xref: /illumos-gate/usr/src/uts/common/inet/ip.h (revision 98e93c293033f1b35b7d58ec09c56fbf35f99a12)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #ifndef	_INET_IP_H
29 #define	_INET_IP_H
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #ifdef	__cplusplus
34 extern "C" {
35 #endif
36 
37 #include <sys/isa_defs.h>
38 #include <sys/types.h>
39 #include <inet/mib2.h>
40 #include <inet/nd.h>
41 #include <sys/atomic.h>
42 #include <net/if_dl.h>
43 #include <net/if.h>
44 #include <netinet/ip.h>
45 #include <netinet/igmp.h>
46 #include <sys/neti.h>
47 #include <sys/hook.h>
48 #include <sys/hook_event.h>
49 #include <sys/hook_impl.h>
50 #include <inet/ip_stack.h>
51 
52 #ifdef _KERNEL
53 #include <netinet/ip6.h>
54 #include <sys/avl.h>
55 #include <sys/vmem.h>
56 #include <sys/squeue.h>
57 #include <net/route.h>
58 #include <sys/systm.h>
59 #include <sys/multidata.h>
60 #include <net/radix.h>
61 
62 #ifdef DEBUG
63 #define	ILL_DEBUG
64 #define	IRE_DEBUG
65 #define	NCE_DEBUG
66 #define	CONN_DEBUG
67 #endif
68 
69 #define	IP_DEBUG
70 /*
71  * The mt-streams(9F) flags for the IP module; put here so that other
72  * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
73  * of flags.
74  */
75 #define	IP_DEVMTFLAGS D_MP
76 #endif	/* _KERNEL */
77 
78 #define	IP_MOD_NAME	"ip"
79 #define	IP_DEV_NAME	"/dev/ip"
80 #define	IP6_DEV_NAME	"/dev/ip6"
81 
82 #define	UDP_MOD_NAME	"udp"
83 #define	UDP_DEV_NAME	"/dev/udp"
84 #define	UDP6_DEV_NAME	"/dev/udp6"
85 
86 #define	TCP_MOD_NAME	"tcp"
87 #define	TCP_DEV_NAME	"/dev/tcp"
88 #define	TCP6_DEV_NAME	"/dev/tcp6"
89 
90 #define	SCTP_MOD_NAME	"sctp"
91 
92 /* Minor numbers */
93 #define	IPV4_MINOR	0
94 #define	IPV6_MINOR	1
95 #define	TCP_MINOR	2
96 #define	TCP_MINOR6	3
97 
98 #ifndef	_IPADDR_T
99 #define	_IPADDR_T
100 typedef uint32_t ipaddr_t;
101 #endif
102 
103 /* Number of bits in an address */
104 #define	IP_ABITS		32
105 #define	IPV6_ABITS		128
106 
107 #define	IP_HOST_MASK		(ipaddr_t)0xffffffffU
108 
109 #define	IP_CSUM(mp, off, sum)		(~ip_cksum(mp, off, sum) & 0xFFFF)
110 #define	IP_CSUM_PARTIAL(mp, off, sum)	ip_cksum(mp, off, sum)
111 #define	IP_BCSUM_PARTIAL(bp, len, sum)	bcksum(bp, len, sum)
112 #define	IP_MD_CSUM(pd, off, sum)	(~ip_md_cksum(pd, off, sum) & 0xffff)
113 #define	IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum)
114 
115 /*
116  * Flag to IP write side to indicate that the appln has sent in a pre-built
117  * IP header. Stored in ipha_ident (which is otherwise zero).
118  */
119 #define	IP_HDR_INCLUDED			0xFFFF
120 
121 #define	ILL_FRAG_HASH_TBL_COUNT	((unsigned int)64)
122 #define	ILL_FRAG_HASH_TBL_SIZE	(ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))
123 
124 #define	IPV4_ADDR_LEN			4
125 #define	IP_ADDR_LEN			IPV4_ADDR_LEN
126 #define	IP_ARP_PROTO_TYPE		0x0800
127 
128 #define	IPV4_VERSION			4
129 #define	IP_VERSION			IPV4_VERSION
130 #define	IP_SIMPLE_HDR_LENGTH_IN_WORDS	5
131 #define	IP_SIMPLE_HDR_LENGTH		20
132 #define	IP_MAX_HDR_LENGTH		60
133 
134 #define	IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)
135 
136 #define	IP_MIN_MTU			(IP_MAX_HDR_LENGTH + 8)	/* 68 bytes */
137 
138 /*
139  * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the
140  * 2 files should be cleaned up to remove all redundant definitions.
141  */
142 #define	IP_MAXPACKET			65535
143 #define	IP_SIMPLE_HDR_VERSION \
144 	((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)
145 
146 #define	UDPH_SIZE			8
147 
148 /* Leave room for ip_newroute to tack on the src and target addresses */
149 #define	OK_RESOLVER_MP(mp)						\
150 	((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN))
151 
152 /*
153  * Constants and type definitions to support IP IOCTL commands
154  */
155 #define	IP_IOCTL			(('i'<<8)|'p')
156 #define	IP_IOC_IRE_DELETE		4
157 #define	IP_IOC_IRE_DELETE_NO_REPLY	5
158 #define	IP_IOC_IRE_ADVISE_NO_REPLY	6
159 #define	IP_IOC_RTS_REQUEST		7
160 
161 /* Common definitions used by IP IOCTL data structures */
162 typedef struct ipllcmd_s {
163 	uint_t	ipllc_cmd;
164 	uint_t	ipllc_name_offset;
165 	uint_t	ipllc_name_length;
166 } ipllc_t;
167 
168 /* IP IRE Change Command Structure. */
169 typedef struct ipic_s {
170 	ipllc_t	ipic_ipllc;
171 	uint_t	ipic_ire_type;
172 	uint_t	ipic_max_frag;
173 	uint_t	ipic_addr_offset;
174 	uint_t	ipic_addr_length;
175 	uint_t	ipic_mask_offset;
176 	uint_t	ipic_mask_length;
177 	uint_t	ipic_src_addr_offset;
178 	uint_t	ipic_src_addr_length;
179 	uint_t	ipic_ll_hdr_offset;
180 	uint_t	ipic_ll_hdr_length;
181 	uint_t	ipic_gateway_addr_offset;
182 	uint_t	ipic_gateway_addr_length;
183 	clock_t	ipic_rtt;
184 	uint32_t ipic_ssthresh;
185 	clock_t	ipic_rtt_sd;
186 	uchar_t ipic_ire_marks;
187 } ipic_t;
188 
189 #define	ipic_cmd		ipic_ipllc.ipllc_cmd
190 #define	ipic_ll_name_length	ipic_ipllc.ipllc_name_length
191 #define	ipic_ll_name_offset	ipic_ipllc.ipllc_name_offset
192 
193 /* IP IRE Delete Command Structure. */
194 typedef struct ipid_s {
195 	ipllc_t	ipid_ipllc;
196 	uint_t	ipid_ire_type;
197 	uint_t	ipid_addr_offset;
198 	uint_t	ipid_addr_length;
199 	uint_t	ipid_mask_offset;
200 	uint_t	ipid_mask_length;
201 } ipid_t;
202 
203 #define	ipid_cmd		ipid_ipllc.ipllc_cmd
204 
205 #ifdef _KERNEL
206 /*
207  * Temporary state for ip options parser.
208  */
209 typedef struct ipoptp_s
210 {
211 	uint8_t		*ipoptp_next;	/* next option to look at */
212 	uint8_t		*ipoptp_end;	/* end of options */
213 	uint8_t		*ipoptp_cur;	/* start of current option */
214 	uint8_t		ipoptp_len;	/* length of current option */
215 	uint32_t	ipoptp_flags;
216 } ipoptp_t;
217 
218 /*
219  * Flag(s) for ipoptp_flags
220  */
221 #define	IPOPTP_ERROR	0x00000001
222 #endif	/* _KERNEL */
223 
224 
225 /* Controls forwarding of IP packets, set via ndd */
226 #define	IP_FORWARD_NEVER	0
227 #define	IP_FORWARD_ALWAYS	1
228 
229 #define	WE_ARE_FORWARDING(ipst)	((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS)
230 
231 #define	IPH_HDR_LENGTH(ipha)						\
232 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)
233 
234 #define	IPH_HDR_VERSION(ipha)						\
235 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
236 
237 #ifdef _KERNEL
238 /*
239  * IP reassembly macros.  We hide starting and ending offsets in b_next and
240  * b_prev of messages on the reassembly queue.	The messages are chained using
241  * b_cont.  These macros are used in ip_reassemble() so we don't have to see
242  * the ugly casts and assignments.
243  * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
244  * them.
245  */
246 #define	IP_REASS_START(mp)		((uint_t)(uintptr_t)((mp)->b_next))
247 #define	IP_REASS_SET_START(mp, u)	\
248 	((mp)->b_next = (mblk_t *)(uintptr_t)(u))
249 #define	IP_REASS_END(mp)		((uint_t)(uintptr_t)((mp)->b_prev))
250 #define	IP_REASS_SET_END(mp, u)		\
251 	((mp)->b_prev = (mblk_t *)(uintptr_t)(u))
252 
253 #define	IP_REASS_COMPLETE	0x1
254 #define	IP_REASS_PARTIAL	0x2
255 #define	IP_REASS_FAILED		0x4
256 
257 /*
258  * Test to determine whether this is a module instance of IP or a
259  * driver instance of IP.
260  */
261 #define	CONN_Q(q)	(WR(q)->q_next == NULL)
262 
263 #define	Q_TO_CONN(q)	((conn_t *)(q)->q_ptr)
264 #define	Q_TO_TCP(q)	(Q_TO_CONN((q))->conn_tcp)
265 #define	Q_TO_UDP(q)	(Q_TO_CONN((q))->conn_udp)
266 
267 /*
268  * The following two macros are used by IP to get the appropriate
269  * wq and rq for a conn. If it is a TCP conn, then we need
270  * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq
271  * from a conn directly if it knows that the conn is not TCP.
272  */
273 #define	CONNP_TO_WQ(connp)	\
274 	(IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq)
275 
276 #define	CONNP_TO_RQ(connp)	RD(CONNP_TO_WQ(connp))
277 
278 #define	GRAB_CONN_LOCK(q)	{				\
279 	if (q != NULL && CONN_Q(q))				\
280 		mutex_enter(&(Q_TO_CONN(q))->conn_lock);	\
281 }
282 
283 #define	RELEASE_CONN_LOCK(q)	{				\
284 	if (q != NULL && CONN_Q(q))				\
285 		mutex_exit(&(Q_TO_CONN(q))->conn_lock);		\
286 }
287 
288 /* "Congestion controlled" protocol */
289 #define	IP_FLOW_CONTROLLED_ULP(p)   ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP)
290 
291 /*
292  * Complete the pending operation. Usually an ioctl. Can also
293  * be a bind or option management request that got enqueued
294  * in an ipsq_t. Called on completion of the operation.
295  */
296 #define	CONN_OPER_PENDING_DONE(connp)	{			\
297 	mutex_enter(&(connp)->conn_lock);			\
298 	(connp)->conn_oper_pending_ill = NULL;			\
299 	cv_broadcast(&(connp)->conn_refcv);			\
300 	mutex_exit(&(connp)->conn_lock);			\
301 	CONN_DEC_REF(connp);					\
302 }
303 
304 /* Get the credential of an IP queue of unknown type */
305 #define	GET_QUEUE_CRED(wq)						\
306 	((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \
307 	    : ((Q_TO_CONN((wq)))->conn_cred))
308 
309 /*
310  * Flags for the various ip_fanout_* routines.
311  */
312 #define	IP_FF_SEND_ICMP		0x01	/* Send an ICMP error */
313 #define	IP_FF_HDR_COMPLETE	0x02	/* Call ip_hdr_complete if error */
314 #define	IP_FF_CKSUM		0x04	/* Recompute ipha_cksum if error */
315 #define	IP_FF_RAWIP		0x08	/* Use rawip mib variable */
316 #define	IP_FF_SRC_QUENCH	0x10	/* OK to send ICMP_SOURCE_QUENCH */
317 #define	IP_FF_SYN_ADDIRE	0x20	/* Add IRE if TCP syn packet */
318 #define	IP_FF_IPINFO		0x80	/* Used for both V4 and V6 */
319 #define	IP_FF_SEND_SLLA		0x100	/* Send source link layer info ? */
320 #define	IPV6_REACHABILITY_CONFIRMATION	0x200	/* Flags for ip_xmit_v6 */
321 #define	IP_FF_NO_MCAST_LOOP	0x400	/* No multicasts for sending zone */
322 
323 /*
324  * Following flags are used by IPQoS to determine if policy processing is
325  * required.
326  */
327 #define	IP6_NO_IPPOLICY		0x800	/* Don't do IPQoS processing */
328 #define	IP6_IN_LLMCAST		0x1000	/* Multicast */
329 
330 #define	IP_FF_LOOPBACK		0x2000	/* Loopback fanout */
331 
332 #ifndef	IRE_DB_TYPE
333 #define	IRE_DB_TYPE	M_SIG
334 #endif
335 
336 #ifndef	IRE_DB_REQ_TYPE
337 #define	IRE_DB_REQ_TYPE	M_PCSIG
338 #endif
339 
340 #ifndef	IRE_ARPRESOLVE_TYPE
341 #define	IRE_ARPRESOLVE_TYPE	M_EVENT
342 #endif
343 
344 /*
345  * Values for squeue switch:
346  */
347 
348 #define	IP_SQUEUE_ENTER_NODRAIN	1
349 #define	IP_SQUEUE_ENTER	2
350 /*
351  * This is part of the interface between Transport provider and
352  * IP which can be used to set policy information. This is usually
353  * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that
354  * only IPSEC_POLICY_SET is there when it is found in the chain.
355  * The information contained is an struct ipsec_req_t. On success
356  * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned.
357  * IPSEC_POLICY_SET is never returned.
358  */
359 #define	IPSEC_POLICY_SET	M_SETOPTS
360 
361 #define	IRE_IS_LOCAL(ire)	((ire != NULL) && \
362 				((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
363 
364 #define	IRE_IS_TARGET(ire)	((ire != NULL) && \
365 				((ire)->ire_type != IRE_BROADCAST))
366 
367 /* IP Fragmentation Reassembly Header */
368 typedef struct ipf_s {
369 	struct ipf_s	*ipf_hash_next;
370 	struct ipf_s	**ipf_ptphn;	/* Pointer to previous hash next. */
371 	uint32_t	ipf_ident;	/* Ident to match. */
372 	uint8_t		ipf_protocol;	/* Protocol to match. */
373 	uchar_t		ipf_last_frag_seen : 1;	/* Last fragment seen ? */
374 	time_t		ipf_timestamp;	/* Reassembly start time. */
375 	mblk_t		*ipf_mp;	/* mblk we live in. */
376 	mblk_t		*ipf_tail_mp;	/* Frag queue tail pointer. */
377 	int		ipf_hole_cnt;	/* Number of holes (hard-case). */
378 	int		ipf_end;	/* Tail end offset (0 -> hard-case). */
379 	uint_t		ipf_gen;	/* Frag queue generation */
380 	size_t		ipf_count;	/* Count of bytes used by frag */
381 	uint_t		ipf_nf_hdr_len; /* Length of nonfragmented header */
382 	in6_addr_t	ipf_v6src;	/* IPv6 source address */
383 	in6_addr_t	ipf_v6dst;	/* IPv6 dest address */
384 	uint_t		ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
385 	uint8_t		ipf_ecn;	/* ECN info for the fragments */
386 	uint8_t		ipf_num_dups;	/* Number of times dup frags recvd */
387 	uint16_t	ipf_checksum_flags; /* Hardware checksum flags */
388 	uint32_t	ipf_checksum;	/* Partial checksum of fragment data */
389 } ipf_t;
390 
391 #define	ipf_src	V4_PART_OF_V6(ipf_v6src)
392 #define	ipf_dst	V4_PART_OF_V6(ipf_v6dst)
393 
394 typedef enum {
395 	IB_PKT =  0x01,
396 	OB_PKT = 0x02
397 } ip_pkt_t;
398 
399 #define	UPDATE_IB_PKT_COUNT(ire)\
400 	{ \
401 	(ire)->ire_ib_pkt_count++; \
402 	if ((ire)->ire_ipif != NULL) { \
403 		/* \
404 		 * forwarding packet \
405 		 */ \
406 		if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \
407 			atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\
408 		else \
409 			atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\
410 	} \
411 	}
412 #define	UPDATE_OB_PKT_COUNT(ire)\
413 	{ \
414 	(ire)->ire_ob_pkt_count++;\
415 	if ((ire)->ire_ipif != NULL) { \
416 		atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \
417 	} \
418 	}
419 
420 
421 #define	IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \
422 { \
423 	switch (ipha->ipha_protocol) { \
424 		case IPPROTO_UDP: \
425 			ip_udp_input(q, mp, ipha, ire, recv_ill); \
426 			break; \
427 		default: \
428 			ip_proto_input(q, mp, ipha, ire, recv_ill); \
429 			break; \
430 	} \
431 }
432 
433 /*
434  * NCE_EXPIRED is TRUE when we have a non-permanent nce that was
435  * found to be REACHABLE more than ip_ire_arp_interval ms ago.
436  * This macro is used to age existing nce_t entries. The
437  * nce's will get cleaned up in the following circumstances:
438  * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim
439  *    when memory is low,
440  * - ip_arp_news, when updates are received.
441  * - if the nce is NCE_EXPIRED(), it will deleted, so that a new
442  *   arp request will need to be triggered from an ND_INITIAL nce.
443  *
444  * Note that the nce state transition follows the pattern:
445  *	ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE
446  * after which the nce is deleted when it has expired.
447  *
448  * nce_last is the timestamp that indicates when the nce_res_mp in the
449  * nce_t was last updated to a valid link-layer address.  nce_last gets
450  * modified/updated :
451  *  - when the nce is created
452  *  - every time we get a sane arp response for the nce.
453  */
454 #define	NCE_EXPIRED(nce, ipst)	(nce->nce_last > 0 &&	\
455 	    ((nce->nce_flags & NCE_F_PERMANENT) == 0) &&	\
456 	    ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > 		\
457 		(ipst)->ips_ip_ire_arp_interval))
458 
459 #endif /* _KERNEL */
460 
461 /* ICMP types */
462 #define	ICMP_ECHO_REPLY			0
463 #define	ICMP_DEST_UNREACHABLE		3
464 #define	ICMP_SOURCE_QUENCH		4
465 #define	ICMP_REDIRECT			5
466 #define	ICMP_ECHO_REQUEST		8
467 #define	ICMP_ROUTER_ADVERTISEMENT	9
468 #define	ICMP_ROUTER_SOLICITATION	10
469 #define	ICMP_TIME_EXCEEDED		11
470 #define	ICMP_PARAM_PROBLEM		12
471 #define	ICMP_TIME_STAMP_REQUEST		13
472 #define	ICMP_TIME_STAMP_REPLY		14
473 #define	ICMP_INFO_REQUEST		15
474 #define	ICMP_INFO_REPLY			16
475 #define	ICMP_ADDRESS_MASK_REQUEST	17
476 #define	ICMP_ADDRESS_MASK_REPLY		18
477 
478 /* ICMP_TIME_EXCEEDED codes */
479 #define	ICMP_TTL_EXCEEDED		0
480 #define	ICMP_REASSEMBLY_TIME_EXCEEDED	1
481 
482 /* ICMP_DEST_UNREACHABLE codes */
483 #define	ICMP_NET_UNREACHABLE		0
484 #define	ICMP_HOST_UNREACHABLE		1
485 #define	ICMP_PROTOCOL_UNREACHABLE	2
486 #define	ICMP_PORT_UNREACHABLE		3
487 #define	ICMP_FRAGMENTATION_NEEDED	4
488 #define	ICMP_SOURCE_ROUTE_FAILED	5
489 #define	ICMP_DEST_NET_UNKNOWN		6
490 #define	ICMP_DEST_HOST_UNKNOWN		7
491 #define	ICMP_SRC_HOST_ISOLATED		8
492 #define	ICMP_DEST_NET_UNREACH_ADMIN	9
493 #define	ICMP_DEST_HOST_UNREACH_ADMIN	10
494 #define	ICMP_DEST_NET_UNREACH_TOS	11
495 #define	ICMP_DEST_HOST_UNREACH_TOS	12
496 
497 /* ICMP Header Structure */
498 typedef struct icmph_s {
499 	uint8_t		icmph_type;
500 	uint8_t		icmph_code;
501 	uint16_t	icmph_checksum;
502 	union {
503 		struct { /* ECHO request/response structure */
504 			uint16_t	u_echo_ident;
505 			uint16_t	u_echo_seqnum;
506 		} u_echo;
507 		struct { /* Destination unreachable structure */
508 			uint16_t	u_du_zero;
509 			uint16_t	u_du_mtu;
510 		} u_du;
511 		struct { /* Parameter problem structure */
512 			uint8_t		u_pp_ptr;
513 			uint8_t		u_pp_rsvd[3];
514 		} u_pp;
515 		struct { /* Redirect structure */
516 			ipaddr_t	u_rd_gateway;
517 		} u_rd;
518 	} icmph_u;
519 } icmph_t;
520 
521 #define	icmph_echo_ident	icmph_u.u_echo.u_echo_ident
522 #define	icmph_echo_seqnum	icmph_u.u_echo.u_echo_seqnum
523 #define	icmph_du_zero		icmph_u.u_du.u_du_zero
524 #define	icmph_du_mtu		icmph_u.u_du.u_du_mtu
525 #define	icmph_pp_ptr		icmph_u.u_pp.u_pp_ptr
526 #define	icmph_rd_gateway	icmph_u.u_rd.u_rd_gateway
527 
528 #define	ICMPH_SIZE	8
529 
530 /*
531  * Minimum length of transport layer header included in an ICMP error
532  * message for it to be considered valid.
533  */
534 #define	ICMP_MIN_TP_HDR_LEN	8
535 
536 /* Aligned IP header */
537 typedef struct ipha_s {
538 	uint8_t		ipha_version_and_hdr_length;
539 	uint8_t		ipha_type_of_service;
540 	uint16_t	ipha_length;
541 	uint16_t	ipha_ident;
542 	uint16_t	ipha_fragment_offset_and_flags;
543 	uint8_t		ipha_ttl;
544 	uint8_t		ipha_protocol;
545 	uint16_t	ipha_hdr_checksum;
546 	ipaddr_t	ipha_src;
547 	ipaddr_t	ipha_dst;
548 } ipha_t;
549 
550 #define	IPH_DF		0x4000	/* Don't fragment */
551 #define	IPH_MF		0x2000	/* More fragments to come */
552 #define	IPH_OFFSET	0x1FFF	/* Where the offset lives */
553 #define	IPH_FRAG_HDR	0x8000	/* IPv6 don't fragment bit */
554 
555 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
556 #define	IPH_ECN_NECT	0x0	/* Not ECN-Capabable Transport */
557 #define	IPH_ECN_ECT1	0x1	/* ECN-Capable Transport, ECT(1) */
558 #define	IPH_ECN_ECT0	0x2	/* ECN-Capable Transport, ECT(0) */
559 #define	IPH_ECN_CE	0x3	/* ECN-Congestion Experienced (CE) */
560 
561 /* IP Mac info structure */
562 typedef struct ip_m_s {
563 	t_uscalar_t	ip_m_mac_type;	/* From <sys/dlpi.h> */
564 	int		ip_m_type;	/* From <net/if_types.h> */
565 	boolean_t	(*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *,
566 			    uint32_t *, ipaddr_t *);
567 	boolean_t	(*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *,
568 			    uint32_t *, in6_addr_t *);
569 	boolean_t	(*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *);
570 } ip_m_t;
571 
572 /*
573  * The following functions attempt to reduce the link layer dependency
574  * of the IP stack. The current set of link specific operations are:
575  * a. map from IPv4 class D (224.0/4) multicast address range to the link
576  * layer multicast address range.
577  * b. map from IPv6 multicast address range (ff00::/8) to the link
578  * layer multicast address range.
579  * c. derive the default IPv6 interface identifier from the link layer
580  * address.
581  */
582 #define	MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \
583 	(((ip_m)->ip_m_v4mapinfo != NULL) && \
584 	(*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr))
585 #define	MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \
586 	(((ip_m)->ip_m_v6intfid != NULL) && \
587 	(*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr))
588 #define	MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \
589 	(((ip_m)->ip_m_v6mapinfo != NULL) && \
590 	(*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr))
591 
592 /* Router entry types */
593 #define	IRE_BROADCAST		0x0001	/* Route entry for broadcast address */
594 #define	IRE_DEFAULT		0x0002	/* Route entry for default gateway */
595 #define	IRE_LOCAL		0x0004	/* Route entry for local address */
596 #define	IRE_LOOPBACK		0x0008	/* Route entry for loopback address */
597 #define	IRE_PREFIX		0x0010	/* Route entry for prefix routes */
598 #define	IRE_CACHE		0x0020	/* Cached Route entry */
599 #define	IRE_IF_NORESOLVER	0x0040	/* Route entry for local interface */
600 					/* net without any address mapping. */
601 #define	IRE_IF_RESOLVER		0x0080	/* Route entry for local interface */
602 					/* net with resolver. */
603 #define	IRE_HOST		0x0100	/* Host route entry */
604 #define	IRE_HOST_REDIRECT	0x0200	/* only used for T_SVR4_OPTMGMT_REQ */
605 
606 #define	IRE_INTERFACE		(IRE_IF_NORESOLVER | IRE_IF_RESOLVER)
607 #define	IRE_OFFSUBNET		(IRE_DEFAULT | IRE_PREFIX | IRE_HOST)
608 #define	IRE_CACHETABLE		(IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \
609 				IRE_LOOPBACK)
610 #define	IRE_FORWARDTABLE	(IRE_INTERFACE | IRE_OFFSUBNET)
611 
612 /*
613  * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of
614  * the bucket should delete this IRE from this bucket.
615  */
616 #define	IRE_MARK_CONDEMNED	0x0001
617 /*
618  * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the
619  * broadcast packets received on that interface. This is marked only
620  * on broadcast ires. Employed by IPMP, where we have multiple NICs on the
621  * same subnet receiving the same broadcast packet.
622  */
623 #define	IRE_MARK_NORECV		0x0002
624 /*
625  * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need
626  * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP.
627  */
628 #define	IRE_MARK_HIDDEN		0x0004	/* Typically Used by in.mpathd */
629 
630 /*
631  * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing
632  * interface is specified by IP_XMIT_IF socket option. This ire is not
633  * added in IRE_CACHE.
634  */
635 #define	IRE_MARK_NOADD		0x0008	/* Mark not to add ire in cache */
636 
637 /*
638  * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used
639  * either for forwarding a packet or has not been used for sending
640  * traffic on TCP connections terminated on this system.  In both
641  * cases, this IRE is the first to go when IRE is being cleaned up.
642  */
643 #define	IRE_MARK_TEMPORARY	0x0010
644 
645 /*
646  * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with
647  * this mark, additional atomic checks need to be performed. For eg: by the
648  * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the
649  * usesrc grouping could have changed in which case we want to fail adding
650  * the IRE_CACHE entry
651  */
652 #define	IRE_MARK_USESRC_CHECK	0x0020
653 
654 /*
655  * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the
656  * routing table lookup for the destination is bypassed and the packet is
657  * sent directly to the specified nexthop. The associated IRE_CACHE entries
658  * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up
659  * in regular ire cache lookups.
660  */
661 #define	IRE_MARK_PRIVATE_ADDR	0x0040
662 
663 /*
664  * When we send an ARP resolution query for the nexthop gateway's ire,
665  * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk
666  * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag
667  * indicates that information from ARP has not been transferred to a
668  * permanent IRE_CACHE entry. The flag is reset only when the
669  * information is successfully transferred to an ire_cache entry (in
670  * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior
671  * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will
672  * require that the resources (incomplete ire_cache and/or nce) must
673  * be cleaned up. The free callback routine (ire_freemblk()) checks
674  * for IRE_MARK_UNCACHED to see if any resources that are pinned down
675  * will need to be cleaned up or not.
676  */
677 
678 #define	IRE_MARK_UNCACHED	0x0080
679 
680 /*
681  * The comment below (and for other netstack_t references) refers
682  * to the fact that we only do netstack_hold in particular cases,
683  * such as the references from open streams (ill_t and conn_t's
684  * pointers). Internally within IP we rely on IP's ability to cleanup e.g.
685  * ire_t's when an ill goes away.
686  */
687 typedef struct ire_expire_arg_s {
688 	int		iea_flush_flag;
689 	ip_stack_t	*iea_ipst;	/* Does not have a netstack_hold */
690 } ire_expire_arg_t;
691 
692 /* Flags with ire_expire routine */
693 #define	FLUSH_ARP_TIME		0x0001	/* ARP info potentially stale timer */
694 #define	FLUSH_REDIRECT_TIME	0x0002	/* Redirects potentially stale */
695 #define	FLUSH_MTU_TIME		0x0004	/* Include path MTU per RFC 1191 */
696 
697 /* Arguments to ire_flush_cache() */
698 #define	IRE_FLUSH_DELETE	0
699 #define	IRE_FLUSH_ADD		1
700 
701 /*
702  * Open/close synchronization flags.
703  * These are kept in a separate field in the conn and the synchronization
704  * depends on the atomic 32 bit access to that field.
705  */
706 #define	CONN_CLOSING		0x01	/* ip_close waiting for ip_wsrv */
707 #define	CONN_IPSEC_LOAD_WAIT	0x02	/* waiting for load */
708 #define	CONN_CONDEMNED		0x04	/* conn is closing, no more refs */
709 #define	CONN_INCIPIENT		0x08	/* conn not yet visible, no refs */
710 #define	CONN_QUIESCED		0x10	/* conn is now quiescent */
711 
712 /* Used to check connection state flags before caching the IRE */
713 #define	CONN_CACHE_IRE(connp)	\
714 	(!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED)))
715 
716 /*
717  * Parameter to ip_output giving the identity of the caller.
718  * IP_WSRV means the packet was enqueued in the STREAMS queue
719  * due to flow control and is now being reprocessed in the context of
720  * the STREAMS service procedure, consequent to flow control relief.
721  * IRE_SEND means the packet is being reprocessed consequent to an
722  * ire cache creation and addition and this may or may not be happening
723  * in the service procedure context. Anything other than the above 2
724  * cases is identified as IP_WPUT. Most commonly this is the case of
725  * packets coming down from the application.
726  */
727 #ifdef _KERNEL
728 #define	IP_WSRV			1	/* Called from ip_wsrv */
729 #define	IP_WPUT			2	/* Called from ip_wput */
730 #define	IRE_SEND		3	/* Called from ire_send */
731 
732 /*
733  * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
734  */
735 #define	MAX_FILTER_SIZE	64
736 
737 typedef struct slist_s {
738 	int		sl_numsrc;
739 	in6_addr_t	sl_addr[MAX_FILTER_SIZE];
740 } slist_t;
741 
742 /*
743  * Following struct is used to maintain retransmission state for
744  * a multicast group.  One rtx_state_t struct is an in-line field
745  * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
746  * alloc'd as needed.
747  */
748 typedef struct rtx_state_s {
749 	uint_t		rtx_timer;	/* retrans timer */
750 	int		rtx_cnt;	/* retrans count */
751 	int		rtx_fmode_cnt;	/* retrans count for fmode change */
752 	slist_t		*rtx_allow;
753 	slist_t		*rtx_block;
754 } rtx_state_t;
755 
756 /*
757  * Used to construct list of multicast address records that will be
758  * sent in a single listener report.
759  */
760 typedef struct mrec_s {
761 	struct mrec_s	*mrec_next;
762 	uint8_t		mrec_type;
763 	uint8_t		mrec_auxlen;	/* currently unused */
764 	in6_addr_t	mrec_group;
765 	slist_t		mrec_srcs;
766 } mrec_t;
767 
768 /* Group membership list per upper conn */
769 /*
770  * XXX add ilg info for ifaddr/ifindex.
771  * XXX can we make ilg survive an ifconfig unplumb + plumb
772  * by setting the ipif/ill to NULL and recover that later?
773  *
774  * ilg_ipif is used by IPv4 as multicast groups are joined using an interface
775  * address (ipif).
776  * ilg_ill is used by IPv6 as multicast groups are joined using an interface
777  * index (phyint->phyint_ifindex).
778  * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6.
779  *
780  * ilg records the state of multicast memberships of a socket end point.
781  * ilm records the state of multicast memberships with the driver and is
782  * maintained per interface.
783  *
784  * Notes :
785  *
786  * 1) There is no direct link between a given ilg and ilm. If the
787  *    application has joined a group G with ifindex I, we will have
788  *    an ilg with ilg_v6group and ilg_ill. There will be a corresponding
789  *    ilm with ilm_ill/ilm_v6addr recording the multicast membership.
790  *    To delete the membership,
791  *
792  *		a) Search for ilg matching on G and I with ilg_v6group
793  *		   and ilg_ill. Delete ilg_ill.
794  *		b) Search the corresponding ilm matching on G and I with
795  *		   ilm_v6addr and ilm_ill. Delete ilm.
796  *
797  *    In IPv4, the only difference is, we look using ipifs instead of
798  *    ills.
799  *
800  * 2) With IP multipathing, we want to keep receiving even after the
801  *    interface has failed. We do this by moving multicast memberships
802  *    to a new_ill within the group. This is acheived by sending
803  *    DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS
804  *    on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we
805  *    need to be able to delete memberships which will still come down
806  *    with the ifindex of the old ill which is what the application
807  *    knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track
808  *    of where we joined initially so that we can lookup even after we
809  *    moved the membership. It is also used for moving back the membership
810  *    when the old ill has been repaired. This is done by looking up for
811  *    ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only
812  *    ilms actually move from old ill to new ill. ilgs don't move (just
813  *    the ilg_ill is changed when it moves) as it just records the state
814  *    of the application that has joined a group G where as ilm records
815  *    the state joined with the driver. Thus when we send DL_XXXMULTI_REQs
816  *    we also need to keep the ilm in the right ill.
817  *
818  *    In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move
819  *    implicitly as we use only ipifs in IPv4. Thus, one can always lookup
820  *    a given ilm/ilg even after it fails without the support of
821  *    orig_ifindex. We move ilms still to record the driver state as
822  *    mentioned above.
823  */
824 
825 /*
826  * The ilg_t and ilm_t members are protected by ipsq. They can be changed only
827  * by a thread executing in the ipsq. In other words add/delete of a
828  * multicast group has to execute in the ipsq.
829  */
830 #define	ILG_DELETED	0x1		/* ilg_flags */
831 typedef struct ilg_s {
832 	in6_addr_t	ilg_v6group;
833 	struct ipif_s	*ilg_ipif;	/* Logical interface we are member on */
834 	struct ill_s	*ilg_ill;	/* Used by IPv6 */
835 	int		ilg_orig_ifindex; /* Interface originally joined on */
836 	uint_t		ilg_flags;
837 	mcast_record_t	ilg_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
838 	slist_t		*ilg_filter;
839 } ilg_t;
840 
841 
842 /*
843  * Multicast address list entry for lower ill.
844  * ilm_ipif is used by IPv4 as multicast groups are joined using ipif.
845  * ilm_ill is used by IPv6 as multicast groups are joined using ill.
846  * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6.
847  *
848  * The comment below (and for other netstack_t references) refers
849  * to the fact that we only do netstack_hold in particular cases,
850  * such as the references from open streams (ill_t and conn_t's
851  * pointers). Internally within IP we rely on IP's ability to cleanup e.g.
852  * ire_t's when an ill goes away.
853  */
854 #define	ILM_DELETED	0x1		/* ilm_flags */
855 typedef struct ilm_s {
856 	in6_addr_t	ilm_v6addr;
857 	int		ilm_refcnt;
858 	uint_t		ilm_timer;	/* IGMP/MLD query resp timer, in msec */
859 	struct ipif_s	*ilm_ipif;	/* Back pointer to ipif for IPv4 */
860 	struct ilm_s	*ilm_next;	/* Linked list for each ill */
861 	uint_t		ilm_state;	/* state of the membership */
862 	struct ill_s	*ilm_ill;	/* Back pointer to ill for IPv6 */
863 	int		ilm_orig_ifindex;  /* V6_MULTICAST_IF/ilm_ipif index */
864 	uint_t		ilm_flags;
865 	boolean_t	ilm_is_new;	/* new ilm */
866 	boolean_t	ilm_notify_driver; /* Need to notify the driver */
867 	zoneid_t	ilm_zoneid;
868 	int		ilm_no_ilg_cnt;	/* number of joins w/ no ilg */
869 	mcast_record_t	ilm_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
870 	slist_t		*ilm_filter;	/* source filter list */
871 	slist_t		*ilm_pendsrcs;	/* relevant src addrs for pending req */
872 	rtx_state_t	ilm_rtx;	/* SCR retransmission state */
873 	ip_stack_t	*ilm_ipst;	/* Does not have a netstack_hold */
874 } ilm_t;
875 
876 #define	ilm_addr	V4_PART_OF_V6(ilm_v6addr)
877 
878 /*
879  * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to
880  * zero. In addition it needs to block new walkers while it is unlinking ilm's
881  * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice.
882  */
883 #define	ILM_WALKER_HOLD(ill)    {               \
884 	mutex_enter(&(ill)->ill_lock);          \
885 	ill->ill_ilm_walker_cnt++;              \
886 	mutex_exit(&(ill)->ill_lock);           \
887 }
888 
889 #define	ILM_WALKER_RELE(ill)	{ 		\
890 	mutex_enter(&(ill)->ill_lock);		\
891 	(ill)->ill_ilm_walker_cnt--;		\
892 	if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \
893 		ilm_walker_cleanup(ill);	\
894 	mutex_exit(&(ill)->ill_lock);		\
895 }
896 
897 /*
898  * Soft reference to an IPsec SA.
899  *
900  * On relative terms, conn's can be persistant (living as long as the
901  * processes which create them), while SA's are ephemeral (dying when
902  * they hit their time-based or byte-based lifetimes).
903  *
904  * We could hold a hard reference to an SA from an ipsec_latch_t,
905  * but this would cause expired SA's to linger for a potentially
906  * unbounded time.
907  *
908  * Instead, we remember the hash bucket number and bucket generation
909  * in addition to the pointer.  The bucket generation is incremented on
910  * each deletion.
911  */
912 typedef struct ipsa_ref_s
913 {
914 	struct ipsa_s	*ipsr_sa;
915 	struct isaf_s	*ipsr_bucket;
916 	uint64_t	ipsr_gen;
917 } ipsa_ref_t;
918 
919 /*
920  * IPsec "latching" state.
921  *
922  * In the presence of IPsec policy, fully-bound conn's bind a connection
923  * to more than just the 5-tuple, but also a specific IPsec action and
924  * identity-pair.
925  *
926  * As an optimization, we also cache soft references to IPsec SA's
927  * here so that we can fast-path around most of the work needed for
928  * outbound IPsec SA selection.
929  *
930  * Were it not for TCP's detached connections, this state would be
931  * in-line in conn_t; instead, this is in a separate structure so it
932  * can be handed off to TCP when a connection is detached.
933  */
934 typedef struct ipsec_latch_s
935 {
936 	kmutex_t	ipl_lock;
937 	uint32_t	ipl_refcnt;
938 
939 	uint64_t	ipl_unique;
940 	struct ipsec_policy_s	*ipl_in_policy; /* latched policy (in) */
941 	struct ipsec_policy_s	*ipl_out_policy; /* latched policy (out) */
942 	struct ipsec_action_s	*ipl_in_action;	/* latched action (in) */
943 	struct ipsec_action_s	*ipl_out_action; /* latched action (out) */
944 	cred_t		*ipl_local_id;
945 	struct ipsid_s	*ipl_local_cid;
946 	struct ipsid_s	*ipl_remote_cid;
947 	unsigned int
948 			ipl_out_action_latched : 1,
949 			ipl_in_action_latched : 1,
950 			ipl_out_policy_latched : 1,
951 			ipl_in_policy_latched : 1,
952 
953 			ipl_ids_latched : 1,
954 
955 			ipl_pad_to_bit_31 : 27;
956 
957 	ipsa_ref_t	ipl_ref[2]; /* 0: ESP, 1: AH */
958 
959 } ipsec_latch_t;
960 
961 #define	IPLATCH_REFHOLD(ipl) { \
962 	atomic_add_32(&(ipl)->ipl_refcnt, 1);		\
963 	ASSERT((ipl)->ipl_refcnt != 0);			\
964 }
965 
966 #define	IPLATCH_REFRELE(ipl, ns) {				\
967 	ASSERT((ipl)->ipl_refcnt != 0);				\
968 	membar_exit();						\
969 	if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0)	\
970 		iplatch_free(ipl, ns);			\
971 }
972 
973 /*
974  * peer identity structure.
975  */
976 
977 typedef struct conn_s conn_t;
978 
979 /*
980  * The old IP client structure "ipc_t" is gone. All the data is stored in the
981  * connection structure "conn_t" now. The mapping of old and new fields looks
982  * like this:
983  *
984  * ipc_ulp			conn_ulp
985  * ipc_rq			conn_rq
986  * ipc_wq			conn_wq
987  *
988  * ipc_laddr			conn_src
989  * ipc_faddr			conn_rem
990  * ipc_v6laddr			conn_srcv6
991  * ipc_v6faddr			conn_remv6
992  *
993  * ipc_lport			conn_lport
994  * ipc_fport			conn_fport
995  * ipc_ports			conn_ports
996  *
997  * ipc_policy			conn_policy
998  * ipc_latch			conn_latch
999  *
1000  * ipc_irc_lock			conn_lock
1001  * ipc_ire_cache		conn_ire_cache
1002  *
1003  * ipc_state_flags		conn_state_flags
1004  * ipc_outgoing_ill		conn_outgoing_ill
1005  *
1006  * ipc_dontroute 		conn_dontroute
1007  * ipc_loopback 		conn_loopback
1008  * ipc_broadcast		conn_broadcast
1009  * ipc_reuseaddr		conn_reuseaddr
1010  *
1011  * ipc_multicast_loop		conn_multicast_loop
1012  * ipc_multi_router		conn_multi_router
1013  * ipc_priv_stream 		conn_priv_stream
1014  * ipc_draining 		conn_draining
1015  *
1016  * ipc_did_putbq		conn_did_putbq
1017  * ipc_unspec_src		conn_unspec_src
1018  * ipc_policy_cached		conn_policy_cached
1019  *
1020  * ipc_in_enforce_policy 	conn_in_enforce_policy
1021  * ipc_out_enforce_policy 	conn_out_enforce_policy
1022  * ipc_af_isv6			conn_af_isv6
1023  * ipc_pkt_isv6			conn_pkt_isv6
1024  *
1025  * ipc_ipv6_recvpktinfo		conn_ipv6_recvpktinfo
1026  *
1027  * ipc_ipv6_recvhoplimit	conn_ipv6_recvhoplimit
1028  * ipc_ipv6_recvhopopts		conn_ipv6_recvhopopts
1029  * ipc_ipv6_recvdstopts		conn_ipv6_recvdstopts
1030  *
1031  * ipc_ipv6_recvrthdr 		conn_ipv6_recvrthdr
1032  * ipc_ipv6_recvrtdstopts	conn_ipv6_recvrtdstopts
1033  * ipc_fully_bound		conn_fully_bound
1034  *
1035  * ipc_recvif			conn_recvif
1036  *
1037  * ipc_recvslla 		conn_recvslla
1038  * ipc_acking_unbind 		conn_acking_unbind
1039  * ipc_pad_to_bit_31 		conn_pad_to_bit_31
1040  *
1041  * ipc_xmit_if_ill		conn_xmit_if_ill
1042  * ipc_nofailover_ill		conn_nofailover_ill
1043  *
1044  * ipc_proto			conn_proto
1045  * ipc_incoming_ill		conn_incoming_ill
1046  * ipc_outgoing_pill		conn_outgoing_pill
1047  * ipc_pending_ill		conn_pending_ill
1048  * ipc_unbind_mp		conn_unbind_mp
1049  * ipc_ilg			conn_ilg
1050  * ipc_ilg_allocated		conn_ilg_allocated
1051  * ipc_ilg_inuse		conn_ilg_inuse
1052  * ipc_ilg_walker_cnt		conn_ilg_walker_cnt
1053  * ipc_refcv			conn_refcv
1054  * ipc_multicast_ipif		conn_multicast_ipif
1055  * ipc_multicast_ill		conn_multicast_ill
1056  * ipc_orig_bound_ifindex	conn_orig_bound_ifindex
1057  * ipc_orig_multicast_ifindex	conn_orig_multicast_ifindex
1058  * ipc_orig_xmit_ifindex	conn_orig_xmit_ifindex
1059  * ipc_drain_next		conn_drain_next
1060  * ipc_drain_prev		conn_drain_prev
1061  * ipc_idl			conn_idl
1062  */
1063 
1064 /*
1065  * This is used to match an inbound/outbound datagram with
1066  * policy.
1067  */
1068 
1069 typedef	struct ipsec_selector {
1070 	in6_addr_t	ips_local_addr_v6;
1071 	in6_addr_t	ips_remote_addr_v6;
1072 	uint16_t	ips_local_port;
1073 	uint16_t	ips_remote_port;
1074 	uint8_t		ips_icmp_type;
1075 	uint8_t		ips_icmp_code;
1076 	uint8_t		ips_protocol;
1077 	uint8_t		ips_isv4 : 1,
1078 			ips_is_icmp_inv_acq: 1;
1079 } ipsec_selector_t;
1080 
1081 /*
1082  * Note that we put v4 addresses in the *first* 32-bit word of the
1083  * selector rather than the last to simplify the prefix match/mask code
1084  * in spd.c
1085  */
1086 #define	ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
1087 #define	ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]
1088 
1089 /* Values used in IP by IPSEC Code */
1090 #define		IPSEC_OUTBOUND		B_TRUE
1091 #define		IPSEC_INBOUND		B_FALSE
1092 
1093 /*
1094  * There are two variants in policy failures. The packet may come in
1095  * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
1096  * have the desired level of protection (IPSEC_POLICY_MISMATCH).
1097  */
1098 #define	IPSEC_POLICY_NOT_NEEDED		0
1099 #define	IPSEC_POLICY_MISMATCH		1
1100 #define	IPSEC_POLICY_AUTH_NOT_NEEDED	2
1101 #define	IPSEC_POLICY_ENCR_NOT_NEEDED	3
1102 #define	IPSEC_POLICY_SE_NOT_NEEDED	4
1103 #define	IPSEC_POLICY_MAX		5	/* Always max + 1. */
1104 
1105 /*
1106  * Folowing macro is used whenever the code does not know whether there
1107  * is a M_CTL present in the front and it needs to examine the actual mp
1108  * i.e the IP header. As a M_CTL message could be in the front, this
1109  * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL
1110  * mp is not present, both first_mp and mp point to the same message.
1111  */
1112 #define	EXTRACT_PKT_MP(mp, first_mp, mctl_present)	\
1113 	(first_mp) = (mp);				\
1114 	if ((mp)->b_datap->db_type == M_CTL) {		\
1115 		(mp) = (mp)->b_cont;			\
1116 		(mctl_present) = B_TRUE;		\
1117 	} else {					\
1118 		(mctl_present) = B_FALSE;		\
1119 	}
1120 
1121 /*
1122  * Check with IPSEC inbound policy if
1123  *
1124  * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
1125  * 2) Or if we have not cached policy on the conn and the global policy is
1126  *    non-empty.
1127  */
1128 #define	CONN_INBOUND_POLICY_PRESENT(connp, ipss)	\
1129 	((connp)->conn_in_enforce_policy ||		\
1130 	(!((connp)->conn_policy_cached) && 		\
1131 	(ipss)->ipsec_inbound_v4_policy_present))
1132 
1133 #define	CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)	\
1134 	((connp)->conn_in_enforce_policy ||		\
1135 	(!(connp)->conn_policy_cached &&		\
1136 	(ipss)->ipsec_inbound_v6_policy_present))
1137 
1138 #define	CONN_OUTBOUND_POLICY_PRESENT(connp, ipss)	\
1139 	((connp)->conn_out_enforce_policy ||		\
1140 	(!((connp)->conn_policy_cached) &&		\
1141 	(ipss)->ipsec_outbound_v4_policy_present))
1142 
1143 #define	CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss)	\
1144 	((connp)->conn_out_enforce_policy ||		\
1145 	(!(connp)->conn_policy_cached &&		\
1146 	(ipss)->ipsec_outbound_v6_policy_present))
1147 
1148 /*
1149  * Information cached in IRE for upper layer protocol (ULP).
1150  *
1151  * Notice that ire_max_frag is not included in the iulp_t structure, which
1152  * it may seem that it should.  But ire_max_frag cannot really be cached.  It
1153  * is fixed for each interface.  For MTU found by PMTUd, we may want to cache
1154  * it.  But currently, we do not do that.
1155  */
1156 typedef struct iulp_s {
1157 	boolean_t	iulp_set;	/* Is any metric set? */
1158 	uint32_t	iulp_ssthresh;	/* Slow start threshold (TCP). */
1159 	clock_t		iulp_rtt;	/* Guestimate in millisecs. */
1160 	clock_t		iulp_rtt_sd;	/* Cached value of RTT variance. */
1161 	uint32_t	iulp_spipe;	/* Send pipe size. */
1162 	uint32_t	iulp_rpipe;	/* Receive pipe size. */
1163 	uint32_t	iulp_rtomax;	/* Max round trip timeout. */
1164 	uint32_t	iulp_sack;	/* Use SACK option (TCP)? */
1165 	uint32_t
1166 		iulp_tstamp_ok : 1,	/* Use timestamp option (TCP)? */
1167 		iulp_wscale_ok : 1,	/* Use window scale option (TCP)? */
1168 		iulp_ecn_ok : 1,	/* Enable ECN (for TCP)? */
1169 		iulp_pmtud_ok : 1,	/* Enable PMTUd? */
1170 
1171 		iulp_not_used : 28;
1172 } iulp_t;
1173 
1174 /* Zero iulp_t. */
1175 extern const iulp_t ire_uinfo_null;
1176 
1177 /*
1178  * The conn drain list structure.
1179  * The list is protected by idl_lock. Each conn_t inserted in the list
1180  * points back at this idl_t using conn_idl. IP primes the draining of the
1181  * conns queued in these lists, by qenabling the 1st conn of each list. This
1182  * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance
1183  * of ip_wsrv successively qenables the next conn in the list.
1184  * idl_lock protects all other members of idl_t and conn_drain_next
1185  * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED
1186  * flag of the conn_t and conn_idl.
1187  */
1188 typedef struct idl_s {
1189 	conn_t		*idl_conn;		/* Head of drain list */
1190 	kmutex_t	idl_lock;		/* Lock for this list */
1191 	conn_t		*idl_conn_draining;	/* conn that is draining */
1192 	uint32_t
1193 		idl_repeat : 1,			/* Last conn must re-enable */
1194 						/* drain list again */
1195 		idl_unused : 31;
1196 } idl_t;
1197 
1198 #define	CONN_DRAIN_LIST_LOCK(connp)	(&((connp)->conn_idl->idl_lock))
1199 /*
1200  * Interface route structure which holds the necessary information to recreate
1201  * routes that are tied to an interface (namely where ire_ipif != NULL).
1202  * These routes which were initially created via a routing socket or via the
1203  * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
1204  * traditional interface routes.  When an interface comes back up after being
1205  * marked down, this information will be used to recreate the routes.  These
1206  * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp).
1207  */
1208 typedef struct ifrt_s {
1209 	ushort_t	ifrt_type;		/* Type of IRE */
1210 	in6_addr_t	ifrt_v6addr;		/* Address IRE represents. */
1211 	in6_addr_t	ifrt_v6gateway_addr;	/* Gateway if IRE_OFFSUBNET */
1212 	in6_addr_t	ifrt_v6src_addr;	/* Src addr if RTF_SETSRC */
1213 	in6_addr_t	ifrt_v6mask;		/* Mask for matching IRE. */
1214 	uint32_t	ifrt_flags;		/* flags related to route */
1215 	uint_t		ifrt_max_frag;		/* MTU (next hop or path). */
1216 	iulp_t		ifrt_iulp_info;		/* Cached IRE ULP info. */
1217 } ifrt_t;
1218 
1219 #define	ifrt_addr		V4_PART_OF_V6(ifrt_v6addr)
1220 #define	ifrt_gateway_addr	V4_PART_OF_V6(ifrt_v6gateway_addr)
1221 #define	ifrt_src_addr		V4_PART_OF_V6(ifrt_v6src_addr)
1222 #define	ifrt_mask		V4_PART_OF_V6(ifrt_v6mask)
1223 
1224 /* Number of IP addresses that can be hosted on a physical interface */
1225 #define	MAX_ADDRS_PER_IF	8192
1226 /*
1227  * Number of Source addresses to be considered for source address
1228  * selection. Used by ipif_select_source[_v6].
1229  */
1230 #define	MAX_IPIF_SELECT_SOURCE	50
1231 
1232 #ifdef IP_DEBUG
1233 /*
1234  * Tracing refholds and refreleases for debugging. Existing tracing mechanisms
1235  * do not allow the granularity need to trace refrences to ipif/ill/ire's. This
1236  * mechanism should be revisited once dtrace is available.
1237  */
1238 #define	IP_STACK_DEPTH	15
1239 typedef struct tr_buf_s {
1240 	int	tr_depth;
1241 	pc_t	tr_stack[IP_STACK_DEPTH];
1242 } tr_buf_t;
1243 
1244 typedef struct th_trace_s {
1245 	struct	th_trace_s *th_next;
1246 	struct	th_trace_s **th_prev;
1247 	kthread_t	*th_id;
1248 	int	th_refcnt;
1249 	uint_t	th_trace_lastref;
1250 #define	TR_BUF_MAX	38
1251 	tr_buf_t th_trbuf[TR_BUF_MAX];
1252 } th_trace_t;
1253 #endif
1254 
1255 /* The following are ipif_state_flags */
1256 #define	IPIF_CONDEMNED		0x1	/* The ipif is being removed */
1257 #define	IPIF_CHANGING		0x2	/* A critcal ipif field is changing */
1258 #define	IPIF_MOVING		0x8	/* The ipif is being moved */
1259 #define	IPIF_SET_LINKLOCAL	0x10	/* transient flag during bringup */
1260 #define	IPIF_ZERO_SOURCE	0x20	/* transient flag during bringup */
1261 
1262 /* IP interface structure, one per local address */
1263 typedef struct ipif_s {
1264 	struct	ipif_s	*ipif_next;
1265 	struct	ill_s	*ipif_ill;	/* Back pointer to our ill */
1266 	int	ipif_id;		/* Logical unit number */
1267 	uint_t	ipif_mtu;		/* Starts at ipif_ill->ill_max_frag */
1268 	uint_t	ipif_saved_mtu;		/* Save of mtu during ipif_move() */
1269 	in6_addr_t ipif_v6lcl_addr;	/* Local IP address for this if. */
1270 	in6_addr_t ipif_v6src_addr;	/* Source IP address for this if. */
1271 	in6_addr_t ipif_v6subnet;	/* Subnet prefix for this if. */
1272 	in6_addr_t ipif_v6net_mask;	/* Net mask for this interface. */
1273 	in6_addr_t ipif_v6brd_addr;	/* Broadcast addr for this interface. */
1274 	in6_addr_t ipif_v6pp_dst_addr;	/* Point-to-point dest address. */
1275 	uint64_t ipif_flags;		/* Interface flags. */
1276 	uint_t	ipif_metric;		/* BSD if metric, for compatibility. */
1277 	uint_t	ipif_ire_type;		/* IRE_LOCAL or IRE_LOOPBACK */
1278 	mblk_t	*ipif_arp_del_mp;	/* Allocated at time arp comes up, to */
1279 					/* prevent awkward out of mem */
1280 					/* condition later */
1281 	mblk_t	*ipif_saved_ire_mp;	/* Allocated for each extra */
1282 					/* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */
1283 					/* on this interface so that they */
1284 					/* can survive ifconfig down. */
1285 	kmutex_t ipif_saved_ire_lock;	/* Protects ipif_saved_ire_mp */
1286 
1287 	mrec_t	*ipif_igmp_rpt;		/* List of group memberships which */
1288 					/* will be reported on.  Used when */
1289 					/* handling an igmp timeout.	   */
1290 
1291 	/*
1292 	 * The packet counts in the ipif contain the sum of the
1293 	 * packet counts in dead IREs that were affiliated with
1294 	 * this ipif.
1295 	 */
1296 	uint_t	ipif_fo_pkt_count;	/* Forwarded thru our dead IREs */
1297 	uint_t	ipif_ib_pkt_count;	/* Inbound packets for our dead IREs */
1298 	uint_t	ipif_ob_pkt_count;	/* Outbound packets to our dead IREs */
1299 	/* Exclusive bit fields, protected by ipsq_t */
1300 	unsigned int
1301 		ipif_multicast_up : 1,	/* We have joined the allhosts group */
1302 		ipif_replace_zero : 1,	/* Replacement for zero */
1303 		ipif_was_up : 1,	/* ipif was up before */
1304 		ipif_addr_ready : 1,	/* DAD is done */
1305 
1306 		ipif_was_dup : 1,	/* DAD had failed */
1307 		ipif_pad_to_31 : 27;
1308 
1309 	int	ipif_orig_ifindex;	/* ifindex before SLIFFAILOVER */
1310 	uint_t	ipif_seqid;		/* unique index across all ills */
1311 	uint_t	ipif_orig_ipifid;	/* ipif_id before SLIFFAILOVER */
1312 	uint_t	ipif_state_flags;	/* See IPIF_* flag defs above */
1313 	uint_t	ipif_refcnt;		/* active consistent reader cnt */
1314 	uint_t	ipif_ire_cnt;		/* Number of ire's referencing ipif */
1315 	uint_t	ipif_saved_ire_cnt;
1316 	zoneid_t
1317 		ipif_zoneid;		/* zone ID number */
1318 	timeout_id_t ipif_recovery_id;	/* Timer for DAD recovery */
1319 #ifdef ILL_DEBUG
1320 #define	IP_TR_HASH_MAX	64
1321 	th_trace_t *ipif_trace[IP_TR_HASH_MAX];
1322 	boolean_t	ipif_trace_disable;	/* True when alloc fails */
1323 #endif
1324 } ipif_t;
1325 
1326 /*
1327  * The following table lists the protection levels of the various members
1328  * of the ipif_t. The following notation is used.
1329  *
1330  * Write once - Written to only once at the time of bringing up
1331  * the interface and can be safely read after the bringup without any lock.
1332  *
1333  * ipsq - Need to execute in the ipsq to perform the indicated access.
1334  *
1335  * ill_lock - Need to hold this mutex to perform the indicated access.
1336  *
1337  * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
1338  * write access respectively.
1339  *
1340  * down ill - Written to only when the ill is down (i.e all ipifs are down)
1341  * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1342  *
1343  *		 Table of ipif_t members and their protection
1344  *
1345  * ipif_next		ipsq + ill_lock +	ipsq OR ill_lock OR
1346  *			ill_g_lock		ill_g_lock
1347  * ipif_ill		ipsq + down ipif	write once
1348  * ipif_id		ipsq + down ipif	write once
1349  * ipif_mtu		ipsq
1350  * ipif_v6lcl_addr	ipsq + down ipif	up ipif
1351  * ipif_v6src_addr	ipsq + down ipif	up ipif
1352  * ipif_v6subnet	ipsq + down ipif	up ipif
1353  * ipif_v6net_mask	ipsq + down ipif	up ipif
1354  *
1355  * ipif_v6brd_addr
1356  * ipif_v6pp_dst_addr
1357  * ipif_flags		ill_lock		ill_lock
1358  * ipif_metric
1359  * ipif_ire_type	ipsq + down ill		up ill
1360  *
1361  * ipif_arp_del_mp	ipsq			ipsq
1362  * ipif_saved_ire_mp	ipif_saved_ire_lock	ipif_saved_ire_lock
1363  * ipif_igmp_rpt	ipsq			ipsq
1364  *
1365  * ipif_fo_pkt_count	Approx
1366  * ipif_ib_pkt_count	Approx
1367  * ipif_ob_pkt_count	Approx
1368  *
1369  * bit fields		ill_lock		ill_lock
1370  *
1371  * ipif_orig_ifindex	ipsq			None
1372  * ipif_orig_ipifid	ipsq			None
1373  * ipif_seqid		ipsq			Write once
1374  *
1375  * ipif_state_flags	ill_lock		ill_lock
1376  * ipif_refcnt		ill_lock		ill_lock
1377  * ipif_ire_cnt		ill_lock		ill_lock
1378  * ipif_saved_ire_cnt
1379  */
1380 
1381 #define	IP_TR_HASH(tid)	((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))
1382 
1383 #ifdef ILL_DEBUG
1384 #define	IPIF_TRACE_REF(ipif)	ipif_trace_ref(ipif)
1385 #define	ILL_TRACE_REF(ill)	ill_trace_ref(ill)
1386 #define	IPIF_UNTRACE_REF(ipif)	ipif_untrace_ref(ipif)
1387 #define	ILL_UNTRACE_REF(ill)	ill_untrace_ref(ill)
1388 #define	ILL_TRACE_CLEANUP(ill)	ill_trace_cleanup(ill)
1389 #define	IPIF_TRACE_CLEANUP(ipif)	ipif_trace_cleanup(ipif)
1390 #else
1391 #define	IPIF_TRACE_REF(ipif)
1392 #define	ILL_TRACE_REF(ill)
1393 #define	IPIF_UNTRACE_REF(ipif)
1394 #define	ILL_UNTRACE_REF(ill)
1395 #define	ILL_TRACE_CLEANUP(ill)
1396 #define	IPIF_TRACE_CLEANUP(ipif)
1397 #endif
1398 
1399 /* IPv4 compatability macros */
1400 #define	ipif_lcl_addr		V4_PART_OF_V6(ipif_v6lcl_addr)
1401 #define	ipif_src_addr		V4_PART_OF_V6(ipif_v6src_addr)
1402 #define	ipif_subnet		V4_PART_OF_V6(ipif_v6subnet)
1403 #define	ipif_net_mask		V4_PART_OF_V6(ipif_v6net_mask)
1404 #define	ipif_brd_addr		V4_PART_OF_V6(ipif_v6brd_addr)
1405 #define	ipif_pp_dst_addr	V4_PART_OF_V6(ipif_v6pp_dst_addr)
1406 
1407 /* Macros for easy backreferences to the ill. */
1408 #define	ipif_wq			ipif_ill->ill_wq
1409 #define	ipif_rq			ipif_ill->ill_rq
1410 #define	ipif_net_type		ipif_ill->ill_net_type
1411 #define	ipif_ipif_up_count	ipif_ill->ill_ipif_up_count
1412 #define	ipif_type		ipif_ill->ill_type
1413 #define	ipif_isv6		ipif_ill->ill_isv6
1414 
1415 #define	SIOCLIFADDR_NDX 112	/* ndx of SIOCLIFADDR in the ndx ioctl table */
1416 
1417 /*
1418  * mode value for ip_ioctl_finish for finishing an ioctl
1419  */
1420 #define	CONN_CLOSE	1		/* No mi_copy */
1421 #define	COPYOUT		2		/* do an mi_copyout if needed */
1422 #define	NO_COPYOUT	3		/* do an mi_copy_done */
1423 #define	IPI2MODE(ipi)	((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT)
1424 
1425 /*
1426  * The IP-MT design revolves around the serialization object ipsq_t.
1427  * It is associated with an IPMP group. If IPMP is not enabled, there is
1428  * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream
1429  *
1430  * ipsq_lock protects
1431  *	ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail,
1432  *	ipsq_mphead, ipsq_mptail, ipsq_split
1433  *
1434  *	ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags,
1435  *	ipsq_waitfor
1436  *
1437  * The fields in the last line above below are set mostly by a writer thread
1438  * But there is an exception in the last call to ipif_ill_refrele_tail which
1439  * could also race with a conn close which could be cleaning up the
1440  * fields. So we choose to protect using ipsq_lock instead of depending on
1441  * the property of the writer.
1442  * ill_g_lock protects
1443  *	ipsq_refs, ipsq_phyint_list
1444  */
1445 typedef struct ipsq_s {
1446 	kmutex_t ipsq_lock;
1447 	int	ipsq_reentry_cnt;
1448 	kthread_t *ipsq_writer;		/* current owner (thread id) */
1449 	int	ipsq_flags;
1450 	mblk_t	*ipsq_xopq_mphead;	/* list of excl ops mostly ioctls */
1451 	mblk_t	*ipsq_xopq_mptail;
1452 	mblk_t	*ipsq_mphead;		/* msgs on ipsq linked thru b_next */
1453 	mblk_t	*ipsq_mptail;		/* msgs on ipsq linked thru b_next */
1454 	int	ipsq_current_ioctl;	/* current ioctl, or 0 if no ioctl */
1455 	ipif_t	*ipsq_current_ipif;	/* ipif associated with current op */
1456 	ipif_t	*ipsq_pending_ipif;	/* ipif associated w. ipsq_pending_mp */
1457 	mblk_t	*ipsq_pending_mp;	/* current ioctl mp while waiting for */
1458 					/* response from another module */
1459 	struct	ipsq_s	*ipsq_next;	/* list of all syncq's (ipsq_g_list) */
1460 	uint_t		ipsq_refs;	/* Number of phyints on this ipsq */
1461 	struct phyint	*ipsq_phyint_list; /* List of phyints on this ipsq */
1462 	boolean_t	ipsq_split;	/* ipsq may need to be split */
1463 	int		ipsq_waitfor;	/* Values encoded below */
1464 	char		ipsq_name[LIFNAMSIZ+1];	/* same as phyint_groupname */
1465 
1466 #ifdef ILL_DEBUG
1467 	int		ipsq_depth;	/* debugging aid */
1468 	pc_t		ipsq_stack[IP_STACK_DEPTH];	/* debugging aid */
1469 #endif
1470 	ip_stack_t	*ipsq_ipst;	/* Does not have a netstack_hold */
1471 } ipsq_t;
1472 
1473 /* ipsq_flags */
1474 #define	IPSQ_GROUP	0x1	/* This ipsq belongs to an IPMP group */
1475 
1476 /*
1477  * ipsq_waitfor:
1478  *
1479  * IPIF_DOWN	1	ipif_down waiting for refcnts to drop
1480  * ILL_DOWN	2	ill_down waiting for refcnts to drop
1481  * IPIF_FREE	3	ipif_free waiting for refcnts to drop
1482  * ILL_FREE	4	ill unplumb waiting for refcnts to drop
1483  * ILL_MOVE_OK	5	failover waiting for refcnts to drop
1484  */
1485 
1486 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK };
1487 
1488 /* Flags passed to ipsq_try_enter */
1489 #define	CUR_OP 0		/* Current ioctl continuing again */
1490 #define	NEW_OP 1		/* New ioctl starting afresh */
1491 
1492 /*
1493  * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1494  * There is a separate ill_t representing IPv4 and IPv6 which has a
1495  * backpointer to the phyint structure for acessing common state.
1496  *
1497  * NOTE : It just stores the group name as there is only one name for
1498  *	  IPv4 and IPv6 i.e it is a underlying link property. Actually
1499  *        IPv4 and IPv6 ill are grouped together when their phyints have
1500  *        the same name.
1501  */
1502 typedef struct phyint {
1503 	struct ill_s	*phyint_illv4;
1504 	struct ill_s	*phyint_illv6;
1505 	uint_t		phyint_ifindex;		/* SIOCLSLIFINDEX */
1506 	char		*phyint_groupname;	/* SIOCSLIFGROUPNAME */
1507 	uint_t		phyint_groupname_len;
1508 	uint64_t	phyint_flags;
1509 	avl_node_t	phyint_avl_by_index;	/* avl tree by index */
1510 	avl_node_t	phyint_avl_by_name;	/* avl tree by name */
1511 	kmutex_t	phyint_lock;
1512 	struct ipsq_s	*phyint_ipsq;		/* back pointer to ipsq */
1513 	struct phyint	*phyint_ipsq_next;	/* phyint list on this ipsq */
1514 	/* Once Clearview IPMP is added the follow two fields can be removed */
1515 	uint_t		phyint_group_ifindex;	/* index assigned to group */
1516 	uint_t		phyint_hook_ifindex;	/* index used with neti/hook */
1517 } phyint_t;
1518 
1519 #define	CACHE_ALIGN_SIZE 64
1520 
1521 #define	CACHE_ALIGN(align_struct)	P2ROUNDUP(sizeof (struct align_struct),\
1522 							CACHE_ALIGN_SIZE)
1523 struct _phyint_list_s_ {
1524 	avl_tree_t	phyint_list_avl_by_index;	/* avl tree by index */
1525 	avl_tree_t	phyint_list_avl_by_name;	/* avl tree by name */
1526 };
1527 
1528 typedef union phyint_list_u {
1529 	struct	_phyint_list_s_ phyint_list_s;
1530 	char	phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1531 } phyint_list_t;
1532 
1533 #define	phyint_list_avl_by_index	phyint_list_s.phyint_list_avl_by_index
1534 #define	phyint_list_avl_by_name		phyint_list_s.phyint_list_avl_by_name
1535 /*
1536  * ILL groups. We group ills,
1537  *
1538  * - if the ills have the same group name. (New way)
1539  *
1540  * ill_group locking notes:
1541  *
1542  * illgrp_lock protects ill_grp_ill_schednext.
1543  *
1544  * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count.
1545  * Holding ill_g_lock freezes the memberships of ills in IPMP groups.
1546  * It also freezes the global list of ills and all ipifs in all ills.
1547  *
1548  * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail
1549  * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the
1550  * global list of ills, ill_glist_delete() holds ill_g_lock as writer.
1551  * This simplifies things for ipif_select_source, illgrp_scheduler etc.
1552  * that need to walk the members of an illgrp. They just hold ill_g_lock
1553  * as reader to do the walk.
1554  *
1555  */
1556 typedef	struct ill_group {
1557 	kmutex_t	illgrp_lock;
1558 	struct ill_group *illgrp_next;		/* Next ill_group */
1559 	struct ill_s	*illgrp_ill_schednext;	/* Next ill to be scheduled */
1560 	struct ill_s	*illgrp_ill;		/* First ill in the group */
1561 	int		illgrp_ill_count;
1562 } ill_group_t;
1563 
1564 /*
1565  * Fragmentation hash bucket
1566  */
1567 typedef struct ipfb_s {
1568 	struct ipf_s	*ipfb_ipf;	/* List of ... */
1569 	size_t		ipfb_count;	/* Count of bytes used by frag(s) */
1570 	kmutex_t	ipfb_lock;	/* Protect all ipf in list */
1571 	uint_t		ipfb_frag_pkts; /* num of distinct fragmented pkts */
1572 } ipfb_t;
1573 
1574 /*
1575  * IRE bucket structure. Usually there is an array of such structures,
1576  * each pointing to a linked list of ires. irb_refcnt counts the number
1577  * of walkers of a given hash bucket. Usually the reference count is
1578  * bumped up if the walker wants no IRES to be DELETED while walking the
1579  * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1580  * hash bucket without stumbling up on a free pointer.
1581  *
1582  * irb_t structures in ip_ftable are dynamically allocated and freed.
1583  * In order to identify the irb_t structures that can be safely kmem_free'd
1584  * we need to ensure that
1585  *  - the irb_refcnt is quiescent, indicating no other walkers,
1586  *  - no other threads or ire's are holding references to the irb,
1587  *	i.e., irb_nire == 0,
1588  *  - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0
1589  */
1590 typedef struct irb {
1591 	struct ire_s	*irb_ire;	/* First ire in this bucket */
1592 					/* Should be first in this struct */
1593 	krwlock_t	irb_lock;	/* Protect this bucket */
1594 	uint_t		irb_refcnt;	/* Protected by irb_lock */
1595 	uchar_t		irb_marks;	/* CONDEMNED ires in this bucket ? */
1596 #define	IRB_MARK_CONDEMNED	0x0001
1597 #define	IRB_MARK_FTABLE		0x0002
1598 	uint_t		irb_ire_cnt;	/* Num of active IRE in this bucket */
1599 	uint_t		irb_tmp_ire_cnt; /* Num of temporary IRE */
1600 	struct ire_s	*irb_rr_origin;	/* origin for round-robin */
1601 	int		irb_nire;	/* Num of ftable ire's that ref irb */
1602 	ip_stack_t	*irb_ipst;	/* Does not have a netstack_hold */
1603 } irb_t;
1604 
1605 #define	IRB2RT(irb)	(rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))
1606 
1607 /* The following are return values of ip_xmit_v4() */
1608 typedef enum {
1609 	SEND_PASSED = 0,	 /* sent packet out on wire */
1610 	SEND_FAILED,	 /* sending of packet failed */
1611 	LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */
1612 	LLHDR_RESLV_FAILED  /* macaddr resl of onlink dst or nexthop failed */
1613 } ipxmit_state_t;
1614 
1615 #define	IP_V4_G_HEAD	0
1616 #define	IP_V6_G_HEAD	1
1617 
1618 #define	MAX_G_HEADS	2
1619 
1620 /*
1621  * unpadded ill_if structure
1622  */
1623 struct 	_ill_if_s_ {
1624 	union ill_if_u	*illif_next;
1625 	union ill_if_u	*illif_prev;
1626 	avl_tree_t	illif_avl_by_ppa;	/* AVL tree sorted on ppa */
1627 	vmem_t		*illif_ppa_arena;	/* ppa index space */
1628 	uint16_t	illif_mcast_v1;		/* hints for		  */
1629 	uint16_t	illif_mcast_v2;		/* [igmp|mld]_slowtimo	  */
1630 	int		illif_name_len;		/* name length */
1631 	char		illif_name[LIFNAMSIZ];	/* name of interface type */
1632 };
1633 
1634 /* cache aligned ill_if structure */
1635 typedef union 	ill_if_u {
1636 	struct  _ill_if_s_ ill_if_s;
1637 	char 	illif_filler[CACHE_ALIGN(_ill_if_s_)];
1638 } ill_if_t;
1639 
1640 #define	illif_next		ill_if_s.illif_next
1641 #define	illif_prev		ill_if_s.illif_prev
1642 #define	illif_avl_by_ppa	ill_if_s.illif_avl_by_ppa
1643 #define	illif_ppa_arena		ill_if_s.illif_ppa_arena
1644 #define	illif_mcast_v1		ill_if_s.illif_mcast_v1
1645 #define	illif_mcast_v2		ill_if_s.illif_mcast_v2
1646 #define	illif_name		ill_if_s.illif_name
1647 #define	illif_name_len		ill_if_s.illif_name_len
1648 
1649 typedef struct ill_walk_context_s {
1650 	int	ctx_current_list; /* current list being searched */
1651 	int	ctx_last_list;	 /* last list to search */
1652 } ill_walk_context_t;
1653 
1654 /*
1655  * ill_g_heads structure, one for IPV4 and one for IPV6
1656  */
1657 struct _ill_g_head_s_ {
1658 	ill_if_t	*ill_g_list_head;
1659 	ill_if_t	*ill_g_list_tail;
1660 };
1661 
1662 typedef union ill_g_head_u {
1663 	struct _ill_g_head_s_ ill_g_head_s;
1664 	char	ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1665 } ill_g_head_t;
1666 
1667 #define	ill_g_list_head	ill_g_head_s.ill_g_list_head
1668 #define	ill_g_list_tail	ill_g_head_s.ill_g_list_tail
1669 
1670 #define	IP_V4_ILL_G_LIST(ipst)	\
1671 	(ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1672 #define	IP_V6_ILL_G_LIST(ipst)	\
1673 	(ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1674 #define	IP_VX_ILL_G_LIST(i, ipst)	\
1675 	(ipst)->ips_ill_g_heads[i].ill_g_list_head
1676 
1677 #define	ILL_START_WALK_V4(ctx_ptr, ipst)	\
1678 	ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst)
1679 #define	ILL_START_WALK_V6(ctx_ptr, ipst)	\
1680 	ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst)
1681 #define	ILL_START_WALK_ALL(ctx_ptr, ipst)	\
1682 	ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst)
1683 
1684 /*
1685  * Capabilities, possible flags for ill_capabilities.
1686  */
1687 
1688 #define	ILL_CAPAB_AH		0x01		/* IPsec AH acceleration */
1689 #define	ILL_CAPAB_ESP		0x02		/* IPsec ESP acceleration */
1690 #define	ILL_CAPAB_MDT		0x04		/* Multidata Transmit */
1691 #define	ILL_CAPAB_HCKSUM	0x08		/* Hardware checksumming */
1692 #define	ILL_CAPAB_ZEROCOPY	0x10		/* Zero-copy */
1693 #define	ILL_CAPAB_POLL		0x20		/* Polling Toggle */
1694 #define	ILL_CAPAB_SOFT_RING	0x40		/* Soft_Ring capability */
1695 #define	ILL_CAPAB_LSO		0x80		/* Large Segment Offload */
1696 
1697 /*
1698  * Per-ill Multidata Transmit capabilities.
1699  */
1700 typedef struct ill_mdt_capab_s ill_mdt_capab_t;
1701 
1702 /*
1703  * Per-ill IPsec capabilities.
1704  */
1705 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t;
1706 
1707 /*
1708  * Per-ill Hardware Checksumming capbilities.
1709  */
1710 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;
1711 
1712 /*
1713  * Per-ill Zero-copy capabilities.
1714  */
1715 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;
1716 
1717 /*
1718  * Per-ill Polling/soft ring capbilities.
1719  */
1720 typedef struct ill_dls_capab_s ill_dls_capab_t;
1721 
1722 /*
1723  * Per-ill polling resource map.
1724  */
1725 typedef struct ill_rx_ring ill_rx_ring_t;
1726 
1727 /*
1728  * Per-ill Large Segment Offload capabilities.
1729  */
1730 typedef struct ill_lso_capab_s ill_lso_capab_t;
1731 
1732 /* The following are ill_state_flags */
1733 #define	ILL_LL_SUBNET_PENDING	0x01	/* Waiting for DL_INFO_ACK from drv */
1734 #define	ILL_CONDEMNED		0x02	/* No more new ref's to the ILL */
1735 #define	ILL_CHANGING		0x04	/* ILL not globally visible */
1736 #define	ILL_DL_UNBIND_IN_PROGRESS	0x08	/* UNBIND_REQ is sent */
1737 #define	ILL_SOFT_RING_ASSIGN	0x10	/* Makeing soft ring assigment */
1738 
1739 /* Is this an ILL whose source address is used by other ILL's ? */
1740 #define	IS_USESRC_ILL(ill)			\
1741 	(((ill)->ill_usesrc_ifindex == 0) &&	\
1742 	((ill)->ill_usesrc_grp_next != NULL))
1743 
1744 /* Is this a client/consumer of the usesrc ILL ? */
1745 #define	IS_USESRC_CLI_ILL(ill)			\
1746 	(((ill)->ill_usesrc_ifindex != 0) &&	\
1747 	((ill)->ill_usesrc_grp_next != NULL))
1748 
1749 /* Is this an virtual network interface (vni) ILL ? */
1750 #define	IS_VNI(ill)							     \
1751 	(((ill) != NULL) &&						     \
1752 	(((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
1753 	PHYI_VIRTUAL))
1754 
1755 /* Is this a loopback ILL? */
1756 #define	IS_LOOPBACK(ill) \
1757 	((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK)
1758 
1759 /*
1760  * IP Lower level Structure.
1761  * Instance data structure in ip_open when there is a device below us.
1762  */
1763 typedef struct ill_s {
1764 	ill_if_t *ill_ifptr;		/* pointer to interface type */
1765 	queue_t	*ill_rq;		/* Read queue. */
1766 	queue_t	*ill_wq;		/* Write queue. */
1767 
1768 	int	ill_error;		/* Error value sent up by device. */
1769 
1770 	ipif_t	*ill_ipif;		/* Interface chain for this ILL. */
1771 
1772 	uint_t	ill_ipif_up_count;	/* Number of IPIFs currently up. */
1773 	uint_t	ill_max_frag;		/* Max IDU from DLPI. */
1774 	char	*ill_name;		/* Our name. */
1775 	uint_t	ill_ipif_dup_count;	/* Number of duplicate addresses. */
1776 	uint_t	ill_name_length;	/* Name length, incl. terminator. */
1777 	char	*ill_ndd_name;		/* Name + ":ip?_forwarding" for NDD. */
1778 	uint_t	ill_net_type;		/* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1779 	/*
1780 	 * Physical Point of Attachment num.  If DLPI style 1 provider
1781 	 * then this is derived from the devname.
1782 	 */
1783 	uint_t	ill_ppa;
1784 	t_uscalar_t	ill_sap;
1785 	t_scalar_t	ill_sap_length;	/* Including sign (for position) */
1786 	uint_t	ill_phys_addr_length;	/* Excluding the sap. */
1787 	uint_t	ill_bcast_addr_length;	/* Only set when the DL provider */
1788 					/* supports broadcast. */
1789 	t_uscalar_t	ill_mactype;
1790 	uint8_t	*ill_frag_ptr;		/* Reassembly state. */
1791 	timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1792 	ipfb_t	*ill_frag_hash_tbl;	/* Fragment hash list head. */
1793 	ipif_t	*ill_pending_ipif;	/* IPIF waiting for DL operation. */
1794 
1795 	ilm_t	*ill_ilm;		/* Multicast mebership for lower ill */
1796 	uint_t	ill_global_timer;	/* for IGMPv3/MLDv2 general queries */
1797 	int	ill_mcast_type;		/* type of router which is querier */
1798 					/* on this interface */
1799 	uint16_t ill_mcast_v1_time;	/* # slow timeouts since last v1 qry */
1800 	uint16_t ill_mcast_v2_time;	/* # slow timeouts since last v2 qry */
1801 	uint8_t	ill_mcast_v1_tset;	/* 1 => timer is set; 0 => not set */
1802 	uint8_t	ill_mcast_v2_tset;	/* 1 => timer is set; 0 => not set */
1803 
1804 	uint8_t	ill_mcast_rv;		/* IGMPv3/MLDv2 robustness variable */
1805 	int	ill_mcast_qi;		/* IGMPv3/MLDv2 query interval var */
1806 
1807 	mblk_t	*ill_pending_mp;	/* IOCTL/DLPI awaiting completion. */
1808 	/*
1809 	 * All non-NULL cells between 'ill_first_mp_to_free' and
1810 	 * 'ill_last_mp_to_free' are freed in ill_delete.
1811 	 */
1812 #define	ill_first_mp_to_free	ill_bcast_mp
1813 	mblk_t	*ill_bcast_mp;		/* DLPI header for broadcasts. */
1814 	mblk_t	*ill_resolver_mp;	/* Resolver template. */
1815 	mblk_t	*ill_unbind_mp;		/* unbind mp from ill_dl_up() */
1816 	mblk_t	*ill_dlpi_deferred;	/* b_next chain of control messages */
1817 	mblk_t	*ill_phys_addr_mp;	/* mblk which holds ill_phys_addr */
1818 #define	ill_last_mp_to_free	ill_phys_addr_mp
1819 
1820 	cred_t	*ill_credp;		/* opener's credentials */
1821 	uint8_t	*ill_phys_addr;		/* ill_phys_addr_mp->b_rptr + off */
1822 
1823 	uint_t	ill_state_flags;	/* see ILL_* flags above */
1824 
1825 	/* Following bit fields protected by ipsq_t */
1826 	uint_t
1827 		ill_needs_attach : 1,
1828 		ill_reserved : 1,
1829 		ill_isv6 : 1,
1830 		ill_dlpi_style_set : 1,
1831 
1832 		ill_ifname_pending : 1,
1833 		ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */
1834 		ill_join_allmulti : 1,
1835 		ill_logical_down : 1,
1836 
1837 		ill_is_6to4tun : 1,	/* Interface is a 6to4 tunnel */
1838 		ill_promisc_on_phys : 1, /* phys interface in promisc mode */
1839 		ill_dl_up : 1,
1840 		ill_up_ipifs : 1,
1841 
1842 		ill_note_link : 1,	/* supports link-up notification */
1843 
1844 		ill_pad_to_bit_31 : 19;
1845 
1846 	/* Following bit fields protected by ill_lock */
1847 	uint_t
1848 		ill_fragtimer_executing : 1,
1849 		ill_fragtimer_needrestart : 1,
1850 		ill_ilm_cleanup_reqd : 1,
1851 		ill_arp_closing : 1,
1852 
1853 		ill_arp_bringup_pending : 1,
1854 		ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */
1855 		ill_arp_extend : 1,	/* ARP has DAD extensions */
1856 		ill_pad_bit_31 : 25;
1857 
1858 	/*
1859 	 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'.
1860 	 */
1861 	int	ill_arp_muxid;		/* muxid returned from plink for arp */
1862 	int	ill_ip_muxid;		/* muxid returned from plink for ip */
1863 
1864 	/*
1865 	 * NIC event information attached, to be used by nic event hooks.
1866 	 */
1867 	hook_nic_event_t	*ill_nic_event_info;
1868 
1869 	/*
1870 	 * Used for IP frag reassembly throttling on a per ILL basis.
1871 	 *
1872 	 * Note: frag_count is approximate, its added to and subtracted from
1873 	 *	 without any locking, so simultaneous load/modify/stores can
1874 	 *	 collide, also ill_frag_purge() recalculates its value by
1875 	 *	 summing all the ipfb_count's without locking out updates
1876 	 *	 to the ipfb's.
1877 	 */
1878 	uint_t	ill_ipf_gen;		/* Generation of next fragment queue */
1879 	uint_t	ill_frag_count;		/* Approx count of all mblk bytes */
1880 	uint_t	ill_frag_free_num_pkts;	 /* num of fragmented packets to free */
1881 	clock_t	ill_last_frag_clean_time; /* time when frag's were pruned */
1882 	int	ill_type;		/* From <net/if_types.h> */
1883 	uint_t	ill_dlpi_multicast_state;	/* See below IDS_* */
1884 	uint_t	ill_dlpi_fastpath_state;	/* See below IDS_* */
1885 
1886 	/*
1887 	 * Capabilities related fields.
1888 	 */
1889 	uint_t  ill_dlpi_capab_state;	/* State of capability query, IDS_* */
1890 	uint64_t ill_capabilities;	/* Enabled capabilities, ILL_CAPAB_* */
1891 	ill_mdt_capab_t	*ill_mdt_capab;	/* Multidata Transmit capabilities */
1892 	ill_ipsec_capab_t *ill_ipsec_capab_ah;	/* IPsec AH capabilities */
1893 	ill_ipsec_capab_t *ill_ipsec_capab_esp;	/* IPsec ESP capabilities */
1894 	ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1895 	ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1896 	ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */
1897 	ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */
1898 
1899 	/*
1900 	 * New fields for IPv6
1901 	 */
1902 	uint8_t	ill_max_hops;	/* Maximum hops for any logical interface */
1903 	uint_t	ill_max_mtu;	/* Maximum MTU for any logical interface */
1904 	uint32_t ill_reachable_time;	/* Value for ND algorithm in msec */
1905 	uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1906 	uint_t	ill_max_buf;		/* Max # of req to buffer for ND */
1907 	in6_addr_t	ill_token;
1908 	uint_t		ill_token_length;
1909 	uint32_t	ill_xmit_count;		/* ndp max multicast xmits */
1910 	mib2_ipIfStatsEntry_t	*ill_ip_mib;	/* ver indep. interface mib */
1911 	mib2_ipv6IfIcmpEntry_t	*ill_icmp6_mib;	/* Per interface mib */
1912 	/*
1913 	 * Following two mblks are allocated common to all
1914 	 * the ipifs when the first interface is coming up.
1915 	 * It is sent up to arp when the last ipif is coming
1916 	 * down.
1917 	 */
1918 	mblk_t			*ill_arp_down_mp;
1919 	mblk_t			*ill_arp_del_mapping_mp;
1920 	/*
1921 	 * Used for implementing IFF_NOARP. As IFF_NOARP is used
1922 	 * to turn off for all the logicals, it is here instead
1923 	 * of the ipif.
1924 	 */
1925 	mblk_t			*ill_arp_on_mp;
1926 	/* Peer ill of an IPMP move operation */
1927 	struct ill_s		*ill_move_peer;
1928 
1929 	phyint_t		*ill_phyint;
1930 	uint64_t		ill_flags;
1931 	ill_group_t		*ill_group;
1932 	struct ill_s		*ill_group_next;
1933 
1934 	kmutex_t	ill_lock;	/* Please see table below */
1935 	/*
1936 	 * The ill_nd_lla* fields handle the link layer address option
1937 	 * from neighbor discovery. This is used for external IPv6
1938 	 * address resolution.
1939 	 */
1940 	mblk_t		*ill_nd_lla_mp;	/* mblk which holds ill_nd_lla */
1941 	uint8_t		*ill_nd_lla;	/* Link Layer Address */
1942 	uint_t		ill_nd_lla_len;	/* Link Layer Address length */
1943 	/*
1944 	 * We now have 3 phys_addr_req's sent down. This field keeps track
1945 	 * of which one is pending.
1946 	 */
1947 	t_uscalar_t	ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1948 	/*
1949 	 * Used to save errors that occur during plumbing
1950 	 */
1951 	uint_t		ill_ifname_pending_err;
1952 	avl_node_t	ill_avl_byppa; /* avl node based on ppa */
1953 	void		*ill_fastpath_list; /* both ire and nce hang off this */
1954 	uint_t		ill_refcnt;	/* active refcnt by threads */
1955 	uint_t		ill_ire_cnt;	/* ires associated with this ill */
1956 	kcondvar_t	ill_cv;
1957 	uint_t		ill_ilm_walker_cnt;	/* snmp ilm walkers */
1958 	uint_t		ill_nce_cnt;	/* nces associated with this ill */
1959 	uint_t		ill_waiters;	/* threads waiting in ipsq_enter */
1960 	/*
1961 	 * Contains the upper read queue pointer of the module immediately
1962 	 * beneath IP.  This field allows IP to validate sub-capability
1963 	 * acknowledgments coming up from downstream.
1964 	 */
1965 	queue_t		*ill_lmod_rq;	/* read queue pointer of module below */
1966 	uint_t		ill_lmod_cnt;	/* number of modules beneath IP */
1967 	ip_m_t		*ill_media;	/* media specific params/functions */
1968 	t_uscalar_t	ill_dlpi_pending; /* Last DLPI primitive issued */
1969 	uint_t		ill_usesrc_ifindex; /* use src addr from this ILL */
1970 	struct ill_s	*ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1971 #ifdef ILL_DEBUG
1972 	th_trace_t	*ill_trace[IP_TR_HASH_MAX];
1973 	boolean_t	ill_trace_disable;	/* True when alloc fails */
1974 #endif
1975 	zoneid_t	ill_zoneid;
1976 	ip_stack_t	*ill_ipst;	/* Corresponds to a netstack_hold */
1977 } ill_t;
1978 
1979 /*
1980  * The following table lists the protection levels of the various members
1981  * of the ill_t. Same notation as that used for ipif_t above is used.
1982  *
1983  *				Write			Read
1984  *
1985  * ill_ifptr			ill_g_lock + s		Write once
1986  * ill_rq			ipsq			Write once
1987  * ill_wq			ipsq			Write once
1988  *
1989  * ill_error			ipsq			None
1990  * ill_ipif			ill_g_lock + ipsq	ill_g_lock OR ipsq
1991  * ill_ipif_up_count		ill_lock + ipsq		ill_lock OR ipsq
1992  * ill_max_frag			ipsq			Write once
1993  *
1994  * ill_name			ill_g_lock + ipsq	Write once
1995  * ill_name_length		ill_g_lock + ipsq	Write once
1996  * ill_ndd_name			ipsq			Write once
1997  * ill_net_type			ipsq			Write once
1998  * ill_ppa			ill_g_lock + ipsq	Write once
1999  * ill_sap			ipsq + down ill		Write once
2000  * ill_sap_length		ipsq + down ill		Write once
2001  * ill_phys_addr_length		ipsq + down ill		Write once
2002  *
2003  * ill_bcast_addr_length	ipsq			ipsq
2004  * ill_mactype			ipsq			ipsq
2005  * ill_frag_ptr			ipsq			ipsq
2006  *
2007  * ill_frag_timer_id		ill_lock		ill_lock
2008  * ill_frag_hash_tbl		ipsq			up ill
2009  * ill_ilm			ipsq + ill_lock		ill_lock
2010  * ill_mcast_type		ill_lock		ill_lock
2011  * ill_mcast_v1_time		ill_lock		ill_lock
2012  * ill_mcast_v2_time		ill_lock		ill_lock
2013  * ill_mcast_v1_tset		ill_lock		ill_lock
2014  * ill_mcast_v2_tset		ill_lock		ill_lock
2015  * ill_mcast_rv			ill_lock		ill_lock
2016  * ill_mcast_qi			ill_lock		ill_lock
2017  * ill_pending_mp		ill_lock		ill_lock
2018  *
2019  * ill_bcast_mp			ipsq			ipsq
2020  * ill_resolver_mp		ipsq			only when ill is up
2021  * ill_down_mp			ipsq			ipsq
2022  * ill_dlpi_deferred		ill_lock		ill_lock
2023  * ill_dlpi_pending		ill_lock		ill_lock
2024  * ill_phys_addr_mp		ipsq + down ill		only when ill is up
2025  * ill_phys_addr		ipsq + down ill		only when ill is up
2026  *
2027  * ill_state_flags		ill_lock		ill_lock
2028  * exclusive bit flags		ipsq_t			ipsq_t
2029  * shared bit flags		ill_lock		ill_lock
2030  *
2031  * ill_arp_muxid		ipsq			Not atomic
2032  * ill_ip_muxid			ipsq			Not atomic
2033  *
2034  * ill_ipf_gen			Not atomic
2035  * ill_frag_count		Approx. not protected
2036  * ill_type			ipsq + down ill		only when ill is up
2037  * ill_dlpi_multicast_state	ill_lock		ill_lock
2038  * ill_dlpi_fastpath_state	ill_lock		ill_lock
2039  * ill_max_hops			ipsq			Not atomic
2040  *
2041  * ill_max_mtu
2042  *
2043  * ill_reachable_time		ipsq + ill_lock		ill_lock
2044  * ill_reachable_retrans_time	ipsq + ill_lock		ill_lock
2045  * ill_max_buf			ipsq + ill_lock		ill_lock
2046  *
2047  * Next 2 fields need ill_lock because of the get ioctls. They should not
2048  * report partially updated results without executing in the ipsq.
2049  * ill_token			ipsq + ill_lock		ill_lock
2050  * ill_token_length		ipsq + ill_lock		ill_lock
2051  * ill_xmit_count		ipsq + down ill		write once
2052  * ill_ip6_mib			ipsq + down ill		only when ill is up
2053  * ill_icmp6_mib		ipsq + down ill		only when ill is up
2054  * ill_arp_down_mp		ipsq			ipsq
2055  * ill_arp_del_mapping_mp	ipsq			ipsq
2056  * ill_arp_on_mp		ipsq			ipsq
2057  * ill_move_peer		ipsq			ipsq
2058  *
2059  * ill_phyint			ipsq, ill_g_lock, ill_lock	Any of them
2060  * ill_flags			ill_lock		ill_lock
2061  * ill_group			ipsq, ill_g_lock, ill_lock	Any of them
2062  * ill_group_next		ipsq, ill_g_lock, ill_lock	Any of them
2063  * ill_nd_lla_mp		ipsq + down ill		only when ill is up
2064  * ill_nd_lla			ipsq + down ill		only when ill is up
2065  * ill_nd_lla_len		ipsq + down ill		only when ill is up
2066  * ill_phys_addr_pend		ipsq + down ill		only when ill is up
2067  * ill_ifname_pending_err	ipsq			ipsq
2068  * ill_avl_byppa		ipsq, ill_g_lock	write once
2069  *
2070  * ill_fastpath_list		ill_lock		ill_lock
2071  * ill_refcnt			ill_lock		ill_lock
2072  * ill_ire_cnt			ill_lock		ill_lock
2073  * ill_cv			ill_lock		ill_lock
2074  * ill_ilm_walker_cnt		ill_lock		ill_lock
2075  * ill_nce_cnt			ill_lock		ill_lock
2076  * ill_trace			ill_lock		ill_lock
2077  * ill_usesrc_grp_next		ill_g_usesrc_lock	ill_g_usesrc_lock
2078  */
2079 
2080 /*
2081  * For ioctl restart mechanism see ip_reprocess_ioctl()
2082  */
2083 struct ip_ioctl_cmd_s;
2084 
2085 typedef	int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
2086     struct ip_ioctl_cmd_s *, void *);
2087 
2088 typedef struct ip_ioctl_cmd_s {
2089 	int	ipi_cmd;
2090 	size_t	ipi_copyin_size;
2091 	uint_t	ipi_flags;
2092 	uint_t	ipi_cmd_type;
2093 	ifunc_t	ipi_func;
2094 	ifunc_t	ipi_func_restart;
2095 } ip_ioctl_cmd_t;
2096 
2097 /*
2098  * ipi_cmd_type:
2099  *
2100  * IF_CMD		1	old style ifreq cmd
2101  * LIF_CMD		2	new style lifreq cmd
2102  * TUN_CMD		3	tunnel related
2103  * ARP_CMD		4	arpreq cmd
2104  * XARP_CMD		5	xarpreq cmd
2105  * MSFILT_CMD		6	multicast source filter cmd
2106  * MISC_CMD		7	misc cmd (not a more specific one above)
2107  */
2108 
2109 enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD };
2110 
2111 #define	IPI_DONTCARE	0	/* For ioctl encoded values that don't matter */
2112 
2113 /* Flag values in ipi_flags */
2114 #define	IPI_PRIV	0x1	/* Root only command */
2115 #define	IPI_MODOK	0x2	/* Permitted on mod instance of IP */
2116 #define	IPI_WR		0x4	/* Need to grab writer access */
2117 #define	IPI_GET_CMD	0x8	/* branch to mi_copyout on success */
2118 #define	IPI_REPL	0x10	/* valid for replacement ipif created in MOVE */
2119 #define	IPI_NULL_BCONT	0x20	/* ioctl has not data and hence no b_cont */
2120 #define	IPI_PASS_DOWN	0x40	/* pass this ioctl down when a module only */
2121 
2122 extern ip_ioctl_cmd_t	ip_ndx_ioctl_table[];
2123 extern ip_ioctl_cmd_t	ip_misc_ioctl_table[];
2124 extern int ip_ndx_ioctl_count;
2125 extern int ip_misc_ioctl_count;
2126 
2127 #define	ILL_CLEAR_MOVE(ill) {				\
2128 	ill_t *peer_ill;				\
2129 							\
2130 	peer_ill = (ill)->ill_move_peer;		\
2131 	ASSERT(peer_ill != NULL);			\
2132 	(ill)->ill_move_in_progress = B_FALSE;		\
2133 	peer_ill->ill_move_in_progress = B_FALSE;	\
2134 	(ill)->ill_move_peer = NULL;			\
2135 	peer_ill->ill_move_peer = NULL;			\
2136 }
2137 
2138 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2139 typedef struct ipmx_s {
2140 	char	ipmx_name[LIFNAMSIZ];		/* if name */
2141 	uint_t
2142 		ipmx_arpdev_stream : 1,		/* This is the arp stream */
2143 		ipmx_notused : 31;
2144 } ipmx_t;
2145 
2146 /*
2147  * State for detecting if a driver supports certain features.
2148  * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2149  * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2150  * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state.
2151  */
2152 #define	IDS_UNKNOWN	0	/* No DLPI request sent */
2153 #define	IDS_INPROGRESS	1	/* DLPI request sent */
2154 #define	IDS_OK		2	/* DLPI request completed successfully */
2155 #define	IDS_FAILED	3	/* DLPI request failed */
2156 #define	IDS_RENEG	4	/* Driver asked for a renegotiation */
2157 
2158 /* Named Dispatch Parameter Management Structure */
2159 typedef struct ipparam_s {
2160 	uint_t	ip_param_min;
2161 	uint_t	ip_param_max;
2162 	uint_t	ip_param_value;
2163 	char	*ip_param_name;
2164 } ipparam_t;
2165 
2166 /* Extended NDP Management Structure */
2167 typedef struct ipndp_s {
2168 	ndgetf_t	ip_ndp_getf;
2169 	ndsetf_t	ip_ndp_setf;
2170 	caddr_t		ip_ndp_data;
2171 	char		*ip_ndp_name;
2172 } ipndp_t;
2173 
2174 /*
2175  * The kernel stores security attributes of all gateways in a database made
2176  * up of one or more tsol_gcdb_t elements.  Each tsol_gcdb_t contains the
2177  * security-related credentials of the gateway.  More than one gateways may
2178  * share entries in the database.
2179  *
2180  * The tsol_gc_t structure represents the gateway to credential association,
2181  * and refers to an entry in the database.  One or more tsol_gc_t entities are
2182  * grouped together to form one or more tsol_gcgrp_t, each representing the
2183  * list of security attributes specific to the gateway.  A gateway may be
2184  * associated with at most one credentials group.
2185  */
2186 struct tsol_gcgrp_s;
2187 
2188 extern uchar_t	ip6opt_ls;	/* TX IPv6 enabler */
2189 
2190 /*
2191  * Gateway security credential record.
2192  */
2193 typedef struct tsol_gcdb_s {
2194 	uint_t		gcdb_refcnt;	/* reference count */
2195 	struct rtsa_s	gcdb_attr;	/* security attributes */
2196 #define	gcdb_mask	gcdb_attr.rtsa_mask
2197 #define	gcdb_doi	gcdb_attr.rtsa_doi
2198 #define	gcdb_slrange	gcdb_attr.rtsa_slrange
2199 } tsol_gcdb_t;
2200 
2201 /*
2202  * Gateway to credential association.
2203  */
2204 typedef struct tsol_gc_s {
2205 	uint_t		gc_refcnt;	/* reference count */
2206 	struct tsol_gcgrp_s *gc_grp;	/* pointer to group */
2207 	struct tsol_gc_s *gc_prev;	/* previous in list */
2208 	struct tsol_gc_s *gc_next;	/* next in list */
2209 	tsol_gcdb_t	*gc_db;		/* pointer to actual credentials */
2210 } tsol_gc_t;
2211 
2212 /*
2213  * Gateway credentials group address.
2214  */
2215 typedef struct tsol_gcgrp_addr_s {
2216 	int		ga_af;		/* address family */
2217 	in6_addr_t	ga_addr;	/* IPv4 mapped or IPv6 address */
2218 } tsol_gcgrp_addr_t;
2219 
2220 /*
2221  * Gateway credentials group.
2222  */
2223 typedef struct tsol_gcgrp_s {
2224 	uint_t		gcgrp_refcnt;	/* reference count */
2225 	krwlock_t	gcgrp_rwlock;	/* lock to protect following */
2226 	uint_t		gcgrp_count;	/* number of credentials */
2227 	tsol_gc_t	*gcgrp_head;	/* first credential in list */
2228 	tsol_gc_t	*gcgrp_tail;	/* last credential in list */
2229 	tsol_gcgrp_addr_t gcgrp_addr;	/* next-hop gateway address */
2230 } tsol_gcgrp_t;
2231 
2232 extern kmutex_t gcgrp_lock;
2233 
2234 #define	GC_REFRELE(p) {				\
2235 	ASSERT((p)->gc_grp != NULL);		\
2236 	rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
2237 	ASSERT((p)->gc_refcnt > 0);		\
2238 	if (--((p)->gc_refcnt) == 0)		\
2239 		gc_inactive(p);			\
2240 	else					\
2241 		rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
2242 }
2243 
2244 #define	GCGRP_REFHOLD(p) {			\
2245 	mutex_enter(&gcgrp_lock);		\
2246 	++((p)->gcgrp_refcnt);			\
2247 	ASSERT((p)->gcgrp_refcnt != 0);		\
2248 	mutex_exit(&gcgrp_lock);		\
2249 }
2250 
2251 #define	GCGRP_REFRELE(p) {			\
2252 	mutex_enter(&gcgrp_lock);		\
2253 	ASSERT((p)->gcgrp_refcnt > 0);		\
2254 	if (--((p)->gcgrp_refcnt) == 0)		\
2255 		gcgrp_inactive(p);		\
2256 	ASSERT(MUTEX_HELD(&gcgrp_lock));	\
2257 	mutex_exit(&gcgrp_lock);		\
2258 }
2259 
2260 /*
2261  * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
2262  */
2263 struct tsol_tnrhc;
2264 
2265 typedef struct tsol_ire_gw_secattr_s {
2266 	kmutex_t	igsa_lock;	/* lock to protect following */
2267 	struct tsol_tnrhc *igsa_rhc;	/* host entry for gateway */
2268 	tsol_gc_t	*igsa_gc;	/* for prefix IREs */
2269 	tsol_gcgrp_t	*igsa_gcgrp;	/* for cache IREs */
2270 } tsol_ire_gw_secattr_t;
2271 
2272 /*
2273  * Following are the macros to increment/decrement the reference
2274  * count of the IREs and IRBs (ire bucket).
2275  *
2276  * 1) We bump up the reference count of an IRE to make sure that
2277  *    it does not get deleted and freed while we are using it.
2278  *    Typically all the lookup functions hold the bucket lock,
2279  *    and look for the IRE. If it finds an IRE, it bumps up the
2280  *    reference count before dropping the lock. Sometimes we *may* want
2281  *    to bump up the reference count after we *looked* up i.e without
2282  *    holding the bucket lock. So, the IRE_REFHOLD macro does not assert
2283  *    on the bucket lock being held. Any thread trying to delete from
2284  *    the hash bucket can still do so but cannot free the IRE if
2285  *    ire_refcnt is not 0.
2286  *
2287  * 2) We bump up the reference count on the bucket where the IRE resides
2288  *    (IRB), when we want to prevent the IREs getting deleted from a given
2289  *    hash bucket. This makes life easier for ire_walk type functions which
2290  *    wants to walk the IRE list, call a function, but needs to drop
2291  *    the bucket lock to prevent recursive rw_enters. While the
2292  *    lock is dropped, the list could be changed by other threads or
2293  *    the same thread could end up deleting the ire or the ire pointed by
2294  *    ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as
2295  *    a delete will still remove the ire from the bucket while we have
2296  *    dropped the lock and hence the ire_next would be NULL. Thus, we
2297  *    need a mechanism to prevent deletions from a given bucket.
2298  *
2299  *    To prevent deletions, we bump up the reference count on the
2300  *    bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED
2301  *    both on the ire's ire_marks and the bucket's irb_marks. When the
2302  *    reference count on the bucket drops to zero, all the CONDEMNED ires
2303  *    are deleted. We don't have to bump up the reference count on the
2304  *    bucket if we are walking the bucket and never have to drop the bucket
2305  *    lock. Note that IRB_REFHOLD does not prevent addition of new ires
2306  *    in the list. It is okay because addition of new ires will not cause
2307  *    ire_next to point to freed memory. We do IRB_REFHOLD only when
2308  *    all of the 3 conditions are true :
2309  *
2310  *    1) The code needs to walk the IRE bucket from start to end.
2311  *    2) It may have to drop the bucket lock sometimes while doing (1)
2312  *    3) It does not want any ires to be deleted meanwhile.
2313  */
2314 
2315 /*
2316  * Bump up the reference count on the IRE. We cannot assert that the
2317  * bucket lock is being held as it is legal to bump up the reference
2318  * count after the first lookup has returned the IRE without
2319  * holding the lock. Currently ip_wput does this for caching IRE_CACHEs.
2320  */
2321 
2322 #ifndef IRE_DEBUG
2323 
2324 #define	IRE_REFHOLD_NOTR(ire)	IRE_REFHOLD(ire)
2325 #define	IRE_UNTRACE_REF(ire)
2326 #define	IRE_TRACE_REF(ire)
2327 
2328 #else
2329 
2330 #define	IRE_REFHOLD_NOTR(ire) {				\
2331 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2332 	ASSERT((ire)->ire_refcnt != 0);			\
2333 }
2334 
2335 #define	IRE_UNTRACE_REF(ire)	ire_untrace_ref(ire);
2336 #define	IRE_TRACE_REF(ire)	ire_trace_ref(ire);
2337 #endif
2338 
2339 #define	IRE_REFHOLD(ire) {				\
2340 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2341 	ASSERT((ire)->ire_refcnt != 0);			\
2342 	IRE_TRACE_REF(ire);				\
2343 }
2344 
2345 #define	IRE_REFHOLD_LOCKED(ire)	{			\
2346 	IRE_TRACE_REF(ire);				\
2347 	(ire)->ire_refcnt++;				\
2348 }
2349 
2350 /*
2351  * Decrement the reference count on the IRE.
2352  * In architectures e.g sun4u, where atomic_add_32_nv is just
2353  * a cas, we need to maintain the right memory barrier semantics
2354  * as that of mutex_exit i.e all the loads and stores should complete
2355  * before the cas is executed. membar_exit() does that here.
2356  *
2357  * NOTE : This macro is used only in places where we want performance.
2358  *	  To avoid bloating the code, we use the function "ire_refrele"
2359  *	  which essentially calls the macro.
2360  */
2361 #ifndef IRE_DEBUG
2362 #define	IRE_REFRELE(ire) {					\
2363 	ASSERT((ire)->ire_refcnt != 0);				\
2364 	membar_exit();						\
2365 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2366 		ire_inactive(ire);				\
2367 }
2368 #define	IRE_REFRELE_NOTR(ire)	IRE_REFRELE(ire)
2369 #else
2370 #define	IRE_REFRELE(ire) {					\
2371 	if (ire->ire_bucket != NULL)				\
2372 		ire_untrace_ref(ire);				\
2373 	ASSERT((ire)->ire_refcnt != 0);				\
2374 	membar_exit();						\
2375 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2376 		ire_inactive(ire);				\
2377 }
2378 #define	IRE_REFRELE_NOTR(ire) {				\
2379 	ASSERT((ire)->ire_refcnt != 0);				\
2380 	membar_exit();						\
2381 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2382 		ire_inactive(ire);				\
2383 }
2384 #endif
2385 
2386 /*
2387  * Bump up the reference count on the hash bucket - IRB to
2388  * prevent ires from being deleted in this bucket.
2389  */
2390 #define	IRB_REFHOLD(irb) {				\
2391 	rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2392 	(irb)->irb_refcnt++;				\
2393 	ASSERT((irb)->irb_refcnt != 0);			\
2394 	rw_exit(&(irb)->irb_lock);			\
2395 }
2396 #define	IRB_REFHOLD_LOCKED(irb) {			\
2397 	ASSERT(RW_WRITE_HELD(&(irb)->irb_lock));	\
2398 	(irb)->irb_refcnt++;				\
2399 	ASSERT((irb)->irb_refcnt != 0);			\
2400 }
2401 
2402 void irb_refrele_ftable(irb_t *);
2403 /*
2404  * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t
2405  * is statically allocated, so that when the irb_refcnt goes to 0,
2406  * we simply clean up the ire list and continue.
2407  */
2408 #define	IRB_REFRELE(irb) {				\
2409 	if ((irb)->irb_marks & IRB_MARK_FTABLE) {	\
2410 		irb_refrele_ftable((irb));		\
2411 	} else {					\
2412 		rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2413 		ASSERT((irb)->irb_refcnt != 0);			\
2414 		if (--(irb)->irb_refcnt	== 0 &&			\
2415 		    ((irb)->irb_marks & IRE_MARK_CONDEMNED)) {	\
2416 			ire_t *ire_list;			\
2417 								\
2418 			ire_list = ire_unlink(irb);		\
2419 			rw_exit(&(irb)->irb_lock);		\
2420 			ASSERT(ire_list != NULL);		\
2421 			ire_cleanup(ire_list);			\
2422 		} else {					\
2423 			rw_exit(&(irb)->irb_lock);		\
2424 		}						\
2425 	}							\
2426 }
2427 
2428 extern struct kmem_cache *rt_entry_cache;
2429 
2430 /*
2431  * Lock the fast path mp for access, since the fp_mp can be deleted
2432  * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST
2433  */
2434 
2435 #define	LOCK_IRE_FP_MP(ire) {				\
2436 		if ((ire)->ire_type == IRE_BROADCAST)	\
2437 			mutex_enter(&ire->ire_nce->nce_lock);	\
2438 	}
2439 #define	UNLOCK_IRE_FP_MP(ire) {				\
2440 		if ((ire)->ire_type == IRE_BROADCAST)	\
2441 			mutex_exit(&ire->ire_nce->nce_lock);	\
2442 	}
2443 
2444 typedef struct ire4 {
2445 	ipaddr_t ire4_src_addr;		/* Source address to use. */
2446 	ipaddr_t ire4_mask;		/* Mask for matching this IRE. */
2447 	ipaddr_t ire4_addr;		/* Address this IRE represents. */
2448 	ipaddr_t ire4_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2449 	ipaddr_t ire4_cmask;		/* Mask from parent prefix route */
2450 } ire4_t;
2451 
2452 typedef struct ire6 {
2453 	in6_addr_t ire6_src_addr;	/* Source address to use. */
2454 	in6_addr_t ire6_mask;		/* Mask for matching this IRE. */
2455 	in6_addr_t ire6_addr;		/* Address this IRE represents. */
2456 	in6_addr_t ire6_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2457 	in6_addr_t ire6_cmask;		/* Mask from parent prefix route */
2458 } ire6_t;
2459 
2460 typedef union ire_addr {
2461 	ire6_t	ire6_u;
2462 	ire4_t	ire4_u;
2463 } ire_addr_u_t;
2464 
2465 /* Internet Routing Entry */
2466 typedef struct ire_s {
2467 	struct	ire_s	*ire_next;	/* The hash chain must be first. */
2468 	struct	ire_s	**ire_ptpn;	/* Pointer to previous next. */
2469 	uint32_t	ire_refcnt;	/* Number of references */
2470 	mblk_t		*ire_mp;	/* Non-null if allocated as mblk */
2471 	queue_t		*ire_rfq;	/* recv from this queue */
2472 	queue_t		*ire_stq;	/* send to this queue */
2473 	union {
2474 		uint_t	*max_fragp;	/* Used only during ire creation */
2475 		uint_t	max_frag;	/* MTU (next hop or path). */
2476 	} imf_u;
2477 #define	ire_max_frag	imf_u.max_frag
2478 #define	ire_max_fragp	imf_u.max_fragp
2479 	uint32_t	ire_frag_flag;	/* IPH_DF or zero. */
2480 	uint32_t	ire_ident;	/* Per IRE IP ident. */
2481 	uint32_t	ire_tire_mark;	/* Used for reclaim of unused. */
2482 	uchar_t		ire_ipversion;	/* IPv4/IPv6 version */
2483 	uchar_t		ire_marks;	/* IRE_MARK_CONDEMNED etc. */
2484 	ushort_t	ire_type;	/* Type of IRE */
2485 	uint_t	ire_ib_pkt_count;	/* Inbound packets for ire_addr */
2486 	uint_t	ire_ob_pkt_count;	/* Outbound packets to ire_addr */
2487 	uint_t	ire_ll_hdr_length;	/* Non-zero if we do M_DATA prepends */
2488 	time_t	ire_create_time;	/* Time (in secs) IRE was created. */
2489 	uint32_t	ire_phandle;	/* Associate prefix IREs to cache */
2490 	uint32_t	ire_ihandle;	/* Associate interface IREs to cache */
2491 	ipif_t		*ire_ipif;	/* the interface that this ire uses */
2492 	uint32_t	ire_flags;	/* flags related to route (RTF_*) */
2493 	uint_t	ire_ipsec_overhead;	/* IPSEC overhead */
2494 	/*
2495 	 * Neighbor Cache Entry for IPv6; arp info for IPv4
2496 	 */
2497 	struct	nce_s	*ire_nce;
2498 	uint_t		ire_masklen;	/* # bits in ire_mask{,_v6} */
2499 	ire_addr_u_t	ire_u;		/* IPv4/IPv6 address info. */
2500 
2501 	irb_t		*ire_bucket;	/* Hash bucket when ire_ptphn is set */
2502 	iulp_t		ire_uinfo;	/* Upper layer protocol info. */
2503 	/*
2504 	 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag.
2505 	 */
2506 	kmutex_t	ire_lock;
2507 	uint_t		ire_ipif_seqid; /* ipif_seqid of ire_ipif */
2508 	clock_t		ire_last_used_time;	/* Last used time */
2509 	tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
2510 	zoneid_t	ire_zoneid;	/* for local address discrimination */
2511 	/*
2512 	 * ire's that are embedded inside mblk_t and sent to the external
2513 	 * resolver use the ire_stq_ifindex to track the ifindex of the
2514 	 * ire_stq, so that the ill (if it exists) can be correctly recovered
2515 	 * for cleanup in the esbfree routine when arp failure occurs
2516 	 */
2517 	uint_t	ire_stq_ifindex;
2518 	uint_t		ire_defense_count;	/* number of ARP conflicts */
2519 	uint_t		ire_defense_time;	/* last time defended (secs) */
2520 	ip_stack_t	*ire_ipst;	/* Does not have a netstack_hold */
2521 #ifdef IRE_DEBUG
2522 	th_trace_t	*ire_trace[IP_TR_HASH_MAX];
2523 	boolean_t	ire_trace_disable;	/* True when alloc fails */
2524 #endif
2525 } ire_t;
2526 
2527 /* IPv4 compatiblity macros */
2528 #define	ire_src_addr		ire_u.ire4_u.ire4_src_addr
2529 #define	ire_mask		ire_u.ire4_u.ire4_mask
2530 #define	ire_addr		ire_u.ire4_u.ire4_addr
2531 #define	ire_gateway_addr	ire_u.ire4_u.ire4_gateway_addr
2532 #define	ire_cmask		ire_u.ire4_u.ire4_cmask
2533 
2534 #define	ire_src_addr_v6		ire_u.ire6_u.ire6_src_addr
2535 #define	ire_mask_v6		ire_u.ire6_u.ire6_mask
2536 #define	ire_addr_v6		ire_u.ire6_u.ire6_addr
2537 #define	ire_gateway_addr_v6	ire_u.ire6_u.ire6_gateway_addr
2538 #define	ire_cmask_v6		ire_u.ire6_u.ire6_cmask
2539 
2540 /* Convenient typedefs for sockaddrs */
2541 typedef	struct sockaddr_in	sin_t;
2542 typedef	struct sockaddr_in6	sin6_t;
2543 
2544 /* Address structure used for internal bind with IP */
2545 typedef struct ipa_conn_s {
2546 	ipaddr_t	ac_laddr;
2547 	ipaddr_t	ac_faddr;
2548 	uint16_t	ac_fport;
2549 	uint16_t	ac_lport;
2550 } ipa_conn_t;
2551 
2552 typedef struct ipa6_conn_s {
2553 	in6_addr_t	ac6_laddr;
2554 	in6_addr_t	ac6_faddr;
2555 	uint16_t	ac6_fport;
2556 	uint16_t	ac6_lport;
2557 } ipa6_conn_t;
2558 
2559 /*
2560  * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's
2561  * bind handler.
2562  */
2563 typedef struct ipa_conn_extended_s {
2564 	uint64_t	acx_flags;
2565 	ipa_conn_t	acx_conn;
2566 } ipa_conn_x_t;
2567 
2568 typedef struct ipa6_conn_extended_s {
2569 	uint64_t	ac6x_flags;
2570 	ipa6_conn_t	ac6x_conn;
2571 } ipa6_conn_x_t;
2572 
2573 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */
2574 #define	ACX_VERIFY_DST	0x1ULL	/* verify destination address is reachable */
2575 
2576 /* Name/Value Descriptor. */
2577 typedef struct nv_s {
2578 	uint64_t nv_value;
2579 	char	*nv_name;
2580 } nv_t;
2581 
2582 #define	ILL_FRAG_HASH(s, i) \
2583 	((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)
2584 
2585 /*
2586  * The MAX number of allowed fragmented packets per hash bucket
2587  * calculation is based on the most common mtu size of 1500. This limit
2588  * will work well for other mtu sizes as well.
2589  */
2590 #define	COMMON_IP_MTU 1500
2591 #define	MAX_FRAG_MIN 10
2592 #define	MAX_FRAG_PKTS(ipst)	\
2593 	MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \
2594 	    (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))
2595 
2596 /*
2597  * Maximum dups allowed per packet.
2598  */
2599 extern uint_t ip_max_frag_dups;
2600 
2601 /*
2602  * Per-packet information for received packets and transmitted.
2603  * Used by the transport protocols when converting between the packet
2604  * and ancillary data and socket options.
2605  *
2606  * Note: This private data structure and related IPPF_* constant
2607  * definitions are exposed to enable compilation of some debugging tools
2608  * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2609  * a temporary hack and long term alternate interfaces should be defined
2610  * to support the needs of such tools and private definitions moved to
2611  * private headers.
2612  */
2613 struct ip6_pkt_s {
2614 	uint_t		ipp_fields;		/* Which fields are valid */
2615 	uint_t		ipp_sticky_ignored;	/* sticky fields to ignore */
2616 	uint_t		ipp_ifindex;		/* pktinfo ifindex */
2617 	in6_addr_t	ipp_addr;		/* pktinfo src/dst addr */
2618 	uint_t		ipp_unicast_hops;	/* IPV6_UNICAST_HOPS */
2619 	uint_t		ipp_multicast_hops;	/* IPV6_MULTICAST_HOPS */
2620 	uint_t		ipp_hoplimit;		/* IPV6_HOPLIMIT */
2621 	uint_t		ipp_hopoptslen;
2622 	uint_t		ipp_rtdstoptslen;
2623 	uint_t		ipp_rthdrlen;
2624 	uint_t		ipp_dstoptslen;
2625 	uint_t		ipp_pathmtulen;
2626 	uint_t		ipp_fraghdrlen;
2627 	ip6_hbh_t	*ipp_hopopts;
2628 	ip6_dest_t	*ipp_rtdstopts;
2629 	ip6_rthdr_t	*ipp_rthdr;
2630 	ip6_dest_t	*ipp_dstopts;
2631 	ip6_frag_t	*ipp_fraghdr;
2632 	struct ip6_mtuinfo *ipp_pathmtu;
2633 	in6_addr_t	ipp_nexthop;		/* Transmit only */
2634 	uint8_t		ipp_tclass;
2635 	int8_t		ipp_use_min_mtu;
2636 };
2637 typedef struct ip6_pkt_s ip6_pkt_t;
2638 
2639 extern void ip6_pkt_free(ip6_pkt_t *);	/* free storage inside ip6_pkt_t */
2640 
2641 /*
2642  * This struct is used by ULP_opt_set() functions to return value of IPv4
2643  * ancillary options. Currently this is only used by udp and icmp and only
2644  * IP_PKTINFO option is supported.
2645  */
2646 typedef struct ip4_pkt_s {
2647 	uint_t		ip4_ill_index;	/* interface index */
2648 	ipaddr_t	ip4_addr;	/* source address */
2649 } ip4_pkt_t;
2650 
2651 /*
2652  * Used by ULP's to pass options info to ip_output
2653  * currently only IP_PKTINFO is supported.
2654  */
2655 typedef struct ip_opt_info_s {
2656 	uint_t ip_opt_ill_index;
2657 	uint_t ip_opt_flags;
2658 } ip_opt_info_t;
2659 
2660 /*
2661  * value for ip_opt_flags
2662  */
2663 #define	IP_VERIFY_SRC	0x1
2664 
2665 /*
2666  * This structure is used to convey information from IP and the ULP.
2667  * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options.
2668  * The type of information field is set to IN_PKTINFO (i.e inbound pkt info)
2669  */
2670 typedef struct ip_pktinfo {
2671 	uint32_t		ip_pkt_ulp_type;	/* type of info sent */
2672 	uint32_t		ip_pkt_flags;	/* what is sent up by IP */
2673 	uint32_t		ip_pkt_ifindex;	/* inbound interface index */
2674 	struct sockaddr_dl	ip_pkt_slla;	/* has source link layer addr */
2675 	struct in_addr		ip_pkt_match_addr; /* matched address */
2676 } ip_pktinfo_t;
2677 
2678 /*
2679  * flags to tell UDP what IP is sending; in_pkt_flags
2680  */
2681 #define	IPF_RECVIF	0x01	/* inbound interface index */
2682 #define	IPF_RECVSLLA	0x02	/* source link layer address */
2683 /*
2684  * Inbound interface index + matched address.
2685  * Used only by IPV4.
2686  */
2687 #define	IPF_RECVADDR	0x04
2688 
2689 /* ipp_fields values */
2690 #define	IPPF_IFINDEX	0x0001	/* Part of in6_pktinfo: ifindex */
2691 #define	IPPF_ADDR	0x0002	/* Part of in6_pktinfo: src/dst addr */
2692 #define	IPPF_SCOPE_ID	0x0004	/* Add xmit ip6i_t for sin6_scope_id */
2693 #define	IPPF_NO_CKSUM	0x0008	/* Add xmit ip6i_t for IP6I_NO_*_CKSUM */
2694 
2695 #define	IPPF_RAW_CKSUM	0x0010	/* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */
2696 #define	IPPF_HOPLIMIT	0x0020
2697 #define	IPPF_HOPOPTS	0x0040
2698 #define	IPPF_RTHDR	0x0080
2699 
2700 #define	IPPF_RTDSTOPTS	0x0100
2701 #define	IPPF_DSTOPTS	0x0200
2702 #define	IPPF_NEXTHOP	0x0400
2703 #define	IPPF_PATHMTU	0x0800
2704 
2705 #define	IPPF_TCLASS	0x1000
2706 #define	IPPF_DONTFRAG	0x2000
2707 #define	IPPF_USE_MIN_MTU	0x04000
2708 #define	IPPF_MULTICAST_HOPS	0x08000
2709 
2710 #define	IPPF_UNICAST_HOPS	0x10000
2711 #define	IPPF_FRAGHDR		0x20000
2712 
2713 #define	IPPF_HAS_IP6I \
2714 	(IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \
2715 	IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \
2716 	IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS)
2717 
2718 #define	TCP_PORTS_OFFSET	0
2719 #define	UDP_PORTS_OFFSET	0
2720 
2721 /*
2722  * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2723  * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2724  * after calling these macros. This ensures that the refcnt on the ipif or
2725  * ill will eventually drop down to zero.
2726  */
2727 #define	ILL_LOOKUP_FAILED	1	/* Used as error code */
2728 #define	IPIF_LOOKUP_FAILED	2	/* Used as error code */
2729 
2730 #define	ILL_CAN_LOOKUP(ill) 						\
2731 	(!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) ||	\
2732 	IAM_WRITER_ILL(ill))
2733 
2734 #define	ILL_CAN_WAIT(ill, q)	\
2735 	(((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED)))
2736 
2737 #define	ILL_CAN_LOOKUP_WALKER(ill)	\
2738 	(!((ill)->ill_state_flags & ILL_CONDEMNED))
2739 
2740 #define	IPIF_CAN_LOOKUP(ipif)						\
2741 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \
2742 	IAM_WRITER_IPIF(ipif))
2743 
2744 /*
2745  * If the parameter 'q' is NULL, the caller is not interested in wait and
2746  * restart of the operation if the ILL or IPIF cannot be looked up when it is
2747  * marked as 'CHANGING'. Typically a thread that tries to send out data  will
2748  * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and
2749  * in this case 'q' is NULL
2750  */
2751 #define	IPIF_CAN_WAIT(ipif, q)	\
2752 	(((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED)))
2753 
2754 #define	IPIF_CAN_LOOKUP_WALKER(ipif)					\
2755 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) ||		\
2756 	IAM_WRITER_IPIF(ipif))
2757 
2758 /*
2759  * These macros are used by critical set ioctls and failover ioctls to
2760  * mark the ipif appropriately before starting the operation and to clear the
2761  * marks after completing the operation.
2762  */
2763 #define	IPIF_UNMARK_MOVING(ipif)                                \
2764 	(ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING;
2765 
2766 #define	ILL_UNMARK_CHANGING(ill)                                \
2767 	(ill)->ill_state_flags &= ~ILL_CHANGING;
2768 
2769 /* Macros used to assert that this thread is a writer  */
2770 #define	IAM_WRITER_IPSQ(ipsq)	((ipsq)->ipsq_writer == curthread)
2771 #define	IAM_WRITER_ILL(ill)					\
2772 	((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2773 #define	IAM_WRITER_IPIF(ipif)					\
2774 	((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2775 
2776 /*
2777  * Grab ill locks in the proper order. The order is highest addressed
2778  * ill is locked first.
2779  */
2780 #define	GRAB_ILL_LOCKS(ill_1, ill_2)				\
2781 {								\
2782 	if ((ill_1) > (ill_2)) {				\
2783 		if (ill_1 != NULL)				\
2784 			mutex_enter(&(ill_1)->ill_lock);	\
2785 		if (ill_2 != NULL)				\
2786 			mutex_enter(&(ill_2)->ill_lock);	\
2787 	} else {						\
2788 		if (ill_2 != NULL)				\
2789 			mutex_enter(&(ill_2)->ill_lock);	\
2790 		if (ill_1 != NULL && ill_1 != ill_2)		\
2791 			mutex_enter(&(ill_1)->ill_lock);	\
2792 	}							\
2793 }
2794 
2795 #define	RELEASE_ILL_LOCKS(ill_1, ill_2)		\
2796 {						\
2797 	if (ill_1 != NULL)			\
2798 		mutex_exit(&(ill_1)->ill_lock);	\
2799 	if (ill_2 != NULL && ill_2 != ill_1)	\
2800 		mutex_exit(&(ill_2)->ill_lock);	\
2801 }
2802 
2803 /* Get the other protocol instance ill */
2804 #define	ILL_OTHER(ill)						\
2805 	((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 :	\
2806 	    (ill)->ill_phyint->phyint_illv6)
2807 
2808 #define	MATCH_V4_ONLY	0x1
2809 #define	MATCH_V6_ONLY	0x2
2810 #define	MATCH_ILL_ONLY	0x4
2811 
2812 /* ioctl command info: Ioctl properties extracted and stored in here */
2813 typedef struct cmd_info_s
2814 {
2815 	char    ci_groupname[LIFNAMSIZ + 1];	/* SIOCSLIFGROUPNAME */
2816 	ipif_t  *ci_ipif;	/* ipif associated with [l]ifreq ioctl's */
2817 	sin_t	*ci_sin;	/* the sin struct passed down */
2818 	sin6_t	*ci_sin6;	/* the sin6_t struct passed down */
2819 	struct lifreq *ci_lifr;	/* the lifreq struct passed down */
2820 } cmd_info_t;
2821 
2822 /*
2823  * List of AH and ESP IPsec acceleration capable ills
2824  */
2825 typedef struct ipsec_capab_ill_s {
2826 	uint_t ill_index;
2827 	boolean_t ill_isv6;
2828 	struct ipsec_capab_ill_s *next;
2829 } ipsec_capab_ill_t;
2830 
2831 extern struct kmem_cache *ire_cache;
2832 
2833 extern ipaddr_t	ip_g_all_ones;
2834 
2835 extern	uint_t	ip_loopback_mtu;	/* /etc/system */
2836 
2837 extern vmem_t *ip_minor_arena;
2838 
2839 /*
2840  * ip_g_forward controls IP forwarding.  It takes two values:
2841  *	0: IP_FORWARD_NEVER	Don't forward packets ever.
2842  *	1: IP_FORWARD_ALWAYS	Forward packets for elsewhere.
2843  *
2844  * RFC1122 says there must be a configuration switch to control forwarding,
2845  * but that the default MUST be to not forward packets ever.  Implicit
2846  * control based on configuration of multiple interfaces MUST NOT be
2847  * implemented (Section 3.1).  SunOS 4.1 did provide the "automatic" capability
2848  * and, in fact, it was the default.  That capability is now provided in the
2849  * /etc/rc2.d/S69inet script.
2850  */
2851 
2852 #define	ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value
2853 #define	ips_ip_g_resp_to_echo_bcast	ips_param_arr[1].ip_param_value
2854 #define	ips_ip_g_resp_to_echo_mcast	ips_param_arr[2].ip_param_value
2855 #define	ips_ip_g_resp_to_timestamp	ips_param_arr[3].ip_param_value
2856 #define	ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value
2857 #define	ips_ip_g_send_redirects		ips_param_arr[5].ip_param_value
2858 #define	ips_ip_g_forward_directed_bcast	ips_param_arr[6].ip_param_value
2859 #define	ips_ip_debug			ips_param_arr[7].ip_param_value
2860 #define	ips_ip_mrtdebug			ips_param_arr[8].ip_param_value
2861 #define	ips_ip_timer_interval		ips_param_arr[9].ip_param_value
2862 #define	ips_ip_ire_arp_interval		ips_param_arr[10].ip_param_value
2863 #define	ips_ip_ire_redir_interval	ips_param_arr[11].ip_param_value
2864 #define	ips_ip_def_ttl			ips_param_arr[12].ip_param_value
2865 #define	ips_ip_forward_src_routed	ips_param_arr[13].ip_param_value
2866 #define	ips_ip_wroff_extra		ips_param_arr[14].ip_param_value
2867 #define	ips_ip_ire_pathmtu_interval	ips_param_arr[15].ip_param_value
2868 #define	ips_ip_icmp_return		ips_param_arr[16].ip_param_value
2869 #define	ips_ip_path_mtu_discovery	ips_param_arr[17].ip_param_value
2870 #define	ips_ip_ignore_delete_time	ips_param_arr[18].ip_param_value
2871 #define	ips_ip_ignore_redirect		ips_param_arr[19].ip_param_value
2872 #define	ips_ip_output_queue		ips_param_arr[20].ip_param_value
2873 #define	ips_ip_broadcast_ttl		ips_param_arr[21].ip_param_value
2874 #define	ips_ip_icmp_err_interval	ips_param_arr[22].ip_param_value
2875 #define	ips_ip_icmp_err_burst		ips_param_arr[23].ip_param_value
2876 #define	ips_ip_reass_queue_bytes	ips_param_arr[24].ip_param_value
2877 #define	ips_ip_strict_dst_multihoming	ips_param_arr[25].ip_param_value
2878 #define	ips_ip_addrs_per_if		ips_param_arr[26].ip_param_value
2879 #define	ips_ipsec_override_persocket_policy ips_param_arr[27].ip_param_value
2880 #define	ips_icmp_accept_clear_messages	ips_param_arr[28].ip_param_value
2881 #define	ips_igmp_accept_clear_messages	ips_param_arr[29].ip_param_value
2882 
2883 /* IPv6 configuration knobs */
2884 #define	ips_delay_first_probe_time	ips_param_arr[30].ip_param_value
2885 #define	ips_max_unicast_solicit		ips_param_arr[31].ip_param_value
2886 #define	ips_ipv6_def_hops		ips_param_arr[32].ip_param_value
2887 #define	ips_ipv6_icmp_return		ips_param_arr[33].ip_param_value
2888 #define	ips_ipv6_forward_src_routed	ips_param_arr[34].ip_param_value
2889 #define	ips_ipv6_resp_echo_mcast	ips_param_arr[35].ip_param_value
2890 #define	ips_ipv6_send_redirects		ips_param_arr[36].ip_param_value
2891 #define	ips_ipv6_ignore_redirect	ips_param_arr[37].ip_param_value
2892 #define	ips_ipv6_strict_dst_multihoming	ips_param_arr[38].ip_param_value
2893 #define	ips_ip_ire_reclaim_fraction	ips_param_arr[39].ip_param_value
2894 #define	ips_ipsec_policy_log_interval	ips_param_arr[40].ip_param_value
2895 #define	ips_pim_accept_clear_messages	ips_param_arr[41].ip_param_value
2896 #define	ips_ip_ndp_unsolicit_interval	ips_param_arr[42].ip_param_value
2897 #define	ips_ip_ndp_unsolicit_count	ips_param_arr[43].ip_param_value
2898 #define	ips_ipv6_ignore_home_address_opt ips_param_arr[44].ip_param_value
2899 #define	ips_ip_policy_mask		ips_param_arr[45].ip_param_value
2900 #define	ips_ip_multirt_resolution_interval ips_param_arr[46].ip_param_value
2901 #define	ips_ip_multirt_ttl  		ips_param_arr[47].ip_param_value
2902 #define	ips_ip_multidata_outbound	ips_param_arr[48].ip_param_value
2903 #define	ips_ip_ndp_defense_interval	ips_param_arr[49].ip_param_value
2904 #define	ips_ip_max_temp_idle		ips_param_arr[50].ip_param_value
2905 #define	ips_ip_max_temp_defend		ips_param_arr[51].ip_param_value
2906 #define	ips_ip_max_defend		ips_param_arr[52].ip_param_value
2907 #define	ips_ip_defend_interval		ips_param_arr[53].ip_param_value
2908 #define	ips_ip_dup_recovery		ips_param_arr[54].ip_param_value
2909 #define	ips_ip_restrict_interzone_loopback ips_param_arr[55].ip_param_value
2910 #define	ips_ip_lso_outbound		ips_param_arr[56].ip_param_value
2911 #define	ips_igmp_max_version		ips_param_arr[57].ip_param_value
2912 #define	ips_mld_max_version		ips_param_arr[58].ip_param_value
2913 #define	ips_ipv6_drop_inbound_icmpv6	ips_param_arr[59].ip_param_value
2914 
2915 extern int	dohwcksum;	/* use h/w cksum if supported by the h/w */
2916 #ifdef ZC_TEST
2917 extern int	noswcksum;
2918 #endif
2919 
2920 extern char	ipif_loopback_name[];
2921 
2922 extern nv_t	*ire_nv_tbl;
2923 
2924 extern struct module_info ip_mod_info;
2925 
2926 #define	HOOKS4_INTERESTED_PHYSICAL_IN(ipst)	\
2927 	((ipst)->ips_ip4_physical_in_event.he_interested)
2928 #define	HOOKS6_INTERESTED_PHYSICAL_IN(ipst)	\
2929 	((ipst)->ips_ip6_physical_in_event.he_interested)
2930 #define	HOOKS4_INTERESTED_PHYSICAL_OUT(ipst)	\
2931 	((ipst)->ips_ip4_physical_out_event.he_interested)
2932 #define	HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)	\
2933 	((ipst)->ips_ip6_physical_out_event.he_interested)
2934 #define	HOOKS4_INTERESTED_FORWARDING(ipst)	\
2935 	((ipst)->ips_ip4_forwarding_event.he_interested)
2936 #define	HOOKS6_INTERESTED_FORWARDING(ipst)	\
2937 	((ipst)->ips_ip6_forwarding_event.he_interested)
2938 #define	HOOKS4_INTERESTED_LOOPBACK_IN(ipst)	\
2939 	((ipst)->ips_ip4_loopback_in_event.he_interested)
2940 #define	HOOKS6_INTERESTED_LOOPBACK_IN(ipst)	\
2941 	((ipst)->ips_ip6_loopback_in_event.he_interested)
2942 #define	HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)	\
2943 	((ipst)->ips_ip4_loopback_out_event.he_interested)
2944 #define	HOOKS6_INTERESTED_LOOPBACK_OUT(ipst)	\
2945 	((ipst)->ips_ip6_loopback_out_event.he_interested)
2946 
2947 /*
2948  * Hooks marcos used inside of ip
2949  */
2950 #define	IPHA_VHL	ipha_version_and_hdr_length
2951 
2952 #define	FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst)	\
2953 									\
2954 	if ((_hook).he_interested) {	\
2955 		hook_pkt_event_t info;					\
2956 									\
2957 		_NOTE(CONSTCOND)					\
2958 		ASSERT((_ilp != NULL) || (_olp != NULL));		\
2959 									\
2960 		_NOTE(CONSTCOND)					\
2961 		if ((_ilp != NULL) &&					\
2962 		    (((ill_t *)(_ilp))->ill_phyint != NULL))		\
2963 			info.hpe_ifp = (phy_if_t)((ill_t *)		\
2964 			    (_ilp))->ill_phyint->phyint_hook_ifindex;	\
2965 		else							\
2966 			info.hpe_ifp = 0;				\
2967 									\
2968 		_NOTE(CONSTCOND)					\
2969 		if ((_olp != NULL) &&					\
2970 		    (((ill_t *)(_olp))->ill_phyint != NULL))		\
2971 			info.hpe_ofp = (phy_if_t)((ill_t *)		\
2972 			    (_olp))->ill_phyint->phyint_hook_ifindex;	\
2973 		else							\
2974 			info.hpe_ofp = 0;				\
2975 		info.hpe_hdr = _iph;					\
2976 		info.hpe_mp = &(_fm);					\
2977 		info.hpe_mb = _m;					\
2978 		if (hook_run(_event, (hook_data_t)&info,		\
2979 		    ipst->ips_netstack) != 0) {				\
2980 			ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
2981 			    (_hook).he_name, (void *)_fm, (void *)_m));	\
2982 			if (_fm != NULL) {				\
2983 				freemsg(_fm);				\
2984 				_fm = NULL;				\
2985 			}						\
2986 			_iph = NULL;					\
2987 			_m = NULL;					\
2988 		} else {						\
2989 			_iph = info.hpe_hdr;				\
2990 			_m = info.hpe_mb;				\
2991 		}							\
2992 	}
2993 
2994 #define	FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst)	\
2995 									\
2996 	if ((_hook).he_interested) {	\
2997 		hook_pkt_event_t info;					\
2998 									\
2999 		_NOTE(CONSTCOND)					\
3000 		ASSERT((_ilp != NULL) || (_olp != NULL));		\
3001 									\
3002 		_NOTE(CONSTCOND)					\
3003 		if ((_ilp != NULL) &&					\
3004 		    (((ill_t *)(_ilp))->ill_phyint != NULL))		\
3005 			info.hpe_ifp = (phy_if_t)((ill_t *)		\
3006 			    (_ilp))->ill_phyint->phyint_hook_ifindex;	\
3007 		else							\
3008 			info.hpe_ifp = 0;				\
3009 									\
3010 		_NOTE(CONSTCOND)					\
3011 		if ((_olp != NULL) &&					\
3012 		    (((ill_t *)(_olp))->ill_phyint != NULL))		\
3013 			info.hpe_ofp = (phy_if_t)((ill_t *)		\
3014 			    (_olp))->ill_phyint->phyint_hook_ifindex;	\
3015 		else							\
3016 			info.hpe_ofp = 0;				\
3017 		info.hpe_hdr = _iph;					\
3018 		info.hpe_mp = &(_fm);					\
3019 		info.hpe_mb = _m;					\
3020 		if (hook_run(_event, (hook_data_t)&info,		\
3021 		    ipst->ips_netstack) != 0) {				\
3022 			ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3023 			    (_hook).he_name, (void *)_fm, (void *)_m));	\
3024 			if (_fm != NULL) {				\
3025 				freemsg(_fm);				\
3026 				_fm = NULL;				\
3027 			}						\
3028 			_iph = NULL;					\
3029 			_m = NULL;					\
3030 		} else {						\
3031 			_iph = info.hpe_hdr;				\
3032 			_m = info.hpe_mb;				\
3033 		}							\
3034 	}
3035 
3036 /*
3037  * Network byte order macros
3038  */
3039 #ifdef	_BIG_ENDIAN
3040 #define	N_IN_CLASSD_NET		IN_CLASSD_NET
3041 #define	N_INADDR_UNSPEC_GROUP	INADDR_UNSPEC_GROUP
3042 #else /* _BIG_ENDIAN */
3043 #define	N_IN_CLASSD_NET		(ipaddr_t)0x000000f0U
3044 #define	N_INADDR_UNSPEC_GROUP	(ipaddr_t)0x000000e0U
3045 #endif /* _BIG_ENDIAN */
3046 #define	CLASSD(addr)	(((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
3047 
3048 #define	IP_LOOPBACK_ADDR(addr)			\
3049 	((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
3050 
3051 #ifdef DEBUG
3052 /* IPsec HW acceleration debugging support */
3053 
3054 #define	IPSECHW_CAPAB		0x0001	/* capability negotiation */
3055 #define	IPSECHW_SADB		0x0002	/* SADB exchange */
3056 #define	IPSECHW_PKT		0x0004	/* general packet flow */
3057 #define	IPSECHW_PKTIN		0x0008	/* driver in pkt processing details */
3058 #define	IPSECHW_PKTOUT		0x0010	/* driver out pkt processing details */
3059 
3060 #define	IPSECHW_DEBUG(f, x)	if (ipsechw_debug & (f)) { (void) printf x; }
3061 #define	IPSECHW_CALL(f, r, x)	if (ipsechw_debug & (f)) { (void) r x; }
3062 
3063 extern uint32_t ipsechw_debug;
3064 #else
3065 #define	IPSECHW_DEBUG(f, x)	{}
3066 #define	IPSECHW_CALL(f, r, x)	{}
3067 #endif
3068 
3069 extern int	ip_debug;
3070 
3071 #ifdef IP_DEBUG
3072 #include <sys/debug.h>
3073 #include <sys/promif.h>
3074 
3075 #define	ip0dbg(a)	printf a
3076 #define	ip1dbg(a)	if (ip_debug > 2) printf a
3077 #define	ip2dbg(a)	if (ip_debug > 3) printf a
3078 #define	ip3dbg(a)	if (ip_debug > 4) printf a
3079 #else
3080 #define	ip0dbg(a)	/* */
3081 #define	ip1dbg(a)	/* */
3082 #define	ip2dbg(a)	/* */
3083 #define	ip3dbg(a)	/* */
3084 #endif	/* IP_DEBUG */
3085 
3086 /* Default MAC-layer address string length for mac_colon_addr */
3087 #define	MAC_STR_LEN	128
3088 
3089 struct	ipsec_out_s;
3090 
3091 struct	mac_header_info_s;
3092 
3093 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *);
3094 extern const char *dlpi_prim_str(int);
3095 extern const char *dlpi_err_str(int);
3096 extern void	ill_frag_timer(void *);
3097 extern ill_t	*ill_first(int, int, ill_walk_context_t *, ip_stack_t *);
3098 extern ill_t	*ill_next(ill_walk_context_t *, ill_t *);
3099 extern void	ill_frag_timer_start(ill_t *);
3100 extern void	ill_nic_info_dispatch(ill_t *);
3101 extern void	ill_nic_info_plumb(ill_t *, boolean_t);
3102 extern mblk_t	*ip_carve_mp(mblk_t **, ssize_t);
3103 extern mblk_t	*ip_dlpi_alloc(size_t, t_uscalar_t);
3104 extern char	*ip_dot_addr(ipaddr_t, char *);
3105 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t);
3106 extern void	ip_lwput(queue_t *, mblk_t *);
3107 extern boolean_t icmp_err_rate_limit(ip_stack_t *);
3108 extern void	icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t,
3109     ip_stack_t *);
3110 extern void	icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t,
3111     ip_stack_t *);
3112 extern mblk_t	*ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *);
3113 extern mblk_t	*ip_bind_v4(queue_t *, mblk_t *, conn_t *);
3114 extern int	ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t,
3115     ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t,
3116     boolean_t);
3117 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *);
3118 extern int	ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t,
3119     boolean_t, boolean_t, boolean_t);
3120 extern uint_t	ip_cksum(mblk_t *, int, uint32_t);
3121 extern int	ip_close(queue_t *, int);
3122 extern uint16_t	ip_csum_hdr(ipha_t *);
3123 extern void	ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t,
3124     ip_stack_t *);
3125 extern void	ip_ire_g_fini(void);
3126 extern void	ip_ire_g_init(void);
3127 extern void	ip_ire_fini(ip_stack_t *);
3128 extern void	ip_ire_init(ip_stack_t *);
3129 extern int	ip_open(queue_t *, dev_t *, int, int, cred_t *);
3130 extern int	ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
3131     size_t);
3132 extern int	ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t,
3133     int, int, mblk_t *);
3134 extern void	ip_rput(queue_t *, mblk_t *);
3135 extern void	ip_input(ill_t *, ill_rx_ring_t *, mblk_t *,
3136     struct mac_header_info_s *);
3137 extern void	ip_rput_dlpi(queue_t *, mblk_t *);
3138 extern void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
3139 extern void	ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *);
3140 
3141 extern int	ip_snmpmod_close(queue_t *);
3142 extern void	ip_snmpmod_wput(queue_t *, mblk_t *);
3143 extern void	ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *,
3144 		    mib2_ipIfStatsEntry_t *);
3145 extern void	ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *,
3146 		    mib2_ipv6IfIcmpEntry_t *);
3147 extern void	ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
3148 extern void	ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
3149 extern void	ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
3150 extern ire_t	*ip_check_multihome(void *, ire_t *, ill_t *);
3151 extern void	ip_setqinfo(queue_t *, minor_t, boolean_t, ip_stack_t *);
3152 extern void	ip_trash_ire_reclaim(void *);
3153 extern void	ip_trash_timer_expire(void *);
3154 extern void	ip_wput(queue_t *, mblk_t *);
3155 extern void	ip_output(void *, mblk_t *, void *, int);
3156 extern void	ip_output_options(void *, mblk_t *, void *, int,
3157     ip_opt_info_t *);
3158 
3159 extern void	ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int,
3160 		    zoneid_t);
3161 extern void	ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *,
3162 		    int, zoneid_t);
3163 extern void	ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t);
3164 extern void	ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *);
3165 extern void	ip_wsrv(queue_t *);
3166 extern char	*ip_nv_lookup(nv_t *, int);
3167 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3168 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3169 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *);
3170 extern ipaddr_t ip_net_mask(ipaddr_t);
3171 extern void	ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t,
3172 		    ip_stack_t *);
3173 extern ipxmit_state_t	ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *,
3174     boolean_t);
3175 extern int	ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *);
3176 
3177 extern struct qinit rinit_ipv6;
3178 extern struct qinit winit_ipv6;
3179 
3180 extern void	conn_drain_insert(conn_t *connp);
3181 extern	int	conn_ipsec_length(conn_t *connp);
3182 extern void	ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *,
3183     ire_t *);
3184 extern ipaddr_t	ip_get_dst(ipha_t *);
3185 extern int	ipsec_out_extra_length(mblk_t *);
3186 extern int	ipsec_in_extra_length(mblk_t *);
3187 extern mblk_t	*ipsec_in_alloc(boolean_t, netstack_t *);
3188 extern boolean_t ipsec_in_is_secure(mblk_t *);
3189 extern void	ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t);
3190 extern void	ipsec_out_to_in(mblk_t *);
3191 extern void	ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *);
3192 
3193 extern void	ire_cleanup(ire_t *);
3194 extern void	ire_inactive(ire_t *);
3195 extern boolean_t irb_inactive(irb_t *);
3196 extern ire_t	*ire_unlink(irb_t *);
3197 #ifdef IRE_DEBUG
3198 extern	void	ire_trace_ref(ire_t *ire);
3199 extern	void	ire_untrace_ref(ire_t *ire);
3200 extern	void	ire_thread_exit(ire_t *ire, caddr_t);
3201 #endif
3202 #ifdef ILL_DEBUG
3203 extern	void	ill_trace_cleanup(ill_t *);
3204 extern	void	ipif_trace_cleanup(ipif_t *);
3205 #endif
3206 
3207 extern int	ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *);
3208 extern int	ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *);
3209 extern void	ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *);
3210 extern uint_t	ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *);
3211 extern int	ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *);
3212 
3213 extern uint8_t	ipoptp_next(ipoptp_t *);
3214 extern uint8_t	ipoptp_first(ipoptp_t *, ipha_t *);
3215 extern int	ip_opt_get_user(const ipha_t *, uchar_t *);
3216 extern ill_t	*ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t,
3217     ip_stack_t *);
3218 extern ire_t	*conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **);
3219 extern int	ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
3220 extern int	ip_snmp_get(queue_t *q, mblk_t *mctl);
3221 extern int	ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
3222 extern void	ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3223 extern void	ip_quiesce_conn(conn_t *);
3224 extern  void    ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3225 extern void	ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *);
3226 extern void	ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *);
3227 
3228 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
3229     uint_t);
3230 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
3231     uint_t);
3232 extern void	ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);
3233 
3234 extern boolean_t	ipsq_pending_mp_cleanup(ill_t *, conn_t *);
3235 extern void	conn_ioctl_cleanup(conn_t *);
3236 extern ill_t	*conn_get_held_ill(conn_t *, ill_t **, int *);
3237 extern ill_t	*ip_newroute_get_dst_ill(ill_t *);
3238 
3239 struct multidata_s;
3240 struct pdesc_s;
3241 
3242 extern mblk_t	*ip_mdinfo_alloc(ill_mdt_capab_t *);
3243 extern mblk_t	*ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *);
3244 extern mblk_t	*ip_lsoinfo_alloc(ill_lso_capab_t *);
3245 extern mblk_t	*ip_lsoinfo_return(ire_t *, conn_t *, char *,
3246     ill_lso_capab_t *);
3247 extern uint_t	ip_md_cksum(struct pdesc_s *, int, uint_t);
3248 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *,
3249 			const mblk_t *);
3250 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *,
3251 			uint32_t, uint32_t, uint32_t, uint32_t);
3252 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *,
3253 			uint_t);
3254 extern mblk_t	*ip_unbind(queue_t *, mblk_t *);
3255 
3256 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *);
3257 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *);
3258 
3259 extern void tnet_init(void);
3260 extern void tnet_fini(void);
3261 
3262 /* Hooks for CGTP (multirt routes) filtering module */
3263 #define	CGTP_FILTER_REV_1	1
3264 #define	CGTP_FILTER_REV_2	2
3265 #define	CGTP_FILTER_REV_3	3
3266 #define	CGTP_FILTER_REV		CGTP_FILTER_REV_3
3267 
3268 /* cfo_filter and cfo_filter_v6 hooks return values */
3269 #define	CGTP_IP_PKT_NOT_CGTP	0
3270 #define	CGTP_IP_PKT_PREMIUM	1
3271 #define	CGTP_IP_PKT_DUPLICATE	2
3272 
3273 /* Version 3 of the filter interface */
3274 typedef struct cgtp_filter_ops {
3275 	int	cfo_filter_rev;			/* CGTP_FILTER_REV_3 */
3276 	int	(*cfo_change_state)(netstackid_t, int);
3277 	int	(*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t,
3278 		    ipaddr_t, ipaddr_t);
3279 	int	(*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t);
3280 	int	(*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *,
3281 		    in6_addr_t *, in6_addr_t *);
3282 	int	(*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *);
3283 	int	(*cfo_filter)(netstackid_t, uint_t, mblk_t *);
3284 	int	(*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *,
3285 		    ip6_frag_t *);
3286 } cgtp_filter_ops_t;
3287 
3288 #define	CGTP_MCAST_SUCCESS	1
3289 
3290 /*
3291  * The separate CGTP module needs this global symbol so that it
3292  * can check the version and determine whether to use the old or the new
3293  * version of the filtering interface.
3294  */
3295 extern int	ip_cgtp_filter_rev;
3296 
3297 extern int	ip_cgtp_filter_supported(void);
3298 extern int	ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *);
3299 extern int	ip_cgtp_filter_unregister(netstackid_t);
3300 extern int	ip_cgtp_filter_is_registered(netstackid_t);
3301 
3302 /* Flags for ire_multirt_lookup() */
3303 
3304 #define	MULTIRT_USESTAMP	0x0001
3305 #define	MULTIRT_SETSTAMP	0x0002
3306 #define	MULTIRT_CACHEGW		0x0004
3307 
3308 /* Debug stuff for multirt route resolution. */
3309 #if defined(DEBUG) && !defined(__lint)
3310 /* Our "don't send, rather drop" flag. */
3311 #define	MULTIRT_DEBUG_FLAG	0x8000
3312 
3313 #define	MULTIRT_TRACE(x)	ip2dbg(x)
3314 
3315 #define	MULTIRT_DEBUG_TAG(mblk)	\
3316 	do { \
3317 		ASSERT(mblk != NULL); \
3318 		MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \
3319 		__FILE__, __LINE__, \
3320 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3321 		(mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \
3322 	} while (0)
3323 
3324 #define	MULTIRT_DEBUG_UNTAG(mblk) \
3325 	do { \
3326 		ASSERT(mblk != NULL); \
3327 		MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \
3328 		__FILE__, __LINE__, \
3329 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3330 		(mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \
3331 	} while (0)
3332 
3333 #define	MULTIRT_DEBUG_TAGGED(mblk) \
3334 	(((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE)
3335 #else
3336 #define	MULTIRT_DEBUG_TAG(mblk)		ASSERT(mblk != NULL)
3337 #define	MULTIRT_DEBUG_UNTAG(mblk)	ASSERT(mblk != NULL)
3338 #define	MULTIRT_DEBUG_TAGGED(mblk)	B_FALSE
3339 #endif
3340 
3341 /*
3342  * Per-ILL Multidata Transmit capabilities.
3343  */
3344 struct ill_mdt_capab_s {
3345 	uint_t ill_mdt_version;  /* interface version */
3346 	uint_t ill_mdt_on;	 /* on/off switch for MDT on this ILL */
3347 	uint_t ill_mdt_hdr_head; /* leading header fragment extra space */
3348 	uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */
3349 	uint_t ill_mdt_max_pld;	 /* maximum payload buffers per Multidata */
3350 	uint_t ill_mdt_span_limit; /* maximum payload span per packet */
3351 };
3352 
3353 struct ill_hcksum_capab_s {
3354 	uint_t	ill_hcksum_version;	/* interface version */
3355 	uint_t	ill_hcksum_txflags;	/* capabilities on transmit */
3356 };
3357 
3358 struct ill_zerocopy_capab_s {
3359 	uint_t	ill_zerocopy_version;	/* interface version */
3360 	uint_t	ill_zerocopy_flags;	/* capabilities */
3361 };
3362 
3363 struct ill_lso_capab_s {
3364 	uint_t	ill_lso_version;	/* interface version */
3365 	uint_t	ill_lso_on;		/* on/off switch for LSO on this ILL */
3366 	uint_t	ill_lso_flags;		/* capabilities */
3367 	uint_t	ill_lso_max;		/* maximum size of payload */
3368 };
3369 
3370 /* Possible ill_states */
3371 #define	ILL_RING_INPROC		3	/* Being assigned to squeue */
3372 #define	ILL_RING_INUSE		2	/* Already Assigned to Rx Ring */
3373 #define	ILL_RING_BEING_FREED	1	/* Being Unassigned */
3374 #define	ILL_RING_FREE		0	/* Available to be assigned to Ring */
3375 
3376 #define	ILL_MAX_RINGS		256	/* Max num of rx rings we can manage */
3377 #define	ILL_POLLING		0x01	/* Polling in use */
3378 
3379 /*
3380  * These functions pointer types are exported by the mac/dls layer.
3381  * we need to duplicate the definitions here because we cannot
3382  * include mac/dls header files here.
3383  */
3384 typedef void	(*ip_mac_blank_t)(void *, time_t, uint_t);
3385 typedef void	(*ip_dld_tx_t)(void *, mblk_t *);
3386 
3387 typedef void	(*ip_dls_chg_soft_ring_t)(void *, int);
3388 typedef void	(*ip_dls_bind_t)(void *, processorid_t);
3389 typedef void	(*ip_dls_unbind_t)(void *);
3390 
3391 struct ill_rx_ring {
3392 	ip_mac_blank_t		rr_blank; /* Driver interrupt blanking func */
3393 	void			*rr_handle; /* Handle for Rx ring */
3394 	squeue_t		*rr_sqp; /* Squeue the ring is bound to */
3395 	ill_t			*rr_ill; /* back pointer to ill */
3396 	clock_t			rr_poll_time; /* Last lbolt polling was used */
3397 	uint32_t		rr_poll_state; /* polling state flags */
3398 	uint32_t		rr_max_blank_time; /* Max interrupt blank */
3399 	uint32_t		rr_min_blank_time; /* Min interrupt blank */
3400 	uint32_t		rr_max_pkt_cnt; /* Max pkts before interrupt */
3401 	uint32_t		rr_min_pkt_cnt; /* Mix pkts before interrupt */
3402 	uint32_t		rr_normal_blank_time; /* Normal intr freq */
3403 	uint32_t		rr_normal_pkt_cnt; /* Normal intr pkt cnt */
3404 	uint32_t		rr_ring_state; /* State of this ring */
3405 };
3406 
3407 struct ill_dls_capab_s {
3408 	ip_dld_tx_t		ill_tx;		/* Driver Tx routine */
3409 	void			*ill_tx_handle;	/* Driver Tx handle */
3410 	ip_dls_chg_soft_ring_t	ill_dls_change_status;
3411 						/* change soft ring fanout */
3412 	ip_dls_bind_t		ill_dls_bind;	/* to add CPU affinity */
3413 	ip_dls_unbind_t		ill_dls_unbind;	/* remove CPU affinity */
3414 	ill_rx_ring_t		*ill_ring_tbl; /* Ring to Sqp mapping table */
3415 	uint_t			ill_dls_soft_ring_cnt; /* Number of soft ring */
3416 	conn_t			*ill_unbind_conn; /* Conn used during unplumb */
3417 };
3418 
3419 /*
3420  * This message is sent by an upper-layer protocol to tell IP that it knows all
3421  * about labels and will construct them itself.  IP takes the slow path and
3422  * recomputes the label on every packet when this isn't true.
3423  */
3424 #define	IP_ULP_OUT_LABELED		(('O' << 8) + 'L')
3425 typedef struct out_labeled_s {
3426 	uint32_t	out_labeled_type;	/* OUT_LABELED */
3427 	queue_t		*out_qnext;		/* intermediate detection */
3428 } out_labeled_t;
3429 
3430 /*
3431  * IP squeues exports
3432  */
3433 extern int 		ip_squeue_profile;
3434 extern int 		ip_squeue_bind;
3435 extern boolean_t 	ip_squeue_fanout;
3436 extern boolean_t	ip_squeue_soft_ring;
3437 extern uint_t		ip_threads_per_cpu;
3438 extern uint_t		ip_squeues_per_cpu;
3439 extern uint_t		ip_soft_rings_cnt;
3440 
3441 typedef struct squeue_set_s {
3442 	kmutex_t	sqs_lock;
3443 	struct squeue_s	**sqs_list;
3444 	int		sqs_size;
3445 	int		sqs_max_size;
3446 	processorid_t	sqs_bind;
3447 } squeue_set_t;
3448 
3449 #define	IP_SQUEUE_GET(hint) 						\
3450 	((!ip_squeue_fanout) ?	(CPU->cpu_squeue_set->sqs_list[0]) :	\
3451 		ip_squeue_random(hint))
3452 
3453 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t);
3454 
3455 extern void ip_squeue_init(void (*)(squeue_t *));
3456 extern squeue_t	*ip_squeue_random(uint_t);
3457 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3458 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
3459 extern void ip_squeue_clean_all(ill_t *);
3460 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *,
3461     mblk_t *, struct mac_header_info_s *);
3462 
3463 extern void ip_resume_tcp_bind(void *, mblk_t *, void *);
3464 extern void tcp_wput(queue_t *, mblk_t *);
3465 
3466 extern int	ip_fill_mtuinfo(struct in6_addr *, in_port_t,
3467 	struct ip6_mtuinfo *, netstack_t *);
3468 extern	ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *);
3469 
3470 typedef void    (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);
3471 
3472 /*
3473  * Squeue tags. Tags only need to be unique when the callback function is the
3474  * same to distinguish between different calls, but we use unique tags for
3475  * convenience anyway.
3476  */
3477 #define	SQTAG_IP_INPUT			1
3478 #define	SQTAG_TCP_INPUT_ICMP_ERR	2
3479 #define	SQTAG_TCP6_INPUT_ICMP_ERR	3
3480 #define	SQTAG_IP_TCP_INPUT		4
3481 #define	SQTAG_IP6_TCP_INPUT		5
3482 #define	SQTAG_IP_TCP_CLOSE		6
3483 #define	SQTAG_TCP_OUTPUT		7
3484 #define	SQTAG_TCP_TIMER			8
3485 #define	SQTAG_TCP_TIMEWAIT		9
3486 #define	SQTAG_TCP_ACCEPT_FINISH		10
3487 #define	SQTAG_TCP_ACCEPT_FINISH_Q0	11
3488 #define	SQTAG_TCP_ACCEPT_PENDING	12
3489 #define	SQTAG_TCP_LISTEN_DISCON		13
3490 #define	SQTAG_TCP_CONN_REQ_1		14
3491 #define	SQTAG_TCP_EAGER_BLOWOFF		15
3492 #define	SQTAG_TCP_EAGER_CLEANUP		16
3493 #define	SQTAG_TCP_EAGER_CLEANUP_Q0	17
3494 #define	SQTAG_TCP_CONN_IND		18
3495 #define	SQTAG_TCP_RSRV			19
3496 #define	SQTAG_TCP_ABORT_BUCKET		20
3497 #define	SQTAG_TCP_REINPUT		21
3498 #define	SQTAG_TCP_REINPUT_EAGER		22
3499 #define	SQTAG_TCP_INPUT_MCTL		23
3500 #define	SQTAG_TCP_RPUTOTHER		24
3501 #define	SQTAG_IP_PROTO_AGAIN		25
3502 #define	SQTAG_IP_FANOUT_TCP		26
3503 #define	SQTAG_IPSQ_CLEAN_RING		27
3504 #define	SQTAG_TCP_WPUT_OTHER		28
3505 #define	SQTAG_TCP_CONN_REQ_UNBOUND	29
3506 #define	SQTAG_TCP_SEND_PENDING		30
3507 #define	SQTAG_BIND_RETRY		31
3508 #define	SQTAG_UDP_FANOUT		32
3509 #define	SQTAG_UDP_INPUT			33
3510 #define	SQTAG_UDP_WPUT			34
3511 #define	SQTAG_UDP_OUTPUT		35
3512 #define	SQTAG_TCP_KSSL_INPUT		36
3513 #define	SQTAG_TCP_DROP_Q0		37
3514 #define	SQTAG_TCP_CONN_REQ_2		38
3515 
3516 #define	NOT_OVER_IP(ip_wq)	\
3517 	(ip_wq->q_next != NULL ||	\
3518 	    (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||	\
3519 	    strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname,	\
3520 	    IP_MOD_NAME) != 0 ||	\
3521 	    ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID)
3522 
3523 #endif	/* _KERNEL */
3524 
3525 #ifdef	__cplusplus
3526 }
3527 #endif
3528 
3529 #endif	/* _INET_IP_H */
3530