xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision dd50e0cc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/sysmacros.h>
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/txg.h>
34 #include <sys/spa_impl.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_trim.h>
37 #include <sys/zio_impl.h>
38 #include <sys/zio_compress.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/arc.h>
42 #include <sys/ddt.h>
43 #include <sys/blkptr.h>
44 #include <sys/zfeature.h>
45 #include <sys/time.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/abd.h>
49 #include <sys/cityhash.h>
50 #include <sys/dsl_crypt.h>
51 
52 /*
53  * ==========================================================================
54  * I/O type descriptions
55  * ==========================================================================
56  */
57 const char *zio_type_name[ZIO_TYPES] = {
58 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
59 	"zio_ioctl", "z_trim"
60 };
61 
62 boolean_t zio_dva_throttle_enabled = B_TRUE;
63 
64 /*
65  * ==========================================================================
66  * I/O kmem caches
67  * ==========================================================================
68  */
69 kmem_cache_t *zio_cache;
70 kmem_cache_t *zio_link_cache;
71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 
74 #ifdef _KERNEL
75 extern vmem_t *zio_alloc_arena;
76 #endif
77 
78 #define	ZIO_PIPELINE_CONTINUE		0x100
79 #define	ZIO_PIPELINE_STOP		0x101
80 
81 /* Mark IOs as "slow" if they take longer than 30 seconds */
82 int zio_slow_io_ms = (30 * MILLISEC);
83 
84 #define	BP_SPANB(indblkshift, level) \
85 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
86 #define	COMPARE_META_LEVEL	0x80000000ul
87 /*
88  * The following actions directly effect the spa's sync-to-convergence logic.
89  * The values below define the sync pass when we start performing the action.
90  * Care should be taken when changing these values as they directly impact
91  * spa_sync() performance. Tuning these values may introduce subtle performance
92  * pathologies and should only be done in the context of performance analysis.
93  * These tunables will eventually be removed and replaced with #defines once
94  * enough analysis has been done to determine optimal values.
95  *
96  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
97  * regular blocks are not deferred.
98  */
99 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
100 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
101 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
102 
103 /*
104  * An allocating zio is one that either currently has the DVA allocate
105  * stage set or will have it later in its lifetime.
106  */
107 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
108 
109 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
110 
111 #ifdef ZFS_DEBUG
112 int zio_buf_debug_limit = 16384;
113 #else
114 int zio_buf_debug_limit = 0;
115 #endif
116 
117 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
118 
119 void
120 zio_init(void)
121 {
122 	size_t c;
123 	vmem_t *data_alloc_arena = NULL;
124 
125 #ifdef _KERNEL
126 	data_alloc_arena = zio_alloc_arena;
127 #endif
128 	zio_cache = kmem_cache_create("zio_cache",
129 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
130 	zio_link_cache = kmem_cache_create("zio_link_cache",
131 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
132 
133 	/*
134 	 * For small buffers, we want a cache for each multiple of
135 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
136 	 * for each quarter-power of 2.
137 	 */
138 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
139 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
140 		size_t p2 = size;
141 		size_t align = 0;
142 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
143 
144 		while (!ISP2(p2))
145 			p2 &= p2 - 1;
146 
147 #ifndef _KERNEL
148 		/*
149 		 * If we are using watchpoints, put each buffer on its own page,
150 		 * to eliminate the performance overhead of trapping to the
151 		 * kernel when modifying a non-watched buffer that shares the
152 		 * page with a watched buffer.
153 		 */
154 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
155 			continue;
156 #endif
157 		if (size <= 4 * SPA_MINBLOCKSIZE) {
158 			align = SPA_MINBLOCKSIZE;
159 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
160 			align = MIN(p2 >> 2, PAGESIZE);
161 		}
162 
163 		if (align != 0) {
164 			char name[36];
165 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
166 			zio_buf_cache[c] = kmem_cache_create(name, size,
167 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
168 
169 			/*
170 			 * Since zio_data bufs do not appear in crash dumps, we
171 			 * pass KMC_NOTOUCH so that no allocator metadata is
172 			 * stored with the buffers.
173 			 */
174 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
175 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
176 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
177 			    cflags | KMC_NOTOUCH);
178 		}
179 	}
180 
181 	while (--c != 0) {
182 		ASSERT(zio_buf_cache[c] != NULL);
183 		if (zio_buf_cache[c - 1] == NULL)
184 			zio_buf_cache[c - 1] = zio_buf_cache[c];
185 
186 		ASSERT(zio_data_buf_cache[c] != NULL);
187 		if (zio_data_buf_cache[c - 1] == NULL)
188 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
189 	}
190 
191 	zio_inject_init();
192 }
193 
194 void
195 zio_fini(void)
196 {
197 	size_t c;
198 	kmem_cache_t *last_cache = NULL;
199 	kmem_cache_t *last_data_cache = NULL;
200 
201 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
202 		if (zio_buf_cache[c] != last_cache) {
203 			last_cache = zio_buf_cache[c];
204 			kmem_cache_destroy(zio_buf_cache[c]);
205 		}
206 		zio_buf_cache[c] = NULL;
207 
208 		if (zio_data_buf_cache[c] != last_data_cache) {
209 			last_data_cache = zio_data_buf_cache[c];
210 			kmem_cache_destroy(zio_data_buf_cache[c]);
211 		}
212 		zio_data_buf_cache[c] = NULL;
213 	}
214 
215 	kmem_cache_destroy(zio_link_cache);
216 	kmem_cache_destroy(zio_cache);
217 
218 	zio_inject_fini();
219 }
220 
221 /*
222  * ==========================================================================
223  * Allocate and free I/O buffers
224  * ==========================================================================
225  */
226 
227 /*
228  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
229  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
230  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
231  * excess / transient data in-core during a crashdump.
232  */
233 void *
234 zio_buf_alloc(size_t size)
235 {
236 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
237 
238 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
239 
240 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
241 }
242 
243 /*
244  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
245  * crashdump if the kernel panics.  This exists so that we will limit the amount
246  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
247  * of kernel heap dumped to disk when the kernel panics)
248  */
249 void *
250 zio_data_buf_alloc(size_t size)
251 {
252 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
253 
254 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
255 
256 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
257 }
258 
259 void
260 zio_buf_free(void *buf, size_t size)
261 {
262 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
263 
264 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
265 
266 	kmem_cache_free(zio_buf_cache[c], buf);
267 }
268 
269 void
270 zio_data_buf_free(void *buf, size_t size)
271 {
272 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
273 
274 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
275 
276 	kmem_cache_free(zio_data_buf_cache[c], buf);
277 }
278 
279 /* ARGSUSED */
280 static void
281 zio_abd_free(void *abd, size_t size)
282 {
283 	abd_free((abd_t *)abd);
284 }
285 
286 /*
287  * ==========================================================================
288  * Push and pop I/O transform buffers
289  * ==========================================================================
290  */
291 void
292 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
293     zio_transform_func_t *transform)
294 {
295 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
296 
297 	/*
298 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
299 	 * going to get a nasty surprise when they try to access the data.
300 	 */
301 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
302 
303 	zt->zt_orig_abd = zio->io_abd;
304 	zt->zt_orig_size = zio->io_size;
305 	zt->zt_bufsize = bufsize;
306 	zt->zt_transform = transform;
307 
308 	zt->zt_next = zio->io_transform_stack;
309 	zio->io_transform_stack = zt;
310 
311 	zio->io_abd = data;
312 	zio->io_size = size;
313 }
314 
315 void
316 zio_pop_transforms(zio_t *zio)
317 {
318 	zio_transform_t *zt;
319 
320 	while ((zt = zio->io_transform_stack) != NULL) {
321 		if (zt->zt_transform != NULL)
322 			zt->zt_transform(zio,
323 			    zt->zt_orig_abd, zt->zt_orig_size);
324 
325 		if (zt->zt_bufsize != 0)
326 			abd_free(zio->io_abd);
327 
328 		zio->io_abd = zt->zt_orig_abd;
329 		zio->io_size = zt->zt_orig_size;
330 		zio->io_transform_stack = zt->zt_next;
331 
332 		kmem_free(zt, sizeof (zio_transform_t));
333 	}
334 }
335 
336 /*
337  * ==========================================================================
338  * I/O transform callbacks for subblocks, decompression, and decryption
339  * ==========================================================================
340  */
341 static void
342 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
343 {
344 	ASSERT(zio->io_size > size);
345 
346 	if (zio->io_type == ZIO_TYPE_READ)
347 		abd_copy(data, zio->io_abd, size);
348 }
349 
350 static void
351 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
352 {
353 	if (zio->io_error == 0) {
354 		void *tmp = abd_borrow_buf(data, size);
355 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
356 		    zio->io_abd, tmp, zio->io_size, size);
357 		abd_return_buf_copy(data, tmp, size);
358 
359 		if (ret != 0)
360 			zio->io_error = SET_ERROR(EIO);
361 	}
362 }
363 
364 static void
365 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
366 {
367 	int ret;
368 	void *tmp;
369 	blkptr_t *bp = zio->io_bp;
370 	spa_t *spa = zio->io_spa;
371 	uint64_t dsobj = zio->io_bookmark.zb_objset;
372 	uint64_t lsize = BP_GET_LSIZE(bp);
373 	dmu_object_type_t ot = BP_GET_TYPE(bp);
374 	uint8_t salt[ZIO_DATA_SALT_LEN];
375 	uint8_t iv[ZIO_DATA_IV_LEN];
376 	uint8_t mac[ZIO_DATA_MAC_LEN];
377 	boolean_t no_crypt = B_FALSE;
378 
379 	ASSERT(BP_USES_CRYPT(bp));
380 	ASSERT3U(size, !=, 0);
381 
382 	if (zio->io_error != 0)
383 		return;
384 
385 	/*
386 	 * Verify the cksum of MACs stored in an indirect bp. It will always
387 	 * be possible to verify this since it does not require an encryption
388 	 * key.
389 	 */
390 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
391 		zio_crypt_decode_mac_bp(bp, mac);
392 
393 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
394 			/*
395 			 * We haven't decompressed the data yet, but
396 			 * zio_crypt_do_indirect_mac_checksum() requires
397 			 * decompressed data to be able to parse out the MACs
398 			 * from the indirect block. We decompress it now and
399 			 * throw away the result after we are finished.
400 			 */
401 			tmp = zio_buf_alloc(lsize);
402 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
403 			    zio->io_abd, tmp, zio->io_size, lsize);
404 			if (ret != 0) {
405 				ret = SET_ERROR(EIO);
406 				goto error;
407 			}
408 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
409 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
410 			zio_buf_free(tmp, lsize);
411 		} else {
412 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
413 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
414 		}
415 		abd_copy(data, zio->io_abd, size);
416 
417 		if (ret != 0)
418 			goto error;
419 
420 		return;
421 	}
422 
423 	/*
424 	 * If this is an authenticated block, just check the MAC. It would be
425 	 * nice to separate this out into its own flag, but for the moment
426 	 * enum zio_flag is out of bits.
427 	 */
428 	if (BP_IS_AUTHENTICATED(bp)) {
429 		if (ot == DMU_OT_OBJSET) {
430 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
431 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
432 		} else {
433 			zio_crypt_decode_mac_bp(bp, mac);
434 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
435 			    zio->io_abd, size, mac);
436 		}
437 		abd_copy(data, zio->io_abd, size);
438 
439 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
440 			ret = zio_handle_decrypt_injection(spa,
441 			    &zio->io_bookmark, ot, ECKSUM);
442 		}
443 		if (ret != 0)
444 			goto error;
445 
446 		return;
447 	}
448 
449 	zio_crypt_decode_params_bp(bp, salt, iv);
450 
451 	if (ot == DMU_OT_INTENT_LOG) {
452 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
453 		zio_crypt_decode_mac_zil(tmp, mac);
454 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
455 	} else {
456 		zio_crypt_decode_mac_bp(bp, mac);
457 	}
458 
459 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
460 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
461 	    zio->io_abd, &no_crypt);
462 	if (no_crypt)
463 		abd_copy(data, zio->io_abd, size);
464 
465 	if (ret != 0)
466 		goto error;
467 
468 	return;
469 
470 error:
471 	/* assert that the key was found unless this was speculative */
472 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
473 
474 	/*
475 	 * If there was a decryption / authentication error return EIO as
476 	 * the io_error. If this was not a speculative zio, create an ereport.
477 	 */
478 	if (ret == ECKSUM) {
479 		zio->io_error = SET_ERROR(EIO);
480 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
481 			spa_log_error(spa, &zio->io_bookmark);
482 			zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
483 			    spa, NULL, &zio->io_bookmark, zio, 0, 0);
484 		}
485 	} else {
486 		zio->io_error = ret;
487 	}
488 }
489 
490 /*
491  * ==========================================================================
492  * I/O parent/child relationships and pipeline interlocks
493  * ==========================================================================
494  */
495 zio_t *
496 zio_walk_parents(zio_t *cio, zio_link_t **zl)
497 {
498 	list_t *pl = &cio->io_parent_list;
499 
500 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
501 	if (*zl == NULL)
502 		return (NULL);
503 
504 	ASSERT((*zl)->zl_child == cio);
505 	return ((*zl)->zl_parent);
506 }
507 
508 zio_t *
509 zio_walk_children(zio_t *pio, zio_link_t **zl)
510 {
511 	list_t *cl = &pio->io_child_list;
512 
513 	ASSERT(MUTEX_HELD(&pio->io_lock));
514 
515 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
516 	if (*zl == NULL)
517 		return (NULL);
518 
519 	ASSERT((*zl)->zl_parent == pio);
520 	return ((*zl)->zl_child);
521 }
522 
523 zio_t *
524 zio_unique_parent(zio_t *cio)
525 {
526 	zio_link_t *zl = NULL;
527 	zio_t *pio = zio_walk_parents(cio, &zl);
528 
529 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
530 	return (pio);
531 }
532 
533 void
534 zio_add_child(zio_t *pio, zio_t *cio)
535 {
536 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
537 
538 	/*
539 	 * Logical I/Os can have logical, gang, or vdev children.
540 	 * Gang I/Os can have gang or vdev children.
541 	 * Vdev I/Os can only have vdev children.
542 	 * The following ASSERT captures all of these constraints.
543 	 */
544 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
545 
546 	zl->zl_parent = pio;
547 	zl->zl_child = cio;
548 
549 	mutex_enter(&pio->io_lock);
550 	mutex_enter(&cio->io_lock);
551 
552 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
553 
554 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
555 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
556 
557 	list_insert_head(&pio->io_child_list, zl);
558 	list_insert_head(&cio->io_parent_list, zl);
559 
560 	pio->io_child_count++;
561 	cio->io_parent_count++;
562 
563 	mutex_exit(&cio->io_lock);
564 	mutex_exit(&pio->io_lock);
565 }
566 
567 static void
568 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
569 {
570 	ASSERT(zl->zl_parent == pio);
571 	ASSERT(zl->zl_child == cio);
572 
573 	mutex_enter(&pio->io_lock);
574 	mutex_enter(&cio->io_lock);
575 
576 	list_remove(&pio->io_child_list, zl);
577 	list_remove(&cio->io_parent_list, zl);
578 
579 	pio->io_child_count--;
580 	cio->io_parent_count--;
581 
582 	mutex_exit(&cio->io_lock);
583 	mutex_exit(&pio->io_lock);
584 
585 	kmem_cache_free(zio_link_cache, zl);
586 }
587 
588 static boolean_t
589 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
590 {
591 	boolean_t waiting = B_FALSE;
592 
593 	mutex_enter(&zio->io_lock);
594 	ASSERT(zio->io_stall == NULL);
595 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
596 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
597 			continue;
598 
599 		uint64_t *countp = &zio->io_children[c][wait];
600 		if (*countp != 0) {
601 			zio->io_stage >>= 1;
602 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
603 			zio->io_stall = countp;
604 			waiting = B_TRUE;
605 			break;
606 		}
607 	}
608 	mutex_exit(&zio->io_lock);
609 	return (waiting);
610 }
611 
612 static void
613 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
614 {
615 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
616 	int *errorp = &pio->io_child_error[zio->io_child_type];
617 
618 	mutex_enter(&pio->io_lock);
619 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
620 		*errorp = zio_worst_error(*errorp, zio->io_error);
621 	pio->io_reexecute |= zio->io_reexecute;
622 	ASSERT3U(*countp, >, 0);
623 
624 	(*countp)--;
625 
626 	if (*countp == 0 && pio->io_stall == countp) {
627 		zio_taskq_type_t type =
628 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
629 		    ZIO_TASKQ_INTERRUPT;
630 		pio->io_stall = NULL;
631 		mutex_exit(&pio->io_lock);
632 		/*
633 		 * Dispatch the parent zio in its own taskq so that
634 		 * the child can continue to make progress. This also
635 		 * prevents overflowing the stack when we have deeply nested
636 		 * parent-child relationships.
637 		 */
638 		zio_taskq_dispatch(pio, type, B_FALSE);
639 	} else {
640 		mutex_exit(&pio->io_lock);
641 	}
642 }
643 
644 static void
645 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
646 {
647 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
648 		zio->io_error = zio->io_child_error[c];
649 }
650 
651 int
652 zio_bookmark_compare(const void *x1, const void *x2)
653 {
654 	const zio_t *z1 = x1;
655 	const zio_t *z2 = x2;
656 
657 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
658 		return (-1);
659 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
660 		return (1);
661 
662 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
663 		return (-1);
664 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
665 		return (1);
666 
667 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
668 		return (-1);
669 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
670 		return (1);
671 
672 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
673 		return (-1);
674 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
675 		return (1);
676 
677 	if (z1 < z2)
678 		return (-1);
679 	if (z1 > z2)
680 		return (1);
681 
682 	return (0);
683 }
684 
685 /*
686  * ==========================================================================
687  * Create the various types of I/O (read, write, free, etc)
688  * ==========================================================================
689  */
690 static zio_t *
691 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
692     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
693     void *private, zio_type_t type, zio_priority_t priority,
694     enum zio_flag flags, vdev_t *vd, uint64_t offset,
695     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
696 {
697 	zio_t *zio;
698 
699 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
700 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
701 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
702 
703 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
704 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
705 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
706 
707 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
708 
709 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
710 	bzero(zio, sizeof (zio_t));
711 
712 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
713 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
714 
715 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
716 	    offsetof(zio_link_t, zl_parent_node));
717 	list_create(&zio->io_child_list, sizeof (zio_link_t),
718 	    offsetof(zio_link_t, zl_child_node));
719 	metaslab_trace_init(&zio->io_alloc_list);
720 
721 	if (vd != NULL)
722 		zio->io_child_type = ZIO_CHILD_VDEV;
723 	else if (flags & ZIO_FLAG_GANG_CHILD)
724 		zio->io_child_type = ZIO_CHILD_GANG;
725 	else if (flags & ZIO_FLAG_DDT_CHILD)
726 		zio->io_child_type = ZIO_CHILD_DDT;
727 	else
728 		zio->io_child_type = ZIO_CHILD_LOGICAL;
729 
730 	if (bp != NULL) {
731 		zio->io_bp = (blkptr_t *)bp;
732 		zio->io_bp_copy = *bp;
733 		zio->io_bp_orig = *bp;
734 		if (type != ZIO_TYPE_WRITE ||
735 		    zio->io_child_type == ZIO_CHILD_DDT)
736 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
737 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
738 			zio->io_logical = zio;
739 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
740 			pipeline |= ZIO_GANG_STAGES;
741 	}
742 
743 	zio->io_spa = spa;
744 	zio->io_txg = txg;
745 	zio->io_done = done;
746 	zio->io_private = private;
747 	zio->io_type = type;
748 	zio->io_priority = priority;
749 	zio->io_vd = vd;
750 	zio->io_offset = offset;
751 	zio->io_orig_abd = zio->io_abd = data;
752 	zio->io_orig_size = zio->io_size = psize;
753 	zio->io_lsize = lsize;
754 	zio->io_orig_flags = zio->io_flags = flags;
755 	zio->io_orig_stage = zio->io_stage = stage;
756 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
757 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
758 
759 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
760 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
761 
762 	if (zb != NULL)
763 		zio->io_bookmark = *zb;
764 
765 	if (pio != NULL) {
766 		if (zio->io_metaslab_class == NULL)
767 			zio->io_metaslab_class = pio->io_metaslab_class;
768 		if (zio->io_logical == NULL)
769 			zio->io_logical = pio->io_logical;
770 		if (zio->io_child_type == ZIO_CHILD_GANG)
771 			zio->io_gang_leader = pio->io_gang_leader;
772 		zio_add_child(pio, zio);
773 	}
774 
775 	return (zio);
776 }
777 
778 static void
779 zio_destroy(zio_t *zio)
780 {
781 	metaslab_trace_fini(&zio->io_alloc_list);
782 	list_destroy(&zio->io_parent_list);
783 	list_destroy(&zio->io_child_list);
784 	mutex_destroy(&zio->io_lock);
785 	cv_destroy(&zio->io_cv);
786 	kmem_cache_free(zio_cache, zio);
787 }
788 
789 zio_t *
790 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
791     void *private, enum zio_flag flags)
792 {
793 	zio_t *zio;
794 
795 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
796 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
797 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
798 
799 	return (zio);
800 }
801 
802 zio_t *
803 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
804 {
805 	return (zio_null(NULL, spa, NULL, done, private, flags));
806 }
807 
808 void
809 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
810 {
811 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
812 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
813 		    bp, (longlong_t)BP_GET_TYPE(bp));
814 	}
815 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
816 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
817 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
818 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
819 	}
820 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
821 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
822 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
823 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
824 	}
825 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
826 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
827 		    bp, (longlong_t)BP_GET_LSIZE(bp));
828 	}
829 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
830 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
831 		    bp, (longlong_t)BP_GET_PSIZE(bp));
832 	}
833 
834 	if (BP_IS_EMBEDDED(bp)) {
835 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
836 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
837 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
838 		}
839 	}
840 
841 	/*
842 	 * Do not verify individual DVAs if the config is not trusted. This
843 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
844 	 */
845 	if (!spa->spa_trust_config)
846 		return;
847 
848 	/*
849 	 * Pool-specific checks.
850 	 *
851 	 * Note: it would be nice to verify that the blk_birth and
852 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
853 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
854 	 * that are in the log) to be arbitrarily large.
855 	 */
856 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
857 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
858 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
859 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
860 			    "VDEV %llu",
861 			    bp, i, (longlong_t)vdevid);
862 			continue;
863 		}
864 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
865 		if (vd == NULL) {
866 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
867 			    "VDEV %llu",
868 			    bp, i, (longlong_t)vdevid);
869 			continue;
870 		}
871 		if (vd->vdev_ops == &vdev_hole_ops) {
872 			zfs_panic_recover("blkptr at %p DVA %u has hole "
873 			    "VDEV %llu",
874 			    bp, i, (longlong_t)vdevid);
875 			continue;
876 		}
877 		if (vd->vdev_ops == &vdev_missing_ops) {
878 			/*
879 			 * "missing" vdevs are valid during import, but we
880 			 * don't have their detailed info (e.g. asize), so
881 			 * we can't perform any more checks on them.
882 			 */
883 			continue;
884 		}
885 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
886 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
887 		if (BP_IS_GANG(bp))
888 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
889 		if (offset + asize > vd->vdev_asize) {
890 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
891 			    "OFFSET %llu",
892 			    bp, i, (longlong_t)offset);
893 		}
894 	}
895 }
896 
897 boolean_t
898 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
899 {
900 	uint64_t vdevid = DVA_GET_VDEV(dva);
901 
902 	if (vdevid >= spa->spa_root_vdev->vdev_children)
903 		return (B_FALSE);
904 
905 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
906 	if (vd == NULL)
907 		return (B_FALSE);
908 
909 	if (vd->vdev_ops == &vdev_hole_ops)
910 		return (B_FALSE);
911 
912 	if (vd->vdev_ops == &vdev_missing_ops) {
913 		return (B_FALSE);
914 	}
915 
916 	uint64_t offset = DVA_GET_OFFSET(dva);
917 	uint64_t asize = DVA_GET_ASIZE(dva);
918 
919 	if (BP_IS_GANG(bp))
920 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
921 	if (offset + asize > vd->vdev_asize)
922 		return (B_FALSE);
923 
924 	return (B_TRUE);
925 }
926 
927 zio_t *
928 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
929     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
930     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
931 {
932 	zio_t *zio;
933 
934 	zfs_blkptr_verify(spa, bp);
935 
936 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
937 	    data, size, size, done, private,
938 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
939 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
940 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
941 
942 	return (zio);
943 }
944 
945 zio_t *
946 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
947     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
948     zio_done_func_t *ready, zio_done_func_t *children_ready,
949     zio_done_func_t *physdone, zio_done_func_t *done,
950     void *private, zio_priority_t priority, enum zio_flag flags,
951     const zbookmark_phys_t *zb)
952 {
953 	zio_t *zio;
954 
955 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
956 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
957 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
958 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
959 	    DMU_OT_IS_VALID(zp->zp_type) &&
960 	    zp->zp_level < 32 &&
961 	    zp->zp_copies > 0 &&
962 	    zp->zp_copies <= spa_max_replication(spa));
963 
964 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
965 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
966 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
967 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
968 
969 	zio->io_ready = ready;
970 	zio->io_children_ready = children_ready;
971 	zio->io_physdone = physdone;
972 	zio->io_prop = *zp;
973 
974 	/*
975 	 * Data can be NULL if we are going to call zio_write_override() to
976 	 * provide the already-allocated BP.  But we may need the data to
977 	 * verify a dedup hit (if requested).  In this case, don't try to
978 	 * dedup (just take the already-allocated BP verbatim). Encrypted
979 	 * dedup blocks need data as well so we also disable dedup in this
980 	 * case.
981 	 */
982 	if (data == NULL &&
983 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
984 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
985 	}
986 
987 	return (zio);
988 }
989 
990 zio_t *
991 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
992     uint64_t size, zio_done_func_t *done, void *private,
993     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
994 {
995 	zio_t *zio;
996 
997 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
998 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
999 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1000 
1001 	return (zio);
1002 }
1003 
1004 void
1005 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1006 {
1007 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1008 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1009 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1010 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1011 
1012 	/*
1013 	 * We must reset the io_prop to match the values that existed
1014 	 * when the bp was first written by dmu_sync() keeping in mind
1015 	 * that nopwrite and dedup are mutually exclusive.
1016 	 */
1017 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1018 	zio->io_prop.zp_nopwrite = nopwrite;
1019 	zio->io_prop.zp_copies = copies;
1020 	zio->io_bp_override = bp;
1021 }
1022 
1023 void
1024 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1025 {
1026 
1027 	zfs_blkptr_verify(spa, bp);
1028 
1029 	/*
1030 	 * The check for EMBEDDED is a performance optimization.  We
1031 	 * process the free here (by ignoring it) rather than
1032 	 * putting it on the list and then processing it in zio_free_sync().
1033 	 */
1034 	if (BP_IS_EMBEDDED(bp))
1035 		return;
1036 	metaslab_check_free(spa, bp);
1037 
1038 	/*
1039 	 * Frees that are for the currently-syncing txg, are not going to be
1040 	 * deferred, and which will not need to do a read (i.e. not GANG or
1041 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1042 	 * in-memory list for later processing.
1043 	 *
1044 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1045 	 * when the log space map feature is disabled. [see relevant comment
1046 	 * in spa_sync_iterate_to_convergence()]
1047 	 */
1048 	if (BP_IS_GANG(bp) ||
1049 	    BP_GET_DEDUP(bp) ||
1050 	    txg != spa->spa_syncing_txg ||
1051 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1052 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1053 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1054 	} else {
1055 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1056 	}
1057 }
1058 
1059 zio_t *
1060 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1061     enum zio_flag flags)
1062 {
1063 	zio_t *zio;
1064 	enum zio_stage stage = ZIO_FREE_PIPELINE;
1065 
1066 	ASSERT(!BP_IS_HOLE(bp));
1067 	ASSERT(spa_syncing_txg(spa) == txg);
1068 
1069 	if (BP_IS_EMBEDDED(bp))
1070 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1071 
1072 	metaslab_check_free(spa, bp);
1073 	arc_freed(spa, bp);
1074 	dsl_scan_freed(spa, bp);
1075 
1076 	/*
1077 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
1078 	 * or the DDT), so issue them asynchronously so that this thread is
1079 	 * not tied up.
1080 	 */
1081 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1082 		stage |= ZIO_STAGE_ISSUE_ASYNC;
1083 
1084 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1085 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1086 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1087 
1088 	return (zio);
1089 }
1090 
1091 zio_t *
1092 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1093     zio_done_func_t *done, void *private, enum zio_flag flags)
1094 {
1095 	zio_t *zio;
1096 
1097 	zfs_blkptr_verify(spa, bp);
1098 
1099 	if (BP_IS_EMBEDDED(bp))
1100 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1101 
1102 	/*
1103 	 * A claim is an allocation of a specific block.  Claims are needed
1104 	 * to support immediate writes in the intent log.  The issue is that
1105 	 * immediate writes contain committed data, but in a txg that was
1106 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1107 	 * the intent log claims all blocks that contain immediate write data
1108 	 * so that the SPA knows they're in use.
1109 	 *
1110 	 * All claims *must* be resolved in the first txg -- before the SPA
1111 	 * starts allocating blocks -- so that nothing is allocated twice.
1112 	 * If txg == 0 we just verify that the block is claimable.
1113 	 */
1114 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1115 	    spa_min_claim_txg(spa));
1116 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1117 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1118 
1119 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1120 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1121 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1122 	ASSERT0(zio->io_queued_timestamp);
1123 
1124 	return (zio);
1125 }
1126 
1127 zio_t *
1128 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1129     zio_done_func_t *done, void *private, enum zio_flag flags)
1130 {
1131 	zio_t *zio;
1132 	int c;
1133 
1134 	if (vd->vdev_children == 0) {
1135 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1136 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1137 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1138 
1139 		zio->io_cmd = cmd;
1140 	} else {
1141 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1142 
1143 		for (c = 0; c < vd->vdev_children; c++)
1144 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1145 			    done, private, flags));
1146 	}
1147 
1148 	return (zio);
1149 }
1150 
1151 zio_t *
1152 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1153     zio_done_func_t *done, void *private, zio_priority_t priority,
1154     enum zio_flag flags, enum trim_flag trim_flags)
1155 {
1156 	zio_t *zio;
1157 
1158 	ASSERT0(vd->vdev_children);
1159 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1160 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1161 	ASSERT3U(size, !=, 0);
1162 
1163 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1164 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1165 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1166 	zio->io_trim_flags = trim_flags;
1167 
1168 	return (zio);
1169 }
1170 
1171 zio_t *
1172 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1173     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1174     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1175 {
1176 	zio_t *zio;
1177 
1178 	ASSERT(vd->vdev_children == 0);
1179 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1180 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1181 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1182 
1183 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1184 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1185 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1186 
1187 	zio->io_prop.zp_checksum = checksum;
1188 
1189 	return (zio);
1190 }
1191 
1192 zio_t *
1193 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1194     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1195     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1196 {
1197 	zio_t *zio;
1198 
1199 	ASSERT(vd->vdev_children == 0);
1200 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1201 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1202 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1203 
1204 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1205 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1206 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1207 
1208 	zio->io_prop.zp_checksum = checksum;
1209 
1210 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1211 		/*
1212 		 * zec checksums are necessarily destructive -- they modify
1213 		 * the end of the write buffer to hold the verifier/checksum.
1214 		 * Therefore, we must make a local copy in case the data is
1215 		 * being written to multiple places in parallel.
1216 		 */
1217 		abd_t *wbuf = abd_alloc_sametype(data, size);
1218 		abd_copy(wbuf, data, size);
1219 
1220 		zio_push_transform(zio, wbuf, size, size, NULL);
1221 	}
1222 
1223 	return (zio);
1224 }
1225 
1226 /*
1227  * Create a child I/O to do some work for us.
1228  */
1229 zio_t *
1230 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1231     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1232     enum zio_flag flags, zio_done_func_t *done, void *private)
1233 {
1234 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1235 	zio_t *zio;
1236 
1237 	/*
1238 	 * vdev child I/Os do not propagate their error to the parent.
1239 	 * Therefore, for correct operation the caller *must* check for
1240 	 * and handle the error in the child i/o's done callback.
1241 	 * The only exceptions are i/os that we don't care about
1242 	 * (OPTIONAL or REPAIR).
1243 	 */
1244 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1245 	    done != NULL);
1246 
1247 	if (type == ZIO_TYPE_READ && bp != NULL) {
1248 		/*
1249 		 * If we have the bp, then the child should perform the
1250 		 * checksum and the parent need not.  This pushes error
1251 		 * detection as close to the leaves as possible and
1252 		 * eliminates redundant checksums in the interior nodes.
1253 		 */
1254 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1255 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1256 	}
1257 
1258 	if (vd->vdev_ops->vdev_op_leaf) {
1259 		ASSERT0(vd->vdev_children);
1260 		offset += VDEV_LABEL_START_SIZE;
1261 	}
1262 
1263 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1264 
1265 	/*
1266 	 * If we've decided to do a repair, the write is not speculative --
1267 	 * even if the original read was.
1268 	 */
1269 	if (flags & ZIO_FLAG_IO_REPAIR)
1270 		flags &= ~ZIO_FLAG_SPECULATIVE;
1271 
1272 	/*
1273 	 * If we're creating a child I/O that is not associated with a
1274 	 * top-level vdev, then the child zio is not an allocating I/O.
1275 	 * If this is a retried I/O then we ignore it since we will
1276 	 * have already processed the original allocating I/O.
1277 	 */
1278 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1279 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1280 		ASSERT(pio->io_metaslab_class != NULL);
1281 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1282 		ASSERT(type == ZIO_TYPE_WRITE);
1283 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1284 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1285 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1286 		    pio->io_child_type == ZIO_CHILD_GANG);
1287 
1288 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1289 	}
1290 
1291 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1292 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1293 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1294 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1295 
1296 	zio->io_physdone = pio->io_physdone;
1297 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1298 		zio->io_logical->io_phys_children++;
1299 
1300 	return (zio);
1301 }
1302 
1303 zio_t *
1304 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1305     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1306     zio_done_func_t *done, void *private)
1307 {
1308 	zio_t *zio;
1309 
1310 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1311 
1312 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1313 	    data, size, size, done, private, type, priority,
1314 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1315 	    vd, offset, NULL,
1316 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1317 
1318 	return (zio);
1319 }
1320 
1321 void
1322 zio_flush(zio_t *zio, vdev_t *vd)
1323 {
1324 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1325 	    NULL, NULL,
1326 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1327 }
1328 
1329 void
1330 zio_shrink(zio_t *zio, uint64_t size)
1331 {
1332 	ASSERT3P(zio->io_executor, ==, NULL);
1333 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1334 	ASSERT3U(size, <=, zio->io_size);
1335 
1336 	/*
1337 	 * We don't shrink for raidz because of problems with the
1338 	 * reconstruction when reading back less than the block size.
1339 	 * Note, BP_IS_RAIDZ() assumes no compression.
1340 	 */
1341 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1342 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1343 		/* we are not doing a raw write */
1344 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1345 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1346 	}
1347 }
1348 
1349 /*
1350  * ==========================================================================
1351  * Prepare to read and write logical blocks
1352  * ==========================================================================
1353  */
1354 
1355 static int
1356 zio_read_bp_init(zio_t *zio)
1357 {
1358 	blkptr_t *bp = zio->io_bp;
1359 	uint64_t psize =
1360 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1361 
1362 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1363 
1364 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1365 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1366 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1367 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1368 		    psize, psize, zio_decompress);
1369 	}
1370 
1371 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1372 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1373 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1374 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1375 		    psize, psize, zio_decrypt);
1376 	}
1377 
1378 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1379 		int psize = BPE_GET_PSIZE(bp);
1380 		void *data = abd_borrow_buf(zio->io_abd, psize);
1381 
1382 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1383 		decode_embedded_bp_compressed(bp, data);
1384 		abd_return_buf_copy(zio->io_abd, data, psize);
1385 	} else {
1386 		ASSERT(!BP_IS_EMBEDDED(bp));
1387 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1388 	}
1389 
1390 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1391 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1392 
1393 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1394 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1395 
1396 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1397 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1398 
1399 	return (ZIO_PIPELINE_CONTINUE);
1400 }
1401 
1402 static int
1403 zio_write_bp_init(zio_t *zio)
1404 {
1405 	if (!IO_IS_ALLOCATING(zio))
1406 		return (ZIO_PIPELINE_CONTINUE);
1407 
1408 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1409 
1410 	if (zio->io_bp_override) {
1411 		blkptr_t *bp = zio->io_bp;
1412 		zio_prop_t *zp = &zio->io_prop;
1413 
1414 		ASSERT(bp->blk_birth != zio->io_txg);
1415 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1416 
1417 		*bp = *zio->io_bp_override;
1418 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1419 
1420 		if (BP_IS_EMBEDDED(bp))
1421 			return (ZIO_PIPELINE_CONTINUE);
1422 
1423 		/*
1424 		 * If we've been overridden and nopwrite is set then
1425 		 * set the flag accordingly to indicate that a nopwrite
1426 		 * has already occurred.
1427 		 */
1428 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1429 			ASSERT(!zp->zp_dedup);
1430 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1431 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1432 			return (ZIO_PIPELINE_CONTINUE);
1433 		}
1434 
1435 		ASSERT(!zp->zp_nopwrite);
1436 
1437 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1438 			return (ZIO_PIPELINE_CONTINUE);
1439 
1440 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1441 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1442 
1443 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1444 		    !zp->zp_encrypt) {
1445 			BP_SET_DEDUP(bp, 1);
1446 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1447 			return (ZIO_PIPELINE_CONTINUE);
1448 		}
1449 
1450 		/*
1451 		 * We were unable to handle this as an override bp, treat
1452 		 * it as a regular write I/O.
1453 		 */
1454 		zio->io_bp_override = NULL;
1455 		*bp = zio->io_bp_orig;
1456 		zio->io_pipeline = zio->io_orig_pipeline;
1457 	}
1458 
1459 	return (ZIO_PIPELINE_CONTINUE);
1460 }
1461 
1462 static int
1463 zio_write_compress(zio_t *zio)
1464 {
1465 	spa_t *spa = zio->io_spa;
1466 	zio_prop_t *zp = &zio->io_prop;
1467 	enum zio_compress compress = zp->zp_compress;
1468 	blkptr_t *bp = zio->io_bp;
1469 	uint64_t lsize = zio->io_lsize;
1470 	uint64_t psize = zio->io_size;
1471 	int pass = 1;
1472 
1473 	/*
1474 	 * If our children haven't all reached the ready stage,
1475 	 * wait for them and then repeat this pipeline stage.
1476 	 */
1477 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1478 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1479 		return (ZIO_PIPELINE_STOP);
1480 	}
1481 
1482 	if (!IO_IS_ALLOCATING(zio))
1483 		return (ZIO_PIPELINE_CONTINUE);
1484 
1485 	if (zio->io_children_ready != NULL) {
1486 		/*
1487 		 * Now that all our children are ready, run the callback
1488 		 * associated with this zio in case it wants to modify the
1489 		 * data to be written.
1490 		 */
1491 		ASSERT3U(zp->zp_level, >, 0);
1492 		zio->io_children_ready(zio);
1493 	}
1494 
1495 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1496 	ASSERT(zio->io_bp_override == NULL);
1497 
1498 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1499 		/*
1500 		 * We're rewriting an existing block, which means we're
1501 		 * working on behalf of spa_sync().  For spa_sync() to
1502 		 * converge, it must eventually be the case that we don't
1503 		 * have to allocate new blocks.  But compression changes
1504 		 * the blocksize, which forces a reallocate, and makes
1505 		 * convergence take longer.  Therefore, after the first
1506 		 * few passes, stop compressing to ensure convergence.
1507 		 */
1508 		pass = spa_sync_pass(spa);
1509 
1510 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1511 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1512 		ASSERT(!BP_GET_DEDUP(bp));
1513 
1514 		if (pass >= zfs_sync_pass_dont_compress)
1515 			compress = ZIO_COMPRESS_OFF;
1516 
1517 		/* Make sure someone doesn't change their mind on overwrites */
1518 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1519 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1520 	}
1521 
1522 	/* If it's a compressed write that is not raw, compress the buffer. */
1523 	if (compress != ZIO_COMPRESS_OFF &&
1524 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1525 		void *cbuf = zio_buf_alloc(lsize);
1526 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1527 		if (psize == 0 || psize == lsize) {
1528 			compress = ZIO_COMPRESS_OFF;
1529 			zio_buf_free(cbuf, lsize);
1530 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1531 		    psize <= BPE_PAYLOAD_SIZE &&
1532 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1533 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1534 			encode_embedded_bp_compressed(bp,
1535 			    cbuf, compress, lsize, psize);
1536 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1537 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1538 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1539 			zio_buf_free(cbuf, lsize);
1540 			bp->blk_birth = zio->io_txg;
1541 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1542 			ASSERT(spa_feature_is_active(spa,
1543 			    SPA_FEATURE_EMBEDDED_DATA));
1544 			return (ZIO_PIPELINE_CONTINUE);
1545 		} else {
1546 			/*
1547 			 * Round up compressed size up to the ashift
1548 			 * of the smallest-ashift device, and zero the tail.
1549 			 * This ensures that the compressed size of the BP
1550 			 * (and thus compressratio property) are correct,
1551 			 * in that we charge for the padding used to fill out
1552 			 * the last sector.
1553 			 */
1554 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1555 			size_t rounded = (size_t)P2ROUNDUP(psize,
1556 			    1ULL << spa->spa_min_ashift);
1557 			if (rounded >= lsize) {
1558 				compress = ZIO_COMPRESS_OFF;
1559 				zio_buf_free(cbuf, lsize);
1560 				psize = lsize;
1561 			} else {
1562 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1563 				abd_take_ownership_of_buf(cdata, B_TRUE);
1564 				abd_zero_off(cdata, psize, rounded - psize);
1565 				psize = rounded;
1566 				zio_push_transform(zio, cdata,
1567 				    psize, lsize, NULL);
1568 			}
1569 		}
1570 
1571 		/*
1572 		 * We were unable to handle this as an override bp, treat
1573 		 * it as a regular write I/O.
1574 		 */
1575 		zio->io_bp_override = NULL;
1576 		*bp = zio->io_bp_orig;
1577 		zio->io_pipeline = zio->io_orig_pipeline;
1578 
1579 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1580 	    zp->zp_type == DMU_OT_DNODE) {
1581 		/*
1582 		 * The DMU actually relies on the zio layer's compression
1583 		 * to free metadnode blocks that have had all contained
1584 		 * dnodes freed. As a result, even when doing a raw
1585 		 * receive, we must check whether the block can be compressed
1586 		 * to a hole.
1587 		 */
1588 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1589 		    zio->io_abd, NULL, lsize);
1590 		if (psize == 0)
1591 			compress = ZIO_COMPRESS_OFF;
1592 	} else {
1593 		ASSERT3U(psize, !=, 0);
1594 	}
1595 
1596 	/*
1597 	 * The final pass of spa_sync() must be all rewrites, but the first
1598 	 * few passes offer a trade-off: allocating blocks defers convergence,
1599 	 * but newly allocated blocks are sequential, so they can be written
1600 	 * to disk faster.  Therefore, we allow the first few passes of
1601 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1602 	 * There should only be a handful of blocks after pass 1 in any case.
1603 	 */
1604 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1605 	    BP_GET_PSIZE(bp) == psize &&
1606 	    pass >= zfs_sync_pass_rewrite) {
1607 		VERIFY3U(psize, !=, 0);
1608 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1609 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1610 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1611 	} else {
1612 		BP_ZERO(bp);
1613 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1614 	}
1615 
1616 	if (psize == 0) {
1617 		if (zio->io_bp_orig.blk_birth != 0 &&
1618 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1619 			BP_SET_LSIZE(bp, lsize);
1620 			BP_SET_TYPE(bp, zp->zp_type);
1621 			BP_SET_LEVEL(bp, zp->zp_level);
1622 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1623 		}
1624 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1625 	} else {
1626 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1627 		BP_SET_LSIZE(bp, lsize);
1628 		BP_SET_TYPE(bp, zp->zp_type);
1629 		BP_SET_LEVEL(bp, zp->zp_level);
1630 		BP_SET_PSIZE(bp, psize);
1631 		BP_SET_COMPRESS(bp, compress);
1632 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1633 		BP_SET_DEDUP(bp, zp->zp_dedup);
1634 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1635 		if (zp->zp_dedup) {
1636 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1637 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1638 			ASSERT(!zp->zp_encrypt ||
1639 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1640 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1641 		}
1642 		if (zp->zp_nopwrite) {
1643 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1644 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1645 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1646 		}
1647 	}
1648 	return (ZIO_PIPELINE_CONTINUE);
1649 }
1650 
1651 static int
1652 zio_free_bp_init(zio_t *zio)
1653 {
1654 	blkptr_t *bp = zio->io_bp;
1655 
1656 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1657 		if (BP_GET_DEDUP(bp))
1658 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1659 	}
1660 
1661 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1662 
1663 	return (ZIO_PIPELINE_CONTINUE);
1664 }
1665 
1666 /*
1667  * ==========================================================================
1668  * Execute the I/O pipeline
1669  * ==========================================================================
1670  */
1671 
1672 static void
1673 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1674 {
1675 	spa_t *spa = zio->io_spa;
1676 	zio_type_t t = zio->io_type;
1677 	int flags = (cutinline ? TQ_FRONT : 0);
1678 
1679 	/*
1680 	 * If we're a config writer or a probe, the normal issue and
1681 	 * interrupt threads may all be blocked waiting for the config lock.
1682 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1683 	 */
1684 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1685 		t = ZIO_TYPE_NULL;
1686 
1687 	/*
1688 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1689 	 */
1690 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1691 		t = ZIO_TYPE_NULL;
1692 
1693 	/*
1694 	 * If this is a high priority I/O, then use the high priority taskq if
1695 	 * available.
1696 	 */
1697 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1698 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1699 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1700 		q++;
1701 
1702 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1703 
1704 	/*
1705 	 * NB: We are assuming that the zio can only be dispatched
1706 	 * to a single taskq at a time.  It would be a grievous error
1707 	 * to dispatch the zio to another taskq at the same time.
1708 	 */
1709 	ASSERT(zio->io_tqent.tqent_next == NULL);
1710 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1711 	    flags, &zio->io_tqent);
1712 }
1713 
1714 static boolean_t
1715 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1716 {
1717 	kthread_t *executor = zio->io_executor;
1718 	spa_t *spa = zio->io_spa;
1719 
1720 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1721 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1722 		uint_t i;
1723 		for (i = 0; i < tqs->stqs_count; i++) {
1724 			if (taskq_member(tqs->stqs_taskq[i], executor))
1725 				return (B_TRUE);
1726 		}
1727 	}
1728 
1729 	return (B_FALSE);
1730 }
1731 
1732 static int
1733 zio_issue_async(zio_t *zio)
1734 {
1735 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1736 
1737 	return (ZIO_PIPELINE_STOP);
1738 }
1739 
1740 void
1741 zio_interrupt(zio_t *zio)
1742 {
1743 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1744 }
1745 
1746 void
1747 zio_delay_interrupt(zio_t *zio)
1748 {
1749 	/*
1750 	 * The timeout_generic() function isn't defined in userspace, so
1751 	 * rather than trying to implement the function, the zio delay
1752 	 * functionality has been disabled for userspace builds.
1753 	 */
1754 
1755 #ifdef _KERNEL
1756 	/*
1757 	 * If io_target_timestamp is zero, then no delay has been registered
1758 	 * for this IO, thus jump to the end of this function and "skip" the
1759 	 * delay; issuing it directly to the zio layer.
1760 	 */
1761 	if (zio->io_target_timestamp != 0) {
1762 		hrtime_t now = gethrtime();
1763 
1764 		if (now >= zio->io_target_timestamp) {
1765 			/*
1766 			 * This IO has already taken longer than the target
1767 			 * delay to complete, so we don't want to delay it
1768 			 * any longer; we "miss" the delay and issue it
1769 			 * directly to the zio layer. This is likely due to
1770 			 * the target latency being set to a value less than
1771 			 * the underlying hardware can satisfy (e.g. delay
1772 			 * set to 1ms, but the disks take 10ms to complete an
1773 			 * IO request).
1774 			 */
1775 
1776 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1777 			    hrtime_t, now);
1778 
1779 			zio_interrupt(zio);
1780 		} else {
1781 			hrtime_t diff = zio->io_target_timestamp - now;
1782 
1783 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1784 			    hrtime_t, now, hrtime_t, diff);
1785 
1786 			(void) timeout_generic(CALLOUT_NORMAL,
1787 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1788 		}
1789 
1790 		return;
1791 	}
1792 #endif
1793 
1794 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1795 	zio_interrupt(zio);
1796 }
1797 
1798 /*
1799  * Execute the I/O pipeline until one of the following occurs:
1800  *
1801  *	(1) the I/O completes
1802  *	(2) the pipeline stalls waiting for dependent child I/Os
1803  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1804  *	(4) the I/O is delegated by vdev-level caching or aggregation
1805  *	(5) the I/O is deferred due to vdev-level queueing
1806  *	(6) the I/O is handed off to another thread.
1807  *
1808  * In all cases, the pipeline stops whenever there's no CPU work; it never
1809  * burns a thread in cv_wait().
1810  *
1811  * There's no locking on io_stage because there's no legitimate way
1812  * for multiple threads to be attempting to process the same I/O.
1813  */
1814 static zio_pipe_stage_t *zio_pipeline[];
1815 
1816 void
1817 zio_execute(zio_t *zio)
1818 {
1819 	zio->io_executor = curthread;
1820 
1821 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1822 
1823 	while (zio->io_stage < ZIO_STAGE_DONE) {
1824 		enum zio_stage pipeline = zio->io_pipeline;
1825 		enum zio_stage stage = zio->io_stage;
1826 		int rv;
1827 
1828 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1829 		ASSERT(ISP2(stage));
1830 		ASSERT(zio->io_stall == NULL);
1831 
1832 		do {
1833 			stage <<= 1;
1834 		} while ((stage & pipeline) == 0);
1835 
1836 		ASSERT(stage <= ZIO_STAGE_DONE);
1837 
1838 		/*
1839 		 * If we are in interrupt context and this pipeline stage
1840 		 * will grab a config lock that is held across I/O,
1841 		 * or may wait for an I/O that needs an interrupt thread
1842 		 * to complete, issue async to avoid deadlock.
1843 		 *
1844 		 * For VDEV_IO_START, we cut in line so that the io will
1845 		 * be sent to disk promptly.
1846 		 */
1847 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1848 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1849 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1850 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1851 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1852 			return;
1853 		}
1854 
1855 		zio->io_stage = stage;
1856 		zio->io_pipeline_trace |= zio->io_stage;
1857 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1858 
1859 		if (rv == ZIO_PIPELINE_STOP)
1860 			return;
1861 
1862 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1863 	}
1864 }
1865 
1866 /*
1867  * ==========================================================================
1868  * Initiate I/O, either sync or async
1869  * ==========================================================================
1870  */
1871 int
1872 zio_wait(zio_t *zio)
1873 {
1874 	int error;
1875 
1876 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1877 	ASSERT3P(zio->io_executor, ==, NULL);
1878 
1879 	zio->io_waiter = curthread;
1880 	ASSERT0(zio->io_queued_timestamp);
1881 	zio->io_queued_timestamp = gethrtime();
1882 
1883 	zio_execute(zio);
1884 
1885 	mutex_enter(&zio->io_lock);
1886 	while (zio->io_executor != NULL)
1887 		cv_wait(&zio->io_cv, &zio->io_lock);
1888 	mutex_exit(&zio->io_lock);
1889 
1890 	error = zio->io_error;
1891 	zio_destroy(zio);
1892 
1893 	return (error);
1894 }
1895 
1896 void
1897 zio_nowait(zio_t *zio)
1898 {
1899 	ASSERT3P(zio->io_executor, ==, NULL);
1900 
1901 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1902 	    zio_unique_parent(zio) == NULL) {
1903 		/*
1904 		 * This is a logical async I/O with no parent to wait for it.
1905 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1906 		 * will ensure they complete prior to unloading the pool.
1907 		 */
1908 		spa_t *spa = zio->io_spa;
1909 
1910 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1911 	}
1912 
1913 	ASSERT0(zio->io_queued_timestamp);
1914 	zio->io_queued_timestamp = gethrtime();
1915 	zio_execute(zio);
1916 }
1917 
1918 /*
1919  * ==========================================================================
1920  * Reexecute, cancel, or suspend/resume failed I/O
1921  * ==========================================================================
1922  */
1923 
1924 static void
1925 zio_reexecute(zio_t *pio)
1926 {
1927 	zio_t *cio, *cio_next;
1928 
1929 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1930 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1931 	ASSERT(pio->io_gang_leader == NULL);
1932 	ASSERT(pio->io_gang_tree == NULL);
1933 
1934 	pio->io_flags = pio->io_orig_flags;
1935 	pio->io_stage = pio->io_orig_stage;
1936 	pio->io_pipeline = pio->io_orig_pipeline;
1937 	pio->io_reexecute = 0;
1938 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1939 	pio->io_pipeline_trace = 0;
1940 	pio->io_error = 0;
1941 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1942 		pio->io_state[w] = 0;
1943 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1944 		pio->io_child_error[c] = 0;
1945 
1946 	if (IO_IS_ALLOCATING(pio))
1947 		BP_ZERO(pio->io_bp);
1948 
1949 	/*
1950 	 * As we reexecute pio's children, new children could be created.
1951 	 * New children go to the head of pio's io_child_list, however,
1952 	 * so we will (correctly) not reexecute them.  The key is that
1953 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1954 	 * cannot be affected by any side effects of reexecuting 'cio'.
1955 	 */
1956 	zio_link_t *zl = NULL;
1957 	mutex_enter(&pio->io_lock);
1958 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1959 		cio_next = zio_walk_children(pio, &zl);
1960 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1961 			pio->io_children[cio->io_child_type][w]++;
1962 		mutex_exit(&pio->io_lock);
1963 		zio_reexecute(cio);
1964 		mutex_enter(&pio->io_lock);
1965 	}
1966 	mutex_exit(&pio->io_lock);
1967 
1968 	/*
1969 	 * Now that all children have been reexecuted, execute the parent.
1970 	 * We don't reexecute "The Godfather" I/O here as it's the
1971 	 * responsibility of the caller to wait on it.
1972 	 */
1973 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1974 		pio->io_queued_timestamp = gethrtime();
1975 		zio_execute(pio);
1976 	}
1977 }
1978 
1979 void
1980 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1981 {
1982 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1983 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1984 		    "failure and the failure mode property for this pool "
1985 		    "is set to panic.", spa_name(spa));
1986 
1987 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
1988 	    NULL, NULL, 0, 0);
1989 
1990 	mutex_enter(&spa->spa_suspend_lock);
1991 
1992 	if (spa->spa_suspend_zio_root == NULL)
1993 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1994 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1995 		    ZIO_FLAG_GODFATHER);
1996 
1997 	spa->spa_suspended = reason;
1998 
1999 	if (zio != NULL) {
2000 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2001 		ASSERT(zio != spa->spa_suspend_zio_root);
2002 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2003 		ASSERT(zio_unique_parent(zio) == NULL);
2004 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2005 		zio_add_child(spa->spa_suspend_zio_root, zio);
2006 	}
2007 
2008 	mutex_exit(&spa->spa_suspend_lock);
2009 }
2010 
2011 int
2012 zio_resume(spa_t *spa)
2013 {
2014 	zio_t *pio;
2015 
2016 	/*
2017 	 * Reexecute all previously suspended i/o.
2018 	 */
2019 	mutex_enter(&spa->spa_suspend_lock);
2020 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2021 	cv_broadcast(&spa->spa_suspend_cv);
2022 	pio = spa->spa_suspend_zio_root;
2023 	spa->spa_suspend_zio_root = NULL;
2024 	mutex_exit(&spa->spa_suspend_lock);
2025 
2026 	if (pio == NULL)
2027 		return (0);
2028 
2029 	zio_reexecute(pio);
2030 	return (zio_wait(pio));
2031 }
2032 
2033 void
2034 zio_resume_wait(spa_t *spa)
2035 {
2036 	mutex_enter(&spa->spa_suspend_lock);
2037 	while (spa_suspended(spa))
2038 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2039 	mutex_exit(&spa->spa_suspend_lock);
2040 }
2041 
2042 /*
2043  * ==========================================================================
2044  * Gang blocks.
2045  *
2046  * A gang block is a collection of small blocks that looks to the DMU
2047  * like one large block.  When zio_dva_allocate() cannot find a block
2048  * of the requested size, due to either severe fragmentation or the pool
2049  * being nearly full, it calls zio_write_gang_block() to construct the
2050  * block from smaller fragments.
2051  *
2052  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2053  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2054  * an indirect block: it's an array of block pointers.  It consumes
2055  * only one sector and hence is allocatable regardless of fragmentation.
2056  * The gang header's bps point to its gang members, which hold the data.
2057  *
2058  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2059  * as the verifier to ensure uniqueness of the SHA256 checksum.
2060  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2061  * not the gang header.  This ensures that data block signatures (needed for
2062  * deduplication) are independent of how the block is physically stored.
2063  *
2064  * Gang blocks can be nested: a gang member may itself be a gang block.
2065  * Thus every gang block is a tree in which root and all interior nodes are
2066  * gang headers, and the leaves are normal blocks that contain user data.
2067  * The root of the gang tree is called the gang leader.
2068  *
2069  * To perform any operation (read, rewrite, free, claim) on a gang block,
2070  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2071  * in the io_gang_tree field of the original logical i/o by recursively
2072  * reading the gang leader and all gang headers below it.  This yields
2073  * an in-core tree containing the contents of every gang header and the
2074  * bps for every constituent of the gang block.
2075  *
2076  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2077  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2078  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2079  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2080  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2081  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2082  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2083  * of the gang header plus zio_checksum_compute() of the data to update the
2084  * gang header's blk_cksum as described above.
2085  *
2086  * The two-phase assemble/issue model solves the problem of partial failure --
2087  * what if you'd freed part of a gang block but then couldn't read the
2088  * gang header for another part?  Assembling the entire gang tree first
2089  * ensures that all the necessary gang header I/O has succeeded before
2090  * starting the actual work of free, claim, or write.  Once the gang tree
2091  * is assembled, free and claim are in-memory operations that cannot fail.
2092  *
2093  * In the event that a gang write fails, zio_dva_unallocate() walks the
2094  * gang tree to immediately free (i.e. insert back into the space map)
2095  * everything we've allocated.  This ensures that we don't get ENOSPC
2096  * errors during repeated suspend/resume cycles due to a flaky device.
2097  *
2098  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2099  * the gang tree, we won't modify the block, so we can safely defer the free
2100  * (knowing that the block is still intact).  If we *can* assemble the gang
2101  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2102  * each constituent bp and we can allocate a new block on the next sync pass.
2103  *
2104  * In all cases, the gang tree allows complete recovery from partial failure.
2105  * ==========================================================================
2106  */
2107 
2108 static void
2109 zio_gang_issue_func_done(zio_t *zio)
2110 {
2111 	abd_put(zio->io_abd);
2112 }
2113 
2114 static zio_t *
2115 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2116     uint64_t offset)
2117 {
2118 	if (gn != NULL)
2119 		return (pio);
2120 
2121 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2122 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2123 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2124 	    &pio->io_bookmark));
2125 }
2126 
2127 static zio_t *
2128 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2129     uint64_t offset)
2130 {
2131 	zio_t *zio;
2132 
2133 	if (gn != NULL) {
2134 		abd_t *gbh_abd =
2135 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2136 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2137 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2138 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2139 		    &pio->io_bookmark);
2140 		/*
2141 		 * As we rewrite each gang header, the pipeline will compute
2142 		 * a new gang block header checksum for it; but no one will
2143 		 * compute a new data checksum, so we do that here.  The one
2144 		 * exception is the gang leader: the pipeline already computed
2145 		 * its data checksum because that stage precedes gang assembly.
2146 		 * (Presently, nothing actually uses interior data checksums;
2147 		 * this is just good hygiene.)
2148 		 */
2149 		if (gn != pio->io_gang_leader->io_gang_tree) {
2150 			abd_t *buf = abd_get_offset(data, offset);
2151 
2152 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2153 			    buf, BP_GET_PSIZE(bp));
2154 
2155 			abd_put(buf);
2156 		}
2157 		/*
2158 		 * If we are here to damage data for testing purposes,
2159 		 * leave the GBH alone so that we can detect the damage.
2160 		 */
2161 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2162 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2163 	} else {
2164 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2165 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2166 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2167 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2168 	}
2169 
2170 	return (zio);
2171 }
2172 
2173 /* ARGSUSED */
2174 static zio_t *
2175 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2176     uint64_t offset)
2177 {
2178 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2179 	    ZIO_GANG_CHILD_FLAGS(pio)));
2180 }
2181 
2182 /* ARGSUSED */
2183 static zio_t *
2184 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2185     uint64_t offset)
2186 {
2187 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2188 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2189 }
2190 
2191 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2192 	NULL,
2193 	zio_read_gang,
2194 	zio_rewrite_gang,
2195 	zio_free_gang,
2196 	zio_claim_gang,
2197 	NULL
2198 };
2199 
2200 static void zio_gang_tree_assemble_done(zio_t *zio);
2201 
2202 static zio_gang_node_t *
2203 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2204 {
2205 	zio_gang_node_t *gn;
2206 
2207 	ASSERT(*gnpp == NULL);
2208 
2209 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2210 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2211 	*gnpp = gn;
2212 
2213 	return (gn);
2214 }
2215 
2216 static void
2217 zio_gang_node_free(zio_gang_node_t **gnpp)
2218 {
2219 	zio_gang_node_t *gn = *gnpp;
2220 
2221 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2222 		ASSERT(gn->gn_child[g] == NULL);
2223 
2224 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2225 	kmem_free(gn, sizeof (*gn));
2226 	*gnpp = NULL;
2227 }
2228 
2229 static void
2230 zio_gang_tree_free(zio_gang_node_t **gnpp)
2231 {
2232 	zio_gang_node_t *gn = *gnpp;
2233 
2234 	if (gn == NULL)
2235 		return;
2236 
2237 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2238 		zio_gang_tree_free(&gn->gn_child[g]);
2239 
2240 	zio_gang_node_free(gnpp);
2241 }
2242 
2243 static void
2244 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2245 {
2246 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2247 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2248 
2249 	ASSERT(gio->io_gang_leader == gio);
2250 	ASSERT(BP_IS_GANG(bp));
2251 
2252 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2253 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2254 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2255 }
2256 
2257 static void
2258 zio_gang_tree_assemble_done(zio_t *zio)
2259 {
2260 	zio_t *gio = zio->io_gang_leader;
2261 	zio_gang_node_t *gn = zio->io_private;
2262 	blkptr_t *bp = zio->io_bp;
2263 
2264 	ASSERT(gio == zio_unique_parent(zio));
2265 	ASSERT(zio->io_child_count == 0);
2266 
2267 	if (zio->io_error)
2268 		return;
2269 
2270 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2271 	if (BP_SHOULD_BYTESWAP(bp))
2272 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2273 
2274 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2275 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2276 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2277 
2278 	abd_put(zio->io_abd);
2279 
2280 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2281 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2282 		if (!BP_IS_GANG(gbp))
2283 			continue;
2284 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2285 	}
2286 }
2287 
2288 static void
2289 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2290     uint64_t offset)
2291 {
2292 	zio_t *gio = pio->io_gang_leader;
2293 	zio_t *zio;
2294 
2295 	ASSERT(BP_IS_GANG(bp) == !!gn);
2296 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2297 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2298 
2299 	/*
2300 	 * If you're a gang header, your data is in gn->gn_gbh.
2301 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2302 	 */
2303 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2304 
2305 	if (gn != NULL) {
2306 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2307 
2308 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2309 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2310 			if (BP_IS_HOLE(gbp))
2311 				continue;
2312 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2313 			    offset);
2314 			offset += BP_GET_PSIZE(gbp);
2315 		}
2316 	}
2317 
2318 	if (gn == gio->io_gang_tree)
2319 		ASSERT3U(gio->io_size, ==, offset);
2320 
2321 	if (zio != pio)
2322 		zio_nowait(zio);
2323 }
2324 
2325 static int
2326 zio_gang_assemble(zio_t *zio)
2327 {
2328 	blkptr_t *bp = zio->io_bp;
2329 
2330 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2331 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2332 
2333 	zio->io_gang_leader = zio;
2334 
2335 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2336 
2337 	return (ZIO_PIPELINE_CONTINUE);
2338 }
2339 
2340 static int
2341 zio_gang_issue(zio_t *zio)
2342 {
2343 	blkptr_t *bp = zio->io_bp;
2344 
2345 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2346 		return (ZIO_PIPELINE_STOP);
2347 	}
2348 
2349 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2350 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2351 
2352 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2353 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2354 		    0);
2355 	else
2356 		zio_gang_tree_free(&zio->io_gang_tree);
2357 
2358 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2359 
2360 	return (ZIO_PIPELINE_CONTINUE);
2361 }
2362 
2363 static void
2364 zio_write_gang_member_ready(zio_t *zio)
2365 {
2366 	zio_t *pio = zio_unique_parent(zio);
2367 	zio_t *gio = zio->io_gang_leader;
2368 	dva_t *cdva = zio->io_bp->blk_dva;
2369 	dva_t *pdva = pio->io_bp->blk_dva;
2370 	uint64_t asize;
2371 
2372 	if (BP_IS_HOLE(zio->io_bp))
2373 		return;
2374 
2375 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2376 
2377 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2378 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2379 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2380 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2381 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2382 
2383 	mutex_enter(&pio->io_lock);
2384 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2385 		ASSERT(DVA_GET_GANG(&pdva[d]));
2386 		asize = DVA_GET_ASIZE(&pdva[d]);
2387 		asize += DVA_GET_ASIZE(&cdva[d]);
2388 		DVA_SET_ASIZE(&pdva[d], asize);
2389 	}
2390 	mutex_exit(&pio->io_lock);
2391 }
2392 
2393 static void
2394 zio_write_gang_done(zio_t *zio)
2395 {
2396 	/*
2397 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2398 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2399 	 * check for it here as it is cleared in zio_ready.
2400 	 */
2401 	if (zio->io_abd != NULL)
2402 		abd_put(zio->io_abd);
2403 }
2404 
2405 static int
2406 zio_write_gang_block(zio_t *pio)
2407 {
2408 	spa_t *spa = pio->io_spa;
2409 	metaslab_class_t *mc = spa_normal_class(spa);
2410 	blkptr_t *bp = pio->io_bp;
2411 	zio_t *gio = pio->io_gang_leader;
2412 	zio_t *zio;
2413 	zio_gang_node_t *gn, **gnpp;
2414 	zio_gbh_phys_t *gbh;
2415 	abd_t *gbh_abd;
2416 	uint64_t txg = pio->io_txg;
2417 	uint64_t resid = pio->io_size;
2418 	uint64_t lsize;
2419 	int copies = gio->io_prop.zp_copies;
2420 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2421 	zio_prop_t zp;
2422 	int error;
2423 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2424 
2425 	/*
2426 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2427 	 * have a third copy.
2428 	 */
2429 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2430 		gbh_copies = SPA_DVAS_PER_BP - 1;
2431 
2432 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2433 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2434 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2435 		ASSERT(has_data);
2436 
2437 		flags |= METASLAB_ASYNC_ALLOC;
2438 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2439 		    pio));
2440 
2441 		/*
2442 		 * The logical zio has already placed a reservation for
2443 		 * 'copies' allocation slots but gang blocks may require
2444 		 * additional copies. These additional copies
2445 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2446 		 * since metaslab_class_throttle_reserve() always allows
2447 		 * additional reservations for gang blocks.
2448 		 */
2449 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2450 		    pio->io_allocator, pio, flags));
2451 	}
2452 
2453 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2454 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2455 	    &pio->io_alloc_list, pio, pio->io_allocator);
2456 	if (error) {
2457 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2458 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2459 			ASSERT(has_data);
2460 
2461 			/*
2462 			 * If we failed to allocate the gang block header then
2463 			 * we remove any additional allocation reservations that
2464 			 * we placed here. The original reservation will
2465 			 * be removed when the logical I/O goes to the ready
2466 			 * stage.
2467 			 */
2468 			metaslab_class_throttle_unreserve(mc,
2469 			    gbh_copies - copies, pio->io_allocator, pio);
2470 		}
2471 		pio->io_error = error;
2472 		return (ZIO_PIPELINE_CONTINUE);
2473 	}
2474 
2475 	if (pio == gio) {
2476 		gnpp = &gio->io_gang_tree;
2477 	} else {
2478 		gnpp = pio->io_private;
2479 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2480 	}
2481 
2482 	gn = zio_gang_node_alloc(gnpp);
2483 	gbh = gn->gn_gbh;
2484 	bzero(gbh, SPA_GANGBLOCKSIZE);
2485 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2486 
2487 	/*
2488 	 * Create the gang header.
2489 	 */
2490 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2491 	    zio_write_gang_done, NULL, pio->io_priority,
2492 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2493 
2494 	/*
2495 	 * Create and nowait the gang children.
2496 	 */
2497 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2498 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2499 		    SPA_MINBLOCKSIZE);
2500 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2501 
2502 		zp.zp_checksum = gio->io_prop.zp_checksum;
2503 		zp.zp_compress = ZIO_COMPRESS_OFF;
2504 		zp.zp_type = DMU_OT_NONE;
2505 		zp.zp_level = 0;
2506 		zp.zp_copies = gio->io_prop.zp_copies;
2507 		zp.zp_dedup = B_FALSE;
2508 		zp.zp_dedup_verify = B_FALSE;
2509 		zp.zp_nopwrite = B_FALSE;
2510 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2511 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2512 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2513 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2514 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2515 
2516 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2517 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2518 		    resid) : NULL, lsize, lsize, &zp,
2519 		    zio_write_gang_member_ready, NULL, NULL,
2520 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2521 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2522 
2523 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2524 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2525 			ASSERT(has_data);
2526 
2527 			/*
2528 			 * Gang children won't throttle but we should
2529 			 * account for their work, so reserve an allocation
2530 			 * slot for them here.
2531 			 */
2532 			VERIFY(metaslab_class_throttle_reserve(mc,
2533 			    zp.zp_copies, cio->io_allocator, cio, flags));
2534 		}
2535 		zio_nowait(cio);
2536 	}
2537 
2538 	/*
2539 	 * Set pio's pipeline to just wait for zio to finish.
2540 	 */
2541 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2542 
2543 	zio_nowait(zio);
2544 
2545 	return (ZIO_PIPELINE_CONTINUE);
2546 }
2547 
2548 /*
2549  * The zio_nop_write stage in the pipeline determines if allocating a
2550  * new bp is necessary.  The nopwrite feature can handle writes in
2551  * either syncing or open context (i.e. zil writes) and as a result is
2552  * mutually exclusive with dedup.
2553  *
2554  * By leveraging a cryptographically secure checksum, such as SHA256, we
2555  * can compare the checksums of the new data and the old to determine if
2556  * allocating a new block is required.  Note that our requirements for
2557  * cryptographic strength are fairly weak: there can't be any accidental
2558  * hash collisions, but we don't need to be secure against intentional
2559  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2560  * to write the file to begin with, and triggering an incorrect (hash
2561  * collision) nopwrite is no worse than simply writing to the file.
2562  * That said, there are no known attacks against the checksum algorithms
2563  * used for nopwrite, assuming that the salt and the checksums
2564  * themselves remain secret.
2565  */
2566 static int
2567 zio_nop_write(zio_t *zio)
2568 {
2569 	blkptr_t *bp = zio->io_bp;
2570 	blkptr_t *bp_orig = &zio->io_bp_orig;
2571 	zio_prop_t *zp = &zio->io_prop;
2572 
2573 	ASSERT(BP_GET_LEVEL(bp) == 0);
2574 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2575 	ASSERT(zp->zp_nopwrite);
2576 	ASSERT(!zp->zp_dedup);
2577 	ASSERT(zio->io_bp_override == NULL);
2578 	ASSERT(IO_IS_ALLOCATING(zio));
2579 
2580 	/*
2581 	 * Check to see if the original bp and the new bp have matching
2582 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2583 	 * If they don't then just continue with the pipeline which will
2584 	 * allocate a new bp.
2585 	 */
2586 	if (BP_IS_HOLE(bp_orig) ||
2587 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2588 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2589 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2590 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2591 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2592 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2593 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2594 		return (ZIO_PIPELINE_CONTINUE);
2595 
2596 	/*
2597 	 * If the checksums match then reset the pipeline so that we
2598 	 * avoid allocating a new bp and issuing any I/O.
2599 	 */
2600 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2601 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2602 		    ZCHECKSUM_FLAG_NOPWRITE);
2603 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2604 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2605 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2606 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2607 		    sizeof (uint64_t)) == 0);
2608 
2609 		*bp = *bp_orig;
2610 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2611 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2612 	}
2613 
2614 	return (ZIO_PIPELINE_CONTINUE);
2615 }
2616 
2617 /*
2618  * ==========================================================================
2619  * Dedup
2620  * ==========================================================================
2621  */
2622 static void
2623 zio_ddt_child_read_done(zio_t *zio)
2624 {
2625 	blkptr_t *bp = zio->io_bp;
2626 	ddt_entry_t *dde = zio->io_private;
2627 	ddt_phys_t *ddp;
2628 	zio_t *pio = zio_unique_parent(zio);
2629 
2630 	mutex_enter(&pio->io_lock);
2631 	ddp = ddt_phys_select(dde, bp);
2632 	if (zio->io_error == 0)
2633 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2634 
2635 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2636 		dde->dde_repair_abd = zio->io_abd;
2637 	else
2638 		abd_free(zio->io_abd);
2639 	mutex_exit(&pio->io_lock);
2640 }
2641 
2642 static int
2643 zio_ddt_read_start(zio_t *zio)
2644 {
2645 	blkptr_t *bp = zio->io_bp;
2646 
2647 	ASSERT(BP_GET_DEDUP(bp));
2648 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2649 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2650 
2651 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2652 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2653 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2654 		ddt_phys_t *ddp = dde->dde_phys;
2655 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2656 		blkptr_t blk;
2657 
2658 		ASSERT(zio->io_vsd == NULL);
2659 		zio->io_vsd = dde;
2660 
2661 		if (ddp_self == NULL)
2662 			return (ZIO_PIPELINE_CONTINUE);
2663 
2664 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2665 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2666 				continue;
2667 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2668 			    &blk);
2669 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2670 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2671 			    zio->io_size, zio_ddt_child_read_done, dde,
2672 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2673 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2674 		}
2675 		return (ZIO_PIPELINE_CONTINUE);
2676 	}
2677 
2678 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2679 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2680 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2681 
2682 	return (ZIO_PIPELINE_CONTINUE);
2683 }
2684 
2685 static int
2686 zio_ddt_read_done(zio_t *zio)
2687 {
2688 	blkptr_t *bp = zio->io_bp;
2689 
2690 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2691 		return (ZIO_PIPELINE_STOP);
2692 	}
2693 
2694 	ASSERT(BP_GET_DEDUP(bp));
2695 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2696 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2697 
2698 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2699 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2700 		ddt_entry_t *dde = zio->io_vsd;
2701 		if (ddt == NULL) {
2702 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2703 			return (ZIO_PIPELINE_CONTINUE);
2704 		}
2705 		if (dde == NULL) {
2706 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2707 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2708 			return (ZIO_PIPELINE_STOP);
2709 		}
2710 		if (dde->dde_repair_abd != NULL) {
2711 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2712 			    zio->io_size);
2713 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2714 		}
2715 		ddt_repair_done(ddt, dde);
2716 		zio->io_vsd = NULL;
2717 	}
2718 
2719 	ASSERT(zio->io_vsd == NULL);
2720 
2721 	return (ZIO_PIPELINE_CONTINUE);
2722 }
2723 
2724 static boolean_t
2725 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2726 {
2727 	spa_t *spa = zio->io_spa;
2728 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2729 
2730 	/* We should never get a raw, override zio */
2731 	ASSERT(!(zio->io_bp_override && do_raw));
2732 
2733 	/*
2734 	 * Note: we compare the original data, not the transformed data,
2735 	 * because when zio->io_bp is an override bp, we will not have
2736 	 * pushed the I/O transforms.  That's an important optimization
2737 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2738 	 * However, we should never get a raw, override zio so in these
2739 	 * cases we can compare the io_data directly. This is useful because
2740 	 * it allows us to do dedup verification even if we don't have access
2741 	 * to the original data (for instance, if the encryption keys aren't
2742 	 * loaded).
2743 	 */
2744 
2745 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2746 		zio_t *lio = dde->dde_lead_zio[p];
2747 
2748 		if (lio != NULL && do_raw) {
2749 			return (lio->io_size != zio->io_size ||
2750 			    abd_cmp(zio->io_abd, lio->io_abd,
2751 			    zio->io_size) != 0);
2752 		} else if (lio != NULL) {
2753 			return (lio->io_orig_size != zio->io_orig_size ||
2754 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2755 			    zio->io_orig_size) != 0);
2756 		}
2757 	}
2758 
2759 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2760 		ddt_phys_t *ddp = &dde->dde_phys[p];
2761 
2762 		if (ddp->ddp_phys_birth != 0 && do_raw) {
2763 			blkptr_t blk = *zio->io_bp;
2764 			uint64_t psize;
2765 			abd_t *tmpabd;
2766 			int error;
2767 
2768 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2769 			psize = BP_GET_PSIZE(&blk);
2770 
2771 			if (psize != zio->io_size)
2772 				return (B_TRUE);
2773 
2774 			ddt_exit(ddt);
2775 
2776 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
2777 
2778 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2779 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2780 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2781 			    ZIO_FLAG_RAW, &zio->io_bookmark));
2782 
2783 			if (error == 0) {
2784 				if (abd_cmp(tmpabd, zio->io_abd, psize) != 0)
2785 					error = SET_ERROR(ENOENT);
2786 			}
2787 
2788 			abd_free(tmpabd);
2789 			ddt_enter(ddt);
2790 			return (error != 0);
2791 		} else if (ddp->ddp_phys_birth != 0) {
2792 			arc_buf_t *abuf = NULL;
2793 			arc_flags_t aflags = ARC_FLAG_WAIT;
2794 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2795 			blkptr_t blk = *zio->io_bp;
2796 			int error;
2797 
2798 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2799 
2800 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2801 				return (B_TRUE);
2802 
2803 			ddt_exit(ddt);
2804 
2805 			/*
2806 			 * Intuitively, it would make more sense to compare
2807 			 * io_abd than io_orig_abd in the raw case since you
2808 			 * don't want to look at any transformations that have
2809 			 * happened to the data. However, for raw I/Os the
2810 			 * data will actually be the same in io_abd and
2811 			 * io_orig_abd, so all we have to do is issue this as
2812 			 * a raw ARC read.
2813 			 */
2814 			if (do_raw) {
2815 				zio_flags |= ZIO_FLAG_RAW;
2816 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2817 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2818 				    zio->io_size));
2819 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2820 			}
2821 
2822 			error = arc_read(NULL, spa, &blk,
2823 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2824 			    zio_flags, &aflags, &zio->io_bookmark);
2825 
2826 			if (error == 0) {
2827 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2828 				    zio->io_orig_size) != 0)
2829 					error = SET_ERROR(ENOENT);
2830 				arc_buf_destroy(abuf, &abuf);
2831 			}
2832 
2833 			ddt_enter(ddt);
2834 			return (error != 0);
2835 		}
2836 	}
2837 
2838 	return (B_FALSE);
2839 }
2840 
2841 static void
2842 zio_ddt_child_write_ready(zio_t *zio)
2843 {
2844 	int p = zio->io_prop.zp_copies;
2845 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2846 	ddt_entry_t *dde = zio->io_private;
2847 	ddt_phys_t *ddp = &dde->dde_phys[p];
2848 	zio_t *pio;
2849 
2850 	if (zio->io_error)
2851 		return;
2852 
2853 	ddt_enter(ddt);
2854 
2855 	ASSERT(dde->dde_lead_zio[p] == zio);
2856 
2857 	ddt_phys_fill(ddp, zio->io_bp);
2858 
2859 	zio_link_t *zl = NULL;
2860 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2861 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2862 
2863 	ddt_exit(ddt);
2864 }
2865 
2866 static void
2867 zio_ddt_child_write_done(zio_t *zio)
2868 {
2869 	int p = zio->io_prop.zp_copies;
2870 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2871 	ddt_entry_t *dde = zio->io_private;
2872 	ddt_phys_t *ddp = &dde->dde_phys[p];
2873 
2874 	ddt_enter(ddt);
2875 
2876 	ASSERT(ddp->ddp_refcnt == 0);
2877 	ASSERT(dde->dde_lead_zio[p] == zio);
2878 	dde->dde_lead_zio[p] = NULL;
2879 
2880 	if (zio->io_error == 0) {
2881 		zio_link_t *zl = NULL;
2882 		while (zio_walk_parents(zio, &zl) != NULL)
2883 			ddt_phys_addref(ddp);
2884 	} else {
2885 		ddt_phys_clear(ddp);
2886 	}
2887 
2888 	ddt_exit(ddt);
2889 }
2890 
2891 static void
2892 zio_ddt_ditto_write_done(zio_t *zio)
2893 {
2894 	int p = DDT_PHYS_DITTO;
2895 	zio_prop_t *zp = &zio->io_prop;
2896 	blkptr_t *bp = zio->io_bp;
2897 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2898 	ddt_entry_t *dde = zio->io_private;
2899 	ddt_phys_t *ddp = &dde->dde_phys[p];
2900 	ddt_key_t *ddk = &dde->dde_key;
2901 
2902 	ddt_enter(ddt);
2903 
2904 	ASSERT(ddp->ddp_refcnt == 0);
2905 	ASSERT(dde->dde_lead_zio[p] == zio);
2906 	dde->dde_lead_zio[p] = NULL;
2907 
2908 	if (zio->io_error == 0) {
2909 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2910 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2911 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2912 		if (ddp->ddp_phys_birth != 0)
2913 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2914 		ddt_phys_fill(ddp, bp);
2915 	}
2916 
2917 	ddt_exit(ddt);
2918 }
2919 
2920 static int
2921 zio_ddt_write(zio_t *zio)
2922 {
2923 	spa_t *spa = zio->io_spa;
2924 	blkptr_t *bp = zio->io_bp;
2925 	uint64_t txg = zio->io_txg;
2926 	zio_prop_t *zp = &zio->io_prop;
2927 	int p = zp->zp_copies;
2928 	int ditto_copies;
2929 	zio_t *cio = NULL;
2930 	zio_t *dio = NULL;
2931 	ddt_t *ddt = ddt_select(spa, bp);
2932 	ddt_entry_t *dde;
2933 	ddt_phys_t *ddp;
2934 
2935 	ASSERT(BP_GET_DEDUP(bp));
2936 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2937 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2938 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2939 
2940 	ddt_enter(ddt);
2941 	dde = ddt_lookup(ddt, bp, B_TRUE);
2942 	ddp = &dde->dde_phys[p];
2943 
2944 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2945 		/*
2946 		 * If we're using a weak checksum, upgrade to a strong checksum
2947 		 * and try again.  If we're already using a strong checksum,
2948 		 * we can't resolve it, so just convert to an ordinary write.
2949 		 * (And automatically e-mail a paper to Nature?)
2950 		 */
2951 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2952 		    ZCHECKSUM_FLAG_DEDUP)) {
2953 			zp->zp_checksum = spa_dedup_checksum(spa);
2954 			zio_pop_transforms(zio);
2955 			zio->io_stage = ZIO_STAGE_OPEN;
2956 			BP_ZERO(bp);
2957 		} else {
2958 			zp->zp_dedup = B_FALSE;
2959 			BP_SET_DEDUP(bp, B_FALSE);
2960 		}
2961 		ASSERT(!BP_GET_DEDUP(bp));
2962 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2963 		ddt_exit(ddt);
2964 		return (ZIO_PIPELINE_CONTINUE);
2965 	}
2966 
2967 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2968 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2969 
2970 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2971 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2972 		zio_prop_t czp = *zp;
2973 
2974 		czp.zp_copies = ditto_copies;
2975 
2976 		/*
2977 		 * If we arrived here with an override bp, we won't have run
2978 		 * the transform stack, so we won't have the data we need to
2979 		 * generate a child i/o.  So, toss the override bp and restart.
2980 		 * This is safe, because using the override bp is just an
2981 		 * optimization; and it's rare, so the cost doesn't matter.
2982 		 */
2983 		if (zio->io_bp_override) {
2984 			zio_pop_transforms(zio);
2985 			zio->io_stage = ZIO_STAGE_OPEN;
2986 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2987 			zio->io_bp_override = NULL;
2988 			BP_ZERO(bp);
2989 			ddt_exit(ddt);
2990 			return (ZIO_PIPELINE_CONTINUE);
2991 		}
2992 
2993 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2994 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2995 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2996 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2997 
2998 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2999 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3000 	}
3001 
3002 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3003 		if (ddp->ddp_phys_birth != 0)
3004 			ddt_bp_fill(ddp, bp, txg);
3005 		if (dde->dde_lead_zio[p] != NULL)
3006 			zio_add_child(zio, dde->dde_lead_zio[p]);
3007 		else
3008 			ddt_phys_addref(ddp);
3009 	} else if (zio->io_bp_override) {
3010 		ASSERT(bp->blk_birth == txg);
3011 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3012 		ddt_phys_fill(ddp, bp);
3013 		ddt_phys_addref(ddp);
3014 	} else {
3015 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3016 		    zio->io_orig_size, zio->io_orig_size, zp,
3017 		    zio_ddt_child_write_ready, NULL, NULL,
3018 		    zio_ddt_child_write_done, dde, zio->io_priority,
3019 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3020 
3021 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3022 		dde->dde_lead_zio[p] = cio;
3023 	}
3024 
3025 	ddt_exit(ddt);
3026 
3027 	if (cio)
3028 		zio_nowait(cio);
3029 	if (dio)
3030 		zio_nowait(dio);
3031 
3032 	return (ZIO_PIPELINE_CONTINUE);
3033 }
3034 
3035 ddt_entry_t *freedde; /* for debugging */
3036 
3037 static int
3038 zio_ddt_free(zio_t *zio)
3039 {
3040 	spa_t *spa = zio->io_spa;
3041 	blkptr_t *bp = zio->io_bp;
3042 	ddt_t *ddt = ddt_select(spa, bp);
3043 	ddt_entry_t *dde;
3044 	ddt_phys_t *ddp;
3045 
3046 	ASSERT(BP_GET_DEDUP(bp));
3047 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3048 
3049 	ddt_enter(ddt);
3050 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3051 	ddp = ddt_phys_select(dde, bp);
3052 	ddt_phys_decref(ddp);
3053 	ddt_exit(ddt);
3054 
3055 	return (ZIO_PIPELINE_CONTINUE);
3056 }
3057 
3058 /*
3059  * ==========================================================================
3060  * Allocate and free blocks
3061  * ==========================================================================
3062  */
3063 
3064 static zio_t *
3065 zio_io_to_allocate(spa_t *spa, int allocator)
3066 {
3067 	zio_t *zio;
3068 
3069 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3070 
3071 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3072 	if (zio == NULL)
3073 		return (NULL);
3074 
3075 	ASSERT(IO_IS_ALLOCATING(zio));
3076 
3077 	/*
3078 	 * Try to place a reservation for this zio. If we're unable to
3079 	 * reserve then we throttle.
3080 	 */
3081 	ASSERT3U(zio->io_allocator, ==, allocator);
3082 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3083 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3084 		return (NULL);
3085 	}
3086 
3087 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3088 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3089 
3090 	return (zio);
3091 }
3092 
3093 static int
3094 zio_dva_throttle(zio_t *zio)
3095 {
3096 	spa_t *spa = zio->io_spa;
3097 	zio_t *nio;
3098 	metaslab_class_t *mc;
3099 
3100 	/* locate an appropriate allocation class */
3101 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3102 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3103 
3104 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3105 	    !mc->mc_alloc_throttle_enabled ||
3106 	    zio->io_child_type == ZIO_CHILD_GANG ||
3107 	    zio->io_flags & ZIO_FLAG_NODATA) {
3108 		return (ZIO_PIPELINE_CONTINUE);
3109 	}
3110 
3111 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3112 
3113 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3114 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3115 
3116 	zbookmark_phys_t *bm = &zio->io_bookmark;
3117 	/*
3118 	 * We want to try to use as many allocators as possible to help improve
3119 	 * performance, but we also want logically adjacent IOs to be physically
3120 	 * adjacent to improve sequential read performance. We chunk each object
3121 	 * into 2^20 block regions, and then hash based on the objset, object,
3122 	 * level, and region to accomplish both of these goals.
3123 	 */
3124 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3125 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3126 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3127 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3128 	zio->io_metaslab_class = mc;
3129 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3130 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3131 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3132 
3133 	if (nio == zio)
3134 		return (ZIO_PIPELINE_CONTINUE);
3135 
3136 	if (nio != NULL) {
3137 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3138 		/*
3139 		 * We are passing control to a new zio so make sure that
3140 		 * it is processed by a different thread. We do this to
3141 		 * avoid stack overflows that can occur when parents are
3142 		 * throttled and children are making progress. We allow
3143 		 * it to go to the head of the taskq since it's already
3144 		 * been waiting.
3145 		 */
3146 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3147 	}
3148 	return (ZIO_PIPELINE_STOP);
3149 }
3150 
3151 static void
3152 zio_allocate_dispatch(spa_t *spa, int allocator)
3153 {
3154 	zio_t *zio;
3155 
3156 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3157 	zio = zio_io_to_allocate(spa, allocator);
3158 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3159 	if (zio == NULL)
3160 		return;
3161 
3162 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3163 	ASSERT0(zio->io_error);
3164 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3165 }
3166 
3167 static int
3168 zio_dva_allocate(zio_t *zio)
3169 {
3170 	spa_t *spa = zio->io_spa;
3171 	metaslab_class_t *mc;
3172 	blkptr_t *bp = zio->io_bp;
3173 	int error;
3174 	int flags = 0;
3175 
3176 	if (zio->io_gang_leader == NULL) {
3177 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3178 		zio->io_gang_leader = zio;
3179 	}
3180 
3181 	ASSERT(BP_IS_HOLE(bp));
3182 	ASSERT0(BP_GET_NDVAS(bp));
3183 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3184 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3185 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3186 
3187 	if (zio->io_flags & ZIO_FLAG_NODATA)
3188 		flags |= METASLAB_DONT_THROTTLE;
3189 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3190 		flags |= METASLAB_GANG_CHILD;
3191 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3192 		flags |= METASLAB_ASYNC_ALLOC;
3193 
3194 	/*
3195 	 * if not already chosen, locate an appropriate allocation class
3196 	 */
3197 	mc = zio->io_metaslab_class;
3198 	if (mc == NULL) {
3199 		mc = spa_preferred_class(spa, zio->io_size,
3200 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3201 		    zio->io_prop.zp_zpl_smallblk);
3202 		zio->io_metaslab_class = mc;
3203 	}
3204 
3205 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3206 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3207 	    &zio->io_alloc_list, zio, zio->io_allocator);
3208 
3209 	/*
3210 	 * Fallback to normal class when an alloc class is full
3211 	 */
3212 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3213 		/*
3214 		 * If throttling, transfer reservation over to normal class.
3215 		 * The io_allocator slot can remain the same even though we
3216 		 * are switching classes.
3217 		 */
3218 		if (mc->mc_alloc_throttle_enabled &&
3219 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3220 			metaslab_class_throttle_unreserve(mc,
3221 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3222 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3223 
3224 			mc = spa_normal_class(spa);
3225 			VERIFY(metaslab_class_throttle_reserve(mc,
3226 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3227 			    flags | METASLAB_MUST_RESERVE));
3228 		} else {
3229 			mc = spa_normal_class(spa);
3230 		}
3231 		zio->io_metaslab_class = mc;
3232 
3233 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3234 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3235 		    &zio->io_alloc_list, zio, zio->io_allocator);
3236 	}
3237 
3238 	if (error != 0) {
3239 		zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
3240 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3241 		    error);
3242 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3243 			return (zio_write_gang_block(zio));
3244 		zio->io_error = error;
3245 	}
3246 
3247 	return (ZIO_PIPELINE_CONTINUE);
3248 }
3249 
3250 static int
3251 zio_dva_free(zio_t *zio)
3252 {
3253 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3254 
3255 	return (ZIO_PIPELINE_CONTINUE);
3256 }
3257 
3258 static int
3259 zio_dva_claim(zio_t *zio)
3260 {
3261 	int error;
3262 
3263 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3264 	if (error)
3265 		zio->io_error = error;
3266 
3267 	return (ZIO_PIPELINE_CONTINUE);
3268 }
3269 
3270 /*
3271  * Undo an allocation.  This is used by zio_done() when an I/O fails
3272  * and we want to give back the block we just allocated.
3273  * This handles both normal blocks and gang blocks.
3274  */
3275 static void
3276 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3277 {
3278 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3279 	ASSERT(zio->io_bp_override == NULL);
3280 
3281 	if (!BP_IS_HOLE(bp))
3282 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3283 
3284 	if (gn != NULL) {
3285 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3286 			zio_dva_unallocate(zio, gn->gn_child[g],
3287 			    &gn->gn_gbh->zg_blkptr[g]);
3288 		}
3289 	}
3290 }
3291 
3292 /*
3293  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3294  */
3295 int
3296 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3297     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3298 {
3299 	int error = 1;
3300 	zio_alloc_list_t io_alloc_list;
3301 
3302 	ASSERT(txg > spa_syncing_txg(spa));
3303 
3304 	metaslab_trace_init(&io_alloc_list);
3305 
3306 	/*
3307 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3308 	 * Fill in the obvious ones before calling into metaslab_alloc().
3309 	 */
3310 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3311 	BP_SET_PSIZE(new_bp, size);
3312 	BP_SET_LEVEL(new_bp, 0);
3313 
3314 	/*
3315 	 * When allocating a zil block, we don't have information about
3316 	 * the final destination of the block except the objset it's part
3317 	 * of, so we just hash the objset ID to pick the allocator to get
3318 	 * some parallelism.
3319 	 */
3320 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3321 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3322 	    cityhash4(0, 0, 0,
3323 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3324 	if (error == 0) {
3325 		*slog = TRUE;
3326 	} else {
3327 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3328 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3329 		    &io_alloc_list, NULL, cityhash4(0, 0, 0,
3330 		    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3331 		if (error == 0)
3332 			*slog = FALSE;
3333 	}
3334 	metaslab_trace_fini(&io_alloc_list);
3335 
3336 	if (error == 0) {
3337 		BP_SET_LSIZE(new_bp, size);
3338 		BP_SET_PSIZE(new_bp, size);
3339 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3340 		BP_SET_CHECKSUM(new_bp,
3341 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3342 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3343 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3344 		BP_SET_LEVEL(new_bp, 0);
3345 		BP_SET_DEDUP(new_bp, 0);
3346 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3347 
3348 		/*
3349 		 * encrypted blocks will require an IV and salt. We generate
3350 		 * these now since we will not be rewriting the bp at
3351 		 * rewrite time.
3352 		 */
3353 		if (os->os_encrypted) {
3354 			uint8_t iv[ZIO_DATA_IV_LEN];
3355 			uint8_t salt[ZIO_DATA_SALT_LEN];
3356 
3357 			BP_SET_CRYPT(new_bp, B_TRUE);
3358 			VERIFY0(spa_crypt_get_salt(spa,
3359 			    dmu_objset_id(os), salt));
3360 			VERIFY0(zio_crypt_generate_iv(iv));
3361 
3362 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3363 		}
3364 	} else {
3365 		zfs_dbgmsg("%s: zil block allocation failure: "
3366 		    "size %llu, error %d", spa_name(spa), size, error);
3367 	}
3368 
3369 	return (error);
3370 }
3371 
3372 /*
3373  * ==========================================================================
3374  * Read and write to physical devices
3375  * ==========================================================================
3376  */
3377 
3378 /*
3379  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3380  * stops after this stage and will resume upon I/O completion.
3381  * However, there are instances where the vdev layer may need to
3382  * continue the pipeline when an I/O was not issued. Since the I/O
3383  * that was sent to the vdev layer might be different than the one
3384  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3385  * force the underlying vdev layers to call either zio_execute() or
3386  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3387  */
3388 static int
3389 zio_vdev_io_start(zio_t *zio)
3390 {
3391 	vdev_t *vd = zio->io_vd;
3392 	uint64_t align;
3393 	spa_t *spa = zio->io_spa;
3394 
3395 	zio->io_delay = 0;
3396 
3397 	ASSERT(zio->io_error == 0);
3398 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3399 
3400 	if (vd == NULL) {
3401 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3402 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3403 
3404 		/*
3405 		 * The mirror_ops handle multiple DVAs in a single BP.
3406 		 */
3407 		vdev_mirror_ops.vdev_op_io_start(zio);
3408 		return (ZIO_PIPELINE_STOP);
3409 	}
3410 
3411 	ASSERT3P(zio->io_logical, !=, zio);
3412 	if (zio->io_type == ZIO_TYPE_WRITE) {
3413 		ASSERT(spa->spa_trust_config);
3414 
3415 		/*
3416 		 * Note: the code can handle other kinds of writes,
3417 		 * but we don't expect them.
3418 		 */
3419 		if (zio->io_vd->vdev_removing) {
3420 			ASSERT(zio->io_flags &
3421 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3422 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3423 		}
3424 	}
3425 
3426 	align = 1ULL << vd->vdev_top->vdev_ashift;
3427 
3428 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3429 	    P2PHASE(zio->io_size, align) != 0) {
3430 		/* Transform logical writes to be a full physical block size. */
3431 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3432 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3433 		ASSERT(vd == vd->vdev_top);
3434 		if (zio->io_type == ZIO_TYPE_WRITE) {
3435 			abd_copy(abuf, zio->io_abd, zio->io_size);
3436 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3437 		}
3438 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3439 	}
3440 
3441 	/*
3442 	 * If this is not a physical io, make sure that it is properly aligned
3443 	 * before proceeding.
3444 	 */
3445 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3446 		ASSERT0(P2PHASE(zio->io_offset, align));
3447 		ASSERT0(P2PHASE(zio->io_size, align));
3448 	} else {
3449 		/*
3450 		 * For physical writes, we allow 512b aligned writes and assume
3451 		 * the device will perform a read-modify-write as necessary.
3452 		 */
3453 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3454 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3455 	}
3456 
3457 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3458 
3459 	/*
3460 	 * If this is a repair I/O, and there's no self-healing involved --
3461 	 * that is, we're just resilvering what we expect to resilver --
3462 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3463 	 * This prevents spurious resilvering.
3464 	 *
3465 	 * There are a few ways that we can end up creating these spurious
3466 	 * resilver i/os:
3467 	 *
3468 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3469 	 * dirty DTL.  The mirror code will issue resilver writes to
3470 	 * each DVA, including the one(s) that are not on vdevs with dirty
3471 	 * DTLs.
3472 	 *
3473 	 * 2. With nested replication, which happens when we have a
3474 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3475 	 * For example, given mirror(replacing(A+B), C), it's likely that
3476 	 * only A is out of date (it's the new device). In this case, we'll
3477 	 * read from C, then use the data to resilver A+B -- but we don't
3478 	 * actually want to resilver B, just A. The top-level mirror has no
3479 	 * way to know this, so instead we just discard unnecessary repairs
3480 	 * as we work our way down the vdev tree.
3481 	 *
3482 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3483 	 * The same logic applies to any form of nested replication: ditto
3484 	 * + mirror, RAID-Z + replacing, etc.
3485 	 *
3486 	 * However, indirect vdevs point off to other vdevs which may have
3487 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3488 	 * will be properly bypassed instead.
3489 	 */
3490 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3491 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3492 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3493 	    vd->vdev_ops != &vdev_indirect_ops &&
3494 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3495 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3496 		zio_vdev_io_bypass(zio);
3497 		return (ZIO_PIPELINE_CONTINUE);
3498 	}
3499 
3500 	if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3501 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3502 
3503 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3504 			return (ZIO_PIPELINE_CONTINUE);
3505 
3506 		if ((zio = vdev_queue_io(zio)) == NULL)
3507 			return (ZIO_PIPELINE_STOP);
3508 
3509 		if (!vdev_accessible(vd, zio)) {
3510 			zio->io_error = SET_ERROR(ENXIO);
3511 			zio_interrupt(zio);
3512 			return (ZIO_PIPELINE_STOP);
3513 		}
3514 		zio->io_delay = gethrtime();
3515 	}
3516 
3517 	vd->vdev_ops->vdev_op_io_start(zio);
3518 	return (ZIO_PIPELINE_STOP);
3519 }
3520 
3521 static int
3522 zio_vdev_io_done(zio_t *zio)
3523 {
3524 	vdev_t *vd = zio->io_vd;
3525 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3526 	boolean_t unexpected_error = B_FALSE;
3527 
3528 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3529 		return (ZIO_PIPELINE_STOP);
3530 	}
3531 
3532 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3533 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3534 
3535 	if (zio->io_delay)
3536 		zio->io_delay = gethrtime() - zio->io_delay;
3537 
3538 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3539 
3540 		vdev_queue_io_done(zio);
3541 
3542 		if (zio->io_type == ZIO_TYPE_WRITE)
3543 			vdev_cache_write(zio);
3544 
3545 		if (zio_injection_enabled && zio->io_error == 0)
3546 			zio->io_error = zio_handle_device_injection(vd,
3547 			    zio, EIO);
3548 
3549 		if (zio_injection_enabled && zio->io_error == 0)
3550 			zio->io_error = zio_handle_label_injection(zio, EIO);
3551 
3552 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3553 			if (!vdev_accessible(vd, zio)) {
3554 				zio->io_error = SET_ERROR(ENXIO);
3555 			} else {
3556 				unexpected_error = B_TRUE;
3557 			}
3558 		}
3559 	}
3560 
3561 	ops->vdev_op_io_done(zio);
3562 
3563 	if (unexpected_error)
3564 		VERIFY(vdev_probe(vd, zio) == NULL);
3565 
3566 	return (ZIO_PIPELINE_CONTINUE);
3567 }
3568 
3569 /*
3570  * This function is used to change the priority of an existing zio that is
3571  * currently in-flight. This is used by the arc to upgrade priority in the
3572  * event that a demand read is made for a block that is currently queued
3573  * as a scrub or async read IO. Otherwise, the high priority read request
3574  * would end up having to wait for the lower priority IO.
3575  */
3576 void
3577 zio_change_priority(zio_t *pio, zio_priority_t priority)
3578 {
3579 	zio_t *cio, *cio_next;
3580 	zio_link_t *zl = NULL;
3581 
3582 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3583 
3584 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3585 		vdev_queue_change_io_priority(pio, priority);
3586 	} else {
3587 		pio->io_priority = priority;
3588 	}
3589 
3590 	mutex_enter(&pio->io_lock);
3591 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3592 		cio_next = zio_walk_children(pio, &zl);
3593 		zio_change_priority(cio, priority);
3594 	}
3595 	mutex_exit(&pio->io_lock);
3596 }
3597 
3598 /*
3599  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3600  * disk, and use that to finish the checksum ereport later.
3601  */
3602 static void
3603 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3604     const abd_t *good_buf)
3605 {
3606 	/* no processing needed */
3607 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3608 }
3609 
3610 /*ARGSUSED*/
3611 void
3612 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3613 {
3614 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3615 
3616 	abd_copy(abd, zio->io_abd, zio->io_size);
3617 
3618 	zcr->zcr_cbinfo = zio->io_size;
3619 	zcr->zcr_cbdata = abd;
3620 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3621 	zcr->zcr_free = zio_abd_free;
3622 }
3623 
3624 static int
3625 zio_vdev_io_assess(zio_t *zio)
3626 {
3627 	vdev_t *vd = zio->io_vd;
3628 
3629 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3630 		return (ZIO_PIPELINE_STOP);
3631 	}
3632 
3633 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3634 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3635 
3636 	if (zio->io_vsd != NULL) {
3637 		zio->io_vsd_ops->vsd_free(zio);
3638 		zio->io_vsd = NULL;
3639 	}
3640 
3641 	if (zio_injection_enabled && zio->io_error == 0)
3642 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3643 
3644 	/*
3645 	 * If the I/O failed, determine whether we should attempt to retry it.
3646 	 *
3647 	 * On retry, we cut in line in the issue queue, since we don't want
3648 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3649 	 */
3650 	if (zio->io_error && vd == NULL &&
3651 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3652 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3653 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3654 		zio->io_error = 0;
3655 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3656 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3657 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3658 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3659 		    zio_requeue_io_start_cut_in_line);
3660 		return (ZIO_PIPELINE_STOP);
3661 	}
3662 
3663 	/*
3664 	 * If we got an error on a leaf device, convert it to ENXIO
3665 	 * if the device is not accessible at all.
3666 	 */
3667 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3668 	    !vdev_accessible(vd, zio))
3669 		zio->io_error = SET_ERROR(ENXIO);
3670 
3671 	/*
3672 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3673 	 * set vdev_cant_write so that we stop trying to allocate from it.
3674 	 */
3675 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3676 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3677 		vd->vdev_cant_write = B_TRUE;
3678 	}
3679 
3680 	/*
3681 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3682 	 * attempts will ever succeed. In this case we set a persistent
3683 	 * boolean flag so that we don't bother with it in the future.
3684 	 */
3685 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3686 	    zio->io_type == ZIO_TYPE_IOCTL &&
3687 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3688 		vd->vdev_nowritecache = B_TRUE;
3689 
3690 	if (zio->io_error)
3691 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3692 
3693 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3694 	    zio->io_physdone != NULL) {
3695 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3696 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3697 		zio->io_physdone(zio->io_logical);
3698 	}
3699 
3700 	return (ZIO_PIPELINE_CONTINUE);
3701 }
3702 
3703 void
3704 zio_vdev_io_reissue(zio_t *zio)
3705 {
3706 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3707 	ASSERT(zio->io_error == 0);
3708 
3709 	zio->io_stage >>= 1;
3710 }
3711 
3712 void
3713 zio_vdev_io_redone(zio_t *zio)
3714 {
3715 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3716 
3717 	zio->io_stage >>= 1;
3718 }
3719 
3720 void
3721 zio_vdev_io_bypass(zio_t *zio)
3722 {
3723 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3724 	ASSERT(zio->io_error == 0);
3725 
3726 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3727 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3728 }
3729 
3730 /*
3731  * ==========================================================================
3732  * Encrypt and store encryption parameters
3733  * ==========================================================================
3734  */
3735 
3736 
3737 /*
3738  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3739  * managing the storage of encryption parameters and passing them to the
3740  * lower-level encryption functions.
3741  */
3742 static int
3743 zio_encrypt(zio_t *zio)
3744 {
3745 	zio_prop_t *zp = &zio->io_prop;
3746 	spa_t *spa = zio->io_spa;
3747 	blkptr_t *bp = zio->io_bp;
3748 	uint64_t psize = BP_GET_PSIZE(bp);
3749 	uint64_t dsobj = zio->io_bookmark.zb_objset;
3750 	dmu_object_type_t ot = BP_GET_TYPE(bp);
3751 	void *enc_buf = NULL;
3752 	abd_t *eabd = NULL;
3753 	uint8_t salt[ZIO_DATA_SALT_LEN];
3754 	uint8_t iv[ZIO_DATA_IV_LEN];
3755 	uint8_t mac[ZIO_DATA_MAC_LEN];
3756 	boolean_t no_crypt = B_FALSE;
3757 
3758 	/* the root zio already encrypted the data */
3759 	if (zio->io_child_type == ZIO_CHILD_GANG)
3760 		return (ZIO_PIPELINE_CONTINUE);
3761 
3762 	/* only ZIL blocks are re-encrypted on rewrite */
3763 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3764 		return (ZIO_PIPELINE_CONTINUE);
3765 
3766 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3767 		BP_SET_CRYPT(bp, B_FALSE);
3768 		return (ZIO_PIPELINE_CONTINUE);
3769 	}
3770 
3771 	/* if we are doing raw encryption set the provided encryption params */
3772 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3773 		ASSERT0(BP_GET_LEVEL(bp));
3774 		BP_SET_CRYPT(bp, B_TRUE);
3775 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3776 		if (ot != DMU_OT_OBJSET)
3777 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3778 
3779 		/* dnode blocks must be written out in the provided byteorder */
3780 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3781 		    ot == DMU_OT_DNODE) {
3782 			void *bswap_buf = zio_buf_alloc(psize);
3783 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3784 
3785 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3786 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3787 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3788 			    psize);
3789 
3790 			abd_take_ownership_of_buf(babd, B_TRUE);
3791 			zio_push_transform(zio, babd, psize, psize, NULL);
3792 		}
3793 
3794 		if (DMU_OT_IS_ENCRYPTED(ot))
3795 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3796 		return (ZIO_PIPELINE_CONTINUE);
3797 	}
3798 
3799 	/* indirect blocks only maintain a cksum of the lower level MACs */
3800 	if (BP_GET_LEVEL(bp) > 0) {
3801 		BP_SET_CRYPT(bp, B_TRUE);
3802 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3803 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3804 		    mac));
3805 		zio_crypt_encode_mac_bp(bp, mac);
3806 		return (ZIO_PIPELINE_CONTINUE);
3807 	}
3808 
3809 	/*
3810 	 * Objset blocks are a special case since they have 2 256-bit MACs
3811 	 * embedded within them.
3812 	 */
3813 	if (ot == DMU_OT_OBJSET) {
3814 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3815 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3816 		BP_SET_CRYPT(bp, B_TRUE);
3817 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3818 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3819 		return (ZIO_PIPELINE_CONTINUE);
3820 	}
3821 
3822 	/* unencrypted object types are only authenticated with a MAC */
3823 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
3824 		BP_SET_CRYPT(bp, B_TRUE);
3825 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3826 		    zio->io_abd, psize, mac));
3827 		zio_crypt_encode_mac_bp(bp, mac);
3828 		return (ZIO_PIPELINE_CONTINUE);
3829 	}
3830 
3831 	/*
3832 	 * Later passes of sync-to-convergence may decide to rewrite data
3833 	 * in place to avoid more disk reallocations. This presents a problem
3834 	 * for encryption because this consitutes rewriting the new data with
3835 	 * the same encryption key and IV. However, this only applies to blocks
3836 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
3837 	 * MOS. We assert that the zio is allocating or an intent log write
3838 	 * to enforce this.
3839 	 */
3840 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3841 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3842 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3843 	ASSERT3U(psize, !=, 0);
3844 
3845 	enc_buf = zio_buf_alloc(psize);
3846 	eabd = abd_get_from_buf(enc_buf, psize);
3847 	abd_take_ownership_of_buf(eabd, B_TRUE);
3848 
3849 	/*
3850 	 * For an explanation of what encryption parameters are stored
3851 	 * where, see the block comment in zio_crypt.c.
3852 	 */
3853 	if (ot == DMU_OT_INTENT_LOG) {
3854 		zio_crypt_decode_params_bp(bp, salt, iv);
3855 	} else {
3856 		BP_SET_CRYPT(bp, B_TRUE);
3857 	}
3858 
3859 	/* Perform the encryption. This should not fail */
3860 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3861 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3862 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3863 
3864 	/* encode encryption metadata into the bp */
3865 	if (ot == DMU_OT_INTENT_LOG) {
3866 		/*
3867 		 * ZIL blocks store the MAC in the embedded checksum, so the
3868 		 * transform must always be applied.
3869 		 */
3870 		zio_crypt_encode_mac_zil(enc_buf, mac);
3871 		zio_push_transform(zio, eabd, psize, psize, NULL);
3872 	} else {
3873 		BP_SET_CRYPT(bp, B_TRUE);
3874 		zio_crypt_encode_params_bp(bp, salt, iv);
3875 		zio_crypt_encode_mac_bp(bp, mac);
3876 
3877 		if (no_crypt) {
3878 			ASSERT3U(ot, ==, DMU_OT_DNODE);
3879 			abd_free(eabd);
3880 		} else {
3881 			zio_push_transform(zio, eabd, psize, psize, NULL);
3882 		}
3883 	}
3884 
3885 	return (ZIO_PIPELINE_CONTINUE);
3886 }
3887 
3888 /*
3889  * ==========================================================================
3890  * Generate and verify checksums
3891  * ==========================================================================
3892  */
3893 static int
3894 zio_checksum_generate(zio_t *zio)
3895 {
3896 	blkptr_t *bp = zio->io_bp;
3897 	enum zio_checksum checksum;
3898 
3899 	if (bp == NULL) {
3900 		/*
3901 		 * This is zio_write_phys().
3902 		 * We're either generating a label checksum, or none at all.
3903 		 */
3904 		checksum = zio->io_prop.zp_checksum;
3905 
3906 		if (checksum == ZIO_CHECKSUM_OFF)
3907 			return (ZIO_PIPELINE_CONTINUE);
3908 
3909 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3910 	} else {
3911 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3912 			ASSERT(!IO_IS_ALLOCATING(zio));
3913 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3914 		} else {
3915 			checksum = BP_GET_CHECKSUM(bp);
3916 		}
3917 	}
3918 
3919 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3920 
3921 	return (ZIO_PIPELINE_CONTINUE);
3922 }
3923 
3924 static int
3925 zio_checksum_verify(zio_t *zio)
3926 {
3927 	zio_bad_cksum_t info;
3928 	blkptr_t *bp = zio->io_bp;
3929 	int error;
3930 
3931 	ASSERT(zio->io_vd != NULL);
3932 
3933 	if (bp == NULL) {
3934 		/*
3935 		 * This is zio_read_phys().
3936 		 * We're either verifying a label checksum, or nothing at all.
3937 		 */
3938 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3939 			return (ZIO_PIPELINE_CONTINUE);
3940 
3941 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3942 	}
3943 
3944 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3945 		zio->io_error = error;
3946 		if (error == ECKSUM &&
3947 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3948 			zfs_ereport_start_checksum(zio->io_spa,
3949 			    zio->io_vd, &zio->io_bookmark, zio,
3950 			    zio->io_offset, zio->io_size, NULL, &info);
3951 		}
3952 	}
3953 
3954 	return (ZIO_PIPELINE_CONTINUE);
3955 }
3956 
3957 /*
3958  * Called by RAID-Z to ensure we don't compute the checksum twice.
3959  */
3960 void
3961 zio_checksum_verified(zio_t *zio)
3962 {
3963 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3964 }
3965 
3966 /*
3967  * ==========================================================================
3968  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3969  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3970  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3971  * indicate errors that are specific to one I/O, and most likely permanent.
3972  * Any other error is presumed to be worse because we weren't expecting it.
3973  * ==========================================================================
3974  */
3975 int
3976 zio_worst_error(int e1, int e2)
3977 {
3978 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3979 	int r1, r2;
3980 
3981 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3982 		if (e1 == zio_error_rank[r1])
3983 			break;
3984 
3985 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3986 		if (e2 == zio_error_rank[r2])
3987 			break;
3988 
3989 	return (r1 > r2 ? e1 : e2);
3990 }
3991 
3992 /*
3993  * ==========================================================================
3994  * I/O completion
3995  * ==========================================================================
3996  */
3997 static int
3998 zio_ready(zio_t *zio)
3999 {
4000 	blkptr_t *bp = zio->io_bp;
4001 	zio_t *pio, *pio_next;
4002 	zio_link_t *zl = NULL;
4003 
4004 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4005 	    ZIO_WAIT_READY)) {
4006 		return (ZIO_PIPELINE_STOP);
4007 	}
4008 
4009 	if (zio->io_ready) {
4010 		ASSERT(IO_IS_ALLOCATING(zio));
4011 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4012 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4013 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4014 
4015 		zio->io_ready(zio);
4016 	}
4017 
4018 	if (bp != NULL && bp != &zio->io_bp_copy)
4019 		zio->io_bp_copy = *bp;
4020 
4021 	if (zio->io_error != 0) {
4022 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4023 
4024 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4025 			ASSERT(IO_IS_ALLOCATING(zio));
4026 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4027 			ASSERT(zio->io_metaslab_class != NULL);
4028 
4029 			/*
4030 			 * We were unable to allocate anything, unreserve and
4031 			 * issue the next I/O to allocate.
4032 			 */
4033 			metaslab_class_throttle_unreserve(
4034 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4035 			    zio->io_allocator, zio);
4036 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4037 		}
4038 	}
4039 
4040 	mutex_enter(&zio->io_lock);
4041 	zio->io_state[ZIO_WAIT_READY] = 1;
4042 	pio = zio_walk_parents(zio, &zl);
4043 	mutex_exit(&zio->io_lock);
4044 
4045 	/*
4046 	 * As we notify zio's parents, new parents could be added.
4047 	 * New parents go to the head of zio's io_parent_list, however,
4048 	 * so we will (correctly) not notify them.  The remainder of zio's
4049 	 * io_parent_list, from 'pio_next' onward, cannot change because
4050 	 * all parents must wait for us to be done before they can be done.
4051 	 */
4052 	for (; pio != NULL; pio = pio_next) {
4053 		pio_next = zio_walk_parents(zio, &zl);
4054 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4055 	}
4056 
4057 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4058 		if (BP_IS_GANG(bp)) {
4059 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4060 		} else {
4061 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4062 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4063 		}
4064 	}
4065 
4066 	if (zio_injection_enabled &&
4067 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4068 		zio_handle_ignored_writes(zio);
4069 
4070 	return (ZIO_PIPELINE_CONTINUE);
4071 }
4072 
4073 /*
4074  * Update the allocation throttle accounting.
4075  */
4076 static void
4077 zio_dva_throttle_done(zio_t *zio)
4078 {
4079 	zio_t *lio = zio->io_logical;
4080 	zio_t *pio = zio_unique_parent(zio);
4081 	vdev_t *vd = zio->io_vd;
4082 	int flags = METASLAB_ASYNC_ALLOC;
4083 
4084 	ASSERT3P(zio->io_bp, !=, NULL);
4085 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4086 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4087 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4088 	ASSERT(vd != NULL);
4089 	ASSERT3P(vd, ==, vd->vdev_top);
4090 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
4091 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4092 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4093 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4094 
4095 	/*
4096 	 * Parents of gang children can have two flavors -- ones that
4097 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4098 	 * and ones that allocated the constituent blocks. The allocation
4099 	 * throttle needs to know the allocating parent zio so we must find
4100 	 * it here.
4101 	 */
4102 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4103 		/*
4104 		 * If our parent is a rewrite gang child then our grandparent
4105 		 * would have been the one that performed the allocation.
4106 		 */
4107 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4108 			pio = zio_unique_parent(pio);
4109 		flags |= METASLAB_GANG_CHILD;
4110 	}
4111 
4112 	ASSERT(IO_IS_ALLOCATING(pio));
4113 	ASSERT3P(zio, !=, zio->io_logical);
4114 	ASSERT(zio->io_logical != NULL);
4115 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4116 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4117 	ASSERT(zio->io_metaslab_class != NULL);
4118 
4119 	mutex_enter(&pio->io_lock);
4120 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4121 	    pio->io_allocator, B_TRUE);
4122 	mutex_exit(&pio->io_lock);
4123 
4124 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4125 	    pio->io_allocator, pio);
4126 
4127 	/*
4128 	 * Call into the pipeline to see if there is more work that
4129 	 * needs to be done. If there is work to be done it will be
4130 	 * dispatched to another taskq thread.
4131 	 */
4132 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4133 }
4134 
4135 static int
4136 zio_done(zio_t *zio)
4137 {
4138 	spa_t *spa = zio->io_spa;
4139 	zio_t *lio = zio->io_logical;
4140 	blkptr_t *bp = zio->io_bp;
4141 	vdev_t *vd = zio->io_vd;
4142 	uint64_t psize = zio->io_size;
4143 	zio_t *pio, *pio_next;
4144 	zio_link_t *zl = NULL;
4145 
4146 	/*
4147 	 * If our children haven't all completed,
4148 	 * wait for them and then repeat this pipeline stage.
4149 	 */
4150 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4151 		return (ZIO_PIPELINE_STOP);
4152 	}
4153 
4154 	/*
4155 	 * If the allocation throttle is enabled, then update the accounting.
4156 	 * We only track child I/Os that are part of an allocating async
4157 	 * write. We must do this since the allocation is performed
4158 	 * by the logical I/O but the actual write is done by child I/Os.
4159 	 */
4160 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4161 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4162 		ASSERT(zio->io_metaslab_class != NULL);
4163 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4164 		zio_dva_throttle_done(zio);
4165 	}
4166 
4167 	/*
4168 	 * If the allocation throttle is enabled, verify that
4169 	 * we have decremented the refcounts for every I/O that was throttled.
4170 	 */
4171 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4172 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4173 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4174 		ASSERT(bp != NULL);
4175 
4176 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
4177 		    zio->io_allocator);
4178 		VERIFY(zfs_refcount_not_held(
4179 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4180 		    zio));
4181 	}
4182 
4183 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4184 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4185 			ASSERT(zio->io_children[c][w] == 0);
4186 
4187 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
4188 		ASSERT(bp->blk_pad[0] == 0);
4189 		ASSERT(bp->blk_pad[1] == 0);
4190 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
4191 		    (bp == zio_unique_parent(zio)->io_bp));
4192 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
4193 		    zio->io_bp_override == NULL &&
4194 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4195 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
4196 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
4197 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
4198 		}
4199 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4200 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
4201 	}
4202 
4203 	/*
4204 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4205 	 */
4206 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4207 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4208 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4209 
4210 	/*
4211 	 * If the I/O on the transformed data was successful, generate any
4212 	 * checksum reports now while we still have the transformed data.
4213 	 */
4214 	if (zio->io_error == 0) {
4215 		while (zio->io_cksum_report != NULL) {
4216 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4217 			uint64_t align = zcr->zcr_align;
4218 			uint64_t asize = P2ROUNDUP(psize, align);
4219 			abd_t *adata = zio->io_abd;
4220 
4221 			if (asize != psize) {
4222 				adata = abd_alloc(asize, B_TRUE);
4223 				abd_copy(adata, zio->io_abd, psize);
4224 				abd_zero_off(adata, psize, asize - psize);
4225 			}
4226 
4227 			zio->io_cksum_report = zcr->zcr_next;
4228 			zcr->zcr_next = NULL;
4229 			zcr->zcr_finish(zcr, adata);
4230 			zfs_ereport_free_checksum(zcr);
4231 
4232 			if (asize != psize)
4233 				abd_free(adata);
4234 		}
4235 	}
4236 
4237 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4238 
4239 	vdev_stat_update(zio, psize);
4240 
4241 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4242 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4243 			/*
4244 			 * We want to only increment our slow IO counters if
4245 			 * the IO is valid (i.e. not if the drive is removed).
4246 			 *
4247 			 * zfs_ereport_post() will also do these checks, but
4248 			 * it can also have other failures, so we need to
4249 			 * increment the slow_io counters independent of it.
4250 			 */
4251 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4252 			    zio->io_spa, zio->io_vd, zio)) {
4253 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4254 				zio->io_vd->vdev_stat.vs_slow_ios++;
4255 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4256 
4257 				zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4258 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4259 				    zio, 0, 0);
4260 			}
4261 		}
4262 	}
4263 
4264 	if (zio->io_error) {
4265 		/*
4266 		 * If this I/O is attached to a particular vdev,
4267 		 * generate an error message describing the I/O failure
4268 		 * at the block level.  We ignore these errors if the
4269 		 * device is currently unavailable.
4270 		 */
4271 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
4272 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd,
4273 			    &zio->io_bookmark, zio, 0, 0);
4274 
4275 		if ((zio->io_error == EIO || !(zio->io_flags &
4276 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4277 		    zio == lio) {
4278 			/*
4279 			 * For logical I/O requests, tell the SPA to log the
4280 			 * error and generate a logical data ereport.
4281 			 */
4282 			spa_log_error(spa, &zio->io_bookmark);
4283 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL,
4284 			    &zio->io_bookmark, zio, 0, 0);
4285 		}
4286 	}
4287 
4288 	if (zio->io_error && zio == lio) {
4289 		/*
4290 		 * Determine whether zio should be reexecuted.  This will
4291 		 * propagate all the way to the root via zio_notify_parent().
4292 		 */
4293 		ASSERT(vd == NULL && bp != NULL);
4294 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4295 
4296 		if (IO_IS_ALLOCATING(zio) &&
4297 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4298 			if (zio->io_error != ENOSPC)
4299 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4300 			else
4301 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4302 		}
4303 
4304 		if ((zio->io_type == ZIO_TYPE_READ ||
4305 		    zio->io_type == ZIO_TYPE_FREE) &&
4306 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4307 		    zio->io_error == ENXIO &&
4308 		    spa_load_state(spa) == SPA_LOAD_NONE &&
4309 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
4310 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4311 
4312 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4313 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4314 
4315 		/*
4316 		 * Here is a possibly good place to attempt to do
4317 		 * either combinatorial reconstruction or error correction
4318 		 * based on checksums.  It also might be a good place
4319 		 * to send out preliminary ereports before we suspend
4320 		 * processing.
4321 		 */
4322 	}
4323 
4324 	/*
4325 	 * If there were logical child errors, they apply to us now.
4326 	 * We defer this until now to avoid conflating logical child
4327 	 * errors with errors that happened to the zio itself when
4328 	 * updating vdev stats and reporting FMA events above.
4329 	 */
4330 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4331 
4332 	if ((zio->io_error || zio->io_reexecute) &&
4333 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4334 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4335 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
4336 
4337 	zio_gang_tree_free(&zio->io_gang_tree);
4338 
4339 	/*
4340 	 * Godfather I/Os should never suspend.
4341 	 */
4342 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4343 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4344 		zio->io_reexecute = 0;
4345 
4346 	if (zio->io_reexecute) {
4347 		/*
4348 		 * This is a logical I/O that wants to reexecute.
4349 		 *
4350 		 * Reexecute is top-down.  When an i/o fails, if it's not
4351 		 * the root, it simply notifies its parent and sticks around.
4352 		 * The parent, seeing that it still has children in zio_done(),
4353 		 * does the same.  This percolates all the way up to the root.
4354 		 * The root i/o will reexecute or suspend the entire tree.
4355 		 *
4356 		 * This approach ensures that zio_reexecute() honors
4357 		 * all the original i/o dependency relationships, e.g.
4358 		 * parents not executing until children are ready.
4359 		 */
4360 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4361 
4362 		zio->io_gang_leader = NULL;
4363 
4364 		mutex_enter(&zio->io_lock);
4365 		zio->io_state[ZIO_WAIT_DONE] = 1;
4366 		mutex_exit(&zio->io_lock);
4367 
4368 		/*
4369 		 * "The Godfather" I/O monitors its children but is
4370 		 * not a true parent to them. It will track them through
4371 		 * the pipeline but severs its ties whenever they get into
4372 		 * trouble (e.g. suspended). This allows "The Godfather"
4373 		 * I/O to return status without blocking.
4374 		 */
4375 		zl = NULL;
4376 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4377 		    pio = pio_next) {
4378 			zio_link_t *remove_zl = zl;
4379 			pio_next = zio_walk_parents(zio, &zl);
4380 
4381 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4382 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4383 				zio_remove_child(pio, zio, remove_zl);
4384 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4385 			}
4386 		}
4387 
4388 		if ((pio = zio_unique_parent(zio)) != NULL) {
4389 			/*
4390 			 * We're not a root i/o, so there's nothing to do
4391 			 * but notify our parent.  Don't propagate errors
4392 			 * upward since we haven't permanently failed yet.
4393 			 */
4394 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4395 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4396 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4397 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4398 			/*
4399 			 * We'd fail again if we reexecuted now, so suspend
4400 			 * until conditions improve (e.g. device comes online).
4401 			 */
4402 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4403 		} else {
4404 			/*
4405 			 * Reexecution is potentially a huge amount of work.
4406 			 * Hand it off to the otherwise-unused claim taskq.
4407 			 */
4408 			ASSERT(zio->io_tqent.tqent_next == NULL);
4409 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
4410 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
4411 			    0, &zio->io_tqent);
4412 		}
4413 		return (ZIO_PIPELINE_STOP);
4414 	}
4415 
4416 	ASSERT(zio->io_child_count == 0);
4417 	ASSERT(zio->io_reexecute == 0);
4418 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4419 
4420 	/*
4421 	 * Report any checksum errors, since the I/O is complete.
4422 	 */
4423 	while (zio->io_cksum_report != NULL) {
4424 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4425 		zio->io_cksum_report = zcr->zcr_next;
4426 		zcr->zcr_next = NULL;
4427 		zcr->zcr_finish(zcr, NULL);
4428 		zfs_ereport_free_checksum(zcr);
4429 	}
4430 
4431 	/*
4432 	 * It is the responsibility of the done callback to ensure that this
4433 	 * particular zio is no longer discoverable for adoption, and as
4434 	 * such, cannot acquire any new parents.
4435 	 */
4436 	if (zio->io_done)
4437 		zio->io_done(zio);
4438 
4439 	mutex_enter(&zio->io_lock);
4440 	zio->io_state[ZIO_WAIT_DONE] = 1;
4441 	mutex_exit(&zio->io_lock);
4442 
4443 	zl = NULL;
4444 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4445 		zio_link_t *remove_zl = zl;
4446 		pio_next = zio_walk_parents(zio, &zl);
4447 		zio_remove_child(pio, zio, remove_zl);
4448 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4449 	}
4450 
4451 	if (zio->io_waiter != NULL) {
4452 		mutex_enter(&zio->io_lock);
4453 		zio->io_executor = NULL;
4454 		cv_broadcast(&zio->io_cv);
4455 		mutex_exit(&zio->io_lock);
4456 	} else {
4457 		zio_destroy(zio);
4458 	}
4459 
4460 	return (ZIO_PIPELINE_STOP);
4461 }
4462 
4463 /*
4464  * ==========================================================================
4465  * I/O pipeline definition
4466  * ==========================================================================
4467  */
4468 static zio_pipe_stage_t *zio_pipeline[] = {
4469 	NULL,
4470 	zio_read_bp_init,
4471 	zio_write_bp_init,
4472 	zio_free_bp_init,
4473 	zio_issue_async,
4474 	zio_write_compress,
4475 	zio_encrypt,
4476 	zio_checksum_generate,
4477 	zio_nop_write,
4478 	zio_ddt_read_start,
4479 	zio_ddt_read_done,
4480 	zio_ddt_write,
4481 	zio_ddt_free,
4482 	zio_gang_assemble,
4483 	zio_gang_issue,
4484 	zio_dva_throttle,
4485 	zio_dva_allocate,
4486 	zio_dva_free,
4487 	zio_dva_claim,
4488 	zio_ready,
4489 	zio_vdev_io_start,
4490 	zio_vdev_io_done,
4491 	zio_vdev_io_assess,
4492 	zio_checksum_verify,
4493 	zio_done
4494 };
4495 
4496 
4497 
4498 
4499 /*
4500  * Compare two zbookmark_phys_t's to see which we would reach first in a
4501  * pre-order traversal of the object tree.
4502  *
4503  * This is simple in every case aside from the meta-dnode object. For all other
4504  * objects, we traverse them in order (object 1 before object 2, and so on).
4505  * However, all of these objects are traversed while traversing object 0, since
4506  * the data it points to is the list of objects.  Thus, we need to convert to a
4507  * canonical representation so we can compare meta-dnode bookmarks to
4508  * non-meta-dnode bookmarks.
4509  *
4510  * We do this by calculating "equivalents" for each field of the zbookmark.
4511  * zbookmarks outside of the meta-dnode use their own object and level, and
4512  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4513  * blocks this bookmark refers to) by multiplying their blkid by their span
4514  * (the number of L0 blocks contained within one block at their level).
4515  * zbookmarks inside the meta-dnode calculate their object equivalent
4516  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4517  * level + 1<<31 (any value larger than a level could ever be) for their level.
4518  * This causes them to always compare before a bookmark in their object
4519  * equivalent, compare appropriately to bookmarks in other objects, and to
4520  * compare appropriately to other bookmarks in the meta-dnode.
4521  */
4522 int
4523 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4524     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4525 {
4526 	/*
4527 	 * These variables represent the "equivalent" values for the zbookmark,
4528 	 * after converting zbookmarks inside the meta dnode to their
4529 	 * normal-object equivalents.
4530 	 */
4531 	uint64_t zb1obj, zb2obj;
4532 	uint64_t zb1L0, zb2L0;
4533 	uint64_t zb1level, zb2level;
4534 
4535 	if (zb1->zb_object == zb2->zb_object &&
4536 	    zb1->zb_level == zb2->zb_level &&
4537 	    zb1->zb_blkid == zb2->zb_blkid)
4538 		return (0);
4539 
4540 	/*
4541 	 * BP_SPANB calculates the span in blocks.
4542 	 */
4543 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4544 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4545 
4546 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4547 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4548 		zb1L0 = 0;
4549 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4550 	} else {
4551 		zb1obj = zb1->zb_object;
4552 		zb1level = zb1->zb_level;
4553 	}
4554 
4555 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4556 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4557 		zb2L0 = 0;
4558 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4559 	} else {
4560 		zb2obj = zb2->zb_object;
4561 		zb2level = zb2->zb_level;
4562 	}
4563 
4564 	/* Now that we have a canonical representation, do the comparison. */
4565 	if (zb1obj != zb2obj)
4566 		return (zb1obj < zb2obj ? -1 : 1);
4567 	else if (zb1L0 != zb2L0)
4568 		return (zb1L0 < zb2L0 ? -1 : 1);
4569 	else if (zb1level != zb2level)
4570 		return (zb1level > zb2level ? -1 : 1);
4571 	/*
4572 	 * This can (theoretically) happen if the bookmarks have the same object
4573 	 * and level, but different blkids, if the block sizes are not the same.
4574 	 * There is presently no way to change the indirect block sizes
4575 	 */
4576 	return (0);
4577 }
4578 
4579 /*
4580  *  This function checks the following: given that last_block is the place that
4581  *  our traversal stopped last time, does that guarantee that we've visited
4582  *  every node under subtree_root?  Therefore, we can't just use the raw output
4583  *  of zbookmark_compare.  We have to pass in a modified version of
4584  *  subtree_root; by incrementing the block id, and then checking whether
4585  *  last_block is before or equal to that, we can tell whether or not having
4586  *  visited last_block implies that all of subtree_root's children have been
4587  *  visited.
4588  */
4589 boolean_t
4590 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4591     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4592 {
4593 	zbookmark_phys_t mod_zb = *subtree_root;
4594 	mod_zb.zb_blkid++;
4595 	ASSERT(last_block->zb_level == 0);
4596 
4597 	/* The objset_phys_t isn't before anything. */
4598 	if (dnp == NULL)
4599 		return (B_FALSE);
4600 
4601 	/*
4602 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4603 	 * data block size in sectors, because that variable is only used if
4604 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4605 	 * know without examining it what object it refers to, and there's no
4606 	 * harm in passing in this value in other cases, we always pass it in.
4607 	 *
4608 	 * We pass in 0 for the indirect block size shift because zb2 must be
4609 	 * level 0.  The indirect block size is only used to calculate the span
4610 	 * of the bookmark, but since the bookmark must be level 0, the span is
4611 	 * always 1, so the math works out.
4612 	 *
4613 	 * If you make changes to how the zbookmark_compare code works, be sure
4614 	 * to make sure that this code still works afterwards.
4615 	 */
4616 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4617 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4618 	    last_block) <= 0);
4619 }
4620