9875 	    sizeof (mib2_ipRouteEntry_t));
9876 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9877 	    sizeof (mib2_ipNetToMediaEntry_t));
9878 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9879 	    sizeof (ip_member_t));
9880 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9881 	    sizeof (ip_grpsrc_t));
9882 
9883 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9884 
9885 	if (legacy_req) {
9886 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9887 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9888 	}
9889 
9890 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9891 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9892 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9893 		    "failed to allocate %u bytes\n",
9894 		    (uint_t)sizeof (global_ip_mib)));
9895 	}
9896 
9897 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9898 	ill = ILL_START_WALK_V4(&ctx, ipst);
9899 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9900 		ill->ill_ip_mib->ipIfStatsIfIndex =
9901 		    ill->ill_phyint->phyint_ifindex;
9902 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9903 		    (ipst->ips_ip_forwarding ? 1 : 2));
9904 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9905 		    (uint32_t)ipst->ips_ip_def_ttl);
9906 
9907 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9908 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9909 		    (char *)ill->ill_ip_mib,
9910 		    (int)sizeof (*ill->ill_ip_mib))) {
9911 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9912 			    "failed to allocate %u bytes\n",
9913 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9914 		}
9915 	}
9916 	rw_exit(&ipst->ips_ill_g_lock);
9917 
9918 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9919 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9920 	    "level %d, name %d, len %d\n",
9921 	    (int)optp->level, (int)optp->name, (int)optp->len));
9922 	qreply(q, mpctl);
9923 
9924 	if (mp2ctl == NULL)
9925 		return (NULL);
9926 
9927 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9928 	    legacy_req));
9929 }
9930 
9931 /* Global IPv4 ICMP statistics */
9932 static mblk_t *
9933 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9934 {
9935 	struct opthdr		*optp;
9936 	mblk_t			*mp2ctl;
9937 
9938 	/*
9939 	 * Make a copy of the original message
9940 	 */
9941 	mp2ctl = copymsg(mpctl);
9942 
9943 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9944 	optp->level = MIB2_ICMP;
9945 	optp->name = 0;
9946 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9947 	    (int)sizeof (ipst->ips_icmp_mib))) {
9948 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9949 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9950 	}
9951 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9952 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9953 	    (int)optp->level, (int)optp->name, (int)optp->len));
9954 	qreply(q, mpctl);
9955 	return (mp2ctl);
9956 }
9957 
9958 /* Global IPv4 IGMP statistics */
9959 static mblk_t *
9960 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9961 {
9962 	struct opthdr		*optp;
9963 	mblk_t			*mp2ctl;
9964 
9965 	/*
9966 	 * make a copy of the original message
9967 	 */
9968 	mp2ctl = copymsg(mpctl);
9969 
9970 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9971 	optp->level = EXPER_IGMP;
9972 	optp->name = 0;
9973 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9974 	    (int)sizeof (ipst->ips_igmpstat))) {
9975 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9976 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9977 	}
9978 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9979 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9980 	    (int)optp->level, (int)optp->name, (int)optp->len));
9981 	qreply(q, mpctl);
9982 	return (mp2ctl);
9983 }
9984 
9985 /* Global IPv4 Multicast Routing statistics */
9986 static mblk_t *
9987 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9988 {
9989 	struct opthdr		*optp;
9990 	mblk_t			*mp2ctl;
9991 
9992 	/*
9993 	 * make a copy of the original message
9994 	 */
9995 	mp2ctl = copymsg(mpctl);
9996 
9997 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9998 	optp->level = EXPER_DVMRP;
9999 	optp->name = 0;
10000 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
10001 		ip0dbg(("ip_mroute_stats: failed\n"));
10002 	}
10003 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10004 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
10005 	    (int)optp->level, (int)optp->name, (int)optp->len));
10006 	qreply(q, mpctl);
10007 	return (mp2ctl);
10008 }
10009 
10010 /* IPv4 address information */
10011 static mblk_t *
10012 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10013     boolean_t legacy_req)
10014 {
10015 	struct opthdr		*optp;
10016 	mblk_t			*mp2ctl;
10017 	mblk_t			*mp_tail = NULL;
10018 	ill_t			*ill;
10019 	ipif_t			*ipif;
10020 	uint_t			bitval;
10021 	mib2_ipAddrEntry_t	mae;
10022 	size_t			mae_size;
10023 	zoneid_t		zoneid;
10024 	ill_walk_context_t	ctx;
10025 
10026 	/*
10027 	 * make a copy of the original message
10028 	 */
10029 	mp2ctl = copymsg(mpctl);
10030 
10031 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10032 	    sizeof (mib2_ipAddrEntry_t);
10033 
10034 	/* ipAddrEntryTable */
10035 
10036 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10037 	optp->level = MIB2_IP;
10038 	optp->name = MIB2_IP_ADDR;
10039 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10040 
10041 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10042 	ill = ILL_START_WALK_V4(&ctx, ipst);
10043 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10044 		for (ipif = ill->ill_ipif; ipif != NULL;
10045 		    ipif = ipif->ipif_next) {
10046 			if (ipif->ipif_zoneid != zoneid &&
10047 			    ipif->ipif_zoneid != ALL_ZONES)
10048 				continue;
10049 			/* Sum of count from dead IRE_LO* and our current */
10050 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10051 			if (ipif->ipif_ire_local != NULL) {
10052 				mae.ipAdEntInfo.ae_ibcnt +=
10053 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10054 			}
10055 			mae.ipAdEntInfo.ae_obcnt = 0;
10056 			mae.ipAdEntInfo.ae_focnt = 0;
10057 
10058 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10059 			    OCTET_LENGTH);
10060 			mae.ipAdEntIfIndex.o_length =
10061 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10062 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10063 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10064 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10065 			mae.ipAdEntInfo.ae_subnet_len =
10066 			    ip_mask_to_plen(ipif->ipif_net_mask);
10067 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10068 			for (bitval = 1;
10069 			    bitval &&
10070 			    !(bitval & ipif->ipif_brd_addr);
10071 			    bitval <<= 1)
10072 				noop;
10073 			mae.ipAdEntBcastAddr = bitval;
10074 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10075 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10076 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10077 			mae.ipAdEntInfo.ae_broadcast_addr =
10078 			    ipif->ipif_brd_addr;
10079 			mae.ipAdEntInfo.ae_pp_dst_addr =
10080 			    ipif->ipif_pp_dst_addr;
10081 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10082 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10083 			mae.ipAdEntRetransmitTime =
10084 			    ill->ill_reachable_retrans_time;
10085 
10086 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10087 			    (char *)&mae, (int)mae_size)) {
10088 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10089 				    "allocate %u bytes\n", (uint_t)mae_size));
10090 			}
10091 		}
10092 	}
10093 	rw_exit(&ipst->ips_ill_g_lock);
10094 
10095 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10096 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10097 	    (int)optp->level, (int)optp->name, (int)optp->len));
10098 	qreply(q, mpctl);
10099 	return (mp2ctl);
10100 }
10101 
10102 /* IPv6 address information */
10103 static mblk_t *
10104 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10105     boolean_t legacy_req)
10106 {
10107 	struct opthdr		*optp;
10108 	mblk_t			*mp2ctl;
10109 	mblk_t			*mp_tail = NULL;
10110 	ill_t			*ill;
10111 	ipif_t			*ipif;
10112 	mib2_ipv6AddrEntry_t	mae6;
10113 	size_t			mae6_size;
10114 	zoneid_t		zoneid;
10115 	ill_walk_context_t	ctx;
10116 
10117 	/*
10118 	 * make a copy of the original message
10119 	 */
10120 	mp2ctl = copymsg(mpctl);
10121 
10122 	mae6_size = (legacy_req) ?
10123 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10124 	    sizeof (mib2_ipv6AddrEntry_t);
10125 
10126 	/* ipv6AddrEntryTable */
10127 
10128 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10129 	optp->level = MIB2_IP6;
10130 	optp->name = MIB2_IP6_ADDR;
10131 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10132 
10133 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10134 	ill = ILL_START_WALK_V6(&ctx, ipst);
10135 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10136 		for (ipif = ill->ill_ipif; ipif != NULL;
10137 		    ipif = ipif->ipif_next) {
10138 			if (ipif->ipif_zoneid != zoneid &&
10139 			    ipif->ipif_zoneid != ALL_ZONES)
10140 				continue;
10141 			/* Sum of count from dead IRE_LO* and our current */
10142 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10143 			if (ipif->ipif_ire_local != NULL) {
10144 				mae6.ipv6AddrInfo.ae_ibcnt +=
10145 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10146 			}
10147 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10148 			mae6.ipv6AddrInfo.ae_focnt = 0;
10149 
10150 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10151 			    OCTET_LENGTH);
10152 			mae6.ipv6AddrIfIndex.o_length =
10153 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10154 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10155 			mae6.ipv6AddrPfxLength =
10156 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10157 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10158 			mae6.ipv6AddrInfo.ae_subnet_len =
10159 			    mae6.ipv6AddrPfxLength;
10160 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10161 
10162 			/* Type: stateless(1), stateful(2), unknown(3) */
10163 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10164 				mae6.ipv6AddrType = 1;
10165 			else
10166 				mae6.ipv6AddrType = 2;
10167 			/* Anycast: true(1), false(2) */
10168 			if (ipif->ipif_flags & IPIF_ANYCAST)
10169 				mae6.ipv6AddrAnycastFlag = 1;
10170 			else
10171 				mae6.ipv6AddrAnycastFlag = 2;
10172 
10173 			/*
10174 			 * Address status: preferred(1), deprecated(2),
10175 			 * invalid(3), inaccessible(4), unknown(5)
10176 			 */
10177 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10178 				mae6.ipv6AddrStatus = 3;
10179 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10180 				mae6.ipv6AddrStatus = 2;
10181 			else
10182 				mae6.ipv6AddrStatus = 1;
10183 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10184 			mae6.ipv6AddrInfo.ae_metric  =
10185 			    ipif->ipif_ill->ill_metric;
10186 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10187 			    ipif->ipif_v6pp_dst_addr;
10188 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10189 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10190 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10191 			mae6.ipv6AddrIdentifier = ill->ill_token;
10192 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10193 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10194 			mae6.ipv6AddrRetransmitTime =
10195 			    ill->ill_reachable_retrans_time;
10196 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10197 			    (char *)&mae6, (int)mae6_size)) {
10198 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10199 				    "allocate %u bytes\n",
10200 				    (uint_t)mae6_size));
10201 			}
10202 		}
10203 	}
10204 	rw_exit(&ipst->ips_ill_g_lock);
10205 
10206 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10207 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10208 	    (int)optp->level, (int)optp->name, (int)optp->len));
10209 	qreply(q, mpctl);
10210 	return (mp2ctl);
10211 }
10212 
10213 /* IPv4 multicast group membership. */
10214 static mblk_t *
10215 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10216 {
10217 	struct opthdr		*optp;
10218 	mblk_t			*mp2ctl;
10219 	ill_t			*ill;
10220 	ipif_t			*ipif;
10221 	ilm_t			*ilm;
10222 	ip_member_t		ipm;
10223 	mblk_t			*mp_tail = NULL;
10224 	ill_walk_context_t	ctx;
10225 	zoneid_t		zoneid;
10226 
10227 	/*
10228 	 * make a copy of the original message
10229 	 */
10230 	mp2ctl = copymsg(mpctl);
10231 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10232 
10233 	/* ipGroupMember table */
10234 	optp = (struct opthdr *)&mpctl->b_rptr[
10235 	    sizeof (struct T_optmgmt_ack)];
10236 	optp->level = MIB2_IP;
10237 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10238 
10239 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10240 	ill = ILL_START_WALK_V4(&ctx, ipst);
10241 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10242 		/* Make sure the ill isn't going away. */
10243 		if (!ill_check_and_refhold(ill))
10244 			continue;
10245 		rw_exit(&ipst->ips_ill_g_lock);
10246 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10247 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10248 			if (ilm->ilm_zoneid != zoneid &&
10249 			    ilm->ilm_zoneid != ALL_ZONES)
10250 				continue;
10251 
10252 			/* Is there an ipif for ilm_ifaddr? */
10253 			for (ipif = ill->ill_ipif; ipif != NULL;
10254 			    ipif = ipif->ipif_next) {
10255 				if (!IPIF_IS_CONDEMNED(ipif) &&
10256 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10257 				    ilm->ilm_ifaddr != INADDR_ANY)
10258 					break;
10259 			}
10260 			if (ipif != NULL) {
10261 				ipif_get_name(ipif,
10262 				    ipm.ipGroupMemberIfIndex.o_bytes,
10263 				    OCTET_LENGTH);
10264 			} else {
10265 				ill_get_name(ill,
10266 				    ipm.ipGroupMemberIfIndex.o_bytes,
10267 				    OCTET_LENGTH);
10268 			}
10269 			ipm.ipGroupMemberIfIndex.o_length =
10270 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10271 
10272 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10273 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10274 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10275 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10276 			    (char *)&ipm, (int)sizeof (ipm))) {
10277 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10278 				    "failed to allocate %u bytes\n",
10279 				    (uint_t)sizeof (ipm)));
10280 			}
10281 		}
10282 		rw_exit(&ill->ill_mcast_lock);
10283 		ill_refrele(ill);
10284 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10285 	}
10286 	rw_exit(&ipst->ips_ill_g_lock);
10287 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10288 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10289 	    (int)optp->level, (int)optp->name, (int)optp->len));
10290 	qreply(q, mpctl);
10291 	return (mp2ctl);
10292 }
10293 
10294 /* IPv6 multicast group membership. */
10295 static mblk_t *
10296 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10297 {
10298 	struct opthdr		*optp;
10299 	mblk_t			*mp2ctl;
10300 	ill_t			*ill;
10301 	ilm_t			*ilm;
10302 	ipv6_member_t		ipm6;
10303 	mblk_t			*mp_tail = NULL;
10304 	ill_walk_context_t	ctx;
10305 	zoneid_t		zoneid;
10306 
10307 	/*
10308 	 * make a copy of the original message
10309 	 */
10310 	mp2ctl = copymsg(mpctl);
10311 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10312 
10313 	/* ip6GroupMember table */
10314 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10315 	optp->level = MIB2_IP6;
10316 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10317 
10318 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10319 	ill = ILL_START_WALK_V6(&ctx, ipst);
10320 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10321 		/* Make sure the ill isn't going away. */
10322 		if (!ill_check_and_refhold(ill))
10323 			continue;
10324 		rw_exit(&ipst->ips_ill_g_lock);
10325 		/*
10326 		 * Normally we don't have any members on under IPMP interfaces.
10327 		 * We report them as a debugging aid.
10328 		 */
10329 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10330 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10331 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10332 			if (ilm->ilm_zoneid != zoneid &&
10333 			    ilm->ilm_zoneid != ALL_ZONES)
10334 				continue;	/* not this zone */
10335 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10336 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10337 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10338 			if (!snmp_append_data2(mpctl->b_cont,
10339 			    &mp_tail,
10340 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10341 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10342 				    "failed to allocate %u bytes\n",
10343 				    (uint_t)sizeof (ipm6)));
10344 			}
10345 		}
10346 		rw_exit(&ill->ill_mcast_lock);
10347 		ill_refrele(ill);
10348 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10349 	}
10350 	rw_exit(&ipst->ips_ill_g_lock);
10351 
10352 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10353 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10354 	    (int)optp->level, (int)optp->name, (int)optp->len));
10355 	qreply(q, mpctl);
10356 	return (mp2ctl);
10357 }
10358 
10359 /* IP multicast filtered sources */
10360 static mblk_t *
10361 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10362 {
10363 	struct opthdr		*optp;
10364 	mblk_t			*mp2ctl;
10365 	ill_t			*ill;
10366 	ipif_t			*ipif;
10367 	ilm_t			*ilm;
10368 	ip_grpsrc_t		ips;
10369 	mblk_t			*mp_tail = NULL;
10370 	ill_walk_context_t	ctx;
10371 	zoneid_t		zoneid;
10372 	int			i;
10373 	slist_t			*sl;
10374 
10375 	/*
10376 	 * make a copy of the original message
10377 	 */
10378 	mp2ctl = copymsg(mpctl);
10379 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10380 
10381 	/* ipGroupSource table */
10382 	optp = (struct opthdr *)&mpctl->b_rptr[
10383 	    sizeof (struct T_optmgmt_ack)];
10384 	optp->level = MIB2_IP;
10385 	optp->name = EXPER_IP_GROUP_SOURCES;
10386 
10387 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10388 	ill = ILL_START_WALK_V4(&ctx, ipst);
10389 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10390 		/* Make sure the ill isn't going away. */
10391 		if (!ill_check_and_refhold(ill))
10392 			continue;
10393 		rw_exit(&ipst->ips_ill_g_lock);
10394 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10395 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10396 			sl = ilm->ilm_filter;
10397 			if (ilm->ilm_zoneid != zoneid &&
10398 			    ilm->ilm_zoneid != ALL_ZONES)
10399 				continue;
10400 			if (SLIST_IS_EMPTY(sl))
10401 				continue;
10402 
10403 			/* Is there an ipif for ilm_ifaddr? */
10404 			for (ipif = ill->ill_ipif; ipif != NULL;
10405 			    ipif = ipif->ipif_next) {
10406 				if (!IPIF_IS_CONDEMNED(ipif) &&
10407 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10408 				    ilm->ilm_ifaddr != INADDR_ANY)
10409 					break;
10410 			}
10411 			if (ipif != NULL) {
10412 				ipif_get_name(ipif,
10413 				    ips.ipGroupSourceIfIndex.o_bytes,
10414 				    OCTET_LENGTH);
10415 			} else {
10416 				ill_get_name(ill,
10417 				    ips.ipGroupSourceIfIndex.o_bytes,
10418 				    OCTET_LENGTH);
10419 			}
10420 			ips.ipGroupSourceIfIndex.o_length =
10421 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10422 
10423 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10424 			for (i = 0; i < sl->sl_numsrc; i++) {
10425 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10426 					continue;
10427 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10428 				    ips.ipGroupSourceAddress);
10429 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10430 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10431 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10432 					    " failed to allocate %u bytes\n",
10433 					    (uint_t)sizeof (ips)));
10434 				}
10435 			}
10436 		}
10437 		rw_exit(&ill->ill_mcast_lock);
10438 		ill_refrele(ill);
10439 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10440 	}
10441 	rw_exit(&ipst->ips_ill_g_lock);
10442 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10443 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10444 	    (int)optp->level, (int)optp->name, (int)optp->len));
10445 	qreply(q, mpctl);
10446 	return (mp2ctl);
10447 }
10448 
10449 /* IPv6 multicast filtered sources. */
10450 static mblk_t *
10451 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10452 {
10453 	struct opthdr		*optp;
10454 	mblk_t			*mp2ctl;
10455 	ill_t			*ill;
10456 	ilm_t			*ilm;
10457 	ipv6_grpsrc_t		ips6;
10458 	mblk_t			*mp_tail = NULL;
10459 	ill_walk_context_t	ctx;
10460 	zoneid_t		zoneid;
10461 	int			i;
10462 	slist_t			*sl;
10463 
10464 	/*
10465 	 * make a copy of the original message
10466 	 */
10467 	mp2ctl = copymsg(mpctl);
10468 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10469 
10470 	/* ip6GroupMember table */
10471 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10472 	optp->level = MIB2_IP6;
10473 	optp->name = EXPER_IP6_GROUP_SOURCES;
10474 
10475 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10476 	ill = ILL_START_WALK_V6(&ctx, ipst);
10477 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10478 		/* Make sure the ill isn't going away. */
10479 		if (!ill_check_and_refhold(ill))
10480 			continue;
10481 		rw_exit(&ipst->ips_ill_g_lock);
10482 		/*
10483 		 * Normally we don't have any members on under IPMP interfaces.
10484 		 * We report them as a debugging aid.
10485 		 */
10486 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10487 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10488 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10489 			sl = ilm->ilm_filter;
10490 			if (ilm->ilm_zoneid != zoneid &&
10491 			    ilm->ilm_zoneid != ALL_ZONES)
10492 				continue;
10493 			if (SLIST_IS_EMPTY(sl))
10494 				continue;
10495 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10496 			for (i = 0; i < sl->sl_numsrc; i++) {
10497 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10498 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10499 				    (char *)&ips6, (int)sizeof (ips6))) {
10500 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10501 					    "group_src: failed to allocate "
10502 					    "%u bytes\n",
10503 					    (uint_t)sizeof (ips6)));
10504 				}
10505 			}
10506 		}
10507 		rw_exit(&ill->ill_mcast_lock);
10508 		ill_refrele(ill);
10509 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10510 	}
10511 	rw_exit(&ipst->ips_ill_g_lock);
10512 
10513 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10514 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10515 	    (int)optp->level, (int)optp->name, (int)optp->len));
10516 	qreply(q, mpctl);
10517 	return (mp2ctl);
10518 }
10519 
10520 /* Multicast routing virtual interface table. */
10521 static mblk_t *
10522 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10523 {
10524 	struct opthdr		*optp;
10525 	mblk_t			*mp2ctl;
10526 
10527 	/*
10528 	 * make a copy of the original message
10529 	 */
10530 	mp2ctl = copymsg(mpctl);
10531 
10532 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10533 	optp->level = EXPER_DVMRP;
10534 	optp->name = EXPER_DVMRP_VIF;
10535 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10536 		ip0dbg(("ip_mroute_vif: failed\n"));
10537 	}
10538 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10539 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10540 	    (int)optp->level, (int)optp->name, (int)optp->len));
10541 	qreply(q, mpctl);
10542 	return (mp2ctl);
10543 }
10544 
10545 /* Multicast routing table. */
10546 static mblk_t *
10547 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10548 {
10549 	struct opthdr		*optp;
10550 	mblk_t			*mp2ctl;
10551 
10552 	/*
10553 	 * make a copy of the original message
10554 	 */
10555 	mp2ctl = copymsg(mpctl);
10556 
10557 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10558 	optp->level = EXPER_DVMRP;
10559 	optp->name = EXPER_DVMRP_MRT;
10560 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10561 		ip0dbg(("ip_mroute_mrt: failed\n"));
10562 	}
10563 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10564 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10565 	    (int)optp->level, (int)optp->name, (int)optp->len));
10566 	qreply(q, mpctl);
10567 	return (mp2ctl);
10568 }
10569 
10570 /*
10571  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10572  * in one IRE walk.
10573  */
10574 static mblk_t *
10575 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10576     ip_stack_t *ipst)
10577 {
10578 	struct opthdr	*optp;
10579 	mblk_t		*mp2ctl;	/* Returned */
10580 	mblk_t		*mp3ctl;	/* nettomedia */
10581 	mblk_t		*mp4ctl;	/* routeattrs */
10582 	iproutedata_t	ird;
10583 	zoneid_t	zoneid;
10584 
10585 	/*
10586 	 * make copies of the original message
10587 	 *	- mp2ctl is returned unchanged to the caller for its use
10588 	 *	- mpctl is sent upstream as ipRouteEntryTable
10589 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10590 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10591 	 */
10592 	mp2ctl = copymsg(mpctl);
10593 	mp3ctl = copymsg(mpctl);
10594 	mp4ctl = copymsg(mpctl);
10595 	if (mp3ctl == NULL || mp4ctl == NULL) {
10596 		freemsg(mp4ctl);
10597 		freemsg(mp3ctl);
10598 		freemsg(mp2ctl);
10599 		freemsg(mpctl);
10600 		return (NULL);
10601 	}
10602 
10603 	bzero(&ird, sizeof (ird));
10604 
10605 	ird.ird_route.lp_head = mpctl->b_cont;
10606 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10607 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10608 	/*
10609 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10610 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10611 	 * intended a temporary solution until a proper MIB API is provided
10612 	 * that provides complete filtering/caller-opt-in.
10613 	 */
10614 	if (level == EXPER_IP_AND_ALL_IRES)
10615 		ird.ird_flags |= IRD_REPORT_ALL;
10616 
10617 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10618 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10619 
10620 	/* ipRouteEntryTable in mpctl */
10621 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10622 	optp->level = MIB2_IP;
10623 	optp->name = MIB2_IP_ROUTE;
10624 	optp->len = msgdsize(ird.ird_route.lp_head);
10625 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10626 	    (int)optp->level, (int)optp->name, (int)optp->len));
10627 	qreply(q, mpctl);
10628 
10629 	/* ipNetToMediaEntryTable in mp3ctl */
10630 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10631 
10632 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10633 	optp->level = MIB2_IP;
10634 	optp->name = MIB2_IP_MEDIA;
10635 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10636 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10637 	    (int)optp->level, (int)optp->name, (int)optp->len));
10638 	qreply(q, mp3ctl);
10639 
10640 	/* ipRouteAttributeTable in mp4ctl */
10641 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10642 	optp->level = MIB2_IP;
10643 	optp->name = EXPER_IP_RTATTR;
10644 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10645 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10646 	    (int)optp->level, (int)optp->name, (int)optp->len));
10647 	if (optp->len == 0)
10648 		freemsg(mp4ctl);
10649 	else
10650 		qreply(q, mp4ctl);
10651 
10652 	return (mp2ctl);
10653 }
10654 
10655 /*
10656  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10657  * ipv6NetToMediaEntryTable in an NDP walk.
10658  */
10659 static mblk_t *
10660 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10661     ip_stack_t *ipst)
10662 {
10663 	struct opthdr	*optp;
10664 	mblk_t		*mp2ctl;	/* Returned */
10665 	mblk_t		*mp3ctl;	/* nettomedia */
10666 	mblk_t		*mp4ctl;	/* routeattrs */
10667 	iproutedata_t	ird;
10668 	zoneid_t	zoneid;
10669 
10670 	/*
10671 	 * make copies of the original message
10672 	 *	- mp2ctl is returned unchanged to the caller for its use
10673 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10674 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10675 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10676 	 */
10677 	mp2ctl = copymsg(mpctl);
10678 	mp3ctl = copymsg(mpctl);
10679 	mp4ctl = copymsg(mpctl);
10680 	if (mp3ctl == NULL || mp4ctl == NULL) {
10681 		freemsg(mp4ctl);
10682 		freemsg(mp3ctl);
10683 		freemsg(mp2ctl);
10684 		freemsg(mpctl);
10685 		return (NULL);
10686 	}
10687 
10688 	bzero(&ird, sizeof (ird));
10689 
10690 	ird.ird_route.lp_head = mpctl->b_cont;
10691 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10692 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10693 	/*
10694 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10695 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10696 	 * intended a temporary solution until a proper MIB API is provided
10697 	 * that provides complete filtering/caller-opt-in.
10698 	 */
10699 	if (level == EXPER_IP_AND_ALL_IRES)
10700 		ird.ird_flags |= IRD_REPORT_ALL;
10701 
10702 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10703 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10704 
10705 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10706 	optp->level = MIB2_IP6;
10707 	optp->name = MIB2_IP6_ROUTE;
10708 	optp->len = msgdsize(ird.ird_route.lp_head);
10709 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10710 	    (int)optp->level, (int)optp->name, (int)optp->len));
10711 	qreply(q, mpctl);
10712 
10713 	/* ipv6NetToMediaEntryTable in mp3ctl */
10714 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10715 
10716 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10717 	optp->level = MIB2_IP6;
10718 	optp->name = MIB2_IP6_MEDIA;
10719 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10720 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10721 	    (int)optp->level, (int)optp->name, (int)optp->len));
10722 	qreply(q, mp3ctl);
10723 
10724 	/* ipv6RouteAttributeTable in mp4ctl */
10725 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10726 	optp->level = MIB2_IP6;
10727 	optp->name = EXPER_IP_RTATTR;
10728 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10729 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10730 	    (int)optp->level, (int)optp->name, (int)optp->len));
10731 	if (optp->len == 0)
10732 		freemsg(mp4ctl);
10733 	else
10734 		qreply(q, mp4ctl);
10735 
10736 	return (mp2ctl);
10737 }
10738 
10739 /*
10740  * IPv6 mib: One per ill
10741  */
10742 static mblk_t *
10743 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10744     boolean_t legacy_req)
10745 {
10746 	struct opthdr		*optp;
10747 	mblk_t			*mp2ctl;
10748 	ill_t			*ill;
10749 	ill_walk_context_t	ctx;
10750 	mblk_t			*mp_tail = NULL;
10751 	mib2_ipv6AddrEntry_t	mae6;
10752 	mib2_ipIfStatsEntry_t	*ise;
10753 	size_t			ise_size, iae_size;
10754 
10755 	/*
10756 	 * Make a copy of the original message
10757 	 */
10758 	mp2ctl = copymsg(mpctl);
10759 
10760 	/* fixed length IPv6 structure ... */
10761 
10762 	if (legacy_req) {
10763 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10764 		    mib2_ipIfStatsEntry_t);
10765 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10766 	} else {
10767 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10768 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10769 	}
10770 
10771 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10772 	optp->level = MIB2_IP6;
10773 	optp->name = 0;
10774 	/* Include "unknown interface" ip6_mib */
10775 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10776 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10777 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10778 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10779 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10780 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10781 	    ipst->ips_ipv6_def_hops);
10782 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10783 	    sizeof (mib2_ipIfStatsEntry_t));
10784 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10785 	    sizeof (mib2_ipv6AddrEntry_t));
10786 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10787 	    sizeof (mib2_ipv6RouteEntry_t));
10788 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10789 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10790 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10791 	    sizeof (ipv6_member_t));
10792 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10793 	    sizeof (ipv6_grpsrc_t));
10794 
10795 	/*
10796 	 * Synchronize 64- and 32-bit counters
10797 	 */
10798 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10799 	    ipIfStatsHCInReceives);
10800 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10801 	    ipIfStatsHCInDelivers);
10802 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10803 	    ipIfStatsHCOutRequests);
10804 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10805 	    ipIfStatsHCOutForwDatagrams);
10806 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10807 	    ipIfStatsHCOutMcastPkts);
10808 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10809 	    ipIfStatsHCInMcastPkts);
10810 
10811 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10812 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10813 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10814 		    (uint_t)ise_size));
10815 	} else if (legacy_req) {
10816 		/* Adjust the EntrySize fields for legacy requests. */
10817 		ise =
10818 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10819 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10820 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10821 	}
10822 
10823 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10824 	ill = ILL_START_WALK_V6(&ctx, ipst);
10825 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10826 		ill->ill_ip_mib->ipIfStatsIfIndex =
10827 		    ill->ill_phyint->phyint_ifindex;
10828 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10829 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10830 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10831 		    ill->ill_max_hops);
10832 
10833 		/*
10834 		 * Synchronize 64- and 32-bit counters
10835 		 */
10836 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10837 		    ipIfStatsHCInReceives);
10838 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10839 		    ipIfStatsHCInDelivers);
10840 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10841 		    ipIfStatsHCOutRequests);
10842 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10843 		    ipIfStatsHCOutForwDatagrams);
10844 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10845 		    ipIfStatsHCOutMcastPkts);
10846 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10847 		    ipIfStatsHCInMcastPkts);
10848 
10849 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10850 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10851 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10852 			"%u bytes\n", (uint_t)ise_size));
10853 		} else if (legacy_req) {
10854 			/* Adjust the EntrySize fields for legacy requests. */
10855 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10856 			    (int)ise_size);
10857 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10858 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10859 		}
10860 	}
10861 	rw_exit(&ipst->ips_ill_g_lock);
10862 
10863 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10864 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10865 	    (int)optp->level, (int)optp->name, (int)optp->len));
10866 	qreply(q, mpctl);
10867 	return (mp2ctl);
10868 }
10869 
10870 /*
10871  * ICMPv6 mib: One per ill
10872  */
10873 static mblk_t *
10874 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10875 {
10876 	struct opthdr		*optp;
10877 	mblk_t			*mp2ctl;
10878 	ill_t			*ill;
10879 	ill_walk_context_t	ctx;
10880 	mblk_t			*mp_tail = NULL;
10881 	/*
10882 	 * Make a copy of the original message
10883 	 */
10884 	mp2ctl = copymsg(mpctl);
10885 
10886 	/* fixed length ICMPv6 structure ... */
10887 
10888 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10889 	optp->level = MIB2_ICMP6;
10890 	optp->name = 0;
10891 	/* Include "unknown interface" icmp6_mib */
10892 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10893 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10894 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10895 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10896 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10897 	    (char *)&ipst->ips_icmp6_mib,
10898 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10899 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10900 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10901 	}
10902 
10903 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10904 	ill = ILL_START_WALK_V6(&ctx, ipst);
10905 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10906 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10907 		    ill->ill_phyint->phyint_ifindex;
10908 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10909 		    (char *)ill->ill_icmp6_mib,
10910 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10911 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10912 			    "%u bytes\n",
10913 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10914 		}
10915 	}
10916 	rw_exit(&ipst->ips_ill_g_lock);
10917 
10918 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10919 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10920 	    (int)optp->level, (int)optp->name, (int)optp->len));
10921 	qreply(q, mpctl);
10922 	return (mp2ctl);
10923 }
10924 
10925 /*
10926  * ire_walk routine to create both ipRouteEntryTable and
10927  * ipRouteAttributeTable in one IRE walk
10928  */
10929 static void
10930 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10931 {
10932 	ill_t				*ill;
10933 	mib2_ipRouteEntry_t		*re;
10934 	mib2_ipAttributeEntry_t		iaes;
10935 	tsol_ire_gw_secattr_t		*attrp;
10936 	tsol_gc_t			*gc = NULL;
10937 	tsol_gcgrp_t			*gcgrp = NULL;
10938 	ip_stack_t			*ipst = ire->ire_ipst;
10939 
10940 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10941 
10942 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10943 		if (ire->ire_testhidden)
10944 			return;
10945 		if (ire->ire_type & IRE_IF_CLONE)
10946 			return;
10947 	}
10948 
10949 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10950 		return;
10951 
10952 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10953 		mutex_enter(&attrp->igsa_lock);
10954 		if ((gc = attrp->igsa_gc) != NULL) {
10955 			gcgrp = gc->gc_grp;
10956 			ASSERT(gcgrp != NULL);
10957 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10958 		}
10959 		mutex_exit(&attrp->igsa_lock);
10960 	}
10961 	/*
10962 	 * Return all IRE types for route table... let caller pick and choose
10963 	 */
10964 	re->ipRouteDest = ire->ire_addr;
10965 	ill = ire->ire_ill;
10966 	re->ipRouteIfIndex.o_length = 0;
10967 	if (ill != NULL) {
10968 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10969 		re->ipRouteIfIndex.o_length =
10970 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10971 	}
10972 	re->ipRouteMetric1 = -1;
10973 	re->ipRouteMetric2 = -1;
10974 	re->ipRouteMetric3 = -1;
10975 	re->ipRouteMetric4 = -1;
10976 
10977 	re->ipRouteNextHop = ire->ire_gateway_addr;
10978 	/* indirect(4), direct(3), or invalid(2) */
10979 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10980 		re->ipRouteType = 2;
10981 	else if (ire->ire_type & IRE_ONLINK)
10982 		re->ipRouteType = 3;
10983 	else
10984 		re->ipRouteType = 4;
10985 
10986 	re->ipRouteProto = -1;
10987 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10988 	re->ipRouteMask = ire->ire_mask;
10989 	re->ipRouteMetric5 = -1;
10990 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10991 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10992 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10993 
10994 	re->ipRouteInfo.re_frag_flag	= 0;
10995 	re->ipRouteInfo.re_rtt		= 0;
10996 	re->ipRouteInfo.re_src_addr	= 0;
10997 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10998 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10999 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11000 	re->ipRouteInfo.re_flags	= ire->ire_flags;
11001 
11002 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11003 	if (ire->ire_type & IRE_INTERFACE) {
11004 		ire_t *child;
11005 
11006 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11007 		child = ire->ire_dep_children;
11008 		while (child != NULL) {
11009 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
11010 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11011 			child = child->ire_dep_sib_next;
11012 		}
11013 		rw_exit(&ipst->ips_ire_dep_lock);
11014 	}
11015 
11016 	if (ire->ire_flags & RTF_DYNAMIC) {
11017 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11018 	} else {
11019 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
11020 	}
11021 
11022 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11023 	    (char *)re, (int)sizeof (*re))) {
11024 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11025 		    (uint_t)sizeof (*re)));
11026 	}
11027 
11028 	if (gc != NULL) {
11029 		iaes.iae_routeidx = ird->ird_idx;
11030 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11031 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11032 
11033 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11034 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11035 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11036 			    "bytes\n", (uint_t)sizeof (iaes)));
11037 		}
11038 	}
11039 
11040 	/* bump route index for next pass */
11041 	ird->ird_idx++;
11042 
11043 	kmem_free(re, sizeof (*re));
11044 	if (gcgrp != NULL)
11045 		rw_exit(&gcgrp->gcgrp_rwlock);
11046 }
11047 
11048 /*
11049  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11050  */
11051 static void
11052 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11053 {
11054 	ill_t				*ill;
11055 	mib2_ipv6RouteEntry_t		*re;
11056 	mib2_ipAttributeEntry_t		iaes;
11057 	tsol_ire_gw_secattr_t		*attrp;
11058 	tsol_gc_t			*gc = NULL;
11059 	tsol_gcgrp_t			*gcgrp = NULL;
11060 	ip_stack_t			*ipst = ire->ire_ipst;
11061 
11062 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11063 
11064 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11065 		if (ire->ire_testhidden)
11066 			return;
11067 		if (ire->ire_type & IRE_IF_CLONE)
11068 			return;
11069 	}
11070 
11071 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11072 		return;
11073 
11074 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11075 		mutex_enter(&attrp->igsa_lock);
11076 		if ((gc = attrp->igsa_gc) != NULL) {
11077 			gcgrp = gc->gc_grp;
11078 			ASSERT(gcgrp != NULL);
11079 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11080 		}
11081 		mutex_exit(&attrp->igsa_lock);
11082 	}
11083 	/*
11084 	 * Return all IRE types for route table... let caller pick and choose
11085 	 */
11086 	re->ipv6RouteDest = ire->ire_addr_v6;
11087 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11088 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11089 	re->ipv6RouteIfIndex.o_length = 0;
11090 	ill = ire->ire_ill;
11091 	if (ill != NULL) {
11092 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11093 		re->ipv6RouteIfIndex.o_length =
11094 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11095 	}
11096 
11097 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11098 
11099 	mutex_enter(&ire->ire_lock);
11100 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11101 	mutex_exit(&ire->ire_lock);
11102 
11103 	/* remote(4), local(3), or discard(2) */
11104 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11105 		re->ipv6RouteType = 2;
11106 	else if (ire->ire_type & IRE_ONLINK)
11107 		re->ipv6RouteType = 3;
11108 	else
11109 		re->ipv6RouteType = 4;
11110 
11111 	re->ipv6RouteProtocol	= -1;
11112 	re->ipv6RoutePolicy	= 0;
11113 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11114 	re->ipv6RouteNextHopRDI	= 0;
11115 	re->ipv6RouteWeight	= 0;
11116 	re->ipv6RouteMetric	= 0;
11117 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11118 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11119 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11120 
11121 	re->ipv6RouteInfo.re_frag_flag	= 0;
11122 	re->ipv6RouteInfo.re_rtt	= 0;
11123 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11124 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11125 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11126 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11127 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11128 
11129 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11130 	if (ire->ire_type & IRE_INTERFACE) {
11131 		ire_t *child;
11132 
11133 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11134 		child = ire->ire_dep_children;
11135 		while (child != NULL) {
11136 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11137 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11138 			child = child->ire_dep_sib_next;
11139 		}
11140 		rw_exit(&ipst->ips_ire_dep_lock);
11141 	}
11142 	if (ire->ire_flags & RTF_DYNAMIC) {
11143 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11144 	} else {
11145 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11146 	}
11147 
11148 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11149 	    (char *)re, (int)sizeof (*re))) {
11150 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11151 		    (uint_t)sizeof (*re)));
11152 	}
11153 
11154 	if (gc != NULL) {
11155 		iaes.iae_routeidx = ird->ird_idx;
11156 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11157 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11158 
11159 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11160 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11161 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11162 			    "bytes\n", (uint_t)sizeof (iaes)));
11163 		}
11164 	}
11165 
11166 	/* bump route index for next pass */
11167 	ird->ird_idx++;
11168 
11169 	kmem_free(re, sizeof (*re));
11170 	if (gcgrp != NULL)
11171 		rw_exit(&gcgrp->gcgrp_rwlock);
11172 }
11173 
11174 /*
11175  * ncec_walk routine to create ipv6NetToMediaEntryTable
11176  */
11177 static void
11178 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11179 {
11180 	iproutedata_t *ird		= ptr;
11181 	ill_t				*ill;
11182 	mib2_ipv6NetToMediaEntry_t	ntme;
11183 
11184 	ill = ncec->ncec_ill;
11185 	/* skip arpce entries, and loopback ncec entries */
11186 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11187 		return;
11188 	/*
11189 	 * Neighbor cache entry attached to IRE with on-link
11190 	 * destination.
11191 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11192 	 */
11193 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11194 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11195 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11196 	if (ncec->ncec_lladdr != NULL) {
11197 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11198 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11199 	}
11200 	/*
11201 	 * Note: Returns ND_* states. Should be:
11202 	 * reachable(1), stale(2), delay(3), probe(4),
11203 	 * invalid(5), unknown(6)
11204 	 */
11205 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11206 	ntme.ipv6NetToMediaLastUpdated = 0;
11207 
11208 	/* other(1), dynamic(2), static(3), local(4) */
11209 	if (NCE_MYADDR(ncec)) {
11210 		ntme.ipv6NetToMediaType = 4;
11211 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11212 		ntme.ipv6NetToMediaType = 1; /* proxy */
11213 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11214 		ntme.ipv6NetToMediaType = 3;
11215 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11216 		ntme.ipv6NetToMediaType = 1;
11217 	} else {
11218 		ntme.ipv6NetToMediaType = 2;
11219 	}
11220 
11221 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11222 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11223 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11224 		    (uint_t)sizeof (ntme)));
11225 	}
11226 }
11227 
11228 int
11229 nce2ace(ncec_t *ncec)
11230 {
11231 	int flags = 0;
11232 
11233 	if (NCE_ISREACHABLE(ncec))
11234 		flags |= ACE_F_RESOLVED;
11235 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11236 		flags |= ACE_F_AUTHORITY;
11237 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11238 		flags |= ACE_F_PUBLISH;
11239 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11240 		flags |= ACE_F_PERMANENT;
11241 	if (NCE_MYADDR(ncec))
11242 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11243 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11244 		flags |= ACE_F_UNVERIFIED;
11245 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11246 		flags |= ACE_F_AUTHORITY;
11247 	if (ncec->ncec_flags & NCE_F_DELAYED)
11248 		flags |= ACE_F_DELAYED;
11249 	return (flags);
11250 }
11251 
11252 /*
11253  * ncec_walk routine to create ipNetToMediaEntryTable
11254  */
11255 static void
11256 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11257 {
11258 	iproutedata_t *ird		= ptr;
11259 	ill_t				*ill;
11260 	mib2_ipNetToMediaEntry_t	ntme;
11261 	const char			*name = "unknown";
11262 	ipaddr_t			ncec_addr;
11263 
11264 	ill = ncec->ncec_ill;
11265 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11266 	    ill->ill_net_type == IRE_LOOPBACK)
11267 		return;
11268 
11269 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11270 	name = ill->ill_name;
11271 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11272 	if (NCE_MYADDR(ncec)) {
11273 		ntme.ipNetToMediaType = 4;
11274 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11275 		ntme.ipNetToMediaType = 1;
11276 	} else {
11277 		ntme.ipNetToMediaType = 3;
11278 	}
11279 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11280 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11281 	    ntme.ipNetToMediaIfIndex.o_length);
11282 
11283 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11284 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11285 
11286 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11287 	ncec_addr = INADDR_BROADCAST;
11288 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11289 	    sizeof (ncec_addr));
11290 	/*
11291 	 * map all the flags to the ACE counterpart.
11292 	 */
11293 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11294 
11295 	ntme.ipNetToMediaPhysAddress.o_length =
11296 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11297 
11298 	if (!NCE_ISREACHABLE(ncec))
11299 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11300 	else {
11301 		if (ncec->ncec_lladdr != NULL) {
11302 			bcopy(ncec->ncec_lladdr,
11303 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11304 			    ntme.ipNetToMediaPhysAddress.o_length);
11305 		}
11306 	}
11307 
11308 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11309 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11310 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11311 		    (uint_t)sizeof (ntme)));
11312 	}
11313 }
11314 
11315 /*
11316  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11317  */
11318 /* ARGSUSED */
11319 int
11320 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11321 {
11322 	switch (level) {
11323 	case MIB2_IP:
11324 	case MIB2_ICMP:
11325 		switch (name) {
11326 		default:
11327 			break;
11328 		}
11329 		return (1);
11330 	default:
11331 		return (1);
11332 	}
11333 }
11334 
11335 /*
11336  * When there exists both a 64- and 32-bit counter of a particular type
11337  * (i.e., InReceives), only the 64-bit counters are added.
11338  */
11339 void
11340 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11341 {
11342 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11343 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11344 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11345 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11346 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11347 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11348 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11349 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11350 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11351 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11352 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11353 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11354 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11355 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11356 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11357 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11358 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11359 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11360 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11361 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11362 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11363 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11364 	    o2->ipIfStatsInWrongIPVersion);
11365 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11366 	    o2->ipIfStatsInWrongIPVersion);
11367 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11368 	    o2->ipIfStatsOutSwitchIPVersion);
11369 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11370 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11371 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11372 	    o2->ipIfStatsHCInForwDatagrams);
11373 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11374 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11375 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11376 	    o2->ipIfStatsHCOutForwDatagrams);
11377 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11378 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11379 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11380 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11381 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11382 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11383 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11384 	    o2->ipIfStatsHCOutMcastOctets);
11385 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11386 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11387 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11388 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11389 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11390 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11391 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11392 }
11393 
11394 void
11395 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11396 {
11397 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11398 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11399 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11400 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11401 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11402 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11403 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11404 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11405 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11406 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11407 	    o2->ipv6IfIcmpInRouterSolicits);
11408 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11409 	    o2->ipv6IfIcmpInRouterAdvertisements);
11410 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11411 	    o2->ipv6IfIcmpInNeighborSolicits);
11412 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11413 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11414 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11415 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11416 	    o2->ipv6IfIcmpInGroupMembQueries);
11417 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11418 	    o2->ipv6IfIcmpInGroupMembResponses);
11419 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11420 	    o2->ipv6IfIcmpInGroupMembReductions);
11421 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11422 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11423 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11424 	    o2->ipv6IfIcmpOutDestUnreachs);
11425 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11426 	    o2->ipv6IfIcmpOutAdminProhibs);
11427 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11428 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11429 	    o2->ipv6IfIcmpOutParmProblems);
11430 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11431 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11432 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11433 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11434 	    o2->ipv6IfIcmpOutRouterSolicits);
11435 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11436 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11437 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11438 	    o2->ipv6IfIcmpOutNeighborSolicits);
11439 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11440 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11441 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11442 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11443 	    o2->ipv6IfIcmpOutGroupMembQueries);
11444 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11445 	    o2->ipv6IfIcmpOutGroupMembResponses);
11446 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11447 	    o2->ipv6IfIcmpOutGroupMembReductions);
11448 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11449 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11450 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11451 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11452 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11453 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11454 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11455 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11456 	    o2->ipv6IfIcmpInGroupMembTotal);
11457 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11458 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11459 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11460 	    o2->ipv6IfIcmpInGroupMembBadReports);
11461 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11462 	    o2->ipv6IfIcmpInGroupMembOurReports);
11463 }
11464 
11465 /*
11466  * Called before the options are updated to check if this packet will
11467  * be source routed from here.
11468  * This routine assumes that the options are well formed i.e. that they
11469  * have already been checked.
11470  */
11471 boolean_t
11472 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11473 {
11474 	ipoptp_t	opts;
11475 	uchar_t		*opt;
11476 	uint8_t		optval;
11477 	uint8_t		optlen;
11478 	ipaddr_t	dst;
11479 
11480 	if (IS_SIMPLE_IPH(ipha)) {
11481 		ip2dbg(("not source routed\n"));
11482 		return (B_FALSE);
11483 	}
11484 	dst = ipha->ipha_dst;
11485 	for (optval = ipoptp_first(&opts, ipha);
11486 	    optval != IPOPT_EOL;
11487 	    optval = ipoptp_next(&opts)) {
11488 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11489 		opt = opts.ipoptp_cur;
11490 		optlen = opts.ipoptp_len;
11491 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11492 		    optval, optlen));
11493 		switch (optval) {
11494 			uint32_t off;
11495 		case IPOPT_SSRR:
11496 		case IPOPT_LSRR:
11497 			/*
11498 			 * If dst is one of our addresses and there are some
11499 			 * entries left in the source route return (true).
11500 			 */
11501 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11502 				ip2dbg(("ip_source_routed: not next"
11503 				    " source route 0x%x\n",
11504 				    ntohl(dst)));
11505 				return (B_FALSE);
11506 			}
11507 			off = opt[IPOPT_OFFSET];
11508 			off--;
11509 			if (optlen < IP_ADDR_LEN ||
11510 			    off > optlen - IP_ADDR_LEN) {
11511 				/* End of source route */
11512 				ip1dbg(("ip_source_routed: end of SR\n"));
11513 				return (B_FALSE);
11514 			}
11515 			return (B_TRUE);
11516 		}
11517 	}
11518 	ip2dbg(("not source routed\n"));
11519 	return (B_FALSE);
11520 }
11521 
11522 /*
11523  * ip_unbind is called by the transports to remove a conn from
11524  * the fanout table.
11525  */
11526 void
11527 ip_unbind(conn_t *connp)
11528 {
11529 
11530 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11531 
11532 	if (is_system_labeled() && connp->conn_anon_port) {
11533 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11534 		    connp->conn_mlp_type, connp->conn_proto,
11535 		    ntohs(connp->conn_lport), B_FALSE);
11536 		connp->conn_anon_port = 0;
11537 	}
11538 	connp->conn_mlp_type = mlptSingle;
11539 
11540 	ipcl_hash_remove(connp);
11541 }
11542 
11543 /*
11544  * Used for deciding the MSS size for the upper layer. Thus
11545  * we need to check the outbound policy values in the conn.
11546  */
11547 int
11548 conn_ipsec_length(conn_t *connp)
11549 {
11550 	ipsec_latch_t *ipl;
11551 
11552 	ipl = connp->conn_latch;
11553 	if (ipl == NULL)
11554 		return (0);
11555 
11556 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11557 		return (0);
11558 
11559 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11560 }
11561 
11562 /*
11563  * Returns an estimate of the IPsec headers size. This is used if
11564  * we don't want to call into IPsec to get the exact size.
11565  */
11566 int
11567 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11568 {
11569 	ipsec_action_t *a;
11570 
11571 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11572 		return (0);
11573 
11574 	a = ixa->ixa_ipsec_action;
11575 	if (a == NULL) {
11576 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11577 		a = ixa->ixa_ipsec_policy->ipsp_act;
11578 	}
11579 	ASSERT(a != NULL);
11580 
11581 	return (a->ipa_ovhd);
11582 }
11583 
11584 /*
11585  * If there are any source route options, return the true final
11586  * destination. Otherwise, return the destination.
11587  */
11588 ipaddr_t
11589 ip_get_dst(ipha_t *ipha)
11590 {
11591 	ipoptp_t	opts;
11592 	uchar_t		*opt;
11593 	uint8_t		optval;
11594 	uint8_t		optlen;
11595 	ipaddr_t	dst;
11596 	uint32_t off;
11597 
11598 	dst = ipha->ipha_dst;
11599 
11600 	if (IS_SIMPLE_IPH(ipha))
11601 		return (dst);
11602 
11603 	for (optval = ipoptp_first(&opts, ipha);
11604 	    optval != IPOPT_EOL;
11605 	    optval = ipoptp_next(&opts)) {
11606 		opt = opts.ipoptp_cur;
11607 		optlen = opts.ipoptp_len;
11608 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11609 		switch (optval) {
11610 		case IPOPT_SSRR:
11611 		case IPOPT_LSRR:
11612 			off = opt[IPOPT_OFFSET];
11613 			/*
11614 			 * If one of the conditions is true, it means
11615 			 * end of options and dst already has the right
11616 			 * value.
11617 			 */
11618 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11619 				off = optlen - IP_ADDR_LEN;
11620 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11621 			}
11622 			return (dst);
11623 		default:
11624 			break;
11625 		}
11626 	}
11627 
11628 	return (dst);
11629 }
11630 
11631 /*
11632  * Outbound IP fragmentation routine.
11633  * Assumes the caller has checked whether or not fragmentation should
11634  * be allowed. Here we copy the DF bit from the header to all the generated
11635  * fragments.
11636  */
11637 int
11638 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11639     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11640     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11641 {
11642 	int		i1;
11643 	int		hdr_len;
11644 	mblk_t		*hdr_mp;
11645 	ipha_t		*ipha;
11646 	int		ip_data_end;
11647 	int		len;
11648 	mblk_t		*mp = mp_orig;
11649 	int		offset;
11650 	ill_t		*ill = nce->nce_ill;
11651 	ip_stack_t	*ipst = ill->ill_ipst;
11652 	mblk_t		*carve_mp;
11653 	uint32_t	frag_flag;
11654 	uint_t		priority = mp->b_band;
11655 	int		error = 0;
11656 
11657 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11658 
11659 	if (pkt_len != msgdsize(mp)) {
11660 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11661 		    pkt_len, msgdsize(mp)));
11662 		freemsg(mp);
11663 		return (EINVAL);
11664 	}
11665 
11666 	if (max_frag == 0) {
11667 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11668 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11669 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11670 		freemsg(mp);
11671 		return (EINVAL);
11672 	}
11673 
11674 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11675 	ipha = (ipha_t *)mp->b_rptr;
11676 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11677 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11678 
11679 	/*
11680 	 * Establish the starting offset.  May not be zero if we are fragging
11681 	 * a fragment that is being forwarded.
11682 	 */
11683 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11684 
11685 	/* TODO why is this test needed? */
11686 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11687 		/* TODO: notify ulp somehow */
11688 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11689 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11690 		freemsg(mp);
11691 		return (EINVAL);
11692 	}
11693 
11694 	hdr_len = IPH_HDR_LENGTH(ipha);
11695 	ipha->ipha_hdr_checksum = 0;
11696 
11697 	/*
11698 	 * Establish the number of bytes maximum per frag, after putting
11699 	 * in the header.
11700 	 */
11701 	len = (max_frag - hdr_len) & ~7;
11702 
11703 	/* Get a copy of the header for the trailing frags */
11704 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11705 	    mp);
11706 	if (hdr_mp == NULL) {
11707 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11708 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11709 		freemsg(mp);
11710 		return (ENOBUFS);
11711 	}
11712 
11713 	/* Store the starting offset, with the MoreFrags flag. */
11714 	i1 = offset | IPH_MF | frag_flag;
11715 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11716 
11717 	/* Establish the ending byte offset, based on the starting offset. */
11718 	offset <<= 3;
11719 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11720 
11721 	/* Store the length of the first fragment in the IP header. */
11722 	i1 = len + hdr_len;
11723 	ASSERT(i1 <= IP_MAXPACKET);
11724 	ipha->ipha_length = htons((uint16_t)i1);
11725 
11726 	/*
11727 	 * Compute the IP header checksum for the first frag.  We have to
11728 	 * watch out that we stop at the end of the header.
11729 	 */
11730 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11731 
11732 	/*
11733 	 * Now carve off the first frag.  Note that this will include the
11734 	 * original IP header.
11735 	 */
11736 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11737 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11738 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11739 		freeb(hdr_mp);
11740 		freemsg(mp_orig);
11741 		return (ENOBUFS);
11742 	}
11743 
11744 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11745 
11746 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11747 	    ixa_cookie);
11748 	if (error != 0 && error != EWOULDBLOCK) {
11749 		/* No point in sending the other fragments */
11750 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11751 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11752 		freeb(hdr_mp);
11753 		freemsg(mp_orig);
11754 		return (error);
11755 	}
11756 
11757 	/* No need to redo state machine in loop */
11758 	ixaflags &= ~IXAF_REACH_CONF;
11759 
11760 	/* Advance the offset to the second frag starting point. */
11761 	offset += len;
11762 	/*
11763 	 * Update hdr_len from the copied header - there might be less options
11764 	 * in the later fragments.
11765 	 */
11766 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11767 	/* Loop until done. */
11768 	for (;;) {
11769 		uint16_t	offset_and_flags;
11770 		uint16_t	ip_len;
11771 
11772 		if (ip_data_end - offset > len) {
11773 			/*
11774 			 * Carve off the appropriate amount from the original
11775 			 * datagram.
11776 			 */
11777 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11778 				mp = NULL;
11779 				break;
11780 			}
11781 			/*
11782 			 * More frags after this one.  Get another copy
11783 			 * of the header.
11784 			 */
11785 			if (carve_mp->b_datap->db_ref == 1 &&
11786 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11787 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11788 				/* Inline IP header */
11789 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11790 				    hdr_mp->b_rptr;
11791 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11792 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11793 				mp = carve_mp;
11794 			} else {
11795 				if (!(mp = copyb(hdr_mp))) {
11796 					freemsg(carve_mp);
11797 					break;
11798 				}
11799 				/* Get priority marking, if any. */
11800 				mp->b_band = priority;
11801 				mp->b_cont = carve_mp;
11802 			}
11803 			ipha = (ipha_t *)mp->b_rptr;
11804 			offset_and_flags = IPH_MF;
11805 		} else {
11806 			/*
11807 			 * Last frag.  Consume the header. Set len to
11808 			 * the length of this last piece.
11809 			 */
11810 			len = ip_data_end - offset;
11811 
11812 			/*
11813 			 * Carve off the appropriate amount from the original
11814 			 * datagram.
11815 			 */
11816 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11817 				mp = NULL;
11818 				break;
11819 			}
11820 			if (carve_mp->b_datap->db_ref == 1 &&
11821 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11822 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11823 				/* Inline IP header */
11824 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11825 				    hdr_mp->b_rptr;
11826 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11827 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11828 				mp = carve_mp;
11829 				freeb(hdr_mp);
11830 				hdr_mp = mp;
11831 			} else {
11832 				mp = hdr_mp;
11833 				/* Get priority marking, if any. */
11834 				mp->b_band = priority;
11835 				mp->b_cont = carve_mp;
11836 			}
11837 			ipha = (ipha_t *)mp->b_rptr;
11838 			/* A frag of a frag might have IPH_MF non-zero */
11839 			offset_and_flags =
11840 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11841 			    IPH_MF;
11842 		}
11843 		offset_and_flags |= (uint16_t)(offset >> 3);
11844 		offset_and_flags |= (uint16_t)frag_flag;
11845 		/* Store the offset and flags in the IP header. */
11846 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11847 
11848 		/* Store the length in the IP header. */
11849 		ip_len = (uint16_t)(len + hdr_len);
11850 		ipha->ipha_length = htons(ip_len);
11851 
11852 		/*
11853 		 * Set the IP header checksum.	Note that mp is just
11854 		 * the header, so this is easy to pass to ip_csum.
11855 		 */
11856 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11857 
11858 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11859 
11860 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11861 		    nolzid, ixa_cookie);
11862 		/* All done if we just consumed the hdr_mp. */
11863 		if (mp == hdr_mp) {
11864 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11865 			return (error);
11866 		}
11867 		if (error != 0 && error != EWOULDBLOCK) {
11868 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11869 			    mblk_t *, hdr_mp);
11870 			/* No point in sending the other fragments */
11871 			break;
11872 		}
11873 
11874 		/* Otherwise, advance and loop. */
11875 		offset += len;
11876 	}
11877 	/* Clean up following allocation failure. */
11878 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11879 	ip_drop_output("FragFails: loop ended", NULL, ill);
11880 	if (mp != hdr_mp)
11881 		freeb(hdr_mp);
11882 	if (mp != mp_orig)
11883 		freemsg(mp_orig);
11884 	return (error);
11885 }
11886 
11887 /*
11888  * Copy the header plus those options which have the copy bit set
11889  */
11890 static mblk_t *
11891 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11892     mblk_t *src)
11893 {
11894 	mblk_t	*mp;
11895 	uchar_t	*up;
11896 
11897 	/*
11898 	 * Quick check if we need to look for options without the copy bit
11899 	 * set
11900 	 */
11901 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11902 	if (!mp)
11903 		return (mp);
11904 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11905 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11906 		bcopy(rptr, mp->b_rptr, hdr_len);
11907 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11908 		return (mp);
11909 	}
11910 	up  = mp->b_rptr;
11911 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11912 	up += IP_SIMPLE_HDR_LENGTH;
11913 	rptr += IP_SIMPLE_HDR_LENGTH;
11914 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11915 	while (hdr_len > 0) {
11916 		uint32_t optval;
11917 		uint32_t optlen;
11918 
11919 		optval = *rptr;
11920 		if (optval == IPOPT_EOL)
11921 			break;
11922 		if (optval == IPOPT_NOP)
11923 			optlen = 1;
11924 		else
11925 			optlen = rptr[1];
11926 		if (optval & IPOPT_COPY) {
11927 			bcopy(rptr, up, optlen);
11928 			up += optlen;
11929 		}
11930 		rptr += optlen;
11931 		hdr_len -= optlen;
11932 	}
11933 	/*
11934 	 * Make sure that we drop an even number of words by filling
11935 	 * with EOL to the next word boundary.
11936 	 */
11937 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11938 	    hdr_len & 0x3; hdr_len++)
11939 		*up++ = IPOPT_EOL;
11940 	mp->b_wptr = up;
11941 	/* Update header length */
11942 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11943 	return (mp);
11944 }
11945 
11946 /*
11947  * Update any source route, record route, or timestamp options when
11948  * sending a packet back to ourselves.
11949  * Check that we are at end of strict source route.
11950  * The options have been sanity checked by ip_output_options().
11951  */
11952 void
11953 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11954 {
11955 	ipoptp_t	opts;
11956 	uchar_t		*opt;
11957 	uint8_t		optval;
11958 	uint8_t		optlen;
11959 	ipaddr_t	dst;
11960 	uint32_t	ts;
11961 	timestruc_t	now;
11962 	uint32_t	off = 0;
11963 
11964 	for (optval = ipoptp_first(&opts, ipha);
11965 	    optval != IPOPT_EOL;
11966 	    optval = ipoptp_next(&opts)) {
11967 		opt = opts.ipoptp_cur;
11968 		optlen = opts.ipoptp_len;
11969 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11970 		switch (optval) {
11971 		case IPOPT_SSRR:
11972 		case IPOPT_LSRR:
11973 			off = opt[IPOPT_OFFSET];
11974 			off--;
11975 			if (optlen < IP_ADDR_LEN ||
11976 			    off > optlen - IP_ADDR_LEN) {
11977 				/* End of source route */
11978 				break;
11979 			}
11980 			/*
11981 			 * This will only happen if two consecutive entries
11982 			 * in the source route contains our address or if
11983 			 * it is a packet with a loose source route which
11984 			 * reaches us before consuming the whole source route
11985 			 */
11986 
11987 			if (optval == IPOPT_SSRR) {
11988 				return;
11989 			}
11990 			/*
11991 			 * Hack: instead of dropping the packet truncate the
11992 			 * source route to what has been used by filling the
11993 			 * rest with IPOPT_NOP.
11994 			 */
11995 			opt[IPOPT_OLEN] = (uint8_t)off;
11996 			while (off < optlen) {
11997 				opt[off++] = IPOPT_NOP;
11998 			}
11999 			break;
12000 		case IPOPT_RR:
12001 			off = opt[IPOPT_OFFSET];
12002 			off--;
12003 			if (optlen < IP_ADDR_LEN ||
12004 			    off > optlen - IP_ADDR_LEN) {
12005 				/* No more room - ignore */
12006 				ip1dbg((
12007 				    "ip_output_local_options: end of RR\n"));
12008 				break;
12009 			}
12010 			dst = htonl(INADDR_LOOPBACK);
12011 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12012 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12013 			break;
12014 		case IPOPT_TS:
12015 			/* Insert timestamp if there is romm */
12016 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12017 			case IPOPT_TS_TSONLY:
12018 				off = IPOPT_TS_TIMELEN;
12019 				break;
12020 			case IPOPT_TS_PRESPEC:
12021 			case IPOPT_TS_PRESPEC_RFC791:
12022 				/* Verify that the address matched */
12023 				off = opt[IPOPT_OFFSET] - 1;
12024 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12025 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12026 					/* Not for us */
12027 					break;
12028 				}
12029 				/* FALLTHROUGH */
12030 			case IPOPT_TS_TSANDADDR:
12031 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12032 				break;
12033 			default:
12034 				/*
12035 				 * ip_*put_options should have already
12036 				 * dropped this packet.
12037 				 */
12038 				cmn_err(CE_PANIC, "ip_output_local_options: "
12039 				    "unknown IT - bug in ip_output_options?\n");
12040 			}
12041 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12042 				/* Increase overflow counter */
12043 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12044 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
12045 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12046 				    (off << 4);
12047 				break;
12048 			}
12049 			off = opt[IPOPT_OFFSET] - 1;
12050 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12051 			case IPOPT_TS_PRESPEC:
12052 			case IPOPT_TS_PRESPEC_RFC791:
12053 			case IPOPT_TS_TSANDADDR:
12054 				dst = htonl(INADDR_LOOPBACK);
12055 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12056 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12057 				/* FALLTHROUGH */
12058 			case IPOPT_TS_TSONLY:
12059 				off = opt[IPOPT_OFFSET] - 1;
12060 				/* Compute # of milliseconds since midnight */
12061 				gethrestime(&now);
12062 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12063 				    NSEC2MSEC(now.tv_nsec);
12064 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12065 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12066 				break;
12067 			}
12068 			break;
12069 		}
12070 	}
12071 }
12072 
12073 /*
12074  * Prepend an M_DATA fastpath header, and if none present prepend a
12075  * DL_UNITDATA_REQ. Frees the mblk on failure.
12076  *
12077  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12078  * If there is a change to them, the nce will be deleted (condemned) and
12079  * a new nce_t will be created when packets are sent. Thus we need no locks
12080  * to access those fields.
12081  *
12082  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12083  * we place b_band in dl_priority.dl_max.
12084  */
12085 static mblk_t *
12086 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12087 {
12088 	uint_t	hlen;
12089 	mblk_t *mp1;
12090 	uint_t	priority;
12091 	uchar_t *rptr;
12092 
12093 	rptr = mp->b_rptr;
12094 
12095 	ASSERT(DB_TYPE(mp) == M_DATA);
12096 	priority = mp->b_band;
12097 
12098 	ASSERT(nce != NULL);
12099 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12100 		hlen = MBLKL(mp1);
12101 		/*
12102 		 * Check if we have enough room to prepend fastpath
12103 		 * header
12104 		 */
12105 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12106 			rptr -= hlen;
12107 			bcopy(mp1->b_rptr, rptr, hlen);
12108 			/*
12109 			 * Set the b_rptr to the start of the link layer
12110 			 * header
12111 			 */
12112 			mp->b_rptr = rptr;
12113 			return (mp);
12114 		}
12115 		mp1 = copyb(mp1);
12116 		if (mp1 == NULL) {
12117 			ill_t *ill = nce->nce_ill;
12118 
12119 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12120 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12121 			freemsg(mp);
12122 			return (NULL);
12123 		}
12124 		mp1->b_band = priority;
12125 		mp1->b_cont = mp;
12126 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12127 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12128 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12129 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12130 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12131 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12132 		/*
12133 		 * XXX disable ICK_VALID and compute checksum
12134 		 * here; can happen if nce_fp_mp changes and
12135 		 * it can't be copied now due to insufficient
12136 		 * space. (unlikely, fp mp can change, but it
12137 		 * does not increase in length)
12138 		 */
12139 		return (mp1);
12140 	}
12141 	mp1 = copyb(nce->nce_dlur_mp);
12142 
12143 	if (mp1 == NULL) {
12144 		ill_t *ill = nce->nce_ill;
12145 
12146 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12147 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12148 		freemsg(mp);
12149 		return (NULL);
12150 	}
12151 	mp1->b_cont = mp;
12152 	if (priority != 0) {
12153 		mp1->b_band = priority;
12154 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12155 		    priority;
12156 	}
12157 	return (mp1);
12158 }
12159 
12160 /*
12161  * Finish the outbound IPsec processing. This function is called from
12162  * ipsec_out_process() if the IPsec packet was processed
12163  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12164  * asynchronously.
12165  *
12166  * This is common to IPv4 and IPv6.
12167  */
12168 int
12169 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12170 {
12171 	iaflags_t	ixaflags = ixa->ixa_flags;
12172 	uint_t		pktlen;
12173 
12174 
12175 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12176 	if (ixaflags & IXAF_IS_IPV4) {
12177 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12178 
12179 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12180 		pktlen = ntohs(ipha->ipha_length);
12181 	} else {
12182 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12183 
12184 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12185 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12186 	}
12187 
12188 	/*
12189 	 * We release any hard reference on the SAs here to make
12190 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12191 	 * on the SAs.
12192 	 * If in the future we want the hard latching of the SAs in the
12193 	 * ip_xmit_attr_t then we should remove this.
12194 	 */
12195 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12196 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12197 		ixa->ixa_ipsec_esp_sa = NULL;
12198 	}
12199 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12200 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12201 		ixa->ixa_ipsec_ah_sa = NULL;
12202 	}
12203 
12204 	/* Do we need to fragment? */
12205 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12206 	    pktlen > ixa->ixa_fragsize) {
12207 		if (ixaflags & IXAF_IS_IPV4) {
12208 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12209 			/*
12210 			 * We check for the DF case in ipsec_out_process
12211 			 * hence this only handles the non-DF case.
12212 			 */
12213 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12214 			    pktlen, ixa->ixa_fragsize,
12215 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12216 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12217 			    &ixa->ixa_cookie));
12218 		} else {
12219 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12220 			if (mp == NULL) {
12221 				/* MIB and ip_drop_output already done */
12222 				return (ENOMEM);
12223 			}
12224 			pktlen += sizeof (ip6_frag_t);
12225 			if (pktlen > ixa->ixa_fragsize) {
12226 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12227 				    ixa->ixa_flags, pktlen,
12228 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12229 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12230 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12231 			}
12232 		}
12233 	}
12234 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12235 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12236 	    ixa->ixa_no_loop_zoneid, NULL));
12237 }
12238 
12239 /*
12240  * Finish the inbound IPsec processing. This function is called from
12241  * ipsec_out_process() if the IPsec packet was processed
12242  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12243  * asynchronously.
12244  *
12245  * This is common to IPv4 and IPv6.
12246  */
12247 void
12248 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12249 {
12250 	iaflags_t	iraflags = ira->ira_flags;
12251 
12252 	/* Length might have changed */
12253 	if (iraflags & IRAF_IS_IPV4) {
12254 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12255 
12256 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12257 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12258 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12259 		ira->ira_protocol = ipha->ipha_protocol;
12260 
12261 		ip_fanout_v4(mp, ipha, ira);
12262 	} else {
12263 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12264 		uint8_t		*nexthdrp;
12265 
12266 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12267 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12268 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12269 		    &nexthdrp)) {
12270 			/* Malformed packet */
12271 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12272 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12273 			freemsg(mp);
12274 			return;
12275 		}
12276 		ira->ira_protocol = *nexthdrp;
12277 		ip_fanout_v6(mp, ip6h, ira);
12278 	}
12279 }
12280 
12281 /*
12282  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12283  *
12284  * If this function returns B_TRUE, the requested SA's have been filled
12285  * into the ixa_ipsec_*_sa pointers.
12286  *
12287  * If the function returns B_FALSE, the packet has been "consumed", most
12288  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12289  *
12290  * The SA references created by the protocol-specific "select"
12291  * function will be released in ip_output_post_ipsec.
12292  */
12293 static boolean_t
12294 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12295 {
12296 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12297 	ipsec_policy_t *pp;
12298 	ipsec_action_t *ap;
12299 
12300 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12301 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12302 	    (ixa->ixa_ipsec_action != NULL));
12303 
12304 	ap = ixa->ixa_ipsec_action;
12305 	if (ap == NULL) {
12306 		pp = ixa->ixa_ipsec_policy;
12307 		ASSERT(pp != NULL);
12308 		ap = pp->ipsp_act;
12309 		ASSERT(ap != NULL);
12310 	}
12311 
12312 	/*
12313 	 * We have an action.  now, let's select SA's.
12314 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12315 	 * be cached in the conn_t.
12316 	 */
12317 	if (ap->ipa_want_esp) {
12318 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12319 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12320 			    IPPROTO_ESP);
12321 		}
12322 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12323 	}
12324 
12325 	if (ap->ipa_want_ah) {
12326 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12327 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12328 			    IPPROTO_AH);
12329 		}
12330 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12331 		/*
12332 		 * The ESP and AH processing order needs to be preserved
12333 		 * when both protocols are required (ESP should be applied
12334 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12335 		 * when both ESP and AH are required, and an AH ACQUIRE
12336 		 * is needed.
12337 		 */
12338 		if (ap->ipa_want_esp && need_ah_acquire)
12339 			need_esp_acquire = B_TRUE;
12340 	}
12341 
12342 	/*
12343 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12344 	 * Release SAs that got referenced, but will not be used until we
12345 	 * acquire _all_ of the SAs we need.
12346 	 */
12347 	if (need_ah_acquire || need_esp_acquire) {
12348 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12349 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12350 			ixa->ixa_ipsec_ah_sa = NULL;
12351 		}
12352 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12353 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12354 			ixa->ixa_ipsec_esp_sa = NULL;
12355 		}
12356 
12357 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12358 		return (B_FALSE);
12359 	}
12360 
12361 	return (B_TRUE);
12362 }
12363 
12364 /*
12365  * Handle IPsec output processing.
12366  * This function is only entered once for a given packet.
12367  * We try to do things synchronously, but if we need to have user-level
12368  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12369  * will be completed
12370  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12371  *  - when asynchronous ESP is done it will do AH
12372  *
12373  * In all cases we come back in ip_output_post_ipsec() to fragment and
12374  * send out the packet.
12375  */
12376 int
12377 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12378 {
12379 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12380 	ip_stack_t	*ipst = ixa->ixa_ipst;
12381 	ipsec_stack_t	*ipss;
12382 	ipsec_policy_t	*pp;
12383 	ipsec_action_t	*ap;
12384 
12385 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12386 
12387 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12388 	    (ixa->ixa_ipsec_action != NULL));
12389 
12390 	ipss = ipst->ips_netstack->netstack_ipsec;
12391 	if (!ipsec_loaded(ipss)) {
12392 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12393 		ip_drop_packet(mp, B_TRUE, ill,
12394 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12395 		    &ipss->ipsec_dropper);
12396 		return (ENOTSUP);
12397 	}
12398 
12399 	ap = ixa->ixa_ipsec_action;
12400 	if (ap == NULL) {
12401 		pp = ixa->ixa_ipsec_policy;
12402 		ASSERT(pp != NULL);
12403 		ap = pp->ipsp_act;
12404 		ASSERT(ap != NULL);
12405 	}
12406 
12407 	/* Handle explicit drop action and bypass. */
12408 	switch (ap->ipa_act.ipa_type) {
12409 	case IPSEC_ACT_DISCARD:
12410 	case IPSEC_ACT_REJECT:
12411 		ip_drop_packet(mp, B_FALSE, ill,
12412 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12413 		return (EHOSTUNREACH);	/* IPsec policy failure */
12414 	case IPSEC_ACT_BYPASS:
12415 		return (ip_output_post_ipsec(mp, ixa));
12416 	}
12417 
12418 	/*
12419 	 * The order of processing is first insert a IP header if needed.
12420 	 * Then insert the ESP header and then the AH header.
12421 	 */
12422 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12423 		/*
12424 		 * First get the outer IP header before sending
12425 		 * it to ESP.
12426 		 */
12427 		ipha_t *oipha, *iipha;
12428 		mblk_t *outer_mp, *inner_mp;
12429 
12430 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12431 			(void) mi_strlog(ill->ill_rq, 0,
12432 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12433 			    "ipsec_out_process: "
12434 			    "Self-Encapsulation failed: Out of memory\n");
12435 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12436 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12437 			freemsg(mp);
12438 			return (ENOBUFS);
12439 		}
12440 		inner_mp = mp;
12441 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12442 		oipha = (ipha_t *)outer_mp->b_rptr;
12443 		iipha = (ipha_t *)inner_mp->b_rptr;
12444 		*oipha = *iipha;
12445 		outer_mp->b_wptr += sizeof (ipha_t);
12446 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12447 		    sizeof (ipha_t));
12448 		oipha->ipha_protocol = IPPROTO_ENCAP;
12449 		oipha->ipha_version_and_hdr_length =
12450 		    IP_SIMPLE_HDR_VERSION;
12451 		oipha->ipha_hdr_checksum = 0;
12452 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12453 		outer_mp->b_cont = inner_mp;
12454 		mp = outer_mp;
12455 
12456 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12457 	}
12458 
12459 	/* If we need to wait for a SA then we can't return any errno */
12460 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12461 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12462 	    !ipsec_out_select_sa(mp, ixa))
12463 		return (0);
12464 
12465 	/*
12466 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12467 	 * to do the heavy lifting.
12468 	 */
12469 	if (ap->ipa_want_esp) {
12470 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12471 
12472 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12473 		if (mp == NULL) {
12474 			/*
12475 			 * Either it failed or is pending. In the former case
12476 			 * ipIfStatsInDiscards was increased.
12477 			 */
12478 			return (0);
12479 		}
12480 	}
12481 
12482 	if (ap->ipa_want_ah) {
12483 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12484 
12485 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12486 		if (mp == NULL) {
12487 			/*
12488 			 * Either it failed or is pending. In the former case
12489 			 * ipIfStatsInDiscards was increased.
12490 			 */
12491 			return (0);
12492 		}
12493 	}
12494 	/*
12495 	 * We are done with IPsec processing. Send it over
12496 	 * the wire.
12497 	 */
12498 	return (ip_output_post_ipsec(mp, ixa));
12499 }
12500 
12501 /*
12502  * ioctls that go through a down/up sequence may need to wait for the down
12503  * to complete. This involves waiting for the ire and ipif refcnts to go down
12504  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12505  */
12506 /* ARGSUSED */
12507 void
12508 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12509 {
12510 	struct iocblk *iocp;
12511 	mblk_t *mp1;
12512 	ip_ioctl_cmd_t *ipip;
12513 	int err;
12514 	sin_t	*sin;
12515 	struct lifreq *lifr;
12516 	struct ifreq *ifr;
12517 
12518 	iocp = (struct iocblk *)mp->b_rptr;
12519 	ASSERT(ipsq != NULL);
12520 	/* Existence of mp1 verified in ip_wput_nondata */
12521 	mp1 = mp->b_cont->b_cont;
12522 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12523 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12524 		/*
12525 		 * Special case where ipx_current_ipif is not set:
12526 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12527 		 * We are here as were not able to complete the operation in
12528 		 * ipif_set_values because we could not become exclusive on
12529 		 * the new ipsq.
12530 		 */
12531 		ill_t *ill = q->q_ptr;
12532 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12533 	}
12534 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12535 
12536 	if (ipip->ipi_cmd_type == IF_CMD) {
12537 		/* This a old style SIOC[GS]IF* command */
12538 		ifr = (struct ifreq *)mp1->b_rptr;
12539 		sin = (sin_t *)&ifr->ifr_addr;
12540 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12541 		/* This a new style SIOC[GS]LIF* command */
12542 		lifr = (struct lifreq *)mp1->b_rptr;
12543 		sin = (sin_t *)&lifr->lifr_addr;
12544 	} else {
12545 		sin = NULL;
12546 	}
12547 
12548 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12549 	    q, mp, ipip, mp1->b_rptr);
12550 
12551 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12552 	    int, ipip->ipi_cmd,
12553 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12554 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12555 
12556 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12557 }
12558 
12559 /*
12560  * ioctl processing
12561  *
12562  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12563  * the ioctl command in the ioctl tables, determines the copyin data size
12564  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12565  *
12566  * ioctl processing then continues when the M_IOCDATA makes its way down to
12567  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12568  * associated 'conn' is refheld till the end of the ioctl and the general
12569  * ioctl processing function ip_process_ioctl() is called to extract the
12570  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12571  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12572  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12573  * is used to extract the ioctl's arguments.
12574  *
12575  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12576  * so goes thru the serialization primitive ipsq_try_enter. Then the
12577  * appropriate function to handle the ioctl is called based on the entry in
12578  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12579  * which also refreleases the 'conn' that was refheld at the start of the
12580  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12581  *
12582  * Many exclusive ioctls go thru an internal down up sequence as part of
12583  * the operation. For example an attempt to change the IP address of an
12584  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12585  * does all the cleanup such as deleting all ires that use this address.
12586  * Then we need to wait till all references to the interface go away.
12587  */
12588 void
12589 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12590 {
12591 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12592 	ip_ioctl_cmd_t *ipip = arg;
12593 	ip_extract_func_t *extract_funcp;
12594 	cmd_info_t ci;
12595 	int err;
12596 	boolean_t entered_ipsq = B_FALSE;
12597 
12598 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12599 
12600 	if (ipip == NULL)
12601 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12602 
12603 	/*
12604 	 * SIOCLIFADDIF needs to go thru a special path since the
12605 	 * ill may not exist yet. This happens in the case of lo0
12606 	 * which is created using this ioctl.
12607 	 */
12608 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12609 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12610 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12611 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12612 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12613 		return;
12614 	}
12615 
12616 	ci.ci_ipif = NULL;
12617 	extract_funcp = NULL;
12618 	switch (ipip->ipi_cmd_type) {
12619 	case MISC_CMD:
12620 	case MSFILT_CMD:
12621 		/*
12622 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12623 		 */
12624 		if (ipip->ipi_cmd == IF_UNITSEL) {
12625 			/* ioctl comes down the ill */
12626 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12627 			ipif_refhold(ci.ci_ipif);
12628 		}
12629 		err = 0;
12630 		ci.ci_sin = NULL;
12631 		ci.ci_sin6 = NULL;
12632 		ci.ci_lifr = NULL;
12633 		extract_funcp = NULL;
12634 		break;
12635 
12636 	case IF_CMD:
12637 	case LIF_CMD:
12638 		extract_funcp = ip_extract_lifreq;
12639 		break;
12640 
12641 	case ARP_CMD:
12642 	case XARP_CMD:
12643 		extract_funcp = ip_extract_arpreq;
12644 		break;
12645 
12646 	default:
12647 		ASSERT(0);
12648 	}
12649 
12650 	if (extract_funcp != NULL) {
12651 		err = (*extract_funcp)(q, mp, ipip, &ci);
12652 		if (err != 0) {
12653 			DTRACE_PROBE4(ipif__ioctl,
12654 			    char *, "ip_process_ioctl finish err",
12655 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12656 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12657 			return;
12658 		}
12659 
12660 		/*
12661 		 * All of the extraction functions return a refheld ipif.
12662 		 */
12663 		ASSERT(ci.ci_ipif != NULL);
12664 	}
12665 
12666 	if (!(ipip->ipi_flags & IPI_WR)) {
12667 		/*
12668 		 * A return value of EINPROGRESS means the ioctl is
12669 		 * either queued and waiting for some reason or has
12670 		 * already completed.
12671 		 */
12672 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12673 		    ci.ci_lifr);
12674 		if (ci.ci_ipif != NULL) {
12675 			DTRACE_PROBE4(ipif__ioctl,
12676 			    char *, "ip_process_ioctl finish RD",
12677 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12678 			    ipif_t *, ci.ci_ipif);
12679 			ipif_refrele(ci.ci_ipif);
12680 		} else {
12681 			DTRACE_PROBE4(ipif__ioctl,
12682 			    char *, "ip_process_ioctl finish RD",
12683 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12684 		}
12685 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12686 		return;
12687 	}
12688 
12689 	ASSERT(ci.ci_ipif != NULL);
12690 
12691 	/*
12692 	 * If ipsq is non-NULL, we are already being called exclusively
12693 	 */
12694 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12695 	if (ipsq == NULL) {
12696 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12697 		    NEW_OP, B_TRUE);
12698 		if (ipsq == NULL) {
12699 			ipif_refrele(ci.ci_ipif);
12700 			return;
12701 		}
12702 		entered_ipsq = B_TRUE;
12703 	}
12704 	/*
12705 	 * Release the ipif so that ipif_down and friends that wait for
12706 	 * references to go away are not misled about the current ipif_refcnt
12707 	 * values. We are writer so we can access the ipif even after releasing
12708 	 * the ipif.
12709 	 */
12710 	ipif_refrele(ci.ci_ipif);
12711 
12712 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12713 
12714 	/*
12715 	 * A return value of EINPROGRESS means the ioctl is
12716 	 * either queued and waiting for some reason or has
12717 	 * already completed.
12718 	 */
12719 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12720 
12721 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12722 	    int, ipip->ipi_cmd,
12723 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12724 	    ipif_t *, ci.ci_ipif);
12725 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12726 
12727 	if (entered_ipsq)
12728 		ipsq_exit(ipsq);
12729 }
12730 
12731 /*
12732  * Complete the ioctl. Typically ioctls use the mi package and need to
12733  * do mi_copyout/mi_copy_done.
12734  */
12735 void
12736 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12737 {
12738 	conn_t	*connp = NULL;
12739 
12740 	if (err == EINPROGRESS)
12741 		return;
12742 
12743 	if (CONN_Q(q)) {
12744 		connp = Q_TO_CONN(q);
12745 		ASSERT(connp->conn_ref >= 2);
12746 	}
12747 
12748 	switch (mode) {
12749 	case COPYOUT:
12750 		if (err == 0)
12751 			mi_copyout(q, mp);
12752 		else
12753 			mi_copy_done(q, mp, err);
12754 		break;
12755 
12756 	case NO_COPYOUT:
12757 		mi_copy_done(q, mp, err);
12758 		break;
12759 
12760 	default:
12761 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12762 		break;
12763 	}
12764 
12765 	/*
12766 	 * The conn refhold and ioctlref placed on the conn at the start of the
12767 	 * ioctl are released here.
12768 	 */
12769 	if (connp != NULL) {
12770 		CONN_DEC_IOCTLREF(connp);
12771 		CONN_OPER_PENDING_DONE(connp);
12772 	}
12773 
12774 	if (ipsq != NULL)
12775 		ipsq_current_finish(ipsq);
12776 }
12777 
12778 /* Handles all non data messages */
12779 int
12780 ip_wput_nondata(queue_t *q, mblk_t *mp)
12781 {
12782 	mblk_t		*mp1;
12783 	struct iocblk	*iocp;
12784 	ip_ioctl_cmd_t	*ipip;
12785 	conn_t		*connp;
12786 	cred_t		*cr;
12787 	char		*proto_str;
12788 
12789 	if (CONN_Q(q))
12790 		connp = Q_TO_CONN(q);
12791 	else
12792 		connp = NULL;
12793 
12794 	iocp = NULL;
12795 	switch (DB_TYPE(mp)) {
12796 	case M_IOCTL:
12797 		/*
12798 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12799 		 * will arrange to copy in associated control structures.
12800 		 */
12801 		ip_sioctl_copyin_setup(q, mp);
12802 		return (0);
12803 	case M_IOCDATA:
12804 		/*
12805 		 * Ensure that this is associated with one of our trans-
12806 		 * parent ioctls.  If it's not ours, discard it if we're
12807 		 * running as a driver, or pass it on if we're a module.
12808 		 */
12809 		iocp = (struct iocblk *)mp->b_rptr;
12810 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12811 		if (ipip == NULL) {
12812 			if (q->q_next == NULL) {
12813 				goto nak;
12814 			} else {
12815 				putnext(q, mp);
12816 			}
12817 			return (0);
12818 		}
12819 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12820 			/*
12821 			 * The ioctl is one we recognise, but is not consumed
12822 			 * by IP as a module and we are a module, so we drop
12823 			 */
12824 			goto nak;
12825 		}
12826 
12827 		/* IOCTL continuation following copyin or copyout. */
12828 		if (mi_copy_state(q, mp, NULL) == -1) {
12829 			/*
12830 			 * The copy operation failed.  mi_copy_state already
12831 			 * cleaned up, so we're out of here.
12832 			 */
12833 			return (0);
12834 		}
12835 		/*
12836 		 * If we just completed a copy in, we become writer and
12837 		 * continue processing in ip_sioctl_copyin_done.  If it
12838 		 * was a copy out, we call mi_copyout again.  If there is
12839 		 * nothing more to copy out, it will complete the IOCTL.
12840 		 */
12841 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12842 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12843 				mi_copy_done(q, mp, EPROTO);
12844 				return (0);
12845 			}
12846 			/*
12847 			 * Check for cases that need more copying.  A return
12848 			 * value of 0 means a second copyin has been started,
12849 			 * so we return; a return value of 1 means no more
12850 			 * copying is needed, so we continue.
12851 			 */
12852 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12853 			    MI_COPY_COUNT(mp) == 1) {
12854 				if (ip_copyin_msfilter(q, mp) == 0)
12855 					return (0);
12856 			}
12857 			/*
12858 			 * Refhold the conn, till the ioctl completes. This is
12859 			 * needed in case the ioctl ends up in the pending mp
12860 			 * list. Every mp in the ipx_pending_mp list must have
12861 			 * a refhold on the conn to resume processing. The
12862 			 * refhold is released when the ioctl completes
12863 			 * (whether normally or abnormally). An ioctlref is also
12864 			 * placed on the conn to prevent TCP from removing the
12865 			 * queue needed to send the ioctl reply back.
12866 			 * In all cases ip_ioctl_finish is called to finish
12867 			 * the ioctl and release the refholds.
12868 			 */
12869 			if (connp != NULL) {
12870 				/* This is not a reentry */
12871 				CONN_INC_REF(connp);
12872 				CONN_INC_IOCTLREF(connp);
12873 			} else {
12874 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12875 					mi_copy_done(q, mp, EINVAL);
12876 					return (0);
12877 				}
12878 			}
12879 
12880 			ip_process_ioctl(NULL, q, mp, ipip);
12881 
12882 		} else {
12883 			mi_copyout(q, mp);
12884 		}
12885 		return (0);
12886 
12887 	case M_IOCNAK:
12888 		/*
12889 		 * The only way we could get here is if a resolver didn't like
12890 		 * an IOCTL we sent it.	 This shouldn't happen.
12891 		 */
12892 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12893 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12894 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12895 		freemsg(mp);
12896 		return (0);
12897 	case M_IOCACK:
12898 		/* /dev/ip shouldn't see this */
12899 		goto nak;
12900 	case M_FLUSH:
12901 		if (*mp->b_rptr & FLUSHW)
12902 			flushq(q, FLUSHALL);
12903 		if (q->q_next) {
12904 			putnext(q, mp);
12905 			return (0);
12906 		}
12907 		if (*mp->b_rptr & FLUSHR) {
12908 			*mp->b_rptr &= ~FLUSHW;
12909 			qreply(q, mp);
12910 			return (0);
12911 		}
12912 		freemsg(mp);
12913 		return (0);
12914 	case M_CTL:
12915 		break;
12916 	case M_PROTO:
12917 	case M_PCPROTO:
12918 		/*
12919 		 * The only PROTO messages we expect are SNMP-related.
12920 		 */
12921 		switch (((union T_primitives *)mp->b_rptr)->type) {
12922 		case T_SVR4_OPTMGMT_REQ:
12923 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12924 			    "flags %x\n",
12925 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12926 
12927 			if (connp == NULL) {
12928 				proto_str = "T_SVR4_OPTMGMT_REQ";
12929 				goto protonak;
12930 			}
12931 
12932 			/*
12933 			 * All Solaris components should pass a db_credp
12934 			 * for this TPI message, hence we ASSERT.
12935 			 * But in case there is some other M_PROTO that looks
12936 			 * like a TPI message sent by some other kernel
12937 			 * component, we check and return an error.
12938 			 */
12939 			cr = msg_getcred(mp, NULL);
12940 			ASSERT(cr != NULL);
12941 			if (cr == NULL) {
12942 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12943 				if (mp != NULL)
12944 					qreply(q, mp);
12945 				return (0);
12946 			}
12947 
12948 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12949 				proto_str = "Bad SNMPCOM request?";
12950 				goto protonak;
12951 			}
12952 			return (0);
12953 		default:
12954 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12955 			    (int)*(uint_t *)mp->b_rptr));
12956 			freemsg(mp);
12957 			return (0);
12958 		}
12959 	default:
12960 		break;
12961 	}
12962 	if (q->q_next) {
12963 		putnext(q, mp);
12964 	} else
12965 		freemsg(mp);
12966 	return (0);
12967 
12968 nak:
12969 	iocp->ioc_error = EINVAL;
12970 	mp->b_datap->db_type = M_IOCNAK;
12971 	iocp->ioc_count = 0;
12972 	qreply(q, mp);
12973 	return (0);
12974 
12975 protonak:
12976 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12977 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12978 		qreply(q, mp);
12979 	return (0);
12980 }
12981 
12982 /*
12983  * Process IP options in an outbound packet.  Verify that the nexthop in a
12984  * strict source route is onlink.
12985  * Returns non-zero if something fails in which case an ICMP error has been
12986  * sent and mp freed.
12987  *
12988  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12989  */
12990 int
12991 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12992 {
12993 	ipoptp_t	opts;
12994 	uchar_t		*opt;
12995 	uint8_t		optval;
12996 	uint8_t		optlen;
12997 	ipaddr_t	dst;
12998 	intptr_t	code = 0;
12999 	ire_t		*ire;
13000 	ip_stack_t	*ipst = ixa->ixa_ipst;
13001 	ip_recv_attr_t	iras;
13002 
13003 	ip2dbg(("ip_output_options\n"));
13004 
13005 	opt = NULL;
13006 	dst = ipha->ipha_dst;
13007 	for (optval = ipoptp_first(&opts, ipha);
13008 	    optval != IPOPT_EOL;
13009 	    optval = ipoptp_next(&opts)) {
13010 		opt = opts.ipoptp_cur;
13011 		optlen = opts.ipoptp_len;
13012 		ip2dbg(("ip_output_options: opt %d, len %d\n",
13013 		    optval, optlen));
13014 		switch (optval) {
13015 			uint32_t off;
13016 		case IPOPT_SSRR:
13017 		case IPOPT_LSRR:
13018 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13019 				ip1dbg((
13020 				    "ip_output_options: bad option offset\n"));
13021 				code = (char *)&opt[IPOPT_OLEN] -
13022 				    (char *)ipha;
13023 				goto param_prob;
13024 			}
13025 			off = opt[IPOPT_OFFSET];
13026 			ip1dbg(("ip_output_options: next hop 0x%x\n",
13027 			    ntohl(dst)));
13028 			/*
13029 			 * For strict: verify that dst is directly
13030 			 * reachable.
13031 			 */
13032 			if (optval == IPOPT_SSRR) {
13033 				ire = ire_ftable_lookup_v4(dst, 0, 0,
13034 				    IRE_INTERFACE, NULL, ALL_ZONES,
13035 				    ixa->ixa_tsl,
13036 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13037 				    NULL);
13038 				if (ire == NULL) {
13039 					ip1dbg(("ip_output_options: SSRR not"
13040 					    " directly reachable: 0x%x\n",
13041 					    ntohl(dst)));
13042 					goto bad_src_route;
13043 				}
13044 				ire_refrele(ire);
13045 			}
13046 			break;
13047 		case IPOPT_RR:
13048 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13049 				ip1dbg((
13050 				    "ip_output_options: bad option offset\n"));
13051 				code = (char *)&opt[IPOPT_OLEN] -
13052 				    (char *)ipha;
13053 				goto param_prob;
13054 			}
13055 			break;
13056 		case IPOPT_TS:
13057 			/*
13058 			 * Verify that length >=5 and that there is either
13059 			 * room for another timestamp or that the overflow
13060 			 * counter is not maxed out.
13061 			 */
13062 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13063 			if (optlen < IPOPT_MINLEN_IT) {
13064 				goto param_prob;
13065 			}
13066 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13067 				ip1dbg((
13068 				    "ip_output_options: bad option offset\n"));
13069 				code = (char *)&opt[IPOPT_OFFSET] -
13070 				    (char *)ipha;
13071 				goto param_prob;
13072 			}
13073 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13074 			case IPOPT_TS_TSONLY:
13075 				off = IPOPT_TS_TIMELEN;
13076 				break;
13077 			case IPOPT_TS_TSANDADDR:
13078 			case IPOPT_TS_PRESPEC:
13079 			case IPOPT_TS_PRESPEC_RFC791:
13080 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13081 				break;
13082 			default:
13083 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13084 				    (char *)ipha;
13085 				goto param_prob;
13086 			}
13087 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13088 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13089 				/*
13090 				 * No room and the overflow counter is 15
13091 				 * already.
13092 				 */
13093 				goto param_prob;
13094 			}
13095 			break;
13096 		}
13097 	}
13098 
13099 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13100 		return (0);
13101 
13102 	ip1dbg(("ip_output_options: error processing IP options."));
13103 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13104 
13105 param_prob:
13106 	bzero(&iras, sizeof (iras));
13107 	iras.ira_ill = iras.ira_rill = ill;
13108 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13109 	iras.ira_rifindex = iras.ira_ruifindex;
13110 	iras.ira_flags = IRAF_IS_IPV4;
13111 
13112 	ip_drop_output("ip_output_options", mp, ill);
13113 	icmp_param_problem(mp, (uint8_t)code, &iras);
13114 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13115 	return (-1);
13116 
13117 bad_src_route:
13118 	bzero(&iras, sizeof (iras));
13119 	iras.ira_ill = iras.ira_rill = ill;
13120 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13121 	iras.ira_rifindex = iras.ira_ruifindex;
13122 	iras.ira_flags = IRAF_IS_IPV4;
13123 
13124 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13125 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13126 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13127 	return (-1);
13128 }
13129 
13130 /*
13131  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13132  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13133  * thru /etc/system.
13134  */
13135 #define	CONN_MAXDRAINCNT	64
13136 
13137 static void
13138 conn_drain_init(ip_stack_t *ipst)
13139 {
13140 	int i, j;
13141 	idl_tx_list_t *itl_tx;
13142 
13143 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13144 
13145 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13146 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13147 		/*
13148 		 * Default value of the number of drainers is the
13149 		 * number of cpus, subject to maximum of 8 drainers.
13150 		 */
13151 		if (boot_max_ncpus != -1)
13152 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13153 		else
13154 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13155 	}
13156 
13157 	ipst->ips_idl_tx_list =
13158 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13159 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13160 		itl_tx =  &ipst->ips_idl_tx_list[i];
13161 		itl_tx->txl_drain_list =
13162 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13163 		    sizeof (idl_t), KM_SLEEP);
13164 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13165 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13166 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13167 			    MUTEX_DEFAULT, NULL);
13168 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13169 		}
13170 	}
13171 }
13172 
13173 static void
13174 conn_drain_fini(ip_stack_t *ipst)
13175 {
13176 	int i;
13177 	idl_tx_list_t *itl_tx;
13178 
13179 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13180 		itl_tx =  &ipst->ips_idl_tx_list[i];
13181 		kmem_free(itl_tx->txl_drain_list,
13182 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13183 	}
13184 	kmem_free(ipst->ips_idl_tx_list,
13185 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13186 	ipst->ips_idl_tx_list = NULL;
13187 }
13188 
13189 /*
13190  * Flow control has blocked us from proceeding.  Insert the given conn in one
13191  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13192  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13193  * will call conn_walk_drain().  See the flow control notes at the top of this
13194  * file for more details.
13195  */
13196 void
13197 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13198 {
13199 	idl_t	*idl = tx_list->txl_drain_list;
13200 	uint_t	index;
13201 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13202 
13203 	mutex_enter(&connp->conn_lock);
13204 	if (connp->conn_state_flags & CONN_CLOSING) {
13205 		/*
13206 		 * The conn is closing as a result of which CONN_CLOSING
13207 		 * is set. Return.
13208 		 */
13209 		mutex_exit(&connp->conn_lock);
13210 		return;
13211 	} else if (connp->conn_idl == NULL) {
13212 		/*
13213 		 * Assign the next drain list round robin. We dont' use
13214 		 * a lock, and thus it may not be strictly round robin.
13215 		 * Atomicity of load/stores is enough to make sure that
13216 		 * conn_drain_list_index is always within bounds.
13217 		 */
13218 		index = tx_list->txl_drain_index;
13219 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13220 		connp->conn_idl = &tx_list->txl_drain_list[index];
13221 		index++;
13222 		if (index == ipst->ips_conn_drain_list_cnt)
13223 			index = 0;
13224 		tx_list->txl_drain_index = index;
13225 	} else {
13226 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13227 	}
13228 	mutex_exit(&connp->conn_lock);
13229 
13230 	idl = connp->conn_idl;
13231 	mutex_enter(&idl->idl_lock);
13232 	if ((connp->conn_drain_prev != NULL) ||
13233 	    (connp->conn_state_flags & CONN_CLOSING)) {
13234 		/*
13235 		 * The conn is either already in the drain list or closing.
13236 		 * (We needed to check for CONN_CLOSING again since close can
13237 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13238 		 */
13239 		mutex_exit(&idl->idl_lock);
13240 		return;
13241 	}
13242 
13243 	/*
13244 	 * The conn is not in the drain list. Insert it at the
13245 	 * tail of the drain list. The drain list is circular
13246 	 * and doubly linked. idl_conn points to the 1st element
13247 	 * in the list.
13248 	 */
13249 	if (idl->idl_conn == NULL) {
13250 		idl->idl_conn = connp;
13251 		connp->conn_drain_next = connp;
13252 		connp->conn_drain_prev = connp;
13253 	} else {
13254 		conn_t *head = idl->idl_conn;
13255 
13256 		connp->conn_drain_next = head;
13257 		connp->conn_drain_prev = head->conn_drain_prev;
13258 		head->conn_drain_prev->conn_drain_next = connp;
13259 		head->conn_drain_prev = connp;
13260 	}
13261 	/*
13262 	 * For non streams based sockets assert flow control.
13263 	 */
13264 	conn_setqfull(connp, NULL);
13265 	mutex_exit(&idl->idl_lock);
13266 }
13267 
13268 static void
13269 conn_drain_remove(conn_t *connp)
13270 {
13271 	idl_t *idl = connp->conn_idl;
13272 
13273 	if (idl != NULL) {
13274 		/*
13275 		 * Remove ourself from the drain list.
13276 		 */
13277 		if (connp->conn_drain_next == connp) {
13278 			/* Singleton in the list */
13279 			ASSERT(connp->conn_drain_prev == connp);
13280 			idl->idl_conn = NULL;
13281 		} else {
13282 			connp->conn_drain_prev->conn_drain_next =
13283 			    connp->conn_drain_next;
13284 			connp->conn_drain_next->conn_drain_prev =
13285 			    connp->conn_drain_prev;
13286 			if (idl->idl_conn == connp)
13287 				idl->idl_conn = connp->conn_drain_next;
13288 		}
13289 
13290 		/*
13291 		 * NOTE: because conn_idl is associated with a specific drain
13292 		 * list which in turn is tied to the index the TX ring
13293 		 * (txl_cookie) hashes to, and because the TX ring can change
13294 		 * over the lifetime of the conn_t, we must clear conn_idl so
13295 		 * a subsequent conn_drain_insert() will set conn_idl again
13296 		 * based on the latest txl_cookie.
13297 		 */
13298 		connp->conn_idl = NULL;
13299 	}
13300 	connp->conn_drain_next = NULL;
13301 	connp->conn_drain_prev = NULL;
13302 
13303 	conn_clrqfull(connp, NULL);
13304 	/*
13305 	 * For streams based sockets open up flow control.
13306 	 */
13307 	if (!IPCL_IS_NONSTR(connp))
13308 		enableok(connp->conn_wq);
13309 }
13310 
13311 /*
13312  * This conn is closing, and we are called from ip_close. OR
13313  * this conn is draining because flow-control on the ill has been relieved.
13314  *
13315  * We must also need to remove conn's on this idl from the list, and also
13316  * inform the sockfs upcalls about the change in flow-control.
13317  */
13318 static void
13319 conn_drain(conn_t *connp, boolean_t closing)
13320 {
13321 	idl_t *idl;
13322 	conn_t *next_connp;
13323 
13324 	/*
13325 	 * connp->conn_idl is stable at this point, and no lock is needed
13326 	 * to check it. If we are called from ip_close, close has already
13327 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13328 	 * called us only because conn_idl is non-null. If we are called thru
13329 	 * service, conn_idl could be null, but it cannot change because
13330 	 * service is single-threaded per queue, and there cannot be another
13331 	 * instance of service trying to call conn_drain_insert on this conn
13332 	 * now.
13333 	 */
13334 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13335 
13336 	/*
13337 	 * If the conn doesn't exist or is not on a drain list, bail.
13338 	 */
13339 	if (connp == NULL || connp->conn_idl == NULL ||
13340 	    connp->conn_drain_prev == NULL) {
13341 		return;
13342 	}
13343 
13344 	idl = connp->conn_idl;
13345 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13346 
13347 	if (!closing) {
13348 		next_connp = connp->conn_drain_next;
13349 		while (next_connp != connp) {
13350 			conn_t *delconnp = next_connp;
13351 
13352 			next_connp = next_connp->conn_drain_next;
13353 			conn_drain_remove(delconnp);
13354 		}
13355 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13356 	}
13357 	conn_drain_remove(connp);
13358 }
13359 
13360 /*
13361  * Write service routine. Shared perimeter entry point.
13362  * The device queue's messages has fallen below the low water mark and STREAMS
13363  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13364  * each waiting conn.
13365  */
13366 int
13367 ip_wsrv(queue_t *q)
13368 {
13369 	ill_t	*ill;
13370 
13371 	ill = (ill_t *)q->q_ptr;
13372 	if (ill->ill_state_flags == 0) {
13373 		ip_stack_t *ipst = ill->ill_ipst;
13374 
13375 		/*
13376 		 * The device flow control has opened up.
13377 		 * Walk through conn drain lists and qenable the
13378 		 * first conn in each list. This makes sense only
13379 		 * if the stream is fully plumbed and setup.
13380 		 * Hence the ill_state_flags check above.
13381 		 */
13382 		ip1dbg(("ip_wsrv: walking\n"));
13383 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13384 		enableok(ill->ill_wq);
13385 	}
13386 	return (0);
13387 }
13388 
13389 /*
13390  * Callback to disable flow control in IP.
13391  *
13392  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13393  * is enabled.
13394  *
13395  * When MAC_TX() is not able to send any more packets, dld sets its queue
13396  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13397  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13398  * function and wakes up corresponding mac worker threads, which in turn
13399  * calls this callback function, and disables flow control.
13400  */
13401 void
13402 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13403 {
13404 	ill_t *ill = (ill_t *)arg;
13405 	ip_stack_t *ipst = ill->ill_ipst;
13406 	idl_tx_list_t *idl_txl;
13407 
13408 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13409 	mutex_enter(&idl_txl->txl_lock);
13410 	/* add code to to set a flag to indicate idl_txl is enabled */
13411 	conn_walk_drain(ipst, idl_txl);
13412 	mutex_exit(&idl_txl->txl_lock);
13413 }
13414 
13415 /*
13416  * Flow control has been relieved and STREAMS has backenabled us; drain
13417  * all the conn lists on `tx_list'.
13418  */
13419 static void
13420 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13421 {
13422 	int i;
13423 	idl_t *idl;
13424 
13425 	IP_STAT(ipst, ip_conn_walk_drain);
13426 
13427 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13428 		idl = &tx_list->txl_drain_list[i];
13429 		mutex_enter(&idl->idl_lock);
13430 		conn_drain(idl->idl_conn, B_FALSE);
13431 		mutex_exit(&idl->idl_lock);
13432 	}
13433 }
13434 
13435 /*
13436  * Determine if the ill and multicast aspects of that packets
13437  * "matches" the conn.
13438  */
13439 boolean_t
13440 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13441 {
13442 	ill_t		*ill = ira->ira_rill;
13443 	zoneid_t	zoneid = ira->ira_zoneid;
13444 	uint_t		in_ifindex;
13445 	ipaddr_t	dst, src;
13446 
13447 	dst = ipha->ipha_dst;
13448 	src = ipha->ipha_src;
13449 
13450 	/*
13451 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13452 	 * unicast, broadcast and multicast reception to
13453 	 * conn_incoming_ifindex.
13454 	 * conn_wantpacket is called for unicast, broadcast and
13455 	 * multicast packets.
13456 	 */
13457 	in_ifindex = connp->conn_incoming_ifindex;
13458 
13459 	/* mpathd can bind to the under IPMP interface, which we allow */
13460 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13461 		if (!IS_UNDER_IPMP(ill))
13462 			return (B_FALSE);
13463 
13464 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13465 			return (B_FALSE);
13466 	}
13467 
13468 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13469 		return (B_FALSE);
13470 
13471 	if (!(ira->ira_flags & IRAF_MULTICAST))
13472 		return (B_TRUE);
13473 
13474 	if (connp->conn_multi_router) {
13475 		/* multicast packet and multicast router socket: send up */
13476 		return (B_TRUE);
13477 	}
13478 
13479 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13480 	    ipha->ipha_protocol == IPPROTO_RSVP)
13481 		return (B_TRUE);
13482 
13483 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13484 }
13485 
13486 void
13487 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13488 {
13489 	if (IPCL_IS_NONSTR(connp)) {
13490 		(*connp->conn_upcalls->su_txq_full)
13491 		    (connp->conn_upper_handle, B_TRUE);
13492 		if (flow_stopped != NULL)
13493 			*flow_stopped = B_TRUE;
13494 	} else {
13495 		queue_t *q = connp->conn_wq;
13496 
13497 		ASSERT(q != NULL);
13498 		if (!(q->q_flag & QFULL)) {
13499 			mutex_enter(QLOCK(q));
13500 			if (!(q->q_flag & QFULL)) {
13501 				/* still need to set QFULL */
13502 				q->q_flag |= QFULL;
13503 				/* set flow_stopped to true under QLOCK */
13504 				if (flow_stopped != NULL)
13505 					*flow_stopped = B_TRUE;
13506 				mutex_exit(QLOCK(q));
13507 			} else {
13508 				/* flow_stopped is left unchanged */
13509 				mutex_exit(QLOCK(q));
13510 			}
13511 		}
13512 	}
13513 }
13514 
13515 void
13516 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13517 {
13518 	if (IPCL_IS_NONSTR(connp)) {
13519 		(*connp->conn_upcalls->su_txq_full)
13520 		    (connp->conn_upper_handle, B_FALSE);
13521 		if (flow_stopped != NULL)
13522 			*flow_stopped = B_FALSE;
13523 	} else {
13524 		queue_t *q = connp->conn_wq;
13525 
13526 		ASSERT(q != NULL);
13527 		if (q->q_flag & QFULL) {
13528 			mutex_enter(QLOCK(q));
13529 			if (q->q_flag & QFULL) {
13530 				q->q_flag &= ~QFULL;
13531 				/* set flow_stopped to false under QLOCK */
13532 				if (flow_stopped != NULL)
13533 					*flow_stopped = B_FALSE;
13534 				mutex_exit(QLOCK(q));
13535 				if (q->q_flag & QWANTW)
13536 					qbackenable(q, 0);
13537 			} else {
13538 				/* flow_stopped is left unchanged */
13539 				mutex_exit(QLOCK(q));
13540 			}
13541 		}
13542 	}
13543 
13544 	mutex_enter(&connp->conn_lock);
13545 	connp->conn_blocked = B_FALSE;
13546 	mutex_exit(&connp->conn_lock);
13547 }
13548 
13549 /*
13550  * Return the length in bytes of the IPv4 headers (base header, label, and
13551  * other IP options) that will be needed based on the
13552  * ip_pkt_t structure passed by the caller.
13553  *
13554  * The returned length does not include the length of the upper level
13555  * protocol (ULP) header.
13556  * The caller needs to check that the length doesn't exceed the max for IPv4.
13557  */
13558 int
13559 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13560 {
13561 	int len;
13562 
13563 	len = IP_SIMPLE_HDR_LENGTH;
13564 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13565 		ASSERT(ipp->ipp_label_len_v4 != 0);
13566 		/* We need to round up here */
13567 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13568 	}
13569 
13570 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13571 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13572 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13573 		len += ipp->ipp_ipv4_options_len;
13574 	}
13575 	return (len);
13576 }
13577 
13578 /*
13579  * All-purpose routine to build an IPv4 header with options based
13580  * on the abstract ip_pkt_t.
13581  *
13582  * The caller has to set the source and destination address as well as
13583  * ipha_length. The caller has to massage any source route and compensate
13584  * for the ULP pseudo-header checksum due to the source route.
13585  */
13586 void
13587 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13588     uint8_t protocol)
13589 {
13590 	ipha_t	*ipha = (ipha_t *)buf;
13591 	uint8_t *cp;
13592 
13593 	/* Initialize IPv4 header */
13594 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13595 	ipha->ipha_length = 0;	/* Caller will set later */
13596 	ipha->ipha_ident = 0;
13597 	ipha->ipha_fragment_offset_and_flags = 0;
13598 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13599 	ipha->ipha_protocol = protocol;
13600 	ipha->ipha_hdr_checksum = 0;
13601 
13602 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13603 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13604 		ipha->ipha_src = ipp->ipp_addr_v4;
13605 
13606 	cp = (uint8_t *)&ipha[1];
13607 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13608 		ASSERT(ipp->ipp_label_len_v4 != 0);
13609 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13610 		cp += ipp->ipp_label_len_v4;
13611 		/* We need to round up here */
13612 		while ((uintptr_t)cp & 0x3) {
13613 			*cp++ = IPOPT_NOP;
13614 		}
13615 	}
13616 
13617 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13618 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13619 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13620 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13621 		cp += ipp->ipp_ipv4_options_len;
13622 	}
13623 	ipha->ipha_version_and_hdr_length =
13624 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13625 
13626 	ASSERT((int)(cp - buf) == buf_len);
13627 }
13628 
13629 /* Allocate the private structure */
13630 static int
13631 ip_priv_alloc(void **bufp)
13632 {
13633 	void	*buf;
13634 
13635 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13636 		return (ENOMEM);
13637 
13638 	*bufp = buf;
13639 	return (0);
13640 }
13641 
13642 /* Function to delete the private structure */
13643 void
13644 ip_priv_free(void *buf)
13645 {
13646 	ASSERT(buf != NULL);
13647 	kmem_free(buf, sizeof (ip_priv_t));
13648 }
13649 
13650 /*
13651  * The entry point for IPPF processing.
13652  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13653  * routine just returns.
13654  *
13655  * When called, ip_process generates an ipp_packet_t structure
13656  * which holds the state information for this packet and invokes the
13657  * the classifier (via ipp_packet_process). The classification, depending on
13658  * configured filters, results in a list of actions for this packet. Invoking
13659  * an action may cause the packet to be dropped, in which case we return NULL.
13660  * proc indicates the callout position for
13661  * this packet and ill is the interface this packet arrived on or will leave
13662  * on (inbound and outbound resp.).
13663  *
13664  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13665  * on the ill corrsponding to the destination IP address.
13666  */
13667 mblk_t *
13668 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13669 {
13670 	ip_priv_t	*priv;
13671 	ipp_action_id_t	aid;
13672 	int		rc = 0;
13673 	ipp_packet_t	*pp;
13674 
13675 	/* If the classifier is not loaded, return  */
13676 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13677 		return (mp);
13678 	}
13679 
13680 	ASSERT(mp != NULL);
13681 
13682 	/* Allocate the packet structure */
13683 	rc = ipp_packet_alloc(&pp, "ip", aid);
13684 	if (rc != 0)
13685 		goto drop;
13686 
13687 	/* Allocate the private structure */
13688 	rc = ip_priv_alloc((void **)&priv);
13689 	if (rc != 0) {
13690 		ipp_packet_free(pp);
13691 		goto drop;
13692 	}
13693 	priv->proc = proc;
13694 	priv->ill_index = ill_get_upper_ifindex(rill);
13695 
13696 	ipp_packet_set_private(pp, priv, ip_priv_free);
13697 	ipp_packet_set_data(pp, mp);
13698 
13699 	/* Invoke the classifier */
13700 	rc = ipp_packet_process(&pp);
13701 	if (pp != NULL) {
13702 		mp = ipp_packet_get_data(pp);
13703 		ipp_packet_free(pp);
13704 		if (rc != 0)
13705 			goto drop;
13706 		return (mp);
13707 	} else {
13708 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13709 		mp = NULL;
13710 	}
13711 drop:
13712 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13713 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13714 		ip_drop_input("ip_process", mp, ill);
13715 	} else {
13716 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13717 		ip_drop_output("ip_process", mp, ill);
13718 	}
13719 	freemsg(mp);
13720 	return (NULL);
13721 }
13722 
13723 /*
13724  * Propagate a multicast group membership operation (add/drop) on
13725  * all the interfaces crossed by the related multirt routes.
13726  * The call is considered successful if the operation succeeds
13727  * on at least one interface.
13728  *
13729  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13730  * multicast addresses with the ire argument being the first one.
13731  * We walk the bucket to find all the of those.
13732  *
13733  * Common to IPv4 and IPv6.
13734  */
13735 static int
13736 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13737     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13738     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13739     mcast_record_t fmode, const in6_addr_t *v6src)
13740 {
13741 	ire_t		*ire_gw;
13742 	irb_t		*irb;
13743 	int		ifindex;
13744 	int		error = 0;
13745 	int		result;
13746 	ip_stack_t	*ipst = ire->ire_ipst;
13747 	ipaddr_t	group;
13748 	boolean_t	isv6;
13749 	int		match_flags;
13750 
13751 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13752 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13753 		isv6 = B_FALSE;
13754 	} else {
13755 		isv6 = B_TRUE;
13756 	}
13757 
13758 	irb = ire->ire_bucket;
13759 	ASSERT(irb != NULL);
13760 
13761 	result = 0;
13762 	irb_refhold(irb);
13763 	for (; ire != NULL; ire = ire->ire_next) {
13764 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13765 			continue;
13766 
13767 		/* We handle -ifp routes by matching on the ill if set */
13768 		match_flags = MATCH_IRE_TYPE;
13769 		if (ire->ire_ill != NULL)
13770 			match_flags |= MATCH_IRE_ILL;
13771 
13772 		if (isv6) {
13773 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13774 				continue;
13775 
13776 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13777 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13778 			    match_flags, 0, ipst, NULL);
13779 		} else {
13780 			if (ire->ire_addr != group)
13781 				continue;
13782 
13783 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13784 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13785 			    match_flags, 0, ipst, NULL);
13786 		}
13787 		/* No interface route exists for the gateway; skip this ire. */
13788 		if (ire_gw == NULL)
13789 			continue;
13790 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13791 			ire_refrele(ire_gw);
13792 			continue;
13793 		}
13794 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13795 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13796 
13797 		/*
13798 		 * The operation is considered a success if
13799 		 * it succeeds at least once on any one interface.
13800 		 */
13801 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13802 		    fmode, v6src);
13803 		if (error == 0)
13804 			result = CGTP_MCAST_SUCCESS;
13805 
13806 		ire_refrele(ire_gw);
13807 	}
13808 	irb_refrele(irb);
13809 	/*
13810 	 * Consider the call as successful if we succeeded on at least
13811 	 * one interface. Otherwise, return the last encountered error.
13812 	 */
13813 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13814 }
13815 
13816 /*
13817  * Return the expected CGTP hooks version number.
13818  */
13819 int
13820 ip_cgtp_filter_supported(void)
13821 {
13822 	return (ip_cgtp_filter_rev);
13823 }
13824 
13825 /*
13826  * CGTP hooks can be registered by invoking this function.
13827  * Checks that the version number matches.
13828  */
13829 int
13830 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13831 {
13832 	netstack_t *ns;
13833 	ip_stack_t *ipst;
13834 
13835 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13836 		return (ENOTSUP);
13837 
13838 	ns = netstack_find_by_stackid(stackid);
13839 	if (ns == NULL)
13840 		return (EINVAL);
13841 	ipst = ns->netstack_ip;
13842 	ASSERT(ipst != NULL);
13843 
13844 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13845 		netstack_rele(ns);
13846 		return (EALREADY);
13847 	}
13848 
13849 	ipst->ips_ip_cgtp_filter_ops = ops;
13850 
13851 	ill_set_inputfn_all(ipst);
13852 
13853 	netstack_rele(ns);
13854 	return (0);
13855 }
13856 
13857 /*
13858  * CGTP hooks can be unregistered by invoking this function.
13859  * Returns ENXIO if there was no registration.
13860  * Returns EBUSY if the ndd variable has not been turned off.
13861  */
13862 int
13863 ip_cgtp_filter_unregister(netstackid_t stackid)
13864 {
13865 	netstack_t *ns;
13866 	ip_stack_t *ipst;
13867 
13868 	ns = netstack_find_by_stackid(stackid);
13869 	if (ns == NULL)
13870 		return (EINVAL);
13871 	ipst = ns->netstack_ip;
13872 	ASSERT(ipst != NULL);
13873 
13874 	if (ipst->ips_ip_cgtp_filter) {
13875 		netstack_rele(ns);
13876 		return (EBUSY);
13877 	}
13878 
13879 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13880 		netstack_rele(ns);
13881 		return (ENXIO);
13882 	}
13883 	ipst->ips_ip_cgtp_filter_ops = NULL;
13884 
13885 	ill_set_inputfn_all(ipst);
13886 
13887 	netstack_rele(ns);
13888 	return (0);
13889 }
13890 
13891 /*
13892  * Check whether there is a CGTP filter registration.
13893  * Returns non-zero if there is a registration, otherwise returns zero.
13894  * Note: returns zero if bad stackid.
13895  */
13896 int
13897 ip_cgtp_filter_is_registered(netstackid_t stackid)
13898 {
13899 	netstack_t *ns;
13900 	ip_stack_t *ipst;
13901 	int ret;
13902 
13903 	ns = netstack_find_by_stackid(stackid);
13904 	if (ns == NULL)
13905 		return (0);
13906 	ipst = ns->netstack_ip;
13907 	ASSERT(ipst != NULL);
13908 
13909 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13910 		ret = 1;
13911 	else
13912 		ret = 0;
13913 
13914 	netstack_rele(ns);
13915 	return (ret);
13916 }
13917 
13918 static int
13919 ip_squeue_switch(int val)
13920 {
13921 	int rval;
13922 
13923 	switch (val) {
13924 	case IP_SQUEUE_ENTER_NODRAIN:
13925 		rval = SQ_NODRAIN;
13926 		break;
13927 	case IP_SQUEUE_ENTER:
13928 		rval = SQ_PROCESS;
13929 		break;
13930 	case IP_SQUEUE_FILL:
13931 	default:
13932 		rval = SQ_FILL;
13933 		break;
13934 	}
13935 	return (rval);
13936 }
13937 
13938 static void *
13939 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13940 {
13941 	kstat_t *ksp;
13942 
13943 	ip_stat_t template = {
13944 		{ "ip_udp_fannorm",		KSTAT_DATA_UINT64 },
13945 		{ "ip_udp_fanmb",		KSTAT_DATA_UINT64 },
13946 		{ "ip_recv_pullup",		KSTAT_DATA_UINT64 },
13947 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13948 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13949 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13950 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13951 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13952 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13953 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13954 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13955 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13956 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13957 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13958 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13959 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13960 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13961 		{ "ip_nce_mcast_reclaim_calls",	KSTAT_DATA_UINT64 },
13962 		{ "ip_nce_mcast_reclaim_deleted",	KSTAT_DATA_UINT64 },
13963 		{ "ip_nce_mcast_reclaim_tqfail",	KSTAT_DATA_UINT64 },
13964 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13965 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13966 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13967 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13968 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13969 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13970 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13971 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13972 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13973 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13974 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13975 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13976 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13977 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13978 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13979 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13980 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13981 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13982 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13983 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13984 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13985 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13986 	};
13987 
13988 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13989 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13990 	    KSTAT_FLAG_VIRTUAL, stackid);
13991 
13992 	if (ksp == NULL)
13993 		return (NULL);
13994 
13995 	bcopy(&template, ip_statisticsp, sizeof (template));
13996 	ksp->ks_data = (void *)ip_statisticsp;
13997 	ksp->ks_private = (void *)(uintptr_t)stackid;
13998 
13999 	kstat_install(ksp);
14000 	return (ksp);
14001 }
14002 
14003 static void
14004 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
14005 {
14006 	if (ksp != NULL) {
14007 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14008 		kstat_delete_netstack(ksp, stackid);
14009 	}
14010 }
14011 
14012 static void *
14013 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
14014 {
14015 	kstat_t	*ksp;
14016 
14017 	ip_named_kstat_t template = {
14018 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
14019 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
14020 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
14021 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
14022 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
14023 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
14024 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
14025 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
14026 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
14027 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
14028 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
14029 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
14030 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
14031 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
14032 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
14033 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
14034 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
14035 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
14036 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
14037 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
14038 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
14039 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
14040 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
14041 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
14042 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
14043 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
14044 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
14045 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
14046 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
14047 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
14048 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
14049 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
14050 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
14051 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
14052 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
14053 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
14054 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14055 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14056 	};
14057 
14058 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14059 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14060 	if (ksp == NULL || ksp->ks_data == NULL)
14061 		return (NULL);
14062 
14063 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14064 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14065 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14066 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14067 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14068 
14069 	template.netToMediaEntrySize.value.i32 =
14070 	    sizeof (mib2_ipNetToMediaEntry_t);
14071 
14072 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14073 
14074 	bcopy(&template, ksp->ks_data, sizeof (template));
14075 	ksp->ks_update = ip_kstat_update;
14076 	ksp->ks_private = (void *)(uintptr_t)stackid;
14077 
14078 	kstat_install(ksp);
14079 	return (ksp);
14080 }
14081 
14082 static void
14083 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14084 {
14085 	if (ksp != NULL) {
14086 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14087 		kstat_delete_netstack(ksp, stackid);
14088 	}
14089 }
14090 
14091 static int
14092 ip_kstat_update(kstat_t *kp, int rw)
14093 {
14094 	ip_named_kstat_t *ipkp;
14095 	mib2_ipIfStatsEntry_t ipmib;
14096 	ill_walk_context_t ctx;
14097 	ill_t *ill;
14098 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14099 	netstack_t	*ns;
14100 	ip_stack_t	*ipst;
14101 
14102 	if (kp->ks_data == NULL)
14103 		return (EIO);
14104 
14105 	if (rw == KSTAT_WRITE)
14106 		return (EACCES);
14107 
14108 	ns = netstack_find_by_stackid(stackid);
14109 	if (ns == NULL)
14110 		return (-1);
14111 	ipst = ns->netstack_ip;
14112 	if (ipst == NULL) {
14113 		netstack_rele(ns);
14114 		return (-1);
14115 	}
14116 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14117 
14118 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14119 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14120 	ill = ILL_START_WALK_V4(&ctx, ipst);
14121 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14122 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14123 	rw_exit(&ipst->ips_ill_g_lock);
14124 
14125 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14126 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14127 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14128 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14129 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14130 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14131 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14132 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14133 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14134 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14135 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14136 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14137 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14138 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14139 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14140 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14141 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14142 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14143 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14144 
14145 	ipkp->routingDiscards.value.ui32 =	0;
14146 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14147 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14148 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14149 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14150 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14151 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14152 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14153 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14154 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14155 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14156 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14157 
14158 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14159 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14160 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14161 
14162 	netstack_rele(ns);
14163 
14164 	return (0);
14165 }
14166 
14167 static void *
14168 icmp_kstat_init(netstackid_t stackid)
14169 {
14170 	kstat_t	*ksp;
14171 
14172 	icmp_named_kstat_t template = {
14173 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14174 		{ "inErrors",		KSTAT_DATA_UINT32 },
14175 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14176 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14177 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14178 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14179 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14180 		{ "inEchos",		KSTAT_DATA_UINT32 },
14181 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14182 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14183 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14184 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14185 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14186 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14187 		{ "outErrors",		KSTAT_DATA_UINT32 },
14188 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14189 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14190 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14191 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14192 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14193 		{ "outEchos",		KSTAT_DATA_UINT32 },
14194 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14195 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14196 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14197 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14198 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14199 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14200 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14201 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14202 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14203 		{ "outDrops",		KSTAT_DATA_UINT32 },
14204 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14205 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14206 	};
14207 
14208 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14209 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14210 	if (ksp == NULL || ksp->ks_data == NULL)
14211 		return (NULL);
14212 
14213 	bcopy(&template, ksp->ks_data, sizeof (template));
14214 
14215 	ksp->ks_update = icmp_kstat_update;
14216 	ksp->ks_private = (void *)(uintptr_t)stackid;
14217 
14218 	kstat_install(ksp);
14219 	return (ksp);
14220 }
14221 
14222 static void
14223 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14224 {
14225 	if (ksp != NULL) {
14226 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14227 		kstat_delete_netstack(ksp, stackid);
14228 	}
14229 }
14230 
14231 static int
14232 icmp_kstat_update(kstat_t *kp, int rw)
14233 {
14234 	icmp_named_kstat_t *icmpkp;
14235 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14236 	netstack_t	*ns;
14237 	ip_stack_t	*ipst;
14238 
14239 	if (kp->ks_data == NULL)
14240 		return (EIO);
14241 
14242 	if (rw == KSTAT_WRITE)
14243 		return (EACCES);
14244 
14245 	ns = netstack_find_by_stackid(stackid);
14246 	if (ns == NULL)
14247 		return (-1);
14248 	ipst = ns->netstack_ip;
14249 	if (ipst == NULL) {
14250 		netstack_rele(ns);
14251 		return (-1);
14252 	}
14253 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14254 
14255 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14256 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14257 	icmpkp->inDestUnreachs.value.ui32 =
14258 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14259 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14260 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14261 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14262 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14263 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14264 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14265 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14266 	icmpkp->inTimestampReps.value.ui32 =
14267 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14268 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14269 	icmpkp->inAddrMaskReps.value.ui32 =
14270 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14271 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14272 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14273 	icmpkp->outDestUnreachs.value.ui32 =
14274 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14275 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14276 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14277 	icmpkp->outSrcQuenchs.value.ui32 =
14278 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14279 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14280 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14281 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14282 	icmpkp->outTimestamps.value.ui32 =
14283 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14284 	icmpkp->outTimestampReps.value.ui32 =
14285 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14286 	icmpkp->outAddrMasks.value.ui32 =
14287 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14288 	icmpkp->outAddrMaskReps.value.ui32 =
14289 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14290 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14291 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14292 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14293 	icmpkp->outFragNeeded.value.ui32 =
14294 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14295 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14296 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14297 	icmpkp->inBadRedirects.value.ui32 =
14298 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14299 
14300 	netstack_rele(ns);
14301 	return (0);
14302 }
14303 
14304 /*
14305  * This is the fanout function for raw socket opened for SCTP.  Note
14306  * that it is called after SCTP checks that there is no socket which
14307  * wants a packet.  Then before SCTP handles this out of the blue packet,
14308  * this function is called to see if there is any raw socket for SCTP.
14309  * If there is and it is bound to the correct address, the packet will
14310  * be sent to that socket.  Note that only one raw socket can be bound to
14311  * a port.  This is assured in ipcl_sctp_hash_insert();
14312  */
14313 void
14314 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14315     ip_recv_attr_t *ira)
14316 {
14317 	conn_t		*connp;
14318 	queue_t		*rq;
14319 	boolean_t	secure;
14320 	ill_t		*ill = ira->ira_ill;
14321 	ip_stack_t	*ipst = ill->ill_ipst;
14322 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14323 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14324 	iaflags_t	iraflags = ira->ira_flags;
14325 	ill_t		*rill = ira->ira_rill;
14326 
14327 	secure = iraflags & IRAF_IPSEC_SECURE;
14328 
14329 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14330 	    ira, ipst);
14331 	if (connp == NULL) {
14332 		/*
14333 		 * Although raw sctp is not summed, OOB chunks must be.
14334 		 * Drop the packet here if the sctp checksum failed.
14335 		 */
14336 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14337 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14338 			freemsg(mp);
14339 			return;
14340 		}
14341 		ira->ira_ill = ira->ira_rill = NULL;
14342 		sctp_ootb_input(mp, ira, ipst);
14343 		ira->ira_ill = ill;
14344 		ira->ira_rill = rill;
14345 		return;
14346 	}
14347 	rq = connp->conn_rq;
14348 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14349 		CONN_DEC_REF(connp);
14350 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14351 		freemsg(mp);
14352 		return;
14353 	}
14354 	if (((iraflags & IRAF_IS_IPV4) ?
14355 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14356 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14357 	    secure) {
14358 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14359 		    ip6h, ira);
14360 		if (mp == NULL) {
14361 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14362 			/* Note that mp is NULL */
14363 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14364 			CONN_DEC_REF(connp);
14365 			return;
14366 		}
14367 	}
14368 
14369 	if (iraflags & IRAF_ICMP_ERROR) {
14370 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14371 	} else {
14372 		ill_t *rill = ira->ira_rill;
14373 
14374 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14375 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14376 		ira->ira_ill = ira->ira_rill = NULL;
14377 		(connp->conn_recv)(connp, mp, NULL, ira);
14378 		ira->ira_ill = ill;
14379 		ira->ira_rill = rill;
14380 	}
14381 	CONN_DEC_REF(connp);
14382 }
14383 
14384 /*
14385  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14386  * header before the ip payload.
14387  */
14388 static void
14389 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14390 {
14391 	int len = (mp->b_wptr - mp->b_rptr);
14392 	mblk_t *ip_mp;
14393 
14394 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14395 	if (is_fp_mp || len != fp_mp_len) {
14396 		if (len > fp_mp_len) {
14397 			/*
14398 			 * fastpath header and ip header in the first mblk
14399 			 */
14400 			mp->b_rptr += fp_mp_len;
14401 		} else {
14402 			/*
14403 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14404 			 * attach the fastpath header before ip header.
14405 			 */
14406 			ip_mp = mp->b_cont;
14407 			freeb(mp);
14408 			mp = ip_mp;
14409 			mp->b_rptr += (fp_mp_len - len);
14410 		}
14411 	} else {
14412 		ip_mp = mp->b_cont;
14413 		freeb(mp);
14414 		mp = ip_mp;
14415 	}
14416 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14417 	freemsg(mp);
14418 }
14419 
14420 /*
14421  * Normal post fragmentation function.
14422  *
14423  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14424  * using the same state machine.
14425  *
14426  * We return an error on failure. In particular we return EWOULDBLOCK
14427  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14428  * (currently by canputnext failure resulting in backenabling from GLD.)
14429  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14430  * indication that they can flow control until ip_wsrv() tells then to restart.
14431  *
14432  * If the nce passed by caller is incomplete, this function
14433  * queues the packet and if necessary, sends ARP request and bails.
14434  * If the Neighbor Cache passed is fully resolved, we simply prepend
14435  * the link-layer header to the packet, do ipsec hw acceleration
14436  * work if necessary, and send the packet out on the wire.
14437  */
14438 /* ARGSUSED6 */
14439 int
14440 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14441     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14442 {
14443 	queue_t		*wq;
14444 	ill_t		*ill = nce->nce_ill;
14445 	ip_stack_t	*ipst = ill->ill_ipst;
14446 	uint64_t	delta;
14447 	boolean_t	isv6 = ill->ill_isv6;
14448 	boolean_t	fp_mp;
14449 	ncec_t		*ncec = nce->nce_common;
14450 	int64_t		now = LBOLT_FASTPATH64;
14451 	boolean_t	is_probe;
14452 
14453 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14454 
14455 	ASSERT(mp != NULL);
14456 	ASSERT(mp->b_datap->db_type == M_DATA);
14457 	ASSERT(pkt_len == msgdsize(mp));
14458 
14459 	/*
14460 	 * If we have already been here and are coming back after ARP/ND.
14461 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14462 	 * in that case since they have seen the packet when it came here
14463 	 * the first time.
14464 	 */
14465 	if (ixaflags & IXAF_NO_TRACE)
14466 		goto sendit;
14467 
14468 	if (ixaflags & IXAF_IS_IPV4) {
14469 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14470 
14471 		ASSERT(!isv6);
14472 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14473 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14474 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14475 			int	error;
14476 
14477 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14478 			    ipst->ips_ipv4firewall_physical_out,
14479 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14480 			DTRACE_PROBE1(ip4__physical__out__end,
14481 			    mblk_t *, mp);
14482 			if (mp == NULL)
14483 				return (error);
14484 
14485 			/* The length could have changed */
14486 			pkt_len = msgdsize(mp);
14487 		}
14488 		if (ipst->ips_ip4_observe.he_interested) {
14489 			/*
14490 			 * Note that for TX the zoneid is the sending
14491 			 * zone, whether or not MLP is in play.
14492 			 * Since the szone argument is the IP zoneid (i.e.,
14493 			 * zero for exclusive-IP zones) and ipobs wants
14494 			 * the system zoneid, we map it here.
14495 			 */
14496 			szone = IP_REAL_ZONEID(szone, ipst);
14497 
14498 			/*
14499 			 * On the outbound path the destination zone will be
14500 			 * unknown as we're sending this packet out on the
14501 			 * wire.
14502 			 */
14503 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14504 			    ill, ipst);
14505 		}
14506 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14507 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14508 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14509 	} else {
14510 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14511 
14512 		ASSERT(isv6);
14513 		ASSERT(pkt_len ==
14514 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14515 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14516 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14517 			int	error;
14518 
14519 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14520 			    ipst->ips_ipv6firewall_physical_out,
14521 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14522 			DTRACE_PROBE1(ip6__physical__out__end,
14523 			    mblk_t *, mp);
14524 			if (mp == NULL)
14525 				return (error);
14526 
14527 			/* The length could have changed */
14528 			pkt_len = msgdsize(mp);
14529 		}
14530 		if (ipst->ips_ip6_observe.he_interested) {
14531 			/* See above */
14532 			szone = IP_REAL_ZONEID(szone, ipst);
14533 
14534 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14535 			    ill, ipst);
14536 		}
14537 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14538 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14539 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14540 	}
14541 
14542 sendit:
14543 	/*
14544 	 * We check the state without a lock because the state can never
14545 	 * move "backwards" to initial or incomplete.
14546 	 */
14547 	switch (ncec->ncec_state) {
14548 	case ND_REACHABLE:
14549 	case ND_STALE:
14550 	case ND_DELAY:
14551 	case ND_PROBE:
14552 		mp = ip_xmit_attach_llhdr(mp, nce);
14553 		if (mp == NULL) {
14554 			/*
14555 			 * ip_xmit_attach_llhdr has increased
14556 			 * ipIfStatsOutDiscards and called ip_drop_output()
14557 			 */
14558 			return (ENOBUFS);
14559 		}
14560 		/*
14561 		 * check if nce_fastpath completed and we tagged on a
14562 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14563 		 */
14564 		fp_mp = (mp->b_datap->db_type == M_DATA);
14565 
14566 		if (fp_mp &&
14567 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14568 			ill_dld_direct_t *idd;
14569 
14570 			idd = &ill->ill_dld_capab->idc_direct;
14571 			/*
14572 			 * Send the packet directly to DLD, where it
14573 			 * may be queued depending on the availability
14574 			 * of transmit resources at the media layer.
14575 			 * Return value should be taken into
14576 			 * account and flow control the TCP.
14577 			 */
14578 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14579 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14580 			    pkt_len);
14581 
14582 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14583 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14584 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14585 			} else {
14586 				uintptr_t cookie;
14587 
14588 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14589 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14590 					if (ixacookie != NULL)
14591 						*ixacookie = cookie;
14592 					return (EWOULDBLOCK);
14593 				}
14594 			}
14595 		} else {
14596 			wq = ill->ill_wq;
14597 
14598 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14599 			    !canputnext(wq)) {
14600 				if (ixacookie != NULL)
14601 					*ixacookie = 0;
14602 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14603 				    nce->nce_fp_mp != NULL ?
14604 				    MBLKL(nce->nce_fp_mp) : 0);
14605 				return (EWOULDBLOCK);
14606 			}
14607 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14608 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14609 			    pkt_len);
14610 			putnext(wq, mp);
14611 		}
14612 
14613 		/*
14614 		 * The rest of this function implements Neighbor Unreachability
14615 		 * detection. Determine if the ncec is eligible for NUD.
14616 		 */
14617 		if (ncec->ncec_flags & NCE_F_NONUD)
14618 			return (0);
14619 
14620 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14621 
14622 		/*
14623 		 * Check for upper layer advice
14624 		 */
14625 		if (ixaflags & IXAF_REACH_CONF) {
14626 			timeout_id_t tid;
14627 
14628 			/*
14629 			 * It should be o.k. to check the state without
14630 			 * a lock here, at most we lose an advice.
14631 			 */
14632 			ncec->ncec_last = TICK_TO_MSEC(now);
14633 			if (ncec->ncec_state != ND_REACHABLE) {
14634 				mutex_enter(&ncec->ncec_lock);
14635 				ncec->ncec_state = ND_REACHABLE;
14636 				tid = ncec->ncec_timeout_id;
14637 				ncec->ncec_timeout_id = 0;
14638 				mutex_exit(&ncec->ncec_lock);
14639 				(void) untimeout(tid);
14640 				if (ip_debug > 2) {
14641 					/* ip1dbg */
14642 					pr_addr_dbg("ip_xmit: state"
14643 					    " for %s changed to"
14644 					    " REACHABLE\n", AF_INET6,
14645 					    &ncec->ncec_addr);
14646 				}
14647 			}
14648 			return (0);
14649 		}
14650 
14651 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14652 		ip1dbg(("ip_xmit: delta = %" PRId64
14653 		    " ill_reachable_time = %d \n", delta,
14654 		    ill->ill_reachable_time));
14655 		if (delta > (uint64_t)ill->ill_reachable_time) {
14656 			mutex_enter(&ncec->ncec_lock);
14657 			switch (ncec->ncec_state) {
14658 			case ND_REACHABLE:
14659 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14660 				/* FALLTHROUGH */
14661 			case ND_STALE:
14662 				/*
14663 				 * ND_REACHABLE is identical to
14664 				 * ND_STALE in this specific case. If
14665 				 * reachable time has expired for this
14666 				 * neighbor (delta is greater than
14667 				 * reachable time), conceptually, the
14668 				 * neighbor cache is no longer in
14669 				 * REACHABLE state, but already in
14670 				 * STALE state.  So the correct
14671 				 * transition here is to ND_DELAY.
14672 				 */
14673 				ncec->ncec_state = ND_DELAY;
14674 				mutex_exit(&ncec->ncec_lock);
14675 				nce_restart_timer(ncec,
14676 				    ipst->ips_delay_first_probe_time);
14677 				if (ip_debug > 3) {
14678 					/* ip2dbg */
14679 					pr_addr_dbg("ip_xmit: state"
14680 					    " for %s changed to"
14681 					    " DELAY\n", AF_INET6,
14682 					    &ncec->ncec_addr);
14683 				}
14684 				break;
14685 			case ND_DELAY:
14686 			case ND_PROBE:
14687 				mutex_exit(&ncec->ncec_lock);
14688 				/* Timers have already started */
14689 				break;
14690 			case ND_UNREACHABLE:
14691 				/*
14692 				 * nce_timer has detected that this ncec
14693 				 * is unreachable and initiated deleting
14694 				 * this ncec.
14695 				 * This is a harmless race where we found the
14696 				 * ncec before it was deleted and have
14697 				 * just sent out a packet using this
14698 				 * unreachable ncec.
14699 				 */
14700 				mutex_exit(&ncec->ncec_lock);
14701 				break;
14702 			default:
14703 				ASSERT(0);
14704 				mutex_exit(&ncec->ncec_lock);
14705 			}
14706 		}
14707 		return (0);
14708 
14709 	case ND_INCOMPLETE:
14710 		/*
14711 		 * the state could have changed since we didn't hold the lock.
14712 		 * Re-verify state under lock.
14713 		 */
14714 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14715 		mutex_enter(&ncec->ncec_lock);
14716 		if (NCE_ISREACHABLE(ncec)) {
14717 			mutex_exit(&ncec->ncec_lock);
14718 			goto sendit;
14719 		}
14720 		/* queue the packet */
14721 		nce_queue_mp(ncec, mp, is_probe);
14722 		mutex_exit(&ncec->ncec_lock);
14723 		DTRACE_PROBE2(ip__xmit__incomplete,
14724 		    (ncec_t *), ncec, (mblk_t *), mp);
14725 		return (0);
14726 
14727 	case ND_INITIAL:
14728 		/*
14729 		 * State could have changed since we didn't hold the lock, so
14730 		 * re-verify state.
14731 		 */
14732 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14733 		mutex_enter(&ncec->ncec_lock);
14734 		if (NCE_ISREACHABLE(ncec))  {
14735 			mutex_exit(&ncec->ncec_lock);
14736 			goto sendit;
14737 		}
14738 		nce_queue_mp(ncec, mp, is_probe);
14739 		if (ncec->ncec_state == ND_INITIAL) {
14740 			ncec->ncec_state = ND_INCOMPLETE;
14741 			mutex_exit(&ncec->ncec_lock);
14742 			/*
14743 			 * figure out the source we want to use
14744 			 * and resolve it.
14745 			 */
14746 			ip_ndp_resolve(ncec);
14747 		} else  {
14748 			mutex_exit(&ncec->ncec_lock);
14749 		}
14750 		return (0);
14751 
14752 	case ND_UNREACHABLE:
14753 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14754 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14755 		    mp, ill);
14756 		freemsg(mp);
14757 		return (0);
14758 
14759 	default:
14760 		ASSERT(0);
14761 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14762 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14763 		    mp, ill);
14764 		freemsg(mp);
14765 		return (ENETUNREACH);
14766 	}
14767 }
14768 
14769 /*
14770  * Return B_TRUE if the buffers differ in length or content.
14771  * This is used for comparing extension header buffers.
14772  * Note that an extension header would be declared different
14773  * even if all that changed was the next header value in that header i.e.
14774  * what really changed is the next extension header.
14775  */
14776 boolean_t
14777 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14778     uint_t blen)
14779 {
14780 	if (!b_valid)
14781 		blen = 0;
14782 
14783 	if (alen != blen)
14784 		return (B_TRUE);
14785 	if (alen == 0)
14786 		return (B_FALSE);	/* Both zero length */
14787 	return (bcmp(abuf, bbuf, alen));
14788 }
14789 
14790 /*
14791  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14792  * Return B_FALSE if memory allocation fails - don't change any state!
14793  */
14794 boolean_t
14795 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14796     const void *src, uint_t srclen)
14797 {
14798 	void *dst;
14799 
14800 	if (!src_valid)
14801 		srclen = 0;
14802 
14803 	ASSERT(*dstlenp == 0);
14804 	if (src != NULL && srclen != 0) {
14805 		dst = mi_alloc(srclen, BPRI_MED);
14806 		if (dst == NULL)
14807 			return (B_FALSE);
14808 	} else {
14809 		dst = NULL;
14810 	}
14811 	if (*dstp != NULL)
14812 		mi_free(*dstp);
14813 	*dstp = dst;
14814 	*dstlenp = dst == NULL ? 0 : srclen;
14815 	return (B_TRUE);
14816 }
14817 
14818 /*
14819  * Replace what is in *dst, *dstlen with the source.
14820  * Assumes ip_allocbuf has already been called.
14821  */
14822 void
14823 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14824     const void *src, uint_t srclen)
14825 {
14826 	if (!src_valid)
14827 		srclen = 0;
14828 
14829 	ASSERT(*dstlenp == srclen);
14830 	if (src != NULL && srclen != 0)
14831 		bcopy(src, *dstp, srclen);
14832 }
14833 
14834 /*
14835  * Free the storage pointed to by the members of an ip_pkt_t.
14836  */
14837 void
14838 ip_pkt_free(ip_pkt_t *ipp)
14839 {
14840 	uint_t	fields = ipp->ipp_fields;
14841 
14842 	if (fields & IPPF_HOPOPTS) {
14843 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14844 		ipp->ipp_hopopts = NULL;
14845 		ipp->ipp_hopoptslen = 0;
14846 	}
14847 	if (fields & IPPF_RTHDRDSTOPTS) {
14848 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14849 		ipp->ipp_rthdrdstopts = NULL;
14850 		ipp->ipp_rthdrdstoptslen = 0;
14851 	}
14852 	if (fields & IPPF_DSTOPTS) {
14853 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14854 		ipp->ipp_dstopts = NULL;
14855 		ipp->ipp_dstoptslen = 0;
14856 	}
14857 	if (fields & IPPF_RTHDR) {
14858 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14859 		ipp->ipp_rthdr = NULL;
14860 		ipp->ipp_rthdrlen = 0;
14861 	}
14862 	if (fields & IPPF_IPV4_OPTIONS) {
14863 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14864 		ipp->ipp_ipv4_options = NULL;
14865 		ipp->ipp_ipv4_options_len = 0;
14866 	}
14867 	if (fields & IPPF_LABEL_V4) {
14868 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14869 		ipp->ipp_label_v4 = NULL;
14870 		ipp->ipp_label_len_v4 = 0;
14871 	}
14872 	if (fields & IPPF_LABEL_V6) {
14873 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14874 		ipp->ipp_label_v6 = NULL;
14875 		ipp->ipp_label_len_v6 = 0;
14876 	}
14877 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14878 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14879 }
14880 
14881 /*
14882  * Copy from src to dst and allocate as needed.
14883  * Returns zero or ENOMEM.
14884  *
14885  * The caller must initialize dst to zero.
14886  */
14887 int
14888 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14889 {
14890 	uint_t	fields = src->ipp_fields;
14891 
14892 	/* Start with fields that don't require memory allocation */
14893 	dst->ipp_fields = fields &
14894 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14895 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14896 
14897 	dst->ipp_addr = src->ipp_addr;
14898 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14899 	dst->ipp_hoplimit = src->ipp_hoplimit;
14900 	dst->ipp_tclass = src->ipp_tclass;
14901 	dst->ipp_type_of_service = src->ipp_type_of_service;
14902 
14903 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14904 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14905 		return (0);
14906 
14907 	if (fields & IPPF_HOPOPTS) {
14908 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14909 		if (dst->ipp_hopopts == NULL) {
14910 			ip_pkt_free(dst);
14911 			return (ENOMEM);
14912 		}
14913 		dst->ipp_fields |= IPPF_HOPOPTS;
14914 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14915 		    src->ipp_hopoptslen);
14916 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14917 	}
14918 	if (fields & IPPF_RTHDRDSTOPTS) {
14919 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14920 		    kmflag);
14921 		if (dst->ipp_rthdrdstopts == NULL) {
14922 			ip_pkt_free(dst);
14923 			return (ENOMEM);
14924 		}
14925 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14926 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14927 		    src->ipp_rthdrdstoptslen);
14928 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14929 	}
14930 	if (fields & IPPF_DSTOPTS) {
14931 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14932 		if (dst->ipp_dstopts == NULL) {
14933 			ip_pkt_free(dst);
14934 			return (ENOMEM);
14935 		}
14936 		dst->ipp_fields |= IPPF_DSTOPTS;
14937 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14938 		    src->ipp_dstoptslen);
14939 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14940 	}
14941 	if (fields & IPPF_RTHDR) {
14942 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14943 		if (dst->ipp_rthdr == NULL) {
14944 			ip_pkt_free(dst);
14945 			return (ENOMEM);
14946 		}
14947 		dst->ipp_fields |= IPPF_RTHDR;
14948 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14949 		    src->ipp_rthdrlen);
14950 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14951 	}
14952 	if (fields & IPPF_IPV4_OPTIONS) {
14953 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14954 		    kmflag);
14955 		if (dst->ipp_ipv4_options == NULL) {
14956 			ip_pkt_free(dst);
14957 			return (ENOMEM);
14958 		}
14959 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14960 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14961 		    src->ipp_ipv4_options_len);
14962 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14963 	}
14964 	if (fields & IPPF_LABEL_V4) {
14965 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14966 		if (dst->ipp_label_v4 == NULL) {
14967 			ip_pkt_free(dst);
14968 			return (ENOMEM);
14969 		}
14970 		dst->ipp_fields |= IPPF_LABEL_V4;
14971 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14972 		    src->ipp_label_len_v4);
14973 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14974 	}
14975 	if (fields & IPPF_LABEL_V6) {
14976 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14977 		if (dst->ipp_label_v6 == NULL) {
14978 			ip_pkt_free(dst);
14979 			return (ENOMEM);
14980 		}
14981 		dst->ipp_fields |= IPPF_LABEL_V6;
14982 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14983 		    src->ipp_label_len_v6);
14984 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14985 	}
14986 	if (fields & IPPF_FRAGHDR) {
14987 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14988 		if (dst->ipp_fraghdr == NULL) {
14989 			ip_pkt_free(dst);
14990 			return (ENOMEM);
14991 		}
14992 		dst->ipp_fields |= IPPF_FRAGHDR;
14993 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14994 		    src->ipp_fraghdrlen);
14995 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14996 	}
14997 	return (0);
14998 }
14999 
15000 /*
15001  * Returns INADDR_ANY if no source route
15002  */
15003 ipaddr_t
15004 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
15005 {
15006 	ipaddr_t	nexthop = INADDR_ANY;
15007 	ipoptp_t	opts;
15008 	uchar_t		*opt;
15009 	uint8_t		optval;
15010 	uint8_t		optlen;
15011 	uint32_t	totallen;
15012 
15013 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15014 		return (INADDR_ANY);
15015 
15016 	totallen = ipp->ipp_ipv4_options_len;
15017 	if (totallen & 0x3)
15018 		return (INADDR_ANY);
15019 
15020 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15021 	    optval != IPOPT_EOL;
15022 	    optval = ipoptp_next(&opts)) {
15023 		opt = opts.ipoptp_cur;
15024 		switch (optval) {
15025 			uint8_t off;
15026 		case IPOPT_SSRR:
15027 		case IPOPT_LSRR:
15028 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15029 				break;
15030 			}
15031 			optlen = opts.ipoptp_len;
15032 			off = opt[IPOPT_OFFSET];
15033 			off--;
15034 			if (optlen < IP_ADDR_LEN ||
15035 			    off > optlen - IP_ADDR_LEN) {
15036 				/* End of source route */
15037 				break;
15038 			}
15039 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15040 			if (nexthop == htonl(INADDR_LOOPBACK)) {
15041 				/* Ignore */
15042 				nexthop = INADDR_ANY;
15043 				break;
15044 			}
15045 			break;
15046 		}
15047 	}
15048 	return (nexthop);
15049 }
15050 
15051 /*
15052  * Reverse a source route.
15053  */
15054 void
15055 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15056 {
15057 	ipaddr_t	tmp;
15058 	ipoptp_t	opts;
15059 	uchar_t		*opt;
15060 	uint8_t		optval;
15061 	uint32_t	totallen;
15062 
15063 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15064 		return;
15065 
15066 	totallen = ipp->ipp_ipv4_options_len;
15067 	if (totallen & 0x3)
15068 		return;
15069 
15070 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15071 	    optval != IPOPT_EOL;
15072 	    optval = ipoptp_next(&opts)) {
15073 		uint8_t off1, off2;
15074 
15075 		opt = opts.ipoptp_cur;
15076 		switch (optval) {
15077 		case IPOPT_SSRR:
15078 		case IPOPT_LSRR:
15079 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15080 				break;
15081 			}
15082 			off1 = IPOPT_MINOFF_SR - 1;
15083 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15084 			while (off2 > off1) {
15085 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15086 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15087 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15088 				off2 -= IP_ADDR_LEN;
15089 				off1 += IP_ADDR_LEN;
15090 			}
15091 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15092 			break;
15093 		}
15094 	}
15095 }
15096 
15097 /*
15098  * Returns NULL if no routing header
15099  */
15100 in6_addr_t *
15101 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15102 {
15103 	in6_addr_t	*nexthop = NULL;
15104 	ip6_rthdr0_t	*rthdr;
15105 
15106 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15107 		return (NULL);
15108 
15109 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15110 	if (rthdr->ip6r0_segleft == 0)
15111 		return (NULL);
15112 
15113 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15114 	return (nexthop);
15115 }
15116 
15117 zoneid_t
15118 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15119     zoneid_t lookup_zoneid)
15120 {
15121 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15122 	ire_t		*ire;
15123 	int		ire_flags = MATCH_IRE_TYPE;
15124 	zoneid_t	zoneid = ALL_ZONES;
15125 
15126 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15127 		return (ALL_ZONES);
15128 
15129 	if (lookup_zoneid != ALL_ZONES)
15130 		ire_flags |= MATCH_IRE_ZONEONLY;
15131 	ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK,
15132 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15133 	if (ire != NULL) {
15134 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15135 		ire_refrele(ire);
15136 	}
15137 	return (zoneid);
15138 }
15139 
15140 zoneid_t
15141 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15142     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15143 {
15144 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15145 	ire_t		*ire;
15146 	int		ire_flags = MATCH_IRE_TYPE;
15147 	zoneid_t	zoneid = ALL_ZONES;
15148 
15149 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15150 		return (ALL_ZONES);
15151 
15152 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15153 		ire_flags |= MATCH_IRE_ILL;
15154 
15155 	if (lookup_zoneid != ALL_ZONES)
15156 		ire_flags |= MATCH_IRE_ZONEONLY;
15157 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15158 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15159 	if (ire != NULL) {
15160 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15161 		ire_refrele(ire);
15162 	}
15163 	return (zoneid);
15164 }
15165 
15166 /*
15167  * IP obserability hook support functions.
15168  */
15169 static void
15170 ipobs_init(ip_stack_t *ipst)
15171 {
15172 	netid_t id;
15173 
15174 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15175 
15176 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15177 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15178 
15179 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15180 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15181 }
15182 
15183 static void
15184 ipobs_fini(ip_stack_t *ipst)
15185 {
15186 
15187 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15188 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15189 }
15190 
15191 /*
15192  * hook_pkt_observe_t is composed in network byte order so that the
15193  * entire mblk_t chain handed into hook_run can be used as-is.
15194  * The caveat is that use of the fields, such as the zone fields,
15195  * requires conversion into host byte order first.
15196  */
15197 void
15198 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15199     const ill_t *ill, ip_stack_t *ipst)
15200 {
15201 	hook_pkt_observe_t *hdr;
15202 	uint64_t grifindex;
15203 	mblk_t *imp;
15204 
15205 	imp = allocb(sizeof (*hdr), BPRI_HI);
15206 	if (imp == NULL)
15207 		return;
15208 
15209 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15210 	/*
15211 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15212 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15213 	 */
15214 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15215 	imp->b_cont = mp;
15216 
15217 	ASSERT(DB_TYPE(mp) == M_DATA);
15218 
15219 	if (IS_UNDER_IPMP(ill))
15220 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15221 	else
15222 		grifindex = 0;
15223 
15224 	hdr->hpo_version = 1;
15225 	hdr->hpo_htype = htons(htype);
15226 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15227 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15228 	hdr->hpo_grifindex = htonl(grifindex);
15229 	hdr->hpo_zsrc = htonl(zsrc);
15230 	hdr->hpo_zdst = htonl(zdst);
15231 	hdr->hpo_pkt = imp;
15232 	hdr->hpo_ctx = ipst->ips_netstack;
15233 
15234 	if (ill->ill_isv6) {
15235 		hdr->hpo_family = AF_INET6;
15236 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15237 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15238 	} else {
15239 		hdr->hpo_family = AF_INET;
15240 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15241 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15242 	}
15243 
15244 	imp->b_cont = NULL;
15245 	freemsg(imp);
15246 }
15247 
15248 /*
15249  * Utility routine that checks if `v4srcp' is a valid address on underlying
15250  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15251  * associated with `v4srcp' on success.  NOTE: if this is not called from
15252  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15253  * group during or after this lookup.
15254  */
15255 boolean_t
15256 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15257 {
15258 	ipif_t *ipif;
15259 
15260 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15261 	if (ipif != NULL) {
15262 		if (ipifp != NULL)
15263 			*ipifp = ipif;
15264 		else
15265 			ipif_refrele(ipif);
15266 		return (B_TRUE);
15267 	}
15268 
15269 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15270 	    *v4srcp));
15271 	return (B_FALSE);
15272 }
15273 
15274 /*
15275  * Transport protocol call back function for CPU state change.
15276  */
15277 /* ARGSUSED */
15278 static int
15279 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15280 {
15281 	processorid_t cpu_seqid;
15282 	netstack_handle_t nh;
15283 	netstack_t *ns;
15284 
15285 	ASSERT(MUTEX_HELD(&cpu_lock));
15286 
15287 	switch (what) {
15288 	case CPU_CONFIG:
15289 	case CPU_ON:
15290 	case CPU_INIT:
15291 	case CPU_CPUPART_IN:
15292 		cpu_seqid = cpu[id]->cpu_seqid;
15293 		netstack_next_init(&nh);
15294 		while ((ns = netstack_next(&nh)) != NULL) {
15295 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15296 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15297 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15298 			netstack_rele(ns);
15299 		}
15300 		netstack_next_fini(&nh);
15301 		break;
15302 	case CPU_UNCONFIG:
15303 	case CPU_OFF:
15304 	case CPU_CPUPART_OUT:
15305 		/*
15306 		 * Nothing to do.  We don't remove the per CPU stats from
15307 		 * the IP stack even when the CPU goes offline.
15308 		 */
15309 		break;
15310 	default:
15311 		break;
15312 	}
15313 	return (0);
15314 }
15315