xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision f78cdc34af236a6199dd9e21376f4a46348c0d56)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 #include <sys/cityhash.h>
46 
47 /*
48  * ==========================================================================
49  * I/O type descriptions
50  * ==========================================================================
51  */
52 const char *zio_type_name[ZIO_TYPES] = {
53 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
54 	"zio_ioctl"
55 };
56 
57 boolean_t zio_dva_throttle_enabled = B_TRUE;
58 
59 /*
60  * ==========================================================================
61  * I/O kmem caches
62  * ==========================================================================
63  */
64 kmem_cache_t *zio_cache;
65 kmem_cache_t *zio_link_cache;
66 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
68 
69 #ifdef _KERNEL
70 extern vmem_t *zio_alloc_arena;
71 #endif
72 
73 #define	ZIO_PIPELINE_CONTINUE		0x100
74 #define	ZIO_PIPELINE_STOP		0x101
75 
76 #define	BP_SPANB(indblkshift, level) \
77 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
78 #define	COMPARE_META_LEVEL	0x80000000ul
79 /*
80  * The following actions directly effect the spa's sync-to-convergence logic.
81  * The values below define the sync pass when we start performing the action.
82  * Care should be taken when changing these values as they directly impact
83  * spa_sync() performance. Tuning these values may introduce subtle performance
84  * pathologies and should only be done in the context of performance analysis.
85  * These tunables will eventually be removed and replaced with #defines once
86  * enough analysis has been done to determine optimal values.
87  *
88  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
89  * regular blocks are not deferred.
90  */
91 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
92 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
93 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
94 
95 /*
96  * An allocating zio is one that either currently has the DVA allocate
97  * stage set or will have it later in its lifetime.
98  */
99 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
100 
101 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
102 
103 #ifdef ZFS_DEBUG
104 int zio_buf_debug_limit = 16384;
105 #else
106 int zio_buf_debug_limit = 0;
107 #endif
108 
109 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
110 
111 void
112 zio_init(void)
113 {
114 	size_t c;
115 	vmem_t *data_alloc_arena = NULL;
116 
117 #ifdef _KERNEL
118 	data_alloc_arena = zio_alloc_arena;
119 #endif
120 	zio_cache = kmem_cache_create("zio_cache",
121 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
122 	zio_link_cache = kmem_cache_create("zio_link_cache",
123 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
124 
125 	/*
126 	 * For small buffers, we want a cache for each multiple of
127 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
128 	 * for each quarter-power of 2.
129 	 */
130 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
131 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
132 		size_t p2 = size;
133 		size_t align = 0;
134 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
135 
136 		while (!ISP2(p2))
137 			p2 &= p2 - 1;
138 
139 #ifndef _KERNEL
140 		/*
141 		 * If we are using watchpoints, put each buffer on its own page,
142 		 * to eliminate the performance overhead of trapping to the
143 		 * kernel when modifying a non-watched buffer that shares the
144 		 * page with a watched buffer.
145 		 */
146 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
147 			continue;
148 #endif
149 		if (size <= 4 * SPA_MINBLOCKSIZE) {
150 			align = SPA_MINBLOCKSIZE;
151 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
152 			align = MIN(p2 >> 2, PAGESIZE);
153 		}
154 
155 		if (align != 0) {
156 			char name[36];
157 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
158 			zio_buf_cache[c] = kmem_cache_create(name, size,
159 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
160 
161 			/*
162 			 * Since zio_data bufs do not appear in crash dumps, we
163 			 * pass KMC_NOTOUCH so that no allocator metadata is
164 			 * stored with the buffers.
165 			 */
166 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
167 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
168 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
169 			    cflags | KMC_NOTOUCH);
170 		}
171 	}
172 
173 	while (--c != 0) {
174 		ASSERT(zio_buf_cache[c] != NULL);
175 		if (zio_buf_cache[c - 1] == NULL)
176 			zio_buf_cache[c - 1] = zio_buf_cache[c];
177 
178 		ASSERT(zio_data_buf_cache[c] != NULL);
179 		if (zio_data_buf_cache[c - 1] == NULL)
180 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
181 	}
182 
183 	zio_inject_init();
184 }
185 
186 void
187 zio_fini(void)
188 {
189 	size_t c;
190 	kmem_cache_t *last_cache = NULL;
191 	kmem_cache_t *last_data_cache = NULL;
192 
193 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
194 		if (zio_buf_cache[c] != last_cache) {
195 			last_cache = zio_buf_cache[c];
196 			kmem_cache_destroy(zio_buf_cache[c]);
197 		}
198 		zio_buf_cache[c] = NULL;
199 
200 		if (zio_data_buf_cache[c] != last_data_cache) {
201 			last_data_cache = zio_data_buf_cache[c];
202 			kmem_cache_destroy(zio_data_buf_cache[c]);
203 		}
204 		zio_data_buf_cache[c] = NULL;
205 	}
206 
207 	kmem_cache_destroy(zio_link_cache);
208 	kmem_cache_destroy(zio_cache);
209 
210 	zio_inject_fini();
211 }
212 
213 /*
214  * ==========================================================================
215  * Allocate and free I/O buffers
216  * ==========================================================================
217  */
218 
219 /*
220  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
221  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
222  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
223  * excess / transient data in-core during a crashdump.
224  */
225 void *
226 zio_buf_alloc(size_t size)
227 {
228 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
229 
230 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
231 
232 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
233 }
234 
235 /*
236  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
237  * crashdump if the kernel panics.  This exists so that we will limit the amount
238  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
239  * of kernel heap dumped to disk when the kernel panics)
240  */
241 void *
242 zio_data_buf_alloc(size_t size)
243 {
244 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
245 
246 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
247 
248 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
249 }
250 
251 void
252 zio_buf_free(void *buf, size_t size)
253 {
254 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
255 
256 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
257 
258 	kmem_cache_free(zio_buf_cache[c], buf);
259 }
260 
261 void
262 zio_data_buf_free(void *buf, size_t size)
263 {
264 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
265 
266 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
267 
268 	kmem_cache_free(zio_data_buf_cache[c], buf);
269 }
270 
271 /*
272  * ==========================================================================
273  * Push and pop I/O transform buffers
274  * ==========================================================================
275  */
276 void
277 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
278     zio_transform_func_t *transform)
279 {
280 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
281 
282 	/*
283 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
284 	 * going to get a nasty surprise when they try to access the data.
285 	 */
286 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
287 
288 	zt->zt_orig_abd = zio->io_abd;
289 	zt->zt_orig_size = zio->io_size;
290 	zt->zt_bufsize = bufsize;
291 	zt->zt_transform = transform;
292 
293 	zt->zt_next = zio->io_transform_stack;
294 	zio->io_transform_stack = zt;
295 
296 	zio->io_abd = data;
297 	zio->io_size = size;
298 }
299 
300 void
301 zio_pop_transforms(zio_t *zio)
302 {
303 	zio_transform_t *zt;
304 
305 	while ((zt = zio->io_transform_stack) != NULL) {
306 		if (zt->zt_transform != NULL)
307 			zt->zt_transform(zio,
308 			    zt->zt_orig_abd, zt->zt_orig_size);
309 
310 		if (zt->zt_bufsize != 0)
311 			abd_free(zio->io_abd);
312 
313 		zio->io_abd = zt->zt_orig_abd;
314 		zio->io_size = zt->zt_orig_size;
315 		zio->io_transform_stack = zt->zt_next;
316 
317 		kmem_free(zt, sizeof (zio_transform_t));
318 	}
319 }
320 
321 /*
322  * ==========================================================================
323  * I/O transform callbacks for subblocks and decompression
324  * ==========================================================================
325  */
326 static void
327 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
328 {
329 	ASSERT(zio->io_size > size);
330 
331 	if (zio->io_type == ZIO_TYPE_READ)
332 		abd_copy(data, zio->io_abd, size);
333 }
334 
335 static void
336 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
337 {
338 	if (zio->io_error == 0) {
339 		void *tmp = abd_borrow_buf(data, size);
340 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
341 		    zio->io_abd, tmp, zio->io_size, size);
342 		abd_return_buf_copy(data, tmp, size);
343 
344 		if (ret != 0)
345 			zio->io_error = SET_ERROR(EIO);
346 	}
347 }
348 
349 /*
350  * ==========================================================================
351  * I/O parent/child relationships and pipeline interlocks
352  * ==========================================================================
353  */
354 zio_t *
355 zio_walk_parents(zio_t *cio, zio_link_t **zl)
356 {
357 	list_t *pl = &cio->io_parent_list;
358 
359 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
360 	if (*zl == NULL)
361 		return (NULL);
362 
363 	ASSERT((*zl)->zl_child == cio);
364 	return ((*zl)->zl_parent);
365 }
366 
367 zio_t *
368 zio_walk_children(zio_t *pio, zio_link_t **zl)
369 {
370 	list_t *cl = &pio->io_child_list;
371 
372 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
373 	if (*zl == NULL)
374 		return (NULL);
375 
376 	ASSERT((*zl)->zl_parent == pio);
377 	return ((*zl)->zl_child);
378 }
379 
380 zio_t *
381 zio_unique_parent(zio_t *cio)
382 {
383 	zio_link_t *zl = NULL;
384 	zio_t *pio = zio_walk_parents(cio, &zl);
385 
386 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
387 	return (pio);
388 }
389 
390 void
391 zio_add_child(zio_t *pio, zio_t *cio)
392 {
393 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
394 
395 	/*
396 	 * Logical I/Os can have logical, gang, or vdev children.
397 	 * Gang I/Os can have gang or vdev children.
398 	 * Vdev I/Os can only have vdev children.
399 	 * The following ASSERT captures all of these constraints.
400 	 */
401 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
402 
403 	zl->zl_parent = pio;
404 	zl->zl_child = cio;
405 
406 	mutex_enter(&cio->io_lock);
407 	mutex_enter(&pio->io_lock);
408 
409 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
410 
411 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
412 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
413 
414 	list_insert_head(&pio->io_child_list, zl);
415 	list_insert_head(&cio->io_parent_list, zl);
416 
417 	pio->io_child_count++;
418 	cio->io_parent_count++;
419 
420 	mutex_exit(&pio->io_lock);
421 	mutex_exit(&cio->io_lock);
422 }
423 
424 static void
425 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
426 {
427 	ASSERT(zl->zl_parent == pio);
428 	ASSERT(zl->zl_child == cio);
429 
430 	mutex_enter(&cio->io_lock);
431 	mutex_enter(&pio->io_lock);
432 
433 	list_remove(&pio->io_child_list, zl);
434 	list_remove(&cio->io_parent_list, zl);
435 
436 	pio->io_child_count--;
437 	cio->io_parent_count--;
438 
439 	mutex_exit(&pio->io_lock);
440 	mutex_exit(&cio->io_lock);
441 
442 	kmem_cache_free(zio_link_cache, zl);
443 }
444 
445 static boolean_t
446 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
447 {
448 	boolean_t waiting = B_FALSE;
449 
450 	mutex_enter(&zio->io_lock);
451 	ASSERT(zio->io_stall == NULL);
452 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
453 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
454 			continue;
455 
456 		uint64_t *countp = &zio->io_children[c][wait];
457 		if (*countp != 0) {
458 			zio->io_stage >>= 1;
459 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
460 			zio->io_stall = countp;
461 			waiting = B_TRUE;
462 			break;
463 		}
464 	}
465 	mutex_exit(&zio->io_lock);
466 	return (waiting);
467 }
468 
469 static void
470 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
471 {
472 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
473 	int *errorp = &pio->io_child_error[zio->io_child_type];
474 
475 	mutex_enter(&pio->io_lock);
476 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
477 		*errorp = zio_worst_error(*errorp, zio->io_error);
478 	pio->io_reexecute |= zio->io_reexecute;
479 	ASSERT3U(*countp, >, 0);
480 
481 	(*countp)--;
482 
483 	if (*countp == 0 && pio->io_stall == countp) {
484 		zio_taskq_type_t type =
485 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
486 		    ZIO_TASKQ_INTERRUPT;
487 		pio->io_stall = NULL;
488 		mutex_exit(&pio->io_lock);
489 		/*
490 		 * Dispatch the parent zio in its own taskq so that
491 		 * the child can continue to make progress. This also
492 		 * prevents overflowing the stack when we have deeply nested
493 		 * parent-child relationships.
494 		 */
495 		zio_taskq_dispatch(pio, type, B_FALSE);
496 	} else {
497 		mutex_exit(&pio->io_lock);
498 	}
499 }
500 
501 static void
502 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
503 {
504 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
505 		zio->io_error = zio->io_child_error[c];
506 }
507 
508 int
509 zio_bookmark_compare(const void *x1, const void *x2)
510 {
511 	const zio_t *z1 = x1;
512 	const zio_t *z2 = x2;
513 
514 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
515 		return (-1);
516 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
517 		return (1);
518 
519 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
520 		return (-1);
521 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
522 		return (1);
523 
524 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
525 		return (-1);
526 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
527 		return (1);
528 
529 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
530 		return (-1);
531 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
532 		return (1);
533 
534 	if (z1 < z2)
535 		return (-1);
536 	if (z1 > z2)
537 		return (1);
538 
539 	return (0);
540 }
541 
542 /*
543  * ==========================================================================
544  * Create the various types of I/O (read, write, free, etc)
545  * ==========================================================================
546  */
547 static zio_t *
548 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
549     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
550     void *private, zio_type_t type, zio_priority_t priority,
551     enum zio_flag flags, vdev_t *vd, uint64_t offset,
552     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
553 {
554 	zio_t *zio;
555 
556 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
557 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
558 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
559 
560 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
561 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
562 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
563 
564 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
565 
566 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
567 	bzero(zio, sizeof (zio_t));
568 
569 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
570 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
571 
572 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
573 	    offsetof(zio_link_t, zl_parent_node));
574 	list_create(&zio->io_child_list, sizeof (zio_link_t),
575 	    offsetof(zio_link_t, zl_child_node));
576 	metaslab_trace_init(&zio->io_alloc_list);
577 
578 	if (vd != NULL)
579 		zio->io_child_type = ZIO_CHILD_VDEV;
580 	else if (flags & ZIO_FLAG_GANG_CHILD)
581 		zio->io_child_type = ZIO_CHILD_GANG;
582 	else if (flags & ZIO_FLAG_DDT_CHILD)
583 		zio->io_child_type = ZIO_CHILD_DDT;
584 	else
585 		zio->io_child_type = ZIO_CHILD_LOGICAL;
586 
587 	if (bp != NULL) {
588 		zio->io_bp = (blkptr_t *)bp;
589 		zio->io_bp_copy = *bp;
590 		zio->io_bp_orig = *bp;
591 		if (type != ZIO_TYPE_WRITE ||
592 		    zio->io_child_type == ZIO_CHILD_DDT)
593 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
594 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
595 			zio->io_logical = zio;
596 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
597 			pipeline |= ZIO_GANG_STAGES;
598 	}
599 
600 	zio->io_spa = spa;
601 	zio->io_txg = txg;
602 	zio->io_done = done;
603 	zio->io_private = private;
604 	zio->io_type = type;
605 	zio->io_priority = priority;
606 	zio->io_vd = vd;
607 	zio->io_offset = offset;
608 	zio->io_orig_abd = zio->io_abd = data;
609 	zio->io_orig_size = zio->io_size = psize;
610 	zio->io_lsize = lsize;
611 	zio->io_orig_flags = zio->io_flags = flags;
612 	zio->io_orig_stage = zio->io_stage = stage;
613 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
614 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
615 
616 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618 
619 	if (zb != NULL)
620 		zio->io_bookmark = *zb;
621 
622 	if (pio != NULL) {
623 		if (zio->io_logical == NULL)
624 			zio->io_logical = pio->io_logical;
625 		if (zio->io_child_type == ZIO_CHILD_GANG)
626 			zio->io_gang_leader = pio->io_gang_leader;
627 		zio_add_child(pio, zio);
628 	}
629 
630 	return (zio);
631 }
632 
633 static void
634 zio_destroy(zio_t *zio)
635 {
636 	metaslab_trace_fini(&zio->io_alloc_list);
637 	list_destroy(&zio->io_parent_list);
638 	list_destroy(&zio->io_child_list);
639 	mutex_destroy(&zio->io_lock);
640 	cv_destroy(&zio->io_cv);
641 	kmem_cache_free(zio_cache, zio);
642 }
643 
644 zio_t *
645 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
646     void *private, enum zio_flag flags)
647 {
648 	zio_t *zio;
649 
650 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
651 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
652 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
653 
654 	return (zio);
655 }
656 
657 zio_t *
658 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
659 {
660 	return (zio_null(NULL, spa, NULL, done, private, flags));
661 }
662 
663 void
664 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
665 {
666 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
667 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
668 		    bp, (longlong_t)BP_GET_TYPE(bp));
669 	}
670 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
671 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
672 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
673 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
674 	}
675 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
676 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
677 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
678 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
679 	}
680 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
681 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
682 		    bp, (longlong_t)BP_GET_LSIZE(bp));
683 	}
684 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
685 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
686 		    bp, (longlong_t)BP_GET_PSIZE(bp));
687 	}
688 
689 	if (BP_IS_EMBEDDED(bp)) {
690 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
691 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
692 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
693 		}
694 	}
695 
696 	/*
697 	 * Do not verify individual DVAs if the config is not trusted. This
698 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
699 	 */
700 	if (!spa->spa_trust_config)
701 		return;
702 
703 	/*
704 	 * Pool-specific checks.
705 	 *
706 	 * Note: it would be nice to verify that the blk_birth and
707 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
708 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
709 	 * that are in the log) to be arbitrarily large.
710 	 */
711 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
712 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
713 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
714 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
715 			    "VDEV %llu",
716 			    bp, i, (longlong_t)vdevid);
717 			continue;
718 		}
719 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
720 		if (vd == NULL) {
721 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
722 			    "VDEV %llu",
723 			    bp, i, (longlong_t)vdevid);
724 			continue;
725 		}
726 		if (vd->vdev_ops == &vdev_hole_ops) {
727 			zfs_panic_recover("blkptr at %p DVA %u has hole "
728 			    "VDEV %llu",
729 			    bp, i, (longlong_t)vdevid);
730 			continue;
731 		}
732 		if (vd->vdev_ops == &vdev_missing_ops) {
733 			/*
734 			 * "missing" vdevs are valid during import, but we
735 			 * don't have their detailed info (e.g. asize), so
736 			 * we can't perform any more checks on them.
737 			 */
738 			continue;
739 		}
740 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
741 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
742 		if (BP_IS_GANG(bp))
743 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
744 		if (offset + asize > vd->vdev_asize) {
745 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
746 			    "OFFSET %llu",
747 			    bp, i, (longlong_t)offset);
748 		}
749 	}
750 }
751 
752 boolean_t
753 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
754 {
755 	uint64_t vdevid = DVA_GET_VDEV(dva);
756 
757 	if (vdevid >= spa->spa_root_vdev->vdev_children)
758 		return (B_FALSE);
759 
760 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
761 	if (vd == NULL)
762 		return (B_FALSE);
763 
764 	if (vd->vdev_ops == &vdev_hole_ops)
765 		return (B_FALSE);
766 
767 	if (vd->vdev_ops == &vdev_missing_ops) {
768 		return (B_FALSE);
769 	}
770 
771 	uint64_t offset = DVA_GET_OFFSET(dva);
772 	uint64_t asize = DVA_GET_ASIZE(dva);
773 
774 	if (BP_IS_GANG(bp))
775 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
776 	if (offset + asize > vd->vdev_asize)
777 		return (B_FALSE);
778 
779 	return (B_TRUE);
780 }
781 
782 zio_t *
783 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
784     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
785     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
786 {
787 	zio_t *zio;
788 
789 	zfs_blkptr_verify(spa, bp);
790 
791 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
792 	    data, size, size, done, private,
793 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
794 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
795 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
796 
797 	return (zio);
798 }
799 
800 zio_t *
801 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
802     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
803     zio_done_func_t *ready, zio_done_func_t *children_ready,
804     zio_done_func_t *physdone, zio_done_func_t *done,
805     void *private, zio_priority_t priority, enum zio_flag flags,
806     const zbookmark_phys_t *zb)
807 {
808 	zio_t *zio;
809 
810 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
811 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
812 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
813 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
814 	    DMU_OT_IS_VALID(zp->zp_type) &&
815 	    zp->zp_level < 32 &&
816 	    zp->zp_copies > 0 &&
817 	    zp->zp_copies <= spa_max_replication(spa));
818 
819 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
820 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
821 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
822 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
823 
824 	zio->io_ready = ready;
825 	zio->io_children_ready = children_ready;
826 	zio->io_physdone = physdone;
827 	zio->io_prop = *zp;
828 
829 	/*
830 	 * Data can be NULL if we are going to call zio_write_override() to
831 	 * provide the already-allocated BP.  But we may need the data to
832 	 * verify a dedup hit (if requested).  In this case, don't try to
833 	 * dedup (just take the already-allocated BP verbatim).
834 	 */
835 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
836 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
837 	}
838 
839 	return (zio);
840 }
841 
842 zio_t *
843 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
844     uint64_t size, zio_done_func_t *done, void *private,
845     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
846 {
847 	zio_t *zio;
848 
849 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
850 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
851 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
852 
853 	return (zio);
854 }
855 
856 void
857 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
858 {
859 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
860 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
861 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
862 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
863 
864 	/*
865 	 * We must reset the io_prop to match the values that existed
866 	 * when the bp was first written by dmu_sync() keeping in mind
867 	 * that nopwrite and dedup are mutually exclusive.
868 	 */
869 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
870 	zio->io_prop.zp_nopwrite = nopwrite;
871 	zio->io_prop.zp_copies = copies;
872 	zio->io_bp_override = bp;
873 }
874 
875 void
876 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
877 {
878 
879 	zfs_blkptr_verify(spa, bp);
880 
881 	/*
882 	 * The check for EMBEDDED is a performance optimization.  We
883 	 * process the free here (by ignoring it) rather than
884 	 * putting it on the list and then processing it in zio_free_sync().
885 	 */
886 	if (BP_IS_EMBEDDED(bp))
887 		return;
888 	metaslab_check_free(spa, bp);
889 
890 	/*
891 	 * Frees that are for the currently-syncing txg, are not going to be
892 	 * deferred, and which will not need to do a read (i.e. not GANG or
893 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
894 	 * in-memory list for later processing.
895 	 */
896 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
897 	    txg != spa->spa_syncing_txg ||
898 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
899 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
900 	} else {
901 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
902 	}
903 }
904 
905 zio_t *
906 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
907     enum zio_flag flags)
908 {
909 	zio_t *zio;
910 	enum zio_stage stage = ZIO_FREE_PIPELINE;
911 
912 	ASSERT(!BP_IS_HOLE(bp));
913 	ASSERT(spa_syncing_txg(spa) == txg);
914 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
915 
916 	if (BP_IS_EMBEDDED(bp))
917 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
918 
919 	metaslab_check_free(spa, bp);
920 	arc_freed(spa, bp);
921 
922 	/*
923 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
924 	 * or the DDT), so issue them asynchronously so that this thread is
925 	 * not tied up.
926 	 */
927 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
928 		stage |= ZIO_STAGE_ISSUE_ASYNC;
929 
930 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
931 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
932 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
933 
934 	return (zio);
935 }
936 
937 zio_t *
938 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
939     zio_done_func_t *done, void *private, enum zio_flag flags)
940 {
941 	zio_t *zio;
942 
943 	zfs_blkptr_verify(spa, bp);
944 
945 	if (BP_IS_EMBEDDED(bp))
946 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
947 
948 	/*
949 	 * A claim is an allocation of a specific block.  Claims are needed
950 	 * to support immediate writes in the intent log.  The issue is that
951 	 * immediate writes contain committed data, but in a txg that was
952 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
953 	 * the intent log claims all blocks that contain immediate write data
954 	 * so that the SPA knows they're in use.
955 	 *
956 	 * All claims *must* be resolved in the first txg -- before the SPA
957 	 * starts allocating blocks -- so that nothing is allocated twice.
958 	 * If txg == 0 we just verify that the block is claimable.
959 	 */
960 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
961 	    spa_min_claim_txg(spa));
962 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
963 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
964 
965 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
966 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
967 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
968 	ASSERT0(zio->io_queued_timestamp);
969 
970 	return (zio);
971 }
972 
973 zio_t *
974 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
975     zio_done_func_t *done, void *private, enum zio_flag flags)
976 {
977 	zio_t *zio;
978 	int c;
979 
980 	if (vd->vdev_children == 0) {
981 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
982 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
983 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
984 
985 		zio->io_cmd = cmd;
986 	} else {
987 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
988 
989 		for (c = 0; c < vd->vdev_children; c++)
990 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
991 			    done, private, flags));
992 	}
993 
994 	return (zio);
995 }
996 
997 zio_t *
998 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
999     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1000     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1001 {
1002 	zio_t *zio;
1003 
1004 	ASSERT(vd->vdev_children == 0);
1005 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1006 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1007 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1008 
1009 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1010 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1011 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1012 
1013 	zio->io_prop.zp_checksum = checksum;
1014 
1015 	return (zio);
1016 }
1017 
1018 zio_t *
1019 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1020     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1021     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1022 {
1023 	zio_t *zio;
1024 
1025 	ASSERT(vd->vdev_children == 0);
1026 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1027 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1028 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1029 
1030 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1031 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1032 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1033 
1034 	zio->io_prop.zp_checksum = checksum;
1035 
1036 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1037 		/*
1038 		 * zec checksums are necessarily destructive -- they modify
1039 		 * the end of the write buffer to hold the verifier/checksum.
1040 		 * Therefore, we must make a local copy in case the data is
1041 		 * being written to multiple places in parallel.
1042 		 */
1043 		abd_t *wbuf = abd_alloc_sametype(data, size);
1044 		abd_copy(wbuf, data, size);
1045 
1046 		zio_push_transform(zio, wbuf, size, size, NULL);
1047 	}
1048 
1049 	return (zio);
1050 }
1051 
1052 /*
1053  * Create a child I/O to do some work for us.
1054  */
1055 zio_t *
1056 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1057     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1058     enum zio_flag flags, zio_done_func_t *done, void *private)
1059 {
1060 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1061 	zio_t *zio;
1062 
1063 	/*
1064 	 * vdev child I/Os do not propagate their error to the parent.
1065 	 * Therefore, for correct operation the caller *must* check for
1066 	 * and handle the error in the child i/o's done callback.
1067 	 * The only exceptions are i/os that we don't care about
1068 	 * (OPTIONAL or REPAIR).
1069 	 */
1070 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1071 	    done != NULL);
1072 
1073 	/*
1074 	 * In the common case, where the parent zio was to a normal vdev,
1075 	 * the child zio must be to a child vdev of that vdev.  Otherwise,
1076 	 * the child zio must be to a top-level vdev.
1077 	 */
1078 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) {
1079 		ASSERT3P(vd->vdev_parent, ==, pio->io_vd);
1080 	} else {
1081 		ASSERT3P(vd, ==, vd->vdev_top);
1082 	}
1083 
1084 	if (type == ZIO_TYPE_READ && bp != NULL) {
1085 		/*
1086 		 * If we have the bp, then the child should perform the
1087 		 * checksum and the parent need not.  This pushes error
1088 		 * detection as close to the leaves as possible and
1089 		 * eliminates redundant checksums in the interior nodes.
1090 		 */
1091 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1092 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1093 	}
1094 
1095 	if (vd->vdev_ops->vdev_op_leaf) {
1096 		ASSERT0(vd->vdev_children);
1097 		offset += VDEV_LABEL_START_SIZE;
1098 	}
1099 
1100 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1101 
1102 	/*
1103 	 * If we've decided to do a repair, the write is not speculative --
1104 	 * even if the original read was.
1105 	 */
1106 	if (flags & ZIO_FLAG_IO_REPAIR)
1107 		flags &= ~ZIO_FLAG_SPECULATIVE;
1108 
1109 	/*
1110 	 * If we're creating a child I/O that is not associated with a
1111 	 * top-level vdev, then the child zio is not an allocating I/O.
1112 	 * If this is a retried I/O then we ignore it since we will
1113 	 * have already processed the original allocating I/O.
1114 	 */
1115 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1116 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1117 		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1118 
1119 		ASSERT(mc->mc_alloc_throttle_enabled);
1120 		ASSERT(type == ZIO_TYPE_WRITE);
1121 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1122 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1123 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1124 		    pio->io_child_type == ZIO_CHILD_GANG);
1125 
1126 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1127 	}
1128 
1129 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1130 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1131 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1132 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1133 
1134 	zio->io_physdone = pio->io_physdone;
1135 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1136 		zio->io_logical->io_phys_children++;
1137 
1138 	return (zio);
1139 }
1140 
1141 zio_t *
1142 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1143     int type, zio_priority_t priority, enum zio_flag flags,
1144     zio_done_func_t *done, void *private)
1145 {
1146 	zio_t *zio;
1147 
1148 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1149 
1150 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1151 	    data, size, size, done, private, type, priority,
1152 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1153 	    vd, offset, NULL,
1154 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1155 
1156 	return (zio);
1157 }
1158 
1159 void
1160 zio_flush(zio_t *zio, vdev_t *vd)
1161 {
1162 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1163 	    NULL, NULL,
1164 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1165 }
1166 
1167 void
1168 zio_shrink(zio_t *zio, uint64_t size)
1169 {
1170 	ASSERT3P(zio->io_executor, ==, NULL);
1171 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1172 	ASSERT3U(size, <=, zio->io_size);
1173 
1174 	/*
1175 	 * We don't shrink for raidz because of problems with the
1176 	 * reconstruction when reading back less than the block size.
1177 	 * Note, BP_IS_RAIDZ() assumes no compression.
1178 	 */
1179 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1180 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1181 		/* we are not doing a raw write */
1182 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1183 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1184 	}
1185 }
1186 
1187 /*
1188  * ==========================================================================
1189  * Prepare to read and write logical blocks
1190  * ==========================================================================
1191  */
1192 
1193 static int
1194 zio_read_bp_init(zio_t *zio)
1195 {
1196 	blkptr_t *bp = zio->io_bp;
1197 
1198 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1199 
1200 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1201 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1202 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1203 		uint64_t psize =
1204 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1205 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1206 		    psize, psize, zio_decompress);
1207 	}
1208 
1209 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1210 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1211 
1212 		int psize = BPE_GET_PSIZE(bp);
1213 		void *data = abd_borrow_buf(zio->io_abd, psize);
1214 		decode_embedded_bp_compressed(bp, data);
1215 		abd_return_buf_copy(zio->io_abd, data, psize);
1216 	} else {
1217 		ASSERT(!BP_IS_EMBEDDED(bp));
1218 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1219 	}
1220 
1221 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1222 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1223 
1224 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1225 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1226 
1227 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1228 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1229 
1230 	return (ZIO_PIPELINE_CONTINUE);
1231 }
1232 
1233 static int
1234 zio_write_bp_init(zio_t *zio)
1235 {
1236 	if (!IO_IS_ALLOCATING(zio))
1237 		return (ZIO_PIPELINE_CONTINUE);
1238 
1239 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1240 
1241 	if (zio->io_bp_override) {
1242 		blkptr_t *bp = zio->io_bp;
1243 		zio_prop_t *zp = &zio->io_prop;
1244 
1245 		ASSERT(bp->blk_birth != zio->io_txg);
1246 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1247 
1248 		*bp = *zio->io_bp_override;
1249 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1250 
1251 		if (BP_IS_EMBEDDED(bp))
1252 			return (ZIO_PIPELINE_CONTINUE);
1253 
1254 		/*
1255 		 * If we've been overridden and nopwrite is set then
1256 		 * set the flag accordingly to indicate that a nopwrite
1257 		 * has already occurred.
1258 		 */
1259 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1260 			ASSERT(!zp->zp_dedup);
1261 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1262 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1263 			return (ZIO_PIPELINE_CONTINUE);
1264 		}
1265 
1266 		ASSERT(!zp->zp_nopwrite);
1267 
1268 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1269 			return (ZIO_PIPELINE_CONTINUE);
1270 
1271 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1272 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1273 
1274 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1275 			BP_SET_DEDUP(bp, 1);
1276 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1277 			return (ZIO_PIPELINE_CONTINUE);
1278 		}
1279 
1280 		/*
1281 		 * We were unable to handle this as an override bp, treat
1282 		 * it as a regular write I/O.
1283 		 */
1284 		zio->io_bp_override = NULL;
1285 		*bp = zio->io_bp_orig;
1286 		zio->io_pipeline = zio->io_orig_pipeline;
1287 	}
1288 
1289 	return (ZIO_PIPELINE_CONTINUE);
1290 }
1291 
1292 static int
1293 zio_write_compress(zio_t *zio)
1294 {
1295 	spa_t *spa = zio->io_spa;
1296 	zio_prop_t *zp = &zio->io_prop;
1297 	enum zio_compress compress = zp->zp_compress;
1298 	blkptr_t *bp = zio->io_bp;
1299 	uint64_t lsize = zio->io_lsize;
1300 	uint64_t psize = zio->io_size;
1301 	int pass = 1;
1302 
1303 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1304 
1305 	/*
1306 	 * If our children haven't all reached the ready stage,
1307 	 * wait for them and then repeat this pipeline stage.
1308 	 */
1309 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1310 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1311 		return (ZIO_PIPELINE_STOP);
1312 	}
1313 
1314 	if (!IO_IS_ALLOCATING(zio))
1315 		return (ZIO_PIPELINE_CONTINUE);
1316 
1317 	if (zio->io_children_ready != NULL) {
1318 		/*
1319 		 * Now that all our children are ready, run the callback
1320 		 * associated with this zio in case it wants to modify the
1321 		 * data to be written.
1322 		 */
1323 		ASSERT3U(zp->zp_level, >, 0);
1324 		zio->io_children_ready(zio);
1325 	}
1326 
1327 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1328 	ASSERT(zio->io_bp_override == NULL);
1329 
1330 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1331 		/*
1332 		 * We're rewriting an existing block, which means we're
1333 		 * working on behalf of spa_sync().  For spa_sync() to
1334 		 * converge, it must eventually be the case that we don't
1335 		 * have to allocate new blocks.  But compression changes
1336 		 * the blocksize, which forces a reallocate, and makes
1337 		 * convergence take longer.  Therefore, after the first
1338 		 * few passes, stop compressing to ensure convergence.
1339 		 */
1340 		pass = spa_sync_pass(spa);
1341 
1342 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1343 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1344 		ASSERT(!BP_GET_DEDUP(bp));
1345 
1346 		if (pass >= zfs_sync_pass_dont_compress)
1347 			compress = ZIO_COMPRESS_OFF;
1348 
1349 		/* Make sure someone doesn't change their mind on overwrites */
1350 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1351 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1352 	}
1353 
1354 	/* If it's a compressed write that is not raw, compress the buffer. */
1355 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1356 		void *cbuf = zio_buf_alloc(lsize);
1357 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1358 		if (psize == 0 || psize == lsize) {
1359 			compress = ZIO_COMPRESS_OFF;
1360 			zio_buf_free(cbuf, lsize);
1361 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1362 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1363 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1364 			encode_embedded_bp_compressed(bp,
1365 			    cbuf, compress, lsize, psize);
1366 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1367 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1368 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1369 			zio_buf_free(cbuf, lsize);
1370 			bp->blk_birth = zio->io_txg;
1371 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1372 			ASSERT(spa_feature_is_active(spa,
1373 			    SPA_FEATURE_EMBEDDED_DATA));
1374 			return (ZIO_PIPELINE_CONTINUE);
1375 		} else {
1376 			/*
1377 			 * Round up compressed size up to the ashift
1378 			 * of the smallest-ashift device, and zero the tail.
1379 			 * This ensures that the compressed size of the BP
1380 			 * (and thus compressratio property) are correct,
1381 			 * in that we charge for the padding used to fill out
1382 			 * the last sector.
1383 			 */
1384 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1385 			size_t rounded = (size_t)P2ROUNDUP(psize,
1386 			    1ULL << spa->spa_min_ashift);
1387 			if (rounded >= lsize) {
1388 				compress = ZIO_COMPRESS_OFF;
1389 				zio_buf_free(cbuf, lsize);
1390 				psize = lsize;
1391 			} else {
1392 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1393 				abd_take_ownership_of_buf(cdata, B_TRUE);
1394 				abd_zero_off(cdata, psize, rounded - psize);
1395 				psize = rounded;
1396 				zio_push_transform(zio, cdata,
1397 				    psize, lsize, NULL);
1398 			}
1399 		}
1400 
1401 		/*
1402 		 * We were unable to handle this as an override bp, treat
1403 		 * it as a regular write I/O.
1404 		 */
1405 		zio->io_bp_override = NULL;
1406 		*bp = zio->io_bp_orig;
1407 		zio->io_pipeline = zio->io_orig_pipeline;
1408 	} else {
1409 		ASSERT3U(psize, !=, 0);
1410 	}
1411 
1412 	/*
1413 	 * The final pass of spa_sync() must be all rewrites, but the first
1414 	 * few passes offer a trade-off: allocating blocks defers convergence,
1415 	 * but newly allocated blocks are sequential, so they can be written
1416 	 * to disk faster.  Therefore, we allow the first few passes of
1417 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1418 	 * There should only be a handful of blocks after pass 1 in any case.
1419 	 */
1420 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1421 	    BP_GET_PSIZE(bp) == psize &&
1422 	    pass >= zfs_sync_pass_rewrite) {
1423 		ASSERT(psize != 0);
1424 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1425 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1426 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1427 	} else {
1428 		BP_ZERO(bp);
1429 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1430 	}
1431 
1432 	if (psize == 0) {
1433 		if (zio->io_bp_orig.blk_birth != 0 &&
1434 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1435 			BP_SET_LSIZE(bp, lsize);
1436 			BP_SET_TYPE(bp, zp->zp_type);
1437 			BP_SET_LEVEL(bp, zp->zp_level);
1438 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1439 		}
1440 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1441 	} else {
1442 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1443 		BP_SET_LSIZE(bp, lsize);
1444 		BP_SET_TYPE(bp, zp->zp_type);
1445 		BP_SET_LEVEL(bp, zp->zp_level);
1446 		BP_SET_PSIZE(bp, psize);
1447 		BP_SET_COMPRESS(bp, compress);
1448 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1449 		BP_SET_DEDUP(bp, zp->zp_dedup);
1450 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1451 		if (zp->zp_dedup) {
1452 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1453 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1454 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1455 		}
1456 		if (zp->zp_nopwrite) {
1457 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1458 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1459 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1460 		}
1461 	}
1462 	return (ZIO_PIPELINE_CONTINUE);
1463 }
1464 
1465 static int
1466 zio_free_bp_init(zio_t *zio)
1467 {
1468 	blkptr_t *bp = zio->io_bp;
1469 
1470 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1471 		if (BP_GET_DEDUP(bp))
1472 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1473 	}
1474 
1475 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1476 
1477 	return (ZIO_PIPELINE_CONTINUE);
1478 }
1479 
1480 /*
1481  * ==========================================================================
1482  * Execute the I/O pipeline
1483  * ==========================================================================
1484  */
1485 
1486 static void
1487 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1488 {
1489 	spa_t *spa = zio->io_spa;
1490 	zio_type_t t = zio->io_type;
1491 	int flags = (cutinline ? TQ_FRONT : 0);
1492 
1493 	/*
1494 	 * If we're a config writer or a probe, the normal issue and
1495 	 * interrupt threads may all be blocked waiting for the config lock.
1496 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1497 	 */
1498 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1499 		t = ZIO_TYPE_NULL;
1500 
1501 	/*
1502 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1503 	 */
1504 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1505 		t = ZIO_TYPE_NULL;
1506 
1507 	/*
1508 	 * If this is a high priority I/O, then use the high priority taskq if
1509 	 * available.
1510 	 */
1511 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1512 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1513 		q++;
1514 
1515 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1516 
1517 	/*
1518 	 * NB: We are assuming that the zio can only be dispatched
1519 	 * to a single taskq at a time.  It would be a grievous error
1520 	 * to dispatch the zio to another taskq at the same time.
1521 	 */
1522 	ASSERT(zio->io_tqent.tqent_next == NULL);
1523 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1524 	    flags, &zio->io_tqent);
1525 }
1526 
1527 static boolean_t
1528 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1529 {
1530 	kthread_t *executor = zio->io_executor;
1531 	spa_t *spa = zio->io_spa;
1532 
1533 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1534 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1535 		uint_t i;
1536 		for (i = 0; i < tqs->stqs_count; i++) {
1537 			if (taskq_member(tqs->stqs_taskq[i], executor))
1538 				return (B_TRUE);
1539 		}
1540 	}
1541 
1542 	return (B_FALSE);
1543 }
1544 
1545 static int
1546 zio_issue_async(zio_t *zio)
1547 {
1548 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1549 
1550 	return (ZIO_PIPELINE_STOP);
1551 }
1552 
1553 void
1554 zio_interrupt(zio_t *zio)
1555 {
1556 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1557 }
1558 
1559 void
1560 zio_delay_interrupt(zio_t *zio)
1561 {
1562 	/*
1563 	 * The timeout_generic() function isn't defined in userspace, so
1564 	 * rather than trying to implement the function, the zio delay
1565 	 * functionality has been disabled for userspace builds.
1566 	 */
1567 
1568 #ifdef _KERNEL
1569 	/*
1570 	 * If io_target_timestamp is zero, then no delay has been registered
1571 	 * for this IO, thus jump to the end of this function and "skip" the
1572 	 * delay; issuing it directly to the zio layer.
1573 	 */
1574 	if (zio->io_target_timestamp != 0) {
1575 		hrtime_t now = gethrtime();
1576 
1577 		if (now >= zio->io_target_timestamp) {
1578 			/*
1579 			 * This IO has already taken longer than the target
1580 			 * delay to complete, so we don't want to delay it
1581 			 * any longer; we "miss" the delay and issue it
1582 			 * directly to the zio layer. This is likely due to
1583 			 * the target latency being set to a value less than
1584 			 * the underlying hardware can satisfy (e.g. delay
1585 			 * set to 1ms, but the disks take 10ms to complete an
1586 			 * IO request).
1587 			 */
1588 
1589 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1590 			    hrtime_t, now);
1591 
1592 			zio_interrupt(zio);
1593 		} else {
1594 			hrtime_t diff = zio->io_target_timestamp - now;
1595 
1596 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1597 			    hrtime_t, now, hrtime_t, diff);
1598 
1599 			(void) timeout_generic(CALLOUT_NORMAL,
1600 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1601 		}
1602 
1603 		return;
1604 	}
1605 #endif
1606 
1607 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1608 	zio_interrupt(zio);
1609 }
1610 
1611 /*
1612  * Execute the I/O pipeline until one of the following occurs:
1613  *
1614  *	(1) the I/O completes
1615  *	(2) the pipeline stalls waiting for dependent child I/Os
1616  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1617  *	(4) the I/O is delegated by vdev-level caching or aggregation
1618  *	(5) the I/O is deferred due to vdev-level queueing
1619  *	(6) the I/O is handed off to another thread.
1620  *
1621  * In all cases, the pipeline stops whenever there's no CPU work; it never
1622  * burns a thread in cv_wait().
1623  *
1624  * There's no locking on io_stage because there's no legitimate way
1625  * for multiple threads to be attempting to process the same I/O.
1626  */
1627 static zio_pipe_stage_t *zio_pipeline[];
1628 
1629 void
1630 zio_execute(zio_t *zio)
1631 {
1632 	zio->io_executor = curthread;
1633 
1634 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1635 
1636 	while (zio->io_stage < ZIO_STAGE_DONE) {
1637 		enum zio_stage pipeline = zio->io_pipeline;
1638 		enum zio_stage stage = zio->io_stage;
1639 		int rv;
1640 
1641 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1642 		ASSERT(ISP2(stage));
1643 		ASSERT(zio->io_stall == NULL);
1644 
1645 		do {
1646 			stage <<= 1;
1647 		} while ((stage & pipeline) == 0);
1648 
1649 		ASSERT(stage <= ZIO_STAGE_DONE);
1650 
1651 		/*
1652 		 * If we are in interrupt context and this pipeline stage
1653 		 * will grab a config lock that is held across I/O,
1654 		 * or may wait for an I/O that needs an interrupt thread
1655 		 * to complete, issue async to avoid deadlock.
1656 		 *
1657 		 * For VDEV_IO_START, we cut in line so that the io will
1658 		 * be sent to disk promptly.
1659 		 */
1660 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1661 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1662 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1663 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1664 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1665 			return;
1666 		}
1667 
1668 		zio->io_stage = stage;
1669 		zio->io_pipeline_trace |= zio->io_stage;
1670 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1671 
1672 		if (rv == ZIO_PIPELINE_STOP)
1673 			return;
1674 
1675 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1676 	}
1677 }
1678 
1679 /*
1680  * ==========================================================================
1681  * Initiate I/O, either sync or async
1682  * ==========================================================================
1683  */
1684 int
1685 zio_wait(zio_t *zio)
1686 {
1687 	int error;
1688 
1689 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1690 	ASSERT3P(zio->io_executor, ==, NULL);
1691 
1692 	zio->io_waiter = curthread;
1693 	ASSERT0(zio->io_queued_timestamp);
1694 	zio->io_queued_timestamp = gethrtime();
1695 
1696 	zio_execute(zio);
1697 
1698 	mutex_enter(&zio->io_lock);
1699 	while (zio->io_executor != NULL)
1700 		cv_wait(&zio->io_cv, &zio->io_lock);
1701 	mutex_exit(&zio->io_lock);
1702 
1703 	error = zio->io_error;
1704 	zio_destroy(zio);
1705 
1706 	return (error);
1707 }
1708 
1709 void
1710 zio_nowait(zio_t *zio)
1711 {
1712 	ASSERT3P(zio->io_executor, ==, NULL);
1713 
1714 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1715 	    zio_unique_parent(zio) == NULL) {
1716 		/*
1717 		 * This is a logical async I/O with no parent to wait for it.
1718 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1719 		 * will ensure they complete prior to unloading the pool.
1720 		 */
1721 		spa_t *spa = zio->io_spa;
1722 
1723 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1724 	}
1725 
1726 	ASSERT0(zio->io_queued_timestamp);
1727 	zio->io_queued_timestamp = gethrtime();
1728 	zio_execute(zio);
1729 }
1730 
1731 /*
1732  * ==========================================================================
1733  * Reexecute, cancel, or suspend/resume failed I/O
1734  * ==========================================================================
1735  */
1736 
1737 static void
1738 zio_reexecute(zio_t *pio)
1739 {
1740 	zio_t *cio, *cio_next;
1741 
1742 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1743 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1744 	ASSERT(pio->io_gang_leader == NULL);
1745 	ASSERT(pio->io_gang_tree == NULL);
1746 
1747 	pio->io_flags = pio->io_orig_flags;
1748 	pio->io_stage = pio->io_orig_stage;
1749 	pio->io_pipeline = pio->io_orig_pipeline;
1750 	pio->io_reexecute = 0;
1751 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1752 	pio->io_pipeline_trace = 0;
1753 	pio->io_error = 0;
1754 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1755 		pio->io_state[w] = 0;
1756 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1757 		pio->io_child_error[c] = 0;
1758 
1759 	if (IO_IS_ALLOCATING(pio))
1760 		BP_ZERO(pio->io_bp);
1761 
1762 	/*
1763 	 * As we reexecute pio's children, new children could be created.
1764 	 * New children go to the head of pio's io_child_list, however,
1765 	 * so we will (correctly) not reexecute them.  The key is that
1766 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1767 	 * cannot be affected by any side effects of reexecuting 'cio'.
1768 	 */
1769 	zio_link_t *zl = NULL;
1770 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1771 		cio_next = zio_walk_children(pio, &zl);
1772 		mutex_enter(&pio->io_lock);
1773 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1774 			pio->io_children[cio->io_child_type][w]++;
1775 		mutex_exit(&pio->io_lock);
1776 		zio_reexecute(cio);
1777 	}
1778 
1779 	/*
1780 	 * Now that all children have been reexecuted, execute the parent.
1781 	 * We don't reexecute "The Godfather" I/O here as it's the
1782 	 * responsibility of the caller to wait on it.
1783 	 */
1784 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1785 		pio->io_queued_timestamp = gethrtime();
1786 		zio_execute(pio);
1787 	}
1788 }
1789 
1790 void
1791 zio_suspend(spa_t *spa, zio_t *zio)
1792 {
1793 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1794 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1795 		    "failure and the failure mode property for this pool "
1796 		    "is set to panic.", spa_name(spa));
1797 
1798 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1799 
1800 	mutex_enter(&spa->spa_suspend_lock);
1801 
1802 	if (spa->spa_suspend_zio_root == NULL)
1803 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1804 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1805 		    ZIO_FLAG_GODFATHER);
1806 
1807 	spa->spa_suspended = B_TRUE;
1808 
1809 	if (zio != NULL) {
1810 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1811 		ASSERT(zio != spa->spa_suspend_zio_root);
1812 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1813 		ASSERT(zio_unique_parent(zio) == NULL);
1814 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1815 		zio_add_child(spa->spa_suspend_zio_root, zio);
1816 	}
1817 
1818 	mutex_exit(&spa->spa_suspend_lock);
1819 }
1820 
1821 int
1822 zio_resume(spa_t *spa)
1823 {
1824 	zio_t *pio;
1825 
1826 	/*
1827 	 * Reexecute all previously suspended i/o.
1828 	 */
1829 	mutex_enter(&spa->spa_suspend_lock);
1830 	spa->spa_suspended = B_FALSE;
1831 	cv_broadcast(&spa->spa_suspend_cv);
1832 	pio = spa->spa_suspend_zio_root;
1833 	spa->spa_suspend_zio_root = NULL;
1834 	mutex_exit(&spa->spa_suspend_lock);
1835 
1836 	if (pio == NULL)
1837 		return (0);
1838 
1839 	zio_reexecute(pio);
1840 	return (zio_wait(pio));
1841 }
1842 
1843 void
1844 zio_resume_wait(spa_t *spa)
1845 {
1846 	mutex_enter(&spa->spa_suspend_lock);
1847 	while (spa_suspended(spa))
1848 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1849 	mutex_exit(&spa->spa_suspend_lock);
1850 }
1851 
1852 /*
1853  * ==========================================================================
1854  * Gang blocks.
1855  *
1856  * A gang block is a collection of small blocks that looks to the DMU
1857  * like one large block.  When zio_dva_allocate() cannot find a block
1858  * of the requested size, due to either severe fragmentation or the pool
1859  * being nearly full, it calls zio_write_gang_block() to construct the
1860  * block from smaller fragments.
1861  *
1862  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1863  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1864  * an indirect block: it's an array of block pointers.  It consumes
1865  * only one sector and hence is allocatable regardless of fragmentation.
1866  * The gang header's bps point to its gang members, which hold the data.
1867  *
1868  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1869  * as the verifier to ensure uniqueness of the SHA256 checksum.
1870  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1871  * not the gang header.  This ensures that data block signatures (needed for
1872  * deduplication) are independent of how the block is physically stored.
1873  *
1874  * Gang blocks can be nested: a gang member may itself be a gang block.
1875  * Thus every gang block is a tree in which root and all interior nodes are
1876  * gang headers, and the leaves are normal blocks that contain user data.
1877  * The root of the gang tree is called the gang leader.
1878  *
1879  * To perform any operation (read, rewrite, free, claim) on a gang block,
1880  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1881  * in the io_gang_tree field of the original logical i/o by recursively
1882  * reading the gang leader and all gang headers below it.  This yields
1883  * an in-core tree containing the contents of every gang header and the
1884  * bps for every constituent of the gang block.
1885  *
1886  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1887  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1888  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1889  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1890  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1891  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1892  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1893  * of the gang header plus zio_checksum_compute() of the data to update the
1894  * gang header's blk_cksum as described above.
1895  *
1896  * The two-phase assemble/issue model solves the problem of partial failure --
1897  * what if you'd freed part of a gang block but then couldn't read the
1898  * gang header for another part?  Assembling the entire gang tree first
1899  * ensures that all the necessary gang header I/O has succeeded before
1900  * starting the actual work of free, claim, or write.  Once the gang tree
1901  * is assembled, free and claim are in-memory operations that cannot fail.
1902  *
1903  * In the event that a gang write fails, zio_dva_unallocate() walks the
1904  * gang tree to immediately free (i.e. insert back into the space map)
1905  * everything we've allocated.  This ensures that we don't get ENOSPC
1906  * errors during repeated suspend/resume cycles due to a flaky device.
1907  *
1908  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1909  * the gang tree, we won't modify the block, so we can safely defer the free
1910  * (knowing that the block is still intact).  If we *can* assemble the gang
1911  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1912  * each constituent bp and we can allocate a new block on the next sync pass.
1913  *
1914  * In all cases, the gang tree allows complete recovery from partial failure.
1915  * ==========================================================================
1916  */
1917 
1918 static void
1919 zio_gang_issue_func_done(zio_t *zio)
1920 {
1921 	abd_put(zio->io_abd);
1922 }
1923 
1924 static zio_t *
1925 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1926     uint64_t offset)
1927 {
1928 	if (gn != NULL)
1929 		return (pio);
1930 
1931 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1932 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1933 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1934 	    &pio->io_bookmark));
1935 }
1936 
1937 static zio_t *
1938 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1939     uint64_t offset)
1940 {
1941 	zio_t *zio;
1942 
1943 	if (gn != NULL) {
1944 		abd_t *gbh_abd =
1945 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1946 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1947 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1948 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1949 		    &pio->io_bookmark);
1950 		/*
1951 		 * As we rewrite each gang header, the pipeline will compute
1952 		 * a new gang block header checksum for it; but no one will
1953 		 * compute a new data checksum, so we do that here.  The one
1954 		 * exception is the gang leader: the pipeline already computed
1955 		 * its data checksum because that stage precedes gang assembly.
1956 		 * (Presently, nothing actually uses interior data checksums;
1957 		 * this is just good hygiene.)
1958 		 */
1959 		if (gn != pio->io_gang_leader->io_gang_tree) {
1960 			abd_t *buf = abd_get_offset(data, offset);
1961 
1962 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1963 			    buf, BP_GET_PSIZE(bp));
1964 
1965 			abd_put(buf);
1966 		}
1967 		/*
1968 		 * If we are here to damage data for testing purposes,
1969 		 * leave the GBH alone so that we can detect the damage.
1970 		 */
1971 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1972 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1973 	} else {
1974 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1975 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1976 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1977 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1978 	}
1979 
1980 	return (zio);
1981 }
1982 
1983 /* ARGSUSED */
1984 static zio_t *
1985 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1986     uint64_t offset)
1987 {
1988 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1989 	    ZIO_GANG_CHILD_FLAGS(pio)));
1990 }
1991 
1992 /* ARGSUSED */
1993 static zio_t *
1994 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1995     uint64_t offset)
1996 {
1997 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1998 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1999 }
2000 
2001 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2002 	NULL,
2003 	zio_read_gang,
2004 	zio_rewrite_gang,
2005 	zio_free_gang,
2006 	zio_claim_gang,
2007 	NULL
2008 };
2009 
2010 static void zio_gang_tree_assemble_done(zio_t *zio);
2011 
2012 static zio_gang_node_t *
2013 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2014 {
2015 	zio_gang_node_t *gn;
2016 
2017 	ASSERT(*gnpp == NULL);
2018 
2019 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2020 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2021 	*gnpp = gn;
2022 
2023 	return (gn);
2024 }
2025 
2026 static void
2027 zio_gang_node_free(zio_gang_node_t **gnpp)
2028 {
2029 	zio_gang_node_t *gn = *gnpp;
2030 
2031 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2032 		ASSERT(gn->gn_child[g] == NULL);
2033 
2034 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2035 	kmem_free(gn, sizeof (*gn));
2036 	*gnpp = NULL;
2037 }
2038 
2039 static void
2040 zio_gang_tree_free(zio_gang_node_t **gnpp)
2041 {
2042 	zio_gang_node_t *gn = *gnpp;
2043 
2044 	if (gn == NULL)
2045 		return;
2046 
2047 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2048 		zio_gang_tree_free(&gn->gn_child[g]);
2049 
2050 	zio_gang_node_free(gnpp);
2051 }
2052 
2053 static void
2054 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2055 {
2056 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2057 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2058 
2059 	ASSERT(gio->io_gang_leader == gio);
2060 	ASSERT(BP_IS_GANG(bp));
2061 
2062 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2063 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2064 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2065 }
2066 
2067 static void
2068 zio_gang_tree_assemble_done(zio_t *zio)
2069 {
2070 	zio_t *gio = zio->io_gang_leader;
2071 	zio_gang_node_t *gn = zio->io_private;
2072 	blkptr_t *bp = zio->io_bp;
2073 
2074 	ASSERT(gio == zio_unique_parent(zio));
2075 	ASSERT(zio->io_child_count == 0);
2076 
2077 	if (zio->io_error)
2078 		return;
2079 
2080 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2081 	if (BP_SHOULD_BYTESWAP(bp))
2082 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2083 
2084 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2085 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2086 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2087 
2088 	abd_put(zio->io_abd);
2089 
2090 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2091 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2092 		if (!BP_IS_GANG(gbp))
2093 			continue;
2094 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2095 	}
2096 }
2097 
2098 static void
2099 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2100     uint64_t offset)
2101 {
2102 	zio_t *gio = pio->io_gang_leader;
2103 	zio_t *zio;
2104 
2105 	ASSERT(BP_IS_GANG(bp) == !!gn);
2106 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2107 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2108 
2109 	/*
2110 	 * If you're a gang header, your data is in gn->gn_gbh.
2111 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2112 	 */
2113 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2114 
2115 	if (gn != NULL) {
2116 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2117 
2118 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2119 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2120 			if (BP_IS_HOLE(gbp))
2121 				continue;
2122 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2123 			    offset);
2124 			offset += BP_GET_PSIZE(gbp);
2125 		}
2126 	}
2127 
2128 	if (gn == gio->io_gang_tree)
2129 		ASSERT3U(gio->io_size, ==, offset);
2130 
2131 	if (zio != pio)
2132 		zio_nowait(zio);
2133 }
2134 
2135 static int
2136 zio_gang_assemble(zio_t *zio)
2137 {
2138 	blkptr_t *bp = zio->io_bp;
2139 
2140 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2141 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2142 
2143 	zio->io_gang_leader = zio;
2144 
2145 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2146 
2147 	return (ZIO_PIPELINE_CONTINUE);
2148 }
2149 
2150 static int
2151 zio_gang_issue(zio_t *zio)
2152 {
2153 	blkptr_t *bp = zio->io_bp;
2154 
2155 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2156 		return (ZIO_PIPELINE_STOP);
2157 	}
2158 
2159 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2160 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2161 
2162 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2163 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2164 		    0);
2165 	else
2166 		zio_gang_tree_free(&zio->io_gang_tree);
2167 
2168 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2169 
2170 	return (ZIO_PIPELINE_CONTINUE);
2171 }
2172 
2173 static void
2174 zio_write_gang_member_ready(zio_t *zio)
2175 {
2176 	zio_t *pio = zio_unique_parent(zio);
2177 	zio_t *gio = zio->io_gang_leader;
2178 	dva_t *cdva = zio->io_bp->blk_dva;
2179 	dva_t *pdva = pio->io_bp->blk_dva;
2180 	uint64_t asize;
2181 
2182 	if (BP_IS_HOLE(zio->io_bp))
2183 		return;
2184 
2185 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2186 
2187 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2188 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2189 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2190 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2191 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2192 
2193 	mutex_enter(&pio->io_lock);
2194 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2195 		ASSERT(DVA_GET_GANG(&pdva[d]));
2196 		asize = DVA_GET_ASIZE(&pdva[d]);
2197 		asize += DVA_GET_ASIZE(&cdva[d]);
2198 		DVA_SET_ASIZE(&pdva[d], asize);
2199 	}
2200 	mutex_exit(&pio->io_lock);
2201 }
2202 
2203 static void
2204 zio_write_gang_done(zio_t *zio)
2205 {
2206 	abd_put(zio->io_abd);
2207 }
2208 
2209 static int
2210 zio_write_gang_block(zio_t *pio)
2211 {
2212 	spa_t *spa = pio->io_spa;
2213 	metaslab_class_t *mc = spa_normal_class(spa);
2214 	blkptr_t *bp = pio->io_bp;
2215 	zio_t *gio = pio->io_gang_leader;
2216 	zio_t *zio;
2217 	zio_gang_node_t *gn, **gnpp;
2218 	zio_gbh_phys_t *gbh;
2219 	abd_t *gbh_abd;
2220 	uint64_t txg = pio->io_txg;
2221 	uint64_t resid = pio->io_size;
2222 	uint64_t lsize;
2223 	int copies = gio->io_prop.zp_copies;
2224 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2225 	zio_prop_t zp;
2226 	int error;
2227 
2228 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2229 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2230 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2231 		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2232 
2233 		flags |= METASLAB_ASYNC_ALLOC;
2234 		VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2235 		    pio));
2236 
2237 		/*
2238 		 * The logical zio has already placed a reservation for
2239 		 * 'copies' allocation slots but gang blocks may require
2240 		 * additional copies. These additional copies
2241 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2242 		 * since metaslab_class_throttle_reserve() always allows
2243 		 * additional reservations for gang blocks.
2244 		 */
2245 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2246 		    pio->io_allocator, pio, flags));
2247 	}
2248 
2249 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2250 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2251 	    &pio->io_alloc_list, pio, pio->io_allocator);
2252 	if (error) {
2253 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2254 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2255 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2256 
2257 			/*
2258 			 * If we failed to allocate the gang block header then
2259 			 * we remove any additional allocation reservations that
2260 			 * we placed here. The original reservation will
2261 			 * be removed when the logical I/O goes to the ready
2262 			 * stage.
2263 			 */
2264 			metaslab_class_throttle_unreserve(mc,
2265 			    gbh_copies - copies, pio->io_allocator, pio);
2266 		}
2267 		pio->io_error = error;
2268 		return (ZIO_PIPELINE_CONTINUE);
2269 	}
2270 
2271 	if (pio == gio) {
2272 		gnpp = &gio->io_gang_tree;
2273 	} else {
2274 		gnpp = pio->io_private;
2275 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2276 	}
2277 
2278 	gn = zio_gang_node_alloc(gnpp);
2279 	gbh = gn->gn_gbh;
2280 	bzero(gbh, SPA_GANGBLOCKSIZE);
2281 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2282 
2283 	/*
2284 	 * Create the gang header.
2285 	 */
2286 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2287 	    zio_write_gang_done, NULL, pio->io_priority,
2288 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2289 
2290 	/*
2291 	 * Create and nowait the gang children.
2292 	 */
2293 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2294 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2295 		    SPA_MINBLOCKSIZE);
2296 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2297 
2298 		zp.zp_checksum = gio->io_prop.zp_checksum;
2299 		zp.zp_compress = ZIO_COMPRESS_OFF;
2300 		zp.zp_type = DMU_OT_NONE;
2301 		zp.zp_level = 0;
2302 		zp.zp_copies = gio->io_prop.zp_copies;
2303 		zp.zp_dedup = B_FALSE;
2304 		zp.zp_dedup_verify = B_FALSE;
2305 		zp.zp_nopwrite = B_FALSE;
2306 
2307 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2308 		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2309 		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2310 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2311 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2312 
2313 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2314 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2315 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2316 
2317 			/*
2318 			 * Gang children won't throttle but we should
2319 			 * account for their work, so reserve an allocation
2320 			 * slot for them here.
2321 			 */
2322 			VERIFY(metaslab_class_throttle_reserve(mc,
2323 			    zp.zp_copies, cio->io_allocator, cio, flags));
2324 		}
2325 		zio_nowait(cio);
2326 	}
2327 
2328 	/*
2329 	 * Set pio's pipeline to just wait for zio to finish.
2330 	 */
2331 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2332 
2333 	zio_nowait(zio);
2334 
2335 	return (ZIO_PIPELINE_CONTINUE);
2336 }
2337 
2338 /*
2339  * The zio_nop_write stage in the pipeline determines if allocating a
2340  * new bp is necessary.  The nopwrite feature can handle writes in
2341  * either syncing or open context (i.e. zil writes) and as a result is
2342  * mutually exclusive with dedup.
2343  *
2344  * By leveraging a cryptographically secure checksum, such as SHA256, we
2345  * can compare the checksums of the new data and the old to determine if
2346  * allocating a new block is required.  Note that our requirements for
2347  * cryptographic strength are fairly weak: there can't be any accidental
2348  * hash collisions, but we don't need to be secure against intentional
2349  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2350  * to write the file to begin with, and triggering an incorrect (hash
2351  * collision) nopwrite is no worse than simply writing to the file.
2352  * That said, there are no known attacks against the checksum algorithms
2353  * used for nopwrite, assuming that the salt and the checksums
2354  * themselves remain secret.
2355  */
2356 static int
2357 zio_nop_write(zio_t *zio)
2358 {
2359 	blkptr_t *bp = zio->io_bp;
2360 	blkptr_t *bp_orig = &zio->io_bp_orig;
2361 	zio_prop_t *zp = &zio->io_prop;
2362 
2363 	ASSERT(BP_GET_LEVEL(bp) == 0);
2364 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2365 	ASSERT(zp->zp_nopwrite);
2366 	ASSERT(!zp->zp_dedup);
2367 	ASSERT(zio->io_bp_override == NULL);
2368 	ASSERT(IO_IS_ALLOCATING(zio));
2369 
2370 	/*
2371 	 * Check to see if the original bp and the new bp have matching
2372 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2373 	 * If they don't then just continue with the pipeline which will
2374 	 * allocate a new bp.
2375 	 */
2376 	if (BP_IS_HOLE(bp_orig) ||
2377 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2378 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2379 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2380 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2381 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2382 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2383 		return (ZIO_PIPELINE_CONTINUE);
2384 
2385 	/*
2386 	 * If the checksums match then reset the pipeline so that we
2387 	 * avoid allocating a new bp and issuing any I/O.
2388 	 */
2389 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2390 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2391 		    ZCHECKSUM_FLAG_NOPWRITE);
2392 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2393 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2394 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2395 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2396 		    sizeof (uint64_t)) == 0);
2397 
2398 		*bp = *bp_orig;
2399 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2400 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2401 	}
2402 
2403 	return (ZIO_PIPELINE_CONTINUE);
2404 }
2405 
2406 /*
2407  * ==========================================================================
2408  * Dedup
2409  * ==========================================================================
2410  */
2411 static void
2412 zio_ddt_child_read_done(zio_t *zio)
2413 {
2414 	blkptr_t *bp = zio->io_bp;
2415 	ddt_entry_t *dde = zio->io_private;
2416 	ddt_phys_t *ddp;
2417 	zio_t *pio = zio_unique_parent(zio);
2418 
2419 	mutex_enter(&pio->io_lock);
2420 	ddp = ddt_phys_select(dde, bp);
2421 	if (zio->io_error == 0)
2422 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2423 
2424 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2425 		dde->dde_repair_abd = zio->io_abd;
2426 	else
2427 		abd_free(zio->io_abd);
2428 	mutex_exit(&pio->io_lock);
2429 }
2430 
2431 static int
2432 zio_ddt_read_start(zio_t *zio)
2433 {
2434 	blkptr_t *bp = zio->io_bp;
2435 
2436 	ASSERT(BP_GET_DEDUP(bp));
2437 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2438 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2439 
2440 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2441 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2442 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2443 		ddt_phys_t *ddp = dde->dde_phys;
2444 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2445 		blkptr_t blk;
2446 
2447 		ASSERT(zio->io_vsd == NULL);
2448 		zio->io_vsd = dde;
2449 
2450 		if (ddp_self == NULL)
2451 			return (ZIO_PIPELINE_CONTINUE);
2452 
2453 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2454 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2455 				continue;
2456 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2457 			    &blk);
2458 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2459 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2460 			    zio->io_size, zio_ddt_child_read_done, dde,
2461 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2462 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2463 		}
2464 		return (ZIO_PIPELINE_CONTINUE);
2465 	}
2466 
2467 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2468 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2469 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2470 
2471 	return (ZIO_PIPELINE_CONTINUE);
2472 }
2473 
2474 static int
2475 zio_ddt_read_done(zio_t *zio)
2476 {
2477 	blkptr_t *bp = zio->io_bp;
2478 
2479 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2480 		return (ZIO_PIPELINE_STOP);
2481 	}
2482 
2483 	ASSERT(BP_GET_DEDUP(bp));
2484 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2485 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2486 
2487 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2488 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2489 		ddt_entry_t *dde = zio->io_vsd;
2490 		if (ddt == NULL) {
2491 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2492 			return (ZIO_PIPELINE_CONTINUE);
2493 		}
2494 		if (dde == NULL) {
2495 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2496 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2497 			return (ZIO_PIPELINE_STOP);
2498 		}
2499 		if (dde->dde_repair_abd != NULL) {
2500 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2501 			    zio->io_size);
2502 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2503 		}
2504 		ddt_repair_done(ddt, dde);
2505 		zio->io_vsd = NULL;
2506 	}
2507 
2508 	ASSERT(zio->io_vsd == NULL);
2509 
2510 	return (ZIO_PIPELINE_CONTINUE);
2511 }
2512 
2513 static boolean_t
2514 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2515 {
2516 	spa_t *spa = zio->io_spa;
2517 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2518 
2519 	/* We should never get a raw, override zio */
2520 	ASSERT(!(zio->io_bp_override && do_raw));
2521 
2522 	/*
2523 	 * Note: we compare the original data, not the transformed data,
2524 	 * because when zio->io_bp is an override bp, we will not have
2525 	 * pushed the I/O transforms.  That's an important optimization
2526 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2527 	 */
2528 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2529 		zio_t *lio = dde->dde_lead_zio[p];
2530 
2531 		if (lio != NULL) {
2532 			return (lio->io_orig_size != zio->io_orig_size ||
2533 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2534 			    zio->io_orig_size) != 0);
2535 		}
2536 	}
2537 
2538 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2539 		ddt_phys_t *ddp = &dde->dde_phys[p];
2540 
2541 		if (ddp->ddp_phys_birth != 0) {
2542 			arc_buf_t *abuf = NULL;
2543 			arc_flags_t aflags = ARC_FLAG_WAIT;
2544 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2545 			blkptr_t blk = *zio->io_bp;
2546 			int error;
2547 
2548 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2549 
2550 			ddt_exit(ddt);
2551 
2552 			/*
2553 			 * Intuitively, it would make more sense to compare
2554 			 * io_abd than io_orig_abd in the raw case since you
2555 			 * don't want to look at any transformations that have
2556 			 * happened to the data. However, for raw I/Os the
2557 			 * data will actually be the same in io_abd and
2558 			 * io_orig_abd, so all we have to do is issue this as
2559 			 * a raw ARC read.
2560 			 */
2561 			if (do_raw) {
2562 				zio_flags |= ZIO_FLAG_RAW;
2563 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2564 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2565 				    zio->io_size));
2566 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2567 			}
2568 
2569 			error = arc_read(NULL, spa, &blk,
2570 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2571 			    zio_flags, &aflags, &zio->io_bookmark);
2572 
2573 			if (error == 0) {
2574 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2575 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2576 				    zio->io_orig_size) != 0)
2577 					error = SET_ERROR(EEXIST);
2578 				arc_buf_destroy(abuf, &abuf);
2579 			}
2580 
2581 			ddt_enter(ddt);
2582 			return (error != 0);
2583 		}
2584 	}
2585 
2586 	return (B_FALSE);
2587 }
2588 
2589 static void
2590 zio_ddt_child_write_ready(zio_t *zio)
2591 {
2592 	int p = zio->io_prop.zp_copies;
2593 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2594 	ddt_entry_t *dde = zio->io_private;
2595 	ddt_phys_t *ddp = &dde->dde_phys[p];
2596 	zio_t *pio;
2597 
2598 	if (zio->io_error)
2599 		return;
2600 
2601 	ddt_enter(ddt);
2602 
2603 	ASSERT(dde->dde_lead_zio[p] == zio);
2604 
2605 	ddt_phys_fill(ddp, zio->io_bp);
2606 
2607 	zio_link_t *zl = NULL;
2608 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2609 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2610 
2611 	ddt_exit(ddt);
2612 }
2613 
2614 static void
2615 zio_ddt_child_write_done(zio_t *zio)
2616 {
2617 	int p = zio->io_prop.zp_copies;
2618 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2619 	ddt_entry_t *dde = zio->io_private;
2620 	ddt_phys_t *ddp = &dde->dde_phys[p];
2621 
2622 	ddt_enter(ddt);
2623 
2624 	ASSERT(ddp->ddp_refcnt == 0);
2625 	ASSERT(dde->dde_lead_zio[p] == zio);
2626 	dde->dde_lead_zio[p] = NULL;
2627 
2628 	if (zio->io_error == 0) {
2629 		zio_link_t *zl = NULL;
2630 		while (zio_walk_parents(zio, &zl) != NULL)
2631 			ddt_phys_addref(ddp);
2632 	} else {
2633 		ddt_phys_clear(ddp);
2634 	}
2635 
2636 	ddt_exit(ddt);
2637 }
2638 
2639 static void
2640 zio_ddt_ditto_write_done(zio_t *zio)
2641 {
2642 	int p = DDT_PHYS_DITTO;
2643 	zio_prop_t *zp = &zio->io_prop;
2644 	blkptr_t *bp = zio->io_bp;
2645 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2646 	ddt_entry_t *dde = zio->io_private;
2647 	ddt_phys_t *ddp = &dde->dde_phys[p];
2648 	ddt_key_t *ddk = &dde->dde_key;
2649 
2650 	ddt_enter(ddt);
2651 
2652 	ASSERT(ddp->ddp_refcnt == 0);
2653 	ASSERT(dde->dde_lead_zio[p] == zio);
2654 	dde->dde_lead_zio[p] = NULL;
2655 
2656 	if (zio->io_error == 0) {
2657 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2658 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2659 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2660 		if (ddp->ddp_phys_birth != 0)
2661 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2662 		ddt_phys_fill(ddp, bp);
2663 	}
2664 
2665 	ddt_exit(ddt);
2666 }
2667 
2668 static int
2669 zio_ddt_write(zio_t *zio)
2670 {
2671 	spa_t *spa = zio->io_spa;
2672 	blkptr_t *bp = zio->io_bp;
2673 	uint64_t txg = zio->io_txg;
2674 	zio_prop_t *zp = &zio->io_prop;
2675 	int p = zp->zp_copies;
2676 	int ditto_copies;
2677 	zio_t *cio = NULL;
2678 	zio_t *dio = NULL;
2679 	ddt_t *ddt = ddt_select(spa, bp);
2680 	ddt_entry_t *dde;
2681 	ddt_phys_t *ddp;
2682 
2683 	ASSERT(BP_GET_DEDUP(bp));
2684 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2685 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2686 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2687 
2688 	ddt_enter(ddt);
2689 	dde = ddt_lookup(ddt, bp, B_TRUE);
2690 	ddp = &dde->dde_phys[p];
2691 
2692 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2693 		/*
2694 		 * If we're using a weak checksum, upgrade to a strong checksum
2695 		 * and try again.  If we're already using a strong checksum,
2696 		 * we can't resolve it, so just convert to an ordinary write.
2697 		 * (And automatically e-mail a paper to Nature?)
2698 		 */
2699 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2700 		    ZCHECKSUM_FLAG_DEDUP)) {
2701 			zp->zp_checksum = spa_dedup_checksum(spa);
2702 			zio_pop_transforms(zio);
2703 			zio->io_stage = ZIO_STAGE_OPEN;
2704 			BP_ZERO(bp);
2705 		} else {
2706 			zp->zp_dedup = B_FALSE;
2707 			BP_SET_DEDUP(bp, B_FALSE);
2708 		}
2709 		ASSERT(!BP_GET_DEDUP(bp));
2710 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2711 		ddt_exit(ddt);
2712 		return (ZIO_PIPELINE_CONTINUE);
2713 	}
2714 
2715 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2716 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2717 
2718 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2719 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2720 		zio_prop_t czp = *zp;
2721 
2722 		czp.zp_copies = ditto_copies;
2723 
2724 		/*
2725 		 * If we arrived here with an override bp, we won't have run
2726 		 * the transform stack, so we won't have the data we need to
2727 		 * generate a child i/o.  So, toss the override bp and restart.
2728 		 * This is safe, because using the override bp is just an
2729 		 * optimization; and it's rare, so the cost doesn't matter.
2730 		 */
2731 		if (zio->io_bp_override) {
2732 			zio_pop_transforms(zio);
2733 			zio->io_stage = ZIO_STAGE_OPEN;
2734 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2735 			zio->io_bp_override = NULL;
2736 			BP_ZERO(bp);
2737 			ddt_exit(ddt);
2738 			return (ZIO_PIPELINE_CONTINUE);
2739 		}
2740 
2741 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2742 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2743 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2744 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2745 
2746 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2747 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2748 	}
2749 
2750 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2751 		if (ddp->ddp_phys_birth != 0)
2752 			ddt_bp_fill(ddp, bp, txg);
2753 		if (dde->dde_lead_zio[p] != NULL)
2754 			zio_add_child(zio, dde->dde_lead_zio[p]);
2755 		else
2756 			ddt_phys_addref(ddp);
2757 	} else if (zio->io_bp_override) {
2758 		ASSERT(bp->blk_birth == txg);
2759 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2760 		ddt_phys_fill(ddp, bp);
2761 		ddt_phys_addref(ddp);
2762 	} else {
2763 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2764 		    zio->io_orig_size, zio->io_orig_size, zp,
2765 		    zio_ddt_child_write_ready, NULL, NULL,
2766 		    zio_ddt_child_write_done, dde, zio->io_priority,
2767 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2768 
2769 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2770 		dde->dde_lead_zio[p] = cio;
2771 	}
2772 
2773 	ddt_exit(ddt);
2774 
2775 	if (cio)
2776 		zio_nowait(cio);
2777 	if (dio)
2778 		zio_nowait(dio);
2779 
2780 	return (ZIO_PIPELINE_CONTINUE);
2781 }
2782 
2783 ddt_entry_t *freedde; /* for debugging */
2784 
2785 static int
2786 zio_ddt_free(zio_t *zio)
2787 {
2788 	spa_t *spa = zio->io_spa;
2789 	blkptr_t *bp = zio->io_bp;
2790 	ddt_t *ddt = ddt_select(spa, bp);
2791 	ddt_entry_t *dde;
2792 	ddt_phys_t *ddp;
2793 
2794 	ASSERT(BP_GET_DEDUP(bp));
2795 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2796 
2797 	ddt_enter(ddt);
2798 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2799 	ddp = ddt_phys_select(dde, bp);
2800 	ddt_phys_decref(ddp);
2801 	ddt_exit(ddt);
2802 
2803 	return (ZIO_PIPELINE_CONTINUE);
2804 }
2805 
2806 /*
2807  * ==========================================================================
2808  * Allocate and free blocks
2809  * ==========================================================================
2810  */
2811 
2812 static zio_t *
2813 zio_io_to_allocate(spa_t *spa, int allocator)
2814 {
2815 	zio_t *zio;
2816 
2817 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2818 
2819 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
2820 	if (zio == NULL)
2821 		return (NULL);
2822 
2823 	ASSERT(IO_IS_ALLOCATING(zio));
2824 
2825 	/*
2826 	 * Try to place a reservation for this zio. If we're unable to
2827 	 * reserve then we throttle.
2828 	 */
2829 	ASSERT3U(zio->io_allocator, ==, allocator);
2830 	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2831 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2832 		return (NULL);
2833 	}
2834 
2835 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
2836 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2837 
2838 	return (zio);
2839 }
2840 
2841 static int
2842 zio_dva_throttle(zio_t *zio)
2843 {
2844 	spa_t *spa = zio->io_spa;
2845 	zio_t *nio;
2846 
2847 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2848 	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2849 	    zio->io_child_type == ZIO_CHILD_GANG ||
2850 	    zio->io_flags & ZIO_FLAG_NODATA) {
2851 		return (ZIO_PIPELINE_CONTINUE);
2852 	}
2853 
2854 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2855 
2856 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2857 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2858 
2859 	zbookmark_phys_t *bm = &zio->io_bookmark;
2860 	/*
2861 	 * We want to try to use as many allocators as possible to help improve
2862 	 * performance, but we also want logically adjacent IOs to be physically
2863 	 * adjacent to improve sequential read performance. We chunk each object
2864 	 * into 2^20 block regions, and then hash based on the objset, object,
2865 	 * level, and region to accomplish both of these goals.
2866 	 */
2867 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2868 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2869 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2870 
2871 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2872 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2873 
2874 	nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator);
2875 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2876 
2877 	if (nio == zio)
2878 		return (ZIO_PIPELINE_CONTINUE);
2879 
2880 	if (nio != NULL) {
2881 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2882 		/*
2883 		 * We are passing control to a new zio so make sure that
2884 		 * it is processed by a different thread. We do this to
2885 		 * avoid stack overflows that can occur when parents are
2886 		 * throttled and children are making progress. We allow
2887 		 * it to go to the head of the taskq since it's already
2888 		 * been waiting.
2889 		 */
2890 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2891 	}
2892 	return (ZIO_PIPELINE_STOP);
2893 }
2894 
2895 void
2896 zio_allocate_dispatch(spa_t *spa, int allocator)
2897 {
2898 	zio_t *zio;
2899 
2900 	mutex_enter(&spa->spa_alloc_locks[allocator]);
2901 	zio = zio_io_to_allocate(spa, allocator);
2902 	mutex_exit(&spa->spa_alloc_locks[allocator]);
2903 	if (zio == NULL)
2904 		return;
2905 
2906 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2907 	ASSERT0(zio->io_error);
2908 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2909 }
2910 
2911 static int
2912 zio_dva_allocate(zio_t *zio)
2913 {
2914 	spa_t *spa = zio->io_spa;
2915 	metaslab_class_t *mc = spa_normal_class(spa);
2916 	blkptr_t *bp = zio->io_bp;
2917 	int error;
2918 	int flags = 0;
2919 
2920 	if (zio->io_gang_leader == NULL) {
2921 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2922 		zio->io_gang_leader = zio;
2923 	}
2924 
2925 	ASSERT(BP_IS_HOLE(bp));
2926 	ASSERT0(BP_GET_NDVAS(bp));
2927 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2928 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2929 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2930 
2931 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2932 		flags |= METASLAB_DONT_THROTTLE;
2933 	}
2934 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2935 		flags |= METASLAB_GANG_CHILD;
2936 	}
2937 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2938 		flags |= METASLAB_ASYNC_ALLOC;
2939 	}
2940 
2941 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2942 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2943 	    &zio->io_alloc_list, zio, zio->io_allocator);
2944 
2945 	if (error != 0) {
2946 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2947 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2948 		    error);
2949 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2950 			return (zio_write_gang_block(zio));
2951 		zio->io_error = error;
2952 	}
2953 
2954 	return (ZIO_PIPELINE_CONTINUE);
2955 }
2956 
2957 static int
2958 zio_dva_free(zio_t *zio)
2959 {
2960 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2961 
2962 	return (ZIO_PIPELINE_CONTINUE);
2963 }
2964 
2965 static int
2966 zio_dva_claim(zio_t *zio)
2967 {
2968 	int error;
2969 
2970 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2971 	if (error)
2972 		zio->io_error = error;
2973 
2974 	return (ZIO_PIPELINE_CONTINUE);
2975 }
2976 
2977 /*
2978  * Undo an allocation.  This is used by zio_done() when an I/O fails
2979  * and we want to give back the block we just allocated.
2980  * This handles both normal blocks and gang blocks.
2981  */
2982 static void
2983 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2984 {
2985 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2986 	ASSERT(zio->io_bp_override == NULL);
2987 
2988 	if (!BP_IS_HOLE(bp))
2989 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2990 
2991 	if (gn != NULL) {
2992 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2993 			zio_dva_unallocate(zio, gn->gn_child[g],
2994 			    &gn->gn_gbh->zg_blkptr[g]);
2995 		}
2996 	}
2997 }
2998 
2999 /*
3000  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3001  */
3002 int
3003 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
3004     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3005 {
3006 	int error = 1;
3007 	zio_alloc_list_t io_alloc_list;
3008 
3009 	ASSERT(txg > spa_syncing_txg(spa));
3010 
3011 	metaslab_trace_init(&io_alloc_list);
3012 	/*
3013 	 * When allocating a zil block, we don't have information about
3014 	 * the final destination of the block except the objset it's part
3015 	 * of, so we just hash the objset ID to pick the allocator to get
3016 	 * some parallelism.
3017 	 */
3018 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3019 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3020 	    cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3021 	if (error == 0) {
3022 		*slog = TRUE;
3023 	} else {
3024 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3025 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3026 		    &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3027 		    spa->spa_alloc_count);
3028 		if (error == 0)
3029 			*slog = FALSE;
3030 	}
3031 	metaslab_trace_fini(&io_alloc_list);
3032 
3033 	if (error == 0) {
3034 		BP_SET_LSIZE(new_bp, size);
3035 		BP_SET_PSIZE(new_bp, size);
3036 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3037 		BP_SET_CHECKSUM(new_bp,
3038 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3039 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3040 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3041 		BP_SET_LEVEL(new_bp, 0);
3042 		BP_SET_DEDUP(new_bp, 0);
3043 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3044 	} else {
3045 		zfs_dbgmsg("%s: zil block allocation failure: "
3046 		    "size %llu, error %d", spa_name(spa), size, error);
3047 	}
3048 
3049 	return (error);
3050 }
3051 
3052 /*
3053  * ==========================================================================
3054  * Read and write to physical devices
3055  * ==========================================================================
3056  */
3057 
3058 
3059 /*
3060  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3061  * stops after this stage and will resume upon I/O completion.
3062  * However, there are instances where the vdev layer may need to
3063  * continue the pipeline when an I/O was not issued. Since the I/O
3064  * that was sent to the vdev layer might be different than the one
3065  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3066  * force the underlying vdev layers to call either zio_execute() or
3067  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3068  */
3069 static int
3070 zio_vdev_io_start(zio_t *zio)
3071 {
3072 	vdev_t *vd = zio->io_vd;
3073 	uint64_t align;
3074 	spa_t *spa = zio->io_spa;
3075 
3076 	ASSERT(zio->io_error == 0);
3077 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3078 
3079 	if (vd == NULL) {
3080 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3081 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3082 
3083 		/*
3084 		 * The mirror_ops handle multiple DVAs in a single BP.
3085 		 */
3086 		vdev_mirror_ops.vdev_op_io_start(zio);
3087 		return (ZIO_PIPELINE_STOP);
3088 	}
3089 
3090 	ASSERT3P(zio->io_logical, !=, zio);
3091 	if (zio->io_type == ZIO_TYPE_WRITE) {
3092 		ASSERT(spa->spa_trust_config);
3093 
3094 		if (zio->io_vd->vdev_removing) {
3095 			ASSERT(zio->io_flags &
3096 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3097 			    ZIO_FLAG_INDUCE_DAMAGE));
3098 		}
3099 	}
3100 
3101 	/*
3102 	 * We keep track of time-sensitive I/Os so that the scan thread
3103 	 * can quickly react to certain workloads.  In particular, we care
3104 	 * about non-scrubbing, top-level reads and writes with the following
3105 	 * characteristics:
3106 	 *	- synchronous writes of user data to non-slog devices
3107 	 *	- any reads of user data
3108 	 * When these conditions are met, adjust the timestamp of spa_last_io
3109 	 * which allows the scan thread to adjust its workload accordingly.
3110 	 */
3111 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3112 	    vd == vd->vdev_top && !vd->vdev_islog &&
3113 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3114 	    zio->io_txg != spa_syncing_txg(spa)) {
3115 		uint64_t old = spa->spa_last_io;
3116 		uint64_t new = ddi_get_lbolt64();
3117 		if (old != new)
3118 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3119 	}
3120 
3121 	align = 1ULL << vd->vdev_top->vdev_ashift;
3122 
3123 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3124 	    P2PHASE(zio->io_size, align) != 0) {
3125 		/* Transform logical writes to be a full physical block size. */
3126 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3127 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3128 		ASSERT(vd == vd->vdev_top);
3129 		if (zio->io_type == ZIO_TYPE_WRITE) {
3130 			abd_copy(abuf, zio->io_abd, zio->io_size);
3131 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3132 		}
3133 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3134 	}
3135 
3136 	/*
3137 	 * If this is not a physical io, make sure that it is properly aligned
3138 	 * before proceeding.
3139 	 */
3140 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3141 		ASSERT0(P2PHASE(zio->io_offset, align));
3142 		ASSERT0(P2PHASE(zio->io_size, align));
3143 	} else {
3144 		/*
3145 		 * For physical writes, we allow 512b aligned writes and assume
3146 		 * the device will perform a read-modify-write as necessary.
3147 		 */
3148 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3149 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3150 	}
3151 
3152 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3153 
3154 	/*
3155 	 * If this is a repair I/O, and there's no self-healing involved --
3156 	 * that is, we're just resilvering what we expect to resilver --
3157 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3158 	 * This prevents spurious resilvering with nested replication.
3159 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3160 	 * A is out of date, we'll read from C+D, then use the data to
3161 	 * resilver A+B -- but we don't actually want to resilver B, just A.
3162 	 * The top-level mirror has no way to know this, so instead we just
3163 	 * discard unnecessary repairs as we work our way down the vdev tree.
3164 	 * The same logic applies to any form of nested replication:
3165 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3166 	 */
3167 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3168 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3169 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3170 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3171 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3172 		zio_vdev_io_bypass(zio);
3173 		return (ZIO_PIPELINE_CONTINUE);
3174 	}
3175 
3176 	if (vd->vdev_ops->vdev_op_leaf &&
3177 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3178 
3179 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3180 			return (ZIO_PIPELINE_CONTINUE);
3181 
3182 		if ((zio = vdev_queue_io(zio)) == NULL)
3183 			return (ZIO_PIPELINE_STOP);
3184 
3185 		if (!vdev_accessible(vd, zio)) {
3186 			zio->io_error = SET_ERROR(ENXIO);
3187 			zio_interrupt(zio);
3188 			return (ZIO_PIPELINE_STOP);
3189 		}
3190 	}
3191 
3192 	vd->vdev_ops->vdev_op_io_start(zio);
3193 	return (ZIO_PIPELINE_STOP);
3194 }
3195 
3196 static int
3197 zio_vdev_io_done(zio_t *zio)
3198 {
3199 	vdev_t *vd = zio->io_vd;
3200 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3201 	boolean_t unexpected_error = B_FALSE;
3202 
3203 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3204 		return (ZIO_PIPELINE_STOP);
3205 	}
3206 
3207 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3208 
3209 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3210 
3211 		vdev_queue_io_done(zio);
3212 
3213 		if (zio->io_type == ZIO_TYPE_WRITE)
3214 			vdev_cache_write(zio);
3215 
3216 		if (zio_injection_enabled && zio->io_error == 0)
3217 			zio->io_error = zio_handle_device_injection(vd,
3218 			    zio, EIO);
3219 
3220 		if (zio_injection_enabled && zio->io_error == 0)
3221 			zio->io_error = zio_handle_label_injection(zio, EIO);
3222 
3223 		if (zio->io_error) {
3224 			if (!vdev_accessible(vd, zio)) {
3225 				zio->io_error = SET_ERROR(ENXIO);
3226 			} else {
3227 				unexpected_error = B_TRUE;
3228 			}
3229 		}
3230 	}
3231 
3232 	ops->vdev_op_io_done(zio);
3233 
3234 	if (unexpected_error)
3235 		VERIFY(vdev_probe(vd, zio) == NULL);
3236 
3237 	return (ZIO_PIPELINE_CONTINUE);
3238 }
3239 
3240 /*
3241  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3242  * disk, and use that to finish the checksum ereport later.
3243  */
3244 static void
3245 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3246     const void *good_buf)
3247 {
3248 	/* no processing needed */
3249 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3250 }
3251 
3252 /*ARGSUSED*/
3253 void
3254 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3255 {
3256 	void *buf = zio_buf_alloc(zio->io_size);
3257 
3258 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3259 
3260 	zcr->zcr_cbinfo = zio->io_size;
3261 	zcr->zcr_cbdata = buf;
3262 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3263 	zcr->zcr_free = zio_buf_free;
3264 }
3265 
3266 static int
3267 zio_vdev_io_assess(zio_t *zio)
3268 {
3269 	vdev_t *vd = zio->io_vd;
3270 
3271 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3272 		return (ZIO_PIPELINE_STOP);
3273 	}
3274 
3275 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3276 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3277 
3278 	if (zio->io_vsd != NULL) {
3279 		zio->io_vsd_ops->vsd_free(zio);
3280 		zio->io_vsd = NULL;
3281 	}
3282 
3283 	if (zio_injection_enabled && zio->io_error == 0)
3284 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3285 
3286 	/*
3287 	 * If the I/O failed, determine whether we should attempt to retry it.
3288 	 *
3289 	 * On retry, we cut in line in the issue queue, since we don't want
3290 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3291 	 */
3292 	if (zio->io_error && vd == NULL &&
3293 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3294 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3295 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3296 		zio->io_error = 0;
3297 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3298 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3299 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3300 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3301 		    zio_requeue_io_start_cut_in_line);
3302 		return (ZIO_PIPELINE_STOP);
3303 	}
3304 
3305 	/*
3306 	 * If we got an error on a leaf device, convert it to ENXIO
3307 	 * if the device is not accessible at all.
3308 	 */
3309 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3310 	    !vdev_accessible(vd, zio))
3311 		zio->io_error = SET_ERROR(ENXIO);
3312 
3313 	/*
3314 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3315 	 * set vdev_cant_write so that we stop trying to allocate from it.
3316 	 */
3317 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3318 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3319 		vd->vdev_cant_write = B_TRUE;
3320 	}
3321 
3322 	/*
3323 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3324 	 * attempts will ever succeed. In this case we set a persistent bit so
3325 	 * that we don't bother with it in the future.
3326 	 */
3327 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3328 	    zio->io_type == ZIO_TYPE_IOCTL &&
3329 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3330 		vd->vdev_nowritecache = B_TRUE;
3331 
3332 	if (zio->io_error)
3333 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3334 
3335 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3336 	    zio->io_physdone != NULL) {
3337 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3338 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3339 		zio->io_physdone(zio->io_logical);
3340 	}
3341 
3342 	return (ZIO_PIPELINE_CONTINUE);
3343 }
3344 
3345 void
3346 zio_vdev_io_reissue(zio_t *zio)
3347 {
3348 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3349 	ASSERT(zio->io_error == 0);
3350 
3351 	zio->io_stage >>= 1;
3352 }
3353 
3354 void
3355 zio_vdev_io_redone(zio_t *zio)
3356 {
3357 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3358 
3359 	zio->io_stage >>= 1;
3360 }
3361 
3362 void
3363 zio_vdev_io_bypass(zio_t *zio)
3364 {
3365 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3366 	ASSERT(zio->io_error == 0);
3367 
3368 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3369 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3370 }
3371 
3372 /*
3373  * ==========================================================================
3374  * Generate and verify checksums
3375  * ==========================================================================
3376  */
3377 static int
3378 zio_checksum_generate(zio_t *zio)
3379 {
3380 	blkptr_t *bp = zio->io_bp;
3381 	enum zio_checksum checksum;
3382 
3383 	if (bp == NULL) {
3384 		/*
3385 		 * This is zio_write_phys().
3386 		 * We're either generating a label checksum, or none at all.
3387 		 */
3388 		checksum = zio->io_prop.zp_checksum;
3389 
3390 		if (checksum == ZIO_CHECKSUM_OFF)
3391 			return (ZIO_PIPELINE_CONTINUE);
3392 
3393 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3394 	} else {
3395 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3396 			ASSERT(!IO_IS_ALLOCATING(zio));
3397 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3398 		} else {
3399 			checksum = BP_GET_CHECKSUM(bp);
3400 		}
3401 	}
3402 
3403 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3404 
3405 	return (ZIO_PIPELINE_CONTINUE);
3406 }
3407 
3408 static int
3409 zio_checksum_verify(zio_t *zio)
3410 {
3411 	zio_bad_cksum_t info;
3412 	blkptr_t *bp = zio->io_bp;
3413 	int error;
3414 
3415 	ASSERT(zio->io_vd != NULL);
3416 
3417 	if (bp == NULL) {
3418 		/*
3419 		 * This is zio_read_phys().
3420 		 * We're either verifying a label checksum, or nothing at all.
3421 		 */
3422 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3423 			return (ZIO_PIPELINE_CONTINUE);
3424 
3425 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3426 	}
3427 
3428 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3429 		zio->io_error = error;
3430 		if (error == ECKSUM &&
3431 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3432 			zfs_ereport_start_checksum(zio->io_spa,
3433 			    zio->io_vd, zio, zio->io_offset,
3434 			    zio->io_size, NULL, &info);
3435 		}
3436 	}
3437 
3438 	return (ZIO_PIPELINE_CONTINUE);
3439 }
3440 
3441 /*
3442  * Called by RAID-Z to ensure we don't compute the checksum twice.
3443  */
3444 void
3445 zio_checksum_verified(zio_t *zio)
3446 {
3447 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3448 }
3449 
3450 /*
3451  * ==========================================================================
3452  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3453  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3454  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3455  * indicate errors that are specific to one I/O, and most likely permanent.
3456  * Any other error is presumed to be worse because we weren't expecting it.
3457  * ==========================================================================
3458  */
3459 int
3460 zio_worst_error(int e1, int e2)
3461 {
3462 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3463 	int r1, r2;
3464 
3465 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3466 		if (e1 == zio_error_rank[r1])
3467 			break;
3468 
3469 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3470 		if (e2 == zio_error_rank[r2])
3471 			break;
3472 
3473 	return (r1 > r2 ? e1 : e2);
3474 }
3475 
3476 /*
3477  * ==========================================================================
3478  * I/O completion
3479  * ==========================================================================
3480  */
3481 static int
3482 zio_ready(zio_t *zio)
3483 {
3484 	blkptr_t *bp = zio->io_bp;
3485 	zio_t *pio, *pio_next;
3486 	zio_link_t *zl = NULL;
3487 
3488 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3489 	    ZIO_WAIT_READY)) {
3490 		return (ZIO_PIPELINE_STOP);
3491 	}
3492 
3493 	if (zio->io_ready) {
3494 		ASSERT(IO_IS_ALLOCATING(zio));
3495 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3496 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3497 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3498 
3499 		zio->io_ready(zio);
3500 	}
3501 
3502 	if (bp != NULL && bp != &zio->io_bp_copy)
3503 		zio->io_bp_copy = *bp;
3504 
3505 	if (zio->io_error != 0) {
3506 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3507 
3508 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3509 			ASSERT(IO_IS_ALLOCATING(zio));
3510 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3511 			/*
3512 			 * We were unable to allocate anything, unreserve and
3513 			 * issue the next I/O to allocate.
3514 			 */
3515 			metaslab_class_throttle_unreserve(
3516 			    spa_normal_class(zio->io_spa),
3517 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3518 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3519 		}
3520 	}
3521 
3522 	mutex_enter(&zio->io_lock);
3523 	zio->io_state[ZIO_WAIT_READY] = 1;
3524 	pio = zio_walk_parents(zio, &zl);
3525 	mutex_exit(&zio->io_lock);
3526 
3527 	/*
3528 	 * As we notify zio's parents, new parents could be added.
3529 	 * New parents go to the head of zio's io_parent_list, however,
3530 	 * so we will (correctly) not notify them.  The remainder of zio's
3531 	 * io_parent_list, from 'pio_next' onward, cannot change because
3532 	 * all parents must wait for us to be done before they can be done.
3533 	 */
3534 	for (; pio != NULL; pio = pio_next) {
3535 		pio_next = zio_walk_parents(zio, &zl);
3536 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3537 	}
3538 
3539 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3540 		if (BP_IS_GANG(bp)) {
3541 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3542 		} else {
3543 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3544 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3545 		}
3546 	}
3547 
3548 	if (zio_injection_enabled &&
3549 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3550 		zio_handle_ignored_writes(zio);
3551 
3552 	return (ZIO_PIPELINE_CONTINUE);
3553 }
3554 
3555 /*
3556  * Update the allocation throttle accounting.
3557  */
3558 static void
3559 zio_dva_throttle_done(zio_t *zio)
3560 {
3561 	zio_t *lio = zio->io_logical;
3562 	zio_t *pio = zio_unique_parent(zio);
3563 	vdev_t *vd = zio->io_vd;
3564 	int flags = METASLAB_ASYNC_ALLOC;
3565 
3566 	ASSERT3P(zio->io_bp, !=, NULL);
3567 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3568 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3569 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3570 	ASSERT(vd != NULL);
3571 	ASSERT3P(vd, ==, vd->vdev_top);
3572 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3573 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3574 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3575 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3576 
3577 	/*
3578 	 * Parents of gang children can have two flavors -- ones that
3579 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3580 	 * and ones that allocated the constituent blocks. The allocation
3581 	 * throttle needs to know the allocating parent zio so we must find
3582 	 * it here.
3583 	 */
3584 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3585 		/*
3586 		 * If our parent is a rewrite gang child then our grandparent
3587 		 * would have been the one that performed the allocation.
3588 		 */
3589 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3590 			pio = zio_unique_parent(pio);
3591 		flags |= METASLAB_GANG_CHILD;
3592 	}
3593 
3594 	ASSERT(IO_IS_ALLOCATING(pio));
3595 	ASSERT3P(zio, !=, zio->io_logical);
3596 	ASSERT(zio->io_logical != NULL);
3597 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3598 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3599 
3600 	mutex_enter(&pio->io_lock);
3601 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3602 	    pio->io_allocator, B_TRUE);
3603 	mutex_exit(&pio->io_lock);
3604 
3605 	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3606 	    1, pio->io_allocator, pio);
3607 
3608 	/*
3609 	 * Call into the pipeline to see if there is more work that
3610 	 * needs to be done. If there is work to be done it will be
3611 	 * dispatched to another taskq thread.
3612 	 */
3613 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3614 }
3615 
3616 static int
3617 zio_done(zio_t *zio)
3618 {
3619 	spa_t *spa = zio->io_spa;
3620 	zio_t *lio = zio->io_logical;
3621 	blkptr_t *bp = zio->io_bp;
3622 	vdev_t *vd = zio->io_vd;
3623 	uint64_t psize = zio->io_size;
3624 	zio_t *pio, *pio_next;
3625 	metaslab_class_t *mc = spa_normal_class(spa);
3626 	zio_link_t *zl = NULL;
3627 
3628 	/*
3629 	 * If our children haven't all completed,
3630 	 * wait for them and then repeat this pipeline stage.
3631 	 */
3632 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3633 		return (ZIO_PIPELINE_STOP);
3634 	}
3635 
3636 	/*
3637 	 * If the allocation throttle is enabled, then update the accounting.
3638 	 * We only track child I/Os that are part of an allocating async
3639 	 * write. We must do this since the allocation is performed
3640 	 * by the logical I/O but the actual write is done by child I/Os.
3641 	 */
3642 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3643 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3644 		ASSERT(mc->mc_alloc_throttle_enabled);
3645 		zio_dva_throttle_done(zio);
3646 	}
3647 
3648 	/*
3649 	 * If the allocation throttle is enabled, verify that
3650 	 * we have decremented the refcounts for every I/O that was throttled.
3651 	 */
3652 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3653 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3654 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3655 		ASSERT(bp != NULL);
3656 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3657 		    zio->io_allocator);
3658 		VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator],
3659 		    zio));
3660 	}
3661 
3662 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3663 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3664 			ASSERT(zio->io_children[c][w] == 0);
3665 
3666 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3667 		ASSERT(bp->blk_pad[0] == 0);
3668 		ASSERT(bp->blk_pad[1] == 0);
3669 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3670 		    (bp == zio_unique_parent(zio)->io_bp));
3671 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3672 		    zio->io_bp_override == NULL &&
3673 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3674 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3675 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3676 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3677 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3678 		}
3679 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3680 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3681 	}
3682 
3683 	/*
3684 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3685 	 */
3686 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3687 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3688 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3689 
3690 	/*
3691 	 * If the I/O on the transformed data was successful, generate any
3692 	 * checksum reports now while we still have the transformed data.
3693 	 */
3694 	if (zio->io_error == 0) {
3695 		while (zio->io_cksum_report != NULL) {
3696 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3697 			uint64_t align = zcr->zcr_align;
3698 			uint64_t asize = P2ROUNDUP(psize, align);
3699 			char *abuf = NULL;
3700 			abd_t *adata = zio->io_abd;
3701 
3702 			if (asize != psize) {
3703 				adata = abd_alloc_linear(asize, B_TRUE);
3704 				abd_copy(adata, zio->io_abd, psize);
3705 				abd_zero_off(adata, psize, asize - psize);
3706 			}
3707 
3708 			if (adata != NULL)
3709 				abuf = abd_borrow_buf_copy(adata, asize);
3710 
3711 			zio->io_cksum_report = zcr->zcr_next;
3712 			zcr->zcr_next = NULL;
3713 			zcr->zcr_finish(zcr, abuf);
3714 			zfs_ereport_free_checksum(zcr);
3715 
3716 			if (adata != NULL)
3717 				abd_return_buf(adata, abuf, asize);
3718 
3719 			if (asize != psize)
3720 				abd_free(adata);
3721 		}
3722 	}
3723 
3724 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3725 
3726 	vdev_stat_update(zio, psize);
3727 
3728 	if (zio->io_error) {
3729 		/*
3730 		 * If this I/O is attached to a particular vdev,
3731 		 * generate an error message describing the I/O failure
3732 		 * at the block level.  We ignore these errors if the
3733 		 * device is currently unavailable.
3734 		 */
3735 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3736 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3737 
3738 		if ((zio->io_error == EIO || !(zio->io_flags &
3739 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3740 		    zio == lio) {
3741 			/*
3742 			 * For logical I/O requests, tell the SPA to log the
3743 			 * error and generate a logical data ereport.
3744 			 */
3745 			spa_log_error(spa, zio);
3746 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3747 			    0, 0);
3748 		}
3749 	}
3750 
3751 	if (zio->io_error && zio == lio) {
3752 		/*
3753 		 * Determine whether zio should be reexecuted.  This will
3754 		 * propagate all the way to the root via zio_notify_parent().
3755 		 */
3756 		ASSERT(vd == NULL && bp != NULL);
3757 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3758 
3759 		if (IO_IS_ALLOCATING(zio) &&
3760 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3761 			if (zio->io_error != ENOSPC)
3762 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3763 			else
3764 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3765 		}
3766 
3767 		if ((zio->io_type == ZIO_TYPE_READ ||
3768 		    zio->io_type == ZIO_TYPE_FREE) &&
3769 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3770 		    zio->io_error == ENXIO &&
3771 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3772 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3773 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3774 
3775 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3776 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3777 
3778 		/*
3779 		 * Here is a possibly good place to attempt to do
3780 		 * either combinatorial reconstruction or error correction
3781 		 * based on checksums.  It also might be a good place
3782 		 * to send out preliminary ereports before we suspend
3783 		 * processing.
3784 		 */
3785 	}
3786 
3787 	/*
3788 	 * If there were logical child errors, they apply to us now.
3789 	 * We defer this until now to avoid conflating logical child
3790 	 * errors with errors that happened to the zio itself when
3791 	 * updating vdev stats and reporting FMA events above.
3792 	 */
3793 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3794 
3795 	if ((zio->io_error || zio->io_reexecute) &&
3796 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3797 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3798 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3799 
3800 	zio_gang_tree_free(&zio->io_gang_tree);
3801 
3802 	/*
3803 	 * Godfather I/Os should never suspend.
3804 	 */
3805 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3806 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3807 		zio->io_reexecute = 0;
3808 
3809 	if (zio->io_reexecute) {
3810 		/*
3811 		 * This is a logical I/O that wants to reexecute.
3812 		 *
3813 		 * Reexecute is top-down.  When an i/o fails, if it's not
3814 		 * the root, it simply notifies its parent and sticks around.
3815 		 * The parent, seeing that it still has children in zio_done(),
3816 		 * does the same.  This percolates all the way up to the root.
3817 		 * The root i/o will reexecute or suspend the entire tree.
3818 		 *
3819 		 * This approach ensures that zio_reexecute() honors
3820 		 * all the original i/o dependency relationships, e.g.
3821 		 * parents not executing until children are ready.
3822 		 */
3823 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3824 
3825 		zio->io_gang_leader = NULL;
3826 
3827 		mutex_enter(&zio->io_lock);
3828 		zio->io_state[ZIO_WAIT_DONE] = 1;
3829 		mutex_exit(&zio->io_lock);
3830 
3831 		/*
3832 		 * "The Godfather" I/O monitors its children but is
3833 		 * not a true parent to them. It will track them through
3834 		 * the pipeline but severs its ties whenever they get into
3835 		 * trouble (e.g. suspended). This allows "The Godfather"
3836 		 * I/O to return status without blocking.
3837 		 */
3838 		zl = NULL;
3839 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3840 		    pio = pio_next) {
3841 			zio_link_t *remove_zl = zl;
3842 			pio_next = zio_walk_parents(zio, &zl);
3843 
3844 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3845 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3846 				zio_remove_child(pio, zio, remove_zl);
3847 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3848 			}
3849 		}
3850 
3851 		if ((pio = zio_unique_parent(zio)) != NULL) {
3852 			/*
3853 			 * We're not a root i/o, so there's nothing to do
3854 			 * but notify our parent.  Don't propagate errors
3855 			 * upward since we haven't permanently failed yet.
3856 			 */
3857 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3858 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3859 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3860 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3861 			/*
3862 			 * We'd fail again if we reexecuted now, so suspend
3863 			 * until conditions improve (e.g. device comes online).
3864 			 */
3865 			zio_suspend(spa, zio);
3866 		} else {
3867 			/*
3868 			 * Reexecution is potentially a huge amount of work.
3869 			 * Hand it off to the otherwise-unused claim taskq.
3870 			 */
3871 			ASSERT(zio->io_tqent.tqent_next == NULL);
3872 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3873 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3874 			    0, &zio->io_tqent);
3875 		}
3876 		return (ZIO_PIPELINE_STOP);
3877 	}
3878 
3879 	ASSERT(zio->io_child_count == 0);
3880 	ASSERT(zio->io_reexecute == 0);
3881 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3882 
3883 	/*
3884 	 * Report any checksum errors, since the I/O is complete.
3885 	 */
3886 	while (zio->io_cksum_report != NULL) {
3887 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3888 		zio->io_cksum_report = zcr->zcr_next;
3889 		zcr->zcr_next = NULL;
3890 		zcr->zcr_finish(zcr, NULL);
3891 		zfs_ereport_free_checksum(zcr);
3892 	}
3893 
3894 	/*
3895 	 * It is the responsibility of the done callback to ensure that this
3896 	 * particular zio is no longer discoverable for adoption, and as
3897 	 * such, cannot acquire any new parents.
3898 	 */
3899 	if (zio->io_done)
3900 		zio->io_done(zio);
3901 
3902 	mutex_enter(&zio->io_lock);
3903 	zio->io_state[ZIO_WAIT_DONE] = 1;
3904 	mutex_exit(&zio->io_lock);
3905 
3906 	zl = NULL;
3907 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3908 		zio_link_t *remove_zl = zl;
3909 		pio_next = zio_walk_parents(zio, &zl);
3910 		zio_remove_child(pio, zio, remove_zl);
3911 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3912 	}
3913 
3914 	if (zio->io_waiter != NULL) {
3915 		mutex_enter(&zio->io_lock);
3916 		zio->io_executor = NULL;
3917 		cv_broadcast(&zio->io_cv);
3918 		mutex_exit(&zio->io_lock);
3919 	} else {
3920 		zio_destroy(zio);
3921 	}
3922 
3923 	return (ZIO_PIPELINE_STOP);
3924 }
3925 
3926 /*
3927  * ==========================================================================
3928  * I/O pipeline definition
3929  * ==========================================================================
3930  */
3931 static zio_pipe_stage_t *zio_pipeline[] = {
3932 	NULL,
3933 	zio_read_bp_init,
3934 	zio_write_bp_init,
3935 	zio_free_bp_init,
3936 	zio_issue_async,
3937 	zio_write_compress,
3938 	zio_checksum_generate,
3939 	zio_nop_write,
3940 	zio_ddt_read_start,
3941 	zio_ddt_read_done,
3942 	zio_ddt_write,
3943 	zio_ddt_free,
3944 	zio_gang_assemble,
3945 	zio_gang_issue,
3946 	zio_dva_throttle,
3947 	zio_dva_allocate,
3948 	zio_dva_free,
3949 	zio_dva_claim,
3950 	zio_ready,
3951 	zio_vdev_io_start,
3952 	zio_vdev_io_done,
3953 	zio_vdev_io_assess,
3954 	zio_checksum_verify,
3955 	zio_done
3956 };
3957 
3958 
3959 
3960 
3961 /*
3962  * Compare two zbookmark_phys_t's to see which we would reach first in a
3963  * pre-order traversal of the object tree.
3964  *
3965  * This is simple in every case aside from the meta-dnode object. For all other
3966  * objects, we traverse them in order (object 1 before object 2, and so on).
3967  * However, all of these objects are traversed while traversing object 0, since
3968  * the data it points to is the list of objects.  Thus, we need to convert to a
3969  * canonical representation so we can compare meta-dnode bookmarks to
3970  * non-meta-dnode bookmarks.
3971  *
3972  * We do this by calculating "equivalents" for each field of the zbookmark.
3973  * zbookmarks outside of the meta-dnode use their own object and level, and
3974  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3975  * blocks this bookmark refers to) by multiplying their blkid by their span
3976  * (the number of L0 blocks contained within one block at their level).
3977  * zbookmarks inside the meta-dnode calculate their object equivalent
3978  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3979  * level + 1<<31 (any value larger than a level could ever be) for their level.
3980  * This causes them to always compare before a bookmark in their object
3981  * equivalent, compare appropriately to bookmarks in other objects, and to
3982  * compare appropriately to other bookmarks in the meta-dnode.
3983  */
3984 int
3985 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3986     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3987 {
3988 	/*
3989 	 * These variables represent the "equivalent" values for the zbookmark,
3990 	 * after converting zbookmarks inside the meta dnode to their
3991 	 * normal-object equivalents.
3992 	 */
3993 	uint64_t zb1obj, zb2obj;
3994 	uint64_t zb1L0, zb2L0;
3995 	uint64_t zb1level, zb2level;
3996 
3997 	if (zb1->zb_object == zb2->zb_object &&
3998 	    zb1->zb_level == zb2->zb_level &&
3999 	    zb1->zb_blkid == zb2->zb_blkid)
4000 		return (0);
4001 
4002 	/*
4003 	 * BP_SPANB calculates the span in blocks.
4004 	 */
4005 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4006 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4007 
4008 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4009 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4010 		zb1L0 = 0;
4011 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4012 	} else {
4013 		zb1obj = zb1->zb_object;
4014 		zb1level = zb1->zb_level;
4015 	}
4016 
4017 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4018 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4019 		zb2L0 = 0;
4020 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4021 	} else {
4022 		zb2obj = zb2->zb_object;
4023 		zb2level = zb2->zb_level;
4024 	}
4025 
4026 	/* Now that we have a canonical representation, do the comparison. */
4027 	if (zb1obj != zb2obj)
4028 		return (zb1obj < zb2obj ? -1 : 1);
4029 	else if (zb1L0 != zb2L0)
4030 		return (zb1L0 < zb2L0 ? -1 : 1);
4031 	else if (zb1level != zb2level)
4032 		return (zb1level > zb2level ? -1 : 1);
4033 	/*
4034 	 * This can (theoretically) happen if the bookmarks have the same object
4035 	 * and level, but different blkids, if the block sizes are not the same.
4036 	 * There is presently no way to change the indirect block sizes
4037 	 */
4038 	return (0);
4039 }
4040 
4041 /*
4042  *  This function checks the following: given that last_block is the place that
4043  *  our traversal stopped last time, does that guarantee that we've visited
4044  *  every node under subtree_root?  Therefore, we can't just use the raw output
4045  *  of zbookmark_compare.  We have to pass in a modified version of
4046  *  subtree_root; by incrementing the block id, and then checking whether
4047  *  last_block is before or equal to that, we can tell whether or not having
4048  *  visited last_block implies that all of subtree_root's children have been
4049  *  visited.
4050  */
4051 boolean_t
4052 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4053     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4054 {
4055 	zbookmark_phys_t mod_zb = *subtree_root;
4056 	mod_zb.zb_blkid++;
4057 	ASSERT(last_block->zb_level == 0);
4058 
4059 	/* The objset_phys_t isn't before anything. */
4060 	if (dnp == NULL)
4061 		return (B_FALSE);
4062 
4063 	/*
4064 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4065 	 * data block size in sectors, because that variable is only used if
4066 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4067 	 * know without examining it what object it refers to, and there's no
4068 	 * harm in passing in this value in other cases, we always pass it in.
4069 	 *
4070 	 * We pass in 0 for the indirect block size shift because zb2 must be
4071 	 * level 0.  The indirect block size is only used to calculate the span
4072 	 * of the bookmark, but since the bookmark must be level 0, the span is
4073 	 * always 1, so the math works out.
4074 	 *
4075 	 * If you make changes to how the zbookmark_compare code works, be sure
4076 	 * to make sure that this code still works afterwards.
4077 	 */
4078 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4079 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4080 	    last_block) <= 0);
4081 }
4082