xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 1b912ec7100c10e7243bf0879af0fe580e08c73d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 
40 /*
41  * ==========================================================================
42  * I/O priority table
43  * ==========================================================================
44  */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 	0,	/* ZIO_PRIORITY_NOW		*/
47 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
48 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	1,	/* ZIO_PRIORITY_AGG		*/
52 	4,	/* ZIO_PRIORITY_FREE		*/
53 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
54 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
55 	10,	/* ZIO_PRIORITY_RESILVER	*/
56 	20,	/* ZIO_PRIORITY_SCRUB		*/
57 	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
58 };
59 
60 /*
61  * ==========================================================================
62  * I/O type descriptions
63  * ==========================================================================
64  */
65 char *zio_type_name[ZIO_TYPES] = {
66 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
67 	"zio_ioctl"
68 };
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 
80 #ifdef _KERNEL
81 extern vmem_t *zio_alloc_arena;
82 #endif
83 extern int zfs_mg_alloc_failures;
84 
85 /*
86  * The following actions directly effect the spa's sync-to-convergence logic.
87  * The values below define the sync pass when we start performing the action.
88  * Care should be taken when changing these values as they directly impact
89  * spa_sync() performance. Tuning these values may introduce subtle performance
90  * pathologies and should only be done in the context of performance analysis.
91  * These tunables will eventually be removed and replaced with #defines once
92  * enough analysis has been done to determine optimal values.
93  *
94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
95  * regular blocks are not deferred.
96  */
97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
100 
101 /*
102  * An allocating zio is one that either currently has the DVA allocate
103  * stage set or will have it later in its lifetime.
104  */
105 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
106 
107 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
108 
109 #ifdef ZFS_DEBUG
110 int zio_buf_debug_limit = 16384;
111 #else
112 int zio_buf_debug_limit = 0;
113 #endif
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
132 	 * for each quarter-power of 2.  For large buffers, we want
133 	 * a cache for each multiple of PAGESIZE.
134 	 */
135 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
136 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
137 		size_t p2 = size;
138 		size_t align = 0;
139 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
140 
141 		while (p2 & (p2 - 1))
142 			p2 &= p2 - 1;
143 
144 #ifndef _KERNEL
145 		/*
146 		 * If we are using watchpoints, put each buffer on its own page,
147 		 * to eliminate the performance overhead of trapping to the
148 		 * kernel when modifying a non-watched buffer that shares the
149 		 * page with a watched buffer.
150 		 */
151 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
152 			continue;
153 #endif
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
157 			align = PAGESIZE;
158 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
167 
168 			/*
169 			 * Since zio_data bufs do not appear in crash dumps, we
170 			 * pass KMC_NOTOUCH so that no allocator metadata is
171 			 * stored with the buffers.
172 			 */
173 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
174 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
175 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
176 			    cflags | KMC_NOTOUCH);
177 		}
178 	}
179 
180 	while (--c != 0) {
181 		ASSERT(zio_buf_cache[c] != NULL);
182 		if (zio_buf_cache[c - 1] == NULL)
183 			zio_buf_cache[c - 1] = zio_buf_cache[c];
184 
185 		ASSERT(zio_data_buf_cache[c] != NULL);
186 		if (zio_data_buf_cache[c - 1] == NULL)
187 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
188 	}
189 
190 	/*
191 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
192 	 * to fail 3 times per txg or 8 failures, whichever is greater.
193 	 */
194 	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
195 
196 	zio_inject_init();
197 }
198 
199 void
200 zio_fini(void)
201 {
202 	size_t c;
203 	kmem_cache_t *last_cache = NULL;
204 	kmem_cache_t *last_data_cache = NULL;
205 
206 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
207 		if (zio_buf_cache[c] != last_cache) {
208 			last_cache = zio_buf_cache[c];
209 			kmem_cache_destroy(zio_buf_cache[c]);
210 		}
211 		zio_buf_cache[c] = NULL;
212 
213 		if (zio_data_buf_cache[c] != last_data_cache) {
214 			last_data_cache = zio_data_buf_cache[c];
215 			kmem_cache_destroy(zio_data_buf_cache[c]);
216 		}
217 		zio_data_buf_cache[c] = NULL;
218 	}
219 
220 	kmem_cache_destroy(zio_link_cache);
221 	kmem_cache_destroy(zio_cache);
222 
223 	zio_inject_fini();
224 }
225 
226 /*
227  * ==========================================================================
228  * Allocate and free I/O buffers
229  * ==========================================================================
230  */
231 
232 /*
233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
236  * excess / transient data in-core during a crashdump.
237  */
238 void *
239 zio_buf_alloc(size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
246 }
247 
248 /*
249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
250  * crashdump if the kernel panics.  This exists so that we will limit the amount
251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
252  * of kernel heap dumped to disk when the kernel panics)
253  */
254 void *
255 zio_data_buf_alloc(size_t size)
256 {
257 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258 
259 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260 
261 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
262 }
263 
264 void
265 zio_buf_free(void *buf, size_t size)
266 {
267 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268 
269 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
270 
271 	kmem_cache_free(zio_buf_cache[c], buf);
272 }
273 
274 void
275 zio_data_buf_free(void *buf, size_t size)
276 {
277 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278 
279 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280 
281 	kmem_cache_free(zio_data_buf_cache[c], buf);
282 }
283 
284 /*
285  * ==========================================================================
286  * Push and pop I/O transform buffers
287  * ==========================================================================
288  */
289 static void
290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
291 	zio_transform_func_t *transform)
292 {
293 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
294 
295 	zt->zt_orig_data = zio->io_data;
296 	zt->zt_orig_size = zio->io_size;
297 	zt->zt_bufsize = bufsize;
298 	zt->zt_transform = transform;
299 
300 	zt->zt_next = zio->io_transform_stack;
301 	zio->io_transform_stack = zt;
302 
303 	zio->io_data = data;
304 	zio->io_size = size;
305 }
306 
307 static void
308 zio_pop_transforms(zio_t *zio)
309 {
310 	zio_transform_t *zt;
311 
312 	while ((zt = zio->io_transform_stack) != NULL) {
313 		if (zt->zt_transform != NULL)
314 			zt->zt_transform(zio,
315 			    zt->zt_orig_data, zt->zt_orig_size);
316 
317 		if (zt->zt_bufsize != 0)
318 			zio_buf_free(zio->io_data, zt->zt_bufsize);
319 
320 		zio->io_data = zt->zt_orig_data;
321 		zio->io_size = zt->zt_orig_size;
322 		zio->io_transform_stack = zt->zt_next;
323 
324 		kmem_free(zt, sizeof (zio_transform_t));
325 	}
326 }
327 
328 /*
329  * ==========================================================================
330  * I/O transform callbacks for subblocks and decompression
331  * ==========================================================================
332  */
333 static void
334 zio_subblock(zio_t *zio, void *data, uint64_t size)
335 {
336 	ASSERT(zio->io_size > size);
337 
338 	if (zio->io_type == ZIO_TYPE_READ)
339 		bcopy(zio->io_data, data, size);
340 }
341 
342 static void
343 zio_decompress(zio_t *zio, void *data, uint64_t size)
344 {
345 	if (zio->io_error == 0 &&
346 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
347 	    zio->io_data, data, zio->io_size, size) != 0)
348 		zio->io_error = EIO;
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 /*
357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
358  *        continue calling these functions until they return NULL.
359  *        Otherwise, the next caller will pick up the list walk in
360  *        some indeterminate state.  (Otherwise every caller would
361  *        have to pass in a cookie to keep the state represented by
362  *        io_walk_link, which gets annoying.)
363  */
364 zio_t *
365 zio_walk_parents(zio_t *cio)
366 {
367 	zio_link_t *zl = cio->io_walk_link;
368 	list_t *pl = &cio->io_parent_list;
369 
370 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
371 	cio->io_walk_link = zl;
372 
373 	if (zl == NULL)
374 		return (NULL);
375 
376 	ASSERT(zl->zl_child == cio);
377 	return (zl->zl_parent);
378 }
379 
380 zio_t *
381 zio_walk_children(zio_t *pio)
382 {
383 	zio_link_t *zl = pio->io_walk_link;
384 	list_t *cl = &pio->io_child_list;
385 
386 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
387 	pio->io_walk_link = zl;
388 
389 	if (zl == NULL)
390 		return (NULL);
391 
392 	ASSERT(zl->zl_parent == pio);
393 	return (zl->zl_child);
394 }
395 
396 zio_t *
397 zio_unique_parent(zio_t *cio)
398 {
399 	zio_t *pio = zio_walk_parents(cio);
400 
401 	VERIFY(zio_walk_parents(cio) == NULL);
402 	return (pio);
403 }
404 
405 void
406 zio_add_child(zio_t *pio, zio_t *cio)
407 {
408 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
409 
410 	/*
411 	 * Logical I/Os can have logical, gang, or vdev children.
412 	 * Gang I/Os can have gang or vdev children.
413 	 * Vdev I/Os can only have vdev children.
414 	 * The following ASSERT captures all of these constraints.
415 	 */
416 	ASSERT(cio->io_child_type <= pio->io_child_type);
417 
418 	zl->zl_parent = pio;
419 	zl->zl_child = cio;
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
425 
426 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
427 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
428 
429 	list_insert_head(&pio->io_child_list, zl);
430 	list_insert_head(&cio->io_parent_list, zl);
431 
432 	pio->io_child_count++;
433 	cio->io_parent_count++;
434 
435 	mutex_exit(&pio->io_lock);
436 	mutex_exit(&cio->io_lock);
437 }
438 
439 static void
440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
441 {
442 	ASSERT(zl->zl_parent == pio);
443 	ASSERT(zl->zl_child == cio);
444 
445 	mutex_enter(&cio->io_lock);
446 	mutex_enter(&pio->io_lock);
447 
448 	list_remove(&pio->io_child_list, zl);
449 	list_remove(&cio->io_parent_list, zl);
450 
451 	pio->io_child_count--;
452 	cio->io_parent_count--;
453 
454 	mutex_exit(&pio->io_lock);
455 	mutex_exit(&cio->io_lock);
456 
457 	kmem_cache_free(zio_link_cache, zl);
458 }
459 
460 static boolean_t
461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &zio->io_children[child][wait];
464 	boolean_t waiting = B_FALSE;
465 
466 	mutex_enter(&zio->io_lock);
467 	ASSERT(zio->io_stall == NULL);
468 	if (*countp != 0) {
469 		zio->io_stage >>= 1;
470 		zio->io_stall = countp;
471 		waiting = B_TRUE;
472 	}
473 	mutex_exit(&zio->io_lock);
474 
475 	return (waiting);
476 }
477 
478 static void
479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
480 {
481 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
482 	int *errorp = &pio->io_child_error[zio->io_child_type];
483 
484 	mutex_enter(&pio->io_lock);
485 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
486 		*errorp = zio_worst_error(*errorp, zio->io_error);
487 	pio->io_reexecute |= zio->io_reexecute;
488 	ASSERT3U(*countp, >, 0);
489 	if (--*countp == 0 && pio->io_stall == countp) {
490 		pio->io_stall = NULL;
491 		mutex_exit(&pio->io_lock);
492 		zio_execute(pio);
493 	} else {
494 		mutex_exit(&pio->io_lock);
495 	}
496 }
497 
498 static void
499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
500 {
501 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
502 		zio->io_error = zio->io_child_error[c];
503 }
504 
505 /*
506  * ==========================================================================
507  * Create the various types of I/O (read, write, free, etc)
508  * ==========================================================================
509  */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512     void *data, uint64_t size, zio_done_func_t *done, void *private,
513     zio_type_t type, int priority, enum zio_flag flags,
514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515     enum zio_stage stage, enum zio_stage pipeline)
516 {
517 	zio_t *zio;
518 
519 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
522 
523 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
526 
527 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 	bzero(zio, sizeof (zio_t));
529 
530 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
532 
533 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 	    offsetof(zio_link_t, zl_parent_node));
535 	list_create(&zio->io_child_list, sizeof (zio_link_t),
536 	    offsetof(zio_link_t, zl_child_node));
537 
538 	if (vd != NULL)
539 		zio->io_child_type = ZIO_CHILD_VDEV;
540 	else if (flags & ZIO_FLAG_GANG_CHILD)
541 		zio->io_child_type = ZIO_CHILD_GANG;
542 	else if (flags & ZIO_FLAG_DDT_CHILD)
543 		zio->io_child_type = ZIO_CHILD_DDT;
544 	else
545 		zio->io_child_type = ZIO_CHILD_LOGICAL;
546 
547 	if (bp != NULL) {
548 		zio->io_bp = (blkptr_t *)bp;
549 		zio->io_bp_copy = *bp;
550 		zio->io_bp_orig = *bp;
551 		if (type != ZIO_TYPE_WRITE ||
552 		    zio->io_child_type == ZIO_CHILD_DDT)
553 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
554 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 			zio->io_logical = zio;
556 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 			pipeline |= ZIO_GANG_STAGES;
558 	}
559 
560 	zio->io_spa = spa;
561 	zio->io_txg = txg;
562 	zio->io_done = done;
563 	zio->io_private = private;
564 	zio->io_type = type;
565 	zio->io_priority = priority;
566 	zio->io_vd = vd;
567 	zio->io_offset = offset;
568 	zio->io_orig_data = zio->io_data = data;
569 	zio->io_orig_size = zio->io_size = size;
570 	zio->io_orig_flags = zio->io_flags = flags;
571 	zio->io_orig_stage = zio->io_stage = stage;
572 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
573 
574 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
576 
577 	if (zb != NULL)
578 		zio->io_bookmark = *zb;
579 
580 	if (pio != NULL) {
581 		if (zio->io_logical == NULL)
582 			zio->io_logical = pio->io_logical;
583 		if (zio->io_child_type == ZIO_CHILD_GANG)
584 			zio->io_gang_leader = pio->io_gang_leader;
585 		zio_add_child(pio, zio);
586 	}
587 
588 	return (zio);
589 }
590 
591 static void
592 zio_destroy(zio_t *zio)
593 {
594 	list_destroy(&zio->io_parent_list);
595 	list_destroy(&zio->io_child_list);
596 	mutex_destroy(&zio->io_lock);
597 	cv_destroy(&zio->io_cv);
598 	kmem_cache_free(zio_cache, zio);
599 }
600 
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603     void *private, enum zio_flag flags)
604 {
605 	zio_t *zio;
606 
607 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
610 
611 	return (zio);
612 }
613 
614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
616 {
617 	return (zio_null(NULL, spa, NULL, done, private, flags));
618 }
619 
620 zio_t *
621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
622     void *data, uint64_t size, zio_done_func_t *done, void *private,
623     int priority, enum zio_flag flags, const zbookmark_t *zb)
624 {
625 	zio_t *zio;
626 
627 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
628 	    data, size, done, private,
629 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
631 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
632 
633 	return (zio);
634 }
635 
636 zio_t *
637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
638     void *data, uint64_t size, const zio_prop_t *zp,
639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
640     int priority, enum zio_flag flags, const zbookmark_t *zb)
641 {
642 	zio_t *zio;
643 
644 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
645 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
646 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
647 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
648 	    DMU_OT_IS_VALID(zp->zp_type) &&
649 	    zp->zp_level < 32 &&
650 	    zp->zp_copies > 0 &&
651 	    zp->zp_copies <= spa_max_replication(spa));
652 
653 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
654 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
655 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
656 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
657 
658 	zio->io_ready = ready;
659 	zio->io_prop = *zp;
660 
661 	return (zio);
662 }
663 
664 zio_t *
665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
666     uint64_t size, zio_done_func_t *done, void *private, int priority,
667     enum zio_flag flags, zbookmark_t *zb)
668 {
669 	zio_t *zio;
670 
671 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
672 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
673 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
674 
675 	return (zio);
676 }
677 
678 void
679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
680 {
681 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
682 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
683 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
684 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
685 
686 	/*
687 	 * We must reset the io_prop to match the values that existed
688 	 * when the bp was first written by dmu_sync() keeping in mind
689 	 * that nopwrite and dedup are mutually exclusive.
690 	 */
691 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
692 	zio->io_prop.zp_nopwrite = nopwrite;
693 	zio->io_prop.zp_copies = copies;
694 	zio->io_bp_override = bp;
695 }
696 
697 void
698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
699 {
700 	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
701 }
702 
703 zio_t *
704 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
705     enum zio_flag flags)
706 {
707 	zio_t *zio;
708 
709 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
710 	    (longlong_t)txg, spa->spa_sync_pass);
711 
712 	ASSERT(!BP_IS_HOLE(bp));
713 	ASSERT(spa_syncing_txg(spa) == txg);
714 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
715 
716 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
717 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
718 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
719 
720 	return (zio);
721 }
722 
723 zio_t *
724 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
725     zio_done_func_t *done, void *private, enum zio_flag flags)
726 {
727 	zio_t *zio;
728 
729 	/*
730 	 * A claim is an allocation of a specific block.  Claims are needed
731 	 * to support immediate writes in the intent log.  The issue is that
732 	 * immediate writes contain committed data, but in a txg that was
733 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
734 	 * the intent log claims all blocks that contain immediate write data
735 	 * so that the SPA knows they're in use.
736 	 *
737 	 * All claims *must* be resolved in the first txg -- before the SPA
738 	 * starts allocating blocks -- so that nothing is allocated twice.
739 	 * If txg == 0 we just verify that the block is claimable.
740 	 */
741 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
742 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
743 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
744 
745 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
746 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
747 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
748 
749 	return (zio);
750 }
751 
752 zio_t *
753 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
754     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
755 {
756 	zio_t *zio;
757 	int c;
758 
759 	if (vd->vdev_children == 0) {
760 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
761 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
762 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
763 
764 		zio->io_cmd = cmd;
765 	} else {
766 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
767 
768 		for (c = 0; c < vd->vdev_children; c++)
769 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
770 			    done, private, priority, flags));
771 	}
772 
773 	return (zio);
774 }
775 
776 zio_t *
777 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
778     void *data, int checksum, zio_done_func_t *done, void *private,
779     int priority, enum zio_flag flags, boolean_t labels)
780 {
781 	zio_t *zio;
782 
783 	ASSERT(vd->vdev_children == 0);
784 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
785 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
786 	ASSERT3U(offset + size, <=, vd->vdev_psize);
787 
788 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
789 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
790 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
791 
792 	zio->io_prop.zp_checksum = checksum;
793 
794 	return (zio);
795 }
796 
797 zio_t *
798 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
799     void *data, int checksum, zio_done_func_t *done, void *private,
800     int priority, enum zio_flag flags, boolean_t labels)
801 {
802 	zio_t *zio;
803 
804 	ASSERT(vd->vdev_children == 0);
805 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
806 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
807 	ASSERT3U(offset + size, <=, vd->vdev_psize);
808 
809 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
810 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
811 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
812 
813 	zio->io_prop.zp_checksum = checksum;
814 
815 	if (zio_checksum_table[checksum].ci_eck) {
816 		/*
817 		 * zec checksums are necessarily destructive -- they modify
818 		 * the end of the write buffer to hold the verifier/checksum.
819 		 * Therefore, we must make a local copy in case the data is
820 		 * being written to multiple places in parallel.
821 		 */
822 		void *wbuf = zio_buf_alloc(size);
823 		bcopy(data, wbuf, size);
824 		zio_push_transform(zio, wbuf, size, size, NULL);
825 	}
826 
827 	return (zio);
828 }
829 
830 /*
831  * Create a child I/O to do some work for us.
832  */
833 zio_t *
834 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
835 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
836 	zio_done_func_t *done, void *private)
837 {
838 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
839 	zio_t *zio;
840 
841 	ASSERT(vd->vdev_parent ==
842 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
843 
844 	if (type == ZIO_TYPE_READ && bp != NULL) {
845 		/*
846 		 * If we have the bp, then the child should perform the
847 		 * checksum and the parent need not.  This pushes error
848 		 * detection as close to the leaves as possible and
849 		 * eliminates redundant checksums in the interior nodes.
850 		 */
851 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
852 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
853 	}
854 
855 	if (vd->vdev_children == 0)
856 		offset += VDEV_LABEL_START_SIZE;
857 
858 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
859 
860 	/*
861 	 * If we've decided to do a repair, the write is not speculative --
862 	 * even if the original read was.
863 	 */
864 	if (flags & ZIO_FLAG_IO_REPAIR)
865 		flags &= ~ZIO_FLAG_SPECULATIVE;
866 
867 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
868 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
869 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
870 
871 	return (zio);
872 }
873 
874 zio_t *
875 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
876 	int type, int priority, enum zio_flag flags,
877 	zio_done_func_t *done, void *private)
878 {
879 	zio_t *zio;
880 
881 	ASSERT(vd->vdev_ops->vdev_op_leaf);
882 
883 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
884 	    data, size, done, private, type, priority,
885 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
886 	    vd, offset, NULL,
887 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
888 
889 	return (zio);
890 }
891 
892 void
893 zio_flush(zio_t *zio, vdev_t *vd)
894 {
895 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
896 	    NULL, NULL, ZIO_PRIORITY_NOW,
897 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
898 }
899 
900 void
901 zio_shrink(zio_t *zio, uint64_t size)
902 {
903 	ASSERT(zio->io_executor == NULL);
904 	ASSERT(zio->io_orig_size == zio->io_size);
905 	ASSERT(size <= zio->io_size);
906 
907 	/*
908 	 * We don't shrink for raidz because of problems with the
909 	 * reconstruction when reading back less than the block size.
910 	 * Note, BP_IS_RAIDZ() assumes no compression.
911 	 */
912 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
913 	if (!BP_IS_RAIDZ(zio->io_bp))
914 		zio->io_orig_size = zio->io_size = size;
915 }
916 
917 /*
918  * ==========================================================================
919  * Prepare to read and write logical blocks
920  * ==========================================================================
921  */
922 
923 static int
924 zio_read_bp_init(zio_t *zio)
925 {
926 	blkptr_t *bp = zio->io_bp;
927 
928 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
929 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
930 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
931 		uint64_t psize = BP_GET_PSIZE(bp);
932 		void *cbuf = zio_buf_alloc(psize);
933 
934 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
935 	}
936 
937 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
938 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
939 
940 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
941 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
942 
943 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
944 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
945 
946 	return (ZIO_PIPELINE_CONTINUE);
947 }
948 
949 static int
950 zio_write_bp_init(zio_t *zio)
951 {
952 	spa_t *spa = zio->io_spa;
953 	zio_prop_t *zp = &zio->io_prop;
954 	enum zio_compress compress = zp->zp_compress;
955 	blkptr_t *bp = zio->io_bp;
956 	uint64_t lsize = zio->io_size;
957 	uint64_t psize = lsize;
958 	int pass = 1;
959 
960 	/*
961 	 * If our children haven't all reached the ready stage,
962 	 * wait for them and then repeat this pipeline stage.
963 	 */
964 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
965 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
966 		return (ZIO_PIPELINE_STOP);
967 
968 	if (!IO_IS_ALLOCATING(zio))
969 		return (ZIO_PIPELINE_CONTINUE);
970 
971 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
972 
973 	if (zio->io_bp_override) {
974 		ASSERT(bp->blk_birth != zio->io_txg);
975 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
976 
977 		*bp = *zio->io_bp_override;
978 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
979 
980 		/*
981 		 * If we've been overridden and nopwrite is set then
982 		 * set the flag accordingly to indicate that a nopwrite
983 		 * has already occurred.
984 		 */
985 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
986 			ASSERT(!zp->zp_dedup);
987 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
988 			return (ZIO_PIPELINE_CONTINUE);
989 		}
990 
991 		ASSERT(!zp->zp_nopwrite);
992 
993 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
994 			return (ZIO_PIPELINE_CONTINUE);
995 
996 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
997 		    zp->zp_dedup_verify);
998 
999 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1000 			BP_SET_DEDUP(bp, 1);
1001 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1002 			return (ZIO_PIPELINE_CONTINUE);
1003 		}
1004 		zio->io_bp_override = NULL;
1005 		BP_ZERO(bp);
1006 	}
1007 
1008 	if (bp->blk_birth == zio->io_txg) {
1009 		/*
1010 		 * We're rewriting an existing block, which means we're
1011 		 * working on behalf of spa_sync().  For spa_sync() to
1012 		 * converge, it must eventually be the case that we don't
1013 		 * have to allocate new blocks.  But compression changes
1014 		 * the blocksize, which forces a reallocate, and makes
1015 		 * convergence take longer.  Therefore, after the first
1016 		 * few passes, stop compressing to ensure convergence.
1017 		 */
1018 		pass = spa_sync_pass(spa);
1019 
1020 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1021 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1022 		ASSERT(!BP_GET_DEDUP(bp));
1023 
1024 		if (pass >= zfs_sync_pass_dont_compress)
1025 			compress = ZIO_COMPRESS_OFF;
1026 
1027 		/* Make sure someone doesn't change their mind on overwrites */
1028 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1029 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1030 	}
1031 
1032 	if (compress != ZIO_COMPRESS_OFF) {
1033 		void *cbuf = zio_buf_alloc(lsize);
1034 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1035 		if (psize == 0 || psize == lsize) {
1036 			compress = ZIO_COMPRESS_OFF;
1037 			zio_buf_free(cbuf, lsize);
1038 		} else {
1039 			ASSERT(psize < lsize);
1040 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * The final pass of spa_sync() must be all rewrites, but the first
1046 	 * few passes offer a trade-off: allocating blocks defers convergence,
1047 	 * but newly allocated blocks are sequential, so they can be written
1048 	 * to disk faster.  Therefore, we allow the first few passes of
1049 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1050 	 * There should only be a handful of blocks after pass 1 in any case.
1051 	 */
1052 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1053 	    pass >= zfs_sync_pass_rewrite) {
1054 		ASSERT(psize != 0);
1055 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1056 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1057 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1058 	} else {
1059 		BP_ZERO(bp);
1060 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1061 	}
1062 
1063 	if (psize == 0) {
1064 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1065 	} else {
1066 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1067 		BP_SET_LSIZE(bp, lsize);
1068 		BP_SET_PSIZE(bp, psize);
1069 		BP_SET_COMPRESS(bp, compress);
1070 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1071 		BP_SET_TYPE(bp, zp->zp_type);
1072 		BP_SET_LEVEL(bp, zp->zp_level);
1073 		BP_SET_DEDUP(bp, zp->zp_dedup);
1074 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1075 		if (zp->zp_dedup) {
1076 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1077 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1078 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1079 		}
1080 		if (zp->zp_nopwrite) {
1081 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1082 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1083 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1084 		}
1085 	}
1086 
1087 	return (ZIO_PIPELINE_CONTINUE);
1088 }
1089 
1090 static int
1091 zio_free_bp_init(zio_t *zio)
1092 {
1093 	blkptr_t *bp = zio->io_bp;
1094 
1095 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1096 		if (BP_GET_DEDUP(bp))
1097 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1098 	}
1099 
1100 	return (ZIO_PIPELINE_CONTINUE);
1101 }
1102 
1103 /*
1104  * ==========================================================================
1105  * Execute the I/O pipeline
1106  * ==========================================================================
1107  */
1108 
1109 static void
1110 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1111 {
1112 	spa_t *spa = zio->io_spa;
1113 	zio_type_t t = zio->io_type;
1114 	int flags = (cutinline ? TQ_FRONT : 0);
1115 
1116 	/*
1117 	 * If we're a config writer or a probe, the normal issue and
1118 	 * interrupt threads may all be blocked waiting for the config lock.
1119 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1120 	 */
1121 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1122 		t = ZIO_TYPE_NULL;
1123 
1124 	/*
1125 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1126 	 */
1127 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1128 		t = ZIO_TYPE_NULL;
1129 
1130 	/*
1131 	 * If this is a high priority I/O, then use the high priority taskq.
1132 	 */
1133 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1134 	    spa->spa_zio_taskq[t][q + 1] != NULL)
1135 		q++;
1136 
1137 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1138 
1139 	/*
1140 	 * NB: We are assuming that the zio can only be dispatched
1141 	 * to a single taskq at a time.  It would be a grievous error
1142 	 * to dispatch the zio to another taskq at the same time.
1143 	 */
1144 	ASSERT(zio->io_tqent.tqent_next == NULL);
1145 	taskq_dispatch_ent(spa->spa_zio_taskq[t][q],
1146 	    (task_func_t *)zio_execute, zio, flags, &zio->io_tqent);
1147 }
1148 
1149 static boolean_t
1150 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1151 {
1152 	kthread_t *executor = zio->io_executor;
1153 	spa_t *spa = zio->io_spa;
1154 
1155 	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1156 		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1157 			return (B_TRUE);
1158 
1159 	return (B_FALSE);
1160 }
1161 
1162 static int
1163 zio_issue_async(zio_t *zio)
1164 {
1165 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1166 
1167 	return (ZIO_PIPELINE_STOP);
1168 }
1169 
1170 void
1171 zio_interrupt(zio_t *zio)
1172 {
1173 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1174 }
1175 
1176 /*
1177  * Execute the I/O pipeline until one of the following occurs:
1178  * (1) the I/O completes; (2) the pipeline stalls waiting for
1179  * dependent child I/Os; (3) the I/O issues, so we're waiting
1180  * for an I/O completion interrupt; (4) the I/O is delegated by
1181  * vdev-level caching or aggregation; (5) the I/O is deferred
1182  * due to vdev-level queueing; (6) the I/O is handed off to
1183  * another thread.  In all cases, the pipeline stops whenever
1184  * there's no CPU work; it never burns a thread in cv_wait().
1185  *
1186  * There's no locking on io_stage because there's no legitimate way
1187  * for multiple threads to be attempting to process the same I/O.
1188  */
1189 static zio_pipe_stage_t *zio_pipeline[];
1190 
1191 void
1192 zio_execute(zio_t *zio)
1193 {
1194 	zio->io_executor = curthread;
1195 
1196 	while (zio->io_stage < ZIO_STAGE_DONE) {
1197 		enum zio_stage pipeline = zio->io_pipeline;
1198 		enum zio_stage stage = zio->io_stage;
1199 		int rv;
1200 
1201 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1202 		ASSERT(ISP2(stage));
1203 		ASSERT(zio->io_stall == NULL);
1204 
1205 		do {
1206 			stage <<= 1;
1207 		} while ((stage & pipeline) == 0);
1208 
1209 		ASSERT(stage <= ZIO_STAGE_DONE);
1210 
1211 		/*
1212 		 * If we are in interrupt context and this pipeline stage
1213 		 * will grab a config lock that is held across I/O,
1214 		 * or may wait for an I/O that needs an interrupt thread
1215 		 * to complete, issue async to avoid deadlock.
1216 		 *
1217 		 * For VDEV_IO_START, we cut in line so that the io will
1218 		 * be sent to disk promptly.
1219 		 */
1220 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1221 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1222 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1223 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1224 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1225 			return;
1226 		}
1227 
1228 		zio->io_stage = stage;
1229 		rv = zio_pipeline[highbit(stage) - 1](zio);
1230 
1231 		if (rv == ZIO_PIPELINE_STOP)
1232 			return;
1233 
1234 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1235 	}
1236 }
1237 
1238 /*
1239  * ==========================================================================
1240  * Initiate I/O, either sync or async
1241  * ==========================================================================
1242  */
1243 int
1244 zio_wait(zio_t *zio)
1245 {
1246 	int error;
1247 
1248 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1249 	ASSERT(zio->io_executor == NULL);
1250 
1251 	zio->io_waiter = curthread;
1252 
1253 	zio_execute(zio);
1254 
1255 	mutex_enter(&zio->io_lock);
1256 	while (zio->io_executor != NULL)
1257 		cv_wait(&zio->io_cv, &zio->io_lock);
1258 	mutex_exit(&zio->io_lock);
1259 
1260 	error = zio->io_error;
1261 	zio_destroy(zio);
1262 
1263 	return (error);
1264 }
1265 
1266 void
1267 zio_nowait(zio_t *zio)
1268 {
1269 	ASSERT(zio->io_executor == NULL);
1270 
1271 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1272 	    zio_unique_parent(zio) == NULL) {
1273 		/*
1274 		 * This is a logical async I/O with no parent to wait for it.
1275 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1276 		 * will ensure they complete prior to unloading the pool.
1277 		 */
1278 		spa_t *spa = zio->io_spa;
1279 
1280 		zio_add_child(spa->spa_async_zio_root, zio);
1281 	}
1282 
1283 	zio_execute(zio);
1284 }
1285 
1286 /*
1287  * ==========================================================================
1288  * Reexecute or suspend/resume failed I/O
1289  * ==========================================================================
1290  */
1291 
1292 static void
1293 zio_reexecute(zio_t *pio)
1294 {
1295 	zio_t *cio, *cio_next;
1296 
1297 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1298 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1299 	ASSERT(pio->io_gang_leader == NULL);
1300 	ASSERT(pio->io_gang_tree == NULL);
1301 
1302 	pio->io_flags = pio->io_orig_flags;
1303 	pio->io_stage = pio->io_orig_stage;
1304 	pio->io_pipeline = pio->io_orig_pipeline;
1305 	pio->io_reexecute = 0;
1306 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1307 	pio->io_error = 0;
1308 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1309 		pio->io_state[w] = 0;
1310 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1311 		pio->io_child_error[c] = 0;
1312 
1313 	if (IO_IS_ALLOCATING(pio))
1314 		BP_ZERO(pio->io_bp);
1315 
1316 	/*
1317 	 * As we reexecute pio's children, new children could be created.
1318 	 * New children go to the head of pio's io_child_list, however,
1319 	 * so we will (correctly) not reexecute them.  The key is that
1320 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1321 	 * cannot be affected by any side effects of reexecuting 'cio'.
1322 	 */
1323 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1324 		cio_next = zio_walk_children(pio);
1325 		mutex_enter(&pio->io_lock);
1326 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1327 			pio->io_children[cio->io_child_type][w]++;
1328 		mutex_exit(&pio->io_lock);
1329 		zio_reexecute(cio);
1330 	}
1331 
1332 	/*
1333 	 * Now that all children have been reexecuted, execute the parent.
1334 	 * We don't reexecute "The Godfather" I/O here as it's the
1335 	 * responsibility of the caller to wait on him.
1336 	 */
1337 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1338 		zio_execute(pio);
1339 }
1340 
1341 void
1342 zio_suspend(spa_t *spa, zio_t *zio)
1343 {
1344 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1345 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1346 		    "failure and the failure mode property for this pool "
1347 		    "is set to panic.", spa_name(spa));
1348 
1349 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1350 
1351 	mutex_enter(&spa->spa_suspend_lock);
1352 
1353 	if (spa->spa_suspend_zio_root == NULL)
1354 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1355 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1356 		    ZIO_FLAG_GODFATHER);
1357 
1358 	spa->spa_suspended = B_TRUE;
1359 
1360 	if (zio != NULL) {
1361 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1362 		ASSERT(zio != spa->spa_suspend_zio_root);
1363 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1364 		ASSERT(zio_unique_parent(zio) == NULL);
1365 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1366 		zio_add_child(spa->spa_suspend_zio_root, zio);
1367 	}
1368 
1369 	mutex_exit(&spa->spa_suspend_lock);
1370 }
1371 
1372 int
1373 zio_resume(spa_t *spa)
1374 {
1375 	zio_t *pio;
1376 
1377 	/*
1378 	 * Reexecute all previously suspended i/o.
1379 	 */
1380 	mutex_enter(&spa->spa_suspend_lock);
1381 	spa->spa_suspended = B_FALSE;
1382 	cv_broadcast(&spa->spa_suspend_cv);
1383 	pio = spa->spa_suspend_zio_root;
1384 	spa->spa_suspend_zio_root = NULL;
1385 	mutex_exit(&spa->spa_suspend_lock);
1386 
1387 	if (pio == NULL)
1388 		return (0);
1389 
1390 	zio_reexecute(pio);
1391 	return (zio_wait(pio));
1392 }
1393 
1394 void
1395 zio_resume_wait(spa_t *spa)
1396 {
1397 	mutex_enter(&spa->spa_suspend_lock);
1398 	while (spa_suspended(spa))
1399 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1400 	mutex_exit(&spa->spa_suspend_lock);
1401 }
1402 
1403 /*
1404  * ==========================================================================
1405  * Gang blocks.
1406  *
1407  * A gang block is a collection of small blocks that looks to the DMU
1408  * like one large block.  When zio_dva_allocate() cannot find a block
1409  * of the requested size, due to either severe fragmentation or the pool
1410  * being nearly full, it calls zio_write_gang_block() to construct the
1411  * block from smaller fragments.
1412  *
1413  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1414  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1415  * an indirect block: it's an array of block pointers.  It consumes
1416  * only one sector and hence is allocatable regardless of fragmentation.
1417  * The gang header's bps point to its gang members, which hold the data.
1418  *
1419  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1420  * as the verifier to ensure uniqueness of the SHA256 checksum.
1421  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1422  * not the gang header.  This ensures that data block signatures (needed for
1423  * deduplication) are independent of how the block is physically stored.
1424  *
1425  * Gang blocks can be nested: a gang member may itself be a gang block.
1426  * Thus every gang block is a tree in which root and all interior nodes are
1427  * gang headers, and the leaves are normal blocks that contain user data.
1428  * The root of the gang tree is called the gang leader.
1429  *
1430  * To perform any operation (read, rewrite, free, claim) on a gang block,
1431  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1432  * in the io_gang_tree field of the original logical i/o by recursively
1433  * reading the gang leader and all gang headers below it.  This yields
1434  * an in-core tree containing the contents of every gang header and the
1435  * bps for every constituent of the gang block.
1436  *
1437  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1438  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1439  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1440  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1441  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1442  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1443  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1444  * of the gang header plus zio_checksum_compute() of the data to update the
1445  * gang header's blk_cksum as described above.
1446  *
1447  * The two-phase assemble/issue model solves the problem of partial failure --
1448  * what if you'd freed part of a gang block but then couldn't read the
1449  * gang header for another part?  Assembling the entire gang tree first
1450  * ensures that all the necessary gang header I/O has succeeded before
1451  * starting the actual work of free, claim, or write.  Once the gang tree
1452  * is assembled, free and claim are in-memory operations that cannot fail.
1453  *
1454  * In the event that a gang write fails, zio_dva_unallocate() walks the
1455  * gang tree to immediately free (i.e. insert back into the space map)
1456  * everything we've allocated.  This ensures that we don't get ENOSPC
1457  * errors during repeated suspend/resume cycles due to a flaky device.
1458  *
1459  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1460  * the gang tree, we won't modify the block, so we can safely defer the free
1461  * (knowing that the block is still intact).  If we *can* assemble the gang
1462  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1463  * each constituent bp and we can allocate a new block on the next sync pass.
1464  *
1465  * In all cases, the gang tree allows complete recovery from partial failure.
1466  * ==========================================================================
1467  */
1468 
1469 static zio_t *
1470 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1471 {
1472 	if (gn != NULL)
1473 		return (pio);
1474 
1475 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1476 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1477 	    &pio->io_bookmark));
1478 }
1479 
1480 zio_t *
1481 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1482 {
1483 	zio_t *zio;
1484 
1485 	if (gn != NULL) {
1486 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1487 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1488 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1489 		/*
1490 		 * As we rewrite each gang header, the pipeline will compute
1491 		 * a new gang block header checksum for it; but no one will
1492 		 * compute a new data checksum, so we do that here.  The one
1493 		 * exception is the gang leader: the pipeline already computed
1494 		 * its data checksum because that stage precedes gang assembly.
1495 		 * (Presently, nothing actually uses interior data checksums;
1496 		 * this is just good hygiene.)
1497 		 */
1498 		if (gn != pio->io_gang_leader->io_gang_tree) {
1499 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1500 			    data, BP_GET_PSIZE(bp));
1501 		}
1502 		/*
1503 		 * If we are here to damage data for testing purposes,
1504 		 * leave the GBH alone so that we can detect the damage.
1505 		 */
1506 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1507 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1508 	} else {
1509 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1510 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1511 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1512 	}
1513 
1514 	return (zio);
1515 }
1516 
1517 /* ARGSUSED */
1518 zio_t *
1519 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1520 {
1521 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1522 	    ZIO_GANG_CHILD_FLAGS(pio)));
1523 }
1524 
1525 /* ARGSUSED */
1526 zio_t *
1527 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1528 {
1529 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1530 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1531 }
1532 
1533 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1534 	NULL,
1535 	zio_read_gang,
1536 	zio_rewrite_gang,
1537 	zio_free_gang,
1538 	zio_claim_gang,
1539 	NULL
1540 };
1541 
1542 static void zio_gang_tree_assemble_done(zio_t *zio);
1543 
1544 static zio_gang_node_t *
1545 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1546 {
1547 	zio_gang_node_t *gn;
1548 
1549 	ASSERT(*gnpp == NULL);
1550 
1551 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1552 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1553 	*gnpp = gn;
1554 
1555 	return (gn);
1556 }
1557 
1558 static void
1559 zio_gang_node_free(zio_gang_node_t **gnpp)
1560 {
1561 	zio_gang_node_t *gn = *gnpp;
1562 
1563 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1564 		ASSERT(gn->gn_child[g] == NULL);
1565 
1566 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1567 	kmem_free(gn, sizeof (*gn));
1568 	*gnpp = NULL;
1569 }
1570 
1571 static void
1572 zio_gang_tree_free(zio_gang_node_t **gnpp)
1573 {
1574 	zio_gang_node_t *gn = *gnpp;
1575 
1576 	if (gn == NULL)
1577 		return;
1578 
1579 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1580 		zio_gang_tree_free(&gn->gn_child[g]);
1581 
1582 	zio_gang_node_free(gnpp);
1583 }
1584 
1585 static void
1586 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1587 {
1588 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1589 
1590 	ASSERT(gio->io_gang_leader == gio);
1591 	ASSERT(BP_IS_GANG(bp));
1592 
1593 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1594 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1595 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1596 }
1597 
1598 static void
1599 zio_gang_tree_assemble_done(zio_t *zio)
1600 {
1601 	zio_t *gio = zio->io_gang_leader;
1602 	zio_gang_node_t *gn = zio->io_private;
1603 	blkptr_t *bp = zio->io_bp;
1604 
1605 	ASSERT(gio == zio_unique_parent(zio));
1606 	ASSERT(zio->io_child_count == 0);
1607 
1608 	if (zio->io_error)
1609 		return;
1610 
1611 	if (BP_SHOULD_BYTESWAP(bp))
1612 		byteswap_uint64_array(zio->io_data, zio->io_size);
1613 
1614 	ASSERT(zio->io_data == gn->gn_gbh);
1615 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1616 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1617 
1618 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1619 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1620 		if (!BP_IS_GANG(gbp))
1621 			continue;
1622 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1623 	}
1624 }
1625 
1626 static void
1627 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1628 {
1629 	zio_t *gio = pio->io_gang_leader;
1630 	zio_t *zio;
1631 
1632 	ASSERT(BP_IS_GANG(bp) == !!gn);
1633 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1634 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1635 
1636 	/*
1637 	 * If you're a gang header, your data is in gn->gn_gbh.
1638 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1639 	 */
1640 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1641 
1642 	if (gn != NULL) {
1643 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1644 
1645 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1646 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1647 			if (BP_IS_HOLE(gbp))
1648 				continue;
1649 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1650 			data = (char *)data + BP_GET_PSIZE(gbp);
1651 		}
1652 	}
1653 
1654 	if (gn == gio->io_gang_tree)
1655 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1656 
1657 	if (zio != pio)
1658 		zio_nowait(zio);
1659 }
1660 
1661 static int
1662 zio_gang_assemble(zio_t *zio)
1663 {
1664 	blkptr_t *bp = zio->io_bp;
1665 
1666 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1667 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1668 
1669 	zio->io_gang_leader = zio;
1670 
1671 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1672 
1673 	return (ZIO_PIPELINE_CONTINUE);
1674 }
1675 
1676 static int
1677 zio_gang_issue(zio_t *zio)
1678 {
1679 	blkptr_t *bp = zio->io_bp;
1680 
1681 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1682 		return (ZIO_PIPELINE_STOP);
1683 
1684 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1685 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1686 
1687 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1688 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1689 	else
1690 		zio_gang_tree_free(&zio->io_gang_tree);
1691 
1692 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1693 
1694 	return (ZIO_PIPELINE_CONTINUE);
1695 }
1696 
1697 static void
1698 zio_write_gang_member_ready(zio_t *zio)
1699 {
1700 	zio_t *pio = zio_unique_parent(zio);
1701 	zio_t *gio = zio->io_gang_leader;
1702 	dva_t *cdva = zio->io_bp->blk_dva;
1703 	dva_t *pdva = pio->io_bp->blk_dva;
1704 	uint64_t asize;
1705 
1706 	if (BP_IS_HOLE(zio->io_bp))
1707 		return;
1708 
1709 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1710 
1711 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1712 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1713 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1714 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1715 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1716 
1717 	mutex_enter(&pio->io_lock);
1718 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1719 		ASSERT(DVA_GET_GANG(&pdva[d]));
1720 		asize = DVA_GET_ASIZE(&pdva[d]);
1721 		asize += DVA_GET_ASIZE(&cdva[d]);
1722 		DVA_SET_ASIZE(&pdva[d], asize);
1723 	}
1724 	mutex_exit(&pio->io_lock);
1725 }
1726 
1727 static int
1728 zio_write_gang_block(zio_t *pio)
1729 {
1730 	spa_t *spa = pio->io_spa;
1731 	blkptr_t *bp = pio->io_bp;
1732 	zio_t *gio = pio->io_gang_leader;
1733 	zio_t *zio;
1734 	zio_gang_node_t *gn, **gnpp;
1735 	zio_gbh_phys_t *gbh;
1736 	uint64_t txg = pio->io_txg;
1737 	uint64_t resid = pio->io_size;
1738 	uint64_t lsize;
1739 	int copies = gio->io_prop.zp_copies;
1740 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1741 	zio_prop_t zp;
1742 	int error;
1743 
1744 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1745 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1746 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1747 	if (error) {
1748 		pio->io_error = error;
1749 		return (ZIO_PIPELINE_CONTINUE);
1750 	}
1751 
1752 	if (pio == gio) {
1753 		gnpp = &gio->io_gang_tree;
1754 	} else {
1755 		gnpp = pio->io_private;
1756 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1757 	}
1758 
1759 	gn = zio_gang_node_alloc(gnpp);
1760 	gbh = gn->gn_gbh;
1761 	bzero(gbh, SPA_GANGBLOCKSIZE);
1762 
1763 	/*
1764 	 * Create the gang header.
1765 	 */
1766 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1767 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1768 
1769 	/*
1770 	 * Create and nowait the gang children.
1771 	 */
1772 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1773 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1774 		    SPA_MINBLOCKSIZE);
1775 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1776 
1777 		zp.zp_checksum = gio->io_prop.zp_checksum;
1778 		zp.zp_compress = ZIO_COMPRESS_OFF;
1779 		zp.zp_type = DMU_OT_NONE;
1780 		zp.zp_level = 0;
1781 		zp.zp_copies = gio->io_prop.zp_copies;
1782 		zp.zp_dedup = B_FALSE;
1783 		zp.zp_dedup_verify = B_FALSE;
1784 		zp.zp_nopwrite = B_FALSE;
1785 
1786 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1787 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1788 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1789 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1790 		    &pio->io_bookmark));
1791 	}
1792 
1793 	/*
1794 	 * Set pio's pipeline to just wait for zio to finish.
1795 	 */
1796 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1797 
1798 	zio_nowait(zio);
1799 
1800 	return (ZIO_PIPELINE_CONTINUE);
1801 }
1802 
1803 /*
1804  * The zio_nop_write stage in the pipeline determines if allocating
1805  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1806  * such as SHA256, we can compare the checksums of the new data and the old
1807  * to determine if allocating a new block is required.  The nopwrite
1808  * feature can handle writes in either syncing or open context (i.e. zil
1809  * writes) and as a result is mutually exclusive with dedup.
1810  */
1811 static int
1812 zio_nop_write(zio_t *zio)
1813 {
1814 	blkptr_t *bp = zio->io_bp;
1815 	blkptr_t *bp_orig = &zio->io_bp_orig;
1816 	zio_prop_t *zp = &zio->io_prop;
1817 
1818 	ASSERT(BP_GET_LEVEL(bp) == 0);
1819 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1820 	ASSERT(zp->zp_nopwrite);
1821 	ASSERT(!zp->zp_dedup);
1822 	ASSERT(zio->io_bp_override == NULL);
1823 	ASSERT(IO_IS_ALLOCATING(zio));
1824 
1825 	/*
1826 	 * Check to see if the original bp and the new bp have matching
1827 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1828 	 * If they don't then just continue with the pipeline which will
1829 	 * allocate a new bp.
1830 	 */
1831 	if (BP_IS_HOLE(bp_orig) ||
1832 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1833 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1834 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1835 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1836 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1837 		return (ZIO_PIPELINE_CONTINUE);
1838 
1839 	/*
1840 	 * If the checksums match then reset the pipeline so that we
1841 	 * avoid allocating a new bp and issuing any I/O.
1842 	 */
1843 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1844 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1845 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1846 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1847 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1848 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1849 		    sizeof (uint64_t)) == 0);
1850 
1851 		*bp = *bp_orig;
1852 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1853 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1854 	}
1855 
1856 	return (ZIO_PIPELINE_CONTINUE);
1857 }
1858 
1859 /*
1860  * ==========================================================================
1861  * Dedup
1862  * ==========================================================================
1863  */
1864 static void
1865 zio_ddt_child_read_done(zio_t *zio)
1866 {
1867 	blkptr_t *bp = zio->io_bp;
1868 	ddt_entry_t *dde = zio->io_private;
1869 	ddt_phys_t *ddp;
1870 	zio_t *pio = zio_unique_parent(zio);
1871 
1872 	mutex_enter(&pio->io_lock);
1873 	ddp = ddt_phys_select(dde, bp);
1874 	if (zio->io_error == 0)
1875 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1876 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1877 		dde->dde_repair_data = zio->io_data;
1878 	else
1879 		zio_buf_free(zio->io_data, zio->io_size);
1880 	mutex_exit(&pio->io_lock);
1881 }
1882 
1883 static int
1884 zio_ddt_read_start(zio_t *zio)
1885 {
1886 	blkptr_t *bp = zio->io_bp;
1887 
1888 	ASSERT(BP_GET_DEDUP(bp));
1889 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1890 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1891 
1892 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1893 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1894 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1895 		ddt_phys_t *ddp = dde->dde_phys;
1896 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1897 		blkptr_t blk;
1898 
1899 		ASSERT(zio->io_vsd == NULL);
1900 		zio->io_vsd = dde;
1901 
1902 		if (ddp_self == NULL)
1903 			return (ZIO_PIPELINE_CONTINUE);
1904 
1905 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1906 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1907 				continue;
1908 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1909 			    &blk);
1910 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1911 			    zio_buf_alloc(zio->io_size), zio->io_size,
1912 			    zio_ddt_child_read_done, dde, zio->io_priority,
1913 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1914 			    &zio->io_bookmark));
1915 		}
1916 		return (ZIO_PIPELINE_CONTINUE);
1917 	}
1918 
1919 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1920 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1921 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1922 
1923 	return (ZIO_PIPELINE_CONTINUE);
1924 }
1925 
1926 static int
1927 zio_ddt_read_done(zio_t *zio)
1928 {
1929 	blkptr_t *bp = zio->io_bp;
1930 
1931 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1932 		return (ZIO_PIPELINE_STOP);
1933 
1934 	ASSERT(BP_GET_DEDUP(bp));
1935 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1936 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1937 
1938 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1939 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1940 		ddt_entry_t *dde = zio->io_vsd;
1941 		if (ddt == NULL) {
1942 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1943 			return (ZIO_PIPELINE_CONTINUE);
1944 		}
1945 		if (dde == NULL) {
1946 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1947 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1948 			return (ZIO_PIPELINE_STOP);
1949 		}
1950 		if (dde->dde_repair_data != NULL) {
1951 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1952 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1953 		}
1954 		ddt_repair_done(ddt, dde);
1955 		zio->io_vsd = NULL;
1956 	}
1957 
1958 	ASSERT(zio->io_vsd == NULL);
1959 
1960 	return (ZIO_PIPELINE_CONTINUE);
1961 }
1962 
1963 static boolean_t
1964 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1965 {
1966 	spa_t *spa = zio->io_spa;
1967 
1968 	/*
1969 	 * Note: we compare the original data, not the transformed data,
1970 	 * because when zio->io_bp is an override bp, we will not have
1971 	 * pushed the I/O transforms.  That's an important optimization
1972 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1973 	 */
1974 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1975 		zio_t *lio = dde->dde_lead_zio[p];
1976 
1977 		if (lio != NULL) {
1978 			return (lio->io_orig_size != zio->io_orig_size ||
1979 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1980 			    zio->io_orig_size) != 0);
1981 		}
1982 	}
1983 
1984 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1985 		ddt_phys_t *ddp = &dde->dde_phys[p];
1986 
1987 		if (ddp->ddp_phys_birth != 0) {
1988 			arc_buf_t *abuf = NULL;
1989 			uint32_t aflags = ARC_WAIT;
1990 			blkptr_t blk = *zio->io_bp;
1991 			int error;
1992 
1993 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1994 
1995 			ddt_exit(ddt);
1996 
1997 			error = arc_read(NULL, spa, &blk,
1998 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1999 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2000 			    &aflags, &zio->io_bookmark);
2001 
2002 			if (error == 0) {
2003 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2004 				    bcmp(abuf->b_data, zio->io_orig_data,
2005 				    zio->io_orig_size) != 0)
2006 					error = EEXIST;
2007 				VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
2008 			}
2009 
2010 			ddt_enter(ddt);
2011 			return (error != 0);
2012 		}
2013 	}
2014 
2015 	return (B_FALSE);
2016 }
2017 
2018 static void
2019 zio_ddt_child_write_ready(zio_t *zio)
2020 {
2021 	int p = zio->io_prop.zp_copies;
2022 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2023 	ddt_entry_t *dde = zio->io_private;
2024 	ddt_phys_t *ddp = &dde->dde_phys[p];
2025 	zio_t *pio;
2026 
2027 	if (zio->io_error)
2028 		return;
2029 
2030 	ddt_enter(ddt);
2031 
2032 	ASSERT(dde->dde_lead_zio[p] == zio);
2033 
2034 	ddt_phys_fill(ddp, zio->io_bp);
2035 
2036 	while ((pio = zio_walk_parents(zio)) != NULL)
2037 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2038 
2039 	ddt_exit(ddt);
2040 }
2041 
2042 static void
2043 zio_ddt_child_write_done(zio_t *zio)
2044 {
2045 	int p = zio->io_prop.zp_copies;
2046 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2047 	ddt_entry_t *dde = zio->io_private;
2048 	ddt_phys_t *ddp = &dde->dde_phys[p];
2049 
2050 	ddt_enter(ddt);
2051 
2052 	ASSERT(ddp->ddp_refcnt == 0);
2053 	ASSERT(dde->dde_lead_zio[p] == zio);
2054 	dde->dde_lead_zio[p] = NULL;
2055 
2056 	if (zio->io_error == 0) {
2057 		while (zio_walk_parents(zio) != NULL)
2058 			ddt_phys_addref(ddp);
2059 	} else {
2060 		ddt_phys_clear(ddp);
2061 	}
2062 
2063 	ddt_exit(ddt);
2064 }
2065 
2066 static void
2067 zio_ddt_ditto_write_done(zio_t *zio)
2068 {
2069 	int p = DDT_PHYS_DITTO;
2070 	zio_prop_t *zp = &zio->io_prop;
2071 	blkptr_t *bp = zio->io_bp;
2072 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2073 	ddt_entry_t *dde = zio->io_private;
2074 	ddt_phys_t *ddp = &dde->dde_phys[p];
2075 	ddt_key_t *ddk = &dde->dde_key;
2076 
2077 	ddt_enter(ddt);
2078 
2079 	ASSERT(ddp->ddp_refcnt == 0);
2080 	ASSERT(dde->dde_lead_zio[p] == zio);
2081 	dde->dde_lead_zio[p] = NULL;
2082 
2083 	if (zio->io_error == 0) {
2084 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2085 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2086 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2087 		if (ddp->ddp_phys_birth != 0)
2088 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2089 		ddt_phys_fill(ddp, bp);
2090 	}
2091 
2092 	ddt_exit(ddt);
2093 }
2094 
2095 static int
2096 zio_ddt_write(zio_t *zio)
2097 {
2098 	spa_t *spa = zio->io_spa;
2099 	blkptr_t *bp = zio->io_bp;
2100 	uint64_t txg = zio->io_txg;
2101 	zio_prop_t *zp = &zio->io_prop;
2102 	int p = zp->zp_copies;
2103 	int ditto_copies;
2104 	zio_t *cio = NULL;
2105 	zio_t *dio = NULL;
2106 	ddt_t *ddt = ddt_select(spa, bp);
2107 	ddt_entry_t *dde;
2108 	ddt_phys_t *ddp;
2109 
2110 	ASSERT(BP_GET_DEDUP(bp));
2111 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2112 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2113 
2114 	ddt_enter(ddt);
2115 	dde = ddt_lookup(ddt, bp, B_TRUE);
2116 	ddp = &dde->dde_phys[p];
2117 
2118 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2119 		/*
2120 		 * If we're using a weak checksum, upgrade to a strong checksum
2121 		 * and try again.  If we're already using a strong checksum,
2122 		 * we can't resolve it, so just convert to an ordinary write.
2123 		 * (And automatically e-mail a paper to Nature?)
2124 		 */
2125 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2126 			zp->zp_checksum = spa_dedup_checksum(spa);
2127 			zio_pop_transforms(zio);
2128 			zio->io_stage = ZIO_STAGE_OPEN;
2129 			BP_ZERO(bp);
2130 		} else {
2131 			zp->zp_dedup = B_FALSE;
2132 		}
2133 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2134 		ddt_exit(ddt);
2135 		return (ZIO_PIPELINE_CONTINUE);
2136 	}
2137 
2138 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2139 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2140 
2141 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2142 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2143 		zio_prop_t czp = *zp;
2144 
2145 		czp.zp_copies = ditto_copies;
2146 
2147 		/*
2148 		 * If we arrived here with an override bp, we won't have run
2149 		 * the transform stack, so we won't have the data we need to
2150 		 * generate a child i/o.  So, toss the override bp and restart.
2151 		 * This is safe, because using the override bp is just an
2152 		 * optimization; and it's rare, so the cost doesn't matter.
2153 		 */
2154 		if (zio->io_bp_override) {
2155 			zio_pop_transforms(zio);
2156 			zio->io_stage = ZIO_STAGE_OPEN;
2157 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2158 			zio->io_bp_override = NULL;
2159 			BP_ZERO(bp);
2160 			ddt_exit(ddt);
2161 			return (ZIO_PIPELINE_CONTINUE);
2162 		}
2163 
2164 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2165 		    zio->io_orig_size, &czp, NULL,
2166 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2167 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2168 
2169 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2170 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2171 	}
2172 
2173 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2174 		if (ddp->ddp_phys_birth != 0)
2175 			ddt_bp_fill(ddp, bp, txg);
2176 		if (dde->dde_lead_zio[p] != NULL)
2177 			zio_add_child(zio, dde->dde_lead_zio[p]);
2178 		else
2179 			ddt_phys_addref(ddp);
2180 	} else if (zio->io_bp_override) {
2181 		ASSERT(bp->blk_birth == txg);
2182 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2183 		ddt_phys_fill(ddp, bp);
2184 		ddt_phys_addref(ddp);
2185 	} else {
2186 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2187 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2188 		    zio_ddt_child_write_done, dde, zio->io_priority,
2189 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2190 
2191 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2192 		dde->dde_lead_zio[p] = cio;
2193 	}
2194 
2195 	ddt_exit(ddt);
2196 
2197 	if (cio)
2198 		zio_nowait(cio);
2199 	if (dio)
2200 		zio_nowait(dio);
2201 
2202 	return (ZIO_PIPELINE_CONTINUE);
2203 }
2204 
2205 ddt_entry_t *freedde; /* for debugging */
2206 
2207 static int
2208 zio_ddt_free(zio_t *zio)
2209 {
2210 	spa_t *spa = zio->io_spa;
2211 	blkptr_t *bp = zio->io_bp;
2212 	ddt_t *ddt = ddt_select(spa, bp);
2213 	ddt_entry_t *dde;
2214 	ddt_phys_t *ddp;
2215 
2216 	ASSERT(BP_GET_DEDUP(bp));
2217 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2218 
2219 	ddt_enter(ddt);
2220 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2221 	ddp = ddt_phys_select(dde, bp);
2222 	ddt_phys_decref(ddp);
2223 	ddt_exit(ddt);
2224 
2225 	return (ZIO_PIPELINE_CONTINUE);
2226 }
2227 
2228 /*
2229  * ==========================================================================
2230  * Allocate and free blocks
2231  * ==========================================================================
2232  */
2233 static int
2234 zio_dva_allocate(zio_t *zio)
2235 {
2236 	spa_t *spa = zio->io_spa;
2237 	metaslab_class_t *mc = spa_normal_class(spa);
2238 	blkptr_t *bp = zio->io_bp;
2239 	int error;
2240 	int flags = 0;
2241 
2242 	if (zio->io_gang_leader == NULL) {
2243 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2244 		zio->io_gang_leader = zio;
2245 	}
2246 
2247 	ASSERT(BP_IS_HOLE(bp));
2248 	ASSERT0(BP_GET_NDVAS(bp));
2249 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2250 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2251 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2252 
2253 	/*
2254 	 * The dump device does not support gang blocks so allocation on
2255 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2256 	 * the "fast" gang feature.
2257 	 */
2258 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2259 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2260 	    METASLAB_GANG_CHILD : 0;
2261 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2262 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2263 
2264 	if (error) {
2265 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2266 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2267 		    error);
2268 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2269 			return (zio_write_gang_block(zio));
2270 		zio->io_error = error;
2271 	}
2272 
2273 	return (ZIO_PIPELINE_CONTINUE);
2274 }
2275 
2276 static int
2277 zio_dva_free(zio_t *zio)
2278 {
2279 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2280 
2281 	return (ZIO_PIPELINE_CONTINUE);
2282 }
2283 
2284 static int
2285 zio_dva_claim(zio_t *zio)
2286 {
2287 	int error;
2288 
2289 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2290 	if (error)
2291 		zio->io_error = error;
2292 
2293 	return (ZIO_PIPELINE_CONTINUE);
2294 }
2295 
2296 /*
2297  * Undo an allocation.  This is used by zio_done() when an I/O fails
2298  * and we want to give back the block we just allocated.
2299  * This handles both normal blocks and gang blocks.
2300  */
2301 static void
2302 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2303 {
2304 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2305 	ASSERT(zio->io_bp_override == NULL);
2306 
2307 	if (!BP_IS_HOLE(bp))
2308 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2309 
2310 	if (gn != NULL) {
2311 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2312 			zio_dva_unallocate(zio, gn->gn_child[g],
2313 			    &gn->gn_gbh->zg_blkptr[g]);
2314 		}
2315 	}
2316 }
2317 
2318 /*
2319  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2320  */
2321 int
2322 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2323     uint64_t size, boolean_t use_slog)
2324 {
2325 	int error = 1;
2326 
2327 	ASSERT(txg > spa_syncing_txg(spa));
2328 
2329 	/*
2330 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2331 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2332 	 * when allocating them.
2333 	 */
2334 	if (use_slog) {
2335 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2336 		    new_bp, 1, txg, old_bp,
2337 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2338 	}
2339 
2340 	if (error) {
2341 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2342 		    new_bp, 1, txg, old_bp,
2343 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2344 	}
2345 
2346 	if (error == 0) {
2347 		BP_SET_LSIZE(new_bp, size);
2348 		BP_SET_PSIZE(new_bp, size);
2349 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2350 		BP_SET_CHECKSUM(new_bp,
2351 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2352 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2353 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2354 		BP_SET_LEVEL(new_bp, 0);
2355 		BP_SET_DEDUP(new_bp, 0);
2356 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2357 	}
2358 
2359 	return (error);
2360 }
2361 
2362 /*
2363  * Free an intent log block.
2364  */
2365 void
2366 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2367 {
2368 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2369 	ASSERT(!BP_IS_GANG(bp));
2370 
2371 	zio_free(spa, txg, bp);
2372 }
2373 
2374 /*
2375  * ==========================================================================
2376  * Read and write to physical devices
2377  * ==========================================================================
2378  */
2379 static int
2380 zio_vdev_io_start(zio_t *zio)
2381 {
2382 	vdev_t *vd = zio->io_vd;
2383 	uint64_t align;
2384 	spa_t *spa = zio->io_spa;
2385 
2386 	ASSERT(zio->io_error == 0);
2387 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2388 
2389 	if (vd == NULL) {
2390 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2391 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2392 
2393 		/*
2394 		 * The mirror_ops handle multiple DVAs in a single BP.
2395 		 */
2396 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2397 	}
2398 
2399 	/*
2400 	 * We keep track of time-sensitive I/Os so that the scan thread
2401 	 * can quickly react to certain workloads.  In particular, we care
2402 	 * about non-scrubbing, top-level reads and writes with the following
2403 	 * characteristics:
2404 	 * 	- synchronous writes of user data to non-slog devices
2405 	 *	- any reads of user data
2406 	 * When these conditions are met, adjust the timestamp of spa_last_io
2407 	 * which allows the scan thread to adjust its workload accordingly.
2408 	 */
2409 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2410 	    vd == vd->vdev_top && !vd->vdev_islog &&
2411 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2412 	    zio->io_txg != spa_syncing_txg(spa)) {
2413 		uint64_t old = spa->spa_last_io;
2414 		uint64_t new = ddi_get_lbolt64();
2415 		if (old != new)
2416 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2417 	}
2418 
2419 	align = 1ULL << vd->vdev_top->vdev_ashift;
2420 
2421 	if (P2PHASE(zio->io_size, align) != 0) {
2422 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2423 		char *abuf = zio_buf_alloc(asize);
2424 		ASSERT(vd == vd->vdev_top);
2425 		if (zio->io_type == ZIO_TYPE_WRITE) {
2426 			bcopy(zio->io_data, abuf, zio->io_size);
2427 			bzero(abuf + zio->io_size, asize - zio->io_size);
2428 		}
2429 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2430 	}
2431 
2432 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2433 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2434 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2435 
2436 	/*
2437 	 * If this is a repair I/O, and there's no self-healing involved --
2438 	 * that is, we're just resilvering what we expect to resilver --
2439 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2440 	 * This prevents spurious resilvering with nested replication.
2441 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2442 	 * A is out of date, we'll read from C+D, then use the data to
2443 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2444 	 * The top-level mirror has no way to know this, so instead we just
2445 	 * discard unnecessary repairs as we work our way down the vdev tree.
2446 	 * The same logic applies to any form of nested replication:
2447 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2448 	 */
2449 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2450 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2451 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2452 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2453 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2454 		zio_vdev_io_bypass(zio);
2455 		return (ZIO_PIPELINE_CONTINUE);
2456 	}
2457 
2458 	if (vd->vdev_ops->vdev_op_leaf &&
2459 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2460 
2461 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2462 			return (ZIO_PIPELINE_CONTINUE);
2463 
2464 		if ((zio = vdev_queue_io(zio)) == NULL)
2465 			return (ZIO_PIPELINE_STOP);
2466 
2467 		if (!vdev_accessible(vd, zio)) {
2468 			zio->io_error = ENXIO;
2469 			zio_interrupt(zio);
2470 			return (ZIO_PIPELINE_STOP);
2471 		}
2472 	}
2473 
2474 	return (vd->vdev_ops->vdev_op_io_start(zio));
2475 }
2476 
2477 static int
2478 zio_vdev_io_done(zio_t *zio)
2479 {
2480 	vdev_t *vd = zio->io_vd;
2481 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2482 	boolean_t unexpected_error = B_FALSE;
2483 
2484 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2485 		return (ZIO_PIPELINE_STOP);
2486 
2487 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2488 
2489 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2490 
2491 		vdev_queue_io_done(zio);
2492 
2493 		if (zio->io_type == ZIO_TYPE_WRITE)
2494 			vdev_cache_write(zio);
2495 
2496 		if (zio_injection_enabled && zio->io_error == 0)
2497 			zio->io_error = zio_handle_device_injection(vd,
2498 			    zio, EIO);
2499 
2500 		if (zio_injection_enabled && zio->io_error == 0)
2501 			zio->io_error = zio_handle_label_injection(zio, EIO);
2502 
2503 		if (zio->io_error) {
2504 			if (!vdev_accessible(vd, zio)) {
2505 				zio->io_error = ENXIO;
2506 			} else {
2507 				unexpected_error = B_TRUE;
2508 			}
2509 		}
2510 	}
2511 
2512 	ops->vdev_op_io_done(zio);
2513 
2514 	if (unexpected_error)
2515 		VERIFY(vdev_probe(vd, zio) == NULL);
2516 
2517 	return (ZIO_PIPELINE_CONTINUE);
2518 }
2519 
2520 /*
2521  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2522  * disk, and use that to finish the checksum ereport later.
2523  */
2524 static void
2525 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2526     const void *good_buf)
2527 {
2528 	/* no processing needed */
2529 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2530 }
2531 
2532 /*ARGSUSED*/
2533 void
2534 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2535 {
2536 	void *buf = zio_buf_alloc(zio->io_size);
2537 
2538 	bcopy(zio->io_data, buf, zio->io_size);
2539 
2540 	zcr->zcr_cbinfo = zio->io_size;
2541 	zcr->zcr_cbdata = buf;
2542 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2543 	zcr->zcr_free = zio_buf_free;
2544 }
2545 
2546 static int
2547 zio_vdev_io_assess(zio_t *zio)
2548 {
2549 	vdev_t *vd = zio->io_vd;
2550 
2551 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2552 		return (ZIO_PIPELINE_STOP);
2553 
2554 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2555 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2556 
2557 	if (zio->io_vsd != NULL) {
2558 		zio->io_vsd_ops->vsd_free(zio);
2559 		zio->io_vsd = NULL;
2560 	}
2561 
2562 	if (zio_injection_enabled && zio->io_error == 0)
2563 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2564 
2565 	/*
2566 	 * If the I/O failed, determine whether we should attempt to retry it.
2567 	 *
2568 	 * On retry, we cut in line in the issue queue, since we don't want
2569 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2570 	 */
2571 	if (zio->io_error && vd == NULL &&
2572 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2573 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2574 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2575 		zio->io_error = 0;
2576 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2577 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2578 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2579 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2580 		    zio_requeue_io_start_cut_in_line);
2581 		return (ZIO_PIPELINE_STOP);
2582 	}
2583 
2584 	/*
2585 	 * If we got an error on a leaf device, convert it to ENXIO
2586 	 * if the device is not accessible at all.
2587 	 */
2588 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2589 	    !vdev_accessible(vd, zio))
2590 		zio->io_error = ENXIO;
2591 
2592 	/*
2593 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2594 	 * set vdev_cant_write so that we stop trying to allocate from it.
2595 	 */
2596 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2597 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2598 		vd->vdev_cant_write = B_TRUE;
2599 
2600 	if (zio->io_error)
2601 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2602 
2603 	return (ZIO_PIPELINE_CONTINUE);
2604 }
2605 
2606 void
2607 zio_vdev_io_reissue(zio_t *zio)
2608 {
2609 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2610 	ASSERT(zio->io_error == 0);
2611 
2612 	zio->io_stage >>= 1;
2613 }
2614 
2615 void
2616 zio_vdev_io_redone(zio_t *zio)
2617 {
2618 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2619 
2620 	zio->io_stage >>= 1;
2621 }
2622 
2623 void
2624 zio_vdev_io_bypass(zio_t *zio)
2625 {
2626 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2627 	ASSERT(zio->io_error == 0);
2628 
2629 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2630 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2631 }
2632 
2633 /*
2634  * ==========================================================================
2635  * Generate and verify checksums
2636  * ==========================================================================
2637  */
2638 static int
2639 zio_checksum_generate(zio_t *zio)
2640 {
2641 	blkptr_t *bp = zio->io_bp;
2642 	enum zio_checksum checksum;
2643 
2644 	if (bp == NULL) {
2645 		/*
2646 		 * This is zio_write_phys().
2647 		 * We're either generating a label checksum, or none at all.
2648 		 */
2649 		checksum = zio->io_prop.zp_checksum;
2650 
2651 		if (checksum == ZIO_CHECKSUM_OFF)
2652 			return (ZIO_PIPELINE_CONTINUE);
2653 
2654 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2655 	} else {
2656 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2657 			ASSERT(!IO_IS_ALLOCATING(zio));
2658 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2659 		} else {
2660 			checksum = BP_GET_CHECKSUM(bp);
2661 		}
2662 	}
2663 
2664 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2665 
2666 	return (ZIO_PIPELINE_CONTINUE);
2667 }
2668 
2669 static int
2670 zio_checksum_verify(zio_t *zio)
2671 {
2672 	zio_bad_cksum_t info;
2673 	blkptr_t *bp = zio->io_bp;
2674 	int error;
2675 
2676 	ASSERT(zio->io_vd != NULL);
2677 
2678 	if (bp == NULL) {
2679 		/*
2680 		 * This is zio_read_phys().
2681 		 * We're either verifying a label checksum, or nothing at all.
2682 		 */
2683 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2684 			return (ZIO_PIPELINE_CONTINUE);
2685 
2686 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2687 	}
2688 
2689 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2690 		zio->io_error = error;
2691 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2692 			zfs_ereport_start_checksum(zio->io_spa,
2693 			    zio->io_vd, zio, zio->io_offset,
2694 			    zio->io_size, NULL, &info);
2695 		}
2696 	}
2697 
2698 	return (ZIO_PIPELINE_CONTINUE);
2699 }
2700 
2701 /*
2702  * Called by RAID-Z to ensure we don't compute the checksum twice.
2703  */
2704 void
2705 zio_checksum_verified(zio_t *zio)
2706 {
2707 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2708 }
2709 
2710 /*
2711  * ==========================================================================
2712  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2713  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2714  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2715  * indicate errors that are specific to one I/O, and most likely permanent.
2716  * Any other error is presumed to be worse because we weren't expecting it.
2717  * ==========================================================================
2718  */
2719 int
2720 zio_worst_error(int e1, int e2)
2721 {
2722 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2723 	int r1, r2;
2724 
2725 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2726 		if (e1 == zio_error_rank[r1])
2727 			break;
2728 
2729 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2730 		if (e2 == zio_error_rank[r2])
2731 			break;
2732 
2733 	return (r1 > r2 ? e1 : e2);
2734 }
2735 
2736 /*
2737  * ==========================================================================
2738  * I/O completion
2739  * ==========================================================================
2740  */
2741 static int
2742 zio_ready(zio_t *zio)
2743 {
2744 	blkptr_t *bp = zio->io_bp;
2745 	zio_t *pio, *pio_next;
2746 
2747 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2748 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2749 		return (ZIO_PIPELINE_STOP);
2750 
2751 	if (zio->io_ready) {
2752 		ASSERT(IO_IS_ALLOCATING(zio));
2753 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2754 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2755 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2756 
2757 		zio->io_ready(zio);
2758 	}
2759 
2760 	if (bp != NULL && bp != &zio->io_bp_copy)
2761 		zio->io_bp_copy = *bp;
2762 
2763 	if (zio->io_error)
2764 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2765 
2766 	mutex_enter(&zio->io_lock);
2767 	zio->io_state[ZIO_WAIT_READY] = 1;
2768 	pio = zio_walk_parents(zio);
2769 	mutex_exit(&zio->io_lock);
2770 
2771 	/*
2772 	 * As we notify zio's parents, new parents could be added.
2773 	 * New parents go to the head of zio's io_parent_list, however,
2774 	 * so we will (correctly) not notify them.  The remainder of zio's
2775 	 * io_parent_list, from 'pio_next' onward, cannot change because
2776 	 * all parents must wait for us to be done before they can be done.
2777 	 */
2778 	for (; pio != NULL; pio = pio_next) {
2779 		pio_next = zio_walk_parents(zio);
2780 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2781 	}
2782 
2783 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2784 		if (BP_IS_GANG(bp)) {
2785 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2786 		} else {
2787 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2788 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2789 		}
2790 	}
2791 
2792 	if (zio_injection_enabled &&
2793 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2794 		zio_handle_ignored_writes(zio);
2795 
2796 	return (ZIO_PIPELINE_CONTINUE);
2797 }
2798 
2799 static int
2800 zio_done(zio_t *zio)
2801 {
2802 	spa_t *spa = zio->io_spa;
2803 	zio_t *lio = zio->io_logical;
2804 	blkptr_t *bp = zio->io_bp;
2805 	vdev_t *vd = zio->io_vd;
2806 	uint64_t psize = zio->io_size;
2807 	zio_t *pio, *pio_next;
2808 
2809 	/*
2810 	 * If our children haven't all completed,
2811 	 * wait for them and then repeat this pipeline stage.
2812 	 */
2813 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2814 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2815 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2816 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2817 		return (ZIO_PIPELINE_STOP);
2818 
2819 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2820 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2821 			ASSERT(zio->io_children[c][w] == 0);
2822 
2823 	if (bp != NULL) {
2824 		ASSERT(bp->blk_pad[0] == 0);
2825 		ASSERT(bp->blk_pad[1] == 0);
2826 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2827 		    (bp == zio_unique_parent(zio)->io_bp));
2828 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2829 		    zio->io_bp_override == NULL &&
2830 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2831 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2832 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2833 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2834 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2835 		}
2836 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2837 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2838 	}
2839 
2840 	/*
2841 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2842 	 */
2843 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2844 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2845 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2846 
2847 	/*
2848 	 * If the I/O on the transformed data was successful, generate any
2849 	 * checksum reports now while we still have the transformed data.
2850 	 */
2851 	if (zio->io_error == 0) {
2852 		while (zio->io_cksum_report != NULL) {
2853 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2854 			uint64_t align = zcr->zcr_align;
2855 			uint64_t asize = P2ROUNDUP(psize, align);
2856 			char *abuf = zio->io_data;
2857 
2858 			if (asize != psize) {
2859 				abuf = zio_buf_alloc(asize);
2860 				bcopy(zio->io_data, abuf, psize);
2861 				bzero(abuf + psize, asize - psize);
2862 			}
2863 
2864 			zio->io_cksum_report = zcr->zcr_next;
2865 			zcr->zcr_next = NULL;
2866 			zcr->zcr_finish(zcr, abuf);
2867 			zfs_ereport_free_checksum(zcr);
2868 
2869 			if (asize != psize)
2870 				zio_buf_free(abuf, asize);
2871 		}
2872 	}
2873 
2874 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2875 
2876 	vdev_stat_update(zio, psize);
2877 
2878 	if (zio->io_error) {
2879 		/*
2880 		 * If this I/O is attached to a particular vdev,
2881 		 * generate an error message describing the I/O failure
2882 		 * at the block level.  We ignore these errors if the
2883 		 * device is currently unavailable.
2884 		 */
2885 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2886 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2887 
2888 		if ((zio->io_error == EIO || !(zio->io_flags &
2889 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2890 		    zio == lio) {
2891 			/*
2892 			 * For logical I/O requests, tell the SPA to log the
2893 			 * error and generate a logical data ereport.
2894 			 */
2895 			spa_log_error(spa, zio);
2896 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2897 			    0, 0);
2898 		}
2899 	}
2900 
2901 	if (zio->io_error && zio == lio) {
2902 		/*
2903 		 * Determine whether zio should be reexecuted.  This will
2904 		 * propagate all the way to the root via zio_notify_parent().
2905 		 */
2906 		ASSERT(vd == NULL && bp != NULL);
2907 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2908 
2909 		if (IO_IS_ALLOCATING(zio) &&
2910 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2911 			if (zio->io_error != ENOSPC)
2912 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2913 			else
2914 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2915 		}
2916 
2917 		if ((zio->io_type == ZIO_TYPE_READ ||
2918 		    zio->io_type == ZIO_TYPE_FREE) &&
2919 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2920 		    zio->io_error == ENXIO &&
2921 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2922 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2923 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2924 
2925 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2926 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2927 
2928 		/*
2929 		 * Here is a possibly good place to attempt to do
2930 		 * either combinatorial reconstruction or error correction
2931 		 * based on checksums.  It also might be a good place
2932 		 * to send out preliminary ereports before we suspend
2933 		 * processing.
2934 		 */
2935 	}
2936 
2937 	/*
2938 	 * If there were logical child errors, they apply to us now.
2939 	 * We defer this until now to avoid conflating logical child
2940 	 * errors with errors that happened to the zio itself when
2941 	 * updating vdev stats and reporting FMA events above.
2942 	 */
2943 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2944 
2945 	if ((zio->io_error || zio->io_reexecute) &&
2946 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2947 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2948 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2949 
2950 	zio_gang_tree_free(&zio->io_gang_tree);
2951 
2952 	/*
2953 	 * Godfather I/Os should never suspend.
2954 	 */
2955 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2956 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2957 		zio->io_reexecute = 0;
2958 
2959 	if (zio->io_reexecute) {
2960 		/*
2961 		 * This is a logical I/O that wants to reexecute.
2962 		 *
2963 		 * Reexecute is top-down.  When an i/o fails, if it's not
2964 		 * the root, it simply notifies its parent and sticks around.
2965 		 * The parent, seeing that it still has children in zio_done(),
2966 		 * does the same.  This percolates all the way up to the root.
2967 		 * The root i/o will reexecute or suspend the entire tree.
2968 		 *
2969 		 * This approach ensures that zio_reexecute() honors
2970 		 * all the original i/o dependency relationships, e.g.
2971 		 * parents not executing until children are ready.
2972 		 */
2973 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2974 
2975 		zio->io_gang_leader = NULL;
2976 
2977 		mutex_enter(&zio->io_lock);
2978 		zio->io_state[ZIO_WAIT_DONE] = 1;
2979 		mutex_exit(&zio->io_lock);
2980 
2981 		/*
2982 		 * "The Godfather" I/O monitors its children but is
2983 		 * not a true parent to them. It will track them through
2984 		 * the pipeline but severs its ties whenever they get into
2985 		 * trouble (e.g. suspended). This allows "The Godfather"
2986 		 * I/O to return status without blocking.
2987 		 */
2988 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2989 			zio_link_t *zl = zio->io_walk_link;
2990 			pio_next = zio_walk_parents(zio);
2991 
2992 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2993 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2994 				zio_remove_child(pio, zio, zl);
2995 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2996 			}
2997 		}
2998 
2999 		if ((pio = zio_unique_parent(zio)) != NULL) {
3000 			/*
3001 			 * We're not a root i/o, so there's nothing to do
3002 			 * but notify our parent.  Don't propagate errors
3003 			 * upward since we haven't permanently failed yet.
3004 			 */
3005 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3006 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3007 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3008 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3009 			/*
3010 			 * We'd fail again if we reexecuted now, so suspend
3011 			 * until conditions improve (e.g. device comes online).
3012 			 */
3013 			zio_suspend(spa, zio);
3014 		} else {
3015 			/*
3016 			 * Reexecution is potentially a huge amount of work.
3017 			 * Hand it off to the otherwise-unused claim taskq.
3018 			 */
3019 			ASSERT(zio->io_tqent.tqent_next == NULL);
3020 			taskq_dispatch_ent(
3021 			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3022 			    (task_func_t *)zio_reexecute, zio, 0,
3023 			    &zio->io_tqent);
3024 		}
3025 		return (ZIO_PIPELINE_STOP);
3026 	}
3027 
3028 	ASSERT(zio->io_child_count == 0);
3029 	ASSERT(zio->io_reexecute == 0);
3030 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3031 
3032 	/*
3033 	 * Report any checksum errors, since the I/O is complete.
3034 	 */
3035 	while (zio->io_cksum_report != NULL) {
3036 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3037 		zio->io_cksum_report = zcr->zcr_next;
3038 		zcr->zcr_next = NULL;
3039 		zcr->zcr_finish(zcr, NULL);
3040 		zfs_ereport_free_checksum(zcr);
3041 	}
3042 
3043 	/*
3044 	 * It is the responsibility of the done callback to ensure that this
3045 	 * particular zio is no longer discoverable for adoption, and as
3046 	 * such, cannot acquire any new parents.
3047 	 */
3048 	if (zio->io_done)
3049 		zio->io_done(zio);
3050 
3051 	mutex_enter(&zio->io_lock);
3052 	zio->io_state[ZIO_WAIT_DONE] = 1;
3053 	mutex_exit(&zio->io_lock);
3054 
3055 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3056 		zio_link_t *zl = zio->io_walk_link;
3057 		pio_next = zio_walk_parents(zio);
3058 		zio_remove_child(pio, zio, zl);
3059 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3060 	}
3061 
3062 	if (zio->io_waiter != NULL) {
3063 		mutex_enter(&zio->io_lock);
3064 		zio->io_executor = NULL;
3065 		cv_broadcast(&zio->io_cv);
3066 		mutex_exit(&zio->io_lock);
3067 	} else {
3068 		zio_destroy(zio);
3069 	}
3070 
3071 	return (ZIO_PIPELINE_STOP);
3072 }
3073 
3074 /*
3075  * ==========================================================================
3076  * I/O pipeline definition
3077  * ==========================================================================
3078  */
3079 static zio_pipe_stage_t *zio_pipeline[] = {
3080 	NULL,
3081 	zio_read_bp_init,
3082 	zio_free_bp_init,
3083 	zio_issue_async,
3084 	zio_write_bp_init,
3085 	zio_checksum_generate,
3086 	zio_nop_write,
3087 	zio_ddt_read_start,
3088 	zio_ddt_read_done,
3089 	zio_ddt_write,
3090 	zio_ddt_free,
3091 	zio_gang_assemble,
3092 	zio_gang_issue,
3093 	zio_dva_allocate,
3094 	zio_dva_free,
3095 	zio_dva_claim,
3096 	zio_ready,
3097 	zio_vdev_io_start,
3098 	zio_vdev_io_done,
3099 	zio_vdev_io_assess,
3100 	zio_checksum_verify,
3101 	zio_done
3102 };
3103 
3104 /* dnp is the dnode for zb1->zb_object */
3105 boolean_t
3106 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3107     const zbookmark_t *zb2)
3108 {
3109 	uint64_t zb1nextL0, zb2thisobj;
3110 
3111 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3112 	ASSERT(zb2->zb_level == 0);
3113 
3114 	/*
3115 	 * A bookmark in the deadlist is considered to be after
3116 	 * everything else.
3117 	 */
3118 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3119 		return (B_TRUE);
3120 
3121 	/* The objset_phys_t isn't before anything. */
3122 	if (dnp == NULL)
3123 		return (B_FALSE);
3124 
3125 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3126 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3127 
3128 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3129 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3130 
3131 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3132 		uint64_t nextobj = zb1nextL0 *
3133 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3134 		return (nextobj <= zb2thisobj);
3135 	}
3136 
3137 	if (zb1->zb_object < zb2thisobj)
3138 		return (B_TRUE);
3139 	if (zb1->zb_object > zb2thisobj)
3140 		return (B_FALSE);
3141 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3142 		return (B_FALSE);
3143 	return (zb1nextL0 <= zb2->zb_blkid);
3144 }
3145