xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision a3874b8b1fe5103fc1f961609557c0587435fec0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/sysmacros.h>
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/txg.h>
34 #include <sys/spa_impl.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/zio_impl.h>
37 #include <sys/zio_compress.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/ddt.h>
42 #include <sys/blkptr.h>
43 #include <sys/zfeature.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/abd.h>
47 #include <sys/cityhash.h>
48 
49 /*
50  * ==========================================================================
51  * I/O type descriptions
52  * ==========================================================================
53  */
54 const char *zio_type_name[ZIO_TYPES] = {
55 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
56 	"zio_ioctl"
57 };
58 
59 boolean_t zio_dva_throttle_enabled = B_TRUE;
60 
61 /*
62  * ==========================================================================
63  * I/O kmem caches
64  * ==========================================================================
65  */
66 kmem_cache_t *zio_cache;
67 kmem_cache_t *zio_link_cache;
68 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
69 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
70 
71 #ifdef _KERNEL
72 extern vmem_t *zio_alloc_arena;
73 #endif
74 
75 #define	ZIO_PIPELINE_CONTINUE		0x100
76 #define	ZIO_PIPELINE_STOP		0x101
77 
78 #define	BP_SPANB(indblkshift, level) \
79 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
80 #define	COMPARE_META_LEVEL	0x80000000ul
81 /*
82  * The following actions directly effect the spa's sync-to-convergence logic.
83  * The values below define the sync pass when we start performing the action.
84  * Care should be taken when changing these values as they directly impact
85  * spa_sync() performance. Tuning these values may introduce subtle performance
86  * pathologies and should only be done in the context of performance analysis.
87  * These tunables will eventually be removed and replaced with #defines once
88  * enough analysis has been done to determine optimal values.
89  *
90  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
91  * regular blocks are not deferred.
92  */
93 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
94 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
95 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
96 
97 /*
98  * An allocating zio is one that either currently has the DVA allocate
99  * stage set or will have it later in its lifetime.
100  */
101 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
102 
103 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
104 
105 #ifdef ZFS_DEBUG
106 int zio_buf_debug_limit = 16384;
107 #else
108 int zio_buf_debug_limit = 0;
109 #endif
110 
111 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
112 
113 void
114 zio_init(void)
115 {
116 	size_t c;
117 	vmem_t *data_alloc_arena = NULL;
118 
119 #ifdef _KERNEL
120 	data_alloc_arena = zio_alloc_arena;
121 #endif
122 	zio_cache = kmem_cache_create("zio_cache",
123 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
124 	zio_link_cache = kmem_cache_create("zio_link_cache",
125 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 
127 	/*
128 	 * For small buffers, we want a cache for each multiple of
129 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
130 	 * for each quarter-power of 2.
131 	 */
132 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
133 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
134 		size_t p2 = size;
135 		size_t align = 0;
136 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
137 
138 		while (!ISP2(p2))
139 			p2 &= p2 - 1;
140 
141 #ifndef _KERNEL
142 		/*
143 		 * If we are using watchpoints, put each buffer on its own page,
144 		 * to eliminate the performance overhead of trapping to the
145 		 * kernel when modifying a non-watched buffer that shares the
146 		 * page with a watched buffer.
147 		 */
148 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
149 			continue;
150 #endif
151 		if (size <= 4 * SPA_MINBLOCKSIZE) {
152 			align = SPA_MINBLOCKSIZE;
153 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
154 			align = MIN(p2 >> 2, PAGESIZE);
155 		}
156 
157 		if (align != 0) {
158 			char name[36];
159 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
160 			zio_buf_cache[c] = kmem_cache_create(name, size,
161 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
162 
163 			/*
164 			 * Since zio_data bufs do not appear in crash dumps, we
165 			 * pass KMC_NOTOUCH so that no allocator metadata is
166 			 * stored with the buffers.
167 			 */
168 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
169 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
170 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
171 			    cflags | KMC_NOTOUCH);
172 		}
173 	}
174 
175 	while (--c != 0) {
176 		ASSERT(zio_buf_cache[c] != NULL);
177 		if (zio_buf_cache[c - 1] == NULL)
178 			zio_buf_cache[c - 1] = zio_buf_cache[c];
179 
180 		ASSERT(zio_data_buf_cache[c] != NULL);
181 		if (zio_data_buf_cache[c - 1] == NULL)
182 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
183 	}
184 
185 	zio_inject_init();
186 }
187 
188 void
189 zio_fini(void)
190 {
191 	size_t c;
192 	kmem_cache_t *last_cache = NULL;
193 	kmem_cache_t *last_data_cache = NULL;
194 
195 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
196 		if (zio_buf_cache[c] != last_cache) {
197 			last_cache = zio_buf_cache[c];
198 			kmem_cache_destroy(zio_buf_cache[c]);
199 		}
200 		zio_buf_cache[c] = NULL;
201 
202 		if (zio_data_buf_cache[c] != last_data_cache) {
203 			last_data_cache = zio_data_buf_cache[c];
204 			kmem_cache_destroy(zio_data_buf_cache[c]);
205 		}
206 		zio_data_buf_cache[c] = NULL;
207 	}
208 
209 	kmem_cache_destroy(zio_link_cache);
210 	kmem_cache_destroy(zio_cache);
211 
212 	zio_inject_fini();
213 }
214 
215 /*
216  * ==========================================================================
217  * Allocate and free I/O buffers
218  * ==========================================================================
219  */
220 
221 /*
222  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
223  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
224  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
225  * excess / transient data in-core during a crashdump.
226  */
227 void *
228 zio_buf_alloc(size_t size)
229 {
230 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
231 
232 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
233 
234 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
235 }
236 
237 /*
238  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
239  * crashdump if the kernel panics.  This exists so that we will limit the amount
240  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
241  * of kernel heap dumped to disk when the kernel panics)
242  */
243 void *
244 zio_data_buf_alloc(size_t size)
245 {
246 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
247 
248 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
249 
250 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
251 }
252 
253 void
254 zio_buf_free(void *buf, size_t size)
255 {
256 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
257 
258 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
259 
260 	kmem_cache_free(zio_buf_cache[c], buf);
261 }
262 
263 void
264 zio_data_buf_free(void *buf, size_t size)
265 {
266 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
267 
268 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
269 
270 	kmem_cache_free(zio_data_buf_cache[c], buf);
271 }
272 
273 /*
274  * ==========================================================================
275  * Push and pop I/O transform buffers
276  * ==========================================================================
277  */
278 void
279 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
280     zio_transform_func_t *transform)
281 {
282 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
283 
284 	/*
285 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
286 	 * going to get a nasty surprise when they try to access the data.
287 	 */
288 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
289 
290 	zt->zt_orig_abd = zio->io_abd;
291 	zt->zt_orig_size = zio->io_size;
292 	zt->zt_bufsize = bufsize;
293 	zt->zt_transform = transform;
294 
295 	zt->zt_next = zio->io_transform_stack;
296 	zio->io_transform_stack = zt;
297 
298 	zio->io_abd = data;
299 	zio->io_size = size;
300 }
301 
302 void
303 zio_pop_transforms(zio_t *zio)
304 {
305 	zio_transform_t *zt;
306 
307 	while ((zt = zio->io_transform_stack) != NULL) {
308 		if (zt->zt_transform != NULL)
309 			zt->zt_transform(zio,
310 			    zt->zt_orig_abd, zt->zt_orig_size);
311 
312 		if (zt->zt_bufsize != 0)
313 			abd_free(zio->io_abd);
314 
315 		zio->io_abd = zt->zt_orig_abd;
316 		zio->io_size = zt->zt_orig_size;
317 		zio->io_transform_stack = zt->zt_next;
318 
319 		kmem_free(zt, sizeof (zio_transform_t));
320 	}
321 }
322 
323 /*
324  * ==========================================================================
325  * I/O transform callbacks for subblocks and decompression
326  * ==========================================================================
327  */
328 static void
329 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
330 {
331 	ASSERT(zio->io_size > size);
332 
333 	if (zio->io_type == ZIO_TYPE_READ)
334 		abd_copy(data, zio->io_abd, size);
335 }
336 
337 static void
338 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
339 {
340 	if (zio->io_error == 0) {
341 		void *tmp = abd_borrow_buf(data, size);
342 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
343 		    zio->io_abd, tmp, zio->io_size, size);
344 		abd_return_buf_copy(data, tmp, size);
345 
346 		if (ret != 0)
347 			zio->io_error = SET_ERROR(EIO);
348 	}
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 zio_t *
357 zio_walk_parents(zio_t *cio, zio_link_t **zl)
358 {
359 	list_t *pl = &cio->io_parent_list;
360 
361 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
362 	if (*zl == NULL)
363 		return (NULL);
364 
365 	ASSERT((*zl)->zl_child == cio);
366 	return ((*zl)->zl_parent);
367 }
368 
369 zio_t *
370 zio_walk_children(zio_t *pio, zio_link_t **zl)
371 {
372 	list_t *cl = &pio->io_child_list;
373 
374 	ASSERT(MUTEX_HELD(&pio->io_lock));
375 
376 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
377 	if (*zl == NULL)
378 		return (NULL);
379 
380 	ASSERT((*zl)->zl_parent == pio);
381 	return ((*zl)->zl_child);
382 }
383 
384 zio_t *
385 zio_unique_parent(zio_t *cio)
386 {
387 	zio_link_t *zl = NULL;
388 	zio_t *pio = zio_walk_parents(cio, &zl);
389 
390 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
391 	return (pio);
392 }
393 
394 void
395 zio_add_child(zio_t *pio, zio_t *cio)
396 {
397 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
398 
399 	/*
400 	 * Logical I/Os can have logical, gang, or vdev children.
401 	 * Gang I/Os can have gang or vdev children.
402 	 * Vdev I/Os can only have vdev children.
403 	 * The following ASSERT captures all of these constraints.
404 	 */
405 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
406 
407 	zl->zl_parent = pio;
408 	zl->zl_child = cio;
409 
410 	mutex_enter(&pio->io_lock);
411 	mutex_enter(&cio->io_lock);
412 
413 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
414 
415 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
416 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
417 
418 	list_insert_head(&pio->io_child_list, zl);
419 	list_insert_head(&cio->io_parent_list, zl);
420 
421 	pio->io_child_count++;
422 	cio->io_parent_count++;
423 
424 	mutex_exit(&cio->io_lock);
425 	mutex_exit(&pio->io_lock);
426 }
427 
428 static void
429 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
430 {
431 	ASSERT(zl->zl_parent == pio);
432 	ASSERT(zl->zl_child == cio);
433 
434 	mutex_enter(&pio->io_lock);
435 	mutex_enter(&cio->io_lock);
436 
437 	list_remove(&pio->io_child_list, zl);
438 	list_remove(&cio->io_parent_list, zl);
439 
440 	pio->io_child_count--;
441 	cio->io_parent_count--;
442 
443 	mutex_exit(&cio->io_lock);
444 	mutex_exit(&pio->io_lock);
445 
446 	kmem_cache_free(zio_link_cache, zl);
447 }
448 
449 static boolean_t
450 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
451 {
452 	boolean_t waiting = B_FALSE;
453 
454 	mutex_enter(&zio->io_lock);
455 	ASSERT(zio->io_stall == NULL);
456 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
457 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
458 			continue;
459 
460 		uint64_t *countp = &zio->io_children[c][wait];
461 		if (*countp != 0) {
462 			zio->io_stage >>= 1;
463 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
464 			zio->io_stall = countp;
465 			waiting = B_TRUE;
466 			break;
467 		}
468 	}
469 	mutex_exit(&zio->io_lock);
470 	return (waiting);
471 }
472 
473 static void
474 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
475 {
476 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
477 	int *errorp = &pio->io_child_error[zio->io_child_type];
478 
479 	mutex_enter(&pio->io_lock);
480 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
481 		*errorp = zio_worst_error(*errorp, zio->io_error);
482 	pio->io_reexecute |= zio->io_reexecute;
483 	ASSERT3U(*countp, >, 0);
484 
485 	(*countp)--;
486 
487 	if (*countp == 0 && pio->io_stall == countp) {
488 		zio_taskq_type_t type =
489 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
490 		    ZIO_TASKQ_INTERRUPT;
491 		pio->io_stall = NULL;
492 		mutex_exit(&pio->io_lock);
493 		/*
494 		 * Dispatch the parent zio in its own taskq so that
495 		 * the child can continue to make progress. This also
496 		 * prevents overflowing the stack when we have deeply nested
497 		 * parent-child relationships.
498 		 */
499 		zio_taskq_dispatch(pio, type, B_FALSE);
500 	} else {
501 		mutex_exit(&pio->io_lock);
502 	}
503 }
504 
505 static void
506 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
507 {
508 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
509 		zio->io_error = zio->io_child_error[c];
510 }
511 
512 int
513 zio_bookmark_compare(const void *x1, const void *x2)
514 {
515 	const zio_t *z1 = x1;
516 	const zio_t *z2 = x2;
517 
518 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
519 		return (-1);
520 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
521 		return (1);
522 
523 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
524 		return (-1);
525 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
526 		return (1);
527 
528 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
529 		return (-1);
530 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
531 		return (1);
532 
533 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
534 		return (-1);
535 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
536 		return (1);
537 
538 	if (z1 < z2)
539 		return (-1);
540 	if (z1 > z2)
541 		return (1);
542 
543 	return (0);
544 }
545 
546 /*
547  * ==========================================================================
548  * Create the various types of I/O (read, write, free, etc)
549  * ==========================================================================
550  */
551 static zio_t *
552 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
553     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
554     void *private, zio_type_t type, zio_priority_t priority,
555     enum zio_flag flags, vdev_t *vd, uint64_t offset,
556     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
557 {
558 	zio_t *zio;
559 
560 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
561 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
562 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
563 
564 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
565 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
566 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
567 
568 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
569 
570 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
571 	bzero(zio, sizeof (zio_t));
572 
573 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
574 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
575 
576 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
577 	    offsetof(zio_link_t, zl_parent_node));
578 	list_create(&zio->io_child_list, sizeof (zio_link_t),
579 	    offsetof(zio_link_t, zl_child_node));
580 	metaslab_trace_init(&zio->io_alloc_list);
581 
582 	if (vd != NULL)
583 		zio->io_child_type = ZIO_CHILD_VDEV;
584 	else if (flags & ZIO_FLAG_GANG_CHILD)
585 		zio->io_child_type = ZIO_CHILD_GANG;
586 	else if (flags & ZIO_FLAG_DDT_CHILD)
587 		zio->io_child_type = ZIO_CHILD_DDT;
588 	else
589 		zio->io_child_type = ZIO_CHILD_LOGICAL;
590 
591 	if (bp != NULL) {
592 		zio->io_bp = (blkptr_t *)bp;
593 		zio->io_bp_copy = *bp;
594 		zio->io_bp_orig = *bp;
595 		if (type != ZIO_TYPE_WRITE ||
596 		    zio->io_child_type == ZIO_CHILD_DDT)
597 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
598 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
599 			zio->io_logical = zio;
600 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
601 			pipeline |= ZIO_GANG_STAGES;
602 	}
603 
604 	zio->io_spa = spa;
605 	zio->io_txg = txg;
606 	zio->io_done = done;
607 	zio->io_private = private;
608 	zio->io_type = type;
609 	zio->io_priority = priority;
610 	zio->io_vd = vd;
611 	zio->io_offset = offset;
612 	zio->io_orig_abd = zio->io_abd = data;
613 	zio->io_orig_size = zio->io_size = psize;
614 	zio->io_lsize = lsize;
615 	zio->io_orig_flags = zio->io_flags = flags;
616 	zio->io_orig_stage = zio->io_stage = stage;
617 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
618 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
619 
620 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
621 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
622 
623 	if (zb != NULL)
624 		zio->io_bookmark = *zb;
625 
626 	if (pio != NULL) {
627 		if (zio->io_metaslab_class == NULL)
628 			zio->io_metaslab_class = pio->io_metaslab_class;
629 		if (zio->io_logical == NULL)
630 			zio->io_logical = pio->io_logical;
631 		if (zio->io_child_type == ZIO_CHILD_GANG)
632 			zio->io_gang_leader = pio->io_gang_leader;
633 		zio_add_child(pio, zio);
634 	}
635 
636 	return (zio);
637 }
638 
639 static void
640 zio_destroy(zio_t *zio)
641 {
642 	metaslab_trace_fini(&zio->io_alloc_list);
643 	list_destroy(&zio->io_parent_list);
644 	list_destroy(&zio->io_child_list);
645 	mutex_destroy(&zio->io_lock);
646 	cv_destroy(&zio->io_cv);
647 	kmem_cache_free(zio_cache, zio);
648 }
649 
650 zio_t *
651 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
652     void *private, enum zio_flag flags)
653 {
654 	zio_t *zio;
655 
656 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
657 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
658 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
659 
660 	return (zio);
661 }
662 
663 zio_t *
664 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
665 {
666 	return (zio_null(NULL, spa, NULL, done, private, flags));
667 }
668 
669 void
670 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
671 {
672 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
673 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
674 		    bp, (longlong_t)BP_GET_TYPE(bp));
675 	}
676 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
677 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
678 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
679 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
680 	}
681 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
682 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
683 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
684 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
685 	}
686 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
687 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
688 		    bp, (longlong_t)BP_GET_LSIZE(bp));
689 	}
690 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
691 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
692 		    bp, (longlong_t)BP_GET_PSIZE(bp));
693 	}
694 
695 	if (BP_IS_EMBEDDED(bp)) {
696 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
697 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
698 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
699 		}
700 	}
701 
702 	/*
703 	 * Do not verify individual DVAs if the config is not trusted. This
704 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
705 	 */
706 	if (!spa->spa_trust_config)
707 		return;
708 
709 	/*
710 	 * Pool-specific checks.
711 	 *
712 	 * Note: it would be nice to verify that the blk_birth and
713 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
714 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
715 	 * that are in the log) to be arbitrarily large.
716 	 */
717 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
718 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
719 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
720 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
721 			    "VDEV %llu",
722 			    bp, i, (longlong_t)vdevid);
723 			continue;
724 		}
725 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
726 		if (vd == NULL) {
727 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
728 			    "VDEV %llu",
729 			    bp, i, (longlong_t)vdevid);
730 			continue;
731 		}
732 		if (vd->vdev_ops == &vdev_hole_ops) {
733 			zfs_panic_recover("blkptr at %p DVA %u has hole "
734 			    "VDEV %llu",
735 			    bp, i, (longlong_t)vdevid);
736 			continue;
737 		}
738 		if (vd->vdev_ops == &vdev_missing_ops) {
739 			/*
740 			 * "missing" vdevs are valid during import, but we
741 			 * don't have their detailed info (e.g. asize), so
742 			 * we can't perform any more checks on them.
743 			 */
744 			continue;
745 		}
746 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
747 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
748 		if (BP_IS_GANG(bp))
749 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
750 		if (offset + asize > vd->vdev_asize) {
751 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
752 			    "OFFSET %llu",
753 			    bp, i, (longlong_t)offset);
754 		}
755 	}
756 }
757 
758 boolean_t
759 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
760 {
761 	uint64_t vdevid = DVA_GET_VDEV(dva);
762 
763 	if (vdevid >= spa->spa_root_vdev->vdev_children)
764 		return (B_FALSE);
765 
766 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
767 	if (vd == NULL)
768 		return (B_FALSE);
769 
770 	if (vd->vdev_ops == &vdev_hole_ops)
771 		return (B_FALSE);
772 
773 	if (vd->vdev_ops == &vdev_missing_ops) {
774 		return (B_FALSE);
775 	}
776 
777 	uint64_t offset = DVA_GET_OFFSET(dva);
778 	uint64_t asize = DVA_GET_ASIZE(dva);
779 
780 	if (BP_IS_GANG(bp))
781 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
782 	if (offset + asize > vd->vdev_asize)
783 		return (B_FALSE);
784 
785 	return (B_TRUE);
786 }
787 
788 zio_t *
789 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
790     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
791     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
792 {
793 	zio_t *zio;
794 
795 	zfs_blkptr_verify(spa, bp);
796 
797 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
798 	    data, size, size, done, private,
799 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
800 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
801 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
802 
803 	return (zio);
804 }
805 
806 zio_t *
807 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
808     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
809     zio_done_func_t *ready, zio_done_func_t *children_ready,
810     zio_done_func_t *physdone, zio_done_func_t *done,
811     void *private, zio_priority_t priority, enum zio_flag flags,
812     const zbookmark_phys_t *zb)
813 {
814 	zio_t *zio;
815 
816 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
817 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
818 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
819 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
820 	    DMU_OT_IS_VALID(zp->zp_type) &&
821 	    zp->zp_level < 32 &&
822 	    zp->zp_copies > 0 &&
823 	    zp->zp_copies <= spa_max_replication(spa));
824 
825 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
826 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
827 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
828 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
829 
830 	zio->io_ready = ready;
831 	zio->io_children_ready = children_ready;
832 	zio->io_physdone = physdone;
833 	zio->io_prop = *zp;
834 
835 	/*
836 	 * Data can be NULL if we are going to call zio_write_override() to
837 	 * provide the already-allocated BP.  But we may need the data to
838 	 * verify a dedup hit (if requested).  In this case, don't try to
839 	 * dedup (just take the already-allocated BP verbatim).
840 	 */
841 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
842 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
843 	}
844 
845 	return (zio);
846 }
847 
848 zio_t *
849 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
850     uint64_t size, zio_done_func_t *done, void *private,
851     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
852 {
853 	zio_t *zio;
854 
855 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
856 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
857 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
858 
859 	return (zio);
860 }
861 
862 void
863 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
864 {
865 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
866 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
867 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
868 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
869 
870 	/*
871 	 * We must reset the io_prop to match the values that existed
872 	 * when the bp was first written by dmu_sync() keeping in mind
873 	 * that nopwrite and dedup are mutually exclusive.
874 	 */
875 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
876 	zio->io_prop.zp_nopwrite = nopwrite;
877 	zio->io_prop.zp_copies = copies;
878 	zio->io_bp_override = bp;
879 }
880 
881 void
882 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
883 {
884 
885 	zfs_blkptr_verify(spa, bp);
886 
887 	/*
888 	 * The check for EMBEDDED is a performance optimization.  We
889 	 * process the free here (by ignoring it) rather than
890 	 * putting it on the list and then processing it in zio_free_sync().
891 	 */
892 	if (BP_IS_EMBEDDED(bp))
893 		return;
894 	metaslab_check_free(spa, bp);
895 
896 	/*
897 	 * Frees that are for the currently-syncing txg, are not going to be
898 	 * deferred, and which will not need to do a read (i.e. not GANG or
899 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
900 	 * in-memory list for later processing.
901 	 */
902 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
903 	    txg != spa->spa_syncing_txg ||
904 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
905 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
906 	} else {
907 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
908 	}
909 }
910 
911 zio_t *
912 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
913     enum zio_flag flags)
914 {
915 	zio_t *zio;
916 	enum zio_stage stage = ZIO_FREE_PIPELINE;
917 
918 	ASSERT(!BP_IS_HOLE(bp));
919 	ASSERT(spa_syncing_txg(spa) == txg);
920 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
921 
922 	if (BP_IS_EMBEDDED(bp))
923 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
924 
925 	metaslab_check_free(spa, bp);
926 	arc_freed(spa, bp);
927 	dsl_scan_freed(spa, bp);
928 
929 	/*
930 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
931 	 * or the DDT), so issue them asynchronously so that this thread is
932 	 * not tied up.
933 	 */
934 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
935 		stage |= ZIO_STAGE_ISSUE_ASYNC;
936 
937 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
938 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
939 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
940 
941 	return (zio);
942 }
943 
944 zio_t *
945 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
946     zio_done_func_t *done, void *private, enum zio_flag flags)
947 {
948 	zio_t *zio;
949 
950 	zfs_blkptr_verify(spa, bp);
951 
952 	if (BP_IS_EMBEDDED(bp))
953 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
954 
955 	/*
956 	 * A claim is an allocation of a specific block.  Claims are needed
957 	 * to support immediate writes in the intent log.  The issue is that
958 	 * immediate writes contain committed data, but in a txg that was
959 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
960 	 * the intent log claims all blocks that contain immediate write data
961 	 * so that the SPA knows they're in use.
962 	 *
963 	 * All claims *must* be resolved in the first txg -- before the SPA
964 	 * starts allocating blocks -- so that nothing is allocated twice.
965 	 * If txg == 0 we just verify that the block is claimable.
966 	 */
967 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
968 	    spa_min_claim_txg(spa));
969 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
970 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
971 
972 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
973 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
974 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
975 	ASSERT0(zio->io_queued_timestamp);
976 
977 	return (zio);
978 }
979 
980 zio_t *
981 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
982     zio_done_func_t *done, void *private, enum zio_flag flags)
983 {
984 	zio_t *zio;
985 	int c;
986 
987 	if (vd->vdev_children == 0) {
988 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
989 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
990 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
991 
992 		zio->io_cmd = cmd;
993 	} else {
994 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
995 
996 		for (c = 0; c < vd->vdev_children; c++)
997 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
998 			    done, private, flags));
999 	}
1000 
1001 	return (zio);
1002 }
1003 
1004 zio_t *
1005 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1006     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1007     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1008 {
1009 	zio_t *zio;
1010 
1011 	ASSERT(vd->vdev_children == 0);
1012 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1013 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1014 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1015 
1016 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1017 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1018 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1019 
1020 	zio->io_prop.zp_checksum = checksum;
1021 
1022 	return (zio);
1023 }
1024 
1025 zio_t *
1026 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1027     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1028     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1029 {
1030 	zio_t *zio;
1031 
1032 	ASSERT(vd->vdev_children == 0);
1033 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1034 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1035 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1036 
1037 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1038 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1039 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1040 
1041 	zio->io_prop.zp_checksum = checksum;
1042 
1043 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1044 		/*
1045 		 * zec checksums are necessarily destructive -- they modify
1046 		 * the end of the write buffer to hold the verifier/checksum.
1047 		 * Therefore, we must make a local copy in case the data is
1048 		 * being written to multiple places in parallel.
1049 		 */
1050 		abd_t *wbuf = abd_alloc_sametype(data, size);
1051 		abd_copy(wbuf, data, size);
1052 
1053 		zio_push_transform(zio, wbuf, size, size, NULL);
1054 	}
1055 
1056 	return (zio);
1057 }
1058 
1059 /*
1060  * Create a child I/O to do some work for us.
1061  */
1062 zio_t *
1063 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1064     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1065     enum zio_flag flags, zio_done_func_t *done, void *private)
1066 {
1067 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1068 	zio_t *zio;
1069 
1070 	/*
1071 	 * vdev child I/Os do not propagate their error to the parent.
1072 	 * Therefore, for correct operation the caller *must* check for
1073 	 * and handle the error in the child i/o's done callback.
1074 	 * The only exceptions are i/os that we don't care about
1075 	 * (OPTIONAL or REPAIR).
1076 	 */
1077 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1078 	    done != NULL);
1079 
1080 	if (type == ZIO_TYPE_READ && bp != NULL) {
1081 		/*
1082 		 * If we have the bp, then the child should perform the
1083 		 * checksum and the parent need not.  This pushes error
1084 		 * detection as close to the leaves as possible and
1085 		 * eliminates redundant checksums in the interior nodes.
1086 		 */
1087 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1088 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1089 	}
1090 
1091 	if (vd->vdev_ops->vdev_op_leaf) {
1092 		ASSERT0(vd->vdev_children);
1093 		offset += VDEV_LABEL_START_SIZE;
1094 	}
1095 
1096 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1097 
1098 	/*
1099 	 * If we've decided to do a repair, the write is not speculative --
1100 	 * even if the original read was.
1101 	 */
1102 	if (flags & ZIO_FLAG_IO_REPAIR)
1103 		flags &= ~ZIO_FLAG_SPECULATIVE;
1104 
1105 	/*
1106 	 * If we're creating a child I/O that is not associated with a
1107 	 * top-level vdev, then the child zio is not an allocating I/O.
1108 	 * If this is a retried I/O then we ignore it since we will
1109 	 * have already processed the original allocating I/O.
1110 	 */
1111 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1112 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1113 		ASSERT(pio->io_metaslab_class != NULL);
1114 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1115 		ASSERT(type == ZIO_TYPE_WRITE);
1116 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1117 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1118 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1119 		    pio->io_child_type == ZIO_CHILD_GANG);
1120 
1121 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1122 	}
1123 
1124 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1125 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1126 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1127 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1128 
1129 	zio->io_physdone = pio->io_physdone;
1130 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1131 		zio->io_logical->io_phys_children++;
1132 
1133 	return (zio);
1134 }
1135 
1136 zio_t *
1137 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1138     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1139     zio_done_func_t *done, void *private)
1140 {
1141 	zio_t *zio;
1142 
1143 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1144 
1145 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1146 	    data, size, size, done, private, type, priority,
1147 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1148 	    vd, offset, NULL,
1149 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1150 
1151 	return (zio);
1152 }
1153 
1154 void
1155 zio_flush(zio_t *zio, vdev_t *vd)
1156 {
1157 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1158 	    NULL, NULL,
1159 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1160 }
1161 
1162 void
1163 zio_shrink(zio_t *zio, uint64_t size)
1164 {
1165 	ASSERT3P(zio->io_executor, ==, NULL);
1166 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1167 	ASSERT3U(size, <=, zio->io_size);
1168 
1169 	/*
1170 	 * We don't shrink for raidz because of problems with the
1171 	 * reconstruction when reading back less than the block size.
1172 	 * Note, BP_IS_RAIDZ() assumes no compression.
1173 	 */
1174 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1175 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1176 		/* we are not doing a raw write */
1177 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1178 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1179 	}
1180 }
1181 
1182 /*
1183  * ==========================================================================
1184  * Prepare to read and write logical blocks
1185  * ==========================================================================
1186  */
1187 
1188 static int
1189 zio_read_bp_init(zio_t *zio)
1190 {
1191 	blkptr_t *bp = zio->io_bp;
1192 
1193 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1194 
1195 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1196 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1197 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1198 		uint64_t psize =
1199 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1200 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1201 		    psize, psize, zio_decompress);
1202 	}
1203 
1204 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1205 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1206 
1207 		int psize = BPE_GET_PSIZE(bp);
1208 		void *data = abd_borrow_buf(zio->io_abd, psize);
1209 		decode_embedded_bp_compressed(bp, data);
1210 		abd_return_buf_copy(zio->io_abd, data, psize);
1211 	} else {
1212 		ASSERT(!BP_IS_EMBEDDED(bp));
1213 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1214 	}
1215 
1216 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1217 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1218 
1219 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1220 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1221 
1222 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1223 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1224 
1225 	return (ZIO_PIPELINE_CONTINUE);
1226 }
1227 
1228 static int
1229 zio_write_bp_init(zio_t *zio)
1230 {
1231 	if (!IO_IS_ALLOCATING(zio))
1232 		return (ZIO_PIPELINE_CONTINUE);
1233 
1234 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1235 
1236 	if (zio->io_bp_override) {
1237 		blkptr_t *bp = zio->io_bp;
1238 		zio_prop_t *zp = &zio->io_prop;
1239 
1240 		ASSERT(bp->blk_birth != zio->io_txg);
1241 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1242 
1243 		*bp = *zio->io_bp_override;
1244 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1245 
1246 		if (BP_IS_EMBEDDED(bp))
1247 			return (ZIO_PIPELINE_CONTINUE);
1248 
1249 		/*
1250 		 * If we've been overridden and nopwrite is set then
1251 		 * set the flag accordingly to indicate that a nopwrite
1252 		 * has already occurred.
1253 		 */
1254 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1255 			ASSERT(!zp->zp_dedup);
1256 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1257 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1258 			return (ZIO_PIPELINE_CONTINUE);
1259 		}
1260 
1261 		ASSERT(!zp->zp_nopwrite);
1262 
1263 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1264 			return (ZIO_PIPELINE_CONTINUE);
1265 
1266 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1267 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1268 
1269 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1270 			BP_SET_DEDUP(bp, 1);
1271 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1272 			return (ZIO_PIPELINE_CONTINUE);
1273 		}
1274 
1275 		/*
1276 		 * We were unable to handle this as an override bp, treat
1277 		 * it as a regular write I/O.
1278 		 */
1279 		zio->io_bp_override = NULL;
1280 		*bp = zio->io_bp_orig;
1281 		zio->io_pipeline = zio->io_orig_pipeline;
1282 	}
1283 
1284 	return (ZIO_PIPELINE_CONTINUE);
1285 }
1286 
1287 static int
1288 zio_write_compress(zio_t *zio)
1289 {
1290 	spa_t *spa = zio->io_spa;
1291 	zio_prop_t *zp = &zio->io_prop;
1292 	enum zio_compress compress = zp->zp_compress;
1293 	blkptr_t *bp = zio->io_bp;
1294 	uint64_t lsize = zio->io_lsize;
1295 	uint64_t psize = zio->io_size;
1296 	int pass = 1;
1297 
1298 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1299 
1300 	/*
1301 	 * If our children haven't all reached the ready stage,
1302 	 * wait for them and then repeat this pipeline stage.
1303 	 */
1304 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1305 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1306 		return (ZIO_PIPELINE_STOP);
1307 	}
1308 
1309 	if (!IO_IS_ALLOCATING(zio))
1310 		return (ZIO_PIPELINE_CONTINUE);
1311 
1312 	if (zio->io_children_ready != NULL) {
1313 		/*
1314 		 * Now that all our children are ready, run the callback
1315 		 * associated with this zio in case it wants to modify the
1316 		 * data to be written.
1317 		 */
1318 		ASSERT3U(zp->zp_level, >, 0);
1319 		zio->io_children_ready(zio);
1320 	}
1321 
1322 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1323 	ASSERT(zio->io_bp_override == NULL);
1324 
1325 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1326 		/*
1327 		 * We're rewriting an existing block, which means we're
1328 		 * working on behalf of spa_sync().  For spa_sync() to
1329 		 * converge, it must eventually be the case that we don't
1330 		 * have to allocate new blocks.  But compression changes
1331 		 * the blocksize, which forces a reallocate, and makes
1332 		 * convergence take longer.  Therefore, after the first
1333 		 * few passes, stop compressing to ensure convergence.
1334 		 */
1335 		pass = spa_sync_pass(spa);
1336 
1337 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1338 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1339 		ASSERT(!BP_GET_DEDUP(bp));
1340 
1341 		if (pass >= zfs_sync_pass_dont_compress)
1342 			compress = ZIO_COMPRESS_OFF;
1343 
1344 		/* Make sure someone doesn't change their mind on overwrites */
1345 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1346 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1347 	}
1348 
1349 	/* If it's a compressed write that is not raw, compress the buffer. */
1350 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1351 		void *cbuf = zio_buf_alloc(lsize);
1352 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1353 		if (psize == 0 || psize == lsize) {
1354 			compress = ZIO_COMPRESS_OFF;
1355 			zio_buf_free(cbuf, lsize);
1356 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1357 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1358 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1359 			encode_embedded_bp_compressed(bp,
1360 			    cbuf, compress, lsize, psize);
1361 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1362 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1363 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1364 			zio_buf_free(cbuf, lsize);
1365 			bp->blk_birth = zio->io_txg;
1366 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1367 			ASSERT(spa_feature_is_active(spa,
1368 			    SPA_FEATURE_EMBEDDED_DATA));
1369 			return (ZIO_PIPELINE_CONTINUE);
1370 		} else {
1371 			/*
1372 			 * Round up compressed size up to the ashift
1373 			 * of the smallest-ashift device, and zero the tail.
1374 			 * This ensures that the compressed size of the BP
1375 			 * (and thus compressratio property) are correct,
1376 			 * in that we charge for the padding used to fill out
1377 			 * the last sector.
1378 			 */
1379 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1380 			size_t rounded = (size_t)P2ROUNDUP(psize,
1381 			    1ULL << spa->spa_min_ashift);
1382 			if (rounded >= lsize) {
1383 				compress = ZIO_COMPRESS_OFF;
1384 				zio_buf_free(cbuf, lsize);
1385 				psize = lsize;
1386 			} else {
1387 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1388 				abd_take_ownership_of_buf(cdata, B_TRUE);
1389 				abd_zero_off(cdata, psize, rounded - psize);
1390 				psize = rounded;
1391 				zio_push_transform(zio, cdata,
1392 				    psize, lsize, NULL);
1393 			}
1394 		}
1395 
1396 		/*
1397 		 * We were unable to handle this as an override bp, treat
1398 		 * it as a regular write I/O.
1399 		 */
1400 		zio->io_bp_override = NULL;
1401 		*bp = zio->io_bp_orig;
1402 		zio->io_pipeline = zio->io_orig_pipeline;
1403 	} else {
1404 		ASSERT3U(psize, !=, 0);
1405 	}
1406 
1407 	/*
1408 	 * The final pass of spa_sync() must be all rewrites, but the first
1409 	 * few passes offer a trade-off: allocating blocks defers convergence,
1410 	 * but newly allocated blocks are sequential, so they can be written
1411 	 * to disk faster.  Therefore, we allow the first few passes of
1412 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1413 	 * There should only be a handful of blocks after pass 1 in any case.
1414 	 */
1415 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1416 	    BP_GET_PSIZE(bp) == psize &&
1417 	    pass >= zfs_sync_pass_rewrite) {
1418 		VERIFY3U(psize, !=, 0);
1419 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1420 
1421 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1422 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1423 	} else {
1424 		BP_ZERO(bp);
1425 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1426 	}
1427 
1428 	if (psize == 0) {
1429 		if (zio->io_bp_orig.blk_birth != 0 &&
1430 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1431 			BP_SET_LSIZE(bp, lsize);
1432 			BP_SET_TYPE(bp, zp->zp_type);
1433 			BP_SET_LEVEL(bp, zp->zp_level);
1434 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1435 		}
1436 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1437 	} else {
1438 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1439 		BP_SET_LSIZE(bp, lsize);
1440 		BP_SET_TYPE(bp, zp->zp_type);
1441 		BP_SET_LEVEL(bp, zp->zp_level);
1442 		BP_SET_PSIZE(bp, psize);
1443 		BP_SET_COMPRESS(bp, compress);
1444 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1445 		BP_SET_DEDUP(bp, zp->zp_dedup);
1446 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1447 		if (zp->zp_dedup) {
1448 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1449 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1450 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1451 		}
1452 		if (zp->zp_nopwrite) {
1453 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1454 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1455 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1456 		}
1457 	}
1458 	return (ZIO_PIPELINE_CONTINUE);
1459 }
1460 
1461 static int
1462 zio_free_bp_init(zio_t *zio)
1463 {
1464 	blkptr_t *bp = zio->io_bp;
1465 
1466 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1467 		if (BP_GET_DEDUP(bp))
1468 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1469 	}
1470 
1471 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1472 
1473 	return (ZIO_PIPELINE_CONTINUE);
1474 }
1475 
1476 /*
1477  * ==========================================================================
1478  * Execute the I/O pipeline
1479  * ==========================================================================
1480  */
1481 
1482 static void
1483 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1484 {
1485 	spa_t *spa = zio->io_spa;
1486 	zio_type_t t = zio->io_type;
1487 	int flags = (cutinline ? TQ_FRONT : 0);
1488 
1489 	/*
1490 	 * If we're a config writer or a probe, the normal issue and
1491 	 * interrupt threads may all be blocked waiting for the config lock.
1492 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1493 	 */
1494 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1495 		t = ZIO_TYPE_NULL;
1496 
1497 	/*
1498 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1499 	 */
1500 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1501 		t = ZIO_TYPE_NULL;
1502 
1503 	/*
1504 	 * If this is a high priority I/O, then use the high priority taskq if
1505 	 * available.
1506 	 */
1507 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1508 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1509 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1510 		q++;
1511 
1512 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1513 
1514 	/*
1515 	 * NB: We are assuming that the zio can only be dispatched
1516 	 * to a single taskq at a time.  It would be a grievous error
1517 	 * to dispatch the zio to another taskq at the same time.
1518 	 */
1519 	ASSERT(zio->io_tqent.tqent_next == NULL);
1520 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1521 	    flags, &zio->io_tqent);
1522 }
1523 
1524 static boolean_t
1525 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1526 {
1527 	kthread_t *executor = zio->io_executor;
1528 	spa_t *spa = zio->io_spa;
1529 
1530 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1531 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1532 		uint_t i;
1533 		for (i = 0; i < tqs->stqs_count; i++) {
1534 			if (taskq_member(tqs->stqs_taskq[i], executor))
1535 				return (B_TRUE);
1536 		}
1537 	}
1538 
1539 	return (B_FALSE);
1540 }
1541 
1542 static int
1543 zio_issue_async(zio_t *zio)
1544 {
1545 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1546 
1547 	return (ZIO_PIPELINE_STOP);
1548 }
1549 
1550 void
1551 zio_interrupt(zio_t *zio)
1552 {
1553 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1554 }
1555 
1556 void
1557 zio_delay_interrupt(zio_t *zio)
1558 {
1559 	/*
1560 	 * The timeout_generic() function isn't defined in userspace, so
1561 	 * rather than trying to implement the function, the zio delay
1562 	 * functionality has been disabled for userspace builds.
1563 	 */
1564 
1565 #ifdef _KERNEL
1566 	/*
1567 	 * If io_target_timestamp is zero, then no delay has been registered
1568 	 * for this IO, thus jump to the end of this function and "skip" the
1569 	 * delay; issuing it directly to the zio layer.
1570 	 */
1571 	if (zio->io_target_timestamp != 0) {
1572 		hrtime_t now = gethrtime();
1573 
1574 		if (now >= zio->io_target_timestamp) {
1575 			/*
1576 			 * This IO has already taken longer than the target
1577 			 * delay to complete, so we don't want to delay it
1578 			 * any longer; we "miss" the delay and issue it
1579 			 * directly to the zio layer. This is likely due to
1580 			 * the target latency being set to a value less than
1581 			 * the underlying hardware can satisfy (e.g. delay
1582 			 * set to 1ms, but the disks take 10ms to complete an
1583 			 * IO request).
1584 			 */
1585 
1586 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1587 			    hrtime_t, now);
1588 
1589 			zio_interrupt(zio);
1590 		} else {
1591 			hrtime_t diff = zio->io_target_timestamp - now;
1592 
1593 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1594 			    hrtime_t, now, hrtime_t, diff);
1595 
1596 			(void) timeout_generic(CALLOUT_NORMAL,
1597 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1598 		}
1599 
1600 		return;
1601 	}
1602 #endif
1603 
1604 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1605 	zio_interrupt(zio);
1606 }
1607 
1608 /*
1609  * Execute the I/O pipeline until one of the following occurs:
1610  *
1611  *	(1) the I/O completes
1612  *	(2) the pipeline stalls waiting for dependent child I/Os
1613  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1614  *	(4) the I/O is delegated by vdev-level caching or aggregation
1615  *	(5) the I/O is deferred due to vdev-level queueing
1616  *	(6) the I/O is handed off to another thread.
1617  *
1618  * In all cases, the pipeline stops whenever there's no CPU work; it never
1619  * burns a thread in cv_wait().
1620  *
1621  * There's no locking on io_stage because there's no legitimate way
1622  * for multiple threads to be attempting to process the same I/O.
1623  */
1624 static zio_pipe_stage_t *zio_pipeline[];
1625 
1626 void
1627 zio_execute(zio_t *zio)
1628 {
1629 	zio->io_executor = curthread;
1630 
1631 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1632 
1633 	while (zio->io_stage < ZIO_STAGE_DONE) {
1634 		enum zio_stage pipeline = zio->io_pipeline;
1635 		enum zio_stage stage = zio->io_stage;
1636 		int rv;
1637 
1638 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1639 		ASSERT(ISP2(stage));
1640 		ASSERT(zio->io_stall == NULL);
1641 
1642 		do {
1643 			stage <<= 1;
1644 		} while ((stage & pipeline) == 0);
1645 
1646 		ASSERT(stage <= ZIO_STAGE_DONE);
1647 
1648 		/*
1649 		 * If we are in interrupt context and this pipeline stage
1650 		 * will grab a config lock that is held across I/O,
1651 		 * or may wait for an I/O that needs an interrupt thread
1652 		 * to complete, issue async to avoid deadlock.
1653 		 *
1654 		 * For VDEV_IO_START, we cut in line so that the io will
1655 		 * be sent to disk promptly.
1656 		 */
1657 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1658 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1659 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1660 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1661 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1662 			return;
1663 		}
1664 
1665 		zio->io_stage = stage;
1666 		zio->io_pipeline_trace |= zio->io_stage;
1667 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1668 
1669 		if (rv == ZIO_PIPELINE_STOP)
1670 			return;
1671 
1672 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1673 	}
1674 }
1675 
1676 /*
1677  * ==========================================================================
1678  * Initiate I/O, either sync or async
1679  * ==========================================================================
1680  */
1681 int
1682 zio_wait(zio_t *zio)
1683 {
1684 	int error;
1685 
1686 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1687 	ASSERT3P(zio->io_executor, ==, NULL);
1688 
1689 	zio->io_waiter = curthread;
1690 	ASSERT0(zio->io_queued_timestamp);
1691 	zio->io_queued_timestamp = gethrtime();
1692 
1693 	zio_execute(zio);
1694 
1695 	mutex_enter(&zio->io_lock);
1696 	while (zio->io_executor != NULL)
1697 		cv_wait(&zio->io_cv, &zio->io_lock);
1698 	mutex_exit(&zio->io_lock);
1699 
1700 	error = zio->io_error;
1701 	zio_destroy(zio);
1702 
1703 	return (error);
1704 }
1705 
1706 void
1707 zio_nowait(zio_t *zio)
1708 {
1709 	ASSERT3P(zio->io_executor, ==, NULL);
1710 
1711 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1712 	    zio_unique_parent(zio) == NULL) {
1713 		/*
1714 		 * This is a logical async I/O with no parent to wait for it.
1715 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1716 		 * will ensure they complete prior to unloading the pool.
1717 		 */
1718 		spa_t *spa = zio->io_spa;
1719 
1720 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1721 	}
1722 
1723 	ASSERT0(zio->io_queued_timestamp);
1724 	zio->io_queued_timestamp = gethrtime();
1725 	zio_execute(zio);
1726 }
1727 
1728 /*
1729  * ==========================================================================
1730  * Reexecute, cancel, or suspend/resume failed I/O
1731  * ==========================================================================
1732  */
1733 
1734 static void
1735 zio_reexecute(zio_t *pio)
1736 {
1737 	zio_t *cio, *cio_next;
1738 
1739 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1740 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1741 	ASSERT(pio->io_gang_leader == NULL);
1742 	ASSERT(pio->io_gang_tree == NULL);
1743 
1744 	pio->io_flags = pio->io_orig_flags;
1745 	pio->io_stage = pio->io_orig_stage;
1746 	pio->io_pipeline = pio->io_orig_pipeline;
1747 	pio->io_reexecute = 0;
1748 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1749 	pio->io_pipeline_trace = 0;
1750 	pio->io_error = 0;
1751 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1752 		pio->io_state[w] = 0;
1753 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1754 		pio->io_child_error[c] = 0;
1755 
1756 	if (IO_IS_ALLOCATING(pio))
1757 		BP_ZERO(pio->io_bp);
1758 
1759 	/*
1760 	 * As we reexecute pio's children, new children could be created.
1761 	 * New children go to the head of pio's io_child_list, however,
1762 	 * so we will (correctly) not reexecute them.  The key is that
1763 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1764 	 * cannot be affected by any side effects of reexecuting 'cio'.
1765 	 */
1766 	zio_link_t *zl = NULL;
1767 	mutex_enter(&pio->io_lock);
1768 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1769 		cio_next = zio_walk_children(pio, &zl);
1770 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1771 			pio->io_children[cio->io_child_type][w]++;
1772 		mutex_exit(&pio->io_lock);
1773 		zio_reexecute(cio);
1774 		mutex_enter(&pio->io_lock);
1775 	}
1776 	mutex_exit(&pio->io_lock);
1777 
1778 	/*
1779 	 * Now that all children have been reexecuted, execute the parent.
1780 	 * We don't reexecute "The Godfather" I/O here as it's the
1781 	 * responsibility of the caller to wait on it.
1782 	 */
1783 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1784 		pio->io_queued_timestamp = gethrtime();
1785 		zio_execute(pio);
1786 	}
1787 }
1788 
1789 void
1790 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1791 {
1792 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1793 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1794 		    "failure and the failure mode property for this pool "
1795 		    "is set to panic.", spa_name(spa));
1796 
1797 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1798 
1799 	mutex_enter(&spa->spa_suspend_lock);
1800 
1801 	if (spa->spa_suspend_zio_root == NULL)
1802 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1803 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1804 		    ZIO_FLAG_GODFATHER);
1805 
1806 	spa->spa_suspended = reason;
1807 
1808 	if (zio != NULL) {
1809 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1810 		ASSERT(zio != spa->spa_suspend_zio_root);
1811 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1812 		ASSERT(zio_unique_parent(zio) == NULL);
1813 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1814 		zio_add_child(spa->spa_suspend_zio_root, zio);
1815 	}
1816 
1817 	mutex_exit(&spa->spa_suspend_lock);
1818 }
1819 
1820 int
1821 zio_resume(spa_t *spa)
1822 {
1823 	zio_t *pio;
1824 
1825 	/*
1826 	 * Reexecute all previously suspended i/o.
1827 	 */
1828 	mutex_enter(&spa->spa_suspend_lock);
1829 	spa->spa_suspended = ZIO_SUSPEND_NONE;
1830 	cv_broadcast(&spa->spa_suspend_cv);
1831 	pio = spa->spa_suspend_zio_root;
1832 	spa->spa_suspend_zio_root = NULL;
1833 	mutex_exit(&spa->spa_suspend_lock);
1834 
1835 	if (pio == NULL)
1836 		return (0);
1837 
1838 	zio_reexecute(pio);
1839 	return (zio_wait(pio));
1840 }
1841 
1842 void
1843 zio_resume_wait(spa_t *spa)
1844 {
1845 	mutex_enter(&spa->spa_suspend_lock);
1846 	while (spa_suspended(spa))
1847 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1848 	mutex_exit(&spa->spa_suspend_lock);
1849 }
1850 
1851 /*
1852  * ==========================================================================
1853  * Gang blocks.
1854  *
1855  * A gang block is a collection of small blocks that looks to the DMU
1856  * like one large block.  When zio_dva_allocate() cannot find a block
1857  * of the requested size, due to either severe fragmentation or the pool
1858  * being nearly full, it calls zio_write_gang_block() to construct the
1859  * block from smaller fragments.
1860  *
1861  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1862  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1863  * an indirect block: it's an array of block pointers.  It consumes
1864  * only one sector and hence is allocatable regardless of fragmentation.
1865  * The gang header's bps point to its gang members, which hold the data.
1866  *
1867  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1868  * as the verifier to ensure uniqueness of the SHA256 checksum.
1869  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1870  * not the gang header.  This ensures that data block signatures (needed for
1871  * deduplication) are independent of how the block is physically stored.
1872  *
1873  * Gang blocks can be nested: a gang member may itself be a gang block.
1874  * Thus every gang block is a tree in which root and all interior nodes are
1875  * gang headers, and the leaves are normal blocks that contain user data.
1876  * The root of the gang tree is called the gang leader.
1877  *
1878  * To perform any operation (read, rewrite, free, claim) on a gang block,
1879  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1880  * in the io_gang_tree field of the original logical i/o by recursively
1881  * reading the gang leader and all gang headers below it.  This yields
1882  * an in-core tree containing the contents of every gang header and the
1883  * bps for every constituent of the gang block.
1884  *
1885  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1886  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1887  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1888  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1889  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1890  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1891  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1892  * of the gang header plus zio_checksum_compute() of the data to update the
1893  * gang header's blk_cksum as described above.
1894  *
1895  * The two-phase assemble/issue model solves the problem of partial failure --
1896  * what if you'd freed part of a gang block but then couldn't read the
1897  * gang header for another part?  Assembling the entire gang tree first
1898  * ensures that all the necessary gang header I/O has succeeded before
1899  * starting the actual work of free, claim, or write.  Once the gang tree
1900  * is assembled, free and claim are in-memory operations that cannot fail.
1901  *
1902  * In the event that a gang write fails, zio_dva_unallocate() walks the
1903  * gang tree to immediately free (i.e. insert back into the space map)
1904  * everything we've allocated.  This ensures that we don't get ENOSPC
1905  * errors during repeated suspend/resume cycles due to a flaky device.
1906  *
1907  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1908  * the gang tree, we won't modify the block, so we can safely defer the free
1909  * (knowing that the block is still intact).  If we *can* assemble the gang
1910  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1911  * each constituent bp and we can allocate a new block on the next sync pass.
1912  *
1913  * In all cases, the gang tree allows complete recovery from partial failure.
1914  * ==========================================================================
1915  */
1916 
1917 static void
1918 zio_gang_issue_func_done(zio_t *zio)
1919 {
1920 	abd_put(zio->io_abd);
1921 }
1922 
1923 static zio_t *
1924 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1925     uint64_t offset)
1926 {
1927 	if (gn != NULL)
1928 		return (pio);
1929 
1930 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1931 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1932 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1933 	    &pio->io_bookmark));
1934 }
1935 
1936 static zio_t *
1937 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1938     uint64_t offset)
1939 {
1940 	zio_t *zio;
1941 
1942 	if (gn != NULL) {
1943 		abd_t *gbh_abd =
1944 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1945 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1946 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1947 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1948 		    &pio->io_bookmark);
1949 		/*
1950 		 * As we rewrite each gang header, the pipeline will compute
1951 		 * a new gang block header checksum for it; but no one will
1952 		 * compute a new data checksum, so we do that here.  The one
1953 		 * exception is the gang leader: the pipeline already computed
1954 		 * its data checksum because that stage precedes gang assembly.
1955 		 * (Presently, nothing actually uses interior data checksums;
1956 		 * this is just good hygiene.)
1957 		 */
1958 		if (gn != pio->io_gang_leader->io_gang_tree) {
1959 			abd_t *buf = abd_get_offset(data, offset);
1960 
1961 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1962 			    buf, BP_GET_PSIZE(bp));
1963 
1964 			abd_put(buf);
1965 		}
1966 		/*
1967 		 * If we are here to damage data for testing purposes,
1968 		 * leave the GBH alone so that we can detect the damage.
1969 		 */
1970 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1971 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1972 	} else {
1973 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1974 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1975 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1976 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1977 	}
1978 
1979 	return (zio);
1980 }
1981 
1982 /* ARGSUSED */
1983 static zio_t *
1984 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1985     uint64_t offset)
1986 {
1987 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1988 	    ZIO_GANG_CHILD_FLAGS(pio)));
1989 }
1990 
1991 /* ARGSUSED */
1992 static zio_t *
1993 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1994     uint64_t offset)
1995 {
1996 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1997 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1998 }
1999 
2000 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2001 	NULL,
2002 	zio_read_gang,
2003 	zio_rewrite_gang,
2004 	zio_free_gang,
2005 	zio_claim_gang,
2006 	NULL
2007 };
2008 
2009 static void zio_gang_tree_assemble_done(zio_t *zio);
2010 
2011 static zio_gang_node_t *
2012 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2013 {
2014 	zio_gang_node_t *gn;
2015 
2016 	ASSERT(*gnpp == NULL);
2017 
2018 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2019 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2020 	*gnpp = gn;
2021 
2022 	return (gn);
2023 }
2024 
2025 static void
2026 zio_gang_node_free(zio_gang_node_t **gnpp)
2027 {
2028 	zio_gang_node_t *gn = *gnpp;
2029 
2030 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2031 		ASSERT(gn->gn_child[g] == NULL);
2032 
2033 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2034 	kmem_free(gn, sizeof (*gn));
2035 	*gnpp = NULL;
2036 }
2037 
2038 static void
2039 zio_gang_tree_free(zio_gang_node_t **gnpp)
2040 {
2041 	zio_gang_node_t *gn = *gnpp;
2042 
2043 	if (gn == NULL)
2044 		return;
2045 
2046 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2047 		zio_gang_tree_free(&gn->gn_child[g]);
2048 
2049 	zio_gang_node_free(gnpp);
2050 }
2051 
2052 static void
2053 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2054 {
2055 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2056 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2057 
2058 	ASSERT(gio->io_gang_leader == gio);
2059 	ASSERT(BP_IS_GANG(bp));
2060 
2061 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2062 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2063 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2064 }
2065 
2066 static void
2067 zio_gang_tree_assemble_done(zio_t *zio)
2068 {
2069 	zio_t *gio = zio->io_gang_leader;
2070 	zio_gang_node_t *gn = zio->io_private;
2071 	blkptr_t *bp = zio->io_bp;
2072 
2073 	ASSERT(gio == zio_unique_parent(zio));
2074 	ASSERT(zio->io_child_count == 0);
2075 
2076 	if (zio->io_error)
2077 		return;
2078 
2079 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2080 	if (BP_SHOULD_BYTESWAP(bp))
2081 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2082 
2083 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2084 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2085 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2086 
2087 	abd_put(zio->io_abd);
2088 
2089 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2090 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2091 		if (!BP_IS_GANG(gbp))
2092 			continue;
2093 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2094 	}
2095 }
2096 
2097 static void
2098 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2099     uint64_t offset)
2100 {
2101 	zio_t *gio = pio->io_gang_leader;
2102 	zio_t *zio;
2103 
2104 	ASSERT(BP_IS_GANG(bp) == !!gn);
2105 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2106 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2107 
2108 	/*
2109 	 * If you're a gang header, your data is in gn->gn_gbh.
2110 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2111 	 */
2112 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2113 
2114 	if (gn != NULL) {
2115 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2116 
2117 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2118 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2119 			if (BP_IS_HOLE(gbp))
2120 				continue;
2121 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2122 			    offset);
2123 			offset += BP_GET_PSIZE(gbp);
2124 		}
2125 	}
2126 
2127 	if (gn == gio->io_gang_tree)
2128 		ASSERT3U(gio->io_size, ==, offset);
2129 
2130 	if (zio != pio)
2131 		zio_nowait(zio);
2132 }
2133 
2134 static int
2135 zio_gang_assemble(zio_t *zio)
2136 {
2137 	blkptr_t *bp = zio->io_bp;
2138 
2139 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2140 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2141 
2142 	zio->io_gang_leader = zio;
2143 
2144 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2145 
2146 	return (ZIO_PIPELINE_CONTINUE);
2147 }
2148 
2149 static int
2150 zio_gang_issue(zio_t *zio)
2151 {
2152 	blkptr_t *bp = zio->io_bp;
2153 
2154 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2155 		return (ZIO_PIPELINE_STOP);
2156 	}
2157 
2158 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2159 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2160 
2161 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2162 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2163 		    0);
2164 	else
2165 		zio_gang_tree_free(&zio->io_gang_tree);
2166 
2167 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2168 
2169 	return (ZIO_PIPELINE_CONTINUE);
2170 }
2171 
2172 static void
2173 zio_write_gang_member_ready(zio_t *zio)
2174 {
2175 	zio_t *pio = zio_unique_parent(zio);
2176 	zio_t *gio = zio->io_gang_leader;
2177 	dva_t *cdva = zio->io_bp->blk_dva;
2178 	dva_t *pdva = pio->io_bp->blk_dva;
2179 	uint64_t asize;
2180 
2181 	if (BP_IS_HOLE(zio->io_bp))
2182 		return;
2183 
2184 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2185 
2186 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2187 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2188 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2189 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2190 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2191 
2192 	mutex_enter(&pio->io_lock);
2193 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2194 		ASSERT(DVA_GET_GANG(&pdva[d]));
2195 		asize = DVA_GET_ASIZE(&pdva[d]);
2196 		asize += DVA_GET_ASIZE(&cdva[d]);
2197 		DVA_SET_ASIZE(&pdva[d], asize);
2198 	}
2199 	mutex_exit(&pio->io_lock);
2200 }
2201 
2202 static void
2203 zio_write_gang_done(zio_t *zio)
2204 {
2205 	/*
2206 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2207 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2208 	 * check for it here as it is cleared in zio_ready.
2209 	 */
2210 	if (zio->io_abd != NULL)
2211 		abd_put(zio->io_abd);
2212 }
2213 
2214 static int
2215 zio_write_gang_block(zio_t *pio)
2216 {
2217 	spa_t *spa = pio->io_spa;
2218 	metaslab_class_t *mc = spa_normal_class(spa);
2219 	blkptr_t *bp = pio->io_bp;
2220 	zio_t *gio = pio->io_gang_leader;
2221 	zio_t *zio;
2222 	zio_gang_node_t *gn, **gnpp;
2223 	zio_gbh_phys_t *gbh;
2224 	abd_t *gbh_abd;
2225 	uint64_t txg = pio->io_txg;
2226 	uint64_t resid = pio->io_size;
2227 	uint64_t lsize;
2228 	int copies = gio->io_prop.zp_copies;
2229 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2230 	zio_prop_t zp;
2231 	int error;
2232 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2233 
2234 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2235 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2236 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2237 		ASSERT(has_data);
2238 
2239 		flags |= METASLAB_ASYNC_ALLOC;
2240 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2241 		    pio));
2242 
2243 		/*
2244 		 * The logical zio has already placed a reservation for
2245 		 * 'copies' allocation slots but gang blocks may require
2246 		 * additional copies. These additional copies
2247 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2248 		 * since metaslab_class_throttle_reserve() always allows
2249 		 * additional reservations for gang blocks.
2250 		 */
2251 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2252 		    pio->io_allocator, pio, flags));
2253 	}
2254 
2255 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2256 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2257 	    &pio->io_alloc_list, pio, pio->io_allocator);
2258 	if (error) {
2259 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2260 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2261 			ASSERT(has_data);
2262 
2263 			/*
2264 			 * If we failed to allocate the gang block header then
2265 			 * we remove any additional allocation reservations that
2266 			 * we placed here. The original reservation will
2267 			 * be removed when the logical I/O goes to the ready
2268 			 * stage.
2269 			 */
2270 			metaslab_class_throttle_unreserve(mc,
2271 			    gbh_copies - copies, pio->io_allocator, pio);
2272 		}
2273 		pio->io_error = error;
2274 		return (ZIO_PIPELINE_CONTINUE);
2275 	}
2276 
2277 	if (pio == gio) {
2278 		gnpp = &gio->io_gang_tree;
2279 	} else {
2280 		gnpp = pio->io_private;
2281 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2282 	}
2283 
2284 	gn = zio_gang_node_alloc(gnpp);
2285 	gbh = gn->gn_gbh;
2286 	bzero(gbh, SPA_GANGBLOCKSIZE);
2287 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2288 
2289 	/*
2290 	 * Create the gang header.
2291 	 */
2292 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2293 	    zio_write_gang_done, NULL, pio->io_priority,
2294 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2295 
2296 	/*
2297 	 * Create and nowait the gang children.
2298 	 */
2299 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2300 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2301 		    SPA_MINBLOCKSIZE);
2302 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2303 
2304 		zp.zp_checksum = gio->io_prop.zp_checksum;
2305 		zp.zp_compress = ZIO_COMPRESS_OFF;
2306 		zp.zp_type = DMU_OT_NONE;
2307 		zp.zp_level = 0;
2308 		zp.zp_copies = gio->io_prop.zp_copies;
2309 		zp.zp_dedup = B_FALSE;
2310 		zp.zp_dedup_verify = B_FALSE;
2311 		zp.zp_nopwrite = B_FALSE;
2312 
2313 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2314 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2315 		    resid) : NULL, lsize, lsize, &zp,
2316 		    zio_write_gang_member_ready, NULL, NULL,
2317 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2318 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2319 
2320 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2321 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2322 			ASSERT(has_data);
2323 
2324 			/*
2325 			 * Gang children won't throttle but we should
2326 			 * account for their work, so reserve an allocation
2327 			 * slot for them here.
2328 			 */
2329 			VERIFY(metaslab_class_throttle_reserve(mc,
2330 			    zp.zp_copies, cio->io_allocator, cio, flags));
2331 		}
2332 		zio_nowait(cio);
2333 	}
2334 
2335 	/*
2336 	 * Set pio's pipeline to just wait for zio to finish.
2337 	 */
2338 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2339 
2340 	zio_nowait(zio);
2341 
2342 	return (ZIO_PIPELINE_CONTINUE);
2343 }
2344 
2345 /*
2346  * The zio_nop_write stage in the pipeline determines if allocating a
2347  * new bp is necessary.  The nopwrite feature can handle writes in
2348  * either syncing or open context (i.e. zil writes) and as a result is
2349  * mutually exclusive with dedup.
2350  *
2351  * By leveraging a cryptographically secure checksum, such as SHA256, we
2352  * can compare the checksums of the new data and the old to determine if
2353  * allocating a new block is required.  Note that our requirements for
2354  * cryptographic strength are fairly weak: there can't be any accidental
2355  * hash collisions, but we don't need to be secure against intentional
2356  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2357  * to write the file to begin with, and triggering an incorrect (hash
2358  * collision) nopwrite is no worse than simply writing to the file.
2359  * That said, there are no known attacks against the checksum algorithms
2360  * used for nopwrite, assuming that the salt and the checksums
2361  * themselves remain secret.
2362  */
2363 static int
2364 zio_nop_write(zio_t *zio)
2365 {
2366 	blkptr_t *bp = zio->io_bp;
2367 	blkptr_t *bp_orig = &zio->io_bp_orig;
2368 	zio_prop_t *zp = &zio->io_prop;
2369 
2370 	ASSERT(BP_GET_LEVEL(bp) == 0);
2371 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2372 	ASSERT(zp->zp_nopwrite);
2373 	ASSERT(!zp->zp_dedup);
2374 	ASSERT(zio->io_bp_override == NULL);
2375 	ASSERT(IO_IS_ALLOCATING(zio));
2376 
2377 	/*
2378 	 * Check to see if the original bp and the new bp have matching
2379 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2380 	 * If they don't then just continue with the pipeline which will
2381 	 * allocate a new bp.
2382 	 */
2383 	if (BP_IS_HOLE(bp_orig) ||
2384 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2385 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2386 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2387 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2388 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2389 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2390 		return (ZIO_PIPELINE_CONTINUE);
2391 
2392 	/*
2393 	 * If the checksums match then reset the pipeline so that we
2394 	 * avoid allocating a new bp and issuing any I/O.
2395 	 */
2396 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2397 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2398 		    ZCHECKSUM_FLAG_NOPWRITE);
2399 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2400 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2401 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2402 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2403 		    sizeof (uint64_t)) == 0);
2404 
2405 		*bp = *bp_orig;
2406 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2407 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2408 	}
2409 
2410 	return (ZIO_PIPELINE_CONTINUE);
2411 }
2412 
2413 /*
2414  * ==========================================================================
2415  * Dedup
2416  * ==========================================================================
2417  */
2418 static void
2419 zio_ddt_child_read_done(zio_t *zio)
2420 {
2421 	blkptr_t *bp = zio->io_bp;
2422 	ddt_entry_t *dde = zio->io_private;
2423 	ddt_phys_t *ddp;
2424 	zio_t *pio = zio_unique_parent(zio);
2425 
2426 	mutex_enter(&pio->io_lock);
2427 	ddp = ddt_phys_select(dde, bp);
2428 	if (zio->io_error == 0)
2429 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2430 
2431 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2432 		dde->dde_repair_abd = zio->io_abd;
2433 	else
2434 		abd_free(zio->io_abd);
2435 	mutex_exit(&pio->io_lock);
2436 }
2437 
2438 static int
2439 zio_ddt_read_start(zio_t *zio)
2440 {
2441 	blkptr_t *bp = zio->io_bp;
2442 
2443 	ASSERT(BP_GET_DEDUP(bp));
2444 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2445 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2446 
2447 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2448 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2449 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2450 		ddt_phys_t *ddp = dde->dde_phys;
2451 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2452 		blkptr_t blk;
2453 
2454 		ASSERT(zio->io_vsd == NULL);
2455 		zio->io_vsd = dde;
2456 
2457 		if (ddp_self == NULL)
2458 			return (ZIO_PIPELINE_CONTINUE);
2459 
2460 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2461 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2462 				continue;
2463 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2464 			    &blk);
2465 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2466 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2467 			    zio->io_size, zio_ddt_child_read_done, dde,
2468 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2469 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2470 		}
2471 		return (ZIO_PIPELINE_CONTINUE);
2472 	}
2473 
2474 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2475 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2476 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2477 
2478 	return (ZIO_PIPELINE_CONTINUE);
2479 }
2480 
2481 static int
2482 zio_ddt_read_done(zio_t *zio)
2483 {
2484 	blkptr_t *bp = zio->io_bp;
2485 
2486 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2487 		return (ZIO_PIPELINE_STOP);
2488 	}
2489 
2490 	ASSERT(BP_GET_DEDUP(bp));
2491 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2492 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2493 
2494 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2495 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2496 		ddt_entry_t *dde = zio->io_vsd;
2497 		if (ddt == NULL) {
2498 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2499 			return (ZIO_PIPELINE_CONTINUE);
2500 		}
2501 		if (dde == NULL) {
2502 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2503 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2504 			return (ZIO_PIPELINE_STOP);
2505 		}
2506 		if (dde->dde_repair_abd != NULL) {
2507 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2508 			    zio->io_size);
2509 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2510 		}
2511 		ddt_repair_done(ddt, dde);
2512 		zio->io_vsd = NULL;
2513 	}
2514 
2515 	ASSERT(zio->io_vsd == NULL);
2516 
2517 	return (ZIO_PIPELINE_CONTINUE);
2518 }
2519 
2520 static boolean_t
2521 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2522 {
2523 	spa_t *spa = zio->io_spa;
2524 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2525 
2526 	/* We should never get a raw, override zio */
2527 	ASSERT(!(zio->io_bp_override && do_raw));
2528 
2529 	/*
2530 	 * Note: we compare the original data, not the transformed data,
2531 	 * because when zio->io_bp is an override bp, we will not have
2532 	 * pushed the I/O transforms.  That's an important optimization
2533 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2534 	 */
2535 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2536 		zio_t *lio = dde->dde_lead_zio[p];
2537 
2538 		if (lio != NULL) {
2539 			return (lio->io_orig_size != zio->io_orig_size ||
2540 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2541 			    zio->io_orig_size) != 0);
2542 		}
2543 	}
2544 
2545 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2546 		ddt_phys_t *ddp = &dde->dde_phys[p];
2547 
2548 		if (ddp->ddp_phys_birth != 0) {
2549 			arc_buf_t *abuf = NULL;
2550 			arc_flags_t aflags = ARC_FLAG_WAIT;
2551 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2552 			blkptr_t blk = *zio->io_bp;
2553 			int error;
2554 
2555 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2556 
2557 			ddt_exit(ddt);
2558 
2559 			/*
2560 			 * Intuitively, it would make more sense to compare
2561 			 * io_abd than io_orig_abd in the raw case since you
2562 			 * don't want to look at any transformations that have
2563 			 * happened to the data. However, for raw I/Os the
2564 			 * data will actually be the same in io_abd and
2565 			 * io_orig_abd, so all we have to do is issue this as
2566 			 * a raw ARC read.
2567 			 */
2568 			if (do_raw) {
2569 				zio_flags |= ZIO_FLAG_RAW;
2570 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2571 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2572 				    zio->io_size));
2573 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2574 			}
2575 
2576 			error = arc_read(NULL, spa, &blk,
2577 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2578 			    zio_flags, &aflags, &zio->io_bookmark);
2579 
2580 			if (error == 0) {
2581 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2582 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2583 				    zio->io_orig_size) != 0)
2584 					error = SET_ERROR(EEXIST);
2585 				arc_buf_destroy(abuf, &abuf);
2586 			}
2587 
2588 			ddt_enter(ddt);
2589 			return (error != 0);
2590 		}
2591 	}
2592 
2593 	return (B_FALSE);
2594 }
2595 
2596 static void
2597 zio_ddt_child_write_ready(zio_t *zio)
2598 {
2599 	int p = zio->io_prop.zp_copies;
2600 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2601 	ddt_entry_t *dde = zio->io_private;
2602 	ddt_phys_t *ddp = &dde->dde_phys[p];
2603 	zio_t *pio;
2604 
2605 	if (zio->io_error)
2606 		return;
2607 
2608 	ddt_enter(ddt);
2609 
2610 	ASSERT(dde->dde_lead_zio[p] == zio);
2611 
2612 	ddt_phys_fill(ddp, zio->io_bp);
2613 
2614 	zio_link_t *zl = NULL;
2615 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2616 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2617 
2618 	ddt_exit(ddt);
2619 }
2620 
2621 static void
2622 zio_ddt_child_write_done(zio_t *zio)
2623 {
2624 	int p = zio->io_prop.zp_copies;
2625 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2626 	ddt_entry_t *dde = zio->io_private;
2627 	ddt_phys_t *ddp = &dde->dde_phys[p];
2628 
2629 	ddt_enter(ddt);
2630 
2631 	ASSERT(ddp->ddp_refcnt == 0);
2632 	ASSERT(dde->dde_lead_zio[p] == zio);
2633 	dde->dde_lead_zio[p] = NULL;
2634 
2635 	if (zio->io_error == 0) {
2636 		zio_link_t *zl = NULL;
2637 		while (zio_walk_parents(zio, &zl) != NULL)
2638 			ddt_phys_addref(ddp);
2639 	} else {
2640 		ddt_phys_clear(ddp);
2641 	}
2642 
2643 	ddt_exit(ddt);
2644 }
2645 
2646 static void
2647 zio_ddt_ditto_write_done(zio_t *zio)
2648 {
2649 	int p = DDT_PHYS_DITTO;
2650 	zio_prop_t *zp = &zio->io_prop;
2651 	blkptr_t *bp = zio->io_bp;
2652 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2653 	ddt_entry_t *dde = zio->io_private;
2654 	ddt_phys_t *ddp = &dde->dde_phys[p];
2655 	ddt_key_t *ddk = &dde->dde_key;
2656 
2657 	ddt_enter(ddt);
2658 
2659 	ASSERT(ddp->ddp_refcnt == 0);
2660 	ASSERT(dde->dde_lead_zio[p] == zio);
2661 	dde->dde_lead_zio[p] = NULL;
2662 
2663 	if (zio->io_error == 0) {
2664 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2665 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2666 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2667 		if (ddp->ddp_phys_birth != 0)
2668 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2669 		ddt_phys_fill(ddp, bp);
2670 	}
2671 
2672 	ddt_exit(ddt);
2673 }
2674 
2675 static int
2676 zio_ddt_write(zio_t *zio)
2677 {
2678 	spa_t *spa = zio->io_spa;
2679 	blkptr_t *bp = zio->io_bp;
2680 	uint64_t txg = zio->io_txg;
2681 	zio_prop_t *zp = &zio->io_prop;
2682 	int p = zp->zp_copies;
2683 	int ditto_copies;
2684 	zio_t *cio = NULL;
2685 	zio_t *dio = NULL;
2686 	ddt_t *ddt = ddt_select(spa, bp);
2687 	ddt_entry_t *dde;
2688 	ddt_phys_t *ddp;
2689 
2690 	ASSERT(BP_GET_DEDUP(bp));
2691 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2692 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2693 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2694 
2695 	ddt_enter(ddt);
2696 	dde = ddt_lookup(ddt, bp, B_TRUE);
2697 	ddp = &dde->dde_phys[p];
2698 
2699 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2700 		/*
2701 		 * If we're using a weak checksum, upgrade to a strong checksum
2702 		 * and try again.  If we're already using a strong checksum,
2703 		 * we can't resolve it, so just convert to an ordinary write.
2704 		 * (And automatically e-mail a paper to Nature?)
2705 		 */
2706 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2707 		    ZCHECKSUM_FLAG_DEDUP)) {
2708 			zp->zp_checksum = spa_dedup_checksum(spa);
2709 			zio_pop_transforms(zio);
2710 			zio->io_stage = ZIO_STAGE_OPEN;
2711 			BP_ZERO(bp);
2712 		} else {
2713 			zp->zp_dedup = B_FALSE;
2714 			BP_SET_DEDUP(bp, B_FALSE);
2715 		}
2716 		ASSERT(!BP_GET_DEDUP(bp));
2717 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2718 		ddt_exit(ddt);
2719 		return (ZIO_PIPELINE_CONTINUE);
2720 	}
2721 
2722 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2723 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2724 
2725 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2726 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2727 		zio_prop_t czp = *zp;
2728 
2729 		czp.zp_copies = ditto_copies;
2730 
2731 		/*
2732 		 * If we arrived here with an override bp, we won't have run
2733 		 * the transform stack, so we won't have the data we need to
2734 		 * generate a child i/o.  So, toss the override bp and restart.
2735 		 * This is safe, because using the override bp is just an
2736 		 * optimization; and it's rare, so the cost doesn't matter.
2737 		 */
2738 		if (zio->io_bp_override) {
2739 			zio_pop_transforms(zio);
2740 			zio->io_stage = ZIO_STAGE_OPEN;
2741 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2742 			zio->io_bp_override = NULL;
2743 			BP_ZERO(bp);
2744 			ddt_exit(ddt);
2745 			return (ZIO_PIPELINE_CONTINUE);
2746 		}
2747 
2748 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2749 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2750 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2751 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2752 
2753 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2754 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2755 	}
2756 
2757 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2758 		if (ddp->ddp_phys_birth != 0)
2759 			ddt_bp_fill(ddp, bp, txg);
2760 		if (dde->dde_lead_zio[p] != NULL)
2761 			zio_add_child(zio, dde->dde_lead_zio[p]);
2762 		else
2763 			ddt_phys_addref(ddp);
2764 	} else if (zio->io_bp_override) {
2765 		ASSERT(bp->blk_birth == txg);
2766 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2767 		ddt_phys_fill(ddp, bp);
2768 		ddt_phys_addref(ddp);
2769 	} else {
2770 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2771 		    zio->io_orig_size, zio->io_orig_size, zp,
2772 		    zio_ddt_child_write_ready, NULL, NULL,
2773 		    zio_ddt_child_write_done, dde, zio->io_priority,
2774 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2775 
2776 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2777 		dde->dde_lead_zio[p] = cio;
2778 	}
2779 
2780 	ddt_exit(ddt);
2781 
2782 	if (cio)
2783 		zio_nowait(cio);
2784 	if (dio)
2785 		zio_nowait(dio);
2786 
2787 	return (ZIO_PIPELINE_CONTINUE);
2788 }
2789 
2790 ddt_entry_t *freedde; /* for debugging */
2791 
2792 static int
2793 zio_ddt_free(zio_t *zio)
2794 {
2795 	spa_t *spa = zio->io_spa;
2796 	blkptr_t *bp = zio->io_bp;
2797 	ddt_t *ddt = ddt_select(spa, bp);
2798 	ddt_entry_t *dde;
2799 	ddt_phys_t *ddp;
2800 
2801 	ASSERT(BP_GET_DEDUP(bp));
2802 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2803 
2804 	ddt_enter(ddt);
2805 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2806 	ddp = ddt_phys_select(dde, bp);
2807 	ddt_phys_decref(ddp);
2808 	ddt_exit(ddt);
2809 
2810 	return (ZIO_PIPELINE_CONTINUE);
2811 }
2812 
2813 /*
2814  * ==========================================================================
2815  * Allocate and free blocks
2816  * ==========================================================================
2817  */
2818 
2819 static zio_t *
2820 zio_io_to_allocate(spa_t *spa, int allocator)
2821 {
2822 	zio_t *zio;
2823 
2824 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2825 
2826 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
2827 	if (zio == NULL)
2828 		return (NULL);
2829 
2830 	ASSERT(IO_IS_ALLOCATING(zio));
2831 
2832 	/*
2833 	 * Try to place a reservation for this zio. If we're unable to
2834 	 * reserve then we throttle.
2835 	 */
2836 	ASSERT3U(zio->io_allocator, ==, allocator);
2837 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
2838 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2839 		return (NULL);
2840 	}
2841 
2842 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
2843 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2844 
2845 	return (zio);
2846 }
2847 
2848 static int
2849 zio_dva_throttle(zio_t *zio)
2850 {
2851 	spa_t *spa = zio->io_spa;
2852 	zio_t *nio;
2853 	metaslab_class_t *mc;
2854 
2855 	/* locate an appropriate allocation class */
2856 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
2857 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
2858 
2859 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2860 	    !mc->mc_alloc_throttle_enabled ||
2861 	    zio->io_child_type == ZIO_CHILD_GANG ||
2862 	    zio->io_flags & ZIO_FLAG_NODATA) {
2863 		return (ZIO_PIPELINE_CONTINUE);
2864 	}
2865 
2866 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2867 
2868 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2869 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2870 
2871 	zbookmark_phys_t *bm = &zio->io_bookmark;
2872 	/*
2873 	 * We want to try to use as many allocators as possible to help improve
2874 	 * performance, but we also want logically adjacent IOs to be physically
2875 	 * adjacent to improve sequential read performance. We chunk each object
2876 	 * into 2^20 block regions, and then hash based on the objset, object,
2877 	 * level, and region to accomplish both of these goals.
2878 	 */
2879 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2880 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2881 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2882 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2883 	zio->io_metaslab_class = mc;
2884 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2885 	nio = zio_io_to_allocate(spa, zio->io_allocator);
2886 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2887 
2888 	if (nio == zio)
2889 		return (ZIO_PIPELINE_CONTINUE);
2890 
2891 	if (nio != NULL) {
2892 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2893 		/*
2894 		 * We are passing control to a new zio so make sure that
2895 		 * it is processed by a different thread. We do this to
2896 		 * avoid stack overflows that can occur when parents are
2897 		 * throttled and children are making progress. We allow
2898 		 * it to go to the head of the taskq since it's already
2899 		 * been waiting.
2900 		 */
2901 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2902 	}
2903 	return (ZIO_PIPELINE_STOP);
2904 }
2905 
2906 static void
2907 zio_allocate_dispatch(spa_t *spa, int allocator)
2908 {
2909 	zio_t *zio;
2910 
2911 	mutex_enter(&spa->spa_alloc_locks[allocator]);
2912 	zio = zio_io_to_allocate(spa, allocator);
2913 	mutex_exit(&spa->spa_alloc_locks[allocator]);
2914 	if (zio == NULL)
2915 		return;
2916 
2917 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2918 	ASSERT0(zio->io_error);
2919 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2920 }
2921 
2922 static int
2923 zio_dva_allocate(zio_t *zio)
2924 {
2925 	spa_t *spa = zio->io_spa;
2926 	metaslab_class_t *mc;
2927 	blkptr_t *bp = zio->io_bp;
2928 	int error;
2929 	int flags = 0;
2930 
2931 	if (zio->io_gang_leader == NULL) {
2932 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2933 		zio->io_gang_leader = zio;
2934 	}
2935 
2936 	ASSERT(BP_IS_HOLE(bp));
2937 	ASSERT0(BP_GET_NDVAS(bp));
2938 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2939 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2940 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2941 
2942 	if (zio->io_flags & ZIO_FLAG_NODATA)
2943 		flags |= METASLAB_DONT_THROTTLE;
2944 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
2945 		flags |= METASLAB_GANG_CHILD;
2946 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
2947 		flags |= METASLAB_ASYNC_ALLOC;
2948 
2949 	/*
2950 	 * if not already chosen, locate an appropriate allocation class
2951 	 */
2952 	mc = zio->io_metaslab_class;
2953 	if (mc == NULL) {
2954 		mc = spa_preferred_class(spa, zio->io_size,
2955 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
2956 		    zio->io_prop.zp_zpl_smallblk);
2957 		zio->io_metaslab_class = mc;
2958 	}
2959 
2960 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2961 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2962 	    &zio->io_alloc_list, zio, zio->io_allocator);
2963 
2964 	/*
2965 	 * Fallback to normal class when an alloc class is full
2966 	 */
2967 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
2968 		/*
2969 		 * If throttling, transfer reservation over to normal class.
2970 		 * The io_allocator slot can remain the same even though we
2971 		 * are switching classes.
2972 		 */
2973 		if (mc->mc_alloc_throttle_enabled &&
2974 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
2975 			metaslab_class_throttle_unreserve(mc,
2976 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
2977 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
2978 
2979 			mc = spa_normal_class(spa);
2980 			VERIFY(metaslab_class_throttle_reserve(mc,
2981 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
2982 			    flags | METASLAB_MUST_RESERVE));
2983 		} else {
2984 			mc = spa_normal_class(spa);
2985 		}
2986 		zio->io_metaslab_class = mc;
2987 
2988 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
2989 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2990 		    &zio->io_alloc_list, zio, zio->io_allocator);
2991 	}
2992 
2993 	if (error != 0) {
2994 		zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
2995 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2996 		    error);
2997 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2998 			return (zio_write_gang_block(zio));
2999 		zio->io_error = error;
3000 	}
3001 
3002 	return (ZIO_PIPELINE_CONTINUE);
3003 }
3004 
3005 static int
3006 zio_dva_free(zio_t *zio)
3007 {
3008 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3009 
3010 	return (ZIO_PIPELINE_CONTINUE);
3011 }
3012 
3013 static int
3014 zio_dva_claim(zio_t *zio)
3015 {
3016 	int error;
3017 
3018 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3019 	if (error)
3020 		zio->io_error = error;
3021 
3022 	return (ZIO_PIPELINE_CONTINUE);
3023 }
3024 
3025 /*
3026  * Undo an allocation.  This is used by zio_done() when an I/O fails
3027  * and we want to give back the block we just allocated.
3028  * This handles both normal blocks and gang blocks.
3029  */
3030 static void
3031 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3032 {
3033 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3034 	ASSERT(zio->io_bp_override == NULL);
3035 
3036 	if (!BP_IS_HOLE(bp))
3037 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3038 
3039 	if (gn != NULL) {
3040 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3041 			zio_dva_unallocate(zio, gn->gn_child[g],
3042 			    &gn->gn_gbh->zg_blkptr[g]);
3043 		}
3044 	}
3045 }
3046 
3047 /*
3048  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3049  */
3050 int
3051 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
3052     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3053 {
3054 	int error = 1;
3055 	zio_alloc_list_t io_alloc_list;
3056 
3057 	ASSERT(txg > spa_syncing_txg(spa));
3058 
3059 	metaslab_trace_init(&io_alloc_list);
3060 
3061 	/*
3062 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3063 	 * Fill in the obvious ones before calling into metaslab_alloc().
3064 	 */
3065 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3066 	BP_SET_PSIZE(new_bp, size);
3067 	BP_SET_LEVEL(new_bp, 0);
3068 
3069 	/*
3070 	 * When allocating a zil block, we don't have information about
3071 	 * the final destination of the block except the objset it's part
3072 	 * of, so we just hash the objset ID to pick the allocator to get
3073 	 * some parallelism.
3074 	 */
3075 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3076 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3077 	    cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3078 	if (error == 0) {
3079 		*slog = TRUE;
3080 	} else {
3081 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3082 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3083 		    &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3084 		    spa->spa_alloc_count);
3085 		if (error == 0)
3086 			*slog = FALSE;
3087 	}
3088 	metaslab_trace_fini(&io_alloc_list);
3089 
3090 	if (error == 0) {
3091 		BP_SET_LSIZE(new_bp, size);
3092 		BP_SET_PSIZE(new_bp, size);
3093 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3094 		BP_SET_CHECKSUM(new_bp,
3095 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3096 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3097 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3098 		BP_SET_LEVEL(new_bp, 0);
3099 		BP_SET_DEDUP(new_bp, 0);
3100 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3101 	} else {
3102 		zfs_dbgmsg("%s: zil block allocation failure: "
3103 		    "size %llu, error %d", spa_name(spa), size, error);
3104 	}
3105 
3106 	return (error);
3107 }
3108 
3109 /*
3110  * ==========================================================================
3111  * Read and write to physical devices
3112  * ==========================================================================
3113  */
3114 
3115 
3116 /*
3117  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3118  * stops after this stage and will resume upon I/O completion.
3119  * However, there are instances where the vdev layer may need to
3120  * continue the pipeline when an I/O was not issued. Since the I/O
3121  * that was sent to the vdev layer might be different than the one
3122  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3123  * force the underlying vdev layers to call either zio_execute() or
3124  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3125  */
3126 static int
3127 zio_vdev_io_start(zio_t *zio)
3128 {
3129 	vdev_t *vd = zio->io_vd;
3130 	uint64_t align;
3131 	spa_t *spa = zio->io_spa;
3132 
3133 	ASSERT(zio->io_error == 0);
3134 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3135 
3136 	if (vd == NULL) {
3137 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3138 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3139 
3140 		/*
3141 		 * The mirror_ops handle multiple DVAs in a single BP.
3142 		 */
3143 		vdev_mirror_ops.vdev_op_io_start(zio);
3144 		return (ZIO_PIPELINE_STOP);
3145 	}
3146 
3147 	ASSERT3P(zio->io_logical, !=, zio);
3148 	if (zio->io_type == ZIO_TYPE_WRITE) {
3149 		ASSERT(spa->spa_trust_config);
3150 
3151 		/*
3152 		 * Note: the code can handle other kinds of writes,
3153 		 * but we don't expect them.
3154 		 */
3155 		if (zio->io_vd->vdev_removing) {
3156 			ASSERT(zio->io_flags &
3157 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3158 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3159 		}
3160 	}
3161 
3162 	align = 1ULL << vd->vdev_top->vdev_ashift;
3163 
3164 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3165 	    P2PHASE(zio->io_size, align) != 0) {
3166 		/* Transform logical writes to be a full physical block size. */
3167 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3168 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3169 		ASSERT(vd == vd->vdev_top);
3170 		if (zio->io_type == ZIO_TYPE_WRITE) {
3171 			abd_copy(abuf, zio->io_abd, zio->io_size);
3172 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3173 		}
3174 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3175 	}
3176 
3177 	/*
3178 	 * If this is not a physical io, make sure that it is properly aligned
3179 	 * before proceeding.
3180 	 */
3181 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3182 		ASSERT0(P2PHASE(zio->io_offset, align));
3183 		ASSERT0(P2PHASE(zio->io_size, align));
3184 	} else {
3185 		/*
3186 		 * For physical writes, we allow 512b aligned writes and assume
3187 		 * the device will perform a read-modify-write as necessary.
3188 		 */
3189 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3190 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3191 	}
3192 
3193 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3194 
3195 	/*
3196 	 * If this is a repair I/O, and there's no self-healing involved --
3197 	 * that is, we're just resilvering what we expect to resilver --
3198 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3199 	 * This prevents spurious resilvering.
3200 	 *
3201 	 * There are a few ways that we can end up creating these spurious
3202 	 * resilver i/os:
3203 	 *
3204 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3205 	 * dirty DTL.  The mirror code will issue resilver writes to
3206 	 * each DVA, including the one(s) that are not on vdevs with dirty
3207 	 * DTLs.
3208 	 *
3209 	 * 2. With nested replication, which happens when we have a
3210 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3211 	 * For example, given mirror(replacing(A+B), C), it's likely that
3212 	 * only A is out of date (it's the new device). In this case, we'll
3213 	 * read from C, then use the data to resilver A+B -- but we don't
3214 	 * actually want to resilver B, just A. The top-level mirror has no
3215 	 * way to know this, so instead we just discard unnecessary repairs
3216 	 * as we work our way down the vdev tree.
3217 	 *
3218 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3219 	 * The same logic applies to any form of nested replication: ditto
3220 	 * + mirror, RAID-Z + replacing, etc.
3221 	 *
3222 	 * However, indirect vdevs point off to other vdevs which may have
3223 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3224 	 * will be properly bypassed instead.
3225 	 */
3226 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3227 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3228 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3229 	    vd->vdev_ops != &vdev_indirect_ops &&
3230 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3231 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3232 		zio_vdev_io_bypass(zio);
3233 		return (ZIO_PIPELINE_CONTINUE);
3234 	}
3235 
3236 	if (vd->vdev_ops->vdev_op_leaf &&
3237 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3238 
3239 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3240 			return (ZIO_PIPELINE_CONTINUE);
3241 
3242 		if ((zio = vdev_queue_io(zio)) == NULL)
3243 			return (ZIO_PIPELINE_STOP);
3244 
3245 		if (!vdev_accessible(vd, zio)) {
3246 			zio->io_error = SET_ERROR(ENXIO);
3247 			zio_interrupt(zio);
3248 			return (ZIO_PIPELINE_STOP);
3249 		}
3250 	}
3251 
3252 	vd->vdev_ops->vdev_op_io_start(zio);
3253 	return (ZIO_PIPELINE_STOP);
3254 }
3255 
3256 static int
3257 zio_vdev_io_done(zio_t *zio)
3258 {
3259 	vdev_t *vd = zio->io_vd;
3260 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3261 	boolean_t unexpected_error = B_FALSE;
3262 
3263 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3264 		return (ZIO_PIPELINE_STOP);
3265 	}
3266 
3267 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3268 
3269 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3270 
3271 		vdev_queue_io_done(zio);
3272 
3273 		if (zio->io_type == ZIO_TYPE_WRITE)
3274 			vdev_cache_write(zio);
3275 
3276 		if (zio_injection_enabled && zio->io_error == 0)
3277 			zio->io_error = zio_handle_device_injection(vd,
3278 			    zio, EIO);
3279 
3280 		if (zio_injection_enabled && zio->io_error == 0)
3281 			zio->io_error = zio_handle_label_injection(zio, EIO);
3282 
3283 		if (zio->io_error) {
3284 			if (!vdev_accessible(vd, zio)) {
3285 				zio->io_error = SET_ERROR(ENXIO);
3286 			} else {
3287 				unexpected_error = B_TRUE;
3288 			}
3289 		}
3290 	}
3291 
3292 	ops->vdev_op_io_done(zio);
3293 
3294 	if (unexpected_error)
3295 		VERIFY(vdev_probe(vd, zio) == NULL);
3296 
3297 	return (ZIO_PIPELINE_CONTINUE);
3298 }
3299 
3300 /*
3301  * This function is used to change the priority of an existing zio that is
3302  * currently in-flight. This is used by the arc to upgrade priority in the
3303  * event that a demand read is made for a block that is currently queued
3304  * as a scrub or async read IO. Otherwise, the high priority read request
3305  * would end up having to wait for the lower priority IO.
3306  */
3307 void
3308 zio_change_priority(zio_t *pio, zio_priority_t priority)
3309 {
3310 	zio_t *cio, *cio_next;
3311 	zio_link_t *zl = NULL;
3312 
3313 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3314 
3315 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3316 		vdev_queue_change_io_priority(pio, priority);
3317 	} else {
3318 		pio->io_priority = priority;
3319 	}
3320 
3321 	mutex_enter(&pio->io_lock);
3322 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3323 		cio_next = zio_walk_children(pio, &zl);
3324 		zio_change_priority(cio, priority);
3325 	}
3326 	mutex_exit(&pio->io_lock);
3327 }
3328 
3329 /*
3330  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3331  * disk, and use that to finish the checksum ereport later.
3332  */
3333 static void
3334 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3335     const void *good_buf)
3336 {
3337 	/* no processing needed */
3338 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3339 }
3340 
3341 /*ARGSUSED*/
3342 void
3343 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3344 {
3345 	void *buf = zio_buf_alloc(zio->io_size);
3346 
3347 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3348 
3349 	zcr->zcr_cbinfo = zio->io_size;
3350 	zcr->zcr_cbdata = buf;
3351 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3352 	zcr->zcr_free = zio_buf_free;
3353 }
3354 
3355 static int
3356 zio_vdev_io_assess(zio_t *zio)
3357 {
3358 	vdev_t *vd = zio->io_vd;
3359 
3360 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3361 		return (ZIO_PIPELINE_STOP);
3362 	}
3363 
3364 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3365 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3366 
3367 	if (zio->io_vsd != NULL) {
3368 		zio->io_vsd_ops->vsd_free(zio);
3369 		zio->io_vsd = NULL;
3370 	}
3371 
3372 	if (zio_injection_enabled && zio->io_error == 0)
3373 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3374 
3375 	/*
3376 	 * If the I/O failed, determine whether we should attempt to retry it.
3377 	 *
3378 	 * On retry, we cut in line in the issue queue, since we don't want
3379 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3380 	 */
3381 	if (zio->io_error && vd == NULL &&
3382 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3383 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3384 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3385 		zio->io_error = 0;
3386 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3387 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3388 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3389 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3390 		    zio_requeue_io_start_cut_in_line);
3391 		return (ZIO_PIPELINE_STOP);
3392 	}
3393 
3394 	/*
3395 	 * If we got an error on a leaf device, convert it to ENXIO
3396 	 * if the device is not accessible at all.
3397 	 */
3398 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3399 	    !vdev_accessible(vd, zio))
3400 		zio->io_error = SET_ERROR(ENXIO);
3401 
3402 	/*
3403 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3404 	 * set vdev_cant_write so that we stop trying to allocate from it.
3405 	 */
3406 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3407 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3408 		vd->vdev_cant_write = B_TRUE;
3409 	}
3410 
3411 	/*
3412 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3413 	 * attempts will ever succeed. In this case we set a persistent bit so
3414 	 * that we don't bother with it in the future.
3415 	 */
3416 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3417 	    zio->io_type == ZIO_TYPE_IOCTL &&
3418 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3419 		vd->vdev_nowritecache = B_TRUE;
3420 
3421 	if (zio->io_error)
3422 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3423 
3424 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3425 	    zio->io_physdone != NULL) {
3426 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3427 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3428 		zio->io_physdone(zio->io_logical);
3429 	}
3430 
3431 	return (ZIO_PIPELINE_CONTINUE);
3432 }
3433 
3434 void
3435 zio_vdev_io_reissue(zio_t *zio)
3436 {
3437 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3438 	ASSERT(zio->io_error == 0);
3439 
3440 	zio->io_stage >>= 1;
3441 }
3442 
3443 void
3444 zio_vdev_io_redone(zio_t *zio)
3445 {
3446 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3447 
3448 	zio->io_stage >>= 1;
3449 }
3450 
3451 void
3452 zio_vdev_io_bypass(zio_t *zio)
3453 {
3454 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3455 	ASSERT(zio->io_error == 0);
3456 
3457 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3458 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3459 }
3460 
3461 /*
3462  * ==========================================================================
3463  * Generate and verify checksums
3464  * ==========================================================================
3465  */
3466 static int
3467 zio_checksum_generate(zio_t *zio)
3468 {
3469 	blkptr_t *bp = zio->io_bp;
3470 	enum zio_checksum checksum;
3471 
3472 	if (bp == NULL) {
3473 		/*
3474 		 * This is zio_write_phys().
3475 		 * We're either generating a label checksum, or none at all.
3476 		 */
3477 		checksum = zio->io_prop.zp_checksum;
3478 
3479 		if (checksum == ZIO_CHECKSUM_OFF)
3480 			return (ZIO_PIPELINE_CONTINUE);
3481 
3482 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3483 	} else {
3484 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3485 			ASSERT(!IO_IS_ALLOCATING(zio));
3486 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3487 		} else {
3488 			checksum = BP_GET_CHECKSUM(bp);
3489 		}
3490 	}
3491 
3492 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3493 
3494 	return (ZIO_PIPELINE_CONTINUE);
3495 }
3496 
3497 static int
3498 zio_checksum_verify(zio_t *zio)
3499 {
3500 	zio_bad_cksum_t info;
3501 	blkptr_t *bp = zio->io_bp;
3502 	int error;
3503 
3504 	ASSERT(zio->io_vd != NULL);
3505 
3506 	if (bp == NULL) {
3507 		/*
3508 		 * This is zio_read_phys().
3509 		 * We're either verifying a label checksum, or nothing at all.
3510 		 */
3511 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3512 			return (ZIO_PIPELINE_CONTINUE);
3513 
3514 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3515 	}
3516 
3517 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3518 		zio->io_error = error;
3519 		if (error == ECKSUM &&
3520 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3521 			zfs_ereport_start_checksum(zio->io_spa,
3522 			    zio->io_vd, zio, zio->io_offset,
3523 			    zio->io_size, NULL, &info);
3524 		}
3525 	}
3526 
3527 	return (ZIO_PIPELINE_CONTINUE);
3528 }
3529 
3530 /*
3531  * Called by RAID-Z to ensure we don't compute the checksum twice.
3532  */
3533 void
3534 zio_checksum_verified(zio_t *zio)
3535 {
3536 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3537 }
3538 
3539 /*
3540  * ==========================================================================
3541  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3542  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3543  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3544  * indicate errors that are specific to one I/O, and most likely permanent.
3545  * Any other error is presumed to be worse because we weren't expecting it.
3546  * ==========================================================================
3547  */
3548 int
3549 zio_worst_error(int e1, int e2)
3550 {
3551 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3552 	int r1, r2;
3553 
3554 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3555 		if (e1 == zio_error_rank[r1])
3556 			break;
3557 
3558 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3559 		if (e2 == zio_error_rank[r2])
3560 			break;
3561 
3562 	return (r1 > r2 ? e1 : e2);
3563 }
3564 
3565 /*
3566  * ==========================================================================
3567  * I/O completion
3568  * ==========================================================================
3569  */
3570 static int
3571 zio_ready(zio_t *zio)
3572 {
3573 	blkptr_t *bp = zio->io_bp;
3574 	zio_t *pio, *pio_next;
3575 	zio_link_t *zl = NULL;
3576 
3577 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3578 	    ZIO_WAIT_READY)) {
3579 		return (ZIO_PIPELINE_STOP);
3580 	}
3581 
3582 	if (zio->io_ready) {
3583 		ASSERT(IO_IS_ALLOCATING(zio));
3584 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3585 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3586 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3587 
3588 		zio->io_ready(zio);
3589 	}
3590 
3591 	if (bp != NULL && bp != &zio->io_bp_copy)
3592 		zio->io_bp_copy = *bp;
3593 
3594 	if (zio->io_error != 0) {
3595 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3596 
3597 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3598 			ASSERT(IO_IS_ALLOCATING(zio));
3599 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3600 			ASSERT(zio->io_metaslab_class != NULL);
3601 
3602 			/*
3603 			 * We were unable to allocate anything, unreserve and
3604 			 * issue the next I/O to allocate.
3605 			 */
3606 			metaslab_class_throttle_unreserve(
3607 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
3608 			    zio->io_allocator, zio);
3609 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3610 		}
3611 	}
3612 
3613 	mutex_enter(&zio->io_lock);
3614 	zio->io_state[ZIO_WAIT_READY] = 1;
3615 	pio = zio_walk_parents(zio, &zl);
3616 	mutex_exit(&zio->io_lock);
3617 
3618 	/*
3619 	 * As we notify zio's parents, new parents could be added.
3620 	 * New parents go to the head of zio's io_parent_list, however,
3621 	 * so we will (correctly) not notify them.  The remainder of zio's
3622 	 * io_parent_list, from 'pio_next' onward, cannot change because
3623 	 * all parents must wait for us to be done before they can be done.
3624 	 */
3625 	for (; pio != NULL; pio = pio_next) {
3626 		pio_next = zio_walk_parents(zio, &zl);
3627 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3628 	}
3629 
3630 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3631 		if (BP_IS_GANG(bp)) {
3632 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3633 		} else {
3634 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3635 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3636 		}
3637 	}
3638 
3639 	if (zio_injection_enabled &&
3640 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3641 		zio_handle_ignored_writes(zio);
3642 
3643 	return (ZIO_PIPELINE_CONTINUE);
3644 }
3645 
3646 /*
3647  * Update the allocation throttle accounting.
3648  */
3649 static void
3650 zio_dva_throttle_done(zio_t *zio)
3651 {
3652 	zio_t *lio = zio->io_logical;
3653 	zio_t *pio = zio_unique_parent(zio);
3654 	vdev_t *vd = zio->io_vd;
3655 	int flags = METASLAB_ASYNC_ALLOC;
3656 
3657 	ASSERT3P(zio->io_bp, !=, NULL);
3658 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3659 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3660 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3661 	ASSERT(vd != NULL);
3662 	ASSERT3P(vd, ==, vd->vdev_top);
3663 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3664 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3665 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3666 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3667 
3668 	/*
3669 	 * Parents of gang children can have two flavors -- ones that
3670 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3671 	 * and ones that allocated the constituent blocks. The allocation
3672 	 * throttle needs to know the allocating parent zio so we must find
3673 	 * it here.
3674 	 */
3675 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3676 		/*
3677 		 * If our parent is a rewrite gang child then our grandparent
3678 		 * would have been the one that performed the allocation.
3679 		 */
3680 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3681 			pio = zio_unique_parent(pio);
3682 		flags |= METASLAB_GANG_CHILD;
3683 	}
3684 
3685 	ASSERT(IO_IS_ALLOCATING(pio));
3686 	ASSERT3P(zio, !=, zio->io_logical);
3687 	ASSERT(zio->io_logical != NULL);
3688 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3689 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3690 	ASSERT(zio->io_metaslab_class != NULL);
3691 
3692 	mutex_enter(&pio->io_lock);
3693 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3694 	    pio->io_allocator, B_TRUE);
3695 	mutex_exit(&pio->io_lock);
3696 
3697 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
3698 	    pio->io_allocator, pio);
3699 
3700 	/*
3701 	 * Call into the pipeline to see if there is more work that
3702 	 * needs to be done. If there is work to be done it will be
3703 	 * dispatched to another taskq thread.
3704 	 */
3705 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3706 }
3707 
3708 static int
3709 zio_done(zio_t *zio)
3710 {
3711 	spa_t *spa = zio->io_spa;
3712 	zio_t *lio = zio->io_logical;
3713 	blkptr_t *bp = zio->io_bp;
3714 	vdev_t *vd = zio->io_vd;
3715 	uint64_t psize = zio->io_size;
3716 	zio_t *pio, *pio_next;
3717 	zio_link_t *zl = NULL;
3718 
3719 	/*
3720 	 * If our children haven't all completed,
3721 	 * wait for them and then repeat this pipeline stage.
3722 	 */
3723 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3724 		return (ZIO_PIPELINE_STOP);
3725 	}
3726 
3727 	/*
3728 	 * If the allocation throttle is enabled, then update the accounting.
3729 	 * We only track child I/Os that are part of an allocating async
3730 	 * write. We must do this since the allocation is performed
3731 	 * by the logical I/O but the actual write is done by child I/Os.
3732 	 */
3733 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3734 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3735 		ASSERT(zio->io_metaslab_class != NULL);
3736 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
3737 		zio_dva_throttle_done(zio);
3738 	}
3739 
3740 	/*
3741 	 * If the allocation throttle is enabled, verify that
3742 	 * we have decremented the refcounts for every I/O that was throttled.
3743 	 */
3744 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3745 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3746 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3747 		ASSERT(bp != NULL);
3748 
3749 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3750 		    zio->io_allocator);
3751 		VERIFY(zfs_refcount_not_held(
3752 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
3753 		    zio));
3754 	}
3755 
3756 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3757 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3758 			ASSERT(zio->io_children[c][w] == 0);
3759 
3760 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3761 		ASSERT(bp->blk_pad[0] == 0);
3762 		ASSERT(bp->blk_pad[1] == 0);
3763 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3764 		    (bp == zio_unique_parent(zio)->io_bp));
3765 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3766 		    zio->io_bp_override == NULL &&
3767 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3768 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3769 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3770 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3771 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3772 		}
3773 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3774 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3775 	}
3776 
3777 	/*
3778 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3779 	 */
3780 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3781 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3782 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3783 
3784 	/*
3785 	 * If the I/O on the transformed data was successful, generate any
3786 	 * checksum reports now while we still have the transformed data.
3787 	 */
3788 	if (zio->io_error == 0) {
3789 		while (zio->io_cksum_report != NULL) {
3790 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3791 			uint64_t align = zcr->zcr_align;
3792 			uint64_t asize = P2ROUNDUP(psize, align);
3793 			char *abuf = NULL;
3794 			abd_t *adata = zio->io_abd;
3795 
3796 			if (asize != psize) {
3797 				adata = abd_alloc_linear(asize, B_TRUE);
3798 				abd_copy(adata, zio->io_abd, psize);
3799 				abd_zero_off(adata, psize, asize - psize);
3800 			}
3801 
3802 			if (adata != NULL)
3803 				abuf = abd_borrow_buf_copy(adata, asize);
3804 
3805 			zio->io_cksum_report = zcr->zcr_next;
3806 			zcr->zcr_next = NULL;
3807 			zcr->zcr_finish(zcr, abuf);
3808 			zfs_ereport_free_checksum(zcr);
3809 
3810 			if (adata != NULL)
3811 				abd_return_buf(adata, abuf, asize);
3812 
3813 			if (asize != psize)
3814 				abd_free(adata);
3815 		}
3816 	}
3817 
3818 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3819 
3820 	vdev_stat_update(zio, psize);
3821 
3822 	if (zio->io_error) {
3823 		/*
3824 		 * If this I/O is attached to a particular vdev,
3825 		 * generate an error message describing the I/O failure
3826 		 * at the block level.  We ignore these errors if the
3827 		 * device is currently unavailable.
3828 		 */
3829 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3830 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3831 
3832 		if ((zio->io_error == EIO || !(zio->io_flags &
3833 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3834 		    zio == lio) {
3835 			/*
3836 			 * For logical I/O requests, tell the SPA to log the
3837 			 * error and generate a logical data ereport.
3838 			 */
3839 			spa_log_error(spa, zio);
3840 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3841 			    0, 0);
3842 		}
3843 	}
3844 
3845 	if (zio->io_error && zio == lio) {
3846 		/*
3847 		 * Determine whether zio should be reexecuted.  This will
3848 		 * propagate all the way to the root via zio_notify_parent().
3849 		 */
3850 		ASSERT(vd == NULL && bp != NULL);
3851 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3852 
3853 		if (IO_IS_ALLOCATING(zio) &&
3854 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3855 			if (zio->io_error != ENOSPC)
3856 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3857 			else
3858 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3859 		}
3860 
3861 		if ((zio->io_type == ZIO_TYPE_READ ||
3862 		    zio->io_type == ZIO_TYPE_FREE) &&
3863 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3864 		    zio->io_error == ENXIO &&
3865 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3866 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3867 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3868 
3869 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3870 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3871 
3872 		/*
3873 		 * Here is a possibly good place to attempt to do
3874 		 * either combinatorial reconstruction or error correction
3875 		 * based on checksums.  It also might be a good place
3876 		 * to send out preliminary ereports before we suspend
3877 		 * processing.
3878 		 */
3879 	}
3880 
3881 	/*
3882 	 * If there were logical child errors, they apply to us now.
3883 	 * We defer this until now to avoid conflating logical child
3884 	 * errors with errors that happened to the zio itself when
3885 	 * updating vdev stats and reporting FMA events above.
3886 	 */
3887 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3888 
3889 	if ((zio->io_error || zio->io_reexecute) &&
3890 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3891 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3892 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3893 
3894 	zio_gang_tree_free(&zio->io_gang_tree);
3895 
3896 	/*
3897 	 * Godfather I/Os should never suspend.
3898 	 */
3899 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3900 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3901 		zio->io_reexecute = 0;
3902 
3903 	if (zio->io_reexecute) {
3904 		/*
3905 		 * This is a logical I/O that wants to reexecute.
3906 		 *
3907 		 * Reexecute is top-down.  When an i/o fails, if it's not
3908 		 * the root, it simply notifies its parent and sticks around.
3909 		 * The parent, seeing that it still has children in zio_done(),
3910 		 * does the same.  This percolates all the way up to the root.
3911 		 * The root i/o will reexecute or suspend the entire tree.
3912 		 *
3913 		 * This approach ensures that zio_reexecute() honors
3914 		 * all the original i/o dependency relationships, e.g.
3915 		 * parents not executing until children are ready.
3916 		 */
3917 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3918 
3919 		zio->io_gang_leader = NULL;
3920 
3921 		mutex_enter(&zio->io_lock);
3922 		zio->io_state[ZIO_WAIT_DONE] = 1;
3923 		mutex_exit(&zio->io_lock);
3924 
3925 		/*
3926 		 * "The Godfather" I/O monitors its children but is
3927 		 * not a true parent to them. It will track them through
3928 		 * the pipeline but severs its ties whenever they get into
3929 		 * trouble (e.g. suspended). This allows "The Godfather"
3930 		 * I/O to return status without blocking.
3931 		 */
3932 		zl = NULL;
3933 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3934 		    pio = pio_next) {
3935 			zio_link_t *remove_zl = zl;
3936 			pio_next = zio_walk_parents(zio, &zl);
3937 
3938 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3939 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3940 				zio_remove_child(pio, zio, remove_zl);
3941 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3942 			}
3943 		}
3944 
3945 		if ((pio = zio_unique_parent(zio)) != NULL) {
3946 			/*
3947 			 * We're not a root i/o, so there's nothing to do
3948 			 * but notify our parent.  Don't propagate errors
3949 			 * upward since we haven't permanently failed yet.
3950 			 */
3951 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3952 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3953 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3954 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3955 			/*
3956 			 * We'd fail again if we reexecuted now, so suspend
3957 			 * until conditions improve (e.g. device comes online).
3958 			 */
3959 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
3960 		} else {
3961 			/*
3962 			 * Reexecution is potentially a huge amount of work.
3963 			 * Hand it off to the otherwise-unused claim taskq.
3964 			 */
3965 			ASSERT(zio->io_tqent.tqent_next == NULL);
3966 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3967 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3968 			    0, &zio->io_tqent);
3969 		}
3970 		return (ZIO_PIPELINE_STOP);
3971 	}
3972 
3973 	ASSERT(zio->io_child_count == 0);
3974 	ASSERT(zio->io_reexecute == 0);
3975 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3976 
3977 	/*
3978 	 * Report any checksum errors, since the I/O is complete.
3979 	 */
3980 	while (zio->io_cksum_report != NULL) {
3981 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3982 		zio->io_cksum_report = zcr->zcr_next;
3983 		zcr->zcr_next = NULL;
3984 		zcr->zcr_finish(zcr, NULL);
3985 		zfs_ereport_free_checksum(zcr);
3986 	}
3987 
3988 	/*
3989 	 * It is the responsibility of the done callback to ensure that this
3990 	 * particular zio is no longer discoverable for adoption, and as
3991 	 * such, cannot acquire any new parents.
3992 	 */
3993 	if (zio->io_done)
3994 		zio->io_done(zio);
3995 
3996 	mutex_enter(&zio->io_lock);
3997 	zio->io_state[ZIO_WAIT_DONE] = 1;
3998 	mutex_exit(&zio->io_lock);
3999 
4000 	zl = NULL;
4001 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4002 		zio_link_t *remove_zl = zl;
4003 		pio_next = zio_walk_parents(zio, &zl);
4004 		zio_remove_child(pio, zio, remove_zl);
4005 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4006 	}
4007 
4008 	if (zio->io_waiter != NULL) {
4009 		mutex_enter(&zio->io_lock);
4010 		zio->io_executor = NULL;
4011 		cv_broadcast(&zio->io_cv);
4012 		mutex_exit(&zio->io_lock);
4013 	} else {
4014 		zio_destroy(zio);
4015 	}
4016 
4017 	return (ZIO_PIPELINE_STOP);
4018 }
4019 
4020 /*
4021  * ==========================================================================
4022  * I/O pipeline definition
4023  * ==========================================================================
4024  */
4025 static zio_pipe_stage_t *zio_pipeline[] = {
4026 	NULL,
4027 	zio_read_bp_init,
4028 	zio_write_bp_init,
4029 	zio_free_bp_init,
4030 	zio_issue_async,
4031 	zio_write_compress,
4032 	zio_checksum_generate,
4033 	zio_nop_write,
4034 	zio_ddt_read_start,
4035 	zio_ddt_read_done,
4036 	zio_ddt_write,
4037 	zio_ddt_free,
4038 	zio_gang_assemble,
4039 	zio_gang_issue,
4040 	zio_dva_throttle,
4041 	zio_dva_allocate,
4042 	zio_dva_free,
4043 	zio_dva_claim,
4044 	zio_ready,
4045 	zio_vdev_io_start,
4046 	zio_vdev_io_done,
4047 	zio_vdev_io_assess,
4048 	zio_checksum_verify,
4049 	zio_done
4050 };
4051 
4052 
4053 
4054 
4055 /*
4056  * Compare two zbookmark_phys_t's to see which we would reach first in a
4057  * pre-order traversal of the object tree.
4058  *
4059  * This is simple in every case aside from the meta-dnode object. For all other
4060  * objects, we traverse them in order (object 1 before object 2, and so on).
4061  * However, all of these objects are traversed while traversing object 0, since
4062  * the data it points to is the list of objects.  Thus, we need to convert to a
4063  * canonical representation so we can compare meta-dnode bookmarks to
4064  * non-meta-dnode bookmarks.
4065  *
4066  * We do this by calculating "equivalents" for each field of the zbookmark.
4067  * zbookmarks outside of the meta-dnode use their own object and level, and
4068  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4069  * blocks this bookmark refers to) by multiplying their blkid by their span
4070  * (the number of L0 blocks contained within one block at their level).
4071  * zbookmarks inside the meta-dnode calculate their object equivalent
4072  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4073  * level + 1<<31 (any value larger than a level could ever be) for their level.
4074  * This causes them to always compare before a bookmark in their object
4075  * equivalent, compare appropriately to bookmarks in other objects, and to
4076  * compare appropriately to other bookmarks in the meta-dnode.
4077  */
4078 int
4079 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4080     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4081 {
4082 	/*
4083 	 * These variables represent the "equivalent" values for the zbookmark,
4084 	 * after converting zbookmarks inside the meta dnode to their
4085 	 * normal-object equivalents.
4086 	 */
4087 	uint64_t zb1obj, zb2obj;
4088 	uint64_t zb1L0, zb2L0;
4089 	uint64_t zb1level, zb2level;
4090 
4091 	if (zb1->zb_object == zb2->zb_object &&
4092 	    zb1->zb_level == zb2->zb_level &&
4093 	    zb1->zb_blkid == zb2->zb_blkid)
4094 		return (0);
4095 
4096 	/*
4097 	 * BP_SPANB calculates the span in blocks.
4098 	 */
4099 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4100 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4101 
4102 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4103 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4104 		zb1L0 = 0;
4105 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4106 	} else {
4107 		zb1obj = zb1->zb_object;
4108 		zb1level = zb1->zb_level;
4109 	}
4110 
4111 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4112 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4113 		zb2L0 = 0;
4114 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4115 	} else {
4116 		zb2obj = zb2->zb_object;
4117 		zb2level = zb2->zb_level;
4118 	}
4119 
4120 	/* Now that we have a canonical representation, do the comparison. */
4121 	if (zb1obj != zb2obj)
4122 		return (zb1obj < zb2obj ? -1 : 1);
4123 	else if (zb1L0 != zb2L0)
4124 		return (zb1L0 < zb2L0 ? -1 : 1);
4125 	else if (zb1level != zb2level)
4126 		return (zb1level > zb2level ? -1 : 1);
4127 	/*
4128 	 * This can (theoretically) happen if the bookmarks have the same object
4129 	 * and level, but different blkids, if the block sizes are not the same.
4130 	 * There is presently no way to change the indirect block sizes
4131 	 */
4132 	return (0);
4133 }
4134 
4135 /*
4136  *  This function checks the following: given that last_block is the place that
4137  *  our traversal stopped last time, does that guarantee that we've visited
4138  *  every node under subtree_root?  Therefore, we can't just use the raw output
4139  *  of zbookmark_compare.  We have to pass in a modified version of
4140  *  subtree_root; by incrementing the block id, and then checking whether
4141  *  last_block is before or equal to that, we can tell whether or not having
4142  *  visited last_block implies that all of subtree_root's children have been
4143  *  visited.
4144  */
4145 boolean_t
4146 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4147     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4148 {
4149 	zbookmark_phys_t mod_zb = *subtree_root;
4150 	mod_zb.zb_blkid++;
4151 	ASSERT(last_block->zb_level == 0);
4152 
4153 	/* The objset_phys_t isn't before anything. */
4154 	if (dnp == NULL)
4155 		return (B_FALSE);
4156 
4157 	/*
4158 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4159 	 * data block size in sectors, because that variable is only used if
4160 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4161 	 * know without examining it what object it refers to, and there's no
4162 	 * harm in passing in this value in other cases, we always pass it in.
4163 	 *
4164 	 * We pass in 0 for the indirect block size shift because zb2 must be
4165 	 * level 0.  The indirect block size is only used to calculate the span
4166 	 * of the bookmark, but since the bookmark must be level 0, the span is
4167 	 * always 1, so the math works out.
4168 	 *
4169 	 * If you make changes to how the zbookmark_compare code works, be sure
4170 	 * to make sure that this code still works afterwards.
4171 	 */
4172 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4173 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4174 	    last_block) <= 0);
4175 }
4176