xref: /illumos-gate/usr/src/uts/common/inet/ip.h (revision c793af95640863cd29868fc7c419c5d2496b207b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #ifndef	_INET_IP_H
29 #define	_INET_IP_H
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #ifdef	__cplusplus
34 extern "C" {
35 #endif
36 
37 #include <sys/isa_defs.h>
38 #include <sys/types.h>
39 #include <inet/mib2.h>
40 #include <inet/nd.h>
41 #include <sys/atomic.h>
42 #include <sys/socket.h>
43 #include <net/if_dl.h>
44 #include <net/if.h>
45 #include <netinet/ip.h>
46 #include <sys/dlpi.h>
47 #include <netinet/igmp.h>
48 
49 #ifdef _KERNEL
50 #include <netinet/ip6.h>
51 #include <sys/avl.h>
52 #include <sys/vmem.h>
53 #include <sys/squeue.h>
54 #include <net/route.h>
55 #include <sys/systm.h>
56 #include <sys/multidata.h>
57 #include <net/radix.h>
58 
59 #ifdef DEBUG
60 #define	ILL_DEBUG
61 #define	IRE_DEBUG
62 #define	NCE_DEBUG
63 #define	CONN_DEBUG
64 #endif
65 
66 #define	IP_DEBUG
67 /*
68  * The mt-streams(9F) flags for the IP module; put here so that other
69  * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
70  * of flags.
71  */
72 #define	IP_DEVMTFLAGS D_MP
73 #endif	/* _KERNEL */
74 
75 #define	IP_MOD_NAME	"ip"
76 #define	IP_DEV_NAME	"/dev/ip"
77 #define	IP6_DEV_NAME	"/dev/ip6"
78 
79 #define	UDP_MOD_NAME	"udp"
80 #define	UDP_DEV_NAME	"/dev/udp"
81 #define	UDP6_DEV_NAME	"/dev/udp6"
82 
83 #define	TCP_MOD_NAME	"tcp"
84 #define	TCP_DEV_NAME	"/dev/tcp"
85 #define	TCP6_DEV_NAME	"/dev/tcp6"
86 
87 #define	SCTP_MOD_NAME	"sctp"
88 
89 /* Minor numbers */
90 #define	IPV4_MINOR	0
91 #define	IPV6_MINOR	1
92 #define	TCP_MINOR	2
93 #define	TCP_MINOR6	3
94 
95 #ifndef	_IPADDR_T
96 #define	_IPADDR_T
97 typedef uint32_t ipaddr_t;
98 #endif
99 
100 /* Number of bits in an address */
101 #define	IP_ABITS		32
102 #define	IPV6_ABITS		128
103 
104 #define	IP_HOST_MASK		(ipaddr_t)0xffffffffU
105 
106 #define	IP_CSUM(mp, off, sum)		(~ip_cksum(mp, off, sum) & 0xFFFF)
107 #define	IP_CSUM_PARTIAL(mp, off, sum)	ip_cksum(mp, off, sum)
108 #define	IP_BCSUM_PARTIAL(bp, len, sum)	bcksum(bp, len, sum)
109 #define	IP_MD_CSUM(pd, off, sum)	(~ip_md_cksum(pd, off, sum) & 0xffff)
110 #define	IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum)
111 
112 /*
113  * Flag to IP write side to indicate that the appln has sent in a pre-built
114  * IP header. Stored in ipha_ident (which is otherwise zero).
115  */
116 #define	IP_HDR_INCLUDED			0xFFFF
117 
118 #define	ILL_FRAG_HASH_TBL_COUNT	((unsigned int)64)
119 #define	ILL_FRAG_HASH_TBL_SIZE	(ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))
120 
121 #define	IPV4_ADDR_LEN			4
122 #define	IP_ADDR_LEN			IPV4_ADDR_LEN
123 #define	IP_ARP_PROTO_TYPE		0x0800
124 
125 #define	IPV4_VERSION			4
126 #define	IP_VERSION			IPV4_VERSION
127 #define	IP_SIMPLE_HDR_LENGTH_IN_WORDS	5
128 #define	IP_SIMPLE_HDR_LENGTH		20
129 #define	IP_MAX_HDR_LENGTH		60
130 
131 #define	IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)
132 
133 #define	IP_MIN_MTU			(IP_MAX_HDR_LENGTH + 8)	/* 68 bytes */
134 
135 /*
136  * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the
137  * 2 files should be cleaned up to remove all redundant definitions.
138  */
139 #define	IP_MAXPACKET			65535
140 #define	IP_SIMPLE_HDR_VERSION \
141 	((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)
142 
143 #define	UDPH_SIZE			8
144 
145 /* Leave room for ip_newroute to tack on the src and target addresses */
146 #define	OK_RESOLVER_MP(mp)						\
147 	((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN))
148 
149 /*
150  * Constants and type definitions to support IP IOCTL commands
151  */
152 #define	IP_IOCTL			(('i'<<8)|'p')
153 #define	IP_IOC_IRE_DELETE		4
154 #define	IP_IOC_IRE_DELETE_NO_REPLY	5
155 #define	IP_IOC_IRE_ADVISE_NO_REPLY	6
156 #define	IP_IOC_RTS_REQUEST		7
157 
158 /* Common definitions used by IP IOCTL data structures */
159 typedef struct ipllcmd_s {
160 	uint_t	ipllc_cmd;
161 	uint_t	ipllc_name_offset;
162 	uint_t	ipllc_name_length;
163 } ipllc_t;
164 
165 /* IP IRE Change Command Structure. */
166 typedef struct ipic_s {
167 	ipllc_t	ipic_ipllc;
168 	uint_t	ipic_ire_type;
169 	uint_t	ipic_max_frag;
170 	uint_t	ipic_addr_offset;
171 	uint_t	ipic_addr_length;
172 	uint_t	ipic_mask_offset;
173 	uint_t	ipic_mask_length;
174 	uint_t	ipic_src_addr_offset;
175 	uint_t	ipic_src_addr_length;
176 	uint_t	ipic_ll_hdr_offset;
177 	uint_t	ipic_ll_hdr_length;
178 	uint_t	ipic_gateway_addr_offset;
179 	uint_t	ipic_gateway_addr_length;
180 	clock_t	ipic_rtt;
181 	uint32_t ipic_ssthresh;
182 	clock_t	ipic_rtt_sd;
183 	uchar_t ipic_ire_marks;
184 } ipic_t;
185 
186 #define	ipic_cmd		ipic_ipllc.ipllc_cmd
187 #define	ipic_ll_name_length	ipic_ipllc.ipllc_name_length
188 #define	ipic_ll_name_offset	ipic_ipllc.ipllc_name_offset
189 
190 /* IP IRE Delete Command Structure. */
191 typedef struct ipid_s {
192 	ipllc_t	ipid_ipllc;
193 	uint_t	ipid_ire_type;
194 	uint_t	ipid_addr_offset;
195 	uint_t	ipid_addr_length;
196 	uint_t	ipid_mask_offset;
197 	uint_t	ipid_mask_length;
198 } ipid_t;
199 
200 #define	ipid_cmd		ipid_ipllc.ipllc_cmd
201 
202 #ifdef _KERNEL
203 /*
204  * Temporary state for ip options parser.
205  */
206 typedef struct ipoptp_s
207 {
208 	uint8_t		*ipoptp_next;	/* next option to look at */
209 	uint8_t		*ipoptp_end;	/* end of options */
210 	uint8_t		*ipoptp_cur;	/* start of current option */
211 	uint8_t		ipoptp_len;	/* length of current option */
212 	uint32_t	ipoptp_flags;
213 } ipoptp_t;
214 
215 /*
216  * Flag(s) for ipoptp_flags
217  */
218 #define	IPOPTP_ERROR	0x00000001
219 #endif	/* _KERNEL */
220 
221 
222 /* Controls forwarding of IP packets, set via ndd */
223 #define	IP_FORWARD_NEVER	0
224 #define	IP_FORWARD_ALWAYS	1
225 
226 #define	WE_ARE_FORWARDING	(ip_g_forward == IP_FORWARD_ALWAYS)
227 
228 #define	IPH_HDR_LENGTH(ipha)						\
229 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)
230 
231 #define	IPH_HDR_VERSION(ipha)						\
232 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
233 
234 #ifdef _KERNEL
235 /*
236  * IP reassembly macros.  We hide starting and ending offsets in b_next and
237  * b_prev of messages on the reassembly queue.	The messages are chained using
238  * b_cont.  These macros are used in ip_reassemble() so we don't have to see
239  * the ugly casts and assignments.
240  * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
241  * them.
242  */
243 #define	IP_REASS_START(mp)		((uint_t)(uintptr_t)((mp)->b_next))
244 #define	IP_REASS_SET_START(mp, u)	\
245 	((mp)->b_next = (mblk_t *)(uintptr_t)(u))
246 #define	IP_REASS_END(mp)		((uint_t)(uintptr_t)((mp)->b_prev))
247 #define	IP_REASS_SET_END(mp, u)		\
248 	((mp)->b_prev = (mblk_t *)(uintptr_t)(u))
249 
250 #define	IP_REASS_COMPLETE	0x1
251 #define	IP_REASS_PARTIAL	0x2
252 #define	IP_REASS_FAILED		0x4
253 
254 /*
255  * Test to determine whether this is a module instance of IP or a
256  * driver instance of IP.
257  */
258 #define	CONN_Q(q)	(WR(q)->q_next == NULL)
259 
260 #define	Q_TO_CONN(q)	((conn_t *)(q)->q_ptr)
261 #define	Q_TO_TCP(q)	(Q_TO_CONN((q))->conn_tcp)
262 #define	Q_TO_UDP(q)	(Q_TO_CONN((q))->conn_udp)
263 
264 /*
265  * The following two macros are used by IP to get the appropriate
266  * wq and rq for a conn. If it is a TCP conn, then we need
267  * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq
268  * from a conn directly if it knows that the conn is not TCP.
269  */
270 #define	CONNP_TO_WQ(connp)	\
271 	(IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq)
272 
273 #define	CONNP_TO_RQ(connp)	RD(CONNP_TO_WQ(connp))
274 
275 #define	GRAB_CONN_LOCK(q)	{				\
276 	if (q != NULL && CONN_Q(q))				\
277 		mutex_enter(&(Q_TO_CONN(q))->conn_lock);	\
278 }
279 
280 #define	RELEASE_CONN_LOCK(q)	{				\
281 	if (q != NULL && CONN_Q(q))				\
282 		mutex_exit(&(Q_TO_CONN(q))->conn_lock);		\
283 }
284 
285 /* "Congestion controlled" protocol */
286 #define	IP_FLOW_CONTROLLED_ULP(p)   ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP)
287 
288 /*
289  * Complete the pending operation. Usually an ioctl. Can also
290  * be a bind or option management request that got enqueued
291  * in an ipsq_t. Called on completion of the operation.
292  */
293 #define	CONN_OPER_PENDING_DONE(connp)	{			\
294 	mutex_enter(&(connp)->conn_lock);			\
295 	(connp)->conn_oper_pending_ill = NULL;			\
296 	cv_broadcast(&(connp)->conn_refcv);			\
297 	mutex_exit(&(connp)->conn_lock);			\
298 	CONN_DEC_REF(connp);					\
299 }
300 
301 /* Get the credential of an IP queue of unknown type */
302 #define	GET_QUEUE_CRED(wq)						\
303 	((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \
304 	    : ((Q_TO_CONN((wq)))->conn_cred))
305 
306 /*
307  * Flags for the various ip_fanout_* routines.
308  */
309 #define	IP_FF_SEND_ICMP		0x01	/* Send an ICMP error */
310 #define	IP_FF_HDR_COMPLETE	0x02	/* Call ip_hdr_complete if error */
311 #define	IP_FF_CKSUM		0x04	/* Recompute ipha_cksum if error */
312 #define	IP_FF_RAWIP		0x08	/* Use rawip mib variable */
313 #define	IP_FF_SRC_QUENCH	0x10	/* OK to send ICMP_SOURCE_QUENCH */
314 #define	IP_FF_SYN_ADDIRE	0x20	/* Add IRE if TCP syn packet */
315 #define	IP_FF_IP6INFO		0x80	/* Add ip6i_t if needed */
316 #define	IP_FF_SEND_SLLA		0x100	/* Send source link layer info ? */
317 #define	IPV6_REACHABILITY_CONFIRMATION	0x200	/* Flags for ip_xmit_v6 */
318 #define	IP_FF_NO_MCAST_LOOP	0x400	/* No multicasts for sending zone */
319 
320 /*
321  * Following flags are used by IPQoS to determine if policy processing is
322  * required.
323  */
324 #define	IP6_NO_IPPOLICY		0x800	/* Don't do IPQoS processing */
325 #define	IP6_IN_LLMCAST		0x1000	/* Multicast */
326 
327 #define	IP_FF_LOOPBACK		0x2000	/* Loopback fanout */
328 
329 #ifndef	IRE_DB_TYPE
330 #define	IRE_DB_TYPE	M_SIG
331 #endif
332 
333 #ifndef	IRE_DB_REQ_TYPE
334 #define	IRE_DB_REQ_TYPE	M_PCSIG
335 #endif
336 
337 #ifndef	IRE_ARPRESOLVE_TYPE
338 #define	IRE_ARPRESOLVE_TYPE	M_EVENT
339 #endif
340 
341 /*
342  * Values for squeue switch:
343  */
344 
345 #define	IP_SQUEUE_ENTER_NODRAIN	1
346 #define	IP_SQUEUE_ENTER	2
347 /*
348  * This is part of the interface between Transport provider and
349  * IP which can be used to set policy information. This is usually
350  * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that
351  * only IPSEC_POLICY_SET is there when it is found in the chain.
352  * The information contained is an struct ipsec_req_t. On success
353  * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned.
354  * IPSEC_POLICY_SET is never returned.
355  */
356 #define	IPSEC_POLICY_SET	M_SETOPTS
357 
358 #define	IRE_IS_LOCAL(ire)	((ire != NULL) && \
359 				((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
360 
361 #define	IRE_IS_TARGET(ire)	((ire != NULL) && \
362 				((ire)->ire_type != IRE_BROADCAST))
363 
364 /* IP Fragmentation Reassembly Header */
365 typedef struct ipf_s {
366 	struct ipf_s	*ipf_hash_next;
367 	struct ipf_s	**ipf_ptphn;	/* Pointer to previous hash next. */
368 	uint32_t	ipf_ident;	/* Ident to match. */
369 	uint8_t		ipf_protocol;	/* Protocol to match. */
370 	uchar_t		ipf_last_frag_seen : 1;	/* Last fragment seen ? */
371 	time_t		ipf_timestamp;	/* Reassembly start time. */
372 	mblk_t		*ipf_mp;	/* mblk we live in. */
373 	mblk_t		*ipf_tail_mp;	/* Frag queue tail pointer. */
374 	int		ipf_hole_cnt;	/* Number of holes (hard-case). */
375 	int		ipf_end;	/* Tail end offset (0 -> hard-case). */
376 	uint_t		ipf_gen;	/* Frag queue generation */
377 	size_t		ipf_count;	/* Count of bytes used by frag */
378 	uint_t		ipf_nf_hdr_len; /* Length of nonfragmented header */
379 	in6_addr_t	ipf_v6src;	/* IPv6 source address */
380 	in6_addr_t	ipf_v6dst;	/* IPv6 dest address */
381 	uint_t		ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
382 	uint8_t		ipf_ecn;	/* ECN info for the fragments */
383 	uint8_t		ipf_num_dups;	/* Number of times dup frags recvd */
384 	uint16_t	ipf_checksum_flags; /* Hardware checksum flags */
385 	uint32_t	ipf_checksum;	/* Partial checksum of fragment data */
386 } ipf_t;
387 
388 #define	ipf_src	V4_PART_OF_V6(ipf_v6src)
389 #define	ipf_dst	V4_PART_OF_V6(ipf_v6dst)
390 
391 typedef enum {
392 	IB_PKT =  0x01,
393 	OB_PKT = 0x02
394 } ip_pkt_t;
395 
396 #define	UPDATE_IB_PKT_COUNT(ire)\
397 	{ \
398 	(ire)->ire_ib_pkt_count++; \
399 	if ((ire)->ire_ipif != NULL) { \
400 		/* \
401 		 * forwarding packet \
402 		 */ \
403 		if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \
404 			atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\
405 		else \
406 			atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\
407 	} \
408 	}
409 #define	UPDATE_OB_PKT_COUNT(ire)\
410 	{ \
411 	(ire)->ire_ob_pkt_count++;\
412 	if ((ire)->ire_ipif != NULL) { \
413 		atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \
414 	} \
415 	}
416 
417 
418 #define	IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \
419 { \
420 	switch (ipha->ipha_protocol) { \
421 		case IPPROTO_UDP: \
422 			ip_udp_input(q, mp, ipha, ire, recv_ill); \
423 			break; \
424 		default: \
425 			ip_proto_input(q, mp, ipha, ire, recv_ill); \
426 			break; \
427 	} \
428 }
429 
430 /*
431  * NCE_EXPIRED is TRUE when we have a non-permanent nce that was
432  * found to be REACHABLE more than ip_ire_arp_interval ms ago.
433  * This macro is used to trigger re-arp of existing nce_t entries
434  * so that they can be updated with the latest information.
435  * nce's will get cleaned up (or updated with new info) in the following
436  * circumstances:
437  * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim
438  *    when memory is low,
439  * - ip_arp_news, when updates are received.
440  * - if the nce is NCE_EXPIRED(), it will be re-initialized to ND_INITIAL,
441  *   so that a new arp request will be triggered.
442  * nce_last is the timestamp that indicates when the nce_res_mp in the
443  * nce_t was last updated to a valid link-layer address.  nce_last gets
444  * modified/updated :
445  *  - when the nce is created  or reinit-ed
446  *  - every time we get a sane arp response for the nce.
447  */
448 #define	NCE_EXPIRED(nce)	(nce->nce_last > 0 && \
449 	((nce->nce_flags & NCE_F_PERMANENT) == 0) && \
450 	((TICK_TO_MSEC(lbolt64) - nce->nce_last) > ip_ire_arp_interval))
451 
452 #endif /* _KERNEL */
453 
454 /* ICMP types */
455 #define	ICMP_ECHO_REPLY			0
456 #define	ICMP_DEST_UNREACHABLE		3
457 #define	ICMP_SOURCE_QUENCH		4
458 #define	ICMP_REDIRECT			5
459 #define	ICMP_ECHO_REQUEST		8
460 #define	ICMP_ROUTER_ADVERTISEMENT	9
461 #define	ICMP_ROUTER_SOLICITATION	10
462 #define	ICMP_TIME_EXCEEDED		11
463 #define	ICMP_PARAM_PROBLEM		12
464 #define	ICMP_TIME_STAMP_REQUEST		13
465 #define	ICMP_TIME_STAMP_REPLY		14
466 #define	ICMP_INFO_REQUEST		15
467 #define	ICMP_INFO_REPLY			16
468 #define	ICMP_ADDRESS_MASK_REQUEST	17
469 #define	ICMP_ADDRESS_MASK_REPLY		18
470 
471 /* ICMP_TIME_EXCEEDED codes */
472 #define	ICMP_TTL_EXCEEDED		0
473 #define	ICMP_REASSEMBLY_TIME_EXCEEDED	1
474 
475 /* ICMP_DEST_UNREACHABLE codes */
476 #define	ICMP_NET_UNREACHABLE		0
477 #define	ICMP_HOST_UNREACHABLE		1
478 #define	ICMP_PROTOCOL_UNREACHABLE	2
479 #define	ICMP_PORT_UNREACHABLE		3
480 #define	ICMP_FRAGMENTATION_NEEDED	4
481 #define	ICMP_SOURCE_ROUTE_FAILED	5
482 #define	ICMP_DEST_NET_UNKNOWN		6
483 #define	ICMP_DEST_HOST_UNKNOWN		7
484 #define	ICMP_SRC_HOST_ISOLATED		8
485 #define	ICMP_DEST_NET_UNREACH_ADMIN	9
486 #define	ICMP_DEST_HOST_UNREACH_ADMIN	10
487 #define	ICMP_DEST_NET_UNREACH_TOS	11
488 #define	ICMP_DEST_HOST_UNREACH_TOS	12
489 
490 /* ICMP Header Structure */
491 typedef struct icmph_s {
492 	uint8_t		icmph_type;
493 	uint8_t		icmph_code;
494 	uint16_t	icmph_checksum;
495 	union {
496 		struct { /* ECHO request/response structure */
497 			uint16_t	u_echo_ident;
498 			uint16_t	u_echo_seqnum;
499 		} u_echo;
500 		struct { /* Destination unreachable structure */
501 			uint16_t	u_du_zero;
502 			uint16_t	u_du_mtu;
503 		} u_du;
504 		struct { /* Parameter problem structure */
505 			uint8_t		u_pp_ptr;
506 			uint8_t		u_pp_rsvd[3];
507 		} u_pp;
508 		struct { /* Redirect structure */
509 			ipaddr_t	u_rd_gateway;
510 		} u_rd;
511 	} icmph_u;
512 } icmph_t;
513 
514 #define	icmph_echo_ident	icmph_u.u_echo.u_echo_ident
515 #define	icmph_echo_seqnum	icmph_u.u_echo.u_echo_seqnum
516 #define	icmph_du_zero		icmph_u.u_du.u_du_zero
517 #define	icmph_du_mtu		icmph_u.u_du.u_du_mtu
518 #define	icmph_pp_ptr		icmph_u.u_pp.u_pp_ptr
519 #define	icmph_rd_gateway	icmph_u.u_rd.u_rd_gateway
520 
521 #define	ICMPH_SIZE	8
522 
523 /*
524  * Minimum length of transport layer header included in an ICMP error
525  * message for it to be considered valid.
526  */
527 #define	ICMP_MIN_TP_HDR_LEN	8
528 
529 /* Aligned IP header */
530 typedef struct ipha_s {
531 	uint8_t		ipha_version_and_hdr_length;
532 	uint8_t		ipha_type_of_service;
533 	uint16_t	ipha_length;
534 	uint16_t	ipha_ident;
535 	uint16_t	ipha_fragment_offset_and_flags;
536 	uint8_t		ipha_ttl;
537 	uint8_t		ipha_protocol;
538 	uint16_t	ipha_hdr_checksum;
539 	ipaddr_t	ipha_src;
540 	ipaddr_t	ipha_dst;
541 } ipha_t;
542 
543 #define	IPH_DF		0x4000	/* Don't fragment */
544 #define	IPH_MF		0x2000	/* More fragments to come */
545 #define	IPH_OFFSET	0x1FFF	/* Where the offset lives */
546 #define	IPH_FRAG_HDR	0x8000	/* IPv6 don't fragment bit */
547 
548 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
549 #define	IPH_ECN_NECT	0x0	/* Not ECN-Capabable Transport */
550 #define	IPH_ECN_ECT1	0x1	/* ECN-Capable Transport, ECT(1) */
551 #define	IPH_ECN_ECT0	0x2	/* ECN-Capable Transport, ECT(0) */
552 #define	IPH_ECN_CE	0x3	/* ECN-Congestion Experienced (CE) */
553 
554 /* IP Mac info structure */
555 typedef struct ip_m_s {
556 	t_uscalar_t	ip_m_mac_type;	/* From <sys/dlpi.h> */
557 	int		ip_m_type;	/* From <net/if_types.h> */
558 	boolean_t	(*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *,
559 			    uint32_t *, ipaddr_t *);
560 	boolean_t	(*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *,
561 			    uint32_t *, in6_addr_t *);
562 	boolean_t	(*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *);
563 } ip_m_t;
564 
565 /*
566  * The following functions attempt to reduce the link layer dependency
567  * of the IP stack. The current set of link specific operations are:
568  * a. map from IPv4 class D (224.0/4) multicast address range to the link
569  * layer multicast address range.
570  * b. map from IPv6 multicast address range (ff00::/8) to the link
571  * layer multicast address range.
572  * c. derive the default IPv6 interface identifier from the link layer
573  * address.
574  */
575 #define	MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \
576 	(((ip_m)->ip_m_v4mapinfo != NULL) && \
577 	(*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr))
578 #define	MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \
579 	(((ip_m)->ip_m_v6intfid != NULL) && \
580 	(*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr))
581 #define	MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \
582 	(((ip_m)->ip_m_v6mapinfo != NULL) && \
583 	(*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr))
584 
585 /* Router entry types */
586 #define	IRE_BROADCAST		0x0001	/* Route entry for broadcast address */
587 #define	IRE_DEFAULT		0x0002	/* Route entry for default gateway */
588 #define	IRE_LOCAL		0x0004	/* Route entry for local address */
589 #define	IRE_LOOPBACK		0x0008	/* Route entry for loopback address */
590 #define	IRE_PREFIX		0x0010	/* Route entry for prefix routes */
591 #define	IRE_CACHE		0x0020	/* Cached Route entry */
592 #define	IRE_IF_NORESOLVER	0x0040	/* Route entry for local interface */
593 					/* net without any address mapping. */
594 #define	IRE_IF_RESOLVER		0x0080	/* Route entry for local interface */
595 					/* net with resolver. */
596 #define	IRE_HOST		0x0100	/* Host route entry */
597 #define	IRE_HOST_REDIRECT	0x0200	/* Host route entry from redirects */
598 
599 /*
600  * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table.
601  * This ire_type must not be set for ftable and ctable routing entries.
602  */
603 #define	IRE_MIPRTUN		0x0400	/* Reverse tunnel route entry */
604 
605 #define	IRE_INTERFACE		(IRE_IF_NORESOLVER | IRE_IF_RESOLVER)
606 #define	IRE_OFFSUBNET		(IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \
607 				IRE_HOST_REDIRECT)
608 #define	IRE_CACHETABLE		(IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \
609 				IRE_LOOPBACK)
610 #define	IRE_FORWARDTABLE	(IRE_INTERFACE | IRE_OFFSUBNET)
611 
612 /*
613  * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of
614  * the bucket should delete this IRE from this bucket.
615  */
616 #define	IRE_MARK_CONDEMNED	0x0001
617 /*
618  * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the
619  * broadcast packets received on that interface. This is marked only
620  * on broadcast ires. Employed by IPMP, where we have multiple NICs on the
621  * same subnet receiving the same broadcast packet.
622  */
623 #define	IRE_MARK_NORECV		0x0002
624 /*
625  * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need
626  * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP.
627  */
628 #define	IRE_MARK_HIDDEN		0x0004	/* Typically Used by in.mpathd */
629 
630 /*
631  * ire with IRE_MARK_NOADD is  created in ip_newroute_ipif, when outgoing
632  * interface is specified by IP_XMIT_IF socket option. This ire is not
633  * added in IRE_CACHE.  For example, this is used by mipagent to prevent
634  * any entry to be added in the cache table. We do not want to add any
635  * entry for a mobile-node in the routing table for foreign agent originated
636  * packets. Adding routes in cache table in this case, may run the risks of
637  * incorrect routing path in case of private overlapping addresses.
638  */
639 #define	IRE_MARK_NOADD		0x0008	/* Mark not to add ire in cache */
640 
641 /*
642  * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used
643  * either for forwarding a packet or has not been used for sending
644  * traffic on TCP connections terminated on this system.  In both
645  * cases, this IRE is the first to go when IRE is being cleaned up.
646  */
647 #define	IRE_MARK_TEMPORARY	0x0010
648 
649 /*
650  * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with
651  * this mark, additional atomic checks need to be performed. For eg: by the
652  * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the
653  * usesrc grouping could have changed in which case we want to fail adding
654  * the IRE_CACHE entry
655  */
656 #define	IRE_MARK_USESRC_CHECK	0x0020
657 
658 /*
659  * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the
660  * routing table lookup for the destination is bypassed and the packet is
661  * sent directly to the specified nexthop. The associated IRE_CACHE entries
662  * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up
663  * in regular ire cache lookups.
664  */
665 #define	IRE_MARK_PRIVATE_ADDR	0x0040
666 
667 /*
668  * When we send an ARP resolution query for the nexthop gateway's ire,
669  * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk
670  * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag
671  * indicates that information from ARP has not been transferred to a
672  * permanent IRE_CACHE entry. The flag is reset only when the
673  * information is successfully transferred to an ire_cache entry (in
674  * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior
675  * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will
676  * require that the resources (incomplete ire_cache and/or nce) must
677  * be cleaned up. The free callback routine (ire_freemblk()) checks
678  * for IRE_MARK_UNCACHED to see if any resources that are pinned down
679  * will need to be cleaned up or not.
680  */
681 
682 #define	IRE_MARK_UNCACHED	0x0080
683 
684 /* Flags with ire_expire routine */
685 #define	FLUSH_ARP_TIME		0x0001	/* ARP info potentially stale timer */
686 #define	FLUSH_REDIRECT_TIME	0x0002	/* Redirects potentially stale */
687 #define	FLUSH_MTU_TIME		0x0004	/* Include path MTU per RFC 1191 */
688 
689 /* Arguments to ire_flush_cache() */
690 #define	IRE_FLUSH_DELETE	0
691 #define	IRE_FLUSH_ADD		1
692 
693 /*
694  * Open/close synchronization flags.
695  * These are kept in a separate field in the conn and the synchronization
696  * depends on the atomic 32 bit access to that field.
697  */
698 #define	CONN_CLOSING		0x01	/* ip_close waiting for ip_wsrv */
699 #define	CONN_IPSEC_LOAD_WAIT	0x02	/* waiting for load */
700 #define	CONN_CONDEMNED		0x04	/* conn is closing, no more refs */
701 #define	CONN_INCIPIENT		0x08	/* conn not yet visible, no refs */
702 #define	CONN_QUIESCED		0x10	/* conn is now quiescent */
703 
704 /*
705  * Parameter to ip_output giving the identity of the caller.
706  * IP_WSRV means the packet was enqueued in the STREAMS queue
707  * due to flow control and is now being reprocessed in the context of
708  * the STREAMS service procedure, consequent to flow control relief.
709  * IRE_SEND means the packet is being reprocessed consequent to an
710  * ire cache creation and addition and this may or may not be happening
711  * in the service procedure context. Anything other than the above 2
712  * cases is identified as IP_WPUT. Most commonly this is the case of
713  * packets coming down from the application.
714  */
715 #ifdef _KERNEL
716 #define	IP_WSRV			1	/* Called from ip_wsrv */
717 #define	IP_WPUT			2	/* Called from ip_wput */
718 #define	IRE_SEND		3	/* Called from ire_send */
719 
720 /*
721  * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
722  */
723 #define	MAX_FILTER_SIZE	64
724 
725 typedef struct slist_s {
726 	int		sl_numsrc;
727 	in6_addr_t	sl_addr[MAX_FILTER_SIZE];
728 } slist_t;
729 
730 /*
731  * Following struct is used to maintain retransmission state for
732  * a multicast group.  One rtx_state_t struct is an in-line field
733  * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
734  * alloc'd as needed.
735  */
736 typedef struct rtx_state_s {
737 	uint_t		rtx_timer;	/* retrans timer */
738 	int		rtx_cnt;	/* retrans count */
739 	int		rtx_fmode_cnt;	/* retrans count for fmode change */
740 	slist_t		*rtx_allow;
741 	slist_t		*rtx_block;
742 } rtx_state_t;
743 
744 /*
745  * Used to construct list of multicast address records that will be
746  * sent in a single listener report.
747  */
748 typedef struct mrec_s {
749 	struct mrec_s	*mrec_next;
750 	uint8_t		mrec_type;
751 	uint8_t		mrec_auxlen;	/* currently unused */
752 	in6_addr_t	mrec_group;
753 	slist_t		mrec_srcs;
754 } mrec_t;
755 
756 /* Group membership list per upper conn */
757 /*
758  * XXX add ilg info for ifaddr/ifindex.
759  * XXX can we make ilg survive an ifconfig unplumb + plumb
760  * by setting the ipif/ill to NULL and recover that later?
761  *
762  * ilg_ipif is used by IPv4 as multicast groups are joined using an interface
763  * address (ipif).
764  * ilg_ill is used by IPv6 as multicast groups are joined using an interface
765  * index (phyint->phyint_ifindex).
766  * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6.
767  *
768  * ilg records the state of multicast memberships of a socket end point.
769  * ilm records the state of multicast memberships with the driver and is
770  * maintained per interface.
771  *
772  * Notes :
773  *
774  * 1) There is no direct link between a given ilg and ilm. If the
775  *    application has joined a group G with ifindex I, we will have
776  *    an ilg with ilg_v6group and ilg_ill. There will be a corresponding
777  *    ilm with ilm_ill/ilm_v6addr recording the multicast membership.
778  *    To delete the membership,
779  *
780  *		a) Search for ilg matching on G and I with ilg_v6group
781  *		   and ilg_ill. Delete ilg_ill.
782  *		b) Search the corresponding ilm matching on G and I with
783  *		   ilm_v6addr and ilm_ill. Delete ilm.
784  *
785  *    In IPv4, the only difference is, we look using ipifs instead of
786  *    ills.
787  *
788  * 2) With IP multipathing, we want to keep receiving even after the
789  *    interface has failed. We do this by moving multicast memberships
790  *    to a new_ill within the group. This is acheived by sending
791  *    DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS
792  *    on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we
793  *    need to be able to delete memberships which will still come down
794  *    with the ifindex of the old ill which is what the application
795  *    knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track
796  *    of where we joined initially so that we can lookup even after we
797  *    moved the membership. It is also used for moving back the membership
798  *    when the old ill has been repaired. This is done by looking up for
799  *    ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only
800  *    ilms actually move from old ill to new ill. ilgs don't move (just
801  *    the ilg_ill is changed when it moves) as it just records the state
802  *    of the application that has joined a group G where as ilm records
803  *    the state joined with the driver. Thus when we send DL_XXXMULTI_REQs
804  *    we also need to keep the ilm in the right ill.
805  *
806  *    In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move
807  *    implicitly as we use only ipifs in IPv4. Thus, one can always lookup
808  *    a given ilm/ilg even after it fails without the support of
809  *    orig_ifindex. We move ilms still to record the driver state as
810  *    mentioned above.
811  */
812 
813 /*
814  * The ilg_t and ilm_t members are protected by ipsq. They can be changed only
815  * by a thread executing in the ipsq. In other words add/delete of a
816  * multicast group has to execute in the ipsq.
817  */
818 #define	ILG_DELETED	0x1		/* ilg_flags */
819 typedef struct ilg_s {
820 	in6_addr_t	ilg_v6group;
821 	struct ipif_s	*ilg_ipif;	/* Logical interface we are member on */
822 	struct ill_s	*ilg_ill;	/* Used by IPv6 */
823 	int		ilg_orig_ifindex; /* Interface originally joined on */
824 	uint_t		ilg_flags;
825 	mcast_record_t	ilg_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
826 	slist_t		*ilg_filter;
827 } ilg_t;
828 
829 
830 /*
831  * Multicast address list entry for lower ill.
832  * ilm_ipif is used by IPv4 as multicast groups are joined using ipif.
833  * ilm_ill is used by IPv6 as multicast groups are joined using ill.
834  * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6.
835  */
836 #define	ILM_DELETED	0x1		/* ilm_flags */
837 typedef struct ilm_s {
838 	in6_addr_t	ilm_v6addr;
839 	int		ilm_refcnt;
840 	uint_t		ilm_timer;	/* IGMP/MLD query resp timer, in msec */
841 	struct ipif_s	*ilm_ipif;	/* Back pointer to ipif for IPv4 */
842 	struct ilm_s	*ilm_next;	/* Linked list for each ill */
843 	uint_t		ilm_state;	/* state of the membership */
844 	struct ill_s	*ilm_ill;	/* Back pointer to ill for IPv6 */
845 	int		ilm_orig_ifindex;  /* V6_MULTICAST_IF/ilm_ipif index */
846 	uint_t		ilm_flags;
847 	boolean_t	ilm_is_new;	/* new ilm */
848 	boolean_t	ilm_notify_driver; /* Need to notify the driver */
849 	zoneid_t	ilm_zoneid;
850 	int		ilm_no_ilg_cnt;	/* number of joins w/ no ilg */
851 	mcast_record_t	ilm_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
852 	slist_t		*ilm_filter;	/* source filter list */
853 	slist_t		*ilm_pendsrcs;	/* relevant src addrs for pending req */
854 	rtx_state_t	ilm_rtx;	/* SCR retransmission state */
855 } ilm_t;
856 
857 #define	ilm_addr	V4_PART_OF_V6(ilm_v6addr)
858 
859 /*
860  * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to
861  * zero. In addition it needs to block new walkers while it is unlinking ilm's
862  * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice.
863  */
864 #define	ILM_WALKER_HOLD(ill)    {               \
865 	mutex_enter(&(ill)->ill_lock);          \
866 	ill->ill_ilm_walker_cnt++;              \
867 	mutex_exit(&(ill)->ill_lock);           \
868 }
869 
870 #define	ILM_WALKER_RELE(ill)	{ 		\
871 	mutex_enter(&(ill)->ill_lock);		\
872 	(ill)->ill_ilm_walker_cnt--;		\
873 	if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \
874 		ilm_walker_cleanup(ill);	\
875 	mutex_exit(&(ill)->ill_lock);		\
876 }
877 
878 /*
879  * Soft reference to an IPsec SA.
880  *
881  * On relative terms, conn's can be persistant (living as long as the
882  * processes which create them), while SA's are ephemeral (dying when
883  * they hit their time-based or byte-based lifetimes).
884  *
885  * We could hold a hard reference to an SA from an ipsec_latch_t,
886  * but this would cause expired SA's to linger for a potentially
887  * unbounded time.
888  *
889  * Instead, we remember the hash bucket number and bucket generation
890  * in addition to the pointer.  The bucket generation is incremented on
891  * each deletion.
892  */
893 typedef struct ipsa_ref_s
894 {
895 	struct ipsa_s	*ipsr_sa;
896 	struct isaf_s	*ipsr_bucket;
897 	uint64_t	ipsr_gen;
898 } ipsa_ref_t;
899 
900 /*
901  * IPsec "latching" state.
902  *
903  * In the presence of IPsec policy, fully-bound conn's bind a connection
904  * to more than just the 5-tuple, but also a specific IPsec action and
905  * identity-pair.
906  *
907  * As an optimization, we also cache soft references to IPsec SA's
908  * here so that we can fast-path around most of the work needed for
909  * outbound IPsec SA selection.
910  *
911  * Were it not for TCP's detached connections, this state would be
912  * in-line in conn_t; instead, this is in a separate structure so it
913  * can be handed off to TCP when a connection is detached.
914  */
915 typedef struct ipsec_latch_s
916 {
917 	kmutex_t	ipl_lock;
918 	uint32_t	ipl_refcnt;
919 
920 	uint64_t	ipl_unique;
921 	struct ipsec_policy_s	*ipl_in_policy; /* latched policy (in) */
922 	struct ipsec_policy_s	*ipl_out_policy; /* latched policy (out) */
923 	struct ipsec_action_s	*ipl_in_action;	/* latched action (in) */
924 	struct ipsec_action_s	*ipl_out_action; /* latched action (out) */
925 	cred_t		*ipl_local_id;
926 	struct ipsid_s	*ipl_local_cid;
927 	struct ipsid_s	*ipl_remote_cid;
928 	unsigned int
929 			ipl_out_action_latched : 1,
930 			ipl_in_action_latched : 1,
931 			ipl_out_policy_latched : 1,
932 			ipl_in_policy_latched : 1,
933 
934 			ipl_ids_latched : 1,
935 
936 			ipl_pad_to_bit_31 : 27;
937 
938 	ipsa_ref_t	ipl_ref[2]; /* 0: ESP, 1: AH */
939 
940 } ipsec_latch_t;
941 
942 #define	IPLATCH_REFHOLD(ipl) { \
943 	atomic_add_32(&(ipl)->ipl_refcnt, 1);		\
944 	ASSERT((ipl)->ipl_refcnt != 0);			\
945 }
946 
947 #define	IPLATCH_REFRELE(ipl) {					\
948 	ASSERT((ipl)->ipl_refcnt != 0);				\
949 	membar_exit();						\
950 	if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0)	\
951 		iplatch_free(ipl);				\
952 }
953 
954 /*
955  * peer identity structure.
956  */
957 
958 typedef struct conn_s conn_t;
959 
960 /*
961  * The old IP client structure "ipc_t" is gone. All the data is stored in the
962  * connection structure "conn_t" now. The mapping of old and new fields looks
963  * like this:
964  *
965  * ipc_ulp			conn_ulp
966  * ipc_rq			conn_rq
967  * ipc_wq			conn_wq
968  *
969  * ipc_laddr			conn_src
970  * ipc_faddr			conn_rem
971  * ipc_v6laddr			conn_srcv6
972  * ipc_v6faddr			conn_remv6
973  *
974  * ipc_lport			conn_lport
975  * ipc_fport			conn_fport
976  * ipc_ports			conn_ports
977  *
978  * ipc_policy			conn_policy
979  * ipc_latch			conn_latch
980  *
981  * ipc_irc_lock			conn_lock
982  * ipc_ire_cache		conn_ire_cache
983  *
984  * ipc_state_flags		conn_state_flags
985  * ipc_outgoing_ill		conn_outgoing_ill
986  *
987  * ipc_dontroute 		conn_dontroute
988  * ipc_loopback 		conn_loopback
989  * ipc_broadcast		conn_broadcast
990  * ipc_reuseaddr		conn_reuseaddr
991  *
992  * ipc_multicast_loop		conn_multicast_loop
993  * ipc_multi_router		conn_multi_router
994  * ipc_priv_stream 		conn_priv_stream
995  * ipc_draining 		conn_draining
996  *
997  * ipc_did_putbq		conn_did_putbq
998  * ipc_unspec_src		conn_unspec_src
999  * ipc_policy_cached		conn_policy_cached
1000  *
1001  * ipc_in_enforce_policy 	conn_in_enforce_policy
1002  * ipc_out_enforce_policy 	conn_out_enforce_policy
1003  * ipc_af_isv6			conn_af_isv6
1004  * ipc_pkt_isv6			conn_pkt_isv6
1005  *
1006  * ipc_ipv6_recvpktinfo		conn_ipv6_recvpktinfo
1007  *
1008  * ipc_ipv6_recvhoplimit	conn_ipv6_recvhoplimit
1009  * ipc_ipv6_recvhopopts		conn_ipv6_recvhopopts
1010  * ipc_ipv6_recvdstopts		conn_ipv6_recvdstopts
1011  *
1012  * ipc_ipv6_recvrthdr 		conn_ipv6_recvrthdr
1013  * ipc_ipv6_recvrtdstopts	conn_ipv6_recvrtdstopts
1014  * ipc_fully_bound		conn_fully_bound
1015  *
1016  * ipc_recvif			conn_recvif
1017  *
1018  * ipc_recvslla 		conn_recvslla
1019  * ipc_acking_unbind 		conn_acking_unbind
1020  * ipc_pad_to_bit_31 		conn_pad_to_bit_31
1021  *
1022  * ipc_xmit_if_ill		conn_xmit_if_ill
1023  * ipc_nofailover_ill		conn_nofailover_ill
1024  *
1025  * ipc_proto			conn_proto
1026  * ipc_incoming_ill		conn_incoming_ill
1027  * ipc_outgoing_pill		conn_outgoing_pill
1028  * ipc_pending_ill		conn_pending_ill
1029  * ipc_unbind_mp		conn_unbind_mp
1030  * ipc_ilg			conn_ilg
1031  * ipc_ilg_allocated		conn_ilg_allocated
1032  * ipc_ilg_inuse		conn_ilg_inuse
1033  * ipc_ilg_walker_cnt		conn_ilg_walker_cnt
1034  * ipc_refcv			conn_refcv
1035  * ipc_multicast_ipif		conn_multicast_ipif
1036  * ipc_multicast_ill		conn_multicast_ill
1037  * ipc_orig_bound_ifindex	conn_orig_bound_ifindex
1038  * ipc_orig_multicast_ifindex	conn_orig_multicast_ifindex
1039  * ipc_orig_xmit_ifindex	conn_orig_xmit_ifindex
1040  * ipc_drain_next		conn_drain_next
1041  * ipc_drain_prev		conn_drain_prev
1042  * ipc_idl			conn_idl
1043  */
1044 
1045 /*
1046  * This is used to match an inbound/outbound datagram with
1047  * policy.
1048  */
1049 
1050 typedef	struct ipsec_selector {
1051 	in6_addr_t	ips_local_addr_v6;
1052 	in6_addr_t	ips_remote_addr_v6;
1053 	uint16_t	ips_local_port;
1054 	uint16_t	ips_remote_port;
1055 	uint8_t		ips_icmp_type;
1056 	uint8_t		ips_icmp_code;
1057 	uint8_t		ips_protocol;
1058 	uint8_t		ips_isv4 : 1,
1059 			ips_is_icmp_inv_acq: 1;
1060 } ipsec_selector_t;
1061 
1062 /*
1063  * Note that we put v4 addresses in the *first* 32-bit word of the
1064  * selector rather than the last to simplify the prefix match/mask code
1065  * in spd.c
1066  */
1067 #define	ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
1068 #define	ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]
1069 
1070 /* Values used in IP by IPSEC Code */
1071 #define		IPSEC_OUTBOUND		B_TRUE
1072 #define		IPSEC_INBOUND		B_FALSE
1073 
1074 /*
1075  * There are two variants in policy failures. The packet may come in
1076  * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
1077  * have the desired level of protection (IPSEC_POLICY_MISMATCH).
1078  */
1079 #define	IPSEC_POLICY_NOT_NEEDED		0
1080 #define	IPSEC_POLICY_MISMATCH		1
1081 #define	IPSEC_POLICY_AUTH_NOT_NEEDED	2
1082 #define	IPSEC_POLICY_ENCR_NOT_NEEDED	3
1083 #define	IPSEC_POLICY_SE_NOT_NEEDED	4
1084 #define	IPSEC_POLICY_MAX		5	/* Always max + 1. */
1085 
1086 /*
1087  * Folowing macro is used whenever the code does not know whether there
1088  * is a M_CTL present in the front and it needs to examine the actual mp
1089  * i.e the IP header. As a M_CTL message could be in the front, this
1090  * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL
1091  * mp is not present, both first_mp and mp point to the same message.
1092  */
1093 #define	EXTRACT_PKT_MP(mp, first_mp, mctl_present)	\
1094 	(first_mp) = (mp);				\
1095 	if ((mp)->b_datap->db_type == M_CTL) {		\
1096 		(mp) = (mp)->b_cont;			\
1097 		(mctl_present) = B_TRUE;		\
1098 	} else {					\
1099 		(mctl_present) = B_FALSE;		\
1100 	}
1101 
1102 /*
1103  * Check with IPSEC inbound policy if
1104  *
1105  * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
1106  * 2) Or if we have not cached policy on the conn and the global policy is
1107  *    non-empty.
1108  */
1109 #define	CONN_INBOUND_POLICY_PRESENT(connp)	\
1110 	((connp)->conn_in_enforce_policy ||	\
1111 	(!((connp)->conn_policy_cached) &&	\
1112 	ipsec_inbound_v4_policy_present))
1113 
1114 #define	CONN_INBOUND_POLICY_PRESENT_V6(connp)	\
1115 	((connp)->conn_in_enforce_policy ||	\
1116 	(!(connp)->conn_policy_cached &&	\
1117 	ipsec_inbound_v6_policy_present))
1118 
1119 #define	CONN_OUTBOUND_POLICY_PRESENT(connp)	\
1120 	((connp)->conn_out_enforce_policy ||	\
1121 	(!((connp)->conn_policy_cached) &&	\
1122 	ipsec_outbound_v4_policy_present))
1123 
1124 #define	CONN_OUTBOUND_POLICY_PRESENT_V6(connp)	\
1125 	((connp)->conn_out_enforce_policy ||	\
1126 	(!(connp)->conn_policy_cached &&	\
1127 	ipsec_outbound_v6_policy_present))
1128 
1129 /*
1130  * Information cached in IRE for upper layer protocol (ULP).
1131  *
1132  * Notice that ire_max_frag is not included in the iulp_t structure, which
1133  * it may seem that it should.  But ire_max_frag cannot really be cached.  It
1134  * is fixed for each interface.  For MTU found by PMTUd, we may want to cache
1135  * it.  But currently, we do not do that.
1136  */
1137 typedef struct iulp_s {
1138 	boolean_t	iulp_set;	/* Is any metric set? */
1139 	uint32_t	iulp_ssthresh;	/* Slow start threshold (TCP). */
1140 	clock_t		iulp_rtt;	/* Guestimate in millisecs. */
1141 	clock_t		iulp_rtt_sd;	/* Cached value of RTT variance. */
1142 	uint32_t	iulp_spipe;	/* Send pipe size. */
1143 	uint32_t	iulp_rpipe;	/* Receive pipe size. */
1144 	uint32_t	iulp_rtomax;	/* Max round trip timeout. */
1145 	uint32_t	iulp_sack;	/* Use SACK option (TCP)? */
1146 	uint32_t
1147 		iulp_tstamp_ok : 1,	/* Use timestamp option (TCP)? */
1148 		iulp_wscale_ok : 1,	/* Use window scale option (TCP)? */
1149 		iulp_ecn_ok : 1,	/* Enable ECN (for TCP)? */
1150 		iulp_pmtud_ok : 1,	/* Enable PMTUd? */
1151 
1152 		iulp_not_used : 28;
1153 } iulp_t;
1154 
1155 /* Zero iulp_t. */
1156 extern const iulp_t ire_uinfo_null;
1157 
1158 /*
1159  * The conn drain list structure.
1160  * The list is protected by idl_lock. Each conn_t inserted in the list
1161  * points back at this idl_t using conn_idl. IP primes the draining of the
1162  * conns queued in these lists, by qenabling the 1st conn of each list. This
1163  * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance
1164  * of ip_wsrv successively qenables the next conn in the list.
1165  * idl_lock protects all other members of idl_t and conn_drain_next
1166  * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED
1167  * flag of the conn_t and conn_idl.
1168  */
1169 typedef struct idl_s {
1170 	conn_t		*idl_conn;		/* Head of drain list */
1171 	kmutex_t	idl_lock;		/* Lock for this list */
1172 	conn_t		*idl_conn_draining;	/* conn that is draining */
1173 	uint32_t
1174 		idl_repeat : 1,			/* Last conn must re-enable */
1175 						/* drain list again */
1176 		idl_unused : 31;
1177 } idl_t;
1178 
1179 #define	CONN_DRAIN_LIST_LOCK(connp)	(&((connp)->conn_idl->idl_lock))
1180 /*
1181  * Interface route structure which holds the necessary information to recreate
1182  * routes that are tied to an interface (namely where ire_ipif != NULL).
1183  * These routes which were initially created via a routing socket or via the
1184  * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
1185  * traditional interface routes.  When an interface comes back up after being
1186  * marked down, this information will be used to recreate the routes.  These
1187  * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp).
1188  */
1189 typedef struct ifrt_s {
1190 	ushort_t	ifrt_type;		/* Type of IRE */
1191 	in6_addr_t	ifrt_v6addr;		/* Address IRE represents. */
1192 	in6_addr_t	ifrt_v6gateway_addr;	/* Gateway if IRE_OFFSUBNET */
1193 	in6_addr_t	ifrt_v6src_addr;	/* Src addr if RTF_SETSRC */
1194 	in6_addr_t	ifrt_v6mask;		/* Mask for matching IRE. */
1195 	uint32_t	ifrt_flags;		/* flags related to route */
1196 	uint_t		ifrt_max_frag;		/* MTU (next hop or path). */
1197 	iulp_t		ifrt_iulp_info;		/* Cached IRE ULP info. */
1198 } ifrt_t;
1199 
1200 #define	ifrt_addr		V4_PART_OF_V6(ifrt_v6addr)
1201 #define	ifrt_gateway_addr	V4_PART_OF_V6(ifrt_v6gateway_addr)
1202 #define	ifrt_src_addr		V4_PART_OF_V6(ifrt_v6src_addr)
1203 #define	ifrt_mask		V4_PART_OF_V6(ifrt_v6mask)
1204 
1205 /* Number of IP addresses that can be hosted on a physical interface */
1206 #define	MAX_ADDRS_PER_IF	8192
1207 /*
1208  * Number of Source addresses to be considered for source address
1209  * selection. Used by ipif_select_source[_v6].
1210  */
1211 #define	MAX_IPIF_SELECT_SOURCE	50
1212 
1213 #ifdef IP_DEBUG
1214 /*
1215  * Tracing refholds and refreleases for debugging. Existing tracing mechanisms
1216  * do not allow the granularity need to trace refrences to ipif/ill/ire's. This
1217  * mechanism should be revisited once dtrace is available.
1218  */
1219 #define	IP_STACK_DEPTH	15
1220 typedef struct tr_buf_s {
1221 	int	tr_depth;
1222 	pc_t	tr_stack[IP_STACK_DEPTH];
1223 } tr_buf_t;
1224 
1225 typedef struct th_trace_s {
1226 	struct	th_trace_s *th_next;
1227 	struct	th_trace_s **th_prev;
1228 	kthread_t	*th_id;
1229 	int	th_refcnt;
1230 	uint_t	th_trace_lastref;
1231 #define	TR_BUF_MAX	38
1232 	tr_buf_t th_trbuf[TR_BUF_MAX];
1233 } th_trace_t;
1234 #endif
1235 
1236 /* The following are ipif_state_flags */
1237 #define	IPIF_CONDEMNED		0x1	/* The ipif is being removed */
1238 #define	IPIF_CHANGING		0x2	/* A critcal ipif field is changing */
1239 #define	IPIF_MOVING		0x8	/* The ipif is being moved */
1240 #define	IPIF_SET_LINKLOCAL	0x10	/* transient flag during bringup */
1241 #define	IPIF_ZERO_SOURCE	0x20	/* transient flag during bringup */
1242 
1243 /* IP interface structure, one per local address */
1244 typedef struct ipif_s {
1245 	struct	ipif_s	*ipif_next;
1246 	struct	ill_s	*ipif_ill;	/* Back pointer to our ill */
1247 	int	ipif_id;		/* Logical unit number */
1248 	uint_t	ipif_mtu;		/* Starts at ipif_ill->ill_max_frag */
1249 	uint_t	ipif_saved_mtu;		/* Save of mtu during ipif_move() */
1250 	in6_addr_t ipif_v6lcl_addr;	/* Local IP address for this if. */
1251 	in6_addr_t ipif_v6src_addr;	/* Source IP address for this if. */
1252 	in6_addr_t ipif_v6subnet;	/* Subnet prefix for this if. */
1253 	in6_addr_t ipif_v6net_mask;	/* Net mask for this interface. */
1254 	in6_addr_t ipif_v6brd_addr;	/* Broadcast addr for this interface. */
1255 	in6_addr_t ipif_v6pp_dst_addr;	/* Point-to-point dest address. */
1256 	uint64_t ipif_flags;		/* Interface flags. */
1257 	uint_t	ipif_metric;		/* BSD if metric, for compatibility. */
1258 	uint_t	ipif_ire_type;		/* IRE_LOCAL or IRE_LOOPBACK */
1259 	mblk_t	*ipif_arp_del_mp;	/* Allocated at time arp comes up, to */
1260 					/* prevent awkward out of mem */
1261 					/* condition later */
1262 	mblk_t	*ipif_saved_ire_mp;	/* Allocated for each extra */
1263 					/* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */
1264 					/* on this interface so that they */
1265 					/* can survive ifconfig down. */
1266 	kmutex_t ipif_saved_ire_lock;	/* Protects ipif_saved_ire_mp */
1267 
1268 	mrec_t	*ipif_igmp_rpt;		/* List of group memberships which */
1269 					/* will be reported on.  Used when */
1270 					/* handling an igmp timeout.	   */
1271 
1272 	/*
1273 	 * The packet counts in the ipif contain the sum of the
1274 	 * packet counts in dead IREs that were affiliated with
1275 	 * this ipif.
1276 	 */
1277 	uint_t	ipif_fo_pkt_count;	/* Forwarded thru our dead IREs */
1278 	uint_t	ipif_ib_pkt_count;	/* Inbound packets for our dead IREs */
1279 	uint_t	ipif_ob_pkt_count;	/* Outbound packets to our dead IREs */
1280 	/* Exclusive bit fields, protected by ipsq_t */
1281 	unsigned int
1282 		ipif_multicast_up : 1,	/* We have joined the allhosts group */
1283 		ipif_solmcast_up : 1,	/* We joined solicited node mcast */
1284 		ipif_replace_zero : 1,	/* Replacement for zero */
1285 		ipif_was_up : 1,	/* ipif was up before */
1286 
1287 		ipif_pad_to_31 : 28;
1288 
1289 	int	ipif_orig_ifindex;	/* ifindex before SLIFFAILOVER */
1290 	uint_t	ipif_seqid;		/* unique index across all ills */
1291 	uint_t	ipif_orig_ipifid;	/* ipif_id before SLIFFAILOVER */
1292 	uint_t	ipif_state_flags;	/* See IPIF_* flag defs above */
1293 	uint_t	ipif_refcnt;		/* active consistent reader cnt */
1294 	uint_t	ipif_ire_cnt;		/* Number of ire's referencing ipif */
1295 	uint_t	ipif_saved_ire_cnt;
1296 	zoneid_t
1297 		ipif_zoneid;		/* zone ID number */
1298 #ifdef ILL_DEBUG
1299 #define	IP_TR_HASH_MAX	64
1300 	th_trace_t *ipif_trace[IP_TR_HASH_MAX];
1301 	boolean_t	ipif_trace_disable;	/* True when alloc fails */
1302 #endif
1303 } ipif_t;
1304 
1305 /*
1306  * The following table lists the protection levels of the various members
1307  * of the ipif_t. The following notation is used.
1308  *
1309  * Write once - Written to only once at the time of bringing up
1310  * the interface and can be safely read after the bringup without any lock.
1311  *
1312  * ipsq - Need to execute in the ipsq to perform the indicated access.
1313  *
1314  * ill_lock - Need to hold this mutex to perform the indicated access.
1315  *
1316  * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
1317  * write access respectively.
1318  *
1319  * down ill - Written to only when the ill is down (i.e all ipifs are down)
1320  * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1321  *
1322  *		 Table of ipif_t members and their protection
1323  *
1324  * ipif_next		ill_g_lock		ill_g_lock
1325  * ipif_ill		ipsq + down ipif		write once
1326  * ipif_id		ipsq + down ipif		write once
1327  * ipif_mtu		ipsq
1328  * ipif_v6lcl_addr	ipsq + down ipif		up ipif
1329  * ipif_v6src_addr	ipsq + down ipif		up ipif
1330  * ipif_v6subnet	ipsq + down ipif		up ipif
1331  * ipif_v6net_mask	ipsq + down ipif		up ipif
1332  *
1333  * ipif_v6brd_addr
1334  * ipif_v6pp_dst_addr
1335  * ipif_flags		ill_lock		ill_lock
1336  * ipif_metric
1337  * ipif_ire_type	ipsq + down ill		up ill
1338  *
1339  * ipif_arp_del_mp	ipsq			ipsq
1340  * ipif_saved_ire_mp	ipif_saved_ire_lock	ipif_saved_ire_lock
1341  * ipif_igmp_rpt	ipsq			ipsq
1342  *
1343  * ipif_fo_pkt_count	Approx
1344  * ipif_ib_pkt_count	Approx
1345  * ipif_ob_pkt_count	Approx
1346  *
1347  * bit fields		ill_lock		ill_lock
1348  *
1349  * ipif_orig_ifindex	ipsq			None
1350  * ipif_orig_ipifid	ipsq			None
1351  * ipif_seqid		ipsq			Write once
1352  *
1353  * ipif_state_flags	ill_lock		ill_lock
1354  * ipif_refcnt		ill_lock		ill_lock
1355  * ipif_ire_cnt		ill_lock		ill_lock
1356  * ipif_saved_ire_cnt
1357  */
1358 
1359 #define	IP_TR_HASH(tid)	((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))
1360 
1361 #ifdef ILL_DEBUG
1362 #define	IPIF_TRACE_REF(ipif)	ipif_trace_ref(ipif)
1363 #define	ILL_TRACE_REF(ill)	ill_trace_ref(ill)
1364 #define	IPIF_UNTRACE_REF(ipif)	ipif_untrace_ref(ipif)
1365 #define	ILL_UNTRACE_REF(ill)	ill_untrace_ref(ill)
1366 #define	ILL_TRACE_CLEANUP(ill)	ill_trace_cleanup(ill)
1367 #define	IPIF_TRACE_CLEANUP(ipif)	ipif_trace_cleanup(ipif)
1368 #else
1369 #define	IPIF_TRACE_REF(ipif)
1370 #define	ILL_TRACE_REF(ill)
1371 #define	IPIF_UNTRACE_REF(ipif)
1372 #define	ILL_UNTRACE_REF(ill)
1373 #define	ILL_TRACE_CLEANUP(ill)
1374 #define	IPIF_TRACE_CLEANUP(ipif)
1375 #endif
1376 
1377 /* IPv4 compatability macros */
1378 #define	ipif_lcl_addr		V4_PART_OF_V6(ipif_v6lcl_addr)
1379 #define	ipif_src_addr		V4_PART_OF_V6(ipif_v6src_addr)
1380 #define	ipif_subnet		V4_PART_OF_V6(ipif_v6subnet)
1381 #define	ipif_net_mask		V4_PART_OF_V6(ipif_v6net_mask)
1382 #define	ipif_brd_addr		V4_PART_OF_V6(ipif_v6brd_addr)
1383 #define	ipif_pp_dst_addr	V4_PART_OF_V6(ipif_v6pp_dst_addr)
1384 
1385 /* Macros for easy backreferences to the ill. */
1386 #define	ipif_wq			ipif_ill->ill_wq
1387 #define	ipif_rq			ipif_ill->ill_rq
1388 #define	ipif_net_type		ipif_ill->ill_net_type
1389 #define	ipif_resolver_mp	ipif_ill->ill_resolver_mp
1390 #define	ipif_ipif_up_count	ipif_ill->ill_ipif_up_count
1391 #define	ipif_bcast_mp		ipif_ill->ill_bcast_mp
1392 #define	ipif_type		ipif_ill->ill_type
1393 #define	ipif_isv6		ipif_ill->ill_isv6
1394 
1395 #define	SIOCLIFADDR_NDX 112	/* ndx of SIOCLIFADDR in the ndx ioctl table */
1396 
1397 /*
1398  * mode value for ip_ioctl_finish for finishing an ioctl
1399  */
1400 #define	CONN_CLOSE	1		/* No mi_copy */
1401 #define	COPYOUT		2		/* do an mi_copyout if needed */
1402 #define	NO_COPYOUT	3		/* do an mi_copy_done */
1403 
1404 /*
1405  * The IP-MT design revolves around the serialization object ipsq_t.
1406  * It is associated with an IPMP group. If IPMP is not enabled, there is
1407  * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream
1408  *
1409  * ipsq_lock protects
1410  *	ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail,
1411  *	ipsq_mphead, ipsq_mptail, ipsq_split
1412  *
1413  *	ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags,
1414  *	ipsq_waitfor
1415  *
1416  * The fields in the last line above below are set mostly by a writer thread
1417  * But there is an exception in the last call to ipif_ill_refrele_tail which
1418  * could also race with a conn close which could be cleaning up the
1419  * fields. So we choose to protect using ipsq_lock instead of depending on
1420  * the property of the writer.
1421  * ill_g_lock protects
1422  *	ipsq_refs, ipsq_phyint_list
1423  */
1424 typedef struct ipsq_s {
1425 	kmutex_t ipsq_lock;
1426 	int	ipsq_reentry_cnt;
1427 	kthread_t	*ipsq_writer;	/* current owner (thread id) */
1428 	int	ipsq_flags;
1429 	mblk_t	*ipsq_xopq_mphead;	/* list of excl ops mostly ioctls */
1430 	mblk_t	*ipsq_xopq_mptail;
1431 	mblk_t	*ipsq_mphead;		/* msgs on ipsq linked thru b_next */
1432 	mblk_t	*ipsq_mptail;		/* msgs on ipsq linked thru b_next */
1433 	ipif_t	*ipsq_pending_ipif;	/* ipif associated w. ipsq_pending_mp */
1434 	ipif_t	*ipsq_current_ipif;	/* ipif associated with current ioctl */
1435 	mblk_t	*ipsq_pending_mp;	/* current ioctl mp while waiting for */
1436 					/* response from another module */
1437 	struct	ipsq_s	*ipsq_next;	/* list of all syncq's (ipsq_g_list) */
1438 	uint_t		ipsq_refs;	/* Number of phyints on this ipsq */
1439 	struct phyint	*ipsq_phyint_list; /* List of phyints on this ipsq */
1440 	boolean_t	ipsq_split;	/* ipsq may need to be split */
1441 	int		ipsq_waitfor;	/* Values encoded below */
1442 	char		ipsq_name[LIFNAMSIZ+1];	/* same as phyint_groupname */
1443 	int		ipsq_last_cmd;	/* debugging aid */
1444 #ifdef ILL_DEBUG
1445 	int		ipsq_depth;	/* debugging aid */
1446 	pc_t		ipsq_stack[IP_STACK_DEPTH];	/* debugging aid */
1447 #endif
1448 } ipsq_t;
1449 
1450 /* ipsq_flags */
1451 #define	IPSQ_GROUP	0x1	/* This ipsq belongs to an IPMP group */
1452 
1453 /*
1454  * ipsq_waitfor:
1455  *
1456  * IPIF_DOWN	1	ipif_down waiting for refcnts to drop
1457  * ILL_DOWN	2	ill_down waiting for refcnts to drop
1458  * IPIF_FREE	3	ipif_free waiting for refcnts to drop
1459  * ILL_FREE	4	ill unplumb waiting for refcnts to drop
1460  * ILL_MOVE_OK	5	failover waiting for refcnts to drop
1461  */
1462 
1463 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK };
1464 
1465 /* Flags passed to ipsq_try_enter */
1466 #define	CUR_OP 0		/* Current ioctl continuing again */
1467 #define	NEW_OP 1		/* New ioctl starting afresh */
1468 
1469 /*
1470  * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1471  * There is a separate ill_t representing IPv4 and IPv6 which has a
1472  * backpointer to the phyint structure for acessing common state.
1473  *
1474  * NOTE : It just stores the group name as there is only one name for
1475  *	  IPv4 and IPv6 i.e it is a underlying link property. Actually
1476  *        IPv4 and IPv6 ill are grouped together when their phyints have
1477  *        the same name.
1478  */
1479 typedef struct phyint {
1480 	struct ill_s	*phyint_illv4;
1481 	struct ill_s	*phyint_illv6;
1482 	uint_t		phyint_ifindex;		/* SIOCLSLIFINDEX */
1483 	uint_t		phyint_notify_delay;	/* SIOCSLIFNOTIFYDELAY */
1484 	char		*phyint_groupname;	/* SIOCSLIFGROUPNAME */
1485 	uint_t		phyint_groupname_len;
1486 	uint64_t	phyint_flags;
1487 	avl_node_t	phyint_avl_by_index;	/* avl tree by index */
1488 	avl_node_t	phyint_avl_by_name;	/* avl tree by name */
1489 	kmutex_t	phyint_lock;
1490 	struct ipsq_s	*phyint_ipsq;		/* back pointer to ipsq */
1491 	struct phyint	*phyint_ipsq_next;	/* phyint list on this ipsq */
1492 } phyint_t;
1493 
1494 #define	CACHE_ALIGN_SIZE 64
1495 
1496 #define	CACHE_ALIGN(align_struct)	P2ROUNDUP(sizeof (struct align_struct),\
1497 							CACHE_ALIGN_SIZE)
1498 struct _phyint_list_s_ {
1499 	avl_tree_t	phyint_list_avl_by_index;	/* avl tree by index */
1500 	avl_tree_t	phyint_list_avl_by_name;	/* avl tree by name */
1501 };
1502 
1503 typedef union phyint_list_u {
1504 	struct	_phyint_list_s_ phyint_list_s;
1505 	char	phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1506 } phyint_list_t;
1507 
1508 #define	phyint_list_avl_by_index	phyint_list_s.phyint_list_avl_by_index
1509 #define	phyint_list_avl_by_name		phyint_list_s.phyint_list_avl_by_name
1510 /*
1511  * ILL groups. We group ills,
1512  *
1513  * - if the ills have the same group name. (New way)
1514  *
1515  * ill_group locking notes:
1516  *
1517  * illgrp_lock protects ill_grp_ill_schednext.
1518  *
1519  * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count.
1520  * Holding ill_g_lock freezes the memberships of ills in IPMP groups.
1521  * It also freezes the global list of ills and all ipifs in all ills.
1522  *
1523  * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail
1524  * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the
1525  * global list of ills, ill_delete_glist holds ill_g_lock as writer.
1526  * This simplifies things for ipif_select_source, illgrp_scheduler etc.
1527  * that need to walk the members of an illgrp. They just hold ill_g_lock
1528  * as reader to do the walk.
1529  *
1530  */
1531 typedef	struct ill_group {
1532 	kmutex_t	illgrp_lock;
1533 	struct ill_group *illgrp_next;		/* Next ill_group */
1534 	struct ill_s	*illgrp_ill_schednext;	/* Next ill to be scheduled */
1535 	struct ill_s	*illgrp_ill;		/* First ill in the group */
1536 	int		illgrp_ill_count;
1537 } ill_group_t;
1538 
1539 extern	ill_group_t	*illgrp_head_v6;
1540 
1541 /*
1542  * Fragmentation hash bucket
1543  */
1544 typedef struct ipfb_s {
1545 	struct ipf_s	*ipfb_ipf;	/* List of ... */
1546 	size_t		ipfb_count;	/* Count of bytes used by frag(s) */
1547 	kmutex_t	ipfb_lock;	/* Protect all ipf in list */
1548 	uint_t		ipfb_frag_pkts; /* num of distinct fragmented pkts */
1549 } ipfb_t;
1550 
1551 /*
1552  * IRE bucket structure. Usually there is an array of such structures,
1553  * each pointing to a linked list of ires. irb_refcnt counts the number
1554  * of walkers of a given hash bucket. Usually the reference count is
1555  * bumped up if the walker wants no IRES to be DELETED while walking the
1556  * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1557  * hash bucket without stumbling up on a free pointer.
1558  *
1559  * irb_t structures in ip_ftable are dynamically allocated and freed.
1560  * In order to identify the irb_t structures that cna be safely kmem_free'd
1561  * we need to ensure that
1562  *  - the irb_refcnt is quiescent, indicating no other walkers,
1563  *  - no other threads or ire's are holding references to the irb,
1564  *	i.e., irb_nire == 0,
1565  *  - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0
1566  */
1567 typedef struct irb {
1568 	struct ire_s	*irb_ire;	/* First ire in this bucket */
1569 					/* Should be first in this struct */
1570 	krwlock_t	irb_lock;	/* Protect this bucket */
1571 	uint_t		irb_refcnt;	/* Protected by irb_lock */
1572 	uchar_t		irb_marks;	/* CONDEMNED ires in this bucket ? */
1573 #define	IRB_MARK_CONDEMNED	0x0001
1574 #define	IRB_MARK_FTABLE		0x0002
1575 	uint_t		irb_ire_cnt;	/* Num of active IRE in this bucket */
1576 	uint_t		irb_tmp_ire_cnt; /* Num of temporary IRE */
1577 	struct ire_s	*irb_rr_origin;	/* origin for round-robin */
1578 	int		irb_nire;	/* Num of ftable ire's that ref irb */
1579 } irb_t;
1580 
1581 #define	IRB2RT(irb)	(rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))
1582 
1583 /* The following are return values of ip_xmit_v4() */
1584 typedef enum {
1585 	SEND_PASSED = 0,	 /* sent packet out on wire */
1586 	SEND_FAILED,	 /* sending of packet failed */
1587 	LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */
1588 	LLHDR_RESLV_FAILED  /* macaddr resl of onlink dst or nexthop failed */
1589 } ipxmit_state_t;
1590 
1591 #define	IP_V4_G_HEAD	0
1592 #define	IP_V6_G_HEAD	1
1593 
1594 #define	MAX_G_HEADS	2
1595 
1596 /*
1597  * unpadded ill_if structure
1598  */
1599 struct 	_ill_if_s_ {
1600 	union ill_if_u	*illif_next;
1601 	union ill_if_u	*illif_prev;
1602 	avl_tree_t	illif_avl_by_ppa;	/* AVL tree sorted on ppa */
1603 	vmem_t		*illif_ppa_arena;	/* ppa index space */
1604 	uint16_t	illif_mcast_v1;		/* hints for		  */
1605 	uint16_t	illif_mcast_v2;		/* [igmp|mld]_slowtimo	  */
1606 	int		illif_name_len;		/* name length */
1607 	char		illif_name[LIFNAMSIZ];	/* name of interface type */
1608 };
1609 
1610 /* cache aligned ill_if structure */
1611 typedef union 	ill_if_u {
1612 	struct  _ill_if_s_ ill_if_s;
1613 	char 	illif_filler[CACHE_ALIGN(_ill_if_s_)];
1614 } ill_if_t;
1615 
1616 
1617 #define	illif_next		ill_if_s.illif_next
1618 #define	illif_prev		ill_if_s.illif_prev
1619 #define	illif_avl_by_ppa	ill_if_s.illif_avl_by_ppa
1620 #define	illif_ppa_arena		ill_if_s.illif_ppa_arena
1621 #define	illif_mcast_v1		ill_if_s.illif_mcast_v1
1622 #define	illif_mcast_v2		ill_if_s.illif_mcast_v2
1623 #define	illif_name		ill_if_s.illif_name
1624 #define	illif_name_len		ill_if_s.illif_name_len
1625 
1626 typedef struct ill_walk_context_s {
1627 	int	ctx_current_list; /* current list being searched */
1628 	int	ctx_last_list;	 /* last list to search */
1629 } ill_walk_context_t;
1630 
1631 /*
1632  * ill_gheads structure, one for IPV4 and one for IPV6
1633  */
1634 struct _ill_g_head_s_ {
1635 	ill_if_t	*ill_g_list_head;
1636 	ill_if_t	*ill_g_list_tail;
1637 };
1638 
1639 typedef union ill_g_head_u {
1640 	struct _ill_g_head_s_ ill_g_head_s;
1641 	char	ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1642 } ill_g_head_t;
1643 
1644 #define	ill_g_list_head	ill_g_head_s.ill_g_list_head
1645 #define	ill_g_list_tail	ill_g_head_s.ill_g_list_tail
1646 
1647 #pragma align CACHE_ALIGN_SIZE(ill_g_heads)
1648 extern ill_g_head_t	ill_g_heads[];	/* ILL List Head */
1649 
1650 
1651 #define	IP_V4_ILL_G_LIST	ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1652 #define	IP_V6_ILL_G_LIST	ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1653 #define	IP_VX_ILL_G_LIST(i)	ill_g_heads[i].ill_g_list_head
1654 
1655 #define	ILL_START_WALK_V4(ctx_ptr)	ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \
1656 					ctx_ptr)
1657 #define	ILL_START_WALK_V6(ctx_ptr)	ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \
1658 					ctx_ptr)
1659 #define	ILL_START_WALK_ALL(ctx_ptr)	ill_first(MAX_G_HEADS, MAX_G_HEADS, \
1660 					ctx_ptr)
1661 
1662 /*
1663  * Capabilities, possible flags for ill_capabilities.
1664  */
1665 
1666 #define	ILL_CAPAB_AH		0x01		/* IPsec AH acceleration */
1667 #define	ILL_CAPAB_ESP		0x02		/* IPsec ESP acceleration */
1668 #define	ILL_CAPAB_MDT		0x04		/* Multidata Transmit */
1669 #define	ILL_CAPAB_HCKSUM	0x08		/* Hardware checksumming */
1670 #define	ILL_CAPAB_ZEROCOPY	0x10		/* Zero-copy */
1671 #define	ILL_CAPAB_POLL		0x20		/* Polling Toggle */
1672 #define	ILL_CAPAB_SOFT_RING	0x40		/* Soft_Ring capability */
1673 
1674 /*
1675  * Per-ill Multidata Transmit capabilities.
1676  */
1677 typedef struct ill_mdt_capab_s ill_mdt_capab_t;
1678 
1679 /*
1680  * Per-ill IPsec capabilities.
1681  */
1682 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t;
1683 
1684 /*
1685  * Per-ill Hardware Checksumming capbilities.
1686  */
1687 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;
1688 
1689 /*
1690  * Per-ill Zero-copy capabilities.
1691  */
1692 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;
1693 
1694 /*
1695  * Per-ill Polling/soft ring capbilities.
1696  */
1697 typedef struct ill_dls_capab_s ill_dls_capab_t;
1698 
1699 /*
1700  * Per-ill polling resource map.
1701  */
1702 typedef struct ill_rx_ring ill_rx_ring_t;
1703 
1704 /* The following are ill_state_flags */
1705 #define	ILL_LL_SUBNET_PENDING	0x01	/* Waiting for DL_INFO_ACK from drv */
1706 #define	ILL_CONDEMNED		0x02	/* No more new ref's to the ILL */
1707 #define	ILL_CHANGING		0x04	/* ILL not globally visible */
1708 #define	ILL_DL_UNBIND_IN_PROGRESS	0x08	/* UNBIND_REQ is sent */
1709 #define	ILL_SOFT_RING_ASSIGN	0x10	/* Makeing soft ring assigment */
1710 
1711 /* Is this an ILL whose source address is used by other ILL's ? */
1712 #define	IS_USESRC_ILL(ill)			\
1713 	(((ill)->ill_usesrc_ifindex == 0) &&	\
1714 	((ill)->ill_usesrc_grp_next != NULL))
1715 
1716 /* Is this a client/consumer of the usesrc ILL ? */
1717 #define	IS_USESRC_CLI_ILL(ill)			\
1718 	(((ill)->ill_usesrc_ifindex != 0) &&	\
1719 	((ill)->ill_usesrc_grp_next != NULL))
1720 
1721 /* Is this an virtual network interface (vni) ILL ? */
1722 #define	IS_VNI(ill)							     \
1723 	(((ill) != NULL) &&						     \
1724 	(((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
1725 	PHYI_VIRTUAL))
1726 
1727 /*
1728  * IP Lower level Structure.
1729  * Instance data structure in ip_open when there is a device below us.
1730  */
1731 typedef struct ill_s {
1732 	ill_if_t *ill_ifptr;		/* pointer to interface type */
1733 	queue_t	*ill_rq;		/* Read queue. */
1734 	queue_t	*ill_wq;		/* Write queue. */
1735 
1736 	int	ill_error;		/* Error value sent up by device. */
1737 
1738 	ipif_t	*ill_ipif;		/* Interface chain for this ILL. */
1739 
1740 	uint_t	ill_ipif_up_count;	/* Number of IPIFs currently up. */
1741 	uint_t	ill_max_frag;		/* Max IDU from DLPI. */
1742 	char	*ill_name;		/* Our name. */
1743 	uint_t	ill_name_length;	/* Name length, incl. terminator. */
1744 	char	*ill_ndd_name;		/* Name + ":ip?_forwarding" for NDD. */
1745 	uint_t	ill_net_type;		/* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1746 	/*
1747 	 * Physical Point of Attachment num.  If DLPI style 1 provider
1748 	 * then this is derived from the devname.
1749 	 */
1750 	uint_t	ill_ppa;
1751 	t_uscalar_t	ill_sap;
1752 	t_scalar_t	ill_sap_length;	/* Including sign (for position) */
1753 	uint_t	ill_phys_addr_length;	/* Excluding the sap. */
1754 	uint_t	ill_bcast_addr_length;	/* Only set when the DL provider */
1755 					/* supports broadcast. */
1756 	t_uscalar_t	ill_mactype;
1757 	uint8_t	*ill_frag_ptr;		/* Reassembly state. */
1758 	timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1759 	ipfb_t	*ill_frag_hash_tbl;	/* Fragment hash list head. */
1760 	ipif_t	*ill_pending_ipif;	/* IPIF waiting for DL operation. */
1761 
1762 	ilm_t	*ill_ilm;		/* Multicast mebership for lower ill */
1763 	uint_t	ill_global_timer;	/* for IGMPv3/MLDv2 general queries */
1764 	int	ill_mcast_type;		/* type of router which is querier */
1765 					/* on this interface */
1766 	uint16_t ill_mcast_v1_time;	/* # slow timeouts since last v1 qry */
1767 	uint16_t ill_mcast_v2_time;	/* # slow timeouts since last v2 qry */
1768 	uint8_t	ill_mcast_v1_tset;	/* 1 => timer is set; 0 => not set */
1769 	uint8_t	ill_mcast_v2_tset;	/* 1 => timer is set; 0 => not set */
1770 
1771 	uint8_t	ill_mcast_rv;		/* IGMPv3/MLDv2 robustness variable */
1772 	int	ill_mcast_qi;		/* IGMPv3/MLDv2 query interval var */
1773 
1774 	mblk_t	*ill_pending_mp;	/* IOCTL/DLPI awaiting completion. */
1775 	/*
1776 	 * All non-NULL cells between 'ill_first_mp_to_free' and
1777 	 * 'ill_last_mp_to_free' are freed in ill_delete.
1778 	 */
1779 #define	ill_first_mp_to_free	ill_bcast_mp
1780 	mblk_t	*ill_bcast_mp;		/* DLPI header for broadcasts. */
1781 	mblk_t	*ill_resolver_mp;	/* Resolver template. */
1782 	mblk_t	*ill_detach_mp;		/* detach mp, or NULL if style1 */
1783 	mblk_t	*ill_unbind_mp;		/* unbind mp from ill_dl_up() */
1784 	mblk_t	*ill_dlpi_deferred;	/* b_next chain of control messages */
1785 	mblk_t	*ill_phys_addr_mp;	/* mblk which holds ill_phys_addr */
1786 #define	ill_last_mp_to_free	ill_phys_addr_mp
1787 
1788 	cred_t	*ill_credp;		/* opener's credentials */
1789 	uint8_t	*ill_phys_addr;		/* ill_phys_addr_mp->b_rptr + off */
1790 
1791 	uint_t	ill_state_flags;	/* see ILL_* flags above */
1792 
1793 	/* Following bit fields protected by ipsq_t */
1794 	uint_t
1795 		ill_needs_attach : 1,
1796 		ill_reserved : 1,
1797 		ill_isv6 : 1,
1798 		ill_dlpi_style_set : 1,
1799 
1800 		ill_ifname_pending : 1,
1801 		ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */
1802 		ill_join_allmulti : 1,
1803 		ill_logical_down : 1,
1804 
1805 		ill_is_6to4tun : 1,	/* Interface is a 6to4 tunnel */
1806 		ill_promisc_on_phys : 1, /* phys interface in promisc mode */
1807 		ill_dl_up : 1,
1808 		ill_up_ipifs : 1,
1809 
1810 		ill_pad_to_bit_31 : 20;
1811 
1812 	/* Following bit fields protected by ill_lock */
1813 	uint_t
1814 		ill_fragtimer_executing : 1,
1815 		ill_fragtimer_needrestart : 1,
1816 		ill_ilm_cleanup_reqd : 1,
1817 		ill_arp_closing : 1,
1818 
1819 		ill_arp_bringup_pending : 1,
1820 		ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */
1821 		ill_pad_bit_31 : 26;
1822 
1823 	/*
1824 	 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'.
1825 	 */
1826 	int	ill_arp_muxid;		/* muxid returned from plink for arp */
1827 	int	ill_ip_muxid;		/* muxid returned from plink for ip */
1828 
1829 	/*
1830 	 * Used for IP frag reassembly throttling on a per ILL basis.
1831 	 *
1832 	 * Note: frag_count is approximate, its added to and subtracted from
1833 	 *	 without any locking, so simultaneous load/modify/stores can
1834 	 *	 collide, also ill_frag_purge() recalculates its value by
1835 	 *	 summing all the ipfb_count's without locking out updates
1836 	 *	 to the ipfb's.
1837 	 */
1838 	uint_t	ill_ipf_gen;		/* Generation of next fragment queue */
1839 	uint_t	ill_frag_count;		/* Approx count of all mblk bytes */
1840 	uint_t	ill_frag_free_num_pkts;	 /* num of fragmented packets to free */
1841 	clock_t	ill_last_frag_clean_time; /* time when frag's were pruned */
1842 	int	ill_type;		/* From <net/if_types.h> */
1843 	uint_t	ill_dlpi_multicast_state;	/* See below IDMS_* */
1844 	uint_t	ill_dlpi_fastpath_state;	/* See below IDMS_* */
1845 
1846 	/*
1847 	 * Capabilities related fields.
1848 	 */
1849 	uint_t  ill_capab_state;	/* State of capability query, IDMS_* */
1850 	uint64_t ill_capabilities;	/* Enabled capabilities, ILL_CAPAB_* */
1851 	ill_mdt_capab_t	*ill_mdt_capab;	/* Multidata Transmit capabilities */
1852 	ill_ipsec_capab_t *ill_ipsec_capab_ah;	/* IPsec AH capabilities */
1853 	ill_ipsec_capab_t *ill_ipsec_capab_esp;	/* IPsec ESP capabilities */
1854 	ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1855 	ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1856 	ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */
1857 
1858 	/*
1859 	 * New fields for IPv6
1860 	 */
1861 	uint8_t	ill_max_hops;	/* Maximum hops for any logical interface */
1862 	uint_t	ill_max_mtu;	/* Maximum MTU for any logical interface */
1863 	uint32_t ill_reachable_time;	/* Value for ND algorithm in msec */
1864 	uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1865 	uint_t	ill_max_buf;		/* Max # of req to buffer for ND */
1866 	in6_addr_t	ill_token;
1867 	uint_t		ill_token_length;
1868 	uint32_t	ill_xmit_count;		/* ndp max multicast xmits */
1869 	mib2_ipv6IfStatsEntry_t	*ill_ip6_mib;	/* Per interface mib */
1870 	mib2_ipv6IfIcmpEntry_t	*ill_icmp6_mib;	/* Per interface mib */
1871 	/*
1872 	 * Following two mblks are allocated common to all
1873 	 * the ipifs when the first interface is coming up.
1874 	 * It is sent up to arp when the last ipif is coming
1875 	 * down.
1876 	 */
1877 	mblk_t			*ill_arp_down_mp;
1878 	mblk_t			*ill_arp_del_mapping_mp;
1879 	/*
1880 	 * Used for implementing IFF_NOARP. As IFF_NOARP is used
1881 	 * to turn off for all the logicals, it is here instead
1882 	 * of the ipif.
1883 	 */
1884 	mblk_t			*ill_arp_on_mp;
1885 	/* Peer ill of an IPMP move operation */
1886 	struct ill_s		*ill_move_peer;
1887 
1888 	phyint_t		*ill_phyint;
1889 	uint64_t		ill_flags;
1890 	ill_group_t		*ill_group;
1891 	struct ill_s		*ill_group_next;
1892 	/*
1893 	 * Reverse tunnel related count. This count
1894 	 * determines how many mobile nodes are using this
1895 	 * ill to send packet to reverse tunnel via foreign
1896 	 * agent. A non-zero count specifies presence of
1897 	 * mobile node(s) using reverse tunnel through this
1898 	 * interface.
1899 	 */
1900 	uint32_t		ill_mrtun_refcnt;
1901 
1902 	/*
1903 	 * This count is bumped up when a route is added with
1904 	 * RTA_SRCIFP bit flag using routing socket.
1905 	 */
1906 	uint32_t		ill_srcif_refcnt;
1907 	/*
1908 	 * Pointer to the special interface based routing table.
1909 	 * This routing table is created dynamically when RTA_SRCIFP
1910 	 * is set by the routing socket.
1911 	 */
1912 	irb_t			*ill_srcif_table;
1913 	kmutex_t	ill_lock;	/* Please see table below */
1914 	/*
1915 	 * The ill_nd_lla* fields handle the link layer address option
1916 	 * from neighbor discovery. This is used for external IPv6
1917 	 * address resolution.
1918 	 */
1919 	mblk_t		*ill_nd_lla_mp;	/* mblk which holds ill_nd_lla */
1920 	uint8_t		*ill_nd_lla;	/* Link Layer Address */
1921 	uint_t		ill_nd_lla_len;	/* Link Layer Address length */
1922 	/*
1923 	 * We now have 3 phys_addr_req's sent down. This field keeps track
1924 	 * of which one is pending.
1925 	 */
1926 	t_uscalar_t	ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1927 	/*
1928 	 * Used to save errors that occur during plumbing
1929 	 */
1930 	uint_t		ill_ifname_pending_err;
1931 	avl_node_t	ill_avl_byppa; /* avl node based on ppa */
1932 	void		*ill_fastpath_list; /* both ire and nce hang off this */
1933 	uint_t		ill_refcnt;	/* active refcnt by threads */
1934 	uint_t		ill_ire_cnt;	/* ires associated with this ill */
1935 	kcondvar_t	ill_cv;
1936 	uint_t		ill_ilm_walker_cnt;	/* snmp ilm walkers */
1937 	uint_t		ill_nce_cnt;	/* nces associated with this ill */
1938 	uint_t		ill_waiters;	/* threads waiting in ipsq_enter */
1939 	/*
1940 	 * Contains the upper read queue pointer of the module immediately
1941 	 * beneath IP.  This field allows IP to validate sub-capability
1942 	 * acknowledgments coming up from downstream.
1943 	 */
1944 	queue_t		*ill_lmod_rq;	/* read queue pointer of module below */
1945 	uint_t		ill_lmod_cnt;	/* number of modules beneath IP */
1946 	ip_m_t		*ill_media;	/* media specific params/functions */
1947 	t_uscalar_t	ill_dlpi_pending; /* Last DLPI primitive issued */
1948 	uint_t		ill_usesrc_ifindex; /* use src addr from this ILL */
1949 	struct ill_s	*ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1950 #ifdef ILL_DEBUG
1951 	th_trace_t	*ill_trace[IP_TR_HASH_MAX];
1952 	boolean_t	ill_trace_disable;	/* True when alloc fails */
1953 #endif
1954 } ill_t;
1955 
1956 extern	void	ill_delete_glist(ill_t *);
1957 
1958 /*
1959  * The following table lists the protection levels of the various members
1960  * of the ill_t. Same notation as that used for ipif_t above is used.
1961  *
1962  *				Write			Read
1963  *
1964  * ill_ifptr			ill_g_lock + s		Write once
1965  * ill_rq			ipsq			Write once
1966  * ill_wq			ipsq			Write once
1967  *
1968  * ill_error			ipsq			None
1969  * ill_ipif			ill_g_lock + ipsq	ill_g_lock OR ipsq
1970  * ill_ipif_up_count		ill_lock + ipsq		ill_lock
1971  * ill_max_frag			ipsq			Write once
1972  *
1973  * ill_name			ill_g_lock + ipsq		Write once
1974  * ill_name_length		ill_g_lock + ipsq		Write once
1975  * ill_ndd_name			ipsq			Write once
1976  * ill_net_type			ipsq			Write once
1977  * ill_ppa			ill_g_lock + ipsq		Write once
1978  * ill_sap			ipsq + down ill		Write once
1979  * ill_sap_length		ipsq + down ill		Write once
1980  * ill_phys_addr_length		ipsq + down ill		Write once
1981  *
1982  * ill_bcast_addr_length	ipsq			ipsq
1983  * ill_mactype			ipsq			ipsq
1984  * ill_frag_ptr			ipsq			ipsq
1985  *
1986  * ill_frag_timer_id		ill_lock		ill_lock
1987  * ill_frag_hash_tbl		ipsq			up ill
1988  * ill_ilm			ipsq + ill_lock		ill_lock
1989  * ill_mcast_type		ill_lock		ill_lock
1990  * ill_mcast_v1_time		ill_lock		ill_lock
1991  * ill_mcast_v2_time		ill_lock		ill_lock
1992  * ill_mcast_v1_tset		ill_lock		ill_lock
1993  * ill_mcast_v2_tset		ill_lock		ill_lock
1994  * ill_mcast_rv			ill_lock		ill_lock
1995  * ill_mcast_qi			ill_lock		ill_lock
1996  * ill_pending_mp		ill_lock		ill_lock
1997  *
1998  * ill_bcast_mp			ipsq			ipsq
1999  * ill_resolver_mp		ipsq			only when ill is up
2000  * ill_down_mp			ipsq			ipsq
2001  * ill_dlpi_deferred		ipsq			ipsq
2002  * ill_phys_addr_mp		ipsq			ipsq
2003  * ill_phys_addr		ipsq			up ill
2004  * ill_ick			ipsq + down ill		only when ill is up
2005  *
2006  * ill_state_flags		ill_lock		ill_lock
2007  * exclusive bit flags		ipsq_t			ipsq_t
2008  * shared bit flags		ill_lock		ill_lock
2009  *
2010  * ill_arp_muxid		ipsq			Not atomic
2011  * ill_ip_muxid			ipsq			Not atomic
2012  *
2013  * ill_ipf_gen			Not atomic
2014  * ill_frag_count		Approx. not protected
2015  * ill_type			ipsq + down ill		only when ill is up
2016  * ill_dlpi_multicast_state	ill_lock		ill_lock
2017  * ill_dlpi_fastpath_state	ill_lock		ill_lock
2018  * ill_max_hops			ipsq			Not atomic
2019  *
2020  * ill_max_mtu
2021  *
2022  * ill_reachable_time		ipsq + ill_lock		ill_lock
2023  * ill_reachable_retrans_time	ipsq  + ill_lock		ill_lock
2024  * ill_max_buf			ipsq + ill_lock		ill_lock
2025  *
2026  * Next 2 fields need ill_lock because of the get ioctls. They should not
2027  * report partially updated results without executing in the ipsq.
2028  * ill_token			ipsq + ill_lock		ill_lock
2029  * ill_token_length		ipsq + ill_lock		ill_lock
2030  * ill_xmit_count		ipsq + down ill		write once
2031  * ill_ip6_mib			ipsq + down ill		only when ill is up
2032  * ill_icmp6_mib		ipsq + down ill		only when ill is up
2033  * ill_arp_down_mp		ipsq			ipsq
2034  * ill_arp_del_mapping_mp	ipsq			ipsq
2035  * ill_arp_on_mp		ipsq			ipsq
2036  * ill_move_peer		ipsq			ipsq
2037  *
2038  * ill_phyint			ipsq, ill_g_lock, ill_lock	Any of them
2039  * ill_flags			ill_lock		ill_lock
2040  * ill_group			ipsq, ill_g_lock, ill_lock	Any of them
2041  * ill_group_next		ipsq, ill_g_lock, ill_lock	Any of them
2042  * ill_mrtun_refcnt		ill_lock		ill_lock
2043  * ill_srcif_refcnt		ill_lock		ill_lock
2044  * ill_srcif_table		ill_lock		ill_lock
2045  * ill_nd_lla_mp		ill_lock		ill_lock
2046  * ill_nd_lla			ill_lock		ill_lock
2047  * ill_nd_lla_len		ill_lock		ill_lock
2048  * ill_phys_addr_pend		ipsq + down ill		only when ill is up
2049  * ill_ifname_pending_err	ipsq			ipsq
2050  * ill_avl_byppa		ipsq, ill_g_lock		Write once
2051  *
2052  * ill_fastpath_list		ill_lock		ill_lock
2053  * ill_refcnt			ill_lock		ill_lock
2054  * ill_ire_cnt			ill_lock		ill_lock
2055  * ill_cv			ill_lock		ill_lock
2056  * ill_ilm_walker_cnt		ill_lock		ill_lock
2057  * ill_nce_cnt			ill_lock		ill_lock
2058  * ill_trace			ill_lock		ill_lock
2059  * ill_usesrc_grp_next		ill_g_usesrc_lock	ill_g_usesrc_lock
2060  */
2061 
2062 /*
2063  * For ioctl restart mechanism see ip_reprocess_ioctl()
2064  */
2065 struct ip_ioctl_cmd_s;
2066 
2067 typedef	int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
2068     struct ip_ioctl_cmd_s *, void *);
2069 
2070 typedef struct ip_ioctl_cmd_s {
2071 	int	ipi_cmd;
2072 	size_t	ipi_copyin_size;
2073 	uint_t	ipi_flags;
2074 	uint_t	ipi_cmd_type;
2075 	ifunc_t	ipi_func;
2076 	ifunc_t	ipi_func_restart;
2077 } ip_ioctl_cmd_t;
2078 
2079 /*
2080  * ipi_cmd_type:
2081  *
2082  * IF_CMD		1	old style ifreq cmd
2083  * LIF_CMD		2	new style lifreq cmd
2084  * MISC_CMD		3	Misc. (non [l]ifreq, tun) cmds
2085  * TUN_CMD		4	tunnel related
2086  */
2087 
2088 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD };
2089 
2090 #define	IPI_DONTCARE	0	/* For ioctl encoded values that don't matter */
2091 
2092 /* Flag values in ipi_flags */
2093 #define	IPI_PRIV	0x1		/* Root only command */
2094 #define	IPI_MODOK	0x2		/* Permitted on mod instance of IP */
2095 #define	IPI_WR		0x4		/* Need to grab writer access */
2096 #define	IPI_GET_CMD	0x8		/* branch to mi_copyout on success */
2097 #define	IPI_REPL	0x10	/* valid for replacement ipif created in MOVE */
2098 #define	IPI_NULL_BCONT	0x20	/* ioctl has not data and hence no b_cont */
2099 #define	IPI_PASS_DOWN	0x40	/* pass this ioctl down when a module only */
2100 
2101 extern ip_ioctl_cmd_t	ip_ndx_ioctl_table[];
2102 extern ip_ioctl_cmd_t	ip_misc_ioctl_table[];
2103 extern int ip_ndx_ioctl_count;
2104 extern int ip_misc_ioctl_count;
2105 
2106 #define	ILL_CLEAR_MOVE(ill) {				\
2107 	ill_t *peer_ill;				\
2108 							\
2109 	peer_ill = (ill)->ill_move_peer;		\
2110 	ASSERT(peer_ill != NULL);			\
2111 	(ill)->ill_move_in_progress = B_FALSE;		\
2112 	peer_ill->ill_move_in_progress = B_FALSE;	\
2113 	(ill)->ill_move_peer = NULL;			\
2114 	peer_ill->ill_move_peer = NULL;			\
2115 }
2116 /* The 2 ill's are same or belong to the same IPMP group */
2117 #define	SAME_IPMP_GROUP(ill_1, ill_2)			\
2118 	(((ill_1)->ill_group != NULL) &&		\
2119 	    ((ill_1)->ill_group == (ill_2)->ill_group))
2120 
2121 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2122 typedef struct ipmx_s {
2123 	char	ipmx_name[LIFNAMSIZ];		/* if name */
2124 	uint_t
2125 		ipmx_arpdev_stream : 1,		/* This is the arp stream */
2126 		ipmx_notused : 31;
2127 } ipmx_t;
2128 
2129 /*
2130  * State for detecting if a driver supports certain features.
2131  * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2132  * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2133  */
2134 #define	IDMS_UNKNOWN	0	/* No DL_ENABMULTI_REQ sent */
2135 #define	IDMS_INPROGRESS	1	/* Sent DL_ENABMULTI_REQ */
2136 #define	IDMS_OK		2	/* DL_ENABMULTI_REQ ok */
2137 #define	IDMS_FAILED	3	/* DL_ENABMULTI_REQ failed */
2138 #define	IDMS_RENEG	4	/* Driver asked for a renegotiation */
2139 
2140 /* Named Dispatch Parameter Management Structure */
2141 typedef struct ipparam_s {
2142 	uint_t	ip_param_min;
2143 	uint_t	ip_param_max;
2144 	uint_t	ip_param_value;
2145 	char	*ip_param_name;
2146 } ipparam_t;
2147 
2148 /* Extended NDP Management Structure */
2149 typedef struct ipndp_s {
2150 	ndgetf_t	ip_ndp_getf;
2151 	ndsetf_t	ip_ndp_setf;
2152 	caddr_t		ip_ndp_data;
2153 	char		*ip_ndp_name;
2154 } ipndp_t;
2155 
2156 /*
2157  * The kernel stores security attributes of all gateways in a database made
2158  * up of one or more tsol_gcdb_t elements.  Each tsol_gcdb_t contains the
2159  * security-related credentials of the gateway.  More than one gateways may
2160  * share entries in the database.
2161  *
2162  * The tsol_gc_t structure represents the gateway to credential association,
2163  * and refers to an entry in the database.  One or more tsol_gc_t entities are
2164  * grouped together to form one or more tsol_gcgrp_t, each representing the
2165  * list of security attributes specific to the gateway.  A gateway may be
2166  * associated with at most one credentials group.
2167  */
2168 struct tsol_gcgrp_s;
2169 
2170 extern uchar_t	ip6opt_ls;	/* TX IPv6 enabler */
2171 
2172 /*
2173  * Gateway security credential record.
2174  */
2175 typedef struct tsol_gcdb_s {
2176 	uint_t		gcdb_refcnt;	/* reference count */
2177 	struct rtsa_s	gcdb_attr;	/* security attributes */
2178 #define	gcdb_mask	gcdb_attr.rtsa_mask
2179 #define	gcdb_doi	gcdb_attr.rtsa_doi
2180 #define	gcdb_slrange	gcdb_attr.rtsa_slrange
2181 } tsol_gcdb_t;
2182 
2183 /*
2184  * Gateway to credential association.
2185  */
2186 typedef struct tsol_gc_s {
2187 	uint_t		gc_refcnt;	/* reference count */
2188 	struct tsol_gcgrp_s *gc_grp;	/* pointer to group */
2189 	struct tsol_gc_s *gc_prev;	/* previous in list */
2190 	struct tsol_gc_s *gc_next;	/* next in list */
2191 	tsol_gcdb_t	*gc_db;		/* pointer to actual credentials */
2192 } tsol_gc_t;
2193 
2194 /*
2195  * Gateway credentials group address.
2196  */
2197 typedef struct tsol_gcgrp_addr_s {
2198 	int		ga_af;		/* address family */
2199 	in6_addr_t	ga_addr;	/* IPv4 mapped or IPv6 address */
2200 } tsol_gcgrp_addr_t;
2201 
2202 /*
2203  * Gateway credentials group.
2204  */
2205 typedef struct tsol_gcgrp_s {
2206 	uint_t		gcgrp_refcnt;	/* reference count */
2207 	krwlock_t	gcgrp_rwlock;	/* lock to protect following */
2208 	uint_t		gcgrp_count;	/* number of credentials */
2209 	tsol_gc_t	*gcgrp_head;	/* first credential in list */
2210 	tsol_gc_t	*gcgrp_tail;	/* last credential in list */
2211 	tsol_gcgrp_addr_t gcgrp_addr;	/* next-hop gateway address */
2212 } tsol_gcgrp_t;
2213 
2214 extern kmutex_t gcgrp_lock;
2215 
2216 #define	GC_REFRELE(p) {				\
2217 	ASSERT((p)->gc_grp != NULL);		\
2218 	rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
2219 	ASSERT((p)->gc_refcnt > 0);		\
2220 	if (--((p)->gc_refcnt) == 0)		\
2221 		gc_inactive(p);			\
2222 	else					\
2223 		rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
2224 }
2225 
2226 #define	GCGRP_REFHOLD(p) {			\
2227 	mutex_enter(&gcgrp_lock);		\
2228 	++((p)->gcgrp_refcnt);			\
2229 	ASSERT((p)->gcgrp_refcnt != 0);		\
2230 	mutex_exit(&gcgrp_lock);		\
2231 }
2232 
2233 #define	GCGRP_REFRELE(p) {			\
2234 	mutex_enter(&gcgrp_lock);		\
2235 	ASSERT((p)->gcgrp_refcnt > 0);		\
2236 	if (--((p)->gcgrp_refcnt) == 0)		\
2237 		gcgrp_inactive(p);		\
2238 	ASSERT(MUTEX_HELD(&gcgrp_lock));	\
2239 	mutex_exit(&gcgrp_lock);		\
2240 }
2241 
2242 /*
2243  * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
2244  */
2245 struct tsol_tnrhc;
2246 
2247 typedef struct tsol_ire_gw_secattr_s {
2248 	kmutex_t	igsa_lock;	/* lock to protect following */
2249 	struct tsol_tnrhc *igsa_rhc;	/* host entry for gateway */
2250 	tsol_gc_t	*igsa_gc;	/* for prefix IREs */
2251 	tsol_gcgrp_t	*igsa_gcgrp;	/* for cache IREs */
2252 } tsol_ire_gw_secattr_t;
2253 
2254 /*
2255  * Following are the macros to increment/decrement the reference
2256  * count of the IREs and IRBs (ire bucket).
2257  *
2258  * 1) We bump up the reference count of an IRE to make sure that
2259  *    it does not get deleted and freed while we are using it.
2260  *    Typically all the lookup functions hold the bucket lock,
2261  *    and look for the IRE. If it finds an IRE, it bumps up the
2262  *    reference count before dropping the lock. Sometimes we *may* want
2263  *    to bump up the reference count after we *looked* up i.e without
2264  *    holding the bucket lock. So, the IRE_REFHOLD macro does not assert
2265  *    on the bucket lock being held. Any thread trying to delete from
2266  *    the hash bucket can still do so but cannot free the IRE if
2267  *    ire_refcnt is not 0.
2268  *
2269  * 2) We bump up the reference count on the bucket where the IRE resides
2270  *    (IRB), when we want to prevent the IREs getting deleted from a given
2271  *    hash bucket. This makes life easier for ire_walk type functions which
2272  *    wants to walk the IRE list, call a function, but needs to drop
2273  *    the bucket lock to prevent recursive rw_enters. While the
2274  *    lock is dropped, the list could be changed by other threads or
2275  *    the same thread could end up deleting the ire or the ire pointed by
2276  *    ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as
2277  *    a delete will still remove the ire from the bucket while we have
2278  *    dropped the lock and hence the ire_next would be NULL. Thus, we
2279  *    need a mechanism to prevent deletions from a given bucket.
2280  *
2281  *    To prevent deletions, we bump up the reference count on the
2282  *    bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED
2283  *    both on the ire's ire_marks and the bucket's irb_marks. When the
2284  *    reference count on the bucket drops to zero, all the CONDEMNED ires
2285  *    are deleted. We don't have to bump up the reference count on the
2286  *    bucket if we are walking the bucket and never have to drop the bucket
2287  *    lock. Note that IRB_REFHOLD does not prevent addition of new ires
2288  *    in the list. It is okay because addition of new ires will not cause
2289  *    ire_next to point to freed memory. We do IRB_REFHOLD only when
2290  *    all of the 3 conditions are true :
2291  *
2292  *    1) The code needs to walk the IRE bucket from start to end.
2293  *    2) It may have to drop the bucket lock sometimes while doing (1)
2294  *    3) It does not want any ires to be deleted meanwhile.
2295  */
2296 
2297 /*
2298  * Bump up the reference count on the IRE. We cannot assert that the
2299  * bucket lock is being held as it is legal to bump up the reference
2300  * count after the first lookup has returned the IRE without
2301  * holding the lock. Currently ip_wput does this for caching IRE_CACHEs.
2302  */
2303 
2304 #ifndef IRE_DEBUG
2305 
2306 #define	IRE_REFHOLD_NOTR(ire)	IRE_REFHOLD(ire)
2307 #define	IRE_UNTRACE_REF(ire)
2308 #define	IRE_TRACE_REF(ire)
2309 
2310 #else
2311 
2312 #define	IRE_REFHOLD_NOTR(ire) {				\
2313 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2314 	ASSERT((ire)->ire_refcnt != 0);			\
2315 }
2316 
2317 #define	IRE_UNTRACE_REF(ire)	ire_untrace_ref(ire);
2318 #define	IRE_TRACE_REF(ire)	ire_trace_ref(ire);
2319 #endif
2320 
2321 #define	IRE_REFHOLD(ire) {				\
2322 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2323 	ASSERT((ire)->ire_refcnt != 0);			\
2324 	IRE_TRACE_REF(ire);				\
2325 }
2326 
2327 #define	IRE_REFHOLD_LOCKED(ire)	{			\
2328 	IRE_TRACE_REF(ire);				\
2329 	(ire)->ire_refcnt++;				\
2330 }
2331 
2332 /*
2333  * Decrement the reference count on the IRE.
2334  * In architectures e.g sun4u, where atomic_add_32_nv is just
2335  * a cas, we need to maintain the right memory barrier semantics
2336  * as that of mutex_exit i.e all the loads and stores should complete
2337  * before the cas is executed. membar_exit() does that here.
2338  *
2339  * NOTE : This macro is used only in places where we want performance.
2340  *	  To avoid bloating the code, we use the function "ire_refrele"
2341  *	  which essentially calls the macro.
2342  */
2343 #ifndef IRE_DEBUG
2344 #define	IRE_REFRELE(ire) {					\
2345 	ASSERT((ire)->ire_refcnt != 0);				\
2346 	membar_exit();						\
2347 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2348 		ire_inactive(ire);				\
2349 }
2350 #define	IRE_REFRELE_NOTR(ire)	IRE_REFRELE(ire)
2351 #else
2352 #define	IRE_REFRELE(ire) {					\
2353 	if (ire->ire_bucket != NULL)				\
2354 		ire_untrace_ref(ire);				\
2355 	ASSERT((ire)->ire_refcnt != 0);				\
2356 	membar_exit();						\
2357 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2358 		ire_inactive(ire);				\
2359 }
2360 #define	IRE_REFRELE_NOTR(ire) {					\
2361 	ASSERT((ire)->ire_refcnt != 0);				\
2362 	membar_exit();						\
2363 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2364 		ire_inactive(ire);				\
2365 }
2366 #endif
2367 
2368 /*
2369  * Bump up the reference count on the hash bucket - IRB to
2370  * prevent ires from being deleted in this bucket.
2371  */
2372 #define	IRB_REFHOLD(irb) {				\
2373 	rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2374 	(irb)->irb_refcnt++;				\
2375 	ASSERT((irb)->irb_refcnt != 0);			\
2376 	rw_exit(&(irb)->irb_lock);			\
2377 }
2378 #define	IRB_REFHOLD_LOCKED(irb) {			\
2379 	ASSERT(RW_WRITE_HELD(&(irb)->irb_lock));	\
2380 	(irb)->irb_refcnt++;				\
2381 	ASSERT((irb)->irb_refcnt != 0);			\
2382 }
2383 
2384 void irb_refrele_ftable(irb_t *);
2385 /*
2386  * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t
2387  * is statically allocated, so that when the irb_refcnt goes to 0,
2388  * we simply clean up the ire list and continue.
2389  */
2390 #define	IRB_REFRELE(irb) {				\
2391 	if ((irb)->irb_marks & IRB_MARK_FTABLE) {	\
2392 		irb_refrele_ftable((irb));		\
2393 	} else {					\
2394 		rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2395 		ASSERT((irb)->irb_refcnt != 0);			\
2396 		if (--(irb)->irb_refcnt	== 0 &&			\
2397 		    ((irb)->irb_marks & IRE_MARK_CONDEMNED)) {	\
2398 			ire_t *ire_list;			\
2399 								\
2400 			ire_list = ire_unlink(irb);		\
2401 			rw_exit(&(irb)->irb_lock);		\
2402 			ASSERT(ire_list != NULL);		\
2403 			ire_cleanup(ire_list);			\
2404 		} else {					\
2405 			rw_exit(&(irb)->irb_lock);		\
2406 		}						\
2407 	}							\
2408 }
2409 
2410 extern struct kmem_cache *rt_entry_cache;
2411 
2412 /*
2413  * Lock the fast path mp for access, since the fp_mp can be deleted
2414  * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN
2415  */
2416 
2417 #define	LOCK_IRE_FP_MP(ire) {				\
2418 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2419 		    (ire)->ire_type == IRE_MIPRTUN)	\
2420 			mutex_enter(&ire->ire_nce->nce_lock);	\
2421 	}
2422 #define	UNLOCK_IRE_FP_MP(ire) {				\
2423 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2424 		    (ire)->ire_type == IRE_MIPRTUN)	\
2425 			mutex_exit(&ire->ire_nce->nce_lock);	\
2426 	}
2427 
2428 typedef struct ire4 {
2429 	ipaddr_t ire4_src_addr;		/* Source address to use. */
2430 	ipaddr_t ire4_mask;		/* Mask for matching this IRE. */
2431 	ipaddr_t ire4_addr;		/* Address this IRE represents. */
2432 	ipaddr_t ire4_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2433 	ipaddr_t ire4_cmask;		/* Mask from parent prefix route */
2434 } ire4_t;
2435 
2436 typedef struct ire6 {
2437 	in6_addr_t ire6_src_addr;	/* Source address to use. */
2438 	in6_addr_t ire6_mask;		/* Mask for matching this IRE. */
2439 	in6_addr_t ire6_addr;		/* Address this IRE represents. */
2440 	in6_addr_t ire6_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2441 	in6_addr_t ire6_cmask;		/* Mask from parent prefix route */
2442 } ire6_t;
2443 
2444 typedef union ire_addr {
2445 	ire6_t	ire6_u;
2446 	ire4_t	ire4_u;
2447 } ire_addr_u_t;
2448 
2449 /* Internet Routing Entry */
2450 typedef struct ire_s {
2451 	struct	ire_s	*ire_next;	/* The hash chain must be first. */
2452 	struct	ire_s	**ire_ptpn;	/* Pointer to previous next. */
2453 	uint32_t	ire_refcnt;	/* Number of references */
2454 	mblk_t		*ire_mp;	/* Non-null if allocated as mblk */
2455 	queue_t		*ire_rfq;	/* recv from this queue */
2456 	queue_t		*ire_stq;	/* send to this queue */
2457 	union {
2458 		uint_t	*max_fragp;	/* Used only during ire creation */
2459 		uint_t	max_frag;	/* MTU (next hop or path). */
2460 	} imf_u;
2461 #define	ire_max_frag	imf_u.max_frag
2462 #define	ire_max_fragp	imf_u.max_fragp
2463 	uint32_t	ire_frag_flag;	/* IPH_DF or zero. */
2464 	uint32_t	ire_ident;	/* Per IRE IP ident. */
2465 	uint32_t	ire_tire_mark;	/* Used for reclaim of unused. */
2466 	uchar_t		ire_ipversion;	/* IPv4/IPv6 version */
2467 	uchar_t		ire_marks;	/* IRE_MARK_CONDEMNED etc. */
2468 	ushort_t	ire_type;	/* Type of IRE */
2469 	uint_t	ire_ib_pkt_count;	/* Inbound packets for ire_addr */
2470 	uint_t	ire_ob_pkt_count;	/* Outbound packets to ire_addr */
2471 	uint_t	ire_ll_hdr_length;	/* Non-zero if we do M_DATA prepends */
2472 	time_t	ire_create_time;	/* Time (in secs) IRE was created. */
2473 	uint32_t	ire_phandle;	/* Associate prefix IREs to cache */
2474 	uint32_t	ire_ihandle;	/* Associate interface IREs to cache */
2475 	ipif_t		*ire_ipif;	/* the interface that this ire uses */
2476 	uint32_t	ire_flags;	/* flags related to route (RTF_*) */
2477 	uint_t	ire_ipsec_overhead;	/* IPSEC overhead */
2478 	/*
2479 	 * Neighbor Cache Entry for IPv6; arp info for IPv4
2480 	 */
2481 	struct	nce_s	*ire_nce;
2482 	uint_t		ire_masklen;	/* # bits in ire_mask{,_v6} */
2483 	ire_addr_u_t	ire_u;		/* IPv4/IPv6 address info. */
2484 
2485 	irb_t		*ire_bucket;	/* Hash bucket when ire_ptphn is set */
2486 	iulp_t		ire_uinfo;	/* Upper layer protocol info. */
2487 	/*
2488 	 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag.
2489 	 */
2490 	kmutex_t	ire_lock;
2491 	uint_t		ire_ipif_seqid; /* ipif_seqid of ire_ipif */
2492 	/*
2493 	 * For regular routes in forwarding table and cache table the
2494 	 * the following entries are NULL/zero. Only reverse tunnel
2495 	 * table and interface based forwarding table use these fields.
2496 	 * Routes added with RTA_SRCIFP and RTA_SRC respectively have
2497 	 * non-zero values for the following fields.
2498 	 */
2499 	ill_t		*ire_in_ill;	/* Incoming ill interface */
2500 	ipaddr_t	ire_in_src_addr;
2501 					/* source ip-addr of incoming packet */
2502 	clock_t		ire_last_used_time;	/* Last used time */
2503 	struct ire_s 	*ire_fastpath;	/* Pointer to next ire in fastpath */
2504 	zoneid_t	ire_zoneid;	/* for local address discrimination */
2505 	tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
2506 #ifdef IRE_DEBUG
2507 	th_trace_t	*ire_trace[IP_TR_HASH_MAX];
2508 	boolean_t	ire_trace_disable;	/* True when alloc fails */
2509 #endif
2510 	/*
2511 	 * ire's that are embedded inside mblk_t and sent to the external
2512 	 * resolver use the ire_stq_ifindex to track the ifindex of the
2513 	 * ire_stq, so that the ill (if it exists) can be correctly recovered
2514 	 * for cleanup in the esbfree routine when arp failure occurs
2515 	 */
2516 	uint_t	ire_stq_ifindex;
2517 } ire_t;
2518 
2519 /* IPv4 compatiblity macros */
2520 #define	ire_src_addr		ire_u.ire4_u.ire4_src_addr
2521 #define	ire_mask		ire_u.ire4_u.ire4_mask
2522 #define	ire_addr		ire_u.ire4_u.ire4_addr
2523 #define	ire_gateway_addr	ire_u.ire4_u.ire4_gateway_addr
2524 #define	ire_cmask		ire_u.ire4_u.ire4_cmask
2525 
2526 #define	ire_src_addr_v6		ire_u.ire6_u.ire6_src_addr
2527 #define	ire_mask_v6		ire_u.ire6_u.ire6_mask
2528 #define	ire_addr_v6		ire_u.ire6_u.ire6_addr
2529 #define	ire_gateway_addr_v6	ire_u.ire6_u.ire6_gateway_addr
2530 #define	ire_cmask_v6		ire_u.ire6_u.ire6_cmask
2531 
2532 /* Convenient typedefs for sockaddrs */
2533 typedef	struct sockaddr_in	sin_t;
2534 typedef	struct sockaddr_in6	sin6_t;
2535 
2536 /* Address structure used for internal bind with IP */
2537 typedef struct ipa_conn_s {
2538 	ipaddr_t	ac_laddr;
2539 	ipaddr_t	ac_faddr;
2540 	uint16_t	ac_fport;
2541 	uint16_t	ac_lport;
2542 } ipa_conn_t;
2543 
2544 typedef struct ipa6_conn_s {
2545 	in6_addr_t	ac6_laddr;
2546 	in6_addr_t	ac6_faddr;
2547 	uint16_t	ac6_fport;
2548 	uint16_t	ac6_lport;
2549 } ipa6_conn_t;
2550 
2551 /*
2552  * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's
2553  * bind handler.
2554  */
2555 typedef struct ipa_conn_extended_s {
2556 	uint64_t	acx_flags;
2557 	ipa_conn_t	acx_conn;
2558 } ipa_conn_x_t;
2559 
2560 typedef struct ipa6_conn_extended_s {
2561 	uint64_t	ac6x_flags;
2562 	ipa6_conn_t	ac6x_conn;
2563 } ipa6_conn_x_t;
2564 
2565 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */
2566 #define	ACX_VERIFY_DST	0x1ULL	/* verify destination address is reachable */
2567 
2568 /* Name/Value Descriptor. */
2569 typedef struct nv_s {
2570 	uint64_t nv_value;
2571 	char	*nv_name;
2572 } nv_t;
2573 
2574 /* IP Forwarding Ticket */
2575 typedef	struct ipftk_s {
2576 	queue_t	*ipftk_queue;
2577 	ipaddr_t ipftk_dst;
2578 } ipftk_t;
2579 
2580 typedef struct ipt_s {
2581 	pfv_t	func;		/* Routine to call */
2582 	uchar_t	*arg;		/* ire or nce passed in */
2583 } ipt_t;
2584 
2585 #define	ILL_FRAG_HASH(s, i) \
2586 	((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)
2587 
2588 /*
2589  * The MAX number of allowed fragmented packets per hash bucket
2590  * calculation is based on the most common mtu size of 1500. This limit
2591  * will work well for other mtu sizes as well.
2592  */
2593 #define	COMMON_IP_MTU 1500
2594 #define	MAX_FRAG_MIN 10
2595 #define	MAX_FRAG_PKTS	\
2596 	MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \
2597 	    (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))
2598 
2599 /*
2600  * Maximum dups allowed per packet.
2601  */
2602 extern uint_t ip_max_frag_dups;
2603 
2604 /*
2605  * Per-packet information for received packets and transmitted.
2606  * Used by the transport protocols when converting between the packet
2607  * and ancillary data and socket options.
2608  *
2609  * Note: This private data structure and related IPPF_* constant
2610  * definitions are exposed to enable compilation of some debugging tools
2611  * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2612  * a temporary hack and long term alternate interfaces should be defined
2613  * to support the needs of such tools and private definitions moved to
2614  * private headers.
2615  */
2616 struct ip6_pkt_s {
2617 	uint_t		ipp_fields;		/* Which fields are valid */
2618 	uint_t		ipp_sticky_ignored;	/* sticky fields to ignore */
2619 	uint_t		ipp_ifindex;		/* pktinfo ifindex */
2620 	in6_addr_t	ipp_addr;		/* pktinfo src/dst addr */
2621 	uint_t		ipp_unicast_hops;	/* IPV6_UNICAST_HOPS */
2622 	uint_t		ipp_multicast_hops;	/* IPV6_MULTICAST_HOPS */
2623 	uint_t		ipp_hoplimit;		/* IPV6_HOPLIMIT */
2624 	uint_t		ipp_hopoptslen;
2625 	uint_t		ipp_rtdstoptslen;
2626 	uint_t		ipp_rthdrlen;
2627 	uint_t		ipp_dstoptslen;
2628 	uint_t		ipp_pathmtulen;
2629 	ip6_hbh_t	*ipp_hopopts;
2630 	ip6_dest_t	*ipp_rtdstopts;
2631 	ip6_rthdr_t	*ipp_rthdr;
2632 	ip6_dest_t	*ipp_dstopts;
2633 	struct ip6_mtuinfo *ipp_pathmtu;
2634 	in6_addr_t	ipp_nexthop;		/* Transmit only */
2635 	uint8_t		ipp_tclass;
2636 	int8_t		ipp_use_min_mtu;
2637 };
2638 typedef struct ip6_pkt_s ip6_pkt_t;
2639 
2640 extern void ip6_pkt_free(ip6_pkt_t *);	/* free storage inside ip6_pkt_t */
2641 
2642 /*
2643  * This structure is used to convey information from IP and the ULP.
2644  * Currently used for the IP_RECVSLLA and IP_RECVIF options. The
2645  * type of information field is set to IN_PKTINFO (i.e inbound pkt info)
2646  */
2647 typedef struct in_pktinfo {
2648 	uint32_t		in_pkt_ulp_type;	/* type of info sent */
2649 							/* to UDP */
2650 	uint32_t		in_pkt_flags;	/* what is sent up by IP */
2651 	uint32_t		in_pkt_ifindex;	/* inbound interface index */
2652 	struct sockaddr_dl	in_pkt_slla;	/* has source link layer addr */
2653 } in_pktinfo_t;
2654 
2655 /*
2656  * flags to tell UDP what IP is sending; in_pkt_flags
2657  */
2658 #define	IPF_RECVIF	0x01	/* inbound interface index */
2659 #define	IPF_RECVSLLA	0x02	/* source link layer address */
2660 
2661 /* ipp_fields values */
2662 #define	IPPF_IFINDEX	0x0001	/* Part of in6_pktinfo: ifindex */
2663 #define	IPPF_ADDR	0x0002	/* Part of in6_pktinfo: src/dst addr */
2664 #define	IPPF_SCOPE_ID	0x0004	/* Add xmit ip6i_t for sin6_scope_id */
2665 #define	IPPF_NO_CKSUM	0x0008	/* Add xmit ip6i_t for IP6I_NO_*_CKSUM */
2666 
2667 #define	IPPF_RAW_CKSUM	0x0010	/* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */
2668 #define	IPPF_HOPLIMIT	0x0020
2669 #define	IPPF_HOPOPTS	0x0040
2670 #define	IPPF_RTHDR	0x0080
2671 
2672 #define	IPPF_RTDSTOPTS	0x0100
2673 #define	IPPF_DSTOPTS	0x0200
2674 #define	IPPF_NEXTHOP	0x0400
2675 #define	IPPF_PATHMTU	0x0800
2676 
2677 #define	IPPF_TCLASS	0x1000
2678 #define	IPPF_DONTFRAG	0x2000
2679 #define	IPPF_USE_MIN_MTU	0x04000
2680 #define	IPPF_MULTICAST_HOPS	0x08000
2681 #define	IPPF_UNICAST_HOPS	0x10000
2682 
2683 #define	IPPF_HAS_IP6I \
2684 	(IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \
2685 	IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \
2686 	IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS)
2687 
2688 #define	TCP_PORTS_OFFSET	0
2689 #define	UDP_PORTS_OFFSET	0
2690 
2691 /*
2692  * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2693  * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2694  * after calling these macros. This ensures that the refcnt on the ipif or
2695  * ill will eventually drop down to zero.
2696  */
2697 #define	ILL_LOOKUP_FAILED	1	/* Used as error code */
2698 #define	IPIF_LOOKUP_FAILED	2	/* Used as error code */
2699 
2700 #define	ILL_CAN_LOOKUP(ill) 						\
2701 	(!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) ||	\
2702 	IAM_WRITER_ILL(ill))
2703 
2704 #define	ILL_CAN_WAIT(ill, q)	\
2705 	(((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED)))
2706 
2707 #define	ILL_CAN_LOOKUP_WALKER(ill)	\
2708 	(!((ill)->ill_state_flags & ILL_CONDEMNED))
2709 
2710 #define	IPIF_CAN_LOOKUP(ipif)						\
2711 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \
2712 	IAM_WRITER_IPIF(ipif))
2713 
2714 /*
2715  * If the parameter 'q' is NULL, the caller is not interested in wait and
2716  * restart of the operation if the ILL or IPIF cannot be looked up when it is
2717  * marked as 'CHANGING'. Typically a thread that tries to send out data  will
2718  * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and
2719  * in this case 'q' is NULL
2720  */
2721 #define	IPIF_CAN_WAIT(ipif, q)	\
2722 	(((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED)))
2723 
2724 #define	IPIF_CAN_LOOKUP_WALKER(ipif)					\
2725 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) ||		\
2726 	IAM_WRITER_IPIF(ipif))
2727 
2728 /*
2729  * These macros are used by critical set ioctls and failover ioctls to
2730  * mark the ipif appropriately before starting the operation and to clear the
2731  * marks after completing the operation.
2732  */
2733 #define	IPIF_UNMARK_MOVING(ipif)                                \
2734 	(ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING;
2735 
2736 #define	ILL_UNMARK_CHANGING(ill)                                \
2737 	(ill)->ill_state_flags &= ~ILL_CHANGING;
2738 
2739 /* Macros used to assert that this thread is a writer  */
2740 #define	IAM_WRITER_IPSQ(ipsq)	((ipsq)->ipsq_writer == curthread)
2741 #define	IAM_WRITER_ILL(ill)					\
2742 	((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2743 #define	IAM_WRITER_IPIF(ipif)					\
2744 	((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2745 
2746 /*
2747  * Grab ill locks in the proper order. The order is highest addressed
2748  * ill is locked first.
2749  */
2750 #define	GRAB_ILL_LOCKS(ill_1, ill_2)				\
2751 {								\
2752 	if ((ill_1) > (ill_2)) {				\
2753 		if (ill_1 != NULL)				\
2754 			mutex_enter(&(ill_1)->ill_lock);	\
2755 		if (ill_2 != NULL)				\
2756 			mutex_enter(&(ill_2)->ill_lock);	\
2757 	} else {						\
2758 		if (ill_2 != NULL)				\
2759 			mutex_enter(&(ill_2)->ill_lock);	\
2760 		if (ill_1 != NULL && ill_1 != ill_2)		\
2761 			mutex_enter(&(ill_1)->ill_lock);	\
2762 	}							\
2763 }
2764 
2765 #define	RELEASE_ILL_LOCKS(ill_1, ill_2)		\
2766 {						\
2767 	if (ill_1 != NULL)			\
2768 		mutex_exit(&(ill_1)->ill_lock);	\
2769 	if (ill_2 != NULL && ill_2 != ill_1)	\
2770 		mutex_exit(&(ill_2)->ill_lock);	\
2771 }
2772 
2773 /* Get the other protocol instance ill */
2774 #define	ILL_OTHER(ill)						\
2775 	((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 :	\
2776 	    (ill)->ill_phyint->phyint_illv6)
2777 
2778 #define	MATCH_V4_ONLY	0x1
2779 #define	MATCH_V6_ONLY	0x2
2780 #define	MATCH_ILL_ONLY	0x4
2781 
2782 /* ioctl command info: Ioctl properties extracted and stored in here */
2783 typedef struct cmd_info_s
2784 {
2785 	char    ci_groupname[LIFNAMSIZ + 1];	/* SIOCSLIFGROUPNAME */
2786 	ipif_t  *ci_ipif;	/* ipif associated with [l]ifreq ioctl's */
2787 	sin_t	*ci_sin;	/* the sin struct passed down */
2788 	sin6_t	*ci_sin6;	/* the sin6_t struct passed down */
2789 	struct lifreq *ci_lifr;	/* the lifreq struct passed down */
2790 } cmd_info_t;
2791 
2792 extern krwlock_t ill_g_lock;
2793 extern kmutex_t ip_addr_avail_lock;
2794 extern ipsq_t	*ipsq_g_head;
2795 
2796 extern ill_t	*ip_timer_ill;		/* ILL for IRE expiration timer. */
2797 extern timeout_id_t ip_ire_expire_id;	/* IRE expiration timeout id. */
2798 extern timeout_id_t ip_ire_reclaim_id;	/* IRE recalaim timeout id. */
2799 
2800 extern kmutex_t	ip_mi_lock;
2801 extern krwlock_t ip_g_nd_lock;		/* For adding/removing nd variables */
2802 extern kmutex_t ip_trash_timer_lock;	/* Protects ip_ire_expire_id */
2803 
2804 extern kmutex_t igmp_timer_lock;	/* Protects the igmp timer */
2805 extern kmutex_t mld_timer_lock;		/* Protects the mld timer */
2806 
2807 extern krwlock_t ill_g_usesrc_lock;	/* Protects usesrc related fields */
2808 
2809 extern struct kmem_cache *ire_cache;
2810 
2811 extern uint_t	ip_redirect_cnt;	/* Num of redirect routes in ftable */
2812 
2813 extern ipaddr_t	ip_g_all_ones;
2814 extern caddr_t	ip_g_nd;		/* Named Dispatch List Head */
2815 
2816 extern uint_t	ip_loopback_mtu;
2817 
2818 extern ipparam_t	*ip_param_arr;
2819 
2820 extern int ip_g_forward;
2821 extern int ipv6_forward;
2822 extern vmem_t *ip_minor_arena;
2823 
2824 #define	ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value
2825 #define	ip_g_send_redirects		ip_param_arr[5].ip_param_value
2826 #define	ip_debug			ip_param_arr[7].ip_param_value
2827 #define	ip_mrtdebug			ip_param_arr[8].ip_param_value
2828 #define	ip_timer_interval		ip_param_arr[9].ip_param_value
2829 #define	ip_ire_arp_interval		ip_param_arr[10].ip_param_value
2830 #define	ip_def_ttl			ip_param_arr[12].ip_param_value
2831 #define	ip_wroff_extra			ip_param_arr[14].ip_param_value
2832 #define	ip_path_mtu_discovery		ip_param_arr[17].ip_param_value
2833 #define	ip_ignore_delete_time		ip_param_arr[18].ip_param_value
2834 #define	ip_output_queue			ip_param_arr[20].ip_param_value
2835 #define	ip_broadcast_ttl		ip_param_arr[21].ip_param_value
2836 #define	ip_icmp_err_interval		ip_param_arr[22].ip_param_value
2837 #define	ip_icmp_err_burst		ip_param_arr[23].ip_param_value
2838 #define	ip_reass_queue_bytes		ip_param_arr[24].ip_param_value
2839 #define	ip_addrs_per_if			ip_param_arr[26].ip_param_value
2840 #define	ipsec_override_persocket_policy	ip_param_arr[27].ip_param_value
2841 #define	icmp_accept_clear_messages	ip_param_arr[28].ip_param_value
2842 #define	delay_first_probe_time		ip_param_arr[30].ip_param_value
2843 #define	max_unicast_solicit		ip_param_arr[31].ip_param_value
2844 #define	ipv6_def_hops			ip_param_arr[32].ip_param_value
2845 #define	ipv6_icmp_return		ip_param_arr[33].ip_param_value
2846 #define	ipv6_forward_src_routed		ip_param_arr[34].ip_param_value
2847 #define	ipv6_resp_echo_mcast		ip_param_arr[35].ip_param_value
2848 #define	ipv6_send_redirects		ip_param_arr[36].ip_param_value
2849 #define	ipv6_ignore_redirect		ip_param_arr[37].ip_param_value
2850 #define	ipv6_strict_dst_multihoming	ip_param_arr[38].ip_param_value
2851 #define	ip_ire_reclaim_fraction		ip_param_arr[39].ip_param_value
2852 #define	ipsec_policy_log_interval	ip_param_arr[40].ip_param_value
2853 #define	ip_ndp_unsolicit_interval	ip_param_arr[42].ip_param_value
2854 #define	ip_ndp_unsolicit_count		ip_param_arr[43].ip_param_value
2855 #define	ipv6_ignore_home_address_opt	ip_param_arr[44].ip_param_value
2856 #define	ip_policy_mask			ip_param_arr[45].ip_param_value
2857 #define	ip_multirt_resolution_interval	ip_param_arr[46].ip_param_value
2858 #define	ip_multirt_ttl			ip_param_arr[47].ip_param_value
2859 #define	ip_multidata_outbound		ip_param_arr[48].ip_param_value
2860 #ifdef DEBUG
2861 #define	ipv6_drop_inbound_icmpv6	ip_param_arr[49].ip_param_value
2862 #else
2863 #define	ipv6_drop_inbound_icmpv6	0
2864 #endif
2865 
2866 extern hrtime_t	ipsec_policy_failure_last;
2867 
2868 extern int	dohwcksum;	/* use h/w cksum if supported by the h/w */
2869 #ifdef ZC_TEST
2870 extern int	noswcksum;
2871 #endif
2872 
2873 extern char	ipif_loopback_name[];
2874 
2875 extern nv_t	*ire_nv_tbl;
2876 
2877 extern time_t	ip_g_frag_timeout;
2878 extern clock_t	ip_g_frag_timo_ms;
2879 
2880 extern mib2_ip_t	ip_mib;	/* For tcpInErrs and udpNoPorts */
2881 
2882 extern struct module_info ip_mod_info;
2883 
2884 extern timeout_id_t	igmp_slowtimeout_id;
2885 extern timeout_id_t	mld_slowtimeout_id;
2886 
2887 extern uint_t	loopback_packets;
2888 
2889 /*
2890  * Network byte order macros
2891  */
2892 #ifdef	_BIG_ENDIAN
2893 #define	N_IN_CLASSD_NET		IN_CLASSD_NET
2894 #define	N_INADDR_UNSPEC_GROUP	INADDR_UNSPEC_GROUP
2895 #else /* _BIG_ENDIAN */
2896 #define	N_IN_CLASSD_NET		(ipaddr_t)0x000000f0U
2897 #define	N_INADDR_UNSPEC_GROUP	(ipaddr_t)0x000000e0U
2898 #endif /* _BIG_ENDIAN */
2899 #define	CLASSD(addr)	(((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
2900 
2901 #define	IP_LOOPBACK_ADDR(addr)			\
2902 	((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
2903 
2904 #ifdef DEBUG
2905 /* IPsec HW acceleration debugging support */
2906 
2907 #define	IPSECHW_CAPAB		0x0001	/* capability negotiation */
2908 #define	IPSECHW_SADB		0x0002	/* SADB exchange */
2909 #define	IPSECHW_PKT		0x0004	/* general packet flow */
2910 #define	IPSECHW_PKTIN		0x0008	/* driver in pkt processing details */
2911 #define	IPSECHW_PKTOUT		0x0010	/* driver out pkt processing details */
2912 
2913 #define	IPSECHW_DEBUG(f, x)	if (ipsechw_debug & (f)) { (void) printf x; }
2914 #define	IPSECHW_CALL(f, r, x)	if (ipsechw_debug & (f)) { (void) r x; }
2915 
2916 extern uint32_t ipsechw_debug;
2917 #else
2918 #define	IPSECHW_DEBUG(f, x)	{}
2919 #define	IPSECHW_CALL(f, r, x)	{}
2920 #endif
2921 
2922 #ifdef IP_DEBUG
2923 #include <sys/debug.h>
2924 #include <sys/promif.h>
2925 
2926 #define	ip0dbg(a)	printf a
2927 #define	ip1dbg(a)	if (ip_debug > 2) printf a
2928 #define	ip2dbg(a)	if (ip_debug > 3) printf a
2929 #define	ip3dbg(a)	if (ip_debug > 4) printf a
2930 #else
2931 #define	ip0dbg(a)	/* */
2932 #define	ip1dbg(a)	/* */
2933 #define	ip2dbg(a)	/* */
2934 #define	ip3dbg(a)	/* */
2935 #endif	/* IP_DEBUG */
2936 
2937 struct	ipsec_out_s;
2938 
2939 extern const char *dlpi_prim_str(int);
2940 extern const char *dlpi_err_str(int);
2941 extern void	ill_frag_timer(void *);
2942 extern ill_t	*ill_first(int, int, ill_walk_context_t *);
2943 extern ill_t	*ill_next(ill_walk_context_t *, ill_t *);
2944 extern void	ill_frag_timer_start(ill_t *);
2945 extern mblk_t	*ip_carve_mp(mblk_t **, ssize_t);
2946 extern mblk_t	*ip_dlpi_alloc(size_t, t_uscalar_t);
2947 extern char	*ip_dot_addr(ipaddr_t, char *);
2948 extern void	ip_lwput(queue_t *, mblk_t *);
2949 extern boolean_t icmp_err_rate_limit(void);
2950 extern void	icmp_time_exceeded(queue_t *, mblk_t *, uint8_t);
2951 extern void	icmp_unreachable(queue_t *, mblk_t *, uint8_t);
2952 extern mblk_t	*ip_add_info(mblk_t *, ill_t *, uint_t);
2953 extern mblk_t	*ip_bind_v4(queue_t *, mblk_t *, conn_t *);
2954 extern int	ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t,
2955     ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t,
2956     boolean_t);
2957 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *);
2958 extern int	ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t,
2959     boolean_t, boolean_t, boolean_t);
2960 extern uint_t	ip_cksum(mblk_t *, int, uint32_t);
2961 extern int	ip_close(queue_t *, int);
2962 extern uint16_t	ip_csum_hdr(ipha_t *);
2963 extern void	ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t);
2964 extern void	ip_ire_fini(void);
2965 extern void	ip_ire_init(void);
2966 extern int	ip_open(queue_t *, dev_t *, int, int, cred_t *);
2967 extern int	ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
2968     size_t);
2969 extern int	ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t,
2970     int, int, mblk_t *);
2971 extern void	ip_rput(queue_t *, mblk_t *);
2972 extern void	ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t);
2973 extern void	ip_rput_dlpi(queue_t *, mblk_t *);
2974 extern void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
2975 extern void	ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *);
2976 
2977 extern int	ip_snmpmod_close(queue_t *);
2978 extern void	ip_snmpmod_wput(queue_t *, mblk_t *);
2979 extern void	ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
2980 extern void	ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
2981 extern void	ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
2982 extern void	ip_setqinfo(queue_t *, minor_t, boolean_t);
2983 extern void	ip_trash_ire_reclaim(void *);
2984 extern void	ip_trash_timer_expire(void *);
2985 extern void	ip_wput(queue_t *, mblk_t *);
2986 extern void	ip_output(void *, mblk_t *, void *, int);
2987 extern void	ip_wput_md(queue_t *, mblk_t *, conn_t *);
2988 
2989 extern void	ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int);
2990 extern void	ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *,
2991     int, zoneid_t);
2992 extern void	ip_wput_multicast(queue_t *, mblk_t *, ipif_t *);
2993 extern void	ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *);
2994 extern void	ip_wsrv(queue_t *);
2995 extern char	*ip_nv_lookup(nv_t *, int);
2996 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
2997 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
2998 extern ipaddr_t ip_massage_options(ipha_t *);
2999 extern ipaddr_t ip_net_mask(ipaddr_t);
3000 extern void	ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *);
3001 extern ipxmit_state_t	ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *,
3002     boolean_t);
3003 extern int	ip_hdr_complete(ipha_t *, zoneid_t);
3004 
3005 extern struct qinit rinit_ipv6;
3006 extern struct qinit winit_ipv6;
3007 extern struct qinit rinit_tcp;
3008 extern struct qinit rinit_tcp6;
3009 extern struct qinit winit_tcp;
3010 extern struct qinit rinit_acceptor_tcp;
3011 extern struct qinit winit_acceptor_tcp;
3012 
3013 extern void	conn_drain_insert(conn_t *connp);
3014 extern	int	conn_ipsec_length(conn_t *connp);
3015 extern void	ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *,
3016     ire_t *);
3017 extern ipaddr_t	ip_get_dst(ipha_t *);
3018 extern int	ipsec_out_extra_length(mblk_t *);
3019 extern int	ipsec_in_extra_length(mblk_t *);
3020 extern mblk_t	*ipsec_in_alloc();
3021 extern boolean_t ipsec_in_is_secure(mblk_t *);
3022 extern void	ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t);
3023 extern void	ipsec_out_to_in(mblk_t *);
3024 extern int	ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t);
3025 extern void	ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *);
3026 
3027 extern void	ire_cleanup(ire_t *);
3028 extern void	ire_inactive(ire_t *);
3029 extern boolean_t irb_inactive(irb_t *);
3030 extern ire_t	*ire_unlink(irb_t *);
3031 #ifdef IRE_DEBUG
3032 extern	void	ire_trace_ref(ire_t *ire);
3033 extern	void	ire_untrace_ref(ire_t *ire);
3034 extern	void	ire_thread_exit(ire_t *ire, caddr_t);
3035 #endif
3036 #ifdef ILL_DEBUG
3037 extern	void	ill_trace_cleanup(ill_t *);
3038 extern	void	ipif_trace_cleanup(ipif_t *);
3039 #endif
3040 
3041 extern int	ip_srcid_insert(const in6_addr_t *, zoneid_t);
3042 extern int	ip_srcid_remove(const in6_addr_t *, zoneid_t);
3043 extern void	ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t);
3044 extern uint_t	ip_srcid_find_addr(const in6_addr_t *, zoneid_t);
3045 extern int	ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *);
3046 
3047 extern uint8_t	ipoptp_next(ipoptp_t *);
3048 extern uint8_t	ipoptp_first(ipoptp_t *, ipha_t *);
3049 extern int	ip_opt_get_user(const ipha_t *, uchar_t *);
3050 extern ill_t	*ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t);
3051 extern ire_t	*conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **);
3052 extern int	ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
3053 extern int	ip_snmp_get(queue_t *q, mblk_t *mctl);
3054 extern int	ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
3055 extern void	ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3056 extern void	ip_quiesce_conn(conn_t *);
3057 extern  void    ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3058 extern void	ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *);
3059 extern void	ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *,
3060     ipsq_t *);
3061 
3062 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
3063     uint_t);
3064 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
3065     uint_t);
3066 extern void	ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);
3067 
3068 extern boolean_t	ipsq_pending_mp_cleanup(ill_t *, conn_t *);
3069 extern void	conn_ioctl_cleanup(conn_t *);
3070 extern ill_t	*conn_get_held_ill(conn_t *, ill_t **, int *);
3071 extern ill_t	*ip_newroute_get_dst_ill(ill_t *);
3072 
3073 struct multidata_s;
3074 struct pdesc_s;
3075 
3076 extern mblk_t	*ip_mdinfo_alloc(ill_mdt_capab_t *);
3077 extern mblk_t	*ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *);
3078 extern uint_t	ip_md_cksum(struct pdesc_s *, int, uint_t);
3079 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *,
3080 			const mblk_t *);
3081 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *,
3082 			uint32_t, uint32_t, uint32_t, uint32_t);
3083 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *,
3084 			uint_t);
3085 extern mblk_t	*ip_unbind(queue_t *, mblk_t *);
3086 
3087 extern void tnet_init(void);
3088 extern void tnet_fini(void);
3089 
3090 /* Hooks for CGTP (multirt routes) filtering module */
3091 #define	CGTP_FILTER_REV_1	1
3092 #define	CGTP_FILTER_REV_2	2
3093 #define	CGTP_FILTER_REV		CGTP_FILTER_REV_2
3094 
3095 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */
3096 #define	CGTP_IP_PKT_NOT_CGTP	0
3097 #define	CGTP_IP_PKT_PREMIUM	1
3098 #define	CGTP_IP_PKT_DUPLICATE	2
3099 
3100 typedef struct cgtp_filter_ops {
3101 	int	cfo_filter_rev;
3102 	int	(*cfo_change_state)(int);
3103 	int	(*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t);
3104 	int	(*cfo_del_dest_v4)(ipaddr_t, ipaddr_t);
3105 	int	(*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *,
3106 		    in6_addr_t *);
3107 	int	(*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *);
3108 	int	(*cfo_filter)(queue_t *, mblk_t *);
3109 	int	(*cfo_filter_fp)(queue_t *, mblk_t *);
3110 	int	(*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *);
3111 } cgtp_filter_ops_t;
3112 
3113 #define	CGTP_MCAST_SUCCESS	1
3114 
3115 extern cgtp_filter_ops_t *ip_cgtp_filter_ops;
3116 extern boolean_t ip_cgtp_filter;
3117 
3118 extern int	ip_cgtp_filter_supported(void);
3119 extern int	ip_cgtp_filter_register(cgtp_filter_ops_t *);
3120 
3121 /* Flags for ire_multirt_lookup() */
3122 
3123 #define	MULTIRT_USESTAMP	0x0001
3124 #define	MULTIRT_SETSTAMP	0x0002
3125 #define	MULTIRT_CACHEGW		0x0004
3126 
3127 /* Debug stuff for multirt route resolution. */
3128 #if defined(DEBUG) && !defined(__lint)
3129 /* Our "don't send, rather drop" flag. */
3130 #define	MULTIRT_DEBUG_FLAG	0x8000
3131 
3132 #define	MULTIRT_TRACE(x)	ip2dbg(x)
3133 
3134 #define	MULTIRT_DEBUG_TAG(mblk)	\
3135 	do { \
3136 		ASSERT(mblk != NULL); \
3137 		MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \
3138 		__FILE__, __LINE__, \
3139 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3140 		(mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \
3141 	} while (0)
3142 
3143 #define	MULTIRT_DEBUG_UNTAG(mblk) \
3144 	do { \
3145 		ASSERT(mblk != NULL); \
3146 		MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \
3147 		__FILE__, __LINE__, \
3148 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3149 		(mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \
3150 	} while (0)
3151 
3152 #define	MULTIRT_DEBUG_TAGGED(mblk) \
3153 	(((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE)
3154 #else
3155 #define	MULTIRT_DEBUG_TAG(mblk)		ASSERT(mblk != NULL)
3156 #define	MULTIRT_DEBUG_UNTAG(mblk)	ASSERT(mblk != NULL)
3157 #define	MULTIRT_DEBUG_TAGGED(mblk)	B_FALSE
3158 #endif
3159 
3160 /*
3161  * Per-ILL Multidata Transmit capabilities.
3162  */
3163 struct ill_mdt_capab_s {
3164 	uint_t ill_mdt_version;  /* interface version */
3165 	uint_t ill_mdt_on;	 /* on/off switch for MDT on this ILL */
3166 	uint_t ill_mdt_hdr_head; /* leading header fragment extra space */
3167 	uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */
3168 	uint_t ill_mdt_max_pld;	 /* maximum payload buffers per Multidata */
3169 	uint_t ill_mdt_span_limit; /* maximum payload span per packet */
3170 };
3171 
3172 struct ill_hcksum_capab_s {
3173 	uint_t	ill_hcksum_version;	/* interface version */
3174 	uint_t	ill_hcksum_txflags;	/* capabilities on transmit */
3175 };
3176 
3177 struct ill_zerocopy_capab_s {
3178 	uint_t	ill_zerocopy_version;	/* interface version */
3179 	uint_t	ill_zerocopy_flags;	/* capabilities */
3180 };
3181 
3182 /* Possible ill_states */
3183 #define	ILL_RING_INPROC		3	/* Being assigned to squeue */
3184 #define	ILL_RING_INUSE		2	/* Already Assigned to Rx Ring */
3185 #define	ILL_RING_BEING_FREED	1	/* Being Unassigned */
3186 #define	ILL_RING_FREE		0	/* Available to be assigned to Ring */
3187 
3188 #define	ILL_MAX_RINGS		256	/* Max num of rx rings we can manage */
3189 #define	ILL_POLLING		0x01	/* Polling in use */
3190 
3191 /*
3192  * These functions pointer types are exported by the mac/dls layer.
3193  * we need to duplicate the definitions here because we cannot
3194  * include mac/dls header files here.
3195  */
3196 typedef void	(*ip_mac_blank_t)(void *, time_t, uint_t);
3197 typedef void	(*ip_dld_tx_t)(void *, mblk_t *);
3198 
3199 typedef void	(*ip_dls_chg_soft_ring_t)(void *, int);
3200 typedef void	(*ip_dls_bind_t)(void *, processorid_t);
3201 typedef void	(*ip_dls_unbind_t)(void *);
3202 
3203 struct ill_rx_ring {
3204 	ip_mac_blank_t		rr_blank; /* Driver interrupt blanking func */
3205 	void			*rr_handle; /* Handle for Rx ring */
3206 	squeue_t		*rr_sqp; /* Squeue the ring is bound to */
3207 	ill_t			*rr_ill; /* back pointer to ill */
3208 	clock_t			rr_poll_time; /* Last lbolt polling was used */
3209 	uint32_t		rr_poll_state; /* polling state flags */
3210 	uint32_t		rr_max_blank_time; /* Max interrupt blank */
3211 	uint32_t		rr_min_blank_time; /* Min interrupt blank */
3212 	uint32_t		rr_max_pkt_cnt; /* Max pkts before interrupt */
3213 	uint32_t		rr_min_pkt_cnt; /* Mix pkts before interrupt */
3214 	uint32_t		rr_normal_blank_time; /* Normal intr freq */
3215 	uint32_t		rr_normal_pkt_cnt; /* Normal intr pkt cnt */
3216 	uint32_t		rr_ring_state; /* State of this ring */
3217 };
3218 
3219 struct ill_dls_capab_s {
3220 	ip_dld_tx_t		ill_tx;		/* Driver Tx routine */
3221 	void			*ill_tx_handle;	/* Driver Tx handle */
3222 	ip_dls_chg_soft_ring_t	ill_dls_change_status;
3223 						/* change soft ring fanout */
3224 	ip_dls_bind_t		ill_dls_bind;	/* to add CPU affinity */
3225 	ip_dls_unbind_t		ill_dls_unbind;	/* remove CPU affinity */
3226 	ill_rx_ring_t		*ill_ring_tbl; /* Ring to Sqp mapping table */
3227 	uint_t			ill_dls_soft_ring_cnt; /* Number of soft ring */
3228 	conn_t			*ill_unbind_conn; /* Conn used during unplumb */
3229 };
3230 
3231 /*
3232  * This message is sent by an upper-layer protocol to tell IP that it knows all
3233  * about labels and will construct them itself.  IP takes the slow path and
3234  * recomputes the label on every packet when this isn't true.
3235  */
3236 #define	IP_ULP_OUT_LABELED		(('O' << 8) + 'L')
3237 typedef struct out_labeled_s {
3238 	uint32_t	out_labeled_type;	/* OUT_LABELED */
3239 	queue_t		*out_qnext;		/* intermediate detection */
3240 } out_labeled_t;
3241 
3242 /*
3243  * IP squeues exports
3244  */
3245 extern int 		ip_squeue_profile;
3246 extern int 		ip_squeue_bind;
3247 extern boolean_t 	ip_squeue_fanout;
3248 extern boolean_t	ip_squeue_soft_ring;
3249 extern uint_t		ip_threads_per_cpu;
3250 extern uint_t		ip_squeues_per_cpu;
3251 extern uint_t		ip_soft_rings_cnt;
3252 
3253 typedef struct squeue_set_s {
3254 	kmutex_t	sqs_lock;
3255 	struct squeue_s	**sqs_list;
3256 	int		sqs_size;
3257 	int		sqs_max_size;
3258 	processorid_t	sqs_bind;
3259 } squeue_set_t;
3260 
3261 #define	IP_SQUEUE_GET(hint) 						\
3262 	((!ip_squeue_fanout) ?	(CPU->cpu_squeue_set->sqs_list[0]) :	\
3263 		ip_squeue_random(hint))
3264 
3265 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t);
3266 
3267 extern void ip_squeue_init(void (*)(squeue_t *));
3268 extern squeue_t	*ip_squeue_random(uint_t);
3269 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3270 extern void ip_squeue_get_pkts(squeue_t *);
3271 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
3272 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *);
3273 extern void ip_squeue_clean(void *, mblk_t *, void *);
3274 extern void ip_resume_tcp_bind(void *, mblk_t *, void *);
3275 extern void	ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *,
3276     mblk_t *, size_t);
3277 
3278 extern void tcp_wput(queue_t *, mblk_t *);
3279 
3280 extern int	ip_fill_mtuinfo(struct in6_addr *, in_port_t,
3281 	struct ip6_mtuinfo *);
3282 extern	ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *);
3283 
3284 typedef void    (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);
3285 
3286 /*
3287  * Squeue tags. Tags only need to be unique when the callback function is the
3288  * same to distinguish between different calls, but we use unique tags for
3289  * convenience anyway.
3290  */
3291 #define	SQTAG_IP_INPUT			1
3292 #define	SQTAG_TCP_INPUT_ICMP_ERR	2
3293 #define	SQTAG_TCP6_INPUT_ICMP_ERR	3
3294 #define	SQTAG_IP_TCP_INPUT		4
3295 #define	SQTAG_IP6_TCP_INPUT		5
3296 #define	SQTAG_IP_TCP_CLOSE		6
3297 #define	SQTAG_TCP_OUTPUT		7
3298 #define	SQTAG_TCP_TIMER			8
3299 #define	SQTAG_TCP_TIMEWAIT		9
3300 #define	SQTAG_TCP_ACCEPT_FINISH		10
3301 #define	SQTAG_TCP_ACCEPT_FINISH_Q0	11
3302 #define	SQTAG_TCP_ACCEPT_PENDING	12
3303 #define	SQTAG_TCP_LISTEN_DISCON		13
3304 #define	SQTAG_TCP_CONN_REQ		14
3305 #define	SQTAG_TCP_EAGER_BLOWOFF		15
3306 #define	SQTAG_TCP_EAGER_CLEANUP		16
3307 #define	SQTAG_TCP_EAGER_CLEANUP_Q0	17
3308 #define	SQTAG_TCP_CONN_IND		18
3309 #define	SQTAG_TCP_RSRV			19
3310 #define	SQTAG_TCP_ABORT_BUCKET		20
3311 #define	SQTAG_TCP_REINPUT		21
3312 #define	SQTAG_TCP_REINPUT_EAGER		22
3313 #define	SQTAG_TCP_INPUT_MCTL		23
3314 #define	SQTAG_TCP_RPUTOTHER		24
3315 #define	SQTAG_IP_PROTO_AGAIN		25
3316 #define	SQTAG_IP_FANOUT_TCP		26
3317 #define	SQTAG_IPSQ_CLEAN_RING		27
3318 #define	SQTAG_TCP_WPUT_OTHER		28
3319 #define	SQTAG_TCP_CONN_REQ_UNBOUND	29
3320 #define	SQTAG_TCP_SEND_PENDING		30
3321 #define	SQTAG_BIND_RETRY		31
3322 #define	SQTAG_UDP_FANOUT		32
3323 #define	SQTAG_UDP_INPUT			33
3324 #define	SQTAG_UDP_WPUT			34
3325 #define	SQTAG_UDP_OUTPUT		35
3326 #define	SQTAG_TCP_KSSL_INPUT		36
3327 
3328 #endif	/* _KERNEL */
3329 
3330 #ifdef	__cplusplus
3331 }
3332 #endif
3333 
3334 #endif	/* _INET_IP_H */
3335