xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision b16da2e29e074fb6eaeadc4fd7d17ae7340ba240)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/txg.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio_impl.h>
33 #include <sys/zio_compress.h>
34 #include <sys/zio_checksum.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/ddt.h>
38 
39 /*
40  * ==========================================================================
41  * I/O priority table
42  * ==========================================================================
43  */
44 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
45 	0,	/* ZIO_PRIORITY_NOW		*/
46 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
47 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
48 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
49 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
50 	1,	/* ZIO_PRIORITY_AGG		*/
51 	4,	/* ZIO_PRIORITY_FREE		*/
52 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
53 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
54 	10,	/* ZIO_PRIORITY_RESILVER	*/
55 	20,	/* ZIO_PRIORITY_SCRUB		*/
56 };
57 
58 /*
59  * ==========================================================================
60  * I/O type descriptions
61  * ==========================================================================
62  */
63 char *zio_type_name[ZIO_TYPES] = {
64 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
65 	"zio_ioctl"
66 };
67 
68 /*
69  * ==========================================================================
70  * I/O kmem caches
71  * ==========================================================================
72  */
73 kmem_cache_t *zio_cache;
74 kmem_cache_t *zio_link_cache;
75 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
77 
78 #ifdef _KERNEL
79 extern vmem_t *zio_alloc_arena;
80 #endif
81 
82 /*
83  * An allocating zio is one that either currently has the DVA allocate
84  * stage set or will have it later in its lifetime.
85  */
86 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
87 
88 #ifdef ZFS_DEBUG
89 int zio_buf_debug_limit = 16384;
90 #else
91 int zio_buf_debug_limit = 0;
92 #endif
93 
94 void
95 zio_init(void)
96 {
97 	size_t c;
98 	vmem_t *data_alloc_arena = NULL;
99 
100 #ifdef _KERNEL
101 	data_alloc_arena = zio_alloc_arena;
102 #endif
103 	zio_cache = kmem_cache_create("zio_cache",
104 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
105 	zio_link_cache = kmem_cache_create("zio_link_cache",
106 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
107 
108 	/*
109 	 * For small buffers, we want a cache for each multiple of
110 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
111 	 * for each quarter-power of 2.  For large buffers, we want
112 	 * a cache for each multiple of PAGESIZE.
113 	 */
114 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
115 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
116 		size_t p2 = size;
117 		size_t align = 0;
118 
119 		while (p2 & (p2 - 1))
120 			p2 &= p2 - 1;
121 
122 		if (size <= 4 * SPA_MINBLOCKSIZE) {
123 			align = SPA_MINBLOCKSIZE;
124 		} else if (P2PHASE(size, PAGESIZE) == 0) {
125 			align = PAGESIZE;
126 		} else if (P2PHASE(size, p2 >> 2) == 0) {
127 			align = p2 >> 2;
128 		}
129 
130 		if (align != 0) {
131 			char name[36];
132 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
133 			zio_buf_cache[c] = kmem_cache_create(name, size,
134 			    align, NULL, NULL, NULL, NULL, NULL,
135 			    size > zio_buf_debug_limit ? KMC_NODEBUG : 0);
136 
137 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
138 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
139 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
140 			    size > zio_buf_debug_limit ? KMC_NODEBUG : 0);
141 		}
142 	}
143 
144 	while (--c != 0) {
145 		ASSERT(zio_buf_cache[c] != NULL);
146 		if (zio_buf_cache[c - 1] == NULL)
147 			zio_buf_cache[c - 1] = zio_buf_cache[c];
148 
149 		ASSERT(zio_data_buf_cache[c] != NULL);
150 		if (zio_data_buf_cache[c - 1] == NULL)
151 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
152 	}
153 
154 	zio_inject_init();
155 }
156 
157 void
158 zio_fini(void)
159 {
160 	size_t c;
161 	kmem_cache_t *last_cache = NULL;
162 	kmem_cache_t *last_data_cache = NULL;
163 
164 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
165 		if (zio_buf_cache[c] != last_cache) {
166 			last_cache = zio_buf_cache[c];
167 			kmem_cache_destroy(zio_buf_cache[c]);
168 		}
169 		zio_buf_cache[c] = NULL;
170 
171 		if (zio_data_buf_cache[c] != last_data_cache) {
172 			last_data_cache = zio_data_buf_cache[c];
173 			kmem_cache_destroy(zio_data_buf_cache[c]);
174 		}
175 		zio_data_buf_cache[c] = NULL;
176 	}
177 
178 	kmem_cache_destroy(zio_link_cache);
179 	kmem_cache_destroy(zio_cache);
180 
181 	zio_inject_fini();
182 }
183 
184 /*
185  * ==========================================================================
186  * Allocate and free I/O buffers
187  * ==========================================================================
188  */
189 
190 /*
191  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
192  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
193  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
194  * excess / transient data in-core during a crashdump.
195  */
196 void *
197 zio_buf_alloc(size_t size)
198 {
199 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
200 
201 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
202 
203 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
204 }
205 
206 /*
207  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
208  * crashdump if the kernel panics.  This exists so that we will limit the amount
209  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
210  * of kernel heap dumped to disk when the kernel panics)
211  */
212 void *
213 zio_data_buf_alloc(size_t size)
214 {
215 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
216 
217 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
218 
219 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
220 }
221 
222 void
223 zio_buf_free(void *buf, size_t size)
224 {
225 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
226 
227 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
228 
229 	kmem_cache_free(zio_buf_cache[c], buf);
230 }
231 
232 void
233 zio_data_buf_free(void *buf, size_t size)
234 {
235 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
236 
237 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
238 
239 	kmem_cache_free(zio_data_buf_cache[c], buf);
240 }
241 
242 /*
243  * ==========================================================================
244  * Push and pop I/O transform buffers
245  * ==========================================================================
246  */
247 static void
248 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
249 	zio_transform_func_t *transform)
250 {
251 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
252 
253 	zt->zt_orig_data = zio->io_data;
254 	zt->zt_orig_size = zio->io_size;
255 	zt->zt_bufsize = bufsize;
256 	zt->zt_transform = transform;
257 
258 	zt->zt_next = zio->io_transform_stack;
259 	zio->io_transform_stack = zt;
260 
261 	zio->io_data = data;
262 	zio->io_size = size;
263 }
264 
265 static void
266 zio_pop_transforms(zio_t *zio)
267 {
268 	zio_transform_t *zt;
269 
270 	while ((zt = zio->io_transform_stack) != NULL) {
271 		if (zt->zt_transform != NULL)
272 			zt->zt_transform(zio,
273 			    zt->zt_orig_data, zt->zt_orig_size);
274 
275 		if (zt->zt_bufsize != 0)
276 			zio_buf_free(zio->io_data, zt->zt_bufsize);
277 
278 		zio->io_data = zt->zt_orig_data;
279 		zio->io_size = zt->zt_orig_size;
280 		zio->io_transform_stack = zt->zt_next;
281 
282 		kmem_free(zt, sizeof (zio_transform_t));
283 	}
284 }
285 
286 /*
287  * ==========================================================================
288  * I/O transform callbacks for subblocks and decompression
289  * ==========================================================================
290  */
291 static void
292 zio_subblock(zio_t *zio, void *data, uint64_t size)
293 {
294 	ASSERT(zio->io_size > size);
295 
296 	if (zio->io_type == ZIO_TYPE_READ)
297 		bcopy(zio->io_data, data, size);
298 }
299 
300 static void
301 zio_decompress(zio_t *zio, void *data, uint64_t size)
302 {
303 	if (zio->io_error == 0 &&
304 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
305 	    zio->io_data, data, zio->io_size, size) != 0)
306 		zio->io_error = EIO;
307 }
308 
309 /*
310  * ==========================================================================
311  * I/O parent/child relationships and pipeline interlocks
312  * ==========================================================================
313  */
314 /*
315  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
316  *        continue calling these functions until they return NULL.
317  *        Otherwise, the next caller will pick up the list walk in
318  *        some indeterminate state.  (Otherwise every caller would
319  *        have to pass in a cookie to keep the state represented by
320  *        io_walk_link, which gets annoying.)
321  */
322 zio_t *
323 zio_walk_parents(zio_t *cio)
324 {
325 	zio_link_t *zl = cio->io_walk_link;
326 	list_t *pl = &cio->io_parent_list;
327 
328 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
329 	cio->io_walk_link = zl;
330 
331 	if (zl == NULL)
332 		return (NULL);
333 
334 	ASSERT(zl->zl_child == cio);
335 	return (zl->zl_parent);
336 }
337 
338 zio_t *
339 zio_walk_children(zio_t *pio)
340 {
341 	zio_link_t *zl = pio->io_walk_link;
342 	list_t *cl = &pio->io_child_list;
343 
344 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
345 	pio->io_walk_link = zl;
346 
347 	if (zl == NULL)
348 		return (NULL);
349 
350 	ASSERT(zl->zl_parent == pio);
351 	return (zl->zl_child);
352 }
353 
354 zio_t *
355 zio_unique_parent(zio_t *cio)
356 {
357 	zio_t *pio = zio_walk_parents(cio);
358 
359 	VERIFY(zio_walk_parents(cio) == NULL);
360 	return (pio);
361 }
362 
363 void
364 zio_add_child(zio_t *pio, zio_t *cio)
365 {
366 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
367 
368 	/*
369 	 * Logical I/Os can have logical, gang, or vdev children.
370 	 * Gang I/Os can have gang or vdev children.
371 	 * Vdev I/Os can only have vdev children.
372 	 * The following ASSERT captures all of these constraints.
373 	 */
374 	ASSERT(cio->io_child_type <= pio->io_child_type);
375 
376 	zl->zl_parent = pio;
377 	zl->zl_child = cio;
378 
379 	mutex_enter(&cio->io_lock);
380 	mutex_enter(&pio->io_lock);
381 
382 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
383 
384 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
385 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
386 
387 	list_insert_head(&pio->io_child_list, zl);
388 	list_insert_head(&cio->io_parent_list, zl);
389 
390 	pio->io_child_count++;
391 	cio->io_parent_count++;
392 
393 	mutex_exit(&pio->io_lock);
394 	mutex_exit(&cio->io_lock);
395 }
396 
397 static void
398 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
399 {
400 	ASSERT(zl->zl_parent == pio);
401 	ASSERT(zl->zl_child == cio);
402 
403 	mutex_enter(&cio->io_lock);
404 	mutex_enter(&pio->io_lock);
405 
406 	list_remove(&pio->io_child_list, zl);
407 	list_remove(&cio->io_parent_list, zl);
408 
409 	pio->io_child_count--;
410 	cio->io_parent_count--;
411 
412 	mutex_exit(&pio->io_lock);
413 	mutex_exit(&cio->io_lock);
414 
415 	kmem_cache_free(zio_link_cache, zl);
416 }
417 
418 static boolean_t
419 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
420 {
421 	uint64_t *countp = &zio->io_children[child][wait];
422 	boolean_t waiting = B_FALSE;
423 
424 	mutex_enter(&zio->io_lock);
425 	ASSERT(zio->io_stall == NULL);
426 	if (*countp != 0) {
427 		zio->io_stage >>= 1;
428 		zio->io_stall = countp;
429 		waiting = B_TRUE;
430 	}
431 	mutex_exit(&zio->io_lock);
432 
433 	return (waiting);
434 }
435 
436 static void
437 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
438 {
439 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
440 	int *errorp = &pio->io_child_error[zio->io_child_type];
441 
442 	mutex_enter(&pio->io_lock);
443 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
444 		*errorp = zio_worst_error(*errorp, zio->io_error);
445 	pio->io_reexecute |= zio->io_reexecute;
446 	ASSERT3U(*countp, >, 0);
447 	if (--*countp == 0 && pio->io_stall == countp) {
448 		pio->io_stall = NULL;
449 		mutex_exit(&pio->io_lock);
450 		zio_execute(pio);
451 	} else {
452 		mutex_exit(&pio->io_lock);
453 	}
454 }
455 
456 static void
457 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
458 {
459 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
460 		zio->io_error = zio->io_child_error[c];
461 }
462 
463 /*
464  * ==========================================================================
465  * Create the various types of I/O (read, write, free, etc)
466  * ==========================================================================
467  */
468 static zio_t *
469 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
470     void *data, uint64_t size, zio_done_func_t *done, void *private,
471     zio_type_t type, int priority, enum zio_flag flags,
472     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
473     enum zio_stage stage, enum zio_stage pipeline)
474 {
475 	zio_t *zio;
476 
477 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
478 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
479 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
480 
481 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
482 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
483 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
484 
485 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
486 	bzero(zio, sizeof (zio_t));
487 
488 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
489 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
490 
491 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
492 	    offsetof(zio_link_t, zl_parent_node));
493 	list_create(&zio->io_child_list, sizeof (zio_link_t),
494 	    offsetof(zio_link_t, zl_child_node));
495 
496 	if (vd != NULL)
497 		zio->io_child_type = ZIO_CHILD_VDEV;
498 	else if (flags & ZIO_FLAG_GANG_CHILD)
499 		zio->io_child_type = ZIO_CHILD_GANG;
500 	else if (flags & ZIO_FLAG_DDT_CHILD)
501 		zio->io_child_type = ZIO_CHILD_DDT;
502 	else
503 		zio->io_child_type = ZIO_CHILD_LOGICAL;
504 
505 	if (bp != NULL) {
506 		zio->io_bp = (blkptr_t *)bp;
507 		zio->io_bp_copy = *bp;
508 		zio->io_bp_orig = *bp;
509 		if (type != ZIO_TYPE_WRITE ||
510 		    zio->io_child_type == ZIO_CHILD_DDT)
511 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
512 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
513 			zio->io_logical = zio;
514 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
515 			pipeline |= ZIO_GANG_STAGES;
516 	}
517 
518 	zio->io_spa = spa;
519 	zio->io_txg = txg;
520 	zio->io_done = done;
521 	zio->io_private = private;
522 	zio->io_type = type;
523 	zio->io_priority = priority;
524 	zio->io_vd = vd;
525 	zio->io_offset = offset;
526 	zio->io_orig_data = zio->io_data = data;
527 	zio->io_orig_size = zio->io_size = size;
528 	zio->io_orig_flags = zio->io_flags = flags;
529 	zio->io_orig_stage = zio->io_stage = stage;
530 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
531 
532 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
533 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
534 
535 	if (zb != NULL)
536 		zio->io_bookmark = *zb;
537 
538 	if (pio != NULL) {
539 		if (zio->io_logical == NULL)
540 			zio->io_logical = pio->io_logical;
541 		if (zio->io_child_type == ZIO_CHILD_GANG)
542 			zio->io_gang_leader = pio->io_gang_leader;
543 		zio_add_child(pio, zio);
544 	}
545 
546 	return (zio);
547 }
548 
549 static void
550 zio_destroy(zio_t *zio)
551 {
552 	list_destroy(&zio->io_parent_list);
553 	list_destroy(&zio->io_child_list);
554 	mutex_destroy(&zio->io_lock);
555 	cv_destroy(&zio->io_cv);
556 	kmem_cache_free(zio_cache, zio);
557 }
558 
559 zio_t *
560 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
561     void *private, enum zio_flag flags)
562 {
563 	zio_t *zio;
564 
565 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
566 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
567 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
568 
569 	return (zio);
570 }
571 
572 zio_t *
573 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
574 {
575 	return (zio_null(NULL, spa, NULL, done, private, flags));
576 }
577 
578 zio_t *
579 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
580     void *data, uint64_t size, zio_done_func_t *done, void *private,
581     int priority, enum zio_flag flags, const zbookmark_t *zb)
582 {
583 	zio_t *zio;
584 
585 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
586 	    data, size, done, private,
587 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
588 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
589 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
590 
591 	return (zio);
592 }
593 
594 zio_t *
595 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
596     void *data, uint64_t size, const zio_prop_t *zp,
597     zio_done_func_t *ready, zio_done_func_t *done, void *private,
598     int priority, enum zio_flag flags, const zbookmark_t *zb)
599 {
600 	zio_t *zio;
601 
602 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
603 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
604 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
605 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
606 	    zp->zp_type < DMU_OT_NUMTYPES &&
607 	    zp->zp_level < 32 &&
608 	    zp->zp_copies > 0 &&
609 	    zp->zp_copies <= spa_max_replication(spa) &&
610 	    zp->zp_dedup <= 1 &&
611 	    zp->zp_dedup_verify <= 1);
612 
613 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
614 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
615 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
616 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
617 
618 	zio->io_ready = ready;
619 	zio->io_prop = *zp;
620 
621 	return (zio);
622 }
623 
624 zio_t *
625 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
626     uint64_t size, zio_done_func_t *done, void *private, int priority,
627     enum zio_flag flags, zbookmark_t *zb)
628 {
629 	zio_t *zio;
630 
631 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
632 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
633 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
634 
635 	return (zio);
636 }
637 
638 void
639 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
640 {
641 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
642 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
643 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
644 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
645 
646 	zio->io_prop.zp_copies = copies;
647 	zio->io_bp_override = bp;
648 }
649 
650 void
651 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
652 {
653 	bplist_enqueue_deferred(&spa->spa_free_bplist[txg & TXG_MASK], bp);
654 }
655 
656 zio_t *
657 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
658     enum zio_flag flags)
659 {
660 	zio_t *zio;
661 
662 	ASSERT(!BP_IS_HOLE(bp));
663 	ASSERT(spa_syncing_txg(spa) == txg);
664 	ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
665 
666 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
667 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
668 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
669 
670 	return (zio);
671 }
672 
673 zio_t *
674 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
675     zio_done_func_t *done, void *private, enum zio_flag flags)
676 {
677 	zio_t *zio;
678 
679 	/*
680 	 * A claim is an allocation of a specific block.  Claims are needed
681 	 * to support immediate writes in the intent log.  The issue is that
682 	 * immediate writes contain committed data, but in a txg that was
683 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
684 	 * the intent log claims all blocks that contain immediate write data
685 	 * so that the SPA knows they're in use.
686 	 *
687 	 * All claims *must* be resolved in the first txg -- before the SPA
688 	 * starts allocating blocks -- so that nothing is allocated twice.
689 	 * If txg == 0 we just verify that the block is claimable.
690 	 */
691 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
692 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
693 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
694 
695 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
696 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
697 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
698 
699 	return (zio);
700 }
701 
702 zio_t *
703 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
704     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
705 {
706 	zio_t *zio;
707 	int c;
708 
709 	if (vd->vdev_children == 0) {
710 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
711 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
712 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
713 
714 		zio->io_cmd = cmd;
715 	} else {
716 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
717 
718 		for (c = 0; c < vd->vdev_children; c++)
719 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
720 			    done, private, priority, flags));
721 	}
722 
723 	return (zio);
724 }
725 
726 zio_t *
727 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
728     void *data, int checksum, zio_done_func_t *done, void *private,
729     int priority, enum zio_flag flags, boolean_t labels)
730 {
731 	zio_t *zio;
732 
733 	ASSERT(vd->vdev_children == 0);
734 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
735 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
736 	ASSERT3U(offset + size, <=, vd->vdev_psize);
737 
738 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
739 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
740 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
741 
742 	zio->io_prop.zp_checksum = checksum;
743 
744 	return (zio);
745 }
746 
747 zio_t *
748 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
749     void *data, int checksum, zio_done_func_t *done, void *private,
750     int priority, enum zio_flag flags, boolean_t labels)
751 {
752 	zio_t *zio;
753 
754 	ASSERT(vd->vdev_children == 0);
755 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
756 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
757 	ASSERT3U(offset + size, <=, vd->vdev_psize);
758 
759 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
760 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
761 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
762 
763 	zio->io_prop.zp_checksum = checksum;
764 
765 	if (zio_checksum_table[checksum].ci_zbt) {
766 		/*
767 		 * zbt checksums are necessarily destructive -- they modify
768 		 * the end of the write buffer to hold the verifier/checksum.
769 		 * Therefore, we must make a local copy in case the data is
770 		 * being written to multiple places in parallel.
771 		 */
772 		void *wbuf = zio_buf_alloc(size);
773 		bcopy(data, wbuf, size);
774 		zio_push_transform(zio, wbuf, size, size, NULL);
775 	}
776 
777 	return (zio);
778 }
779 
780 /*
781  * Create a child I/O to do some work for us.
782  */
783 zio_t *
784 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
785 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
786 	zio_done_func_t *done, void *private)
787 {
788 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
789 	zio_t *zio;
790 
791 	ASSERT(vd->vdev_parent ==
792 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
793 
794 	if (type == ZIO_TYPE_READ && bp != NULL) {
795 		/*
796 		 * If we have the bp, then the child should perform the
797 		 * checksum and the parent need not.  This pushes error
798 		 * detection as close to the leaves as possible and
799 		 * eliminates redundant checksums in the interior nodes.
800 		 */
801 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
802 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
803 	}
804 
805 	if (vd->vdev_children == 0)
806 		offset += VDEV_LABEL_START_SIZE;
807 
808 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
809 
810 	/*
811 	 * If we've decided to do a repair, the write is not speculative --
812 	 * even if the original read was.
813 	 */
814 	if (flags & ZIO_FLAG_IO_REPAIR)
815 		flags &= ~ZIO_FLAG_SPECULATIVE;
816 
817 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
818 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
819 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
820 
821 	return (zio);
822 }
823 
824 zio_t *
825 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
826 	int type, int priority, enum zio_flag flags,
827 	zio_done_func_t *done, void *private)
828 {
829 	zio_t *zio;
830 
831 	ASSERT(vd->vdev_ops->vdev_op_leaf);
832 
833 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
834 	    data, size, done, private, type, priority,
835 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
836 	    vd, offset, NULL,
837 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
838 
839 	return (zio);
840 }
841 
842 void
843 zio_flush(zio_t *zio, vdev_t *vd)
844 {
845 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
846 	    NULL, NULL, ZIO_PRIORITY_NOW,
847 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
848 }
849 
850 /*
851  * ==========================================================================
852  * Prepare to read and write logical blocks
853  * ==========================================================================
854  */
855 
856 static int
857 zio_read_bp_init(zio_t *zio)
858 {
859 	blkptr_t *bp = zio->io_bp;
860 
861 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
862 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
863 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
864 		uint64_t psize = BP_GET_PSIZE(bp);
865 		void *cbuf = zio_buf_alloc(psize);
866 
867 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
868 	}
869 
870 	if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
871 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
872 
873 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
874 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
875 
876 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
877 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
878 
879 	return (ZIO_PIPELINE_CONTINUE);
880 }
881 
882 static int
883 zio_write_bp_init(zio_t *zio)
884 {
885 	spa_t *spa = zio->io_spa;
886 	zio_prop_t *zp = &zio->io_prop;
887 	enum zio_compress compress = zp->zp_compress;
888 	blkptr_t *bp = zio->io_bp;
889 	uint64_t lsize = zio->io_size;
890 	uint64_t psize = lsize;
891 	int pass = 1;
892 
893 	/*
894 	 * If our children haven't all reached the ready stage,
895 	 * wait for them and then repeat this pipeline stage.
896 	 */
897 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
898 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
899 		return (ZIO_PIPELINE_STOP);
900 
901 	if (!IO_IS_ALLOCATING(zio))
902 		return (ZIO_PIPELINE_CONTINUE);
903 
904 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
905 
906 	if (zio->io_bp_override) {
907 		ASSERT(bp->blk_birth != zio->io_txg);
908 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
909 
910 		*bp = *zio->io_bp_override;
911 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
912 
913 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
914 			return (ZIO_PIPELINE_CONTINUE);
915 
916 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
917 		    zp->zp_dedup_verify);
918 
919 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
920 			BP_SET_DEDUP(bp, 1);
921 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
922 			return (ZIO_PIPELINE_CONTINUE);
923 		}
924 		zio->io_bp_override = NULL;
925 		BP_ZERO(bp);
926 	}
927 
928 	if (bp->blk_birth == zio->io_txg) {
929 		/*
930 		 * We're rewriting an existing block, which means we're
931 		 * working on behalf of spa_sync().  For spa_sync() to
932 		 * converge, it must eventually be the case that we don't
933 		 * have to allocate new blocks.  But compression changes
934 		 * the blocksize, which forces a reallocate, and makes
935 		 * convergence take longer.  Therefore, after the first
936 		 * few passes, stop compressing to ensure convergence.
937 		 */
938 		pass = spa_sync_pass(spa);
939 
940 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
941 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
942 		ASSERT(!BP_GET_DEDUP(bp));
943 
944 		if (pass > SYNC_PASS_DONT_COMPRESS)
945 			compress = ZIO_COMPRESS_OFF;
946 
947 		/* Make sure someone doesn't change their mind on overwrites */
948 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
949 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
950 	}
951 
952 	if (compress != ZIO_COMPRESS_OFF) {
953 		void *cbuf = zio_buf_alloc(lsize);
954 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
955 		if (psize == 0 || psize == lsize) {
956 			compress = ZIO_COMPRESS_OFF;
957 			zio_buf_free(cbuf, lsize);
958 		} else {
959 			ASSERT(psize < lsize);
960 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
961 		}
962 	}
963 
964 	/*
965 	 * The final pass of spa_sync() must be all rewrites, but the first
966 	 * few passes offer a trade-off: allocating blocks defers convergence,
967 	 * but newly allocated blocks are sequential, so they can be written
968 	 * to disk faster.  Therefore, we allow the first few passes of
969 	 * spa_sync() to allocate new blocks, but force rewrites after that.
970 	 * There should only be a handful of blocks after pass 1 in any case.
971 	 */
972 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
973 	    pass > SYNC_PASS_REWRITE) {
974 		ASSERT(psize != 0);
975 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
976 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
977 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
978 	} else {
979 		BP_ZERO(bp);
980 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
981 	}
982 
983 	if (psize == 0) {
984 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
985 	} else {
986 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
987 		BP_SET_LSIZE(bp, lsize);
988 		BP_SET_PSIZE(bp, psize);
989 		BP_SET_COMPRESS(bp, compress);
990 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
991 		BP_SET_TYPE(bp, zp->zp_type);
992 		BP_SET_LEVEL(bp, zp->zp_level);
993 		BP_SET_DEDUP(bp, zp->zp_dedup);
994 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
995 		if (zp->zp_dedup) {
996 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
997 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
998 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
999 		}
1000 	}
1001 
1002 	return (ZIO_PIPELINE_CONTINUE);
1003 }
1004 
1005 static int
1006 zio_free_bp_init(zio_t *zio)
1007 {
1008 	blkptr_t *bp = zio->io_bp;
1009 
1010 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1011 		if (BP_GET_DEDUP(bp))
1012 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1013 		else
1014 			arc_free(zio->io_spa, bp);
1015 	}
1016 
1017 	return (ZIO_PIPELINE_CONTINUE);
1018 }
1019 
1020 /*
1021  * ==========================================================================
1022  * Execute the I/O pipeline
1023  * ==========================================================================
1024  */
1025 
1026 static void
1027 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q)
1028 {
1029 	spa_t *spa = zio->io_spa;
1030 	zio_type_t t = zio->io_type;
1031 
1032 	/*
1033 	 * If we're a config writer or a probe, the normal issue and
1034 	 * interrupt threads may all be blocked waiting for the config lock.
1035 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1036 	 */
1037 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1038 		t = ZIO_TYPE_NULL;
1039 
1040 	/*
1041 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1042 	 */
1043 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1044 		t = ZIO_TYPE_NULL;
1045 
1046 	/*
1047 	 * If this is a high priority I/O, then use the high priority taskq.
1048 	 */
1049 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1050 	    spa->spa_zio_taskq[t][q + 1] != NULL)
1051 		q++;
1052 
1053 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1054 	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1055 	    (task_func_t *)zio_execute, zio, TQ_SLEEP);
1056 }
1057 
1058 static boolean_t
1059 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1060 {
1061 	kthread_t *executor = zio->io_executor;
1062 	spa_t *spa = zio->io_spa;
1063 
1064 	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1065 		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1066 			return (B_TRUE);
1067 
1068 	return (B_FALSE);
1069 }
1070 
1071 static int
1072 zio_issue_async(zio_t *zio)
1073 {
1074 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1075 
1076 	return (ZIO_PIPELINE_STOP);
1077 }
1078 
1079 void
1080 zio_interrupt(zio_t *zio)
1081 {
1082 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT);
1083 }
1084 
1085 /*
1086  * Execute the I/O pipeline until one of the following occurs:
1087  * (1) the I/O completes; (2) the pipeline stalls waiting for
1088  * dependent child I/Os; (3) the I/O issues, so we're waiting
1089  * for an I/O completion interrupt; (4) the I/O is delegated by
1090  * vdev-level caching or aggregation; (5) the I/O is deferred
1091  * due to vdev-level queueing; (6) the I/O is handed off to
1092  * another thread.  In all cases, the pipeline stops whenever
1093  * there's no CPU work; it never burns a thread in cv_wait().
1094  *
1095  * There's no locking on io_stage because there's no legitimate way
1096  * for multiple threads to be attempting to process the same I/O.
1097  */
1098 static zio_pipe_stage_t *zio_pipeline[];
1099 
1100 void
1101 zio_execute(zio_t *zio)
1102 {
1103 	zio->io_executor = curthread;
1104 
1105 	while (zio->io_stage < ZIO_STAGE_DONE) {
1106 		enum zio_stage pipeline = zio->io_pipeline;
1107 		enum zio_stage stage = zio->io_stage;
1108 		int rv;
1109 
1110 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1111 		ASSERT(ISP2(stage));
1112 		ASSERT(zio->io_stall == NULL);
1113 
1114 		do {
1115 			stage <<= 1;
1116 		} while ((stage & pipeline) == 0);
1117 
1118 		ASSERT(stage <= ZIO_STAGE_DONE);
1119 
1120 		/*
1121 		 * If we are in interrupt context and this pipeline stage
1122 		 * will grab a config lock that is held across I/O,
1123 		 * or may wait for an I/O that needs an interrupt thread
1124 		 * to complete, issue async to avoid deadlock.
1125 		 */
1126 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1127 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1128 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1129 			return;
1130 		}
1131 
1132 		zio->io_stage = stage;
1133 		rv = zio_pipeline[highbit(stage) - 1](zio);
1134 
1135 		if (rv == ZIO_PIPELINE_STOP)
1136 			return;
1137 
1138 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1139 	}
1140 }
1141 
1142 /*
1143  * ==========================================================================
1144  * Initiate I/O, either sync or async
1145  * ==========================================================================
1146  */
1147 int
1148 zio_wait(zio_t *zio)
1149 {
1150 	int error;
1151 
1152 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1153 	ASSERT(zio->io_executor == NULL);
1154 
1155 	zio->io_waiter = curthread;
1156 
1157 	zio_execute(zio);
1158 
1159 	mutex_enter(&zio->io_lock);
1160 	while (zio->io_executor != NULL)
1161 		cv_wait(&zio->io_cv, &zio->io_lock);
1162 	mutex_exit(&zio->io_lock);
1163 
1164 	error = zio->io_error;
1165 	zio_destroy(zio);
1166 
1167 	return (error);
1168 }
1169 
1170 void
1171 zio_nowait(zio_t *zio)
1172 {
1173 	ASSERT(zio->io_executor == NULL);
1174 
1175 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1176 	    zio_unique_parent(zio) == NULL) {
1177 		/*
1178 		 * This is a logical async I/O with no parent to wait for it.
1179 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1180 		 * will ensure they complete prior to unloading the pool.
1181 		 */
1182 		spa_t *spa = zio->io_spa;
1183 
1184 		zio_add_child(spa->spa_async_zio_root, zio);
1185 	}
1186 
1187 	zio_execute(zio);
1188 }
1189 
1190 /*
1191  * ==========================================================================
1192  * Reexecute or suspend/resume failed I/O
1193  * ==========================================================================
1194  */
1195 
1196 static void
1197 zio_reexecute(zio_t *pio)
1198 {
1199 	zio_t *cio, *cio_next;
1200 
1201 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1202 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1203 	ASSERT(pio->io_gang_leader == NULL);
1204 	ASSERT(pio->io_gang_tree == NULL);
1205 
1206 	pio->io_flags = pio->io_orig_flags;
1207 	pio->io_stage = pio->io_orig_stage;
1208 	pio->io_pipeline = pio->io_orig_pipeline;
1209 	pio->io_reexecute = 0;
1210 	pio->io_error = 0;
1211 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1212 		pio->io_state[w] = 0;
1213 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1214 		pio->io_child_error[c] = 0;
1215 
1216 	if (IO_IS_ALLOCATING(pio))
1217 		BP_ZERO(pio->io_bp);
1218 
1219 	/*
1220 	 * As we reexecute pio's children, new children could be created.
1221 	 * New children go to the head of pio's io_child_list, however,
1222 	 * so we will (correctly) not reexecute them.  The key is that
1223 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1224 	 * cannot be affected by any side effects of reexecuting 'cio'.
1225 	 */
1226 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1227 		cio_next = zio_walk_children(pio);
1228 		mutex_enter(&pio->io_lock);
1229 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1230 			pio->io_children[cio->io_child_type][w]++;
1231 		mutex_exit(&pio->io_lock);
1232 		zio_reexecute(cio);
1233 	}
1234 
1235 	/*
1236 	 * Now that all children have been reexecuted, execute the parent.
1237 	 * We don't reexecute "The Godfather" I/O here as it's the
1238 	 * responsibility of the caller to wait on him.
1239 	 */
1240 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1241 		zio_execute(pio);
1242 }
1243 
1244 void
1245 zio_suspend(spa_t *spa, zio_t *zio)
1246 {
1247 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1248 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1249 		    "failure and the failure mode property for this pool "
1250 		    "is set to panic.", spa_name(spa));
1251 
1252 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1253 
1254 	mutex_enter(&spa->spa_suspend_lock);
1255 
1256 	if (spa->spa_suspend_zio_root == NULL)
1257 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1258 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1259 		    ZIO_FLAG_GODFATHER);
1260 
1261 	spa->spa_suspended = B_TRUE;
1262 
1263 	if (zio != NULL) {
1264 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1265 		ASSERT(zio != spa->spa_suspend_zio_root);
1266 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1267 		ASSERT(zio_unique_parent(zio) == NULL);
1268 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1269 		zio_add_child(spa->spa_suspend_zio_root, zio);
1270 	}
1271 
1272 	mutex_exit(&spa->spa_suspend_lock);
1273 }
1274 
1275 int
1276 zio_resume(spa_t *spa)
1277 {
1278 	zio_t *pio;
1279 
1280 	/*
1281 	 * Reexecute all previously suspended i/o.
1282 	 */
1283 	mutex_enter(&spa->spa_suspend_lock);
1284 	spa->spa_suspended = B_FALSE;
1285 	cv_broadcast(&spa->spa_suspend_cv);
1286 	pio = spa->spa_suspend_zio_root;
1287 	spa->spa_suspend_zio_root = NULL;
1288 	mutex_exit(&spa->spa_suspend_lock);
1289 
1290 	if (pio == NULL)
1291 		return (0);
1292 
1293 	zio_reexecute(pio);
1294 	return (zio_wait(pio));
1295 }
1296 
1297 void
1298 zio_resume_wait(spa_t *spa)
1299 {
1300 	mutex_enter(&spa->spa_suspend_lock);
1301 	while (spa_suspended(spa))
1302 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1303 	mutex_exit(&spa->spa_suspend_lock);
1304 }
1305 
1306 /*
1307  * ==========================================================================
1308  * Gang blocks.
1309  *
1310  * A gang block is a collection of small blocks that looks to the DMU
1311  * like one large block.  When zio_dva_allocate() cannot find a block
1312  * of the requested size, due to either severe fragmentation or the pool
1313  * being nearly full, it calls zio_write_gang_block() to construct the
1314  * block from smaller fragments.
1315  *
1316  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1317  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1318  * an indirect block: it's an array of block pointers.  It consumes
1319  * only one sector and hence is allocatable regardless of fragmentation.
1320  * The gang header's bps point to its gang members, which hold the data.
1321  *
1322  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1323  * as the verifier to ensure uniqueness of the SHA256 checksum.
1324  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1325  * not the gang header.  This ensures that data block signatures (needed for
1326  * deduplication) are independent of how the block is physically stored.
1327  *
1328  * Gang blocks can be nested: a gang member may itself be a gang block.
1329  * Thus every gang block is a tree in which root and all interior nodes are
1330  * gang headers, and the leaves are normal blocks that contain user data.
1331  * The root of the gang tree is called the gang leader.
1332  *
1333  * To perform any operation (read, rewrite, free, claim) on a gang block,
1334  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1335  * in the io_gang_tree field of the original logical i/o by recursively
1336  * reading the gang leader and all gang headers below it.  This yields
1337  * an in-core tree containing the contents of every gang header and the
1338  * bps for every constituent of the gang block.
1339  *
1340  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1341  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1342  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1343  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1344  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1345  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1346  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1347  * of the gang header plus zio_checksum_compute() of the data to update the
1348  * gang header's blk_cksum as described above.
1349  *
1350  * The two-phase assemble/issue model solves the problem of partial failure --
1351  * what if you'd freed part of a gang block but then couldn't read the
1352  * gang header for another part?  Assembling the entire gang tree first
1353  * ensures that all the necessary gang header I/O has succeeded before
1354  * starting the actual work of free, claim, or write.  Once the gang tree
1355  * is assembled, free and claim are in-memory operations that cannot fail.
1356  *
1357  * In the event that a gang write fails, zio_dva_unallocate() walks the
1358  * gang tree to immediately free (i.e. insert back into the space map)
1359  * everything we've allocated.  This ensures that we don't get ENOSPC
1360  * errors during repeated suspend/resume cycles due to a flaky device.
1361  *
1362  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1363  * the gang tree, we won't modify the block, so we can safely defer the free
1364  * (knowing that the block is still intact).  If we *can* assemble the gang
1365  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1366  * each constituent bp and we can allocate a new block on the next sync pass.
1367  *
1368  * In all cases, the gang tree allows complete recovery from partial failure.
1369  * ==========================================================================
1370  */
1371 
1372 static zio_t *
1373 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1374 {
1375 	if (gn != NULL)
1376 		return (pio);
1377 
1378 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1379 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1380 	    &pio->io_bookmark));
1381 }
1382 
1383 zio_t *
1384 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1385 {
1386 	zio_t *zio;
1387 
1388 	if (gn != NULL) {
1389 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1390 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1391 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1392 		/*
1393 		 * As we rewrite each gang header, the pipeline will compute
1394 		 * a new gang block header checksum for it; but no one will
1395 		 * compute a new data checksum, so we do that here.  The one
1396 		 * exception is the gang leader: the pipeline already computed
1397 		 * its data checksum because that stage precedes gang assembly.
1398 		 * (Presently, nothing actually uses interior data checksums;
1399 		 * this is just good hygiene.)
1400 		 */
1401 		if (gn != pio->io_gang_leader->io_gang_tree) {
1402 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1403 			    data, BP_GET_PSIZE(bp));
1404 		}
1405 		/*
1406 		 * If we are here to damage data for testing purposes,
1407 		 * leave the GBH alone so that we can detect the damage.
1408 		 */
1409 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1410 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1411 	} else {
1412 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1413 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1414 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1415 	}
1416 
1417 	return (zio);
1418 }
1419 
1420 /* ARGSUSED */
1421 zio_t *
1422 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1423 {
1424 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1425 	    ZIO_GANG_CHILD_FLAGS(pio)));
1426 }
1427 
1428 /* ARGSUSED */
1429 zio_t *
1430 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1431 {
1432 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1433 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1434 }
1435 
1436 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1437 	NULL,
1438 	zio_read_gang,
1439 	zio_rewrite_gang,
1440 	zio_free_gang,
1441 	zio_claim_gang,
1442 	NULL
1443 };
1444 
1445 static void zio_gang_tree_assemble_done(zio_t *zio);
1446 
1447 static zio_gang_node_t *
1448 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1449 {
1450 	zio_gang_node_t *gn;
1451 
1452 	ASSERT(*gnpp == NULL);
1453 
1454 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1455 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1456 	*gnpp = gn;
1457 
1458 	return (gn);
1459 }
1460 
1461 static void
1462 zio_gang_node_free(zio_gang_node_t **gnpp)
1463 {
1464 	zio_gang_node_t *gn = *gnpp;
1465 
1466 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1467 		ASSERT(gn->gn_child[g] == NULL);
1468 
1469 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1470 	kmem_free(gn, sizeof (*gn));
1471 	*gnpp = NULL;
1472 }
1473 
1474 static void
1475 zio_gang_tree_free(zio_gang_node_t **gnpp)
1476 {
1477 	zio_gang_node_t *gn = *gnpp;
1478 
1479 	if (gn == NULL)
1480 		return;
1481 
1482 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1483 		zio_gang_tree_free(&gn->gn_child[g]);
1484 
1485 	zio_gang_node_free(gnpp);
1486 }
1487 
1488 static void
1489 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1490 {
1491 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1492 
1493 	ASSERT(gio->io_gang_leader == gio);
1494 	ASSERT(BP_IS_GANG(bp));
1495 
1496 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1497 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1498 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1499 }
1500 
1501 static void
1502 zio_gang_tree_assemble_done(zio_t *zio)
1503 {
1504 	zio_t *gio = zio->io_gang_leader;
1505 	zio_gang_node_t *gn = zio->io_private;
1506 	blkptr_t *bp = zio->io_bp;
1507 
1508 	ASSERT(gio == zio_unique_parent(zio));
1509 	ASSERT(zio->io_child_count == 0);
1510 
1511 	if (zio->io_error)
1512 		return;
1513 
1514 	if (BP_SHOULD_BYTESWAP(bp))
1515 		byteswap_uint64_array(zio->io_data, zio->io_size);
1516 
1517 	ASSERT(zio->io_data == gn->gn_gbh);
1518 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1519 	ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
1520 
1521 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1522 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1523 		if (!BP_IS_GANG(gbp))
1524 			continue;
1525 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1526 	}
1527 }
1528 
1529 static void
1530 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1531 {
1532 	zio_t *gio = pio->io_gang_leader;
1533 	zio_t *zio;
1534 
1535 	ASSERT(BP_IS_GANG(bp) == !!gn);
1536 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1537 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1538 
1539 	/*
1540 	 * If you're a gang header, your data is in gn->gn_gbh.
1541 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1542 	 */
1543 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1544 
1545 	if (gn != NULL) {
1546 		ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
1547 
1548 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1549 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1550 			if (BP_IS_HOLE(gbp))
1551 				continue;
1552 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1553 			data = (char *)data + BP_GET_PSIZE(gbp);
1554 		}
1555 	}
1556 
1557 	if (gn == gio->io_gang_tree)
1558 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1559 
1560 	if (zio != pio)
1561 		zio_nowait(zio);
1562 }
1563 
1564 static int
1565 zio_gang_assemble(zio_t *zio)
1566 {
1567 	blkptr_t *bp = zio->io_bp;
1568 
1569 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1570 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1571 
1572 	zio->io_gang_leader = zio;
1573 
1574 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1575 
1576 	return (ZIO_PIPELINE_CONTINUE);
1577 }
1578 
1579 static int
1580 zio_gang_issue(zio_t *zio)
1581 {
1582 	blkptr_t *bp = zio->io_bp;
1583 
1584 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1585 		return (ZIO_PIPELINE_STOP);
1586 
1587 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1588 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1589 
1590 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1591 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1592 	else
1593 		zio_gang_tree_free(&zio->io_gang_tree);
1594 
1595 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1596 
1597 	return (ZIO_PIPELINE_CONTINUE);
1598 }
1599 
1600 static void
1601 zio_write_gang_member_ready(zio_t *zio)
1602 {
1603 	zio_t *pio = zio_unique_parent(zio);
1604 	zio_t *gio = zio->io_gang_leader;
1605 	dva_t *cdva = zio->io_bp->blk_dva;
1606 	dva_t *pdva = pio->io_bp->blk_dva;
1607 	uint64_t asize;
1608 
1609 	if (BP_IS_HOLE(zio->io_bp))
1610 		return;
1611 
1612 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1613 
1614 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1615 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1616 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1617 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1618 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1619 
1620 	mutex_enter(&pio->io_lock);
1621 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1622 		ASSERT(DVA_GET_GANG(&pdva[d]));
1623 		asize = DVA_GET_ASIZE(&pdva[d]);
1624 		asize += DVA_GET_ASIZE(&cdva[d]);
1625 		DVA_SET_ASIZE(&pdva[d], asize);
1626 	}
1627 	mutex_exit(&pio->io_lock);
1628 }
1629 
1630 static int
1631 zio_write_gang_block(zio_t *pio)
1632 {
1633 	spa_t *spa = pio->io_spa;
1634 	blkptr_t *bp = pio->io_bp;
1635 	zio_t *gio = pio->io_gang_leader;
1636 	zio_t *zio;
1637 	zio_gang_node_t *gn, **gnpp;
1638 	zio_gbh_phys_t *gbh;
1639 	uint64_t txg = pio->io_txg;
1640 	uint64_t resid = pio->io_size;
1641 	uint64_t lsize;
1642 	int copies = gio->io_prop.zp_copies;
1643 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1644 	zio_prop_t zp;
1645 	int error;
1646 
1647 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1648 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1649 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1650 	if (error) {
1651 		pio->io_error = error;
1652 		return (ZIO_PIPELINE_CONTINUE);
1653 	}
1654 
1655 	if (pio == gio) {
1656 		gnpp = &gio->io_gang_tree;
1657 	} else {
1658 		gnpp = pio->io_private;
1659 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1660 	}
1661 
1662 	gn = zio_gang_node_alloc(gnpp);
1663 	gbh = gn->gn_gbh;
1664 	bzero(gbh, SPA_GANGBLOCKSIZE);
1665 
1666 	/*
1667 	 * Create the gang header.
1668 	 */
1669 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1670 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1671 
1672 	/*
1673 	 * Create and nowait the gang children.
1674 	 */
1675 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1676 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1677 		    SPA_MINBLOCKSIZE);
1678 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1679 
1680 		zp.zp_checksum = gio->io_prop.zp_checksum;
1681 		zp.zp_compress = ZIO_COMPRESS_OFF;
1682 		zp.zp_type = DMU_OT_NONE;
1683 		zp.zp_level = 0;
1684 		zp.zp_copies = gio->io_prop.zp_copies;
1685 		zp.zp_dedup = 0;
1686 		zp.zp_dedup_verify = 0;
1687 
1688 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1689 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1690 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1691 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1692 		    &pio->io_bookmark));
1693 	}
1694 
1695 	/*
1696 	 * Set pio's pipeline to just wait for zio to finish.
1697 	 */
1698 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1699 
1700 	zio_nowait(zio);
1701 
1702 	return (ZIO_PIPELINE_CONTINUE);
1703 }
1704 
1705 /*
1706  * ==========================================================================
1707  * Dedup
1708  * ==========================================================================
1709  */
1710 static void
1711 zio_ddt_child_read_done(zio_t *zio)
1712 {
1713 	blkptr_t *bp = zio->io_bp;
1714 	ddt_entry_t *dde = zio->io_private;
1715 	ddt_phys_t *ddp;
1716 	zio_t *pio = zio_unique_parent(zio);
1717 
1718 	mutex_enter(&pio->io_lock);
1719 	ddp = ddt_phys_select(dde, bp);
1720 	if (zio->io_error == 0)
1721 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1722 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1723 		dde->dde_repair_data = zio->io_data;
1724 	else
1725 		zio_buf_free(zio->io_data, zio->io_size);
1726 	mutex_exit(&pio->io_lock);
1727 }
1728 
1729 static int
1730 zio_ddt_read_start(zio_t *zio)
1731 {
1732 	blkptr_t *bp = zio->io_bp;
1733 
1734 	ASSERT(BP_GET_DEDUP(bp));
1735 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1736 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1737 
1738 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1739 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1740 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1741 		ddt_phys_t *ddp = dde->dde_phys;
1742 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1743 		blkptr_t blk;
1744 
1745 		ASSERT(zio->io_vsd == NULL);
1746 		zio->io_vsd = dde;
1747 
1748 		if (ddp_self == NULL)
1749 			return (ZIO_PIPELINE_CONTINUE);
1750 
1751 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1752 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1753 				continue;
1754 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1755 			    &blk);
1756 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1757 			    zio_buf_alloc(zio->io_size), zio->io_size,
1758 			    zio_ddt_child_read_done, dde, zio->io_priority,
1759 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1760 			    &zio->io_bookmark));
1761 		}
1762 		return (ZIO_PIPELINE_CONTINUE);
1763 	}
1764 
1765 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1766 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1767 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1768 
1769 	return (ZIO_PIPELINE_CONTINUE);
1770 }
1771 
1772 static int
1773 zio_ddt_read_done(zio_t *zio)
1774 {
1775 	blkptr_t *bp = zio->io_bp;
1776 
1777 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1778 		return (ZIO_PIPELINE_STOP);
1779 
1780 	ASSERT(BP_GET_DEDUP(bp));
1781 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1782 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1783 
1784 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1785 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1786 		ddt_entry_t *dde = zio->io_vsd;
1787 		if (ddt == NULL) {
1788 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1789 			return (ZIO_PIPELINE_CONTINUE);
1790 		}
1791 		if (dde == NULL) {
1792 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1793 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1794 			return (ZIO_PIPELINE_STOP);
1795 		}
1796 		if (dde->dde_repair_data != NULL) {
1797 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1798 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1799 		}
1800 		ddt_repair_done(ddt, dde);
1801 		zio->io_vsd = NULL;
1802 	}
1803 
1804 	ASSERT(zio->io_vsd == NULL);
1805 
1806 	return (ZIO_PIPELINE_CONTINUE);
1807 }
1808 
1809 static boolean_t
1810 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1811 {
1812 	spa_t *spa = zio->io_spa;
1813 
1814 	/*
1815 	 * Note: we compare the original data, not the transformed data,
1816 	 * because when zio->io_bp is an override bp, we will not have
1817 	 * pushed the I/O transforms.  That's an important optimization
1818 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1819 	 */
1820 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1821 		zio_t *lio = dde->dde_lead_zio[p];
1822 
1823 		if (lio != NULL) {
1824 			return (lio->io_orig_size != zio->io_orig_size ||
1825 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1826 			    zio->io_orig_size) != 0);
1827 		}
1828 	}
1829 
1830 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1831 		ddt_phys_t *ddp = &dde->dde_phys[p];
1832 
1833 		if (ddp->ddp_phys_birth != 0) {
1834 			arc_buf_t *abuf = NULL;
1835 			uint32_t aflags = ARC_WAIT;
1836 			blkptr_t blk = *zio->io_bp;
1837 			int error;
1838 
1839 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1840 
1841 			ddt_exit(ddt);
1842 
1843 			error = arc_read_nolock(NULL, spa, &blk,
1844 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1845 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1846 			    &aflags, &zio->io_bookmark);
1847 
1848 			if (error == 0) {
1849 				if (arc_buf_size(abuf) != zio->io_orig_size ||
1850 				    bcmp(abuf->b_data, zio->io_orig_data,
1851 				    zio->io_orig_size) != 0)
1852 					error = EEXIST;
1853 				VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1854 			}
1855 
1856 			ddt_enter(ddt);
1857 			return (error != 0);
1858 		}
1859 	}
1860 
1861 	return (B_FALSE);
1862 }
1863 
1864 static void
1865 zio_ddt_child_write_ready(zio_t *zio)
1866 {
1867 	int p = zio->io_prop.zp_copies;
1868 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1869 	ddt_entry_t *dde = zio->io_private;
1870 	ddt_phys_t *ddp = &dde->dde_phys[p];
1871 	zio_t *pio;
1872 
1873 	if (zio->io_error)
1874 		return;
1875 
1876 	ddt_enter(ddt);
1877 
1878 	ASSERT(dde->dde_lead_zio[p] == zio);
1879 
1880 	ddt_phys_fill(ddp, zio->io_bp);
1881 
1882 	while ((pio = zio_walk_parents(zio)) != NULL)
1883 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
1884 
1885 	ddt_exit(ddt);
1886 }
1887 
1888 static void
1889 zio_ddt_child_write_done(zio_t *zio)
1890 {
1891 	int p = zio->io_prop.zp_copies;
1892 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1893 	ddt_entry_t *dde = zio->io_private;
1894 	ddt_phys_t *ddp = &dde->dde_phys[p];
1895 
1896 	ddt_enter(ddt);
1897 
1898 	ASSERT(ddp->ddp_refcnt == 0);
1899 	ASSERT(dde->dde_lead_zio[p] == zio);
1900 	dde->dde_lead_zio[p] = NULL;
1901 
1902 	if (zio->io_error == 0) {
1903 		while (zio_walk_parents(zio) != NULL)
1904 			ddt_phys_addref(ddp);
1905 	} else {
1906 		ddt_phys_clear(ddp);
1907 	}
1908 
1909 	ddt_exit(ddt);
1910 }
1911 
1912 static void
1913 zio_ddt_ditto_write_done(zio_t *zio)
1914 {
1915 	int p = DDT_PHYS_DITTO;
1916 	zio_prop_t *zp = &zio->io_prop;
1917 	blkptr_t *bp = zio->io_bp;
1918 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
1919 	ddt_entry_t *dde = zio->io_private;
1920 	ddt_phys_t *ddp = &dde->dde_phys[p];
1921 	ddt_key_t *ddk = &dde->dde_key;
1922 
1923 	ddt_enter(ddt);
1924 
1925 	ASSERT(ddp->ddp_refcnt == 0);
1926 	ASSERT(dde->dde_lead_zio[p] == zio);
1927 	dde->dde_lead_zio[p] = NULL;
1928 
1929 	if (zio->io_error == 0) {
1930 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
1931 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
1932 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
1933 		if (ddp->ddp_phys_birth != 0)
1934 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
1935 		ddt_phys_fill(ddp, bp);
1936 	}
1937 
1938 	ddt_exit(ddt);
1939 }
1940 
1941 static int
1942 zio_ddt_write(zio_t *zio)
1943 {
1944 	spa_t *spa = zio->io_spa;
1945 	blkptr_t *bp = zio->io_bp;
1946 	uint64_t txg = zio->io_txg;
1947 	zio_prop_t *zp = &zio->io_prop;
1948 	int p = zp->zp_copies;
1949 	int ditto_copies;
1950 	zio_t *cio = NULL;
1951 	zio_t *dio = NULL;
1952 	ddt_t *ddt = ddt_select(spa, bp);
1953 	ddt_entry_t *dde;
1954 	ddt_phys_t *ddp;
1955 
1956 	ASSERT(BP_GET_DEDUP(bp));
1957 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
1958 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
1959 
1960 	ddt_enter(ddt);
1961 	dde = ddt_lookup(ddt, bp, B_TRUE);
1962 	ddp = &dde->dde_phys[p];
1963 
1964 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
1965 		/*
1966 		 * If we're using a weak checksum, upgrade to a strong checksum
1967 		 * and try again.  If we're already using a strong checksum,
1968 		 * we can't resolve it, so just convert to an ordinary write.
1969 		 * (And automatically e-mail a paper to Nature?)
1970 		 */
1971 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
1972 			zp->zp_checksum = spa_dedup_checksum(spa);
1973 			zio_pop_transforms(zio);
1974 			zio->io_stage = ZIO_STAGE_OPEN;
1975 			BP_ZERO(bp);
1976 		} else {
1977 			zp->zp_dedup = 0;
1978 		}
1979 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1980 		ddt_exit(ddt);
1981 		return (ZIO_PIPELINE_CONTINUE);
1982 	}
1983 
1984 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
1985 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
1986 
1987 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
1988 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
1989 		zio_prop_t czp = *zp;
1990 
1991 		czp.zp_copies = ditto_copies;
1992 
1993 		/*
1994 		 * If we arrived here with an override bp, we won't have run
1995 		 * the transform stack, so we won't have the data we need to
1996 		 * generate a child i/o.  So, toss the override bp and restart.
1997 		 * This is safe, because using the override bp is just an
1998 		 * optimization; and it's rare, so the cost doesn't matter.
1999 		 */
2000 		if (zio->io_bp_override) {
2001 			zio_pop_transforms(zio);
2002 			zio->io_stage = ZIO_STAGE_OPEN;
2003 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2004 			zio->io_bp_override = NULL;
2005 			BP_ZERO(bp);
2006 			ddt_exit(ddt);
2007 			return (ZIO_PIPELINE_CONTINUE);
2008 		}
2009 
2010 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2011 		    zio->io_orig_size, &czp, NULL,
2012 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2013 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2014 
2015 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2016 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2017 	}
2018 
2019 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2020 		if (ddp->ddp_phys_birth != 0)
2021 			ddt_bp_fill(ddp, bp, txg);
2022 		if (dde->dde_lead_zio[p] != NULL)
2023 			zio_add_child(zio, dde->dde_lead_zio[p]);
2024 		else
2025 			ddt_phys_addref(ddp);
2026 	} else if (zio->io_bp_override) {
2027 		ASSERT(bp->blk_birth == txg);
2028 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2029 		ddt_phys_fill(ddp, bp);
2030 		ddt_phys_addref(ddp);
2031 	} else {
2032 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2033 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2034 		    zio_ddt_child_write_done, dde, zio->io_priority,
2035 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2036 
2037 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2038 		dde->dde_lead_zio[p] = cio;
2039 	}
2040 
2041 	ddt_exit(ddt);
2042 
2043 	if (cio)
2044 		zio_nowait(cio);
2045 	if (dio)
2046 		zio_nowait(dio);
2047 
2048 	return (ZIO_PIPELINE_CONTINUE);
2049 }
2050 
2051 static int
2052 zio_ddt_free(zio_t *zio)
2053 {
2054 	spa_t *spa = zio->io_spa;
2055 	blkptr_t *bp = zio->io_bp;
2056 	ddt_t *ddt = ddt_select(spa, bp);
2057 	ddt_entry_t *dde;
2058 	ddt_phys_t *ddp;
2059 
2060 	ASSERT(BP_GET_DEDUP(bp));
2061 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2062 
2063 	ddt_enter(ddt);
2064 	dde = ddt_lookup(ddt, bp, B_TRUE);
2065 	ddp = ddt_phys_select(dde, bp);
2066 	ddt_phys_decref(ddp);
2067 	ddt_exit(ddt);
2068 
2069 	return (ZIO_PIPELINE_CONTINUE);
2070 }
2071 
2072 /*
2073  * ==========================================================================
2074  * Allocate and free blocks
2075  * ==========================================================================
2076  */
2077 static int
2078 zio_dva_allocate(zio_t *zio)
2079 {
2080 	spa_t *spa = zio->io_spa;
2081 	metaslab_class_t *mc = spa_normal_class(spa);
2082 	blkptr_t *bp = zio->io_bp;
2083 	int error;
2084 
2085 	if (zio->io_gang_leader == NULL) {
2086 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2087 		zio->io_gang_leader = zio;
2088 	}
2089 
2090 	ASSERT(BP_IS_HOLE(bp));
2091 	ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2092 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2093 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2094 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2095 
2096 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2097 	    zio->io_prop.zp_copies, zio->io_txg, NULL, 0);
2098 
2099 	if (error) {
2100 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2101 			return (zio_write_gang_block(zio));
2102 		zio->io_error = error;
2103 	}
2104 
2105 	return (ZIO_PIPELINE_CONTINUE);
2106 }
2107 
2108 static int
2109 zio_dva_free(zio_t *zio)
2110 {
2111 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2112 
2113 	return (ZIO_PIPELINE_CONTINUE);
2114 }
2115 
2116 static int
2117 zio_dva_claim(zio_t *zio)
2118 {
2119 	int error;
2120 
2121 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2122 	if (error)
2123 		zio->io_error = error;
2124 
2125 	return (ZIO_PIPELINE_CONTINUE);
2126 }
2127 
2128 /*
2129  * Undo an allocation.  This is used by zio_done() when an I/O fails
2130  * and we want to give back the block we just allocated.
2131  * This handles both normal blocks and gang blocks.
2132  */
2133 static void
2134 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2135 {
2136 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2137 	ASSERT(zio->io_bp_override == NULL);
2138 
2139 	if (!BP_IS_HOLE(bp))
2140 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2141 
2142 	if (gn != NULL) {
2143 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2144 			zio_dva_unallocate(zio, gn->gn_child[g],
2145 			    &gn->gn_gbh->zg_blkptr[g]);
2146 		}
2147 	}
2148 }
2149 
2150 /*
2151  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2152  */
2153 int
2154 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2155     uint64_t size, boolean_t use_slog)
2156 {
2157 	int error = 1;
2158 
2159 	ASSERT(txg > spa_syncing_txg(spa));
2160 
2161 	if (use_slog)
2162 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2163 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2164 
2165 	if (error)
2166 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2167 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2168 
2169 	if (error == 0) {
2170 		BP_SET_LSIZE(new_bp, size);
2171 		BP_SET_PSIZE(new_bp, size);
2172 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2173 		BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG);
2174 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2175 		BP_SET_LEVEL(new_bp, 0);
2176 		BP_SET_DEDUP(new_bp, 0);
2177 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2178 	}
2179 
2180 	return (error);
2181 }
2182 
2183 /*
2184  * Free an intent log block.
2185  */
2186 void
2187 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2188 {
2189 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2190 	ASSERT(!BP_IS_GANG(bp));
2191 
2192 	zio_free(spa, txg, bp);
2193 }
2194 
2195 /*
2196  * ==========================================================================
2197  * Read and write to physical devices
2198  * ==========================================================================
2199  */
2200 static int
2201 zio_vdev_io_start(zio_t *zio)
2202 {
2203 	vdev_t *vd = zio->io_vd;
2204 	uint64_t align;
2205 	spa_t *spa = zio->io_spa;
2206 
2207 	ASSERT(zio->io_error == 0);
2208 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2209 
2210 	if (vd == NULL) {
2211 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2212 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2213 
2214 		/*
2215 		 * The mirror_ops handle multiple DVAs in a single BP.
2216 		 */
2217 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2218 	}
2219 
2220 	align = 1ULL << vd->vdev_top->vdev_ashift;
2221 
2222 	if (P2PHASE(zio->io_size, align) != 0) {
2223 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2224 		char *abuf = zio_buf_alloc(asize);
2225 		ASSERT(vd == vd->vdev_top);
2226 		if (zio->io_type == ZIO_TYPE_WRITE) {
2227 			bcopy(zio->io_data, abuf, zio->io_size);
2228 			bzero(abuf + zio->io_size, asize - zio->io_size);
2229 		}
2230 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2231 	}
2232 
2233 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2234 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2235 	ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2236 
2237 	/*
2238 	 * If this is a repair I/O, and there's no self-healing involved --
2239 	 * that is, we're just resilvering what we expect to resilver --
2240 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2241 	 * This prevents spurious resilvering with nested replication.
2242 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2243 	 * A is out of date, we'll read from C+D, then use the data to
2244 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2245 	 * The top-level mirror has no way to know this, so instead we just
2246 	 * discard unnecessary repairs as we work our way down the vdev tree.
2247 	 * The same logic applies to any form of nested replication:
2248 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2249 	 */
2250 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2251 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2252 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2253 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2254 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2255 		zio_vdev_io_bypass(zio);
2256 		return (ZIO_PIPELINE_CONTINUE);
2257 	}
2258 
2259 	if (vd->vdev_ops->vdev_op_leaf &&
2260 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2261 
2262 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2263 			return (ZIO_PIPELINE_CONTINUE);
2264 
2265 		if ((zio = vdev_queue_io(zio)) == NULL)
2266 			return (ZIO_PIPELINE_STOP);
2267 
2268 		if (!vdev_accessible(vd, zio)) {
2269 			zio->io_error = ENXIO;
2270 			zio_interrupt(zio);
2271 			return (ZIO_PIPELINE_STOP);
2272 		}
2273 	}
2274 
2275 	return (vd->vdev_ops->vdev_op_io_start(zio));
2276 }
2277 
2278 static int
2279 zio_vdev_io_done(zio_t *zio)
2280 {
2281 	vdev_t *vd = zio->io_vd;
2282 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2283 	boolean_t unexpected_error = B_FALSE;
2284 
2285 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2286 		return (ZIO_PIPELINE_STOP);
2287 
2288 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2289 
2290 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2291 
2292 		vdev_queue_io_done(zio);
2293 
2294 		if (zio->io_type == ZIO_TYPE_WRITE)
2295 			vdev_cache_write(zio);
2296 
2297 		if (zio_injection_enabled && zio->io_error == 0)
2298 			zio->io_error = zio_handle_device_injection(vd,
2299 			    zio, EIO);
2300 
2301 		if (zio_injection_enabled && zio->io_error == 0)
2302 			zio->io_error = zio_handle_label_injection(zio, EIO);
2303 
2304 		if (zio->io_error) {
2305 			if (!vdev_accessible(vd, zio)) {
2306 				zio->io_error = ENXIO;
2307 			} else {
2308 				unexpected_error = B_TRUE;
2309 			}
2310 		}
2311 	}
2312 
2313 	ops->vdev_op_io_done(zio);
2314 
2315 	if (unexpected_error)
2316 		VERIFY(vdev_probe(vd, zio) == NULL);
2317 
2318 	return (ZIO_PIPELINE_CONTINUE);
2319 }
2320 
2321 /*
2322  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2323  * disk, and use that to finish the checksum ereport later.
2324  */
2325 static void
2326 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2327     const void *good_buf)
2328 {
2329 	/* no processing needed */
2330 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2331 }
2332 
2333 /*ARGSUSED*/
2334 void
2335 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2336 {
2337 	void *buf = zio_buf_alloc(zio->io_size);
2338 
2339 	bcopy(zio->io_data, buf, zio->io_size);
2340 
2341 	zcr->zcr_cbinfo = zio->io_size;
2342 	zcr->zcr_cbdata = buf;
2343 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2344 	zcr->zcr_free = zio_buf_free;
2345 }
2346 
2347 static int
2348 zio_vdev_io_assess(zio_t *zio)
2349 {
2350 	vdev_t *vd = zio->io_vd;
2351 
2352 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2353 		return (ZIO_PIPELINE_STOP);
2354 
2355 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2356 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2357 
2358 	if (zio->io_vsd != NULL) {
2359 		zio->io_vsd_ops->vsd_free(zio);
2360 		zio->io_vsd = NULL;
2361 	}
2362 
2363 	if (zio_injection_enabled && zio->io_error == 0)
2364 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2365 
2366 	/*
2367 	 * If the I/O failed, determine whether we should attempt to retry it.
2368 	 */
2369 	if (zio->io_error && vd == NULL &&
2370 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2371 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2372 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2373 		zio->io_error = 0;
2374 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2375 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2376 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2377 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
2378 		return (ZIO_PIPELINE_STOP);
2379 	}
2380 
2381 	/*
2382 	 * If we got an error on a leaf device, convert it to ENXIO
2383 	 * if the device is not accessible at all.
2384 	 */
2385 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2386 	    !vdev_accessible(vd, zio))
2387 		zio->io_error = ENXIO;
2388 
2389 	/*
2390 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2391 	 * set vdev_cant_write so that we stop trying to allocate from it.
2392 	 */
2393 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2394 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2395 		vd->vdev_cant_write = B_TRUE;
2396 
2397 	if (zio->io_error)
2398 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2399 
2400 	return (ZIO_PIPELINE_CONTINUE);
2401 }
2402 
2403 void
2404 zio_vdev_io_reissue(zio_t *zio)
2405 {
2406 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2407 	ASSERT(zio->io_error == 0);
2408 
2409 	zio->io_stage >>= 1;
2410 }
2411 
2412 void
2413 zio_vdev_io_redone(zio_t *zio)
2414 {
2415 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2416 
2417 	zio->io_stage >>= 1;
2418 }
2419 
2420 void
2421 zio_vdev_io_bypass(zio_t *zio)
2422 {
2423 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2424 	ASSERT(zio->io_error == 0);
2425 
2426 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2427 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2428 }
2429 
2430 /*
2431  * ==========================================================================
2432  * Generate and verify checksums
2433  * ==========================================================================
2434  */
2435 static int
2436 zio_checksum_generate(zio_t *zio)
2437 {
2438 	blkptr_t *bp = zio->io_bp;
2439 	enum zio_checksum checksum;
2440 
2441 	if (bp == NULL) {
2442 		/*
2443 		 * This is zio_write_phys().
2444 		 * We're either generating a label checksum, or none at all.
2445 		 */
2446 		checksum = zio->io_prop.zp_checksum;
2447 
2448 		if (checksum == ZIO_CHECKSUM_OFF)
2449 			return (ZIO_PIPELINE_CONTINUE);
2450 
2451 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2452 	} else {
2453 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2454 			ASSERT(!IO_IS_ALLOCATING(zio));
2455 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2456 		} else {
2457 			checksum = BP_GET_CHECKSUM(bp);
2458 		}
2459 	}
2460 
2461 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2462 
2463 	return (ZIO_PIPELINE_CONTINUE);
2464 }
2465 
2466 static int
2467 zio_checksum_verify(zio_t *zio)
2468 {
2469 	zio_bad_cksum_t info;
2470 	blkptr_t *bp = zio->io_bp;
2471 	int error;
2472 
2473 	ASSERT(zio->io_vd != NULL);
2474 
2475 	if (bp == NULL) {
2476 		/*
2477 		 * This is zio_read_phys().
2478 		 * We're either verifying a label checksum, or nothing at all.
2479 		 */
2480 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2481 			return (ZIO_PIPELINE_CONTINUE);
2482 
2483 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2484 	}
2485 
2486 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2487 		zio->io_error = error;
2488 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2489 			zfs_ereport_start_checksum(zio->io_spa,
2490 			    zio->io_vd, zio, zio->io_offset,
2491 			    zio->io_size, NULL, &info);
2492 		}
2493 	}
2494 
2495 	return (ZIO_PIPELINE_CONTINUE);
2496 }
2497 
2498 /*
2499  * Called by RAID-Z to ensure we don't compute the checksum twice.
2500  */
2501 void
2502 zio_checksum_verified(zio_t *zio)
2503 {
2504 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2505 }
2506 
2507 /*
2508  * ==========================================================================
2509  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2510  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2511  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2512  * indicate errors that are specific to one I/O, and most likely permanent.
2513  * Any other error is presumed to be worse because we weren't expecting it.
2514  * ==========================================================================
2515  */
2516 int
2517 zio_worst_error(int e1, int e2)
2518 {
2519 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2520 	int r1, r2;
2521 
2522 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2523 		if (e1 == zio_error_rank[r1])
2524 			break;
2525 
2526 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2527 		if (e2 == zio_error_rank[r2])
2528 			break;
2529 
2530 	return (r1 > r2 ? e1 : e2);
2531 }
2532 
2533 /*
2534  * ==========================================================================
2535  * I/O completion
2536  * ==========================================================================
2537  */
2538 static int
2539 zio_ready(zio_t *zio)
2540 {
2541 	blkptr_t *bp = zio->io_bp;
2542 	zio_t *pio, *pio_next;
2543 
2544 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2545 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2546 		return (ZIO_PIPELINE_STOP);
2547 
2548 	if (zio->io_ready) {
2549 		ASSERT(IO_IS_ALLOCATING(zio));
2550 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2551 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2552 
2553 		zio->io_ready(zio);
2554 	}
2555 
2556 	if (bp != NULL && bp != &zio->io_bp_copy)
2557 		zio->io_bp_copy = *bp;
2558 
2559 	if (zio->io_error)
2560 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2561 
2562 	mutex_enter(&zio->io_lock);
2563 	zio->io_state[ZIO_WAIT_READY] = 1;
2564 	pio = zio_walk_parents(zio);
2565 	mutex_exit(&zio->io_lock);
2566 
2567 	/*
2568 	 * As we notify zio's parents, new parents could be added.
2569 	 * New parents go to the head of zio's io_parent_list, however,
2570 	 * so we will (correctly) not notify them.  The remainder of zio's
2571 	 * io_parent_list, from 'pio_next' onward, cannot change because
2572 	 * all parents must wait for us to be done before they can be done.
2573 	 */
2574 	for (; pio != NULL; pio = pio_next) {
2575 		pio_next = zio_walk_parents(zio);
2576 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2577 	}
2578 
2579 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2580 		if (BP_IS_GANG(bp)) {
2581 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2582 		} else {
2583 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2584 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2585 		}
2586 	}
2587 
2588 	if (zio_injection_enabled &&
2589 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2590 		zio_handle_ignored_writes(zio);
2591 
2592 	return (ZIO_PIPELINE_CONTINUE);
2593 }
2594 
2595 static int
2596 zio_done(zio_t *zio)
2597 {
2598 	spa_t *spa = zio->io_spa;
2599 	zio_t *lio = zio->io_logical;
2600 	blkptr_t *bp = zio->io_bp;
2601 	vdev_t *vd = zio->io_vd;
2602 	uint64_t psize = zio->io_size;
2603 	zio_t *pio, *pio_next;
2604 
2605 	/*
2606 	 * If our children haven't all completed,
2607 	 * wait for them and then repeat this pipeline stage.
2608 	 */
2609 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2610 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2611 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2612 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2613 		return (ZIO_PIPELINE_STOP);
2614 
2615 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2616 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2617 			ASSERT(zio->io_children[c][w] == 0);
2618 
2619 	if (bp != NULL) {
2620 		ASSERT(bp->blk_pad[0] == 0);
2621 		ASSERT(bp->blk_pad[1] == 0);
2622 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2623 		    (bp == zio_unique_parent(zio)->io_bp));
2624 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2625 		    zio->io_bp_override == NULL &&
2626 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2627 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2628 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2629 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2630 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2631 		}
2632 	}
2633 
2634 	/*
2635 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2636 	 */
2637 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2638 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2639 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2640 
2641 	/*
2642 	 * If the I/O on the transformed data was successful, generate any
2643 	 * checksum reports now while we still have the transformed data.
2644 	 */
2645 	if (zio->io_error == 0) {
2646 		while (zio->io_cksum_report != NULL) {
2647 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2648 			uint64_t align = zcr->zcr_align;
2649 			uint64_t asize = P2ROUNDUP(psize, align);
2650 			char *abuf = zio->io_data;
2651 
2652 			if (asize != psize) {
2653 				abuf = zio_buf_alloc(asize);
2654 				bcopy(zio->io_data, abuf, psize);
2655 				bzero(abuf + psize, asize - psize);
2656 			}
2657 
2658 			zio->io_cksum_report = zcr->zcr_next;
2659 			zcr->zcr_next = NULL;
2660 			zcr->zcr_finish(zcr, abuf);
2661 			zfs_ereport_free_checksum(zcr);
2662 
2663 			if (asize != psize)
2664 				zio_buf_free(abuf, asize);
2665 		}
2666 	}
2667 
2668 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2669 
2670 	vdev_stat_update(zio, psize);
2671 
2672 	if (zio->io_error) {
2673 		/*
2674 		 * If this I/O is attached to a particular vdev,
2675 		 * generate an error message describing the I/O failure
2676 		 * at the block level.  We ignore these errors if the
2677 		 * device is currently unavailable.
2678 		 */
2679 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2680 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2681 
2682 		if ((zio->io_error == EIO || !(zio->io_flags &
2683 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2684 		    zio == lio) {
2685 			/*
2686 			 * For logical I/O requests, tell the SPA to log the
2687 			 * error and generate a logical data ereport.
2688 			 */
2689 			spa_log_error(spa, zio);
2690 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2691 			    0, 0);
2692 		}
2693 	}
2694 
2695 	if (zio->io_error && zio == lio) {
2696 		/*
2697 		 * Determine whether zio should be reexecuted.  This will
2698 		 * propagate all the way to the root via zio_notify_parent().
2699 		 */
2700 		ASSERT(vd == NULL && bp != NULL);
2701 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2702 
2703 		if (IO_IS_ALLOCATING(zio) &&
2704 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2705 			if (zio->io_error != ENOSPC)
2706 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2707 			else
2708 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2709 		}
2710 
2711 		if ((zio->io_type == ZIO_TYPE_READ ||
2712 		    zio->io_type == ZIO_TYPE_FREE) &&
2713 		    zio->io_error == ENXIO &&
2714 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2715 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2716 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2717 
2718 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2719 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2720 
2721 		/*
2722 		 * Here is a possibly good place to attempt to do
2723 		 * either combinatorial reconstruction or error correction
2724 		 * based on checksums.  It also might be a good place
2725 		 * to send out preliminary ereports before we suspend
2726 		 * processing.
2727 		 */
2728 	}
2729 
2730 	/*
2731 	 * If there were logical child errors, they apply to us now.
2732 	 * We defer this until now to avoid conflating logical child
2733 	 * errors with errors that happened to the zio itself when
2734 	 * updating vdev stats and reporting FMA events above.
2735 	 */
2736 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2737 
2738 	if ((zio->io_error || zio->io_reexecute) &&
2739 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2740 	    !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2741 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2742 
2743 	zio_gang_tree_free(&zio->io_gang_tree);
2744 
2745 	/*
2746 	 * Godfather I/Os should never suspend.
2747 	 */
2748 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2749 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2750 		zio->io_reexecute = 0;
2751 
2752 	if (zio->io_reexecute) {
2753 		/*
2754 		 * This is a logical I/O that wants to reexecute.
2755 		 *
2756 		 * Reexecute is top-down.  When an i/o fails, if it's not
2757 		 * the root, it simply notifies its parent and sticks around.
2758 		 * The parent, seeing that it still has children in zio_done(),
2759 		 * does the same.  This percolates all the way up to the root.
2760 		 * The root i/o will reexecute or suspend the entire tree.
2761 		 *
2762 		 * This approach ensures that zio_reexecute() honors
2763 		 * all the original i/o dependency relationships, e.g.
2764 		 * parents not executing until children are ready.
2765 		 */
2766 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2767 
2768 		zio->io_gang_leader = NULL;
2769 
2770 		mutex_enter(&zio->io_lock);
2771 		zio->io_state[ZIO_WAIT_DONE] = 1;
2772 		mutex_exit(&zio->io_lock);
2773 
2774 		/*
2775 		 * "The Godfather" I/O monitors its children but is
2776 		 * not a true parent to them. It will track them through
2777 		 * the pipeline but severs its ties whenever they get into
2778 		 * trouble (e.g. suspended). This allows "The Godfather"
2779 		 * I/O to return status without blocking.
2780 		 */
2781 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2782 			zio_link_t *zl = zio->io_walk_link;
2783 			pio_next = zio_walk_parents(zio);
2784 
2785 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2786 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2787 				zio_remove_child(pio, zio, zl);
2788 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2789 			}
2790 		}
2791 
2792 		if ((pio = zio_unique_parent(zio)) != NULL) {
2793 			/*
2794 			 * We're not a root i/o, so there's nothing to do
2795 			 * but notify our parent.  Don't propagate errors
2796 			 * upward since we haven't permanently failed yet.
2797 			 */
2798 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2799 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2800 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2801 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2802 			/*
2803 			 * We'd fail again if we reexecuted now, so suspend
2804 			 * until conditions improve (e.g. device comes online).
2805 			 */
2806 			zio_suspend(spa, zio);
2807 		} else {
2808 			/*
2809 			 * Reexecution is potentially a huge amount of work.
2810 			 * Hand it off to the otherwise-unused claim taskq.
2811 			 */
2812 			(void) taskq_dispatch(
2813 			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2814 			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2815 		}
2816 		return (ZIO_PIPELINE_STOP);
2817 	}
2818 
2819 	ASSERT(zio->io_child_count == 0);
2820 	ASSERT(zio->io_reexecute == 0);
2821 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2822 
2823 	/*
2824 	 * Report any checksum errors, since the I/O is complete.
2825 	 */
2826 	while (zio->io_cksum_report != NULL) {
2827 		zio_cksum_report_t *zcr = zio->io_cksum_report;
2828 		zio->io_cksum_report = zcr->zcr_next;
2829 		zcr->zcr_next = NULL;
2830 		zcr->zcr_finish(zcr, NULL);
2831 		zfs_ereport_free_checksum(zcr);
2832 	}
2833 
2834 	/*
2835 	 * It is the responsibility of the done callback to ensure that this
2836 	 * particular zio is no longer discoverable for adoption, and as
2837 	 * such, cannot acquire any new parents.
2838 	 */
2839 	if (zio->io_done)
2840 		zio->io_done(zio);
2841 
2842 	mutex_enter(&zio->io_lock);
2843 	zio->io_state[ZIO_WAIT_DONE] = 1;
2844 	mutex_exit(&zio->io_lock);
2845 
2846 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2847 		zio_link_t *zl = zio->io_walk_link;
2848 		pio_next = zio_walk_parents(zio);
2849 		zio_remove_child(pio, zio, zl);
2850 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2851 	}
2852 
2853 	if (zio->io_waiter != NULL) {
2854 		mutex_enter(&zio->io_lock);
2855 		zio->io_executor = NULL;
2856 		cv_broadcast(&zio->io_cv);
2857 		mutex_exit(&zio->io_lock);
2858 	} else {
2859 		zio_destroy(zio);
2860 	}
2861 
2862 	return (ZIO_PIPELINE_STOP);
2863 }
2864 
2865 /*
2866  * ==========================================================================
2867  * I/O pipeline definition
2868  * ==========================================================================
2869  */
2870 static zio_pipe_stage_t *zio_pipeline[] = {
2871 	NULL,
2872 	zio_read_bp_init,
2873 	zio_free_bp_init,
2874 	zio_issue_async,
2875 	zio_write_bp_init,
2876 	zio_checksum_generate,
2877 	zio_ddt_read_start,
2878 	zio_ddt_read_done,
2879 	zio_ddt_write,
2880 	zio_ddt_free,
2881 	zio_gang_assemble,
2882 	zio_gang_issue,
2883 	zio_dva_allocate,
2884 	zio_dva_free,
2885 	zio_dva_claim,
2886 	zio_ready,
2887 	zio_vdev_io_start,
2888 	zio_vdev_io_done,
2889 	zio_vdev_io_assess,
2890 	zio_checksum_verify,
2891 	zio_done
2892 };
2893