xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 01f55e48fb4d524eaf70687728aa51b7762e2e97)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 
40 /*
41  * ==========================================================================
42  * I/O priority table
43  * ==========================================================================
44  */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 	0,	/* ZIO_PRIORITY_NOW		*/
47 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
48 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	1,	/* ZIO_PRIORITY_AGG		*/
52 	4,	/* ZIO_PRIORITY_FREE		*/
53 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
54 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
55 	10,	/* ZIO_PRIORITY_RESILVER	*/
56 	20,	/* ZIO_PRIORITY_SCRUB		*/
57 	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
58 };
59 
60 /*
61  * ==========================================================================
62  * I/O type descriptions
63  * ==========================================================================
64  */
65 char *zio_type_name[ZIO_TYPES] = {
66 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
67 	"zio_ioctl"
68 };
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 
80 #ifdef _KERNEL
81 extern vmem_t *zio_alloc_arena;
82 #endif
83 extern int zfs_mg_alloc_failures;
84 
85 /*
86  * The following actions directly effect the spa's sync-to-convergence logic.
87  * The values below define the sync pass when we start performing the action.
88  * Care should be taken when changing these values as they directly impact
89  * spa_sync() performance. Tuning these values may introduce subtle performance
90  * pathologies and should only be done in the context of performance analysis.
91  * These tunables will eventually be removed and replaced with #defines once
92  * enough analysis has been done to determine optimal values.
93  *
94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
95  * regular blocks are not deferred.
96  */
97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
100 
101 /*
102  * An allocating zio is one that either currently has the DVA allocate
103  * stage set or will have it later in its lifetime.
104  */
105 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
106 
107 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
108 
109 #ifdef ZFS_DEBUG
110 int zio_buf_debug_limit = 16384;
111 #else
112 int zio_buf_debug_limit = 0;
113 #endif
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
132 	 * for each quarter-power of 2.  For large buffers, we want
133 	 * a cache for each multiple of PAGESIZE.
134 	 */
135 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
136 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
137 		size_t p2 = size;
138 		size_t align = 0;
139 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
140 
141 		while (p2 & (p2 - 1))
142 			p2 &= p2 - 1;
143 
144 #ifndef _KERNEL
145 		/*
146 		 * If we are using watchpoints, put each buffer on its own page,
147 		 * to eliminate the performance overhead of trapping to the
148 		 * kernel when modifying a non-watched buffer that shares the
149 		 * page with a watched buffer.
150 		 */
151 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
152 			continue;
153 #endif
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
157 			align = PAGESIZE;
158 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
167 
168 			/*
169 			 * Since zio_data bufs do not appear in crash dumps, we
170 			 * pass KMC_NOTOUCH so that no allocator metadata is
171 			 * stored with the buffers.
172 			 */
173 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
174 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
175 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
176 			    cflags | KMC_NOTOUCH);
177 		}
178 	}
179 
180 	while (--c != 0) {
181 		ASSERT(zio_buf_cache[c] != NULL);
182 		if (zio_buf_cache[c - 1] == NULL)
183 			zio_buf_cache[c - 1] = zio_buf_cache[c];
184 
185 		ASSERT(zio_data_buf_cache[c] != NULL);
186 		if (zio_data_buf_cache[c - 1] == NULL)
187 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
188 	}
189 
190 	/*
191 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
192 	 * to fail 3 times per txg or 8 failures, whichever is greater.
193 	 */
194 	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
195 
196 	zio_inject_init();
197 }
198 
199 void
200 zio_fini(void)
201 {
202 	size_t c;
203 	kmem_cache_t *last_cache = NULL;
204 	kmem_cache_t *last_data_cache = NULL;
205 
206 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
207 		if (zio_buf_cache[c] != last_cache) {
208 			last_cache = zio_buf_cache[c];
209 			kmem_cache_destroy(zio_buf_cache[c]);
210 		}
211 		zio_buf_cache[c] = NULL;
212 
213 		if (zio_data_buf_cache[c] != last_data_cache) {
214 			last_data_cache = zio_data_buf_cache[c];
215 			kmem_cache_destroy(zio_data_buf_cache[c]);
216 		}
217 		zio_data_buf_cache[c] = NULL;
218 	}
219 
220 	kmem_cache_destroy(zio_link_cache);
221 	kmem_cache_destroy(zio_cache);
222 
223 	zio_inject_fini();
224 }
225 
226 /*
227  * ==========================================================================
228  * Allocate and free I/O buffers
229  * ==========================================================================
230  */
231 
232 /*
233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
236  * excess / transient data in-core during a crashdump.
237  */
238 void *
239 zio_buf_alloc(size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
246 }
247 
248 /*
249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
250  * crashdump if the kernel panics.  This exists so that we will limit the amount
251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
252  * of kernel heap dumped to disk when the kernel panics)
253  */
254 void *
255 zio_data_buf_alloc(size_t size)
256 {
257 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258 
259 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260 
261 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
262 }
263 
264 void
265 zio_buf_free(void *buf, size_t size)
266 {
267 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268 
269 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
270 
271 	kmem_cache_free(zio_buf_cache[c], buf);
272 }
273 
274 void
275 zio_data_buf_free(void *buf, size_t size)
276 {
277 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278 
279 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280 
281 	kmem_cache_free(zio_data_buf_cache[c], buf);
282 }
283 
284 /*
285  * ==========================================================================
286  * Push and pop I/O transform buffers
287  * ==========================================================================
288  */
289 static void
290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
291 	zio_transform_func_t *transform)
292 {
293 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
294 
295 	zt->zt_orig_data = zio->io_data;
296 	zt->zt_orig_size = zio->io_size;
297 	zt->zt_bufsize = bufsize;
298 	zt->zt_transform = transform;
299 
300 	zt->zt_next = zio->io_transform_stack;
301 	zio->io_transform_stack = zt;
302 
303 	zio->io_data = data;
304 	zio->io_size = size;
305 }
306 
307 static void
308 zio_pop_transforms(zio_t *zio)
309 {
310 	zio_transform_t *zt;
311 
312 	while ((zt = zio->io_transform_stack) != NULL) {
313 		if (zt->zt_transform != NULL)
314 			zt->zt_transform(zio,
315 			    zt->zt_orig_data, zt->zt_orig_size);
316 
317 		if (zt->zt_bufsize != 0)
318 			zio_buf_free(zio->io_data, zt->zt_bufsize);
319 
320 		zio->io_data = zt->zt_orig_data;
321 		zio->io_size = zt->zt_orig_size;
322 		zio->io_transform_stack = zt->zt_next;
323 
324 		kmem_free(zt, sizeof (zio_transform_t));
325 	}
326 }
327 
328 /*
329  * ==========================================================================
330  * I/O transform callbacks for subblocks and decompression
331  * ==========================================================================
332  */
333 static void
334 zio_subblock(zio_t *zio, void *data, uint64_t size)
335 {
336 	ASSERT(zio->io_size > size);
337 
338 	if (zio->io_type == ZIO_TYPE_READ)
339 		bcopy(zio->io_data, data, size);
340 }
341 
342 static void
343 zio_decompress(zio_t *zio, void *data, uint64_t size)
344 {
345 	if (zio->io_error == 0 &&
346 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
347 	    zio->io_data, data, zio->io_size, size) != 0)
348 		zio->io_error = EIO;
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 /*
357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
358  *        continue calling these functions until they return NULL.
359  *        Otherwise, the next caller will pick up the list walk in
360  *        some indeterminate state.  (Otherwise every caller would
361  *        have to pass in a cookie to keep the state represented by
362  *        io_walk_link, which gets annoying.)
363  */
364 zio_t *
365 zio_walk_parents(zio_t *cio)
366 {
367 	zio_link_t *zl = cio->io_walk_link;
368 	list_t *pl = &cio->io_parent_list;
369 
370 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
371 	cio->io_walk_link = zl;
372 
373 	if (zl == NULL)
374 		return (NULL);
375 
376 	ASSERT(zl->zl_child == cio);
377 	return (zl->zl_parent);
378 }
379 
380 zio_t *
381 zio_walk_children(zio_t *pio)
382 {
383 	zio_link_t *zl = pio->io_walk_link;
384 	list_t *cl = &pio->io_child_list;
385 
386 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
387 	pio->io_walk_link = zl;
388 
389 	if (zl == NULL)
390 		return (NULL);
391 
392 	ASSERT(zl->zl_parent == pio);
393 	return (zl->zl_child);
394 }
395 
396 zio_t *
397 zio_unique_parent(zio_t *cio)
398 {
399 	zio_t *pio = zio_walk_parents(cio);
400 
401 	VERIFY(zio_walk_parents(cio) == NULL);
402 	return (pio);
403 }
404 
405 void
406 zio_add_child(zio_t *pio, zio_t *cio)
407 {
408 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
409 
410 	/*
411 	 * Logical I/Os can have logical, gang, or vdev children.
412 	 * Gang I/Os can have gang or vdev children.
413 	 * Vdev I/Os can only have vdev children.
414 	 * The following ASSERT captures all of these constraints.
415 	 */
416 	ASSERT(cio->io_child_type <= pio->io_child_type);
417 
418 	zl->zl_parent = pio;
419 	zl->zl_child = cio;
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
425 
426 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
427 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
428 
429 	list_insert_head(&pio->io_child_list, zl);
430 	list_insert_head(&cio->io_parent_list, zl);
431 
432 	pio->io_child_count++;
433 	cio->io_parent_count++;
434 
435 	mutex_exit(&pio->io_lock);
436 	mutex_exit(&cio->io_lock);
437 }
438 
439 static void
440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
441 {
442 	ASSERT(zl->zl_parent == pio);
443 	ASSERT(zl->zl_child == cio);
444 
445 	mutex_enter(&cio->io_lock);
446 	mutex_enter(&pio->io_lock);
447 
448 	list_remove(&pio->io_child_list, zl);
449 	list_remove(&cio->io_parent_list, zl);
450 
451 	pio->io_child_count--;
452 	cio->io_parent_count--;
453 
454 	mutex_exit(&pio->io_lock);
455 	mutex_exit(&cio->io_lock);
456 
457 	kmem_cache_free(zio_link_cache, zl);
458 }
459 
460 static boolean_t
461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &zio->io_children[child][wait];
464 	boolean_t waiting = B_FALSE;
465 
466 	mutex_enter(&zio->io_lock);
467 	ASSERT(zio->io_stall == NULL);
468 	if (*countp != 0) {
469 		zio->io_stage >>= 1;
470 		zio->io_stall = countp;
471 		waiting = B_TRUE;
472 	}
473 	mutex_exit(&zio->io_lock);
474 
475 	return (waiting);
476 }
477 
478 static void
479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
480 {
481 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
482 	int *errorp = &pio->io_child_error[zio->io_child_type];
483 
484 	mutex_enter(&pio->io_lock);
485 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
486 		*errorp = zio_worst_error(*errorp, zio->io_error);
487 	pio->io_reexecute |= zio->io_reexecute;
488 	ASSERT3U(*countp, >, 0);
489 	if (--*countp == 0 && pio->io_stall == countp) {
490 		pio->io_stall = NULL;
491 		mutex_exit(&pio->io_lock);
492 		zio_execute(pio);
493 	} else {
494 		mutex_exit(&pio->io_lock);
495 	}
496 }
497 
498 static void
499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
500 {
501 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
502 		zio->io_error = zio->io_child_error[c];
503 }
504 
505 /*
506  * ==========================================================================
507  * Create the various types of I/O (read, write, free, etc)
508  * ==========================================================================
509  */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512     void *data, uint64_t size, zio_done_func_t *done, void *private,
513     zio_type_t type, int priority, enum zio_flag flags,
514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515     enum zio_stage stage, enum zio_stage pipeline)
516 {
517 	zio_t *zio;
518 
519 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
522 
523 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
526 
527 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 	bzero(zio, sizeof (zio_t));
529 
530 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
532 
533 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 	    offsetof(zio_link_t, zl_parent_node));
535 	list_create(&zio->io_child_list, sizeof (zio_link_t),
536 	    offsetof(zio_link_t, zl_child_node));
537 
538 	if (vd != NULL)
539 		zio->io_child_type = ZIO_CHILD_VDEV;
540 	else if (flags & ZIO_FLAG_GANG_CHILD)
541 		zio->io_child_type = ZIO_CHILD_GANG;
542 	else if (flags & ZIO_FLAG_DDT_CHILD)
543 		zio->io_child_type = ZIO_CHILD_DDT;
544 	else
545 		zio->io_child_type = ZIO_CHILD_LOGICAL;
546 
547 	if (bp != NULL) {
548 		zio->io_bp = (blkptr_t *)bp;
549 		zio->io_bp_copy = *bp;
550 		zio->io_bp_orig = *bp;
551 		if (type != ZIO_TYPE_WRITE ||
552 		    zio->io_child_type == ZIO_CHILD_DDT)
553 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
554 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 			zio->io_logical = zio;
556 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 			pipeline |= ZIO_GANG_STAGES;
558 	}
559 
560 	zio->io_spa = spa;
561 	zio->io_txg = txg;
562 	zio->io_done = done;
563 	zio->io_private = private;
564 	zio->io_type = type;
565 	zio->io_priority = priority;
566 	zio->io_vd = vd;
567 	zio->io_offset = offset;
568 	zio->io_orig_data = zio->io_data = data;
569 	zio->io_orig_size = zio->io_size = size;
570 	zio->io_orig_flags = zio->io_flags = flags;
571 	zio->io_orig_stage = zio->io_stage = stage;
572 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
573 
574 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
576 
577 	if (zb != NULL)
578 		zio->io_bookmark = *zb;
579 
580 	if (pio != NULL) {
581 		if (zio->io_logical == NULL)
582 			zio->io_logical = pio->io_logical;
583 		if (zio->io_child_type == ZIO_CHILD_GANG)
584 			zio->io_gang_leader = pio->io_gang_leader;
585 		zio_add_child(pio, zio);
586 	}
587 
588 	return (zio);
589 }
590 
591 static void
592 zio_destroy(zio_t *zio)
593 {
594 	list_destroy(&zio->io_parent_list);
595 	list_destroy(&zio->io_child_list);
596 	mutex_destroy(&zio->io_lock);
597 	cv_destroy(&zio->io_cv);
598 	kmem_cache_free(zio_cache, zio);
599 }
600 
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603     void *private, enum zio_flag flags)
604 {
605 	zio_t *zio;
606 
607 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
610 
611 	return (zio);
612 }
613 
614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
616 {
617 	return (zio_null(NULL, spa, NULL, done, private, flags));
618 }
619 
620 zio_t *
621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
622     void *data, uint64_t size, zio_done_func_t *done, void *private,
623     int priority, enum zio_flag flags, const zbookmark_t *zb)
624 {
625 	zio_t *zio;
626 
627 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
628 	    data, size, done, private,
629 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
631 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
632 
633 	return (zio);
634 }
635 
636 zio_t *
637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
638     void *data, uint64_t size, const zio_prop_t *zp,
639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
640     int priority, enum zio_flag flags, const zbookmark_t *zb)
641 {
642 	zio_t *zio;
643 
644 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
645 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
646 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
647 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
648 	    DMU_OT_IS_VALID(zp->zp_type) &&
649 	    zp->zp_level < 32 &&
650 	    zp->zp_copies > 0 &&
651 	    zp->zp_copies <= spa_max_replication(spa) &&
652 	    zp->zp_dedup <= 1 &&
653 	    zp->zp_dedup_verify <= 1);
654 
655 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
656 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
657 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
658 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
659 
660 	zio->io_ready = ready;
661 	zio->io_prop = *zp;
662 
663 	return (zio);
664 }
665 
666 zio_t *
667 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
668     uint64_t size, zio_done_func_t *done, void *private, int priority,
669     enum zio_flag flags, zbookmark_t *zb)
670 {
671 	zio_t *zio;
672 
673 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
674 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
675 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
676 
677 	return (zio);
678 }
679 
680 void
681 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
682 {
683 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
684 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
685 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
686 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
687 
688 	zio->io_prop.zp_copies = copies;
689 	zio->io_bp_override = bp;
690 }
691 
692 void
693 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
694 {
695 	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
696 }
697 
698 zio_t *
699 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
700     enum zio_flag flags)
701 {
702 	zio_t *zio;
703 
704 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
705 	    (longlong_t)txg, spa->spa_sync_pass);
706 
707 	ASSERT(!BP_IS_HOLE(bp));
708 	ASSERT(spa_syncing_txg(spa) == txg);
709 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
710 
711 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
712 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
713 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
714 
715 	return (zio);
716 }
717 
718 zio_t *
719 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
720     zio_done_func_t *done, void *private, enum zio_flag flags)
721 {
722 	zio_t *zio;
723 
724 	/*
725 	 * A claim is an allocation of a specific block.  Claims are needed
726 	 * to support immediate writes in the intent log.  The issue is that
727 	 * immediate writes contain committed data, but in a txg that was
728 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
729 	 * the intent log claims all blocks that contain immediate write data
730 	 * so that the SPA knows they're in use.
731 	 *
732 	 * All claims *must* be resolved in the first txg -- before the SPA
733 	 * starts allocating blocks -- so that nothing is allocated twice.
734 	 * If txg == 0 we just verify that the block is claimable.
735 	 */
736 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
737 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
738 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
739 
740 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
741 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
742 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
743 
744 	return (zio);
745 }
746 
747 zio_t *
748 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
749     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
750 {
751 	zio_t *zio;
752 	int c;
753 
754 	if (vd->vdev_children == 0) {
755 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
756 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
757 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
758 
759 		zio->io_cmd = cmd;
760 	} else {
761 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
762 
763 		for (c = 0; c < vd->vdev_children; c++)
764 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
765 			    done, private, priority, flags));
766 	}
767 
768 	return (zio);
769 }
770 
771 zio_t *
772 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
773     void *data, int checksum, zio_done_func_t *done, void *private,
774     int priority, enum zio_flag flags, boolean_t labels)
775 {
776 	zio_t *zio;
777 
778 	ASSERT(vd->vdev_children == 0);
779 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
780 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
781 	ASSERT3U(offset + size, <=, vd->vdev_psize);
782 
783 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
784 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
785 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
786 
787 	zio->io_prop.zp_checksum = checksum;
788 
789 	return (zio);
790 }
791 
792 zio_t *
793 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
794     void *data, int checksum, zio_done_func_t *done, void *private,
795     int priority, enum zio_flag flags, boolean_t labels)
796 {
797 	zio_t *zio;
798 
799 	ASSERT(vd->vdev_children == 0);
800 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
801 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
802 	ASSERT3U(offset + size, <=, vd->vdev_psize);
803 
804 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
805 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
806 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
807 
808 	zio->io_prop.zp_checksum = checksum;
809 
810 	if (zio_checksum_table[checksum].ci_eck) {
811 		/*
812 		 * zec checksums are necessarily destructive -- they modify
813 		 * the end of the write buffer to hold the verifier/checksum.
814 		 * Therefore, we must make a local copy in case the data is
815 		 * being written to multiple places in parallel.
816 		 */
817 		void *wbuf = zio_buf_alloc(size);
818 		bcopy(data, wbuf, size);
819 		zio_push_transform(zio, wbuf, size, size, NULL);
820 	}
821 
822 	return (zio);
823 }
824 
825 /*
826  * Create a child I/O to do some work for us.
827  */
828 zio_t *
829 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
830 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
831 	zio_done_func_t *done, void *private)
832 {
833 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
834 	zio_t *zio;
835 
836 	ASSERT(vd->vdev_parent ==
837 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
838 
839 	if (type == ZIO_TYPE_READ && bp != NULL) {
840 		/*
841 		 * If we have the bp, then the child should perform the
842 		 * checksum and the parent need not.  This pushes error
843 		 * detection as close to the leaves as possible and
844 		 * eliminates redundant checksums in the interior nodes.
845 		 */
846 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
847 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
848 	}
849 
850 	if (vd->vdev_children == 0)
851 		offset += VDEV_LABEL_START_SIZE;
852 
853 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
854 
855 	/*
856 	 * If we've decided to do a repair, the write is not speculative --
857 	 * even if the original read was.
858 	 */
859 	if (flags & ZIO_FLAG_IO_REPAIR)
860 		flags &= ~ZIO_FLAG_SPECULATIVE;
861 
862 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
863 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
864 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
865 
866 	return (zio);
867 }
868 
869 zio_t *
870 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
871 	int type, int priority, enum zio_flag flags,
872 	zio_done_func_t *done, void *private)
873 {
874 	zio_t *zio;
875 
876 	ASSERT(vd->vdev_ops->vdev_op_leaf);
877 
878 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
879 	    data, size, done, private, type, priority,
880 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
881 	    vd, offset, NULL,
882 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
883 
884 	return (zio);
885 }
886 
887 void
888 zio_flush(zio_t *zio, vdev_t *vd)
889 {
890 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
891 	    NULL, NULL, ZIO_PRIORITY_NOW,
892 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
893 }
894 
895 void
896 zio_shrink(zio_t *zio, uint64_t size)
897 {
898 	ASSERT(zio->io_executor == NULL);
899 	ASSERT(zio->io_orig_size == zio->io_size);
900 	ASSERT(size <= zio->io_size);
901 
902 	/*
903 	 * We don't shrink for raidz because of problems with the
904 	 * reconstruction when reading back less than the block size.
905 	 * Note, BP_IS_RAIDZ() assumes no compression.
906 	 */
907 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
908 	if (!BP_IS_RAIDZ(zio->io_bp))
909 		zio->io_orig_size = zio->io_size = size;
910 }
911 
912 /*
913  * ==========================================================================
914  * Prepare to read and write logical blocks
915  * ==========================================================================
916  */
917 
918 static int
919 zio_read_bp_init(zio_t *zio)
920 {
921 	blkptr_t *bp = zio->io_bp;
922 
923 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
924 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
925 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
926 		uint64_t psize = BP_GET_PSIZE(bp);
927 		void *cbuf = zio_buf_alloc(psize);
928 
929 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
930 	}
931 
932 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
933 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
934 
935 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
936 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
937 
938 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
939 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
940 
941 	return (ZIO_PIPELINE_CONTINUE);
942 }
943 
944 static int
945 zio_write_bp_init(zio_t *zio)
946 {
947 	spa_t *spa = zio->io_spa;
948 	zio_prop_t *zp = &zio->io_prop;
949 	enum zio_compress compress = zp->zp_compress;
950 	blkptr_t *bp = zio->io_bp;
951 	uint64_t lsize = zio->io_size;
952 	uint64_t psize = lsize;
953 	int pass = 1;
954 
955 	/*
956 	 * If our children haven't all reached the ready stage,
957 	 * wait for them and then repeat this pipeline stage.
958 	 */
959 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
960 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
961 		return (ZIO_PIPELINE_STOP);
962 
963 	if (!IO_IS_ALLOCATING(zio))
964 		return (ZIO_PIPELINE_CONTINUE);
965 
966 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
967 
968 	if (zio->io_bp_override) {
969 		ASSERT(bp->blk_birth != zio->io_txg);
970 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
971 
972 		*bp = *zio->io_bp_override;
973 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
974 
975 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
976 			return (ZIO_PIPELINE_CONTINUE);
977 
978 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
979 		    zp->zp_dedup_verify);
980 
981 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
982 			BP_SET_DEDUP(bp, 1);
983 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
984 			return (ZIO_PIPELINE_CONTINUE);
985 		}
986 		zio->io_bp_override = NULL;
987 		BP_ZERO(bp);
988 	}
989 
990 	if (bp->blk_birth == zio->io_txg) {
991 		/*
992 		 * We're rewriting an existing block, which means we're
993 		 * working on behalf of spa_sync().  For spa_sync() to
994 		 * converge, it must eventually be the case that we don't
995 		 * have to allocate new blocks.  But compression changes
996 		 * the blocksize, which forces a reallocate, and makes
997 		 * convergence take longer.  Therefore, after the first
998 		 * few passes, stop compressing to ensure convergence.
999 		 */
1000 		pass = spa_sync_pass(spa);
1001 
1002 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1003 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1004 		ASSERT(!BP_GET_DEDUP(bp));
1005 
1006 		if (pass >= zfs_sync_pass_dont_compress)
1007 			compress = ZIO_COMPRESS_OFF;
1008 
1009 		/* Make sure someone doesn't change their mind on overwrites */
1010 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1011 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1012 	}
1013 
1014 	if (compress != ZIO_COMPRESS_OFF) {
1015 		void *cbuf = zio_buf_alloc(lsize);
1016 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1017 		if (psize == 0 || psize == lsize) {
1018 			compress = ZIO_COMPRESS_OFF;
1019 			zio_buf_free(cbuf, lsize);
1020 		} else {
1021 			ASSERT(psize < lsize);
1022 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * The final pass of spa_sync() must be all rewrites, but the first
1028 	 * few passes offer a trade-off: allocating blocks defers convergence,
1029 	 * but newly allocated blocks are sequential, so they can be written
1030 	 * to disk faster.  Therefore, we allow the first few passes of
1031 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1032 	 * There should only be a handful of blocks after pass 1 in any case.
1033 	 */
1034 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1035 	    pass >= zfs_sync_pass_rewrite) {
1036 		ASSERT(psize != 0);
1037 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1038 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1039 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1040 	} else {
1041 		BP_ZERO(bp);
1042 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1043 	}
1044 
1045 	if (psize == 0) {
1046 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1047 	} else {
1048 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1049 		BP_SET_LSIZE(bp, lsize);
1050 		BP_SET_PSIZE(bp, psize);
1051 		BP_SET_COMPRESS(bp, compress);
1052 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1053 		BP_SET_TYPE(bp, zp->zp_type);
1054 		BP_SET_LEVEL(bp, zp->zp_level);
1055 		BP_SET_DEDUP(bp, zp->zp_dedup);
1056 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1057 		if (zp->zp_dedup) {
1058 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1059 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1060 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1061 		}
1062 	}
1063 
1064 	return (ZIO_PIPELINE_CONTINUE);
1065 }
1066 
1067 static int
1068 zio_free_bp_init(zio_t *zio)
1069 {
1070 	blkptr_t *bp = zio->io_bp;
1071 
1072 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1073 		if (BP_GET_DEDUP(bp))
1074 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1075 	}
1076 
1077 	return (ZIO_PIPELINE_CONTINUE);
1078 }
1079 
1080 /*
1081  * ==========================================================================
1082  * Execute the I/O pipeline
1083  * ==========================================================================
1084  */
1085 
1086 static void
1087 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1088 {
1089 	spa_t *spa = zio->io_spa;
1090 	zio_type_t t = zio->io_type;
1091 	int flags = (cutinline ? TQ_FRONT : 0);
1092 
1093 	/*
1094 	 * If we're a config writer or a probe, the normal issue and
1095 	 * interrupt threads may all be blocked waiting for the config lock.
1096 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1097 	 */
1098 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1099 		t = ZIO_TYPE_NULL;
1100 
1101 	/*
1102 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1103 	 */
1104 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1105 		t = ZIO_TYPE_NULL;
1106 
1107 	/*
1108 	 * If this is a high priority I/O, then use the high priority taskq.
1109 	 */
1110 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1111 	    spa->spa_zio_taskq[t][q + 1] != NULL)
1112 		q++;
1113 
1114 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1115 
1116 	/*
1117 	 * NB: We are assuming that the zio can only be dispatched
1118 	 * to a single taskq at a time.  It would be a grievous error
1119 	 * to dispatch the zio to another taskq at the same time.
1120 	 */
1121 	ASSERT(zio->io_tqent.tqent_next == NULL);
1122 	taskq_dispatch_ent(spa->spa_zio_taskq[t][q],
1123 	    (task_func_t *)zio_execute, zio, flags, &zio->io_tqent);
1124 }
1125 
1126 static boolean_t
1127 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1128 {
1129 	kthread_t *executor = zio->io_executor;
1130 	spa_t *spa = zio->io_spa;
1131 
1132 	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1133 		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1134 			return (B_TRUE);
1135 
1136 	return (B_FALSE);
1137 }
1138 
1139 static int
1140 zio_issue_async(zio_t *zio)
1141 {
1142 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1143 
1144 	return (ZIO_PIPELINE_STOP);
1145 }
1146 
1147 void
1148 zio_interrupt(zio_t *zio)
1149 {
1150 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1151 }
1152 
1153 /*
1154  * Execute the I/O pipeline until one of the following occurs:
1155  * (1) the I/O completes; (2) the pipeline stalls waiting for
1156  * dependent child I/Os; (3) the I/O issues, so we're waiting
1157  * for an I/O completion interrupt; (4) the I/O is delegated by
1158  * vdev-level caching or aggregation; (5) the I/O is deferred
1159  * due to vdev-level queueing; (6) the I/O is handed off to
1160  * another thread.  In all cases, the pipeline stops whenever
1161  * there's no CPU work; it never burns a thread in cv_wait().
1162  *
1163  * There's no locking on io_stage because there's no legitimate way
1164  * for multiple threads to be attempting to process the same I/O.
1165  */
1166 static zio_pipe_stage_t *zio_pipeline[];
1167 
1168 void
1169 zio_execute(zio_t *zio)
1170 {
1171 	zio->io_executor = curthread;
1172 
1173 	while (zio->io_stage < ZIO_STAGE_DONE) {
1174 		enum zio_stage pipeline = zio->io_pipeline;
1175 		enum zio_stage stage = zio->io_stage;
1176 		int rv;
1177 
1178 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1179 		ASSERT(ISP2(stage));
1180 		ASSERT(zio->io_stall == NULL);
1181 
1182 		do {
1183 			stage <<= 1;
1184 		} while ((stage & pipeline) == 0);
1185 
1186 		ASSERT(stage <= ZIO_STAGE_DONE);
1187 
1188 		/*
1189 		 * If we are in interrupt context and this pipeline stage
1190 		 * will grab a config lock that is held across I/O,
1191 		 * or may wait for an I/O that needs an interrupt thread
1192 		 * to complete, issue async to avoid deadlock.
1193 		 *
1194 		 * For VDEV_IO_START, we cut in line so that the io will
1195 		 * be sent to disk promptly.
1196 		 */
1197 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1198 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1199 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1200 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1201 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1202 			return;
1203 		}
1204 
1205 		zio->io_stage = stage;
1206 		rv = zio_pipeline[highbit(stage) - 1](zio);
1207 
1208 		if (rv == ZIO_PIPELINE_STOP)
1209 			return;
1210 
1211 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1212 	}
1213 }
1214 
1215 /*
1216  * ==========================================================================
1217  * Initiate I/O, either sync or async
1218  * ==========================================================================
1219  */
1220 int
1221 zio_wait(zio_t *zio)
1222 {
1223 	int error;
1224 
1225 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1226 	ASSERT(zio->io_executor == NULL);
1227 
1228 	zio->io_waiter = curthread;
1229 
1230 	zio_execute(zio);
1231 
1232 	mutex_enter(&zio->io_lock);
1233 	while (zio->io_executor != NULL)
1234 		cv_wait(&zio->io_cv, &zio->io_lock);
1235 	mutex_exit(&zio->io_lock);
1236 
1237 	error = zio->io_error;
1238 	zio_destroy(zio);
1239 
1240 	return (error);
1241 }
1242 
1243 void
1244 zio_nowait(zio_t *zio)
1245 {
1246 	ASSERT(zio->io_executor == NULL);
1247 
1248 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1249 	    zio_unique_parent(zio) == NULL) {
1250 		/*
1251 		 * This is a logical async I/O with no parent to wait for it.
1252 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1253 		 * will ensure they complete prior to unloading the pool.
1254 		 */
1255 		spa_t *spa = zio->io_spa;
1256 
1257 		zio_add_child(spa->spa_async_zio_root, zio);
1258 	}
1259 
1260 	zio_execute(zio);
1261 }
1262 
1263 /*
1264  * ==========================================================================
1265  * Reexecute or suspend/resume failed I/O
1266  * ==========================================================================
1267  */
1268 
1269 static void
1270 zio_reexecute(zio_t *pio)
1271 {
1272 	zio_t *cio, *cio_next;
1273 
1274 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1275 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1276 	ASSERT(pio->io_gang_leader == NULL);
1277 	ASSERT(pio->io_gang_tree == NULL);
1278 
1279 	pio->io_flags = pio->io_orig_flags;
1280 	pio->io_stage = pio->io_orig_stage;
1281 	pio->io_pipeline = pio->io_orig_pipeline;
1282 	pio->io_reexecute = 0;
1283 	pio->io_error = 0;
1284 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1285 		pio->io_state[w] = 0;
1286 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1287 		pio->io_child_error[c] = 0;
1288 
1289 	if (IO_IS_ALLOCATING(pio))
1290 		BP_ZERO(pio->io_bp);
1291 
1292 	/*
1293 	 * As we reexecute pio's children, new children could be created.
1294 	 * New children go to the head of pio's io_child_list, however,
1295 	 * so we will (correctly) not reexecute them.  The key is that
1296 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1297 	 * cannot be affected by any side effects of reexecuting 'cio'.
1298 	 */
1299 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1300 		cio_next = zio_walk_children(pio);
1301 		mutex_enter(&pio->io_lock);
1302 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1303 			pio->io_children[cio->io_child_type][w]++;
1304 		mutex_exit(&pio->io_lock);
1305 		zio_reexecute(cio);
1306 	}
1307 
1308 	/*
1309 	 * Now that all children have been reexecuted, execute the parent.
1310 	 * We don't reexecute "The Godfather" I/O here as it's the
1311 	 * responsibility of the caller to wait on him.
1312 	 */
1313 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1314 		zio_execute(pio);
1315 }
1316 
1317 void
1318 zio_suspend(spa_t *spa, zio_t *zio)
1319 {
1320 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1321 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1322 		    "failure and the failure mode property for this pool "
1323 		    "is set to panic.", spa_name(spa));
1324 
1325 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1326 
1327 	mutex_enter(&spa->spa_suspend_lock);
1328 
1329 	if (spa->spa_suspend_zio_root == NULL)
1330 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1331 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1332 		    ZIO_FLAG_GODFATHER);
1333 
1334 	spa->spa_suspended = B_TRUE;
1335 
1336 	if (zio != NULL) {
1337 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1338 		ASSERT(zio != spa->spa_suspend_zio_root);
1339 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1340 		ASSERT(zio_unique_parent(zio) == NULL);
1341 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1342 		zio_add_child(spa->spa_suspend_zio_root, zio);
1343 	}
1344 
1345 	mutex_exit(&spa->spa_suspend_lock);
1346 }
1347 
1348 int
1349 zio_resume(spa_t *spa)
1350 {
1351 	zio_t *pio;
1352 
1353 	/*
1354 	 * Reexecute all previously suspended i/o.
1355 	 */
1356 	mutex_enter(&spa->spa_suspend_lock);
1357 	spa->spa_suspended = B_FALSE;
1358 	cv_broadcast(&spa->spa_suspend_cv);
1359 	pio = spa->spa_suspend_zio_root;
1360 	spa->spa_suspend_zio_root = NULL;
1361 	mutex_exit(&spa->spa_suspend_lock);
1362 
1363 	if (pio == NULL)
1364 		return (0);
1365 
1366 	zio_reexecute(pio);
1367 	return (zio_wait(pio));
1368 }
1369 
1370 void
1371 zio_resume_wait(spa_t *spa)
1372 {
1373 	mutex_enter(&spa->spa_suspend_lock);
1374 	while (spa_suspended(spa))
1375 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1376 	mutex_exit(&spa->spa_suspend_lock);
1377 }
1378 
1379 /*
1380  * ==========================================================================
1381  * Gang blocks.
1382  *
1383  * A gang block is a collection of small blocks that looks to the DMU
1384  * like one large block.  When zio_dva_allocate() cannot find a block
1385  * of the requested size, due to either severe fragmentation or the pool
1386  * being nearly full, it calls zio_write_gang_block() to construct the
1387  * block from smaller fragments.
1388  *
1389  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1390  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1391  * an indirect block: it's an array of block pointers.  It consumes
1392  * only one sector and hence is allocatable regardless of fragmentation.
1393  * The gang header's bps point to its gang members, which hold the data.
1394  *
1395  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1396  * as the verifier to ensure uniqueness of the SHA256 checksum.
1397  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1398  * not the gang header.  This ensures that data block signatures (needed for
1399  * deduplication) are independent of how the block is physically stored.
1400  *
1401  * Gang blocks can be nested: a gang member may itself be a gang block.
1402  * Thus every gang block is a tree in which root and all interior nodes are
1403  * gang headers, and the leaves are normal blocks that contain user data.
1404  * The root of the gang tree is called the gang leader.
1405  *
1406  * To perform any operation (read, rewrite, free, claim) on a gang block,
1407  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1408  * in the io_gang_tree field of the original logical i/o by recursively
1409  * reading the gang leader and all gang headers below it.  This yields
1410  * an in-core tree containing the contents of every gang header and the
1411  * bps for every constituent of the gang block.
1412  *
1413  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1414  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1415  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1416  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1417  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1418  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1419  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1420  * of the gang header plus zio_checksum_compute() of the data to update the
1421  * gang header's blk_cksum as described above.
1422  *
1423  * The two-phase assemble/issue model solves the problem of partial failure --
1424  * what if you'd freed part of a gang block but then couldn't read the
1425  * gang header for another part?  Assembling the entire gang tree first
1426  * ensures that all the necessary gang header I/O has succeeded before
1427  * starting the actual work of free, claim, or write.  Once the gang tree
1428  * is assembled, free and claim are in-memory operations that cannot fail.
1429  *
1430  * In the event that a gang write fails, zio_dva_unallocate() walks the
1431  * gang tree to immediately free (i.e. insert back into the space map)
1432  * everything we've allocated.  This ensures that we don't get ENOSPC
1433  * errors during repeated suspend/resume cycles due to a flaky device.
1434  *
1435  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1436  * the gang tree, we won't modify the block, so we can safely defer the free
1437  * (knowing that the block is still intact).  If we *can* assemble the gang
1438  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1439  * each constituent bp and we can allocate a new block on the next sync pass.
1440  *
1441  * In all cases, the gang tree allows complete recovery from partial failure.
1442  * ==========================================================================
1443  */
1444 
1445 static zio_t *
1446 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1447 {
1448 	if (gn != NULL)
1449 		return (pio);
1450 
1451 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1452 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1453 	    &pio->io_bookmark));
1454 }
1455 
1456 zio_t *
1457 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1458 {
1459 	zio_t *zio;
1460 
1461 	if (gn != NULL) {
1462 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1463 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1464 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1465 		/*
1466 		 * As we rewrite each gang header, the pipeline will compute
1467 		 * a new gang block header checksum for it; but no one will
1468 		 * compute a new data checksum, so we do that here.  The one
1469 		 * exception is the gang leader: the pipeline already computed
1470 		 * its data checksum because that stage precedes gang assembly.
1471 		 * (Presently, nothing actually uses interior data checksums;
1472 		 * this is just good hygiene.)
1473 		 */
1474 		if (gn != pio->io_gang_leader->io_gang_tree) {
1475 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1476 			    data, BP_GET_PSIZE(bp));
1477 		}
1478 		/*
1479 		 * If we are here to damage data for testing purposes,
1480 		 * leave the GBH alone so that we can detect the damage.
1481 		 */
1482 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1483 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1484 	} else {
1485 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1486 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1487 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1488 	}
1489 
1490 	return (zio);
1491 }
1492 
1493 /* ARGSUSED */
1494 zio_t *
1495 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1496 {
1497 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1498 	    ZIO_GANG_CHILD_FLAGS(pio)));
1499 }
1500 
1501 /* ARGSUSED */
1502 zio_t *
1503 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1504 {
1505 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1506 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1507 }
1508 
1509 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1510 	NULL,
1511 	zio_read_gang,
1512 	zio_rewrite_gang,
1513 	zio_free_gang,
1514 	zio_claim_gang,
1515 	NULL
1516 };
1517 
1518 static void zio_gang_tree_assemble_done(zio_t *zio);
1519 
1520 static zio_gang_node_t *
1521 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1522 {
1523 	zio_gang_node_t *gn;
1524 
1525 	ASSERT(*gnpp == NULL);
1526 
1527 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1528 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1529 	*gnpp = gn;
1530 
1531 	return (gn);
1532 }
1533 
1534 static void
1535 zio_gang_node_free(zio_gang_node_t **gnpp)
1536 {
1537 	zio_gang_node_t *gn = *gnpp;
1538 
1539 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1540 		ASSERT(gn->gn_child[g] == NULL);
1541 
1542 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1543 	kmem_free(gn, sizeof (*gn));
1544 	*gnpp = NULL;
1545 }
1546 
1547 static void
1548 zio_gang_tree_free(zio_gang_node_t **gnpp)
1549 {
1550 	zio_gang_node_t *gn = *gnpp;
1551 
1552 	if (gn == NULL)
1553 		return;
1554 
1555 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1556 		zio_gang_tree_free(&gn->gn_child[g]);
1557 
1558 	zio_gang_node_free(gnpp);
1559 }
1560 
1561 static void
1562 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1563 {
1564 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1565 
1566 	ASSERT(gio->io_gang_leader == gio);
1567 	ASSERT(BP_IS_GANG(bp));
1568 
1569 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1570 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1571 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1572 }
1573 
1574 static void
1575 zio_gang_tree_assemble_done(zio_t *zio)
1576 {
1577 	zio_t *gio = zio->io_gang_leader;
1578 	zio_gang_node_t *gn = zio->io_private;
1579 	blkptr_t *bp = zio->io_bp;
1580 
1581 	ASSERT(gio == zio_unique_parent(zio));
1582 	ASSERT(zio->io_child_count == 0);
1583 
1584 	if (zio->io_error)
1585 		return;
1586 
1587 	if (BP_SHOULD_BYTESWAP(bp))
1588 		byteswap_uint64_array(zio->io_data, zio->io_size);
1589 
1590 	ASSERT(zio->io_data == gn->gn_gbh);
1591 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1592 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1593 
1594 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1595 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1596 		if (!BP_IS_GANG(gbp))
1597 			continue;
1598 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1599 	}
1600 }
1601 
1602 static void
1603 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1604 {
1605 	zio_t *gio = pio->io_gang_leader;
1606 	zio_t *zio;
1607 
1608 	ASSERT(BP_IS_GANG(bp) == !!gn);
1609 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1610 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1611 
1612 	/*
1613 	 * If you're a gang header, your data is in gn->gn_gbh.
1614 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1615 	 */
1616 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1617 
1618 	if (gn != NULL) {
1619 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1620 
1621 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1622 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1623 			if (BP_IS_HOLE(gbp))
1624 				continue;
1625 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1626 			data = (char *)data + BP_GET_PSIZE(gbp);
1627 		}
1628 	}
1629 
1630 	if (gn == gio->io_gang_tree)
1631 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1632 
1633 	if (zio != pio)
1634 		zio_nowait(zio);
1635 }
1636 
1637 static int
1638 zio_gang_assemble(zio_t *zio)
1639 {
1640 	blkptr_t *bp = zio->io_bp;
1641 
1642 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1643 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1644 
1645 	zio->io_gang_leader = zio;
1646 
1647 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1648 
1649 	return (ZIO_PIPELINE_CONTINUE);
1650 }
1651 
1652 static int
1653 zio_gang_issue(zio_t *zio)
1654 {
1655 	blkptr_t *bp = zio->io_bp;
1656 
1657 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1658 		return (ZIO_PIPELINE_STOP);
1659 
1660 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1661 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1662 
1663 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1664 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1665 	else
1666 		zio_gang_tree_free(&zio->io_gang_tree);
1667 
1668 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1669 
1670 	return (ZIO_PIPELINE_CONTINUE);
1671 }
1672 
1673 static void
1674 zio_write_gang_member_ready(zio_t *zio)
1675 {
1676 	zio_t *pio = zio_unique_parent(zio);
1677 	zio_t *gio = zio->io_gang_leader;
1678 	dva_t *cdva = zio->io_bp->blk_dva;
1679 	dva_t *pdva = pio->io_bp->blk_dva;
1680 	uint64_t asize;
1681 
1682 	if (BP_IS_HOLE(zio->io_bp))
1683 		return;
1684 
1685 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1686 
1687 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1688 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1689 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1690 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1691 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1692 
1693 	mutex_enter(&pio->io_lock);
1694 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1695 		ASSERT(DVA_GET_GANG(&pdva[d]));
1696 		asize = DVA_GET_ASIZE(&pdva[d]);
1697 		asize += DVA_GET_ASIZE(&cdva[d]);
1698 		DVA_SET_ASIZE(&pdva[d], asize);
1699 	}
1700 	mutex_exit(&pio->io_lock);
1701 }
1702 
1703 static int
1704 zio_write_gang_block(zio_t *pio)
1705 {
1706 	spa_t *spa = pio->io_spa;
1707 	blkptr_t *bp = pio->io_bp;
1708 	zio_t *gio = pio->io_gang_leader;
1709 	zio_t *zio;
1710 	zio_gang_node_t *gn, **gnpp;
1711 	zio_gbh_phys_t *gbh;
1712 	uint64_t txg = pio->io_txg;
1713 	uint64_t resid = pio->io_size;
1714 	uint64_t lsize;
1715 	int copies = gio->io_prop.zp_copies;
1716 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1717 	zio_prop_t zp;
1718 	int error;
1719 
1720 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1721 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1722 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1723 	if (error) {
1724 		pio->io_error = error;
1725 		return (ZIO_PIPELINE_CONTINUE);
1726 	}
1727 
1728 	if (pio == gio) {
1729 		gnpp = &gio->io_gang_tree;
1730 	} else {
1731 		gnpp = pio->io_private;
1732 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1733 	}
1734 
1735 	gn = zio_gang_node_alloc(gnpp);
1736 	gbh = gn->gn_gbh;
1737 	bzero(gbh, SPA_GANGBLOCKSIZE);
1738 
1739 	/*
1740 	 * Create the gang header.
1741 	 */
1742 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1743 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1744 
1745 	/*
1746 	 * Create and nowait the gang children.
1747 	 */
1748 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1749 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1750 		    SPA_MINBLOCKSIZE);
1751 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1752 
1753 		zp.zp_checksum = gio->io_prop.zp_checksum;
1754 		zp.zp_compress = ZIO_COMPRESS_OFF;
1755 		zp.zp_type = DMU_OT_NONE;
1756 		zp.zp_level = 0;
1757 		zp.zp_copies = gio->io_prop.zp_copies;
1758 		zp.zp_dedup = 0;
1759 		zp.zp_dedup_verify = 0;
1760 
1761 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1762 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1763 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1764 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1765 		    &pio->io_bookmark));
1766 	}
1767 
1768 	/*
1769 	 * Set pio's pipeline to just wait for zio to finish.
1770 	 */
1771 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1772 
1773 	zio_nowait(zio);
1774 
1775 	return (ZIO_PIPELINE_CONTINUE);
1776 }
1777 
1778 /*
1779  * ==========================================================================
1780  * Dedup
1781  * ==========================================================================
1782  */
1783 static void
1784 zio_ddt_child_read_done(zio_t *zio)
1785 {
1786 	blkptr_t *bp = zio->io_bp;
1787 	ddt_entry_t *dde = zio->io_private;
1788 	ddt_phys_t *ddp;
1789 	zio_t *pio = zio_unique_parent(zio);
1790 
1791 	mutex_enter(&pio->io_lock);
1792 	ddp = ddt_phys_select(dde, bp);
1793 	if (zio->io_error == 0)
1794 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1795 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1796 		dde->dde_repair_data = zio->io_data;
1797 	else
1798 		zio_buf_free(zio->io_data, zio->io_size);
1799 	mutex_exit(&pio->io_lock);
1800 }
1801 
1802 static int
1803 zio_ddt_read_start(zio_t *zio)
1804 {
1805 	blkptr_t *bp = zio->io_bp;
1806 
1807 	ASSERT(BP_GET_DEDUP(bp));
1808 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1809 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1810 
1811 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1812 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1813 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1814 		ddt_phys_t *ddp = dde->dde_phys;
1815 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1816 		blkptr_t blk;
1817 
1818 		ASSERT(zio->io_vsd == NULL);
1819 		zio->io_vsd = dde;
1820 
1821 		if (ddp_self == NULL)
1822 			return (ZIO_PIPELINE_CONTINUE);
1823 
1824 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1825 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1826 				continue;
1827 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1828 			    &blk);
1829 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1830 			    zio_buf_alloc(zio->io_size), zio->io_size,
1831 			    zio_ddt_child_read_done, dde, zio->io_priority,
1832 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1833 			    &zio->io_bookmark));
1834 		}
1835 		return (ZIO_PIPELINE_CONTINUE);
1836 	}
1837 
1838 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1839 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1840 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1841 
1842 	return (ZIO_PIPELINE_CONTINUE);
1843 }
1844 
1845 static int
1846 zio_ddt_read_done(zio_t *zio)
1847 {
1848 	blkptr_t *bp = zio->io_bp;
1849 
1850 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1851 		return (ZIO_PIPELINE_STOP);
1852 
1853 	ASSERT(BP_GET_DEDUP(bp));
1854 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1855 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1856 
1857 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1858 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1859 		ddt_entry_t *dde = zio->io_vsd;
1860 		if (ddt == NULL) {
1861 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1862 			return (ZIO_PIPELINE_CONTINUE);
1863 		}
1864 		if (dde == NULL) {
1865 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1866 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1867 			return (ZIO_PIPELINE_STOP);
1868 		}
1869 		if (dde->dde_repair_data != NULL) {
1870 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1871 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1872 		}
1873 		ddt_repair_done(ddt, dde);
1874 		zio->io_vsd = NULL;
1875 	}
1876 
1877 	ASSERT(zio->io_vsd == NULL);
1878 
1879 	return (ZIO_PIPELINE_CONTINUE);
1880 }
1881 
1882 static boolean_t
1883 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1884 {
1885 	spa_t *spa = zio->io_spa;
1886 
1887 	/*
1888 	 * Note: we compare the original data, not the transformed data,
1889 	 * because when zio->io_bp is an override bp, we will not have
1890 	 * pushed the I/O transforms.  That's an important optimization
1891 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1892 	 */
1893 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1894 		zio_t *lio = dde->dde_lead_zio[p];
1895 
1896 		if (lio != NULL) {
1897 			return (lio->io_orig_size != zio->io_orig_size ||
1898 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1899 			    zio->io_orig_size) != 0);
1900 		}
1901 	}
1902 
1903 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1904 		ddt_phys_t *ddp = &dde->dde_phys[p];
1905 
1906 		if (ddp->ddp_phys_birth != 0) {
1907 			arc_buf_t *abuf = NULL;
1908 			uint32_t aflags = ARC_WAIT;
1909 			blkptr_t blk = *zio->io_bp;
1910 			int error;
1911 
1912 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1913 
1914 			ddt_exit(ddt);
1915 
1916 			error = arc_read_nolock(NULL, spa, &blk,
1917 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1918 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1919 			    &aflags, &zio->io_bookmark);
1920 
1921 			if (error == 0) {
1922 				if (arc_buf_size(abuf) != zio->io_orig_size ||
1923 				    bcmp(abuf->b_data, zio->io_orig_data,
1924 				    zio->io_orig_size) != 0)
1925 					error = EEXIST;
1926 				VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1927 			}
1928 
1929 			ddt_enter(ddt);
1930 			return (error != 0);
1931 		}
1932 	}
1933 
1934 	return (B_FALSE);
1935 }
1936 
1937 static void
1938 zio_ddt_child_write_ready(zio_t *zio)
1939 {
1940 	int p = zio->io_prop.zp_copies;
1941 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1942 	ddt_entry_t *dde = zio->io_private;
1943 	ddt_phys_t *ddp = &dde->dde_phys[p];
1944 	zio_t *pio;
1945 
1946 	if (zio->io_error)
1947 		return;
1948 
1949 	ddt_enter(ddt);
1950 
1951 	ASSERT(dde->dde_lead_zio[p] == zio);
1952 
1953 	ddt_phys_fill(ddp, zio->io_bp);
1954 
1955 	while ((pio = zio_walk_parents(zio)) != NULL)
1956 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
1957 
1958 	ddt_exit(ddt);
1959 }
1960 
1961 static void
1962 zio_ddt_child_write_done(zio_t *zio)
1963 {
1964 	int p = zio->io_prop.zp_copies;
1965 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1966 	ddt_entry_t *dde = zio->io_private;
1967 	ddt_phys_t *ddp = &dde->dde_phys[p];
1968 
1969 	ddt_enter(ddt);
1970 
1971 	ASSERT(ddp->ddp_refcnt == 0);
1972 	ASSERT(dde->dde_lead_zio[p] == zio);
1973 	dde->dde_lead_zio[p] = NULL;
1974 
1975 	if (zio->io_error == 0) {
1976 		while (zio_walk_parents(zio) != NULL)
1977 			ddt_phys_addref(ddp);
1978 	} else {
1979 		ddt_phys_clear(ddp);
1980 	}
1981 
1982 	ddt_exit(ddt);
1983 }
1984 
1985 static void
1986 zio_ddt_ditto_write_done(zio_t *zio)
1987 {
1988 	int p = DDT_PHYS_DITTO;
1989 	zio_prop_t *zp = &zio->io_prop;
1990 	blkptr_t *bp = zio->io_bp;
1991 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
1992 	ddt_entry_t *dde = zio->io_private;
1993 	ddt_phys_t *ddp = &dde->dde_phys[p];
1994 	ddt_key_t *ddk = &dde->dde_key;
1995 
1996 	ddt_enter(ddt);
1997 
1998 	ASSERT(ddp->ddp_refcnt == 0);
1999 	ASSERT(dde->dde_lead_zio[p] == zio);
2000 	dde->dde_lead_zio[p] = NULL;
2001 
2002 	if (zio->io_error == 0) {
2003 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2004 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2005 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2006 		if (ddp->ddp_phys_birth != 0)
2007 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2008 		ddt_phys_fill(ddp, bp);
2009 	}
2010 
2011 	ddt_exit(ddt);
2012 }
2013 
2014 static int
2015 zio_ddt_write(zio_t *zio)
2016 {
2017 	spa_t *spa = zio->io_spa;
2018 	blkptr_t *bp = zio->io_bp;
2019 	uint64_t txg = zio->io_txg;
2020 	zio_prop_t *zp = &zio->io_prop;
2021 	int p = zp->zp_copies;
2022 	int ditto_copies;
2023 	zio_t *cio = NULL;
2024 	zio_t *dio = NULL;
2025 	ddt_t *ddt = ddt_select(spa, bp);
2026 	ddt_entry_t *dde;
2027 	ddt_phys_t *ddp;
2028 
2029 	ASSERT(BP_GET_DEDUP(bp));
2030 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2031 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2032 
2033 	ddt_enter(ddt);
2034 	dde = ddt_lookup(ddt, bp, B_TRUE);
2035 	ddp = &dde->dde_phys[p];
2036 
2037 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2038 		/*
2039 		 * If we're using a weak checksum, upgrade to a strong checksum
2040 		 * and try again.  If we're already using a strong checksum,
2041 		 * we can't resolve it, so just convert to an ordinary write.
2042 		 * (And automatically e-mail a paper to Nature?)
2043 		 */
2044 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2045 			zp->zp_checksum = spa_dedup_checksum(spa);
2046 			zio_pop_transforms(zio);
2047 			zio->io_stage = ZIO_STAGE_OPEN;
2048 			BP_ZERO(bp);
2049 		} else {
2050 			zp->zp_dedup = 0;
2051 		}
2052 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2053 		ddt_exit(ddt);
2054 		return (ZIO_PIPELINE_CONTINUE);
2055 	}
2056 
2057 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2058 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2059 
2060 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2061 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2062 		zio_prop_t czp = *zp;
2063 
2064 		czp.zp_copies = ditto_copies;
2065 
2066 		/*
2067 		 * If we arrived here with an override bp, we won't have run
2068 		 * the transform stack, so we won't have the data we need to
2069 		 * generate a child i/o.  So, toss the override bp and restart.
2070 		 * This is safe, because using the override bp is just an
2071 		 * optimization; and it's rare, so the cost doesn't matter.
2072 		 */
2073 		if (zio->io_bp_override) {
2074 			zio_pop_transforms(zio);
2075 			zio->io_stage = ZIO_STAGE_OPEN;
2076 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2077 			zio->io_bp_override = NULL;
2078 			BP_ZERO(bp);
2079 			ddt_exit(ddt);
2080 			return (ZIO_PIPELINE_CONTINUE);
2081 		}
2082 
2083 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2084 		    zio->io_orig_size, &czp, NULL,
2085 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2086 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2087 
2088 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2089 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2090 	}
2091 
2092 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2093 		if (ddp->ddp_phys_birth != 0)
2094 			ddt_bp_fill(ddp, bp, txg);
2095 		if (dde->dde_lead_zio[p] != NULL)
2096 			zio_add_child(zio, dde->dde_lead_zio[p]);
2097 		else
2098 			ddt_phys_addref(ddp);
2099 	} else if (zio->io_bp_override) {
2100 		ASSERT(bp->blk_birth == txg);
2101 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2102 		ddt_phys_fill(ddp, bp);
2103 		ddt_phys_addref(ddp);
2104 	} else {
2105 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2106 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2107 		    zio_ddt_child_write_done, dde, zio->io_priority,
2108 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2109 
2110 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2111 		dde->dde_lead_zio[p] = cio;
2112 	}
2113 
2114 	ddt_exit(ddt);
2115 
2116 	if (cio)
2117 		zio_nowait(cio);
2118 	if (dio)
2119 		zio_nowait(dio);
2120 
2121 	return (ZIO_PIPELINE_CONTINUE);
2122 }
2123 
2124 ddt_entry_t *freedde; /* for debugging */
2125 
2126 static int
2127 zio_ddt_free(zio_t *zio)
2128 {
2129 	spa_t *spa = zio->io_spa;
2130 	blkptr_t *bp = zio->io_bp;
2131 	ddt_t *ddt = ddt_select(spa, bp);
2132 	ddt_entry_t *dde;
2133 	ddt_phys_t *ddp;
2134 
2135 	ASSERT(BP_GET_DEDUP(bp));
2136 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2137 
2138 	ddt_enter(ddt);
2139 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2140 	ddp = ddt_phys_select(dde, bp);
2141 	ddt_phys_decref(ddp);
2142 	ddt_exit(ddt);
2143 
2144 	return (ZIO_PIPELINE_CONTINUE);
2145 }
2146 
2147 /*
2148  * ==========================================================================
2149  * Allocate and free blocks
2150  * ==========================================================================
2151  */
2152 static int
2153 zio_dva_allocate(zio_t *zio)
2154 {
2155 	spa_t *spa = zio->io_spa;
2156 	metaslab_class_t *mc = spa_normal_class(spa);
2157 	blkptr_t *bp = zio->io_bp;
2158 	int error;
2159 	int flags = 0;
2160 
2161 	if (zio->io_gang_leader == NULL) {
2162 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2163 		zio->io_gang_leader = zio;
2164 	}
2165 
2166 	ASSERT(BP_IS_HOLE(bp));
2167 	ASSERT0(BP_GET_NDVAS(bp));
2168 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2169 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2170 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2171 
2172 	/*
2173 	 * The dump device does not support gang blocks so allocation on
2174 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2175 	 * the "fast" gang feature.
2176 	 */
2177 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2178 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2179 	    METASLAB_GANG_CHILD : 0;
2180 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2181 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2182 
2183 	if (error) {
2184 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2185 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2186 		    error);
2187 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2188 			return (zio_write_gang_block(zio));
2189 		zio->io_error = error;
2190 	}
2191 
2192 	return (ZIO_PIPELINE_CONTINUE);
2193 }
2194 
2195 static int
2196 zio_dva_free(zio_t *zio)
2197 {
2198 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2199 
2200 	return (ZIO_PIPELINE_CONTINUE);
2201 }
2202 
2203 static int
2204 zio_dva_claim(zio_t *zio)
2205 {
2206 	int error;
2207 
2208 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2209 	if (error)
2210 		zio->io_error = error;
2211 
2212 	return (ZIO_PIPELINE_CONTINUE);
2213 }
2214 
2215 /*
2216  * Undo an allocation.  This is used by zio_done() when an I/O fails
2217  * and we want to give back the block we just allocated.
2218  * This handles both normal blocks and gang blocks.
2219  */
2220 static void
2221 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2222 {
2223 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2224 	ASSERT(zio->io_bp_override == NULL);
2225 
2226 	if (!BP_IS_HOLE(bp))
2227 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2228 
2229 	if (gn != NULL) {
2230 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2231 			zio_dva_unallocate(zio, gn->gn_child[g],
2232 			    &gn->gn_gbh->zg_blkptr[g]);
2233 		}
2234 	}
2235 }
2236 
2237 /*
2238  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2239  */
2240 int
2241 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2242     uint64_t size, boolean_t use_slog)
2243 {
2244 	int error = 1;
2245 
2246 	ASSERT(txg > spa_syncing_txg(spa));
2247 
2248 	/*
2249 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2250 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2251 	 * when allocating them.
2252 	 */
2253 	if (use_slog) {
2254 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2255 		    new_bp, 1, txg, old_bp,
2256 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2257 	}
2258 
2259 	if (error) {
2260 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2261 		    new_bp, 1, txg, old_bp,
2262 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2263 	}
2264 
2265 	if (error == 0) {
2266 		BP_SET_LSIZE(new_bp, size);
2267 		BP_SET_PSIZE(new_bp, size);
2268 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2269 		BP_SET_CHECKSUM(new_bp,
2270 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2271 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2272 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2273 		BP_SET_LEVEL(new_bp, 0);
2274 		BP_SET_DEDUP(new_bp, 0);
2275 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2276 	}
2277 
2278 	return (error);
2279 }
2280 
2281 /*
2282  * Free an intent log block.
2283  */
2284 void
2285 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2286 {
2287 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2288 	ASSERT(!BP_IS_GANG(bp));
2289 
2290 	zio_free(spa, txg, bp);
2291 }
2292 
2293 /*
2294  * ==========================================================================
2295  * Read and write to physical devices
2296  * ==========================================================================
2297  */
2298 static int
2299 zio_vdev_io_start(zio_t *zio)
2300 {
2301 	vdev_t *vd = zio->io_vd;
2302 	uint64_t align;
2303 	spa_t *spa = zio->io_spa;
2304 
2305 	ASSERT(zio->io_error == 0);
2306 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2307 
2308 	if (vd == NULL) {
2309 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2310 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2311 
2312 		/*
2313 		 * The mirror_ops handle multiple DVAs in a single BP.
2314 		 */
2315 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2316 	}
2317 
2318 	/*
2319 	 * We keep track of time-sensitive I/Os so that the scan thread
2320 	 * can quickly react to certain workloads.  In particular, we care
2321 	 * about non-scrubbing, top-level reads and writes with the following
2322 	 * characteristics:
2323 	 * 	- synchronous writes of user data to non-slog devices
2324 	 *	- any reads of user data
2325 	 * When these conditions are met, adjust the timestamp of spa_last_io
2326 	 * which allows the scan thread to adjust its workload accordingly.
2327 	 */
2328 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2329 	    vd == vd->vdev_top && !vd->vdev_islog &&
2330 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2331 	    zio->io_txg != spa_syncing_txg(spa)) {
2332 		uint64_t old = spa->spa_last_io;
2333 		uint64_t new = ddi_get_lbolt64();
2334 		if (old != new)
2335 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2336 	}
2337 
2338 	align = 1ULL << vd->vdev_top->vdev_ashift;
2339 
2340 	if (P2PHASE(zio->io_size, align) != 0) {
2341 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2342 		char *abuf = zio_buf_alloc(asize);
2343 		ASSERT(vd == vd->vdev_top);
2344 		if (zio->io_type == ZIO_TYPE_WRITE) {
2345 			bcopy(zio->io_data, abuf, zio->io_size);
2346 			bzero(abuf + zio->io_size, asize - zio->io_size);
2347 		}
2348 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2349 	}
2350 
2351 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2352 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2353 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2354 
2355 	/*
2356 	 * If this is a repair I/O, and there's no self-healing involved --
2357 	 * that is, we're just resilvering what we expect to resilver --
2358 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2359 	 * This prevents spurious resilvering with nested replication.
2360 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2361 	 * A is out of date, we'll read from C+D, then use the data to
2362 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2363 	 * The top-level mirror has no way to know this, so instead we just
2364 	 * discard unnecessary repairs as we work our way down the vdev tree.
2365 	 * The same logic applies to any form of nested replication:
2366 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2367 	 */
2368 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2369 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2370 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2371 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2372 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2373 		zio_vdev_io_bypass(zio);
2374 		return (ZIO_PIPELINE_CONTINUE);
2375 	}
2376 
2377 	if (vd->vdev_ops->vdev_op_leaf &&
2378 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2379 
2380 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2381 			return (ZIO_PIPELINE_CONTINUE);
2382 
2383 		if ((zio = vdev_queue_io(zio)) == NULL)
2384 			return (ZIO_PIPELINE_STOP);
2385 
2386 		if (!vdev_accessible(vd, zio)) {
2387 			zio->io_error = ENXIO;
2388 			zio_interrupt(zio);
2389 			return (ZIO_PIPELINE_STOP);
2390 		}
2391 	}
2392 
2393 	return (vd->vdev_ops->vdev_op_io_start(zio));
2394 }
2395 
2396 static int
2397 zio_vdev_io_done(zio_t *zio)
2398 {
2399 	vdev_t *vd = zio->io_vd;
2400 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2401 	boolean_t unexpected_error = B_FALSE;
2402 
2403 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2404 		return (ZIO_PIPELINE_STOP);
2405 
2406 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2407 
2408 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2409 
2410 		vdev_queue_io_done(zio);
2411 
2412 		if (zio->io_type == ZIO_TYPE_WRITE)
2413 			vdev_cache_write(zio);
2414 
2415 		if (zio_injection_enabled && zio->io_error == 0)
2416 			zio->io_error = zio_handle_device_injection(vd,
2417 			    zio, EIO);
2418 
2419 		if (zio_injection_enabled && zio->io_error == 0)
2420 			zio->io_error = zio_handle_label_injection(zio, EIO);
2421 
2422 		if (zio->io_error) {
2423 			if (!vdev_accessible(vd, zio)) {
2424 				zio->io_error = ENXIO;
2425 			} else {
2426 				unexpected_error = B_TRUE;
2427 			}
2428 		}
2429 	}
2430 
2431 	ops->vdev_op_io_done(zio);
2432 
2433 	if (unexpected_error)
2434 		VERIFY(vdev_probe(vd, zio) == NULL);
2435 
2436 	return (ZIO_PIPELINE_CONTINUE);
2437 }
2438 
2439 /*
2440  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2441  * disk, and use that to finish the checksum ereport later.
2442  */
2443 static void
2444 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2445     const void *good_buf)
2446 {
2447 	/* no processing needed */
2448 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2449 }
2450 
2451 /*ARGSUSED*/
2452 void
2453 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2454 {
2455 	void *buf = zio_buf_alloc(zio->io_size);
2456 
2457 	bcopy(zio->io_data, buf, zio->io_size);
2458 
2459 	zcr->zcr_cbinfo = zio->io_size;
2460 	zcr->zcr_cbdata = buf;
2461 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2462 	zcr->zcr_free = zio_buf_free;
2463 }
2464 
2465 static int
2466 zio_vdev_io_assess(zio_t *zio)
2467 {
2468 	vdev_t *vd = zio->io_vd;
2469 
2470 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2471 		return (ZIO_PIPELINE_STOP);
2472 
2473 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2474 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2475 
2476 	if (zio->io_vsd != NULL) {
2477 		zio->io_vsd_ops->vsd_free(zio);
2478 		zio->io_vsd = NULL;
2479 	}
2480 
2481 	if (zio_injection_enabled && zio->io_error == 0)
2482 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2483 
2484 	/*
2485 	 * If the I/O failed, determine whether we should attempt to retry it.
2486 	 *
2487 	 * On retry, we cut in line in the issue queue, since we don't want
2488 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2489 	 */
2490 	if (zio->io_error && vd == NULL &&
2491 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2492 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2493 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2494 		zio->io_error = 0;
2495 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2496 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2497 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2498 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2499 		    zio_requeue_io_start_cut_in_line);
2500 		return (ZIO_PIPELINE_STOP);
2501 	}
2502 
2503 	/*
2504 	 * If we got an error on a leaf device, convert it to ENXIO
2505 	 * if the device is not accessible at all.
2506 	 */
2507 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2508 	    !vdev_accessible(vd, zio))
2509 		zio->io_error = ENXIO;
2510 
2511 	/*
2512 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2513 	 * set vdev_cant_write so that we stop trying to allocate from it.
2514 	 */
2515 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2516 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2517 		vd->vdev_cant_write = B_TRUE;
2518 
2519 	if (zio->io_error)
2520 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2521 
2522 	return (ZIO_PIPELINE_CONTINUE);
2523 }
2524 
2525 void
2526 zio_vdev_io_reissue(zio_t *zio)
2527 {
2528 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2529 	ASSERT(zio->io_error == 0);
2530 
2531 	zio->io_stage >>= 1;
2532 }
2533 
2534 void
2535 zio_vdev_io_redone(zio_t *zio)
2536 {
2537 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2538 
2539 	zio->io_stage >>= 1;
2540 }
2541 
2542 void
2543 zio_vdev_io_bypass(zio_t *zio)
2544 {
2545 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2546 	ASSERT(zio->io_error == 0);
2547 
2548 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2549 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2550 }
2551 
2552 /*
2553  * ==========================================================================
2554  * Generate and verify checksums
2555  * ==========================================================================
2556  */
2557 static int
2558 zio_checksum_generate(zio_t *zio)
2559 {
2560 	blkptr_t *bp = zio->io_bp;
2561 	enum zio_checksum checksum;
2562 
2563 	if (bp == NULL) {
2564 		/*
2565 		 * This is zio_write_phys().
2566 		 * We're either generating a label checksum, or none at all.
2567 		 */
2568 		checksum = zio->io_prop.zp_checksum;
2569 
2570 		if (checksum == ZIO_CHECKSUM_OFF)
2571 			return (ZIO_PIPELINE_CONTINUE);
2572 
2573 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2574 	} else {
2575 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2576 			ASSERT(!IO_IS_ALLOCATING(zio));
2577 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2578 		} else {
2579 			checksum = BP_GET_CHECKSUM(bp);
2580 		}
2581 	}
2582 
2583 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2584 
2585 	return (ZIO_PIPELINE_CONTINUE);
2586 }
2587 
2588 static int
2589 zio_checksum_verify(zio_t *zio)
2590 {
2591 	zio_bad_cksum_t info;
2592 	blkptr_t *bp = zio->io_bp;
2593 	int error;
2594 
2595 	ASSERT(zio->io_vd != NULL);
2596 
2597 	if (bp == NULL) {
2598 		/*
2599 		 * This is zio_read_phys().
2600 		 * We're either verifying a label checksum, or nothing at all.
2601 		 */
2602 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2603 			return (ZIO_PIPELINE_CONTINUE);
2604 
2605 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2606 	}
2607 
2608 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2609 		zio->io_error = error;
2610 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2611 			zfs_ereport_start_checksum(zio->io_spa,
2612 			    zio->io_vd, zio, zio->io_offset,
2613 			    zio->io_size, NULL, &info);
2614 		}
2615 	}
2616 
2617 	return (ZIO_PIPELINE_CONTINUE);
2618 }
2619 
2620 /*
2621  * Called by RAID-Z to ensure we don't compute the checksum twice.
2622  */
2623 void
2624 zio_checksum_verified(zio_t *zio)
2625 {
2626 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2627 }
2628 
2629 /*
2630  * ==========================================================================
2631  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2632  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2633  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2634  * indicate errors that are specific to one I/O, and most likely permanent.
2635  * Any other error is presumed to be worse because we weren't expecting it.
2636  * ==========================================================================
2637  */
2638 int
2639 zio_worst_error(int e1, int e2)
2640 {
2641 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2642 	int r1, r2;
2643 
2644 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2645 		if (e1 == zio_error_rank[r1])
2646 			break;
2647 
2648 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2649 		if (e2 == zio_error_rank[r2])
2650 			break;
2651 
2652 	return (r1 > r2 ? e1 : e2);
2653 }
2654 
2655 /*
2656  * ==========================================================================
2657  * I/O completion
2658  * ==========================================================================
2659  */
2660 static int
2661 zio_ready(zio_t *zio)
2662 {
2663 	blkptr_t *bp = zio->io_bp;
2664 	zio_t *pio, *pio_next;
2665 
2666 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2667 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2668 		return (ZIO_PIPELINE_STOP);
2669 
2670 	if (zio->io_ready) {
2671 		ASSERT(IO_IS_ALLOCATING(zio));
2672 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2673 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2674 
2675 		zio->io_ready(zio);
2676 	}
2677 
2678 	if (bp != NULL && bp != &zio->io_bp_copy)
2679 		zio->io_bp_copy = *bp;
2680 
2681 	if (zio->io_error)
2682 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2683 
2684 	mutex_enter(&zio->io_lock);
2685 	zio->io_state[ZIO_WAIT_READY] = 1;
2686 	pio = zio_walk_parents(zio);
2687 	mutex_exit(&zio->io_lock);
2688 
2689 	/*
2690 	 * As we notify zio's parents, new parents could be added.
2691 	 * New parents go to the head of zio's io_parent_list, however,
2692 	 * so we will (correctly) not notify them.  The remainder of zio's
2693 	 * io_parent_list, from 'pio_next' onward, cannot change because
2694 	 * all parents must wait for us to be done before they can be done.
2695 	 */
2696 	for (; pio != NULL; pio = pio_next) {
2697 		pio_next = zio_walk_parents(zio);
2698 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2699 	}
2700 
2701 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2702 		if (BP_IS_GANG(bp)) {
2703 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2704 		} else {
2705 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2706 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2707 		}
2708 	}
2709 
2710 	if (zio_injection_enabled &&
2711 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2712 		zio_handle_ignored_writes(zio);
2713 
2714 	return (ZIO_PIPELINE_CONTINUE);
2715 }
2716 
2717 static int
2718 zio_done(zio_t *zio)
2719 {
2720 	spa_t *spa = zio->io_spa;
2721 	zio_t *lio = zio->io_logical;
2722 	blkptr_t *bp = zio->io_bp;
2723 	vdev_t *vd = zio->io_vd;
2724 	uint64_t psize = zio->io_size;
2725 	zio_t *pio, *pio_next;
2726 
2727 	/*
2728 	 * If our children haven't all completed,
2729 	 * wait for them and then repeat this pipeline stage.
2730 	 */
2731 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2732 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2733 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2734 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2735 		return (ZIO_PIPELINE_STOP);
2736 
2737 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2738 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2739 			ASSERT(zio->io_children[c][w] == 0);
2740 
2741 	if (bp != NULL) {
2742 		ASSERT(bp->blk_pad[0] == 0);
2743 		ASSERT(bp->blk_pad[1] == 0);
2744 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2745 		    (bp == zio_unique_parent(zio)->io_bp));
2746 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2747 		    zio->io_bp_override == NULL &&
2748 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2749 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2750 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2751 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2752 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2753 		}
2754 	}
2755 
2756 	/*
2757 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2758 	 */
2759 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2760 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2761 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2762 
2763 	/*
2764 	 * If the I/O on the transformed data was successful, generate any
2765 	 * checksum reports now while we still have the transformed data.
2766 	 */
2767 	if (zio->io_error == 0) {
2768 		while (zio->io_cksum_report != NULL) {
2769 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2770 			uint64_t align = zcr->zcr_align;
2771 			uint64_t asize = P2ROUNDUP(psize, align);
2772 			char *abuf = zio->io_data;
2773 
2774 			if (asize != psize) {
2775 				abuf = zio_buf_alloc(asize);
2776 				bcopy(zio->io_data, abuf, psize);
2777 				bzero(abuf + psize, asize - psize);
2778 			}
2779 
2780 			zio->io_cksum_report = zcr->zcr_next;
2781 			zcr->zcr_next = NULL;
2782 			zcr->zcr_finish(zcr, abuf);
2783 			zfs_ereport_free_checksum(zcr);
2784 
2785 			if (asize != psize)
2786 				zio_buf_free(abuf, asize);
2787 		}
2788 	}
2789 
2790 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2791 
2792 	vdev_stat_update(zio, psize);
2793 
2794 	if (zio->io_error) {
2795 		/*
2796 		 * If this I/O is attached to a particular vdev,
2797 		 * generate an error message describing the I/O failure
2798 		 * at the block level.  We ignore these errors if the
2799 		 * device is currently unavailable.
2800 		 */
2801 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2802 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2803 
2804 		if ((zio->io_error == EIO || !(zio->io_flags &
2805 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2806 		    zio == lio) {
2807 			/*
2808 			 * For logical I/O requests, tell the SPA to log the
2809 			 * error and generate a logical data ereport.
2810 			 */
2811 			spa_log_error(spa, zio);
2812 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2813 			    0, 0);
2814 		}
2815 	}
2816 
2817 	if (zio->io_error && zio == lio) {
2818 		/*
2819 		 * Determine whether zio should be reexecuted.  This will
2820 		 * propagate all the way to the root via zio_notify_parent().
2821 		 */
2822 		ASSERT(vd == NULL && bp != NULL);
2823 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2824 
2825 		if (IO_IS_ALLOCATING(zio) &&
2826 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2827 			if (zio->io_error != ENOSPC)
2828 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2829 			else
2830 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2831 		}
2832 
2833 		if ((zio->io_type == ZIO_TYPE_READ ||
2834 		    zio->io_type == ZIO_TYPE_FREE) &&
2835 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2836 		    zio->io_error == ENXIO &&
2837 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2838 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2839 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2840 
2841 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2842 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2843 
2844 		/*
2845 		 * Here is a possibly good place to attempt to do
2846 		 * either combinatorial reconstruction or error correction
2847 		 * based on checksums.  It also might be a good place
2848 		 * to send out preliminary ereports before we suspend
2849 		 * processing.
2850 		 */
2851 	}
2852 
2853 	/*
2854 	 * If there were logical child errors, they apply to us now.
2855 	 * We defer this until now to avoid conflating logical child
2856 	 * errors with errors that happened to the zio itself when
2857 	 * updating vdev stats and reporting FMA events above.
2858 	 */
2859 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2860 
2861 	if ((zio->io_error || zio->io_reexecute) &&
2862 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2863 	    !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2864 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2865 
2866 	zio_gang_tree_free(&zio->io_gang_tree);
2867 
2868 	/*
2869 	 * Godfather I/Os should never suspend.
2870 	 */
2871 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2872 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2873 		zio->io_reexecute = 0;
2874 
2875 	if (zio->io_reexecute) {
2876 		/*
2877 		 * This is a logical I/O that wants to reexecute.
2878 		 *
2879 		 * Reexecute is top-down.  When an i/o fails, if it's not
2880 		 * the root, it simply notifies its parent and sticks around.
2881 		 * The parent, seeing that it still has children in zio_done(),
2882 		 * does the same.  This percolates all the way up to the root.
2883 		 * The root i/o will reexecute or suspend the entire tree.
2884 		 *
2885 		 * This approach ensures that zio_reexecute() honors
2886 		 * all the original i/o dependency relationships, e.g.
2887 		 * parents not executing until children are ready.
2888 		 */
2889 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2890 
2891 		zio->io_gang_leader = NULL;
2892 
2893 		mutex_enter(&zio->io_lock);
2894 		zio->io_state[ZIO_WAIT_DONE] = 1;
2895 		mutex_exit(&zio->io_lock);
2896 
2897 		/*
2898 		 * "The Godfather" I/O monitors its children but is
2899 		 * not a true parent to them. It will track them through
2900 		 * the pipeline but severs its ties whenever they get into
2901 		 * trouble (e.g. suspended). This allows "The Godfather"
2902 		 * I/O to return status without blocking.
2903 		 */
2904 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2905 			zio_link_t *zl = zio->io_walk_link;
2906 			pio_next = zio_walk_parents(zio);
2907 
2908 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2909 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2910 				zio_remove_child(pio, zio, zl);
2911 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2912 			}
2913 		}
2914 
2915 		if ((pio = zio_unique_parent(zio)) != NULL) {
2916 			/*
2917 			 * We're not a root i/o, so there's nothing to do
2918 			 * but notify our parent.  Don't propagate errors
2919 			 * upward since we haven't permanently failed yet.
2920 			 */
2921 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2922 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2923 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2924 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2925 			/*
2926 			 * We'd fail again if we reexecuted now, so suspend
2927 			 * until conditions improve (e.g. device comes online).
2928 			 */
2929 			zio_suspend(spa, zio);
2930 		} else {
2931 			/*
2932 			 * Reexecution is potentially a huge amount of work.
2933 			 * Hand it off to the otherwise-unused claim taskq.
2934 			 */
2935 			ASSERT(zio->io_tqent.tqent_next == NULL);
2936 			taskq_dispatch_ent(
2937 			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2938 			    (task_func_t *)zio_reexecute, zio, 0,
2939 			    &zio->io_tqent);
2940 		}
2941 		return (ZIO_PIPELINE_STOP);
2942 	}
2943 
2944 	ASSERT(zio->io_child_count == 0);
2945 	ASSERT(zio->io_reexecute == 0);
2946 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2947 
2948 	/*
2949 	 * Report any checksum errors, since the I/O is complete.
2950 	 */
2951 	while (zio->io_cksum_report != NULL) {
2952 		zio_cksum_report_t *zcr = zio->io_cksum_report;
2953 		zio->io_cksum_report = zcr->zcr_next;
2954 		zcr->zcr_next = NULL;
2955 		zcr->zcr_finish(zcr, NULL);
2956 		zfs_ereport_free_checksum(zcr);
2957 	}
2958 
2959 	/*
2960 	 * It is the responsibility of the done callback to ensure that this
2961 	 * particular zio is no longer discoverable for adoption, and as
2962 	 * such, cannot acquire any new parents.
2963 	 */
2964 	if (zio->io_done)
2965 		zio->io_done(zio);
2966 
2967 	mutex_enter(&zio->io_lock);
2968 	zio->io_state[ZIO_WAIT_DONE] = 1;
2969 	mutex_exit(&zio->io_lock);
2970 
2971 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2972 		zio_link_t *zl = zio->io_walk_link;
2973 		pio_next = zio_walk_parents(zio);
2974 		zio_remove_child(pio, zio, zl);
2975 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2976 	}
2977 
2978 	if (zio->io_waiter != NULL) {
2979 		mutex_enter(&zio->io_lock);
2980 		zio->io_executor = NULL;
2981 		cv_broadcast(&zio->io_cv);
2982 		mutex_exit(&zio->io_lock);
2983 	} else {
2984 		zio_destroy(zio);
2985 	}
2986 
2987 	return (ZIO_PIPELINE_STOP);
2988 }
2989 
2990 /*
2991  * ==========================================================================
2992  * I/O pipeline definition
2993  * ==========================================================================
2994  */
2995 static zio_pipe_stage_t *zio_pipeline[] = {
2996 	NULL,
2997 	zio_read_bp_init,
2998 	zio_free_bp_init,
2999 	zio_issue_async,
3000 	zio_write_bp_init,
3001 	zio_checksum_generate,
3002 	zio_ddt_read_start,
3003 	zio_ddt_read_done,
3004 	zio_ddt_write,
3005 	zio_ddt_free,
3006 	zio_gang_assemble,
3007 	zio_gang_issue,
3008 	zio_dva_allocate,
3009 	zio_dva_free,
3010 	zio_dva_claim,
3011 	zio_ready,
3012 	zio_vdev_io_start,
3013 	zio_vdev_io_done,
3014 	zio_vdev_io_assess,
3015 	zio_checksum_verify,
3016 	zio_done
3017 };
3018 
3019 /* dnp is the dnode for zb1->zb_object */
3020 boolean_t
3021 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3022     const zbookmark_t *zb2)
3023 {
3024 	uint64_t zb1nextL0, zb2thisobj;
3025 
3026 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3027 	ASSERT(zb2->zb_level == 0);
3028 
3029 	/*
3030 	 * A bookmark in the deadlist is considered to be after
3031 	 * everything else.
3032 	 */
3033 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3034 		return (B_TRUE);
3035 
3036 	/* The objset_phys_t isn't before anything. */
3037 	if (dnp == NULL)
3038 		return (B_FALSE);
3039 
3040 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3041 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3042 
3043 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3044 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3045 
3046 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3047 		uint64_t nextobj = zb1nextL0 *
3048 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3049 		return (nextobj <= zb2thisobj);
3050 	}
3051 
3052 	if (zb1->zb_object < zb2thisobj)
3053 		return (B_TRUE);
3054 	if (zb1->zb_object > zb2thisobj)
3055 		return (B_FALSE);
3056 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3057 		return (B_FALSE);
3058 	return (zb1nextL0 <= zb2->zb_blkid);
3059 }
3060