xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 6f7938128a2c5e23f4b970ea101137eadd1470a1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 
46 /*
47  * ==========================================================================
48  * I/O type descriptions
49  * ==========================================================================
50  */
51 const char *zio_type_name[ZIO_TYPES] = {
52 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 	"zio_ioctl"
54 };
55 
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
57 
58 /*
59  * ==========================================================================
60  * I/O kmem caches
61  * ==========================================================================
62  */
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
71 
72 #define	ZIO_PIPELINE_CONTINUE		0x100
73 #define	ZIO_PIPELINE_STOP		0x101
74 
75 #define	BP_SPANB(indblkshift, level) \
76 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define	COMPARE_META_LEVEL	0x80000000ul
78 /*
79  * The following actions directly effect the spa's sync-to-convergence logic.
80  * The values below define the sync pass when we start performing the action.
81  * Care should be taken when changing these values as they directly impact
82  * spa_sync() performance. Tuning these values may introduce subtle performance
83  * pathologies and should only be done in the context of performance analysis.
84  * These tunables will eventually be removed and replaced with #defines once
85  * enough analysis has been done to determine optimal values.
86  *
87  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88  * regular blocks are not deferred.
89  */
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
93 
94 /*
95  * An allocating zio is one that either currently has the DVA allocate
96  * stage set or will have it later in its lifetime.
97  */
98 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
99 
100 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
101 
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
107 
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
109 
110 void
111 zio_init(void)
112 {
113 	size_t c;
114 	vmem_t *data_alloc_arena = NULL;
115 
116 #ifdef _KERNEL
117 	data_alloc_arena = zio_alloc_arena;
118 #endif
119 	zio_cache = kmem_cache_create("zio_cache",
120 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 	zio_link_cache = kmem_cache_create("zio_link_cache",
122 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
123 
124 	/*
125 	 * For small buffers, we want a cache for each multiple of
126 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
127 	 * for each quarter-power of 2.
128 	 */
129 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 		size_t p2 = size;
132 		size_t align = 0;
133 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
134 
135 		while (!ISP2(p2))
136 			p2 &= p2 - 1;
137 
138 #ifndef _KERNEL
139 		/*
140 		 * If we are using watchpoints, put each buffer on its own page,
141 		 * to eliminate the performance overhead of trapping to the
142 		 * kernel when modifying a non-watched buffer that shares the
143 		 * page with a watched buffer.
144 		 */
145 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 			continue;
147 #endif
148 		if (size <= 4 * SPA_MINBLOCKSIZE) {
149 			align = SPA_MINBLOCKSIZE;
150 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 			align = MIN(p2 >> 2, PAGESIZE);
152 		}
153 
154 		if (align != 0) {
155 			char name[36];
156 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 			zio_buf_cache[c] = kmem_cache_create(name, size,
158 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
159 
160 			/*
161 			 * Since zio_data bufs do not appear in crash dumps, we
162 			 * pass KMC_NOTOUCH so that no allocator metadata is
163 			 * stored with the buffers.
164 			 */
165 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 			    cflags | KMC_NOTOUCH);
169 		}
170 	}
171 
172 	while (--c != 0) {
173 		ASSERT(zio_buf_cache[c] != NULL);
174 		if (zio_buf_cache[c - 1] == NULL)
175 			zio_buf_cache[c - 1] = zio_buf_cache[c];
176 
177 		ASSERT(zio_data_buf_cache[c] != NULL);
178 		if (zio_data_buf_cache[c - 1] == NULL)
179 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
180 	}
181 
182 	zio_inject_init();
183 }
184 
185 void
186 zio_fini(void)
187 {
188 	size_t c;
189 	kmem_cache_t *last_cache = NULL;
190 	kmem_cache_t *last_data_cache = NULL;
191 
192 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 		if (zio_buf_cache[c] != last_cache) {
194 			last_cache = zio_buf_cache[c];
195 			kmem_cache_destroy(zio_buf_cache[c]);
196 		}
197 		zio_buf_cache[c] = NULL;
198 
199 		if (zio_data_buf_cache[c] != last_data_cache) {
200 			last_data_cache = zio_data_buf_cache[c];
201 			kmem_cache_destroy(zio_data_buf_cache[c]);
202 		}
203 		zio_data_buf_cache[c] = NULL;
204 	}
205 
206 	kmem_cache_destroy(zio_link_cache);
207 	kmem_cache_destroy(zio_cache);
208 
209 	zio_inject_fini();
210 }
211 
212 /*
213  * ==========================================================================
214  * Allocate and free I/O buffers
215  * ==========================================================================
216  */
217 
218 /*
219  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
220  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
221  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222  * excess / transient data in-core during a crashdump.
223  */
224 void *
225 zio_buf_alloc(size_t size)
226 {
227 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
228 
229 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
230 
231 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
232 }
233 
234 /*
235  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
236  * crashdump if the kernel panics.  This exists so that we will limit the amount
237  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
238  * of kernel heap dumped to disk when the kernel panics)
239  */
240 void *
241 zio_data_buf_alloc(size_t size)
242 {
243 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
244 
245 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
246 
247 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
248 }
249 
250 void
251 zio_buf_free(void *buf, size_t size)
252 {
253 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254 
255 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256 
257 	kmem_cache_free(zio_buf_cache[c], buf);
258 }
259 
260 void
261 zio_data_buf_free(void *buf, size_t size)
262 {
263 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
264 
265 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
266 
267 	kmem_cache_free(zio_data_buf_cache[c], buf);
268 }
269 
270 /*
271  * ==========================================================================
272  * Push and pop I/O transform buffers
273  * ==========================================================================
274  */
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277     zio_transform_func_t *transform)
278 {
279 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
280 
281 	/*
282 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 	 * going to get a nasty surprise when they try to access the data.
284 	 */
285 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
286 
287 	zt->zt_orig_abd = zio->io_abd;
288 	zt->zt_orig_size = zio->io_size;
289 	zt->zt_bufsize = bufsize;
290 	zt->zt_transform = transform;
291 
292 	zt->zt_next = zio->io_transform_stack;
293 	zio->io_transform_stack = zt;
294 
295 	zio->io_abd = data;
296 	zio->io_size = size;
297 }
298 
299 void
300 zio_pop_transforms(zio_t *zio)
301 {
302 	zio_transform_t *zt;
303 
304 	while ((zt = zio->io_transform_stack) != NULL) {
305 		if (zt->zt_transform != NULL)
306 			zt->zt_transform(zio,
307 			    zt->zt_orig_abd, zt->zt_orig_size);
308 
309 		if (zt->zt_bufsize != 0)
310 			abd_free(zio->io_abd);
311 
312 		zio->io_abd = zt->zt_orig_abd;
313 		zio->io_size = zt->zt_orig_size;
314 		zio->io_transform_stack = zt->zt_next;
315 
316 		kmem_free(zt, sizeof (zio_transform_t));
317 	}
318 }
319 
320 /*
321  * ==========================================================================
322  * I/O transform callbacks for subblocks and decompression
323  * ==========================================================================
324  */
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
327 {
328 	ASSERT(zio->io_size > size);
329 
330 	if (zio->io_type == ZIO_TYPE_READ)
331 		abd_copy(data, zio->io_abd, size);
332 }
333 
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
336 {
337 	if (zio->io_error == 0) {
338 		void *tmp = abd_borrow_buf(data, size);
339 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 		    zio->io_abd, tmp, zio->io_size, size);
341 		abd_return_buf_copy(data, tmp, size);
342 
343 		if (ret != 0)
344 			zio->io_error = SET_ERROR(EIO);
345 	}
346 }
347 
348 /*
349  * ==========================================================================
350  * I/O parent/child relationships and pipeline interlocks
351  * ==========================================================================
352  */
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
355 {
356 	list_t *pl = &cio->io_parent_list;
357 
358 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 	if (*zl == NULL)
360 		return (NULL);
361 
362 	ASSERT((*zl)->zl_child == cio);
363 	return ((*zl)->zl_parent);
364 }
365 
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
368 {
369 	list_t *cl = &pio->io_child_list;
370 
371 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 	if (*zl == NULL)
373 		return (NULL);
374 
375 	ASSERT((*zl)->zl_parent == pio);
376 	return ((*zl)->zl_child);
377 }
378 
379 zio_t *
380 zio_unique_parent(zio_t *cio)
381 {
382 	zio_link_t *zl = NULL;
383 	zio_t *pio = zio_walk_parents(cio, &zl);
384 
385 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 	return (pio);
387 }
388 
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
391 {
392 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
393 
394 	/*
395 	 * Logical I/Os can have logical, gang, or vdev children.
396 	 * Gang I/Os can have gang or vdev children.
397 	 * Vdev I/Os can only have vdev children.
398 	 * The following ASSERT captures all of these constraints.
399 	 */
400 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
401 
402 	zl->zl_parent = pio;
403 	zl->zl_child = cio;
404 
405 	mutex_enter(&cio->io_lock);
406 	mutex_enter(&pio->io_lock);
407 
408 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
409 
410 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
412 
413 	list_insert_head(&pio->io_child_list, zl);
414 	list_insert_head(&cio->io_parent_list, zl);
415 
416 	pio->io_child_count++;
417 	cio->io_parent_count++;
418 
419 	mutex_exit(&pio->io_lock);
420 	mutex_exit(&cio->io_lock);
421 }
422 
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
425 {
426 	ASSERT(zl->zl_parent == pio);
427 	ASSERT(zl->zl_child == cio);
428 
429 	mutex_enter(&cio->io_lock);
430 	mutex_enter(&pio->io_lock);
431 
432 	list_remove(&pio->io_child_list, zl);
433 	list_remove(&cio->io_parent_list, zl);
434 
435 	pio->io_child_count--;
436 	cio->io_parent_count--;
437 
438 	mutex_exit(&pio->io_lock);
439 	mutex_exit(&cio->io_lock);
440 
441 	kmem_cache_free(zio_link_cache, zl);
442 }
443 
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
446 {
447 	uint64_t *countp = &zio->io_children[child][wait];
448 	boolean_t waiting = B_FALSE;
449 
450 	mutex_enter(&zio->io_lock);
451 	ASSERT(zio->io_stall == NULL);
452 	if (*countp != 0) {
453 		zio->io_stage >>= 1;
454 		ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
455 		zio->io_stall = countp;
456 		waiting = B_TRUE;
457 	}
458 	mutex_exit(&zio->io_lock);
459 
460 	return (waiting);
461 }
462 
463 static void
464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
465 {
466 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 	int *errorp = &pio->io_child_error[zio->io_child_type];
468 
469 	mutex_enter(&pio->io_lock);
470 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 		*errorp = zio_worst_error(*errorp, zio->io_error);
472 	pio->io_reexecute |= zio->io_reexecute;
473 	ASSERT3U(*countp, >, 0);
474 
475 	(*countp)--;
476 
477 	if (*countp == 0 && pio->io_stall == countp) {
478 		zio_taskq_type_t type =
479 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
480 		    ZIO_TASKQ_INTERRUPT;
481 		pio->io_stall = NULL;
482 		mutex_exit(&pio->io_lock);
483 		/*
484 		 * Dispatch the parent zio in its own taskq so that
485 		 * the child can continue to make progress. This also
486 		 * prevents overflowing the stack when we have deeply nested
487 		 * parent-child relationships.
488 		 */
489 		zio_taskq_dispatch(pio, type, B_FALSE);
490 	} else {
491 		mutex_exit(&pio->io_lock);
492 	}
493 }
494 
495 static void
496 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
497 {
498 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
499 		zio->io_error = zio->io_child_error[c];
500 }
501 
502 int
503 zio_bookmark_compare(const void *x1, const void *x2)
504 {
505 	const zio_t *z1 = x1;
506 	const zio_t *z2 = x2;
507 
508 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
509 		return (-1);
510 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
511 		return (1);
512 
513 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
514 		return (-1);
515 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
516 		return (1);
517 
518 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
519 		return (-1);
520 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
521 		return (1);
522 
523 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
524 		return (-1);
525 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
526 		return (1);
527 
528 	if (z1 < z2)
529 		return (-1);
530 	if (z1 > z2)
531 		return (1);
532 
533 	return (0);
534 }
535 
536 /*
537  * ==========================================================================
538  * Create the various types of I/O (read, write, free, etc)
539  * ==========================================================================
540  */
541 static zio_t *
542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
543     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
544     void *private, zio_type_t type, zio_priority_t priority,
545     enum zio_flag flags, vdev_t *vd, uint64_t offset,
546     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
547 {
548 	zio_t *zio;
549 
550 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
551 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
552 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
553 
554 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
555 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
556 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
557 
558 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
559 
560 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
561 	bzero(zio, sizeof (zio_t));
562 
563 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
564 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
565 
566 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
567 	    offsetof(zio_link_t, zl_parent_node));
568 	list_create(&zio->io_child_list, sizeof (zio_link_t),
569 	    offsetof(zio_link_t, zl_child_node));
570 	metaslab_trace_init(&zio->io_alloc_list);
571 
572 	if (vd != NULL)
573 		zio->io_child_type = ZIO_CHILD_VDEV;
574 	else if (flags & ZIO_FLAG_GANG_CHILD)
575 		zio->io_child_type = ZIO_CHILD_GANG;
576 	else if (flags & ZIO_FLAG_DDT_CHILD)
577 		zio->io_child_type = ZIO_CHILD_DDT;
578 	else
579 		zio->io_child_type = ZIO_CHILD_LOGICAL;
580 
581 	if (bp != NULL) {
582 		zio->io_bp = (blkptr_t *)bp;
583 		zio->io_bp_copy = *bp;
584 		zio->io_bp_orig = *bp;
585 		if (type != ZIO_TYPE_WRITE ||
586 		    zio->io_child_type == ZIO_CHILD_DDT)
587 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
588 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
589 			zio->io_logical = zio;
590 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
591 			pipeline |= ZIO_GANG_STAGES;
592 	}
593 
594 	zio->io_spa = spa;
595 	zio->io_txg = txg;
596 	zio->io_done = done;
597 	zio->io_private = private;
598 	zio->io_type = type;
599 	zio->io_priority = priority;
600 	zio->io_vd = vd;
601 	zio->io_offset = offset;
602 	zio->io_orig_abd = zio->io_abd = data;
603 	zio->io_orig_size = zio->io_size = psize;
604 	zio->io_lsize = lsize;
605 	zio->io_orig_flags = zio->io_flags = flags;
606 	zio->io_orig_stage = zio->io_stage = stage;
607 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
608 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
609 
610 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
611 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
612 
613 	if (zb != NULL)
614 		zio->io_bookmark = *zb;
615 
616 	if (pio != NULL) {
617 		if (zio->io_logical == NULL)
618 			zio->io_logical = pio->io_logical;
619 		if (zio->io_child_type == ZIO_CHILD_GANG)
620 			zio->io_gang_leader = pio->io_gang_leader;
621 		zio_add_child(pio, zio);
622 	}
623 
624 	return (zio);
625 }
626 
627 static void
628 zio_destroy(zio_t *zio)
629 {
630 	metaslab_trace_fini(&zio->io_alloc_list);
631 	list_destroy(&zio->io_parent_list);
632 	list_destroy(&zio->io_child_list);
633 	mutex_destroy(&zio->io_lock);
634 	cv_destroy(&zio->io_cv);
635 	kmem_cache_free(zio_cache, zio);
636 }
637 
638 zio_t *
639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
640     void *private, enum zio_flag flags)
641 {
642 	zio_t *zio;
643 
644 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
645 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
646 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
647 
648 	return (zio);
649 }
650 
651 zio_t *
652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
653 {
654 	return (zio_null(NULL, spa, NULL, done, private, flags));
655 }
656 
657 void
658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
659 {
660 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
661 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
662 		    bp, (longlong_t)BP_GET_TYPE(bp));
663 	}
664 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
665 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
666 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
667 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
668 	}
669 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
670 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
671 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
672 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
673 	}
674 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
675 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
676 		    bp, (longlong_t)BP_GET_LSIZE(bp));
677 	}
678 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
679 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
680 		    bp, (longlong_t)BP_GET_PSIZE(bp));
681 	}
682 
683 	if (BP_IS_EMBEDDED(bp)) {
684 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
685 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
686 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
687 		}
688 	}
689 
690 	/*
691 	 * Do not verify individual DVAs if the config is not trusted. This
692 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
693 	 */
694 	if (!spa->spa_trust_config)
695 		return;
696 
697 	/*
698 	 * Pool-specific checks.
699 	 *
700 	 * Note: it would be nice to verify that the blk_birth and
701 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
702 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
703 	 * that are in the log) to be arbitrarily large.
704 	 */
705 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
706 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
707 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
708 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
709 			    "VDEV %llu",
710 			    bp, i, (longlong_t)vdevid);
711 			continue;
712 		}
713 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
714 		if (vd == NULL) {
715 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
716 			    "VDEV %llu",
717 			    bp, i, (longlong_t)vdevid);
718 			continue;
719 		}
720 		if (vd->vdev_ops == &vdev_hole_ops) {
721 			zfs_panic_recover("blkptr at %p DVA %u has hole "
722 			    "VDEV %llu",
723 			    bp, i, (longlong_t)vdevid);
724 			continue;
725 		}
726 		if (vd->vdev_ops == &vdev_missing_ops) {
727 			/*
728 			 * "missing" vdevs are valid during import, but we
729 			 * don't have their detailed info (e.g. asize), so
730 			 * we can't perform any more checks on them.
731 			 */
732 			continue;
733 		}
734 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
735 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
736 		if (BP_IS_GANG(bp))
737 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
738 		if (offset + asize > vd->vdev_asize) {
739 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
740 			    "OFFSET %llu",
741 			    bp, i, (longlong_t)offset);
742 		}
743 	}
744 }
745 
746 boolean_t
747 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
748 {
749 	uint64_t vdevid = DVA_GET_VDEV(dva);
750 
751 	if (vdevid >= spa->spa_root_vdev->vdev_children)
752 		return (B_FALSE);
753 
754 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
755 	if (vd == NULL)
756 		return (B_FALSE);
757 
758 	if (vd->vdev_ops == &vdev_hole_ops)
759 		return (B_FALSE);
760 
761 	if (vd->vdev_ops == &vdev_missing_ops) {
762 		return (B_FALSE);
763 	}
764 
765 	uint64_t offset = DVA_GET_OFFSET(dva);
766 	uint64_t asize = DVA_GET_ASIZE(dva);
767 
768 	if (BP_IS_GANG(bp))
769 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
770 	if (offset + asize > vd->vdev_asize)
771 		return (B_FALSE);
772 
773 	return (B_TRUE);
774 }
775 
776 zio_t *
777 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
778     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
779     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
780 {
781 	zio_t *zio;
782 
783 	zfs_blkptr_verify(spa, bp);
784 
785 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
786 	    data, size, size, done, private,
787 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
788 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
789 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
790 
791 	return (zio);
792 }
793 
794 zio_t *
795 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
796     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
797     zio_done_func_t *ready, zio_done_func_t *children_ready,
798     zio_done_func_t *physdone, zio_done_func_t *done,
799     void *private, zio_priority_t priority, enum zio_flag flags,
800     const zbookmark_phys_t *zb)
801 {
802 	zio_t *zio;
803 
804 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
805 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
806 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
807 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
808 	    DMU_OT_IS_VALID(zp->zp_type) &&
809 	    zp->zp_level < 32 &&
810 	    zp->zp_copies > 0 &&
811 	    zp->zp_copies <= spa_max_replication(spa));
812 
813 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
814 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
815 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
816 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
817 
818 	zio->io_ready = ready;
819 	zio->io_children_ready = children_ready;
820 	zio->io_physdone = physdone;
821 	zio->io_prop = *zp;
822 
823 	/*
824 	 * Data can be NULL if we are going to call zio_write_override() to
825 	 * provide the already-allocated BP.  But we may need the data to
826 	 * verify a dedup hit (if requested).  In this case, don't try to
827 	 * dedup (just take the already-allocated BP verbatim).
828 	 */
829 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
830 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
831 	}
832 
833 	return (zio);
834 }
835 
836 zio_t *
837 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
838     uint64_t size, zio_done_func_t *done, void *private,
839     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
840 {
841 	zio_t *zio;
842 
843 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
844 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
845 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
846 
847 	return (zio);
848 }
849 
850 void
851 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
852 {
853 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
854 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
855 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
856 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
857 
858 	/*
859 	 * We must reset the io_prop to match the values that existed
860 	 * when the bp was first written by dmu_sync() keeping in mind
861 	 * that nopwrite and dedup are mutually exclusive.
862 	 */
863 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
864 	zio->io_prop.zp_nopwrite = nopwrite;
865 	zio->io_prop.zp_copies = copies;
866 	zio->io_bp_override = bp;
867 }
868 
869 void
870 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
871 {
872 
873 	zfs_blkptr_verify(spa, bp);
874 
875 	/*
876 	 * The check for EMBEDDED is a performance optimization.  We
877 	 * process the free here (by ignoring it) rather than
878 	 * putting it on the list and then processing it in zio_free_sync().
879 	 */
880 	if (BP_IS_EMBEDDED(bp))
881 		return;
882 	metaslab_check_free(spa, bp);
883 
884 	/*
885 	 * Frees that are for the currently-syncing txg, are not going to be
886 	 * deferred, and which will not need to do a read (i.e. not GANG or
887 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
888 	 * in-memory list for later processing.
889 	 */
890 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
891 	    txg != spa->spa_syncing_txg ||
892 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
893 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
894 	} else {
895 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
896 	}
897 }
898 
899 zio_t *
900 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
901     enum zio_flag flags)
902 {
903 	zio_t *zio;
904 	enum zio_stage stage = ZIO_FREE_PIPELINE;
905 
906 	ASSERT(!BP_IS_HOLE(bp));
907 	ASSERT(spa_syncing_txg(spa) == txg);
908 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
909 
910 	if (BP_IS_EMBEDDED(bp))
911 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
912 
913 	metaslab_check_free(spa, bp);
914 	arc_freed(spa, bp);
915 
916 	/*
917 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
918 	 * or the DDT), so issue them asynchronously so that this thread is
919 	 * not tied up.
920 	 */
921 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
922 		stage |= ZIO_STAGE_ISSUE_ASYNC;
923 
924 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
925 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
926 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
927 
928 	return (zio);
929 }
930 
931 zio_t *
932 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
933     zio_done_func_t *done, void *private, enum zio_flag flags)
934 {
935 	zio_t *zio;
936 
937 	zfs_blkptr_verify(spa, bp);
938 
939 	if (BP_IS_EMBEDDED(bp))
940 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
941 
942 	/*
943 	 * A claim is an allocation of a specific block.  Claims are needed
944 	 * to support immediate writes in the intent log.  The issue is that
945 	 * immediate writes contain committed data, but in a txg that was
946 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
947 	 * the intent log claims all blocks that contain immediate write data
948 	 * so that the SPA knows they're in use.
949 	 *
950 	 * All claims *must* be resolved in the first txg -- before the SPA
951 	 * starts allocating blocks -- so that nothing is allocated twice.
952 	 * If txg == 0 we just verify that the block is claimable.
953 	 */
954 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
955 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
956 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
957 
958 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
959 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
960 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
961 	ASSERT0(zio->io_queued_timestamp);
962 
963 	return (zio);
964 }
965 
966 zio_t *
967 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
968     zio_done_func_t *done, void *private, enum zio_flag flags)
969 {
970 	zio_t *zio;
971 	int c;
972 
973 	if (vd->vdev_children == 0) {
974 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
975 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
976 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
977 
978 		zio->io_cmd = cmd;
979 	} else {
980 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
981 
982 		for (c = 0; c < vd->vdev_children; c++)
983 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
984 			    done, private, flags));
985 	}
986 
987 	return (zio);
988 }
989 
990 zio_t *
991 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
992     abd_t *data, int checksum, zio_done_func_t *done, void *private,
993     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
994 {
995 	zio_t *zio;
996 
997 	ASSERT(vd->vdev_children == 0);
998 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
999 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1000 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1001 
1002 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1003 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1004 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1005 
1006 	zio->io_prop.zp_checksum = checksum;
1007 
1008 	return (zio);
1009 }
1010 
1011 zio_t *
1012 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1013     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1014     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1015 {
1016 	zio_t *zio;
1017 
1018 	ASSERT(vd->vdev_children == 0);
1019 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1020 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1021 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1022 
1023 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1024 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1025 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1026 
1027 	zio->io_prop.zp_checksum = checksum;
1028 
1029 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1030 		/*
1031 		 * zec checksums are necessarily destructive -- they modify
1032 		 * the end of the write buffer to hold the verifier/checksum.
1033 		 * Therefore, we must make a local copy in case the data is
1034 		 * being written to multiple places in parallel.
1035 		 */
1036 		abd_t *wbuf = abd_alloc_sametype(data, size);
1037 		abd_copy(wbuf, data, size);
1038 
1039 		zio_push_transform(zio, wbuf, size, size, NULL);
1040 	}
1041 
1042 	return (zio);
1043 }
1044 
1045 /*
1046  * Create a child I/O to do some work for us.
1047  */
1048 zio_t *
1049 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1050     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1051     enum zio_flag flags, zio_done_func_t *done, void *private)
1052 {
1053 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1054 	zio_t *zio;
1055 
1056 	/*
1057 	 * vdev child I/Os do not propagate their error to the parent.
1058 	 * Therefore, for correct operation the caller *must* check for
1059 	 * and handle the error in the child i/o's done callback.
1060 	 * The only exceptions are i/os that we don't care about
1061 	 * (OPTIONAL or REPAIR).
1062 	 */
1063 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1064 	    done != NULL);
1065 
1066 	/*
1067 	 * In the common case, where the parent zio was to a normal vdev,
1068 	 * the child zio must be to a child vdev of that vdev.  Otherwise,
1069 	 * the child zio must be to a top-level vdev.
1070 	 */
1071 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) {
1072 		ASSERT3P(vd->vdev_parent, ==, pio->io_vd);
1073 	} else {
1074 		ASSERT3P(vd, ==, vd->vdev_top);
1075 	}
1076 
1077 	if (type == ZIO_TYPE_READ && bp != NULL) {
1078 		/*
1079 		 * If we have the bp, then the child should perform the
1080 		 * checksum and the parent need not.  This pushes error
1081 		 * detection as close to the leaves as possible and
1082 		 * eliminates redundant checksums in the interior nodes.
1083 		 */
1084 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1085 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1086 	}
1087 
1088 	if (vd->vdev_ops->vdev_op_leaf) {
1089 		ASSERT0(vd->vdev_children);
1090 		offset += VDEV_LABEL_START_SIZE;
1091 	}
1092 
1093 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1094 
1095 	/*
1096 	 * If we've decided to do a repair, the write is not speculative --
1097 	 * even if the original read was.
1098 	 */
1099 	if (flags & ZIO_FLAG_IO_REPAIR)
1100 		flags &= ~ZIO_FLAG_SPECULATIVE;
1101 
1102 	/*
1103 	 * If we're creating a child I/O that is not associated with a
1104 	 * top-level vdev, then the child zio is not an allocating I/O.
1105 	 * If this is a retried I/O then we ignore it since we will
1106 	 * have already processed the original allocating I/O.
1107 	 */
1108 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1109 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1110 		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1111 
1112 		ASSERT(mc->mc_alloc_throttle_enabled);
1113 		ASSERT(type == ZIO_TYPE_WRITE);
1114 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1115 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1116 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1117 		    pio->io_child_type == ZIO_CHILD_GANG);
1118 
1119 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1120 	}
1121 
1122 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1123 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1124 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1125 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1126 
1127 	zio->io_physdone = pio->io_physdone;
1128 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1129 		zio->io_logical->io_phys_children++;
1130 
1131 	return (zio);
1132 }
1133 
1134 zio_t *
1135 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1136     int type, zio_priority_t priority, enum zio_flag flags,
1137     zio_done_func_t *done, void *private)
1138 {
1139 	zio_t *zio;
1140 
1141 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1142 
1143 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1144 	    data, size, size, done, private, type, priority,
1145 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1146 	    vd, offset, NULL,
1147 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1148 
1149 	return (zio);
1150 }
1151 
1152 void
1153 zio_flush(zio_t *zio, vdev_t *vd)
1154 {
1155 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1156 	    NULL, NULL,
1157 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1158 }
1159 
1160 void
1161 zio_shrink(zio_t *zio, uint64_t size)
1162 {
1163 	ASSERT3P(zio->io_executor, ==, NULL);
1164 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1165 	ASSERT3U(size, <=, zio->io_size);
1166 
1167 	/*
1168 	 * We don't shrink for raidz because of problems with the
1169 	 * reconstruction when reading back less than the block size.
1170 	 * Note, BP_IS_RAIDZ() assumes no compression.
1171 	 */
1172 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1173 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1174 		/* we are not doing a raw write */
1175 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1176 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1177 	}
1178 }
1179 
1180 /*
1181  * ==========================================================================
1182  * Prepare to read and write logical blocks
1183  * ==========================================================================
1184  */
1185 
1186 static int
1187 zio_read_bp_init(zio_t *zio)
1188 {
1189 	blkptr_t *bp = zio->io_bp;
1190 
1191 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1192 
1193 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1194 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1195 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1196 		uint64_t psize =
1197 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1198 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1199 		    psize, psize, zio_decompress);
1200 	}
1201 
1202 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1203 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1204 
1205 		int psize = BPE_GET_PSIZE(bp);
1206 		void *data = abd_borrow_buf(zio->io_abd, psize);
1207 		decode_embedded_bp_compressed(bp, data);
1208 		abd_return_buf_copy(zio->io_abd, data, psize);
1209 	} else {
1210 		ASSERT(!BP_IS_EMBEDDED(bp));
1211 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1212 	}
1213 
1214 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1215 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1216 
1217 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1218 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1219 
1220 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1221 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1222 
1223 	return (ZIO_PIPELINE_CONTINUE);
1224 }
1225 
1226 static int
1227 zio_write_bp_init(zio_t *zio)
1228 {
1229 	if (!IO_IS_ALLOCATING(zio))
1230 		return (ZIO_PIPELINE_CONTINUE);
1231 
1232 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1233 
1234 	if (zio->io_bp_override) {
1235 		blkptr_t *bp = zio->io_bp;
1236 		zio_prop_t *zp = &zio->io_prop;
1237 
1238 		ASSERT(bp->blk_birth != zio->io_txg);
1239 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1240 
1241 		*bp = *zio->io_bp_override;
1242 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1243 
1244 		if (BP_IS_EMBEDDED(bp))
1245 			return (ZIO_PIPELINE_CONTINUE);
1246 
1247 		/*
1248 		 * If we've been overridden and nopwrite is set then
1249 		 * set the flag accordingly to indicate that a nopwrite
1250 		 * has already occurred.
1251 		 */
1252 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1253 			ASSERT(!zp->zp_dedup);
1254 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1255 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1256 			return (ZIO_PIPELINE_CONTINUE);
1257 		}
1258 
1259 		ASSERT(!zp->zp_nopwrite);
1260 
1261 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1262 			return (ZIO_PIPELINE_CONTINUE);
1263 
1264 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1265 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1266 
1267 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1268 			BP_SET_DEDUP(bp, 1);
1269 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1270 			return (ZIO_PIPELINE_CONTINUE);
1271 		}
1272 
1273 		/*
1274 		 * We were unable to handle this as an override bp, treat
1275 		 * it as a regular write I/O.
1276 		 */
1277 		zio->io_bp_override = NULL;
1278 		*bp = zio->io_bp_orig;
1279 		zio->io_pipeline = zio->io_orig_pipeline;
1280 	}
1281 
1282 	return (ZIO_PIPELINE_CONTINUE);
1283 }
1284 
1285 static int
1286 zio_write_compress(zio_t *zio)
1287 {
1288 	spa_t *spa = zio->io_spa;
1289 	zio_prop_t *zp = &zio->io_prop;
1290 	enum zio_compress compress = zp->zp_compress;
1291 	blkptr_t *bp = zio->io_bp;
1292 	uint64_t lsize = zio->io_lsize;
1293 	uint64_t psize = zio->io_size;
1294 	int pass = 1;
1295 
1296 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1297 
1298 	/*
1299 	 * If our children haven't all reached the ready stage,
1300 	 * wait for them and then repeat this pipeline stage.
1301 	 */
1302 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1303 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1304 		return (ZIO_PIPELINE_STOP);
1305 
1306 	if (!IO_IS_ALLOCATING(zio))
1307 		return (ZIO_PIPELINE_CONTINUE);
1308 
1309 	if (zio->io_children_ready != NULL) {
1310 		/*
1311 		 * Now that all our children are ready, run the callback
1312 		 * associated with this zio in case it wants to modify the
1313 		 * data to be written.
1314 		 */
1315 		ASSERT3U(zp->zp_level, >, 0);
1316 		zio->io_children_ready(zio);
1317 	}
1318 
1319 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1320 	ASSERT(zio->io_bp_override == NULL);
1321 
1322 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1323 		/*
1324 		 * We're rewriting an existing block, which means we're
1325 		 * working on behalf of spa_sync().  For spa_sync() to
1326 		 * converge, it must eventually be the case that we don't
1327 		 * have to allocate new blocks.  But compression changes
1328 		 * the blocksize, which forces a reallocate, and makes
1329 		 * convergence take longer.  Therefore, after the first
1330 		 * few passes, stop compressing to ensure convergence.
1331 		 */
1332 		pass = spa_sync_pass(spa);
1333 
1334 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1335 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1336 		ASSERT(!BP_GET_DEDUP(bp));
1337 
1338 		if (pass >= zfs_sync_pass_dont_compress)
1339 			compress = ZIO_COMPRESS_OFF;
1340 
1341 		/* Make sure someone doesn't change their mind on overwrites */
1342 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1343 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1344 	}
1345 
1346 	/* If it's a compressed write that is not raw, compress the buffer. */
1347 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1348 		void *cbuf = zio_buf_alloc(lsize);
1349 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1350 		if (psize == 0 || psize == lsize) {
1351 			compress = ZIO_COMPRESS_OFF;
1352 			zio_buf_free(cbuf, lsize);
1353 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1354 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1355 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1356 			encode_embedded_bp_compressed(bp,
1357 			    cbuf, compress, lsize, psize);
1358 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1359 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1360 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1361 			zio_buf_free(cbuf, lsize);
1362 			bp->blk_birth = zio->io_txg;
1363 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1364 			ASSERT(spa_feature_is_active(spa,
1365 			    SPA_FEATURE_EMBEDDED_DATA));
1366 			return (ZIO_PIPELINE_CONTINUE);
1367 		} else {
1368 			/*
1369 			 * Round up compressed size up to the ashift
1370 			 * of the smallest-ashift device, and zero the tail.
1371 			 * This ensures that the compressed size of the BP
1372 			 * (and thus compressratio property) are correct,
1373 			 * in that we charge for the padding used to fill out
1374 			 * the last sector.
1375 			 */
1376 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1377 			size_t rounded = (size_t)P2ROUNDUP(psize,
1378 			    1ULL << spa->spa_min_ashift);
1379 			if (rounded >= lsize) {
1380 				compress = ZIO_COMPRESS_OFF;
1381 				zio_buf_free(cbuf, lsize);
1382 				psize = lsize;
1383 			} else {
1384 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1385 				abd_take_ownership_of_buf(cdata, B_TRUE);
1386 				abd_zero_off(cdata, psize, rounded - psize);
1387 				psize = rounded;
1388 				zio_push_transform(zio, cdata,
1389 				    psize, lsize, NULL);
1390 			}
1391 		}
1392 
1393 		/*
1394 		 * We were unable to handle this as an override bp, treat
1395 		 * it as a regular write I/O.
1396 		 */
1397 		zio->io_bp_override = NULL;
1398 		*bp = zio->io_bp_orig;
1399 		zio->io_pipeline = zio->io_orig_pipeline;
1400 	} else {
1401 		ASSERT3U(psize, !=, 0);
1402 	}
1403 
1404 	/*
1405 	 * The final pass of spa_sync() must be all rewrites, but the first
1406 	 * few passes offer a trade-off: allocating blocks defers convergence,
1407 	 * but newly allocated blocks are sequential, so they can be written
1408 	 * to disk faster.  Therefore, we allow the first few passes of
1409 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1410 	 * There should only be a handful of blocks after pass 1 in any case.
1411 	 */
1412 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1413 	    BP_GET_PSIZE(bp) == psize &&
1414 	    pass >= zfs_sync_pass_rewrite) {
1415 		ASSERT(psize != 0);
1416 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1417 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1418 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1419 	} else {
1420 		BP_ZERO(bp);
1421 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1422 	}
1423 
1424 	if (psize == 0) {
1425 		if (zio->io_bp_orig.blk_birth != 0 &&
1426 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1427 			BP_SET_LSIZE(bp, lsize);
1428 			BP_SET_TYPE(bp, zp->zp_type);
1429 			BP_SET_LEVEL(bp, zp->zp_level);
1430 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1431 		}
1432 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1433 	} else {
1434 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1435 		BP_SET_LSIZE(bp, lsize);
1436 		BP_SET_TYPE(bp, zp->zp_type);
1437 		BP_SET_LEVEL(bp, zp->zp_level);
1438 		BP_SET_PSIZE(bp, psize);
1439 		BP_SET_COMPRESS(bp, compress);
1440 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1441 		BP_SET_DEDUP(bp, zp->zp_dedup);
1442 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1443 		if (zp->zp_dedup) {
1444 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1445 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1446 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1447 		}
1448 		if (zp->zp_nopwrite) {
1449 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1450 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1451 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1452 		}
1453 	}
1454 	return (ZIO_PIPELINE_CONTINUE);
1455 }
1456 
1457 static int
1458 zio_free_bp_init(zio_t *zio)
1459 {
1460 	blkptr_t *bp = zio->io_bp;
1461 
1462 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1463 		if (BP_GET_DEDUP(bp))
1464 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1465 	}
1466 
1467 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1468 
1469 	return (ZIO_PIPELINE_CONTINUE);
1470 }
1471 
1472 /*
1473  * ==========================================================================
1474  * Execute the I/O pipeline
1475  * ==========================================================================
1476  */
1477 
1478 static void
1479 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1480 {
1481 	spa_t *spa = zio->io_spa;
1482 	zio_type_t t = zio->io_type;
1483 	int flags = (cutinline ? TQ_FRONT : 0);
1484 
1485 	/*
1486 	 * If we're a config writer or a probe, the normal issue and
1487 	 * interrupt threads may all be blocked waiting for the config lock.
1488 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1489 	 */
1490 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1491 		t = ZIO_TYPE_NULL;
1492 
1493 	/*
1494 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1495 	 */
1496 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1497 		t = ZIO_TYPE_NULL;
1498 
1499 	/*
1500 	 * If this is a high priority I/O, then use the high priority taskq if
1501 	 * available.
1502 	 */
1503 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1504 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1505 		q++;
1506 
1507 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1508 
1509 	/*
1510 	 * NB: We are assuming that the zio can only be dispatched
1511 	 * to a single taskq at a time.  It would be a grievous error
1512 	 * to dispatch the zio to another taskq at the same time.
1513 	 */
1514 	ASSERT(zio->io_tqent.tqent_next == NULL);
1515 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1516 	    flags, &zio->io_tqent);
1517 }
1518 
1519 static boolean_t
1520 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1521 {
1522 	kthread_t *executor = zio->io_executor;
1523 	spa_t *spa = zio->io_spa;
1524 
1525 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1526 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1527 		uint_t i;
1528 		for (i = 0; i < tqs->stqs_count; i++) {
1529 			if (taskq_member(tqs->stqs_taskq[i], executor))
1530 				return (B_TRUE);
1531 		}
1532 	}
1533 
1534 	return (B_FALSE);
1535 }
1536 
1537 static int
1538 zio_issue_async(zio_t *zio)
1539 {
1540 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1541 
1542 	return (ZIO_PIPELINE_STOP);
1543 }
1544 
1545 void
1546 zio_interrupt(zio_t *zio)
1547 {
1548 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1549 }
1550 
1551 void
1552 zio_delay_interrupt(zio_t *zio)
1553 {
1554 	/*
1555 	 * The timeout_generic() function isn't defined in userspace, so
1556 	 * rather than trying to implement the function, the zio delay
1557 	 * functionality has been disabled for userspace builds.
1558 	 */
1559 
1560 #ifdef _KERNEL
1561 	/*
1562 	 * If io_target_timestamp is zero, then no delay has been registered
1563 	 * for this IO, thus jump to the end of this function and "skip" the
1564 	 * delay; issuing it directly to the zio layer.
1565 	 */
1566 	if (zio->io_target_timestamp != 0) {
1567 		hrtime_t now = gethrtime();
1568 
1569 		if (now >= zio->io_target_timestamp) {
1570 			/*
1571 			 * This IO has already taken longer than the target
1572 			 * delay to complete, so we don't want to delay it
1573 			 * any longer; we "miss" the delay and issue it
1574 			 * directly to the zio layer. This is likely due to
1575 			 * the target latency being set to a value less than
1576 			 * the underlying hardware can satisfy (e.g. delay
1577 			 * set to 1ms, but the disks take 10ms to complete an
1578 			 * IO request).
1579 			 */
1580 
1581 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1582 			    hrtime_t, now);
1583 
1584 			zio_interrupt(zio);
1585 		} else {
1586 			hrtime_t diff = zio->io_target_timestamp - now;
1587 
1588 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1589 			    hrtime_t, now, hrtime_t, diff);
1590 
1591 			(void) timeout_generic(CALLOUT_NORMAL,
1592 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1593 		}
1594 
1595 		return;
1596 	}
1597 #endif
1598 
1599 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1600 	zio_interrupt(zio);
1601 }
1602 
1603 /*
1604  * Execute the I/O pipeline until one of the following occurs:
1605  *
1606  *	(1) the I/O completes
1607  *	(2) the pipeline stalls waiting for dependent child I/Os
1608  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1609  *	(4) the I/O is delegated by vdev-level caching or aggregation
1610  *	(5) the I/O is deferred due to vdev-level queueing
1611  *	(6) the I/O is handed off to another thread.
1612  *
1613  * In all cases, the pipeline stops whenever there's no CPU work; it never
1614  * burns a thread in cv_wait().
1615  *
1616  * There's no locking on io_stage because there's no legitimate way
1617  * for multiple threads to be attempting to process the same I/O.
1618  */
1619 static zio_pipe_stage_t *zio_pipeline[];
1620 
1621 void
1622 zio_execute(zio_t *zio)
1623 {
1624 	zio->io_executor = curthread;
1625 
1626 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1627 
1628 	while (zio->io_stage < ZIO_STAGE_DONE) {
1629 		enum zio_stage pipeline = zio->io_pipeline;
1630 		enum zio_stage stage = zio->io_stage;
1631 		int rv;
1632 
1633 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1634 		ASSERT(ISP2(stage));
1635 		ASSERT(zio->io_stall == NULL);
1636 
1637 		do {
1638 			stage <<= 1;
1639 		} while ((stage & pipeline) == 0);
1640 
1641 		ASSERT(stage <= ZIO_STAGE_DONE);
1642 
1643 		/*
1644 		 * If we are in interrupt context and this pipeline stage
1645 		 * will grab a config lock that is held across I/O,
1646 		 * or may wait for an I/O that needs an interrupt thread
1647 		 * to complete, issue async to avoid deadlock.
1648 		 *
1649 		 * For VDEV_IO_START, we cut in line so that the io will
1650 		 * be sent to disk promptly.
1651 		 */
1652 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1653 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1654 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1655 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1656 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1657 			return;
1658 		}
1659 
1660 		zio->io_stage = stage;
1661 		zio->io_pipeline_trace |= zio->io_stage;
1662 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1663 
1664 		if (rv == ZIO_PIPELINE_STOP)
1665 			return;
1666 
1667 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1668 	}
1669 }
1670 
1671 /*
1672  * ==========================================================================
1673  * Initiate I/O, either sync or async
1674  * ==========================================================================
1675  */
1676 int
1677 zio_wait(zio_t *zio)
1678 {
1679 	int error;
1680 
1681 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1682 	ASSERT3P(zio->io_executor, ==, NULL);
1683 
1684 	zio->io_waiter = curthread;
1685 	ASSERT0(zio->io_queued_timestamp);
1686 	zio->io_queued_timestamp = gethrtime();
1687 
1688 	zio_execute(zio);
1689 
1690 	mutex_enter(&zio->io_lock);
1691 	while (zio->io_executor != NULL)
1692 		cv_wait(&zio->io_cv, &zio->io_lock);
1693 	mutex_exit(&zio->io_lock);
1694 
1695 	error = zio->io_error;
1696 	zio_destroy(zio);
1697 
1698 	return (error);
1699 }
1700 
1701 void
1702 zio_nowait(zio_t *zio)
1703 {
1704 	ASSERT3P(zio->io_executor, ==, NULL);
1705 
1706 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1707 	    zio_unique_parent(zio) == NULL) {
1708 		/*
1709 		 * This is a logical async I/O with no parent to wait for it.
1710 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1711 		 * will ensure they complete prior to unloading the pool.
1712 		 */
1713 		spa_t *spa = zio->io_spa;
1714 
1715 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1716 	}
1717 
1718 	ASSERT0(zio->io_queued_timestamp);
1719 	zio->io_queued_timestamp = gethrtime();
1720 	zio_execute(zio);
1721 }
1722 
1723 /*
1724  * ==========================================================================
1725  * Reexecute, cancel, or suspend/resume failed I/O
1726  * ==========================================================================
1727  */
1728 
1729 static void
1730 zio_reexecute(zio_t *pio)
1731 {
1732 	zio_t *cio, *cio_next;
1733 
1734 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1735 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1736 	ASSERT(pio->io_gang_leader == NULL);
1737 	ASSERT(pio->io_gang_tree == NULL);
1738 
1739 	pio->io_flags = pio->io_orig_flags;
1740 	pio->io_stage = pio->io_orig_stage;
1741 	pio->io_pipeline = pio->io_orig_pipeline;
1742 	pio->io_reexecute = 0;
1743 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1744 	pio->io_pipeline_trace = 0;
1745 	pio->io_error = 0;
1746 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1747 		pio->io_state[w] = 0;
1748 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1749 		pio->io_child_error[c] = 0;
1750 
1751 	if (IO_IS_ALLOCATING(pio))
1752 		BP_ZERO(pio->io_bp);
1753 
1754 	/*
1755 	 * As we reexecute pio's children, new children could be created.
1756 	 * New children go to the head of pio's io_child_list, however,
1757 	 * so we will (correctly) not reexecute them.  The key is that
1758 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1759 	 * cannot be affected by any side effects of reexecuting 'cio'.
1760 	 */
1761 	zio_link_t *zl = NULL;
1762 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1763 		cio_next = zio_walk_children(pio, &zl);
1764 		mutex_enter(&pio->io_lock);
1765 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1766 			pio->io_children[cio->io_child_type][w]++;
1767 		mutex_exit(&pio->io_lock);
1768 		zio_reexecute(cio);
1769 	}
1770 
1771 	/*
1772 	 * Now that all children have been reexecuted, execute the parent.
1773 	 * We don't reexecute "The Godfather" I/O here as it's the
1774 	 * responsibility of the caller to wait on it.
1775 	 */
1776 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1777 		pio->io_queued_timestamp = gethrtime();
1778 		zio_execute(pio);
1779 	}
1780 }
1781 
1782 void
1783 zio_suspend(spa_t *spa, zio_t *zio)
1784 {
1785 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1786 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1787 		    "failure and the failure mode property for this pool "
1788 		    "is set to panic.", spa_name(spa));
1789 
1790 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1791 
1792 	mutex_enter(&spa->spa_suspend_lock);
1793 
1794 	if (spa->spa_suspend_zio_root == NULL)
1795 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1796 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1797 		    ZIO_FLAG_GODFATHER);
1798 
1799 	spa->spa_suspended = B_TRUE;
1800 
1801 	if (zio != NULL) {
1802 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1803 		ASSERT(zio != spa->spa_suspend_zio_root);
1804 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1805 		ASSERT(zio_unique_parent(zio) == NULL);
1806 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1807 		zio_add_child(spa->spa_suspend_zio_root, zio);
1808 	}
1809 
1810 	mutex_exit(&spa->spa_suspend_lock);
1811 }
1812 
1813 int
1814 zio_resume(spa_t *spa)
1815 {
1816 	zio_t *pio;
1817 
1818 	/*
1819 	 * Reexecute all previously suspended i/o.
1820 	 */
1821 	mutex_enter(&spa->spa_suspend_lock);
1822 	spa->spa_suspended = B_FALSE;
1823 	cv_broadcast(&spa->spa_suspend_cv);
1824 	pio = spa->spa_suspend_zio_root;
1825 	spa->spa_suspend_zio_root = NULL;
1826 	mutex_exit(&spa->spa_suspend_lock);
1827 
1828 	if (pio == NULL)
1829 		return (0);
1830 
1831 	zio_reexecute(pio);
1832 	return (zio_wait(pio));
1833 }
1834 
1835 void
1836 zio_resume_wait(spa_t *spa)
1837 {
1838 	mutex_enter(&spa->spa_suspend_lock);
1839 	while (spa_suspended(spa))
1840 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1841 	mutex_exit(&spa->spa_suspend_lock);
1842 }
1843 
1844 /*
1845  * ==========================================================================
1846  * Gang blocks.
1847  *
1848  * A gang block is a collection of small blocks that looks to the DMU
1849  * like one large block.  When zio_dva_allocate() cannot find a block
1850  * of the requested size, due to either severe fragmentation or the pool
1851  * being nearly full, it calls zio_write_gang_block() to construct the
1852  * block from smaller fragments.
1853  *
1854  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1855  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1856  * an indirect block: it's an array of block pointers.  It consumes
1857  * only one sector and hence is allocatable regardless of fragmentation.
1858  * The gang header's bps point to its gang members, which hold the data.
1859  *
1860  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1861  * as the verifier to ensure uniqueness of the SHA256 checksum.
1862  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1863  * not the gang header.  This ensures that data block signatures (needed for
1864  * deduplication) are independent of how the block is physically stored.
1865  *
1866  * Gang blocks can be nested: a gang member may itself be a gang block.
1867  * Thus every gang block is a tree in which root and all interior nodes are
1868  * gang headers, and the leaves are normal blocks that contain user data.
1869  * The root of the gang tree is called the gang leader.
1870  *
1871  * To perform any operation (read, rewrite, free, claim) on a gang block,
1872  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1873  * in the io_gang_tree field of the original logical i/o by recursively
1874  * reading the gang leader and all gang headers below it.  This yields
1875  * an in-core tree containing the contents of every gang header and the
1876  * bps for every constituent of the gang block.
1877  *
1878  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1879  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1880  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1881  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1882  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1883  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1884  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1885  * of the gang header plus zio_checksum_compute() of the data to update the
1886  * gang header's blk_cksum as described above.
1887  *
1888  * The two-phase assemble/issue model solves the problem of partial failure --
1889  * what if you'd freed part of a gang block but then couldn't read the
1890  * gang header for another part?  Assembling the entire gang tree first
1891  * ensures that all the necessary gang header I/O has succeeded before
1892  * starting the actual work of free, claim, or write.  Once the gang tree
1893  * is assembled, free and claim are in-memory operations that cannot fail.
1894  *
1895  * In the event that a gang write fails, zio_dva_unallocate() walks the
1896  * gang tree to immediately free (i.e. insert back into the space map)
1897  * everything we've allocated.  This ensures that we don't get ENOSPC
1898  * errors during repeated suspend/resume cycles due to a flaky device.
1899  *
1900  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1901  * the gang tree, we won't modify the block, so we can safely defer the free
1902  * (knowing that the block is still intact).  If we *can* assemble the gang
1903  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1904  * each constituent bp and we can allocate a new block on the next sync pass.
1905  *
1906  * In all cases, the gang tree allows complete recovery from partial failure.
1907  * ==========================================================================
1908  */
1909 
1910 static void
1911 zio_gang_issue_func_done(zio_t *zio)
1912 {
1913 	abd_put(zio->io_abd);
1914 }
1915 
1916 static zio_t *
1917 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1918     uint64_t offset)
1919 {
1920 	if (gn != NULL)
1921 		return (pio);
1922 
1923 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1924 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1925 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1926 	    &pio->io_bookmark));
1927 }
1928 
1929 static zio_t *
1930 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1931     uint64_t offset)
1932 {
1933 	zio_t *zio;
1934 
1935 	if (gn != NULL) {
1936 		abd_t *gbh_abd =
1937 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1938 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1939 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1940 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1941 		    &pio->io_bookmark);
1942 		/*
1943 		 * As we rewrite each gang header, the pipeline will compute
1944 		 * a new gang block header checksum for it; but no one will
1945 		 * compute a new data checksum, so we do that here.  The one
1946 		 * exception is the gang leader: the pipeline already computed
1947 		 * its data checksum because that stage precedes gang assembly.
1948 		 * (Presently, nothing actually uses interior data checksums;
1949 		 * this is just good hygiene.)
1950 		 */
1951 		if (gn != pio->io_gang_leader->io_gang_tree) {
1952 			abd_t *buf = abd_get_offset(data, offset);
1953 
1954 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1955 			    buf, BP_GET_PSIZE(bp));
1956 
1957 			abd_put(buf);
1958 		}
1959 		/*
1960 		 * If we are here to damage data for testing purposes,
1961 		 * leave the GBH alone so that we can detect the damage.
1962 		 */
1963 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1964 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1965 	} else {
1966 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1967 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1968 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1969 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1970 	}
1971 
1972 	return (zio);
1973 }
1974 
1975 /* ARGSUSED */
1976 static zio_t *
1977 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1978     uint64_t offset)
1979 {
1980 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1981 	    ZIO_GANG_CHILD_FLAGS(pio)));
1982 }
1983 
1984 /* ARGSUSED */
1985 static zio_t *
1986 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1987     uint64_t offset)
1988 {
1989 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1990 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1991 }
1992 
1993 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1994 	NULL,
1995 	zio_read_gang,
1996 	zio_rewrite_gang,
1997 	zio_free_gang,
1998 	zio_claim_gang,
1999 	NULL
2000 };
2001 
2002 static void zio_gang_tree_assemble_done(zio_t *zio);
2003 
2004 static zio_gang_node_t *
2005 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2006 {
2007 	zio_gang_node_t *gn;
2008 
2009 	ASSERT(*gnpp == NULL);
2010 
2011 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2012 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2013 	*gnpp = gn;
2014 
2015 	return (gn);
2016 }
2017 
2018 static void
2019 zio_gang_node_free(zio_gang_node_t **gnpp)
2020 {
2021 	zio_gang_node_t *gn = *gnpp;
2022 
2023 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2024 		ASSERT(gn->gn_child[g] == NULL);
2025 
2026 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2027 	kmem_free(gn, sizeof (*gn));
2028 	*gnpp = NULL;
2029 }
2030 
2031 static void
2032 zio_gang_tree_free(zio_gang_node_t **gnpp)
2033 {
2034 	zio_gang_node_t *gn = *gnpp;
2035 
2036 	if (gn == NULL)
2037 		return;
2038 
2039 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2040 		zio_gang_tree_free(&gn->gn_child[g]);
2041 
2042 	zio_gang_node_free(gnpp);
2043 }
2044 
2045 static void
2046 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2047 {
2048 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2049 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2050 
2051 	ASSERT(gio->io_gang_leader == gio);
2052 	ASSERT(BP_IS_GANG(bp));
2053 
2054 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2055 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2056 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2057 }
2058 
2059 static void
2060 zio_gang_tree_assemble_done(zio_t *zio)
2061 {
2062 	zio_t *gio = zio->io_gang_leader;
2063 	zio_gang_node_t *gn = zio->io_private;
2064 	blkptr_t *bp = zio->io_bp;
2065 
2066 	ASSERT(gio == zio_unique_parent(zio));
2067 	ASSERT(zio->io_child_count == 0);
2068 
2069 	if (zio->io_error)
2070 		return;
2071 
2072 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2073 	if (BP_SHOULD_BYTESWAP(bp))
2074 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2075 
2076 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2077 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2078 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2079 
2080 	abd_put(zio->io_abd);
2081 
2082 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2083 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2084 		if (!BP_IS_GANG(gbp))
2085 			continue;
2086 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2087 	}
2088 }
2089 
2090 static void
2091 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2092     uint64_t offset)
2093 {
2094 	zio_t *gio = pio->io_gang_leader;
2095 	zio_t *zio;
2096 
2097 	ASSERT(BP_IS_GANG(bp) == !!gn);
2098 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2099 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2100 
2101 	/*
2102 	 * If you're a gang header, your data is in gn->gn_gbh.
2103 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2104 	 */
2105 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2106 
2107 	if (gn != NULL) {
2108 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2109 
2110 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2111 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2112 			if (BP_IS_HOLE(gbp))
2113 				continue;
2114 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2115 			    offset);
2116 			offset += BP_GET_PSIZE(gbp);
2117 		}
2118 	}
2119 
2120 	if (gn == gio->io_gang_tree)
2121 		ASSERT3U(gio->io_size, ==, offset);
2122 
2123 	if (zio != pio)
2124 		zio_nowait(zio);
2125 }
2126 
2127 static int
2128 zio_gang_assemble(zio_t *zio)
2129 {
2130 	blkptr_t *bp = zio->io_bp;
2131 
2132 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2133 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2134 
2135 	zio->io_gang_leader = zio;
2136 
2137 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2138 
2139 	return (ZIO_PIPELINE_CONTINUE);
2140 }
2141 
2142 static int
2143 zio_gang_issue(zio_t *zio)
2144 {
2145 	blkptr_t *bp = zio->io_bp;
2146 
2147 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2148 		return (ZIO_PIPELINE_STOP);
2149 
2150 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2151 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2152 
2153 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2154 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2155 		    0);
2156 	else
2157 		zio_gang_tree_free(&zio->io_gang_tree);
2158 
2159 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2160 
2161 	return (ZIO_PIPELINE_CONTINUE);
2162 }
2163 
2164 static void
2165 zio_write_gang_member_ready(zio_t *zio)
2166 {
2167 	zio_t *pio = zio_unique_parent(zio);
2168 	zio_t *gio = zio->io_gang_leader;
2169 	dva_t *cdva = zio->io_bp->blk_dva;
2170 	dva_t *pdva = pio->io_bp->blk_dva;
2171 	uint64_t asize;
2172 
2173 	if (BP_IS_HOLE(zio->io_bp))
2174 		return;
2175 
2176 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2177 
2178 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2179 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2180 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2181 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2182 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2183 
2184 	mutex_enter(&pio->io_lock);
2185 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2186 		ASSERT(DVA_GET_GANG(&pdva[d]));
2187 		asize = DVA_GET_ASIZE(&pdva[d]);
2188 		asize += DVA_GET_ASIZE(&cdva[d]);
2189 		DVA_SET_ASIZE(&pdva[d], asize);
2190 	}
2191 	mutex_exit(&pio->io_lock);
2192 }
2193 
2194 static void
2195 zio_write_gang_done(zio_t *zio)
2196 {
2197 	abd_put(zio->io_abd);
2198 }
2199 
2200 static int
2201 zio_write_gang_block(zio_t *pio)
2202 {
2203 	spa_t *spa = pio->io_spa;
2204 	metaslab_class_t *mc = spa_normal_class(spa);
2205 	blkptr_t *bp = pio->io_bp;
2206 	zio_t *gio = pio->io_gang_leader;
2207 	zio_t *zio;
2208 	zio_gang_node_t *gn, **gnpp;
2209 	zio_gbh_phys_t *gbh;
2210 	abd_t *gbh_abd;
2211 	uint64_t txg = pio->io_txg;
2212 	uint64_t resid = pio->io_size;
2213 	uint64_t lsize;
2214 	int copies = gio->io_prop.zp_copies;
2215 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2216 	zio_prop_t zp;
2217 	int error;
2218 
2219 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2220 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2221 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2222 		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2223 
2224 		flags |= METASLAB_ASYNC_ALLOC;
2225 		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2226 
2227 		/*
2228 		 * The logical zio has already placed a reservation for
2229 		 * 'copies' allocation slots but gang blocks may require
2230 		 * additional copies. These additional copies
2231 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2232 		 * since metaslab_class_throttle_reserve() always allows
2233 		 * additional reservations for gang blocks.
2234 		 */
2235 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2236 		    pio, flags));
2237 	}
2238 
2239 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2240 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2241 	    &pio->io_alloc_list, pio);
2242 	if (error) {
2243 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2244 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2245 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2246 
2247 			/*
2248 			 * If we failed to allocate the gang block header then
2249 			 * we remove any additional allocation reservations that
2250 			 * we placed here. The original reservation will
2251 			 * be removed when the logical I/O goes to the ready
2252 			 * stage.
2253 			 */
2254 			metaslab_class_throttle_unreserve(mc,
2255 			    gbh_copies - copies, pio);
2256 		}
2257 		pio->io_error = error;
2258 		return (ZIO_PIPELINE_CONTINUE);
2259 	}
2260 
2261 	if (pio == gio) {
2262 		gnpp = &gio->io_gang_tree;
2263 	} else {
2264 		gnpp = pio->io_private;
2265 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2266 	}
2267 
2268 	gn = zio_gang_node_alloc(gnpp);
2269 	gbh = gn->gn_gbh;
2270 	bzero(gbh, SPA_GANGBLOCKSIZE);
2271 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2272 
2273 	/*
2274 	 * Create the gang header.
2275 	 */
2276 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2277 	    zio_write_gang_done, NULL, pio->io_priority,
2278 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2279 
2280 	/*
2281 	 * Create and nowait the gang children.
2282 	 */
2283 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2284 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2285 		    SPA_MINBLOCKSIZE);
2286 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2287 
2288 		zp.zp_checksum = gio->io_prop.zp_checksum;
2289 		zp.zp_compress = ZIO_COMPRESS_OFF;
2290 		zp.zp_type = DMU_OT_NONE;
2291 		zp.zp_level = 0;
2292 		zp.zp_copies = gio->io_prop.zp_copies;
2293 		zp.zp_dedup = B_FALSE;
2294 		zp.zp_dedup_verify = B_FALSE;
2295 		zp.zp_nopwrite = B_FALSE;
2296 
2297 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2298 		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2299 		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2300 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2301 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2302 
2303 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2304 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2305 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2306 
2307 			/*
2308 			 * Gang children won't throttle but we should
2309 			 * account for their work, so reserve an allocation
2310 			 * slot for them here.
2311 			 */
2312 			VERIFY(metaslab_class_throttle_reserve(mc,
2313 			    zp.zp_copies, cio, flags));
2314 		}
2315 		zio_nowait(cio);
2316 	}
2317 
2318 	/*
2319 	 * Set pio's pipeline to just wait for zio to finish.
2320 	 */
2321 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2322 
2323 	zio_nowait(zio);
2324 
2325 	return (ZIO_PIPELINE_CONTINUE);
2326 }
2327 
2328 /*
2329  * The zio_nop_write stage in the pipeline determines if allocating a
2330  * new bp is necessary.  The nopwrite feature can handle writes in
2331  * either syncing or open context (i.e. zil writes) and as a result is
2332  * mutually exclusive with dedup.
2333  *
2334  * By leveraging a cryptographically secure checksum, such as SHA256, we
2335  * can compare the checksums of the new data and the old to determine if
2336  * allocating a new block is required.  Note that our requirements for
2337  * cryptographic strength are fairly weak: there can't be any accidental
2338  * hash collisions, but we don't need to be secure against intentional
2339  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2340  * to write the file to begin with, and triggering an incorrect (hash
2341  * collision) nopwrite is no worse than simply writing to the file.
2342  * That said, there are no known attacks against the checksum algorithms
2343  * used for nopwrite, assuming that the salt and the checksums
2344  * themselves remain secret.
2345  */
2346 static int
2347 zio_nop_write(zio_t *zio)
2348 {
2349 	blkptr_t *bp = zio->io_bp;
2350 	blkptr_t *bp_orig = &zio->io_bp_orig;
2351 	zio_prop_t *zp = &zio->io_prop;
2352 
2353 	ASSERT(BP_GET_LEVEL(bp) == 0);
2354 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2355 	ASSERT(zp->zp_nopwrite);
2356 	ASSERT(!zp->zp_dedup);
2357 	ASSERT(zio->io_bp_override == NULL);
2358 	ASSERT(IO_IS_ALLOCATING(zio));
2359 
2360 	/*
2361 	 * Check to see if the original bp and the new bp have matching
2362 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2363 	 * If they don't then just continue with the pipeline which will
2364 	 * allocate a new bp.
2365 	 */
2366 	if (BP_IS_HOLE(bp_orig) ||
2367 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2368 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2369 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2370 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2371 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2372 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2373 		return (ZIO_PIPELINE_CONTINUE);
2374 
2375 	/*
2376 	 * If the checksums match then reset the pipeline so that we
2377 	 * avoid allocating a new bp and issuing any I/O.
2378 	 */
2379 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2380 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2381 		    ZCHECKSUM_FLAG_NOPWRITE);
2382 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2383 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2384 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2385 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2386 		    sizeof (uint64_t)) == 0);
2387 
2388 		*bp = *bp_orig;
2389 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2390 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2391 	}
2392 
2393 	return (ZIO_PIPELINE_CONTINUE);
2394 }
2395 
2396 /*
2397  * ==========================================================================
2398  * Dedup
2399  * ==========================================================================
2400  */
2401 static void
2402 zio_ddt_child_read_done(zio_t *zio)
2403 {
2404 	blkptr_t *bp = zio->io_bp;
2405 	ddt_entry_t *dde = zio->io_private;
2406 	ddt_phys_t *ddp;
2407 	zio_t *pio = zio_unique_parent(zio);
2408 
2409 	mutex_enter(&pio->io_lock);
2410 	ddp = ddt_phys_select(dde, bp);
2411 	if (zio->io_error == 0)
2412 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2413 
2414 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2415 		dde->dde_repair_abd = zio->io_abd;
2416 	else
2417 		abd_free(zio->io_abd);
2418 	mutex_exit(&pio->io_lock);
2419 }
2420 
2421 static int
2422 zio_ddt_read_start(zio_t *zio)
2423 {
2424 	blkptr_t *bp = zio->io_bp;
2425 
2426 	ASSERT(BP_GET_DEDUP(bp));
2427 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2428 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2429 
2430 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2431 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2432 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2433 		ddt_phys_t *ddp = dde->dde_phys;
2434 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2435 		blkptr_t blk;
2436 
2437 		ASSERT(zio->io_vsd == NULL);
2438 		zio->io_vsd = dde;
2439 
2440 		if (ddp_self == NULL)
2441 			return (ZIO_PIPELINE_CONTINUE);
2442 
2443 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2444 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2445 				continue;
2446 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2447 			    &blk);
2448 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2449 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2450 			    zio->io_size, zio_ddt_child_read_done, dde,
2451 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2452 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2453 		}
2454 		return (ZIO_PIPELINE_CONTINUE);
2455 	}
2456 
2457 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2458 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2459 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2460 
2461 	return (ZIO_PIPELINE_CONTINUE);
2462 }
2463 
2464 static int
2465 zio_ddt_read_done(zio_t *zio)
2466 {
2467 	blkptr_t *bp = zio->io_bp;
2468 
2469 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2470 		return (ZIO_PIPELINE_STOP);
2471 
2472 	ASSERT(BP_GET_DEDUP(bp));
2473 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2474 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2475 
2476 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2477 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2478 		ddt_entry_t *dde = zio->io_vsd;
2479 		if (ddt == NULL) {
2480 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2481 			return (ZIO_PIPELINE_CONTINUE);
2482 		}
2483 		if (dde == NULL) {
2484 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2485 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2486 			return (ZIO_PIPELINE_STOP);
2487 		}
2488 		if (dde->dde_repair_abd != NULL) {
2489 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2490 			    zio->io_size);
2491 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2492 		}
2493 		ddt_repair_done(ddt, dde);
2494 		zio->io_vsd = NULL;
2495 	}
2496 
2497 	ASSERT(zio->io_vsd == NULL);
2498 
2499 	return (ZIO_PIPELINE_CONTINUE);
2500 }
2501 
2502 static boolean_t
2503 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2504 {
2505 	spa_t *spa = zio->io_spa;
2506 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2507 
2508 	/* We should never get a raw, override zio */
2509 	ASSERT(!(zio->io_bp_override && do_raw));
2510 
2511 	/*
2512 	 * Note: we compare the original data, not the transformed data,
2513 	 * because when zio->io_bp is an override bp, we will not have
2514 	 * pushed the I/O transforms.  That's an important optimization
2515 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2516 	 */
2517 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2518 		zio_t *lio = dde->dde_lead_zio[p];
2519 
2520 		if (lio != NULL) {
2521 			return (lio->io_orig_size != zio->io_orig_size ||
2522 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2523 			    zio->io_orig_size) != 0);
2524 		}
2525 	}
2526 
2527 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2528 		ddt_phys_t *ddp = &dde->dde_phys[p];
2529 
2530 		if (ddp->ddp_phys_birth != 0) {
2531 			arc_buf_t *abuf = NULL;
2532 			arc_flags_t aflags = ARC_FLAG_WAIT;
2533 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2534 			blkptr_t blk = *zio->io_bp;
2535 			int error;
2536 
2537 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2538 
2539 			ddt_exit(ddt);
2540 
2541 			/*
2542 			 * Intuitively, it would make more sense to compare
2543 			 * io_abd than io_orig_abd in the raw case since you
2544 			 * don't want to look at any transformations that have
2545 			 * happened to the data. However, for raw I/Os the
2546 			 * data will actually be the same in io_abd and
2547 			 * io_orig_abd, so all we have to do is issue this as
2548 			 * a raw ARC read.
2549 			 */
2550 			if (do_raw) {
2551 				zio_flags |= ZIO_FLAG_RAW;
2552 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2553 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2554 				    zio->io_size));
2555 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2556 			}
2557 
2558 			error = arc_read(NULL, spa, &blk,
2559 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2560 			    zio_flags, &aflags, &zio->io_bookmark);
2561 
2562 			if (error == 0) {
2563 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2564 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2565 				    zio->io_orig_size) != 0)
2566 					error = SET_ERROR(EEXIST);
2567 				arc_buf_destroy(abuf, &abuf);
2568 			}
2569 
2570 			ddt_enter(ddt);
2571 			return (error != 0);
2572 		}
2573 	}
2574 
2575 	return (B_FALSE);
2576 }
2577 
2578 static void
2579 zio_ddt_child_write_ready(zio_t *zio)
2580 {
2581 	int p = zio->io_prop.zp_copies;
2582 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2583 	ddt_entry_t *dde = zio->io_private;
2584 	ddt_phys_t *ddp = &dde->dde_phys[p];
2585 	zio_t *pio;
2586 
2587 	if (zio->io_error)
2588 		return;
2589 
2590 	ddt_enter(ddt);
2591 
2592 	ASSERT(dde->dde_lead_zio[p] == zio);
2593 
2594 	ddt_phys_fill(ddp, zio->io_bp);
2595 
2596 	zio_link_t *zl = NULL;
2597 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2598 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2599 
2600 	ddt_exit(ddt);
2601 }
2602 
2603 static void
2604 zio_ddt_child_write_done(zio_t *zio)
2605 {
2606 	int p = zio->io_prop.zp_copies;
2607 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2608 	ddt_entry_t *dde = zio->io_private;
2609 	ddt_phys_t *ddp = &dde->dde_phys[p];
2610 
2611 	ddt_enter(ddt);
2612 
2613 	ASSERT(ddp->ddp_refcnt == 0);
2614 	ASSERT(dde->dde_lead_zio[p] == zio);
2615 	dde->dde_lead_zio[p] = NULL;
2616 
2617 	if (zio->io_error == 0) {
2618 		zio_link_t *zl = NULL;
2619 		while (zio_walk_parents(zio, &zl) != NULL)
2620 			ddt_phys_addref(ddp);
2621 	} else {
2622 		ddt_phys_clear(ddp);
2623 	}
2624 
2625 	ddt_exit(ddt);
2626 }
2627 
2628 static void
2629 zio_ddt_ditto_write_done(zio_t *zio)
2630 {
2631 	int p = DDT_PHYS_DITTO;
2632 	zio_prop_t *zp = &zio->io_prop;
2633 	blkptr_t *bp = zio->io_bp;
2634 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2635 	ddt_entry_t *dde = zio->io_private;
2636 	ddt_phys_t *ddp = &dde->dde_phys[p];
2637 	ddt_key_t *ddk = &dde->dde_key;
2638 
2639 	ddt_enter(ddt);
2640 
2641 	ASSERT(ddp->ddp_refcnt == 0);
2642 	ASSERT(dde->dde_lead_zio[p] == zio);
2643 	dde->dde_lead_zio[p] = NULL;
2644 
2645 	if (zio->io_error == 0) {
2646 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2647 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2648 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2649 		if (ddp->ddp_phys_birth != 0)
2650 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2651 		ddt_phys_fill(ddp, bp);
2652 	}
2653 
2654 	ddt_exit(ddt);
2655 }
2656 
2657 static int
2658 zio_ddt_write(zio_t *zio)
2659 {
2660 	spa_t *spa = zio->io_spa;
2661 	blkptr_t *bp = zio->io_bp;
2662 	uint64_t txg = zio->io_txg;
2663 	zio_prop_t *zp = &zio->io_prop;
2664 	int p = zp->zp_copies;
2665 	int ditto_copies;
2666 	zio_t *cio = NULL;
2667 	zio_t *dio = NULL;
2668 	ddt_t *ddt = ddt_select(spa, bp);
2669 	ddt_entry_t *dde;
2670 	ddt_phys_t *ddp;
2671 
2672 	ASSERT(BP_GET_DEDUP(bp));
2673 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2674 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2675 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2676 
2677 	ddt_enter(ddt);
2678 	dde = ddt_lookup(ddt, bp, B_TRUE);
2679 	ddp = &dde->dde_phys[p];
2680 
2681 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2682 		/*
2683 		 * If we're using a weak checksum, upgrade to a strong checksum
2684 		 * and try again.  If we're already using a strong checksum,
2685 		 * we can't resolve it, so just convert to an ordinary write.
2686 		 * (And automatically e-mail a paper to Nature?)
2687 		 */
2688 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2689 		    ZCHECKSUM_FLAG_DEDUP)) {
2690 			zp->zp_checksum = spa_dedup_checksum(spa);
2691 			zio_pop_transforms(zio);
2692 			zio->io_stage = ZIO_STAGE_OPEN;
2693 			BP_ZERO(bp);
2694 		} else {
2695 			zp->zp_dedup = B_FALSE;
2696 			BP_SET_DEDUP(bp, B_FALSE);
2697 		}
2698 		ASSERT(!BP_GET_DEDUP(bp));
2699 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2700 		ddt_exit(ddt);
2701 		return (ZIO_PIPELINE_CONTINUE);
2702 	}
2703 
2704 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2705 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2706 
2707 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2708 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2709 		zio_prop_t czp = *zp;
2710 
2711 		czp.zp_copies = ditto_copies;
2712 
2713 		/*
2714 		 * If we arrived here with an override bp, we won't have run
2715 		 * the transform stack, so we won't have the data we need to
2716 		 * generate a child i/o.  So, toss the override bp and restart.
2717 		 * This is safe, because using the override bp is just an
2718 		 * optimization; and it's rare, so the cost doesn't matter.
2719 		 */
2720 		if (zio->io_bp_override) {
2721 			zio_pop_transforms(zio);
2722 			zio->io_stage = ZIO_STAGE_OPEN;
2723 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2724 			zio->io_bp_override = NULL;
2725 			BP_ZERO(bp);
2726 			ddt_exit(ddt);
2727 			return (ZIO_PIPELINE_CONTINUE);
2728 		}
2729 
2730 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2731 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2732 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2733 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2734 
2735 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2736 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2737 	}
2738 
2739 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2740 		if (ddp->ddp_phys_birth != 0)
2741 			ddt_bp_fill(ddp, bp, txg);
2742 		if (dde->dde_lead_zio[p] != NULL)
2743 			zio_add_child(zio, dde->dde_lead_zio[p]);
2744 		else
2745 			ddt_phys_addref(ddp);
2746 	} else if (zio->io_bp_override) {
2747 		ASSERT(bp->blk_birth == txg);
2748 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2749 		ddt_phys_fill(ddp, bp);
2750 		ddt_phys_addref(ddp);
2751 	} else {
2752 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2753 		    zio->io_orig_size, zio->io_orig_size, zp,
2754 		    zio_ddt_child_write_ready, NULL, NULL,
2755 		    zio_ddt_child_write_done, dde, zio->io_priority,
2756 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2757 
2758 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2759 		dde->dde_lead_zio[p] = cio;
2760 	}
2761 
2762 	ddt_exit(ddt);
2763 
2764 	if (cio)
2765 		zio_nowait(cio);
2766 	if (dio)
2767 		zio_nowait(dio);
2768 
2769 	return (ZIO_PIPELINE_CONTINUE);
2770 }
2771 
2772 ddt_entry_t *freedde; /* for debugging */
2773 
2774 static int
2775 zio_ddt_free(zio_t *zio)
2776 {
2777 	spa_t *spa = zio->io_spa;
2778 	blkptr_t *bp = zio->io_bp;
2779 	ddt_t *ddt = ddt_select(spa, bp);
2780 	ddt_entry_t *dde;
2781 	ddt_phys_t *ddp;
2782 
2783 	ASSERT(BP_GET_DEDUP(bp));
2784 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2785 
2786 	ddt_enter(ddt);
2787 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2788 	ddp = ddt_phys_select(dde, bp);
2789 	ddt_phys_decref(ddp);
2790 	ddt_exit(ddt);
2791 
2792 	return (ZIO_PIPELINE_CONTINUE);
2793 }
2794 
2795 /*
2796  * ==========================================================================
2797  * Allocate and free blocks
2798  * ==========================================================================
2799  */
2800 
2801 static zio_t *
2802 zio_io_to_allocate(spa_t *spa)
2803 {
2804 	zio_t *zio;
2805 
2806 	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2807 
2808 	zio = avl_first(&spa->spa_alloc_tree);
2809 	if (zio == NULL)
2810 		return (NULL);
2811 
2812 	ASSERT(IO_IS_ALLOCATING(zio));
2813 
2814 	/*
2815 	 * Try to place a reservation for this zio. If we're unable to
2816 	 * reserve then we throttle.
2817 	 */
2818 	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2819 	    zio->io_prop.zp_copies, zio, 0)) {
2820 		return (NULL);
2821 	}
2822 
2823 	avl_remove(&spa->spa_alloc_tree, zio);
2824 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2825 
2826 	return (zio);
2827 }
2828 
2829 static int
2830 zio_dva_throttle(zio_t *zio)
2831 {
2832 	spa_t *spa = zio->io_spa;
2833 	zio_t *nio;
2834 
2835 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2836 	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2837 	    zio->io_child_type == ZIO_CHILD_GANG ||
2838 	    zio->io_flags & ZIO_FLAG_NODATA) {
2839 		return (ZIO_PIPELINE_CONTINUE);
2840 	}
2841 
2842 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2843 
2844 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2845 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2846 
2847 	mutex_enter(&spa->spa_alloc_lock);
2848 
2849 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2850 	avl_add(&spa->spa_alloc_tree, zio);
2851 
2852 	nio = zio_io_to_allocate(zio->io_spa);
2853 	mutex_exit(&spa->spa_alloc_lock);
2854 
2855 	if (nio == zio)
2856 		return (ZIO_PIPELINE_CONTINUE);
2857 
2858 	if (nio != NULL) {
2859 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2860 		/*
2861 		 * We are passing control to a new zio so make sure that
2862 		 * it is processed by a different thread. We do this to
2863 		 * avoid stack overflows that can occur when parents are
2864 		 * throttled and children are making progress. We allow
2865 		 * it to go to the head of the taskq since it's already
2866 		 * been waiting.
2867 		 */
2868 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2869 	}
2870 	return (ZIO_PIPELINE_STOP);
2871 }
2872 
2873 void
2874 zio_allocate_dispatch(spa_t *spa)
2875 {
2876 	zio_t *zio;
2877 
2878 	mutex_enter(&spa->spa_alloc_lock);
2879 	zio = zio_io_to_allocate(spa);
2880 	mutex_exit(&spa->spa_alloc_lock);
2881 	if (zio == NULL)
2882 		return;
2883 
2884 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2885 	ASSERT0(zio->io_error);
2886 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2887 }
2888 
2889 static int
2890 zio_dva_allocate(zio_t *zio)
2891 {
2892 	spa_t *spa = zio->io_spa;
2893 	metaslab_class_t *mc = spa_normal_class(spa);
2894 	blkptr_t *bp = zio->io_bp;
2895 	int error;
2896 	int flags = 0;
2897 
2898 	if (zio->io_gang_leader == NULL) {
2899 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2900 		zio->io_gang_leader = zio;
2901 	}
2902 
2903 	ASSERT(BP_IS_HOLE(bp));
2904 	ASSERT0(BP_GET_NDVAS(bp));
2905 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2906 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2907 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2908 
2909 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2910 		flags |= METASLAB_DONT_THROTTLE;
2911 	}
2912 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2913 		flags |= METASLAB_GANG_CHILD;
2914 	}
2915 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2916 		flags |= METASLAB_ASYNC_ALLOC;
2917 	}
2918 
2919 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2920 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2921 	    &zio->io_alloc_list, zio);
2922 
2923 	if (error != 0) {
2924 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2925 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2926 		    error);
2927 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2928 			return (zio_write_gang_block(zio));
2929 		zio->io_error = error;
2930 	}
2931 
2932 	return (ZIO_PIPELINE_CONTINUE);
2933 }
2934 
2935 static int
2936 zio_dva_free(zio_t *zio)
2937 {
2938 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2939 
2940 	return (ZIO_PIPELINE_CONTINUE);
2941 }
2942 
2943 static int
2944 zio_dva_claim(zio_t *zio)
2945 {
2946 	int error;
2947 
2948 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2949 	if (error)
2950 		zio->io_error = error;
2951 
2952 	return (ZIO_PIPELINE_CONTINUE);
2953 }
2954 
2955 /*
2956  * Undo an allocation.  This is used by zio_done() when an I/O fails
2957  * and we want to give back the block we just allocated.
2958  * This handles both normal blocks and gang blocks.
2959  */
2960 static void
2961 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2962 {
2963 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2964 	ASSERT(zio->io_bp_override == NULL);
2965 
2966 	if (!BP_IS_HOLE(bp))
2967 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2968 
2969 	if (gn != NULL) {
2970 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2971 			zio_dva_unallocate(zio, gn->gn_child[g],
2972 			    &gn->gn_gbh->zg_blkptr[g]);
2973 		}
2974 	}
2975 }
2976 
2977 /*
2978  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2979  */
2980 int
2981 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2982     uint64_t size, boolean_t *slog)
2983 {
2984 	int error = 1;
2985 	zio_alloc_list_t io_alloc_list;
2986 
2987 	ASSERT(txg > spa_syncing_txg(spa));
2988 
2989 	metaslab_trace_init(&io_alloc_list);
2990 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2991 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2992 	if (error == 0) {
2993 		*slog = TRUE;
2994 	} else {
2995 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2996 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2997 		    &io_alloc_list, NULL);
2998 		if (error == 0)
2999 			*slog = FALSE;
3000 	}
3001 	metaslab_trace_fini(&io_alloc_list);
3002 
3003 	if (error == 0) {
3004 		BP_SET_LSIZE(new_bp, size);
3005 		BP_SET_PSIZE(new_bp, size);
3006 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3007 		BP_SET_CHECKSUM(new_bp,
3008 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3009 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3010 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3011 		BP_SET_LEVEL(new_bp, 0);
3012 		BP_SET_DEDUP(new_bp, 0);
3013 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3014 	} else {
3015 		zfs_dbgmsg("%s: zil block allocation failure: "
3016 		    "size %llu, error %d", spa_name(spa), size, error);
3017 	}
3018 
3019 	return (error);
3020 }
3021 
3022 /*
3023  * Free an intent log block.
3024  */
3025 void
3026 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3027 {
3028 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3029 	ASSERT(!BP_IS_GANG(bp));
3030 
3031 	zio_free(spa, txg, bp);
3032 }
3033 
3034 /*
3035  * ==========================================================================
3036  * Read and write to physical devices
3037  * ==========================================================================
3038  */
3039 
3040 
3041 /*
3042  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3043  * stops after this stage and will resume upon I/O completion.
3044  * However, there are instances where the vdev layer may need to
3045  * continue the pipeline when an I/O was not issued. Since the I/O
3046  * that was sent to the vdev layer might be different than the one
3047  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3048  * force the underlying vdev layers to call either zio_execute() or
3049  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3050  */
3051 static int
3052 zio_vdev_io_start(zio_t *zio)
3053 {
3054 	vdev_t *vd = zio->io_vd;
3055 	uint64_t align;
3056 	spa_t *spa = zio->io_spa;
3057 
3058 	ASSERT(zio->io_error == 0);
3059 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3060 
3061 	if (vd == NULL) {
3062 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3063 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3064 
3065 		/*
3066 		 * The mirror_ops handle multiple DVAs in a single BP.
3067 		 */
3068 		vdev_mirror_ops.vdev_op_io_start(zio);
3069 		return (ZIO_PIPELINE_STOP);
3070 	}
3071 
3072 	ASSERT3P(zio->io_logical, !=, zio);
3073 	if (zio->io_type == ZIO_TYPE_WRITE) {
3074 		ASSERT(spa->spa_trust_config);
3075 
3076 		if (zio->io_vd->vdev_removing) {
3077 			ASSERT(zio->io_flags &
3078 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3079 			    ZIO_FLAG_INDUCE_DAMAGE));
3080 		}
3081 	}
3082 
3083 	/*
3084 	 * We keep track of time-sensitive I/Os so that the scan thread
3085 	 * can quickly react to certain workloads.  In particular, we care
3086 	 * about non-scrubbing, top-level reads and writes with the following
3087 	 * characteristics:
3088 	 *	- synchronous writes of user data to non-slog devices
3089 	 *	- any reads of user data
3090 	 * When these conditions are met, adjust the timestamp of spa_last_io
3091 	 * which allows the scan thread to adjust its workload accordingly.
3092 	 */
3093 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3094 	    vd == vd->vdev_top && !vd->vdev_islog &&
3095 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3096 	    zio->io_txg != spa_syncing_txg(spa)) {
3097 		uint64_t old = spa->spa_last_io;
3098 		uint64_t new = ddi_get_lbolt64();
3099 		if (old != new)
3100 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3101 	}
3102 
3103 	align = 1ULL << vd->vdev_top->vdev_ashift;
3104 
3105 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3106 	    P2PHASE(zio->io_size, align) != 0) {
3107 		/* Transform logical writes to be a full physical block size. */
3108 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3109 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3110 		ASSERT(vd == vd->vdev_top);
3111 		if (zio->io_type == ZIO_TYPE_WRITE) {
3112 			abd_copy(abuf, zio->io_abd, zio->io_size);
3113 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3114 		}
3115 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3116 	}
3117 
3118 	/*
3119 	 * If this is not a physical io, make sure that it is properly aligned
3120 	 * before proceeding.
3121 	 */
3122 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3123 		ASSERT0(P2PHASE(zio->io_offset, align));
3124 		ASSERT0(P2PHASE(zio->io_size, align));
3125 	} else {
3126 		/*
3127 		 * For physical writes, we allow 512b aligned writes and assume
3128 		 * the device will perform a read-modify-write as necessary.
3129 		 */
3130 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3131 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3132 	}
3133 
3134 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3135 
3136 	/*
3137 	 * If this is a repair I/O, and there's no self-healing involved --
3138 	 * that is, we're just resilvering what we expect to resilver --
3139 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3140 	 * This prevents spurious resilvering with nested replication.
3141 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3142 	 * A is out of date, we'll read from C+D, then use the data to
3143 	 * resilver A+B -- but we don't actually want to resilver B, just A.
3144 	 * The top-level mirror has no way to know this, so instead we just
3145 	 * discard unnecessary repairs as we work our way down the vdev tree.
3146 	 * The same logic applies to any form of nested replication:
3147 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3148 	 */
3149 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3150 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3151 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3152 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3153 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3154 		zio_vdev_io_bypass(zio);
3155 		return (ZIO_PIPELINE_CONTINUE);
3156 	}
3157 
3158 	if (vd->vdev_ops->vdev_op_leaf &&
3159 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3160 
3161 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3162 			return (ZIO_PIPELINE_CONTINUE);
3163 
3164 		if ((zio = vdev_queue_io(zio)) == NULL)
3165 			return (ZIO_PIPELINE_STOP);
3166 
3167 		if (!vdev_accessible(vd, zio)) {
3168 			zio->io_error = SET_ERROR(ENXIO);
3169 			zio_interrupt(zio);
3170 			return (ZIO_PIPELINE_STOP);
3171 		}
3172 	}
3173 
3174 	vd->vdev_ops->vdev_op_io_start(zio);
3175 	return (ZIO_PIPELINE_STOP);
3176 }
3177 
3178 static int
3179 zio_vdev_io_done(zio_t *zio)
3180 {
3181 	vdev_t *vd = zio->io_vd;
3182 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3183 	boolean_t unexpected_error = B_FALSE;
3184 
3185 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3186 		return (ZIO_PIPELINE_STOP);
3187 
3188 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3189 
3190 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3191 
3192 		vdev_queue_io_done(zio);
3193 
3194 		if (zio->io_type == ZIO_TYPE_WRITE)
3195 			vdev_cache_write(zio);
3196 
3197 		if (zio_injection_enabled && zio->io_error == 0)
3198 			zio->io_error = zio_handle_device_injection(vd,
3199 			    zio, EIO);
3200 
3201 		if (zio_injection_enabled && zio->io_error == 0)
3202 			zio->io_error = zio_handle_label_injection(zio, EIO);
3203 
3204 		if (zio->io_error) {
3205 			if (!vdev_accessible(vd, zio)) {
3206 				zio->io_error = SET_ERROR(ENXIO);
3207 			} else {
3208 				unexpected_error = B_TRUE;
3209 			}
3210 		}
3211 	}
3212 
3213 	ops->vdev_op_io_done(zio);
3214 
3215 	if (unexpected_error)
3216 		VERIFY(vdev_probe(vd, zio) == NULL);
3217 
3218 	return (ZIO_PIPELINE_CONTINUE);
3219 }
3220 
3221 /*
3222  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3223  * disk, and use that to finish the checksum ereport later.
3224  */
3225 static void
3226 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3227     const void *good_buf)
3228 {
3229 	/* no processing needed */
3230 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3231 }
3232 
3233 /*ARGSUSED*/
3234 void
3235 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3236 {
3237 	void *buf = zio_buf_alloc(zio->io_size);
3238 
3239 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3240 
3241 	zcr->zcr_cbinfo = zio->io_size;
3242 	zcr->zcr_cbdata = buf;
3243 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3244 	zcr->zcr_free = zio_buf_free;
3245 }
3246 
3247 static int
3248 zio_vdev_io_assess(zio_t *zio)
3249 {
3250 	vdev_t *vd = zio->io_vd;
3251 
3252 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3253 		return (ZIO_PIPELINE_STOP);
3254 
3255 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3256 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3257 
3258 	if (zio->io_vsd != NULL) {
3259 		zio->io_vsd_ops->vsd_free(zio);
3260 		zio->io_vsd = NULL;
3261 	}
3262 
3263 	if (zio_injection_enabled && zio->io_error == 0)
3264 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3265 
3266 	/*
3267 	 * If the I/O failed, determine whether we should attempt to retry it.
3268 	 *
3269 	 * On retry, we cut in line in the issue queue, since we don't want
3270 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3271 	 */
3272 	if (zio->io_error && vd == NULL &&
3273 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3274 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3275 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3276 		zio->io_error = 0;
3277 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3278 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3279 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3280 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3281 		    zio_requeue_io_start_cut_in_line);
3282 		return (ZIO_PIPELINE_STOP);
3283 	}
3284 
3285 	/*
3286 	 * If we got an error on a leaf device, convert it to ENXIO
3287 	 * if the device is not accessible at all.
3288 	 */
3289 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3290 	    !vdev_accessible(vd, zio))
3291 		zio->io_error = SET_ERROR(ENXIO);
3292 
3293 	/*
3294 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3295 	 * set vdev_cant_write so that we stop trying to allocate from it.
3296 	 */
3297 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3298 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3299 		vd->vdev_cant_write = B_TRUE;
3300 	}
3301 
3302 	/*
3303 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3304 	 * attempts will ever succeed. In this case we set a persistent bit so
3305 	 * that we don't bother with it in the future.
3306 	 */
3307 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3308 	    zio->io_type == ZIO_TYPE_IOCTL &&
3309 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3310 		vd->vdev_nowritecache = B_TRUE;
3311 
3312 	if (zio->io_error)
3313 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3314 
3315 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3316 	    zio->io_physdone != NULL) {
3317 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3318 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3319 		zio->io_physdone(zio->io_logical);
3320 	}
3321 
3322 	return (ZIO_PIPELINE_CONTINUE);
3323 }
3324 
3325 void
3326 zio_vdev_io_reissue(zio_t *zio)
3327 {
3328 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3329 	ASSERT(zio->io_error == 0);
3330 
3331 	zio->io_stage >>= 1;
3332 }
3333 
3334 void
3335 zio_vdev_io_redone(zio_t *zio)
3336 {
3337 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3338 
3339 	zio->io_stage >>= 1;
3340 }
3341 
3342 void
3343 zio_vdev_io_bypass(zio_t *zio)
3344 {
3345 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3346 	ASSERT(zio->io_error == 0);
3347 
3348 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3349 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3350 }
3351 
3352 /*
3353  * ==========================================================================
3354  * Generate and verify checksums
3355  * ==========================================================================
3356  */
3357 static int
3358 zio_checksum_generate(zio_t *zio)
3359 {
3360 	blkptr_t *bp = zio->io_bp;
3361 	enum zio_checksum checksum;
3362 
3363 	if (bp == NULL) {
3364 		/*
3365 		 * This is zio_write_phys().
3366 		 * We're either generating a label checksum, or none at all.
3367 		 */
3368 		checksum = zio->io_prop.zp_checksum;
3369 
3370 		if (checksum == ZIO_CHECKSUM_OFF)
3371 			return (ZIO_PIPELINE_CONTINUE);
3372 
3373 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3374 	} else {
3375 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3376 			ASSERT(!IO_IS_ALLOCATING(zio));
3377 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3378 		} else {
3379 			checksum = BP_GET_CHECKSUM(bp);
3380 		}
3381 	}
3382 
3383 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3384 
3385 	return (ZIO_PIPELINE_CONTINUE);
3386 }
3387 
3388 static int
3389 zio_checksum_verify(zio_t *zio)
3390 {
3391 	zio_bad_cksum_t info;
3392 	blkptr_t *bp = zio->io_bp;
3393 	int error;
3394 
3395 	ASSERT(zio->io_vd != NULL);
3396 
3397 	if (bp == NULL) {
3398 		/*
3399 		 * This is zio_read_phys().
3400 		 * We're either verifying a label checksum, or nothing at all.
3401 		 */
3402 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3403 			return (ZIO_PIPELINE_CONTINUE);
3404 
3405 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3406 	}
3407 
3408 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3409 		zio->io_error = error;
3410 		if (error == ECKSUM &&
3411 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3412 			zfs_ereport_start_checksum(zio->io_spa,
3413 			    zio->io_vd, zio, zio->io_offset,
3414 			    zio->io_size, NULL, &info);
3415 		}
3416 	}
3417 
3418 	return (ZIO_PIPELINE_CONTINUE);
3419 }
3420 
3421 /*
3422  * Called by RAID-Z to ensure we don't compute the checksum twice.
3423  */
3424 void
3425 zio_checksum_verified(zio_t *zio)
3426 {
3427 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3428 }
3429 
3430 /*
3431  * ==========================================================================
3432  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3433  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3434  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3435  * indicate errors that are specific to one I/O, and most likely permanent.
3436  * Any other error is presumed to be worse because we weren't expecting it.
3437  * ==========================================================================
3438  */
3439 int
3440 zio_worst_error(int e1, int e2)
3441 {
3442 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3443 	int r1, r2;
3444 
3445 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3446 		if (e1 == zio_error_rank[r1])
3447 			break;
3448 
3449 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3450 		if (e2 == zio_error_rank[r2])
3451 			break;
3452 
3453 	return (r1 > r2 ? e1 : e2);
3454 }
3455 
3456 /*
3457  * ==========================================================================
3458  * I/O completion
3459  * ==========================================================================
3460  */
3461 static int
3462 zio_ready(zio_t *zio)
3463 {
3464 	blkptr_t *bp = zio->io_bp;
3465 	zio_t *pio, *pio_next;
3466 	zio_link_t *zl = NULL;
3467 
3468 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3469 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3470 		return (ZIO_PIPELINE_STOP);
3471 
3472 	if (zio->io_ready) {
3473 		ASSERT(IO_IS_ALLOCATING(zio));
3474 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3475 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3476 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3477 
3478 		zio->io_ready(zio);
3479 	}
3480 
3481 	if (bp != NULL && bp != &zio->io_bp_copy)
3482 		zio->io_bp_copy = *bp;
3483 
3484 	if (zio->io_error != 0) {
3485 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3486 
3487 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3488 			ASSERT(IO_IS_ALLOCATING(zio));
3489 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3490 			/*
3491 			 * We were unable to allocate anything, unreserve and
3492 			 * issue the next I/O to allocate.
3493 			 */
3494 			metaslab_class_throttle_unreserve(
3495 			    spa_normal_class(zio->io_spa),
3496 			    zio->io_prop.zp_copies, zio);
3497 			zio_allocate_dispatch(zio->io_spa);
3498 		}
3499 	}
3500 
3501 	mutex_enter(&zio->io_lock);
3502 	zio->io_state[ZIO_WAIT_READY] = 1;
3503 	pio = zio_walk_parents(zio, &zl);
3504 	mutex_exit(&zio->io_lock);
3505 
3506 	/*
3507 	 * As we notify zio's parents, new parents could be added.
3508 	 * New parents go to the head of zio's io_parent_list, however,
3509 	 * so we will (correctly) not notify them.  The remainder of zio's
3510 	 * io_parent_list, from 'pio_next' onward, cannot change because
3511 	 * all parents must wait for us to be done before they can be done.
3512 	 */
3513 	for (; pio != NULL; pio = pio_next) {
3514 		pio_next = zio_walk_parents(zio, &zl);
3515 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3516 	}
3517 
3518 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3519 		if (BP_IS_GANG(bp)) {
3520 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3521 		} else {
3522 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3523 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3524 		}
3525 	}
3526 
3527 	if (zio_injection_enabled &&
3528 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3529 		zio_handle_ignored_writes(zio);
3530 
3531 	return (ZIO_PIPELINE_CONTINUE);
3532 }
3533 
3534 /*
3535  * Update the allocation throttle accounting.
3536  */
3537 static void
3538 zio_dva_throttle_done(zio_t *zio)
3539 {
3540 	zio_t *lio = zio->io_logical;
3541 	zio_t *pio = zio_unique_parent(zio);
3542 	vdev_t *vd = zio->io_vd;
3543 	int flags = METASLAB_ASYNC_ALLOC;
3544 
3545 	ASSERT3P(zio->io_bp, !=, NULL);
3546 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3547 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3548 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3549 	ASSERT(vd != NULL);
3550 	ASSERT3P(vd, ==, vd->vdev_top);
3551 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3552 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3553 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3554 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3555 
3556 	/*
3557 	 * Parents of gang children can have two flavors -- ones that
3558 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3559 	 * and ones that allocated the constituent blocks. The allocation
3560 	 * throttle needs to know the allocating parent zio so we must find
3561 	 * it here.
3562 	 */
3563 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3564 		/*
3565 		 * If our parent is a rewrite gang child then our grandparent
3566 		 * would have been the one that performed the allocation.
3567 		 */
3568 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3569 			pio = zio_unique_parent(pio);
3570 		flags |= METASLAB_GANG_CHILD;
3571 	}
3572 
3573 	ASSERT(IO_IS_ALLOCATING(pio));
3574 	ASSERT3P(zio, !=, zio->io_logical);
3575 	ASSERT(zio->io_logical != NULL);
3576 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3577 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3578 
3579 	mutex_enter(&pio->io_lock);
3580 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3581 	mutex_exit(&pio->io_lock);
3582 
3583 	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3584 	    1, pio);
3585 
3586 	/*
3587 	 * Call into the pipeline to see if there is more work that
3588 	 * needs to be done. If there is work to be done it will be
3589 	 * dispatched to another taskq thread.
3590 	 */
3591 	zio_allocate_dispatch(zio->io_spa);
3592 }
3593 
3594 static int
3595 zio_done(zio_t *zio)
3596 {
3597 	spa_t *spa = zio->io_spa;
3598 	zio_t *lio = zio->io_logical;
3599 	blkptr_t *bp = zio->io_bp;
3600 	vdev_t *vd = zio->io_vd;
3601 	uint64_t psize = zio->io_size;
3602 	zio_t *pio, *pio_next;
3603 	metaslab_class_t *mc = spa_normal_class(spa);
3604 	zio_link_t *zl = NULL;
3605 
3606 	/*
3607 	 * If our children haven't all completed,
3608 	 * wait for them and then repeat this pipeline stage.
3609 	 */
3610 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3611 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3612 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3613 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3614 		return (ZIO_PIPELINE_STOP);
3615 
3616 	/*
3617 	 * If the allocation throttle is enabled, then update the accounting.
3618 	 * We only track child I/Os that are part of an allocating async
3619 	 * write. We must do this since the allocation is performed
3620 	 * by the logical I/O but the actual write is done by child I/Os.
3621 	 */
3622 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3623 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3624 		ASSERT(mc->mc_alloc_throttle_enabled);
3625 		zio_dva_throttle_done(zio);
3626 	}
3627 
3628 	/*
3629 	 * If the allocation throttle is enabled, verify that
3630 	 * we have decremented the refcounts for every I/O that was throttled.
3631 	 */
3632 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3633 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3634 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3635 		ASSERT(bp != NULL);
3636 		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3637 		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3638 	}
3639 
3640 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3641 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3642 			ASSERT(zio->io_children[c][w] == 0);
3643 
3644 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3645 		ASSERT(bp->blk_pad[0] == 0);
3646 		ASSERT(bp->blk_pad[1] == 0);
3647 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3648 		    (bp == zio_unique_parent(zio)->io_bp));
3649 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3650 		    zio->io_bp_override == NULL &&
3651 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3652 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3653 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3654 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3655 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3656 		}
3657 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3658 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3659 	}
3660 
3661 	/*
3662 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3663 	 */
3664 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3665 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3666 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3667 
3668 	/*
3669 	 * If the I/O on the transformed data was successful, generate any
3670 	 * checksum reports now while we still have the transformed data.
3671 	 */
3672 	if (zio->io_error == 0) {
3673 		while (zio->io_cksum_report != NULL) {
3674 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3675 			uint64_t align = zcr->zcr_align;
3676 			uint64_t asize = P2ROUNDUP(psize, align);
3677 			char *abuf = NULL;
3678 			abd_t *adata = zio->io_abd;
3679 
3680 			if (asize != psize) {
3681 				adata = abd_alloc_linear(asize, B_TRUE);
3682 				abd_copy(adata, zio->io_abd, psize);
3683 				abd_zero_off(adata, psize, asize - psize);
3684 			}
3685 
3686 			if (adata != NULL)
3687 				abuf = abd_borrow_buf_copy(adata, asize);
3688 
3689 			zio->io_cksum_report = zcr->zcr_next;
3690 			zcr->zcr_next = NULL;
3691 			zcr->zcr_finish(zcr, abuf);
3692 			zfs_ereport_free_checksum(zcr);
3693 
3694 			if (adata != NULL)
3695 				abd_return_buf(adata, abuf, asize);
3696 
3697 			if (asize != psize)
3698 				abd_free(adata);
3699 		}
3700 	}
3701 
3702 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3703 
3704 	vdev_stat_update(zio, psize);
3705 
3706 	if (zio->io_error) {
3707 		/*
3708 		 * If this I/O is attached to a particular vdev,
3709 		 * generate an error message describing the I/O failure
3710 		 * at the block level.  We ignore these errors if the
3711 		 * device is currently unavailable.
3712 		 */
3713 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3714 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3715 
3716 		if ((zio->io_error == EIO || !(zio->io_flags &
3717 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3718 		    zio == lio) {
3719 			/*
3720 			 * For logical I/O requests, tell the SPA to log the
3721 			 * error and generate a logical data ereport.
3722 			 */
3723 			spa_log_error(spa, zio);
3724 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3725 			    0, 0);
3726 		}
3727 	}
3728 
3729 	if (zio->io_error && zio == lio) {
3730 		/*
3731 		 * Determine whether zio should be reexecuted.  This will
3732 		 * propagate all the way to the root via zio_notify_parent().
3733 		 */
3734 		ASSERT(vd == NULL && bp != NULL);
3735 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3736 
3737 		if (IO_IS_ALLOCATING(zio) &&
3738 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3739 			if (zio->io_error != ENOSPC)
3740 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3741 			else
3742 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3743 		}
3744 
3745 		if ((zio->io_type == ZIO_TYPE_READ ||
3746 		    zio->io_type == ZIO_TYPE_FREE) &&
3747 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3748 		    zio->io_error == ENXIO &&
3749 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3750 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3751 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3752 
3753 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3754 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3755 
3756 		/*
3757 		 * Here is a possibly good place to attempt to do
3758 		 * either combinatorial reconstruction or error correction
3759 		 * based on checksums.  It also might be a good place
3760 		 * to send out preliminary ereports before we suspend
3761 		 * processing.
3762 		 */
3763 	}
3764 
3765 	/*
3766 	 * If there were logical child errors, they apply to us now.
3767 	 * We defer this until now to avoid conflating logical child
3768 	 * errors with errors that happened to the zio itself when
3769 	 * updating vdev stats and reporting FMA events above.
3770 	 */
3771 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3772 
3773 	if ((zio->io_error || zio->io_reexecute) &&
3774 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3775 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3776 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3777 
3778 	zio_gang_tree_free(&zio->io_gang_tree);
3779 
3780 	/*
3781 	 * Godfather I/Os should never suspend.
3782 	 */
3783 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3784 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3785 		zio->io_reexecute = 0;
3786 
3787 	if (zio->io_reexecute) {
3788 		/*
3789 		 * This is a logical I/O that wants to reexecute.
3790 		 *
3791 		 * Reexecute is top-down.  When an i/o fails, if it's not
3792 		 * the root, it simply notifies its parent and sticks around.
3793 		 * The parent, seeing that it still has children in zio_done(),
3794 		 * does the same.  This percolates all the way up to the root.
3795 		 * The root i/o will reexecute or suspend the entire tree.
3796 		 *
3797 		 * This approach ensures that zio_reexecute() honors
3798 		 * all the original i/o dependency relationships, e.g.
3799 		 * parents not executing until children are ready.
3800 		 */
3801 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3802 
3803 		zio->io_gang_leader = NULL;
3804 
3805 		mutex_enter(&zio->io_lock);
3806 		zio->io_state[ZIO_WAIT_DONE] = 1;
3807 		mutex_exit(&zio->io_lock);
3808 
3809 		/*
3810 		 * "The Godfather" I/O monitors its children but is
3811 		 * not a true parent to them. It will track them through
3812 		 * the pipeline but severs its ties whenever they get into
3813 		 * trouble (e.g. suspended). This allows "The Godfather"
3814 		 * I/O to return status without blocking.
3815 		 */
3816 		zl = NULL;
3817 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3818 		    pio = pio_next) {
3819 			zio_link_t *remove_zl = zl;
3820 			pio_next = zio_walk_parents(zio, &zl);
3821 
3822 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3823 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3824 				zio_remove_child(pio, zio, remove_zl);
3825 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3826 			}
3827 		}
3828 
3829 		if ((pio = zio_unique_parent(zio)) != NULL) {
3830 			/*
3831 			 * We're not a root i/o, so there's nothing to do
3832 			 * but notify our parent.  Don't propagate errors
3833 			 * upward since we haven't permanently failed yet.
3834 			 */
3835 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3836 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3837 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3838 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3839 			/*
3840 			 * We'd fail again if we reexecuted now, so suspend
3841 			 * until conditions improve (e.g. device comes online).
3842 			 */
3843 			zio_suspend(spa, zio);
3844 		} else {
3845 			/*
3846 			 * Reexecution is potentially a huge amount of work.
3847 			 * Hand it off to the otherwise-unused claim taskq.
3848 			 */
3849 			ASSERT(zio->io_tqent.tqent_next == NULL);
3850 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3851 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3852 			    0, &zio->io_tqent);
3853 		}
3854 		return (ZIO_PIPELINE_STOP);
3855 	}
3856 
3857 	ASSERT(zio->io_child_count == 0);
3858 	ASSERT(zio->io_reexecute == 0);
3859 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3860 
3861 	/*
3862 	 * Report any checksum errors, since the I/O is complete.
3863 	 */
3864 	while (zio->io_cksum_report != NULL) {
3865 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3866 		zio->io_cksum_report = zcr->zcr_next;
3867 		zcr->zcr_next = NULL;
3868 		zcr->zcr_finish(zcr, NULL);
3869 		zfs_ereport_free_checksum(zcr);
3870 	}
3871 
3872 	/*
3873 	 * It is the responsibility of the done callback to ensure that this
3874 	 * particular zio is no longer discoverable for adoption, and as
3875 	 * such, cannot acquire any new parents.
3876 	 */
3877 	if (zio->io_done)
3878 		zio->io_done(zio);
3879 
3880 	mutex_enter(&zio->io_lock);
3881 	zio->io_state[ZIO_WAIT_DONE] = 1;
3882 	mutex_exit(&zio->io_lock);
3883 
3884 	zl = NULL;
3885 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3886 		zio_link_t *remove_zl = zl;
3887 		pio_next = zio_walk_parents(zio, &zl);
3888 		zio_remove_child(pio, zio, remove_zl);
3889 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3890 	}
3891 
3892 	if (zio->io_waiter != NULL) {
3893 		mutex_enter(&zio->io_lock);
3894 		zio->io_executor = NULL;
3895 		cv_broadcast(&zio->io_cv);
3896 		mutex_exit(&zio->io_lock);
3897 	} else {
3898 		zio_destroy(zio);
3899 	}
3900 
3901 	return (ZIO_PIPELINE_STOP);
3902 }
3903 
3904 /*
3905  * ==========================================================================
3906  * I/O pipeline definition
3907  * ==========================================================================
3908  */
3909 static zio_pipe_stage_t *zio_pipeline[] = {
3910 	NULL,
3911 	zio_read_bp_init,
3912 	zio_write_bp_init,
3913 	zio_free_bp_init,
3914 	zio_issue_async,
3915 	zio_write_compress,
3916 	zio_checksum_generate,
3917 	zio_nop_write,
3918 	zio_ddt_read_start,
3919 	zio_ddt_read_done,
3920 	zio_ddt_write,
3921 	zio_ddt_free,
3922 	zio_gang_assemble,
3923 	zio_gang_issue,
3924 	zio_dva_throttle,
3925 	zio_dva_allocate,
3926 	zio_dva_free,
3927 	zio_dva_claim,
3928 	zio_ready,
3929 	zio_vdev_io_start,
3930 	zio_vdev_io_done,
3931 	zio_vdev_io_assess,
3932 	zio_checksum_verify,
3933 	zio_done
3934 };
3935 
3936 
3937 
3938 
3939 /*
3940  * Compare two zbookmark_phys_t's to see which we would reach first in a
3941  * pre-order traversal of the object tree.
3942  *
3943  * This is simple in every case aside from the meta-dnode object. For all other
3944  * objects, we traverse them in order (object 1 before object 2, and so on).
3945  * However, all of these objects are traversed while traversing object 0, since
3946  * the data it points to is the list of objects.  Thus, we need to convert to a
3947  * canonical representation so we can compare meta-dnode bookmarks to
3948  * non-meta-dnode bookmarks.
3949  *
3950  * We do this by calculating "equivalents" for each field of the zbookmark.
3951  * zbookmarks outside of the meta-dnode use their own object and level, and
3952  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3953  * blocks this bookmark refers to) by multiplying their blkid by their span
3954  * (the number of L0 blocks contained within one block at their level).
3955  * zbookmarks inside the meta-dnode calculate their object equivalent
3956  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3957  * level + 1<<31 (any value larger than a level could ever be) for their level.
3958  * This causes them to always compare before a bookmark in their object
3959  * equivalent, compare appropriately to bookmarks in other objects, and to
3960  * compare appropriately to other bookmarks in the meta-dnode.
3961  */
3962 int
3963 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3964     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3965 {
3966 	/*
3967 	 * These variables represent the "equivalent" values for the zbookmark,
3968 	 * after converting zbookmarks inside the meta dnode to their
3969 	 * normal-object equivalents.
3970 	 */
3971 	uint64_t zb1obj, zb2obj;
3972 	uint64_t zb1L0, zb2L0;
3973 	uint64_t zb1level, zb2level;
3974 
3975 	if (zb1->zb_object == zb2->zb_object &&
3976 	    zb1->zb_level == zb2->zb_level &&
3977 	    zb1->zb_blkid == zb2->zb_blkid)
3978 		return (0);
3979 
3980 	/*
3981 	 * BP_SPANB calculates the span in blocks.
3982 	 */
3983 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3984 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3985 
3986 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3987 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3988 		zb1L0 = 0;
3989 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3990 	} else {
3991 		zb1obj = zb1->zb_object;
3992 		zb1level = zb1->zb_level;
3993 	}
3994 
3995 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3996 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3997 		zb2L0 = 0;
3998 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3999 	} else {
4000 		zb2obj = zb2->zb_object;
4001 		zb2level = zb2->zb_level;
4002 	}
4003 
4004 	/* Now that we have a canonical representation, do the comparison. */
4005 	if (zb1obj != zb2obj)
4006 		return (zb1obj < zb2obj ? -1 : 1);
4007 	else if (zb1L0 != zb2L0)
4008 		return (zb1L0 < zb2L0 ? -1 : 1);
4009 	else if (zb1level != zb2level)
4010 		return (zb1level > zb2level ? -1 : 1);
4011 	/*
4012 	 * This can (theoretically) happen if the bookmarks have the same object
4013 	 * and level, but different blkids, if the block sizes are not the same.
4014 	 * There is presently no way to change the indirect block sizes
4015 	 */
4016 	return (0);
4017 }
4018 
4019 /*
4020  *  This function checks the following: given that last_block is the place that
4021  *  our traversal stopped last time, does that guarantee that we've visited
4022  *  every node under subtree_root?  Therefore, we can't just use the raw output
4023  *  of zbookmark_compare.  We have to pass in a modified version of
4024  *  subtree_root; by incrementing the block id, and then checking whether
4025  *  last_block is before or equal to that, we can tell whether or not having
4026  *  visited last_block implies that all of subtree_root's children have been
4027  *  visited.
4028  */
4029 boolean_t
4030 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4031     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4032 {
4033 	zbookmark_phys_t mod_zb = *subtree_root;
4034 	mod_zb.zb_blkid++;
4035 	ASSERT(last_block->zb_level == 0);
4036 
4037 	/* The objset_phys_t isn't before anything. */
4038 	if (dnp == NULL)
4039 		return (B_FALSE);
4040 
4041 	/*
4042 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4043 	 * data block size in sectors, because that variable is only used if
4044 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4045 	 * know without examining it what object it refers to, and there's no
4046 	 * harm in passing in this value in other cases, we always pass it in.
4047 	 *
4048 	 * We pass in 0 for the indirect block size shift because zb2 must be
4049 	 * level 0.  The indirect block size is only used to calculate the span
4050 	 * of the bookmark, but since the bookmark must be level 0, the span is
4051 	 * always 1, so the math works out.
4052 	 *
4053 	 * If you make changes to how the zbookmark_compare code works, be sure
4054 	 * to make sure that this code still works afterwards.
4055 	 */
4056 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4057 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4058 	    last_block) <= 0);
4059 }
4060