xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision dcbf3bd6a1f1360fc1afcee9e22c6dcff7844bf2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 
44 /*
45  * The zfs intent log (ZIL) saves transaction records of system calls
46  * that change the file system in memory with enough information
47  * to be able to replay them. These are stored in memory until
48  * either the DMU transaction group (txg) commits them to the stable pool
49  * and they can be discarded, or they are flushed to the stable log
50  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
51  * requirement. In the event of a panic or power fail then those log
52  * records (transactions) are replayed.
53  *
54  * There is one ZIL per file system. Its on-disk (pool) format consists
55  * of 3 parts:
56  *
57  * 	- ZIL header
58  * 	- ZIL blocks
59  * 	- ZIL records
60  *
61  * A log record holds a system call transaction. Log blocks can
62  * hold many log records and the blocks are chained together.
63  * Each ZIL block contains a block pointer (blkptr_t) to the next
64  * ZIL block in the chain. The ZIL header points to the first
65  * block in the chain. Note there is not a fixed place in the pool
66  * to hold blocks. They are dynamically allocated and freed as
67  * needed from the blocks available. Figure X shows the ZIL structure:
68  */
69 
70 /*
71  * Disable intent logging replay.  This global ZIL switch affects all pools.
72  */
73 int zil_replay_disable = 0;
74 
75 /*
76  * Tunable parameter for debugging or performance analysis.  Setting
77  * zfs_nocacheflush will cause corruption on power loss if a volatile
78  * out-of-order write cache is enabled.
79  */
80 boolean_t zfs_nocacheflush = B_FALSE;
81 
82 static kmem_cache_t *zil_lwb_cache;
83 
84 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
85 
86 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
87     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
88 
89 
90 /*
91  * ziltest is by and large an ugly hack, but very useful in
92  * checking replay without tedious work.
93  * When running ziltest we want to keep all itx's and so maintain
94  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
95  * We subtract TXG_CONCURRENT_STATES to allow for common code.
96  */
97 #define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
98 
99 static int
100 zil_bp_compare(const void *x1, const void *x2)
101 {
102 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
103 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
104 
105 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
106 		return (-1);
107 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
108 		return (1);
109 
110 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
111 		return (-1);
112 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
113 		return (1);
114 
115 	return (0);
116 }
117 
118 static void
119 zil_bp_tree_init(zilog_t *zilog)
120 {
121 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
122 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
123 }
124 
125 static void
126 zil_bp_tree_fini(zilog_t *zilog)
127 {
128 	avl_tree_t *t = &zilog->zl_bp_tree;
129 	zil_bp_node_t *zn;
130 	void *cookie = NULL;
131 
132 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
133 		kmem_free(zn, sizeof (zil_bp_node_t));
134 
135 	avl_destroy(t);
136 }
137 
138 int
139 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
140 {
141 	avl_tree_t *t = &zilog->zl_bp_tree;
142 	const dva_t *dva;
143 	zil_bp_node_t *zn;
144 	avl_index_t where;
145 
146 	if (BP_IS_EMBEDDED(bp))
147 		return (0);
148 
149 	dva = BP_IDENTITY(bp);
150 
151 	if (avl_find(t, dva, &where) != NULL)
152 		return (SET_ERROR(EEXIST));
153 
154 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
155 	zn->zn_dva = *dva;
156 	avl_insert(t, zn, where);
157 
158 	return (0);
159 }
160 
161 static zil_header_t *
162 zil_header_in_syncing_context(zilog_t *zilog)
163 {
164 	return ((zil_header_t *)zilog->zl_header);
165 }
166 
167 static void
168 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
169 {
170 	zio_cksum_t *zc = &bp->blk_cksum;
171 
172 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
173 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
174 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
175 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
176 }
177 
178 /*
179  * Read a log block and make sure it's valid.
180  */
181 static int
182 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
183     char **end)
184 {
185 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
186 	arc_flags_t aflags = ARC_FLAG_WAIT;
187 	arc_buf_t *abuf = NULL;
188 	zbookmark_phys_t zb;
189 	int error;
190 
191 	if (zilog->zl_header->zh_claim_txg == 0)
192 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
193 
194 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
195 		zio_flags |= ZIO_FLAG_SPECULATIVE;
196 
197 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
198 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
199 
200 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
201 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
202 
203 	if (error == 0) {
204 		zio_cksum_t cksum = bp->blk_cksum;
205 
206 		/*
207 		 * Validate the checksummed log block.
208 		 *
209 		 * Sequence numbers should be... sequential.  The checksum
210 		 * verifier for the next block should be bp's checksum plus 1.
211 		 *
212 		 * Also check the log chain linkage and size used.
213 		 */
214 		cksum.zc_word[ZIL_ZC_SEQ]++;
215 
216 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
217 			zil_chain_t *zilc = abuf->b_data;
218 			char *lr = (char *)(zilc + 1);
219 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
220 
221 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
222 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
223 				error = SET_ERROR(ECKSUM);
224 			} else {
225 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
226 				bcopy(lr, dst, len);
227 				*end = (char *)dst + len;
228 				*nbp = zilc->zc_next_blk;
229 			}
230 		} else {
231 			char *lr = abuf->b_data;
232 			uint64_t size = BP_GET_LSIZE(bp);
233 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
234 
235 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
236 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
237 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
238 				error = SET_ERROR(ECKSUM);
239 			} else {
240 				ASSERT3U(zilc->zc_nused, <=,
241 				    SPA_OLD_MAXBLOCKSIZE);
242 				bcopy(lr, dst, zilc->zc_nused);
243 				*end = (char *)dst + zilc->zc_nused;
244 				*nbp = zilc->zc_next_blk;
245 			}
246 		}
247 
248 		arc_buf_destroy(abuf, &abuf);
249 	}
250 
251 	return (error);
252 }
253 
254 /*
255  * Read a TX_WRITE log data block.
256  */
257 static int
258 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
259 {
260 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
261 	const blkptr_t *bp = &lr->lr_blkptr;
262 	arc_flags_t aflags = ARC_FLAG_WAIT;
263 	arc_buf_t *abuf = NULL;
264 	zbookmark_phys_t zb;
265 	int error;
266 
267 	if (BP_IS_HOLE(bp)) {
268 		if (wbuf != NULL)
269 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
270 		return (0);
271 	}
272 
273 	if (zilog->zl_header->zh_claim_txg == 0)
274 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
275 
276 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
277 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
278 
279 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
280 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
281 
282 	if (error == 0) {
283 		if (wbuf != NULL)
284 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
285 		arc_buf_destroy(abuf, &abuf);
286 	}
287 
288 	return (error);
289 }
290 
291 /*
292  * Parse the intent log, and call parse_func for each valid record within.
293  */
294 int
295 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
296     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
297 {
298 	const zil_header_t *zh = zilog->zl_header;
299 	boolean_t claimed = !!zh->zh_claim_txg;
300 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
301 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
302 	uint64_t max_blk_seq = 0;
303 	uint64_t max_lr_seq = 0;
304 	uint64_t blk_count = 0;
305 	uint64_t lr_count = 0;
306 	blkptr_t blk, next_blk;
307 	char *lrbuf, *lrp;
308 	int error = 0;
309 
310 	/*
311 	 * Old logs didn't record the maximum zh_claim_lr_seq.
312 	 */
313 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
314 		claim_lr_seq = UINT64_MAX;
315 
316 	/*
317 	 * Starting at the block pointed to by zh_log we read the log chain.
318 	 * For each block in the chain we strongly check that block to
319 	 * ensure its validity.  We stop when an invalid block is found.
320 	 * For each block pointer in the chain we call parse_blk_func().
321 	 * For each record in each valid block we call parse_lr_func().
322 	 * If the log has been claimed, stop if we encounter a sequence
323 	 * number greater than the highest claimed sequence number.
324 	 */
325 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
326 	zil_bp_tree_init(zilog);
327 
328 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
329 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
330 		int reclen;
331 		char *end;
332 
333 		if (blk_seq > claim_blk_seq)
334 			break;
335 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
336 			break;
337 		ASSERT3U(max_blk_seq, <, blk_seq);
338 		max_blk_seq = blk_seq;
339 		blk_count++;
340 
341 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
342 			break;
343 
344 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
345 		if (error != 0)
346 			break;
347 
348 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
349 			lr_t *lr = (lr_t *)lrp;
350 			reclen = lr->lrc_reclen;
351 			ASSERT3U(reclen, >=, sizeof (lr_t));
352 			if (lr->lrc_seq > claim_lr_seq)
353 				goto done;
354 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
355 				goto done;
356 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
357 			max_lr_seq = lr->lrc_seq;
358 			lr_count++;
359 		}
360 	}
361 done:
362 	zilog->zl_parse_error = error;
363 	zilog->zl_parse_blk_seq = max_blk_seq;
364 	zilog->zl_parse_lr_seq = max_lr_seq;
365 	zilog->zl_parse_blk_count = blk_count;
366 	zilog->zl_parse_lr_count = lr_count;
367 
368 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
369 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
370 
371 	zil_bp_tree_fini(zilog);
372 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
373 
374 	return (error);
375 }
376 
377 static int
378 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
379 {
380 	/*
381 	 * Claim log block if not already committed and not already claimed.
382 	 * If tx == NULL, just verify that the block is claimable.
383 	 */
384 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
385 	    zil_bp_tree_add(zilog, bp) != 0)
386 		return (0);
387 
388 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
389 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
390 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
391 }
392 
393 static int
394 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
395 {
396 	lr_write_t *lr = (lr_write_t *)lrc;
397 	int error;
398 
399 	if (lrc->lrc_txtype != TX_WRITE)
400 		return (0);
401 
402 	/*
403 	 * If the block is not readable, don't claim it.  This can happen
404 	 * in normal operation when a log block is written to disk before
405 	 * some of the dmu_sync() blocks it points to.  In this case, the
406 	 * transaction cannot have been committed to anyone (we would have
407 	 * waited for all writes to be stable first), so it is semantically
408 	 * correct to declare this the end of the log.
409 	 */
410 	if (lr->lr_blkptr.blk_birth >= first_txg &&
411 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
412 		return (error);
413 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
414 }
415 
416 /* ARGSUSED */
417 static int
418 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
419 {
420 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
421 
422 	return (0);
423 }
424 
425 static int
426 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
427 {
428 	lr_write_t *lr = (lr_write_t *)lrc;
429 	blkptr_t *bp = &lr->lr_blkptr;
430 
431 	/*
432 	 * If we previously claimed it, we need to free it.
433 	 */
434 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
435 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
436 	    !BP_IS_HOLE(bp))
437 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
438 
439 	return (0);
440 }
441 
442 static lwb_t *
443 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
444 {
445 	lwb_t *lwb;
446 
447 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
448 	lwb->lwb_zilog = zilog;
449 	lwb->lwb_blk = *bp;
450 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
451 	lwb->lwb_max_txg = txg;
452 	lwb->lwb_zio = NULL;
453 	lwb->lwb_tx = NULL;
454 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
455 		lwb->lwb_nused = sizeof (zil_chain_t);
456 		lwb->lwb_sz = BP_GET_LSIZE(bp);
457 	} else {
458 		lwb->lwb_nused = 0;
459 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
460 	}
461 
462 	mutex_enter(&zilog->zl_lock);
463 	list_insert_tail(&zilog->zl_lwb_list, lwb);
464 	mutex_exit(&zilog->zl_lock);
465 
466 	return (lwb);
467 }
468 
469 /*
470  * Called when we create in-memory log transactions so that we know
471  * to cleanup the itxs at the end of spa_sync().
472  */
473 void
474 zilog_dirty(zilog_t *zilog, uint64_t txg)
475 {
476 	dsl_pool_t *dp = zilog->zl_dmu_pool;
477 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
478 
479 	if (ds->ds_is_snapshot)
480 		panic("dirtying snapshot!");
481 
482 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
483 		/* up the hold count until we can be written out */
484 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
485 	}
486 }
487 
488 boolean_t
489 zilog_is_dirty(zilog_t *zilog)
490 {
491 	dsl_pool_t *dp = zilog->zl_dmu_pool;
492 
493 	for (int t = 0; t < TXG_SIZE; t++) {
494 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
495 			return (B_TRUE);
496 	}
497 	return (B_FALSE);
498 }
499 
500 /*
501  * Create an on-disk intent log.
502  */
503 static lwb_t *
504 zil_create(zilog_t *zilog)
505 {
506 	const zil_header_t *zh = zilog->zl_header;
507 	lwb_t *lwb = NULL;
508 	uint64_t txg = 0;
509 	dmu_tx_t *tx = NULL;
510 	blkptr_t blk;
511 	int error = 0;
512 
513 	/*
514 	 * Wait for any previous destroy to complete.
515 	 */
516 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
517 
518 	ASSERT(zh->zh_claim_txg == 0);
519 	ASSERT(zh->zh_replay_seq == 0);
520 
521 	blk = zh->zh_log;
522 
523 	/*
524 	 * Allocate an initial log block if:
525 	 *    - there isn't one already
526 	 *    - the existing block is the wrong endianess
527 	 */
528 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
529 		tx = dmu_tx_create(zilog->zl_os);
530 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
531 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
532 		txg = dmu_tx_get_txg(tx);
533 
534 		if (!BP_IS_HOLE(&blk)) {
535 			zio_free_zil(zilog->zl_spa, txg, &blk);
536 			BP_ZERO(&blk);
537 		}
538 
539 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
540 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
541 
542 		if (error == 0)
543 			zil_init_log_chain(zilog, &blk);
544 	}
545 
546 	/*
547 	 * Allocate a log write buffer (lwb) for the first log block.
548 	 */
549 	if (error == 0)
550 		lwb = zil_alloc_lwb(zilog, &blk, txg);
551 
552 	/*
553 	 * If we just allocated the first log block, commit our transaction
554 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
555 	 * (zh is part of the MOS, so we cannot modify it in open context.)
556 	 */
557 	if (tx != NULL) {
558 		dmu_tx_commit(tx);
559 		txg_wait_synced(zilog->zl_dmu_pool, txg);
560 	}
561 
562 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
563 
564 	return (lwb);
565 }
566 
567 /*
568  * In one tx, free all log blocks and clear the log header.
569  * If keep_first is set, then we're replaying a log with no content.
570  * We want to keep the first block, however, so that the first
571  * synchronous transaction doesn't require a txg_wait_synced()
572  * in zil_create().  We don't need to txg_wait_synced() here either
573  * when keep_first is set, because both zil_create() and zil_destroy()
574  * will wait for any in-progress destroys to complete.
575  */
576 void
577 zil_destroy(zilog_t *zilog, boolean_t keep_first)
578 {
579 	const zil_header_t *zh = zilog->zl_header;
580 	lwb_t *lwb;
581 	dmu_tx_t *tx;
582 	uint64_t txg;
583 
584 	/*
585 	 * Wait for any previous destroy to complete.
586 	 */
587 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
588 
589 	zilog->zl_old_header = *zh;		/* debugging aid */
590 
591 	if (BP_IS_HOLE(&zh->zh_log))
592 		return;
593 
594 	tx = dmu_tx_create(zilog->zl_os);
595 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
596 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
597 	txg = dmu_tx_get_txg(tx);
598 
599 	mutex_enter(&zilog->zl_lock);
600 
601 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
602 	zilog->zl_destroy_txg = txg;
603 	zilog->zl_keep_first = keep_first;
604 
605 	if (!list_is_empty(&zilog->zl_lwb_list)) {
606 		ASSERT(zh->zh_claim_txg == 0);
607 		VERIFY(!keep_first);
608 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
609 			list_remove(&zilog->zl_lwb_list, lwb);
610 			if (lwb->lwb_buf != NULL)
611 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
612 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
613 			kmem_cache_free(zil_lwb_cache, lwb);
614 		}
615 	} else if (!keep_first) {
616 		zil_destroy_sync(zilog, tx);
617 	}
618 	mutex_exit(&zilog->zl_lock);
619 
620 	dmu_tx_commit(tx);
621 }
622 
623 void
624 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
625 {
626 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
627 	(void) zil_parse(zilog, zil_free_log_block,
628 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
629 }
630 
631 int
632 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
633 {
634 	dmu_tx_t *tx = txarg;
635 	uint64_t first_txg = dmu_tx_get_txg(tx);
636 	zilog_t *zilog;
637 	zil_header_t *zh;
638 	objset_t *os;
639 	int error;
640 
641 	error = dmu_objset_own_obj(dp, ds->ds_object,
642 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
643 	if (error != 0) {
644 		/*
645 		 * EBUSY indicates that the objset is inconsistent, in which
646 		 * case it can not have a ZIL.
647 		 */
648 		if (error != EBUSY) {
649 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
650 			    (unsigned long long)ds->ds_object, error);
651 		}
652 		return (0);
653 	}
654 
655 	zilog = dmu_objset_zil(os);
656 	zh = zil_header_in_syncing_context(zilog);
657 
658 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
659 		if (!BP_IS_HOLE(&zh->zh_log))
660 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
661 		BP_ZERO(&zh->zh_log);
662 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
663 		dmu_objset_disown(os, FTAG);
664 		return (0);
665 	}
666 
667 	/*
668 	 * Claim all log blocks if we haven't already done so, and remember
669 	 * the highest claimed sequence number.  This ensures that if we can
670 	 * read only part of the log now (e.g. due to a missing device),
671 	 * but we can read the entire log later, we will not try to replay
672 	 * or destroy beyond the last block we successfully claimed.
673 	 */
674 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
675 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
676 		(void) zil_parse(zilog, zil_claim_log_block,
677 		    zil_claim_log_record, tx, first_txg);
678 		zh->zh_claim_txg = first_txg;
679 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
680 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
681 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
682 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
683 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
684 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
685 	}
686 
687 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
688 	dmu_objset_disown(os, FTAG);
689 	return (0);
690 }
691 
692 /*
693  * Check the log by walking the log chain.
694  * Checksum errors are ok as they indicate the end of the chain.
695  * Any other error (no device or read failure) returns an error.
696  */
697 /* ARGSUSED */
698 int
699 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
700 {
701 	zilog_t *zilog;
702 	objset_t *os;
703 	blkptr_t *bp;
704 	int error;
705 
706 	ASSERT(tx == NULL);
707 
708 	error = dmu_objset_from_ds(ds, &os);
709 	if (error != 0) {
710 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
711 		    (unsigned long long)ds->ds_object, error);
712 		return (0);
713 	}
714 
715 	zilog = dmu_objset_zil(os);
716 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
717 
718 	/*
719 	 * Check the first block and determine if it's on a log device
720 	 * which may have been removed or faulted prior to loading this
721 	 * pool.  If so, there's no point in checking the rest of the log
722 	 * as its content should have already been synced to the pool.
723 	 */
724 	if (!BP_IS_HOLE(bp)) {
725 		vdev_t *vd;
726 		boolean_t valid = B_TRUE;
727 
728 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
729 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
730 		if (vd->vdev_islog && vdev_is_dead(vd))
731 			valid = vdev_log_state_valid(vd);
732 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
733 
734 		if (!valid)
735 			return (0);
736 	}
737 
738 	/*
739 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
740 	 * any blocks, but just determine whether it is possible to do so.
741 	 * In addition to checking the log chain, zil_claim_log_block()
742 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
743 	 * which will update spa_max_claim_txg.  See spa_load() for details.
744 	 */
745 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
746 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
747 
748 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
749 }
750 
751 static int
752 zil_vdev_compare(const void *x1, const void *x2)
753 {
754 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
755 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
756 
757 	if (v1 < v2)
758 		return (-1);
759 	if (v1 > v2)
760 		return (1);
761 
762 	return (0);
763 }
764 
765 void
766 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
767 {
768 	avl_tree_t *t = &zilog->zl_vdev_tree;
769 	avl_index_t where;
770 	zil_vdev_node_t *zv, zvsearch;
771 	int ndvas = BP_GET_NDVAS(bp);
772 	int i;
773 
774 	if (zfs_nocacheflush)
775 		return;
776 
777 	ASSERT(zilog->zl_writer);
778 
779 	/*
780 	 * Even though we're zl_writer, we still need a lock because the
781 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
782 	 * that will run concurrently.
783 	 */
784 	mutex_enter(&zilog->zl_vdev_lock);
785 	for (i = 0; i < ndvas; i++) {
786 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
787 		if (avl_find(t, &zvsearch, &where) == NULL) {
788 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
789 			zv->zv_vdev = zvsearch.zv_vdev;
790 			avl_insert(t, zv, where);
791 		}
792 	}
793 	mutex_exit(&zilog->zl_vdev_lock);
794 }
795 
796 static void
797 zil_flush_vdevs(zilog_t *zilog)
798 {
799 	spa_t *spa = zilog->zl_spa;
800 	avl_tree_t *t = &zilog->zl_vdev_tree;
801 	void *cookie = NULL;
802 	zil_vdev_node_t *zv;
803 	zio_t *zio;
804 
805 	ASSERT(zilog->zl_writer);
806 
807 	/*
808 	 * We don't need zl_vdev_lock here because we're the zl_writer,
809 	 * and all zl_get_data() callbacks are done.
810 	 */
811 	if (avl_numnodes(t) == 0)
812 		return;
813 
814 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
815 
816 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
817 
818 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
819 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
820 		if (vd != NULL)
821 			zio_flush(zio, vd);
822 		kmem_free(zv, sizeof (*zv));
823 	}
824 
825 	/*
826 	 * Wait for all the flushes to complete.  Not all devices actually
827 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
828 	 */
829 	(void) zio_wait(zio);
830 
831 	spa_config_exit(spa, SCL_STATE, FTAG);
832 }
833 
834 /*
835  * Function called when a log block write completes
836  */
837 static void
838 zil_lwb_write_done(zio_t *zio)
839 {
840 	lwb_t *lwb = zio->io_private;
841 	zilog_t *zilog = lwb->lwb_zilog;
842 	dmu_tx_t *tx = lwb->lwb_tx;
843 
844 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
845 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
846 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
847 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
848 	ASSERT(!BP_IS_GANG(zio->io_bp));
849 	ASSERT(!BP_IS_HOLE(zio->io_bp));
850 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
851 
852 	/*
853 	 * Ensure the lwb buffer pointer is cleared before releasing
854 	 * the txg. If we have had an allocation failure and
855 	 * the txg is waiting to sync then we want want zil_sync()
856 	 * to remove the lwb so that it's not picked up as the next new
857 	 * one in zil_commit_writer(). zil_sync() will only remove
858 	 * the lwb if lwb_buf is null.
859 	 */
860 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
861 	mutex_enter(&zilog->zl_lock);
862 	lwb->lwb_buf = NULL;
863 	lwb->lwb_tx = NULL;
864 	mutex_exit(&zilog->zl_lock);
865 
866 	/*
867 	 * Now that we've written this log block, we have a stable pointer
868 	 * to the next block in the chain, so it's OK to let the txg in
869 	 * which we allocated the next block sync.
870 	 */
871 	dmu_tx_commit(tx);
872 }
873 
874 /*
875  * Initialize the io for a log block.
876  */
877 static void
878 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
879 {
880 	zbookmark_phys_t zb;
881 
882 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
883 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
884 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
885 
886 	if (zilog->zl_root_zio == NULL) {
887 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
888 		    ZIO_FLAG_CANFAIL);
889 	}
890 	if (lwb->lwb_zio == NULL) {
891 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
892 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
893 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
894 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
895 	}
896 }
897 
898 /*
899  * Define a limited set of intent log block sizes.
900  *
901  * These must be a multiple of 4KB. Note only the amount used (again
902  * aligned to 4KB) actually gets written. However, we can't always just
903  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
904  */
905 uint64_t zil_block_buckets[] = {
906     4096,		/* non TX_WRITE */
907     8192+4096,		/* data base */
908     32*1024 + 4096, 	/* NFS writes */
909     UINT64_MAX
910 };
911 
912 /*
913  * Use the slog as long as the logbias is 'latency' and the current commit size
914  * is less than the limit or the total list size is less than 2X the limit.
915  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
916  */
917 uint64_t zil_slog_limit = 1024 * 1024;
918 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
919 	(((zilog)->zl_cur_used < zil_slog_limit) || \
920 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
921 
922 /*
923  * Start a log block write and advance to the next log block.
924  * Calls are serialized.
925  */
926 static lwb_t *
927 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
928 {
929 	lwb_t *nlwb = NULL;
930 	zil_chain_t *zilc;
931 	spa_t *spa = zilog->zl_spa;
932 	blkptr_t *bp;
933 	dmu_tx_t *tx;
934 	uint64_t txg;
935 	uint64_t zil_blksz, wsz;
936 	int i, error;
937 
938 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
939 		zilc = (zil_chain_t *)lwb->lwb_buf;
940 		bp = &zilc->zc_next_blk;
941 	} else {
942 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
943 		bp = &zilc->zc_next_blk;
944 	}
945 
946 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
947 
948 	/*
949 	 * Allocate the next block and save its address in this block
950 	 * before writing it in order to establish the log chain.
951 	 * Note that if the allocation of nlwb synced before we wrote
952 	 * the block that points at it (lwb), we'd leak it if we crashed.
953 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
954 	 * We dirty the dataset to ensure that zil_sync() will be called
955 	 * to clean up in the event of allocation failure or I/O failure.
956 	 */
957 	tx = dmu_tx_create(zilog->zl_os);
958 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
959 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
960 	txg = dmu_tx_get_txg(tx);
961 
962 	lwb->lwb_tx = tx;
963 
964 	/*
965 	 * Log blocks are pre-allocated. Here we select the size of the next
966 	 * block, based on size used in the last block.
967 	 * - first find the smallest bucket that will fit the block from a
968 	 *   limited set of block sizes. This is because it's faster to write
969 	 *   blocks allocated from the same metaslab as they are adjacent or
970 	 *   close.
971 	 * - next find the maximum from the new suggested size and an array of
972 	 *   previous sizes. This lessens a picket fence effect of wrongly
973 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
974 	 *   requests.
975 	 *
976 	 * Note we only write what is used, but we can't just allocate
977 	 * the maximum block size because we can exhaust the available
978 	 * pool log space.
979 	 */
980 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
981 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
982 		continue;
983 	zil_blksz = zil_block_buckets[i];
984 	if (zil_blksz == UINT64_MAX)
985 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
986 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
987 	for (i = 0; i < ZIL_PREV_BLKS; i++)
988 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
989 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
990 
991 	BP_ZERO(bp);
992 	/* pass the old blkptr in order to spread log blocks across devs */
993 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
994 	    USE_SLOG(zilog));
995 	if (error == 0) {
996 		ASSERT3U(bp->blk_birth, ==, txg);
997 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
998 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
999 
1000 		/*
1001 		 * Allocate a new log write buffer (lwb).
1002 		 */
1003 		nlwb = zil_alloc_lwb(zilog, bp, txg);
1004 
1005 		/* Record the block for later vdev flushing */
1006 		zil_add_block(zilog, &lwb->lwb_blk);
1007 	}
1008 
1009 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1010 		/* For Slim ZIL only write what is used. */
1011 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1012 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1013 		zio_shrink(lwb->lwb_zio, wsz);
1014 
1015 	} else {
1016 		wsz = lwb->lwb_sz;
1017 	}
1018 
1019 	zilc->zc_pad = 0;
1020 	zilc->zc_nused = lwb->lwb_nused;
1021 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1022 
1023 	/*
1024 	 * clear unused data for security
1025 	 */
1026 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1027 
1028 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1029 
1030 	/*
1031 	 * If there was an allocation failure then nlwb will be null which
1032 	 * forces a txg_wait_synced().
1033 	 */
1034 	return (nlwb);
1035 }
1036 
1037 static lwb_t *
1038 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1039 {
1040 	lr_t *lrc = &itx->itx_lr; /* common log record */
1041 	lr_write_t *lrw = (lr_write_t *)lrc;
1042 	char *lr_buf;
1043 	uint64_t txg = lrc->lrc_txg;
1044 	uint64_t reclen = lrc->lrc_reclen;
1045 	uint64_t dlen = 0;
1046 
1047 	if (lwb == NULL)
1048 		return (NULL);
1049 
1050 	ASSERT(lwb->lwb_buf != NULL);
1051 	ASSERT(zilog_is_dirty(zilog) ||
1052 	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1053 
1054 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1055 		dlen = P2ROUNDUP_TYPED(
1056 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1057 
1058 	zilog->zl_cur_used += (reclen + dlen);
1059 
1060 	zil_lwb_write_init(zilog, lwb);
1061 
1062 	/*
1063 	 * If this record won't fit in the current log block, start a new one.
1064 	 */
1065 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1066 		lwb = zil_lwb_write_start(zilog, lwb);
1067 		if (lwb == NULL)
1068 			return (NULL);
1069 		zil_lwb_write_init(zilog, lwb);
1070 		ASSERT(LWB_EMPTY(lwb));
1071 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1072 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1073 			return (lwb);
1074 		}
1075 	}
1076 
1077 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1078 	bcopy(lrc, lr_buf, reclen);
1079 	lrc = (lr_t *)lr_buf;
1080 	lrw = (lr_write_t *)lrc;
1081 
1082 	/*
1083 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1084 	 */
1085 	if (lrc->lrc_txtype == TX_WRITE) {
1086 		if (txg > spa_freeze_txg(zilog->zl_spa))
1087 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1088 		if (itx->itx_wr_state != WR_COPIED) {
1089 			char *dbuf;
1090 			int error;
1091 
1092 			if (dlen) {
1093 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1094 				dbuf = lr_buf + reclen;
1095 				lrw->lr_common.lrc_reclen += dlen;
1096 			} else {
1097 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1098 				dbuf = NULL;
1099 			}
1100 			error = zilog->zl_get_data(
1101 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1102 			if (error == EIO) {
1103 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1104 				return (lwb);
1105 			}
1106 			if (error != 0) {
1107 				ASSERT(error == ENOENT || error == EEXIST ||
1108 				    error == EALREADY);
1109 				return (lwb);
1110 			}
1111 		}
1112 	}
1113 
1114 	/*
1115 	 * We're actually making an entry, so update lrc_seq to be the
1116 	 * log record sequence number.  Note that this is generally not
1117 	 * equal to the itx sequence number because not all transactions
1118 	 * are synchronous, and sometimes spa_sync() gets there first.
1119 	 */
1120 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1121 	lwb->lwb_nused += reclen + dlen;
1122 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1123 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1124 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1125 
1126 	return (lwb);
1127 }
1128 
1129 itx_t *
1130 zil_itx_create(uint64_t txtype, size_t lrsize)
1131 {
1132 	itx_t *itx;
1133 
1134 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1135 
1136 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1137 	itx->itx_lr.lrc_txtype = txtype;
1138 	itx->itx_lr.lrc_reclen = lrsize;
1139 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1140 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1141 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1142 
1143 	return (itx);
1144 }
1145 
1146 void
1147 zil_itx_destroy(itx_t *itx)
1148 {
1149 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1150 }
1151 
1152 /*
1153  * Free up the sync and async itxs. The itxs_t has already been detached
1154  * so no locks are needed.
1155  */
1156 static void
1157 zil_itxg_clean(itxs_t *itxs)
1158 {
1159 	itx_t *itx;
1160 	list_t *list;
1161 	avl_tree_t *t;
1162 	void *cookie;
1163 	itx_async_node_t *ian;
1164 
1165 	list = &itxs->i_sync_list;
1166 	while ((itx = list_head(list)) != NULL) {
1167 		list_remove(list, itx);
1168 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1169 		    itx->itx_lr.lrc_reclen);
1170 	}
1171 
1172 	cookie = NULL;
1173 	t = &itxs->i_async_tree;
1174 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1175 		list = &ian->ia_list;
1176 		while ((itx = list_head(list)) != NULL) {
1177 			list_remove(list, itx);
1178 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1179 			    itx->itx_lr.lrc_reclen);
1180 		}
1181 		list_destroy(list);
1182 		kmem_free(ian, sizeof (itx_async_node_t));
1183 	}
1184 	avl_destroy(t);
1185 
1186 	kmem_free(itxs, sizeof (itxs_t));
1187 }
1188 
1189 static int
1190 zil_aitx_compare(const void *x1, const void *x2)
1191 {
1192 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1193 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1194 
1195 	if (o1 < o2)
1196 		return (-1);
1197 	if (o1 > o2)
1198 		return (1);
1199 
1200 	return (0);
1201 }
1202 
1203 /*
1204  * Remove all async itx with the given oid.
1205  */
1206 static void
1207 zil_remove_async(zilog_t *zilog, uint64_t oid)
1208 {
1209 	uint64_t otxg, txg;
1210 	itx_async_node_t *ian;
1211 	avl_tree_t *t;
1212 	avl_index_t where;
1213 	list_t clean_list;
1214 	itx_t *itx;
1215 
1216 	ASSERT(oid != 0);
1217 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1218 
1219 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1220 		otxg = ZILTEST_TXG;
1221 	else
1222 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1223 
1224 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1225 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1226 
1227 		mutex_enter(&itxg->itxg_lock);
1228 		if (itxg->itxg_txg != txg) {
1229 			mutex_exit(&itxg->itxg_lock);
1230 			continue;
1231 		}
1232 
1233 		/*
1234 		 * Locate the object node and append its list.
1235 		 */
1236 		t = &itxg->itxg_itxs->i_async_tree;
1237 		ian = avl_find(t, &oid, &where);
1238 		if (ian != NULL)
1239 			list_move_tail(&clean_list, &ian->ia_list);
1240 		mutex_exit(&itxg->itxg_lock);
1241 	}
1242 	while ((itx = list_head(&clean_list)) != NULL) {
1243 		list_remove(&clean_list, itx);
1244 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1245 		    itx->itx_lr.lrc_reclen);
1246 	}
1247 	list_destroy(&clean_list);
1248 }
1249 
1250 void
1251 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1252 {
1253 	uint64_t txg;
1254 	itxg_t *itxg;
1255 	itxs_t *itxs, *clean = NULL;
1256 
1257 	/*
1258 	 * Object ids can be re-instantiated in the next txg so
1259 	 * remove any async transactions to avoid future leaks.
1260 	 * This can happen if a fsync occurs on the re-instantiated
1261 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1262 	 * the new file data and flushes a write record for the old object.
1263 	 */
1264 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1265 		zil_remove_async(zilog, itx->itx_oid);
1266 
1267 	/*
1268 	 * Ensure the data of a renamed file is committed before the rename.
1269 	 */
1270 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1271 		zil_async_to_sync(zilog, itx->itx_oid);
1272 
1273 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1274 		txg = ZILTEST_TXG;
1275 	else
1276 		txg = dmu_tx_get_txg(tx);
1277 
1278 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1279 	mutex_enter(&itxg->itxg_lock);
1280 	itxs = itxg->itxg_itxs;
1281 	if (itxg->itxg_txg != txg) {
1282 		if (itxs != NULL) {
1283 			/*
1284 			 * The zil_clean callback hasn't got around to cleaning
1285 			 * this itxg. Save the itxs for release below.
1286 			 * This should be rare.
1287 			 */
1288 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1289 			itxg->itxg_sod = 0;
1290 			clean = itxg->itxg_itxs;
1291 		}
1292 		ASSERT(itxg->itxg_sod == 0);
1293 		itxg->itxg_txg = txg;
1294 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1295 
1296 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1297 		    offsetof(itx_t, itx_node));
1298 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1299 		    sizeof (itx_async_node_t),
1300 		    offsetof(itx_async_node_t, ia_node));
1301 	}
1302 	if (itx->itx_sync) {
1303 		list_insert_tail(&itxs->i_sync_list, itx);
1304 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1305 		itxg->itxg_sod += itx->itx_sod;
1306 	} else {
1307 		avl_tree_t *t = &itxs->i_async_tree;
1308 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1309 		itx_async_node_t *ian;
1310 		avl_index_t where;
1311 
1312 		ian = avl_find(t, &foid, &where);
1313 		if (ian == NULL) {
1314 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1315 			list_create(&ian->ia_list, sizeof (itx_t),
1316 			    offsetof(itx_t, itx_node));
1317 			ian->ia_foid = foid;
1318 			avl_insert(t, ian, where);
1319 		}
1320 		list_insert_tail(&ian->ia_list, itx);
1321 	}
1322 
1323 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1324 	zilog_dirty(zilog, txg);
1325 	mutex_exit(&itxg->itxg_lock);
1326 
1327 	/* Release the old itxs now we've dropped the lock */
1328 	if (clean != NULL)
1329 		zil_itxg_clean(clean);
1330 }
1331 
1332 /*
1333  * If there are any in-memory intent log transactions which have now been
1334  * synced then start up a taskq to free them. We should only do this after we
1335  * have written out the uberblocks (i.e. txg has been comitted) so that
1336  * don't inadvertently clean out in-memory log records that would be required
1337  * by zil_commit().
1338  */
1339 void
1340 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1341 {
1342 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1343 	itxs_t *clean_me;
1344 
1345 	mutex_enter(&itxg->itxg_lock);
1346 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1347 		mutex_exit(&itxg->itxg_lock);
1348 		return;
1349 	}
1350 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1351 	ASSERT(itxg->itxg_txg != 0);
1352 	ASSERT(zilog->zl_clean_taskq != NULL);
1353 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1354 	itxg->itxg_sod = 0;
1355 	clean_me = itxg->itxg_itxs;
1356 	itxg->itxg_itxs = NULL;
1357 	itxg->itxg_txg = 0;
1358 	mutex_exit(&itxg->itxg_lock);
1359 	/*
1360 	 * Preferably start a task queue to free up the old itxs but
1361 	 * if taskq_dispatch can't allocate resources to do that then
1362 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1363 	 * created a bad performance problem.
1364 	 */
1365 	if (taskq_dispatch(zilog->zl_clean_taskq,
1366 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1367 		zil_itxg_clean(clean_me);
1368 }
1369 
1370 /*
1371  * Get the list of itxs to commit into zl_itx_commit_list.
1372  */
1373 static void
1374 zil_get_commit_list(zilog_t *zilog)
1375 {
1376 	uint64_t otxg, txg;
1377 	list_t *commit_list = &zilog->zl_itx_commit_list;
1378 	uint64_t push_sod = 0;
1379 
1380 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1381 		otxg = ZILTEST_TXG;
1382 	else
1383 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1384 
1385 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1386 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1387 
1388 		mutex_enter(&itxg->itxg_lock);
1389 		if (itxg->itxg_txg != txg) {
1390 			mutex_exit(&itxg->itxg_lock);
1391 			continue;
1392 		}
1393 
1394 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1395 		push_sod += itxg->itxg_sod;
1396 		itxg->itxg_sod = 0;
1397 
1398 		mutex_exit(&itxg->itxg_lock);
1399 	}
1400 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1401 }
1402 
1403 /*
1404  * Move the async itxs for a specified object to commit into sync lists.
1405  */
1406 static void
1407 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1408 {
1409 	uint64_t otxg, txg;
1410 	itx_async_node_t *ian;
1411 	avl_tree_t *t;
1412 	avl_index_t where;
1413 
1414 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1415 		otxg = ZILTEST_TXG;
1416 	else
1417 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1418 
1419 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1420 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1421 
1422 		mutex_enter(&itxg->itxg_lock);
1423 		if (itxg->itxg_txg != txg) {
1424 			mutex_exit(&itxg->itxg_lock);
1425 			continue;
1426 		}
1427 
1428 		/*
1429 		 * If a foid is specified then find that node and append its
1430 		 * list. Otherwise walk the tree appending all the lists
1431 		 * to the sync list. We add to the end rather than the
1432 		 * beginning to ensure the create has happened.
1433 		 */
1434 		t = &itxg->itxg_itxs->i_async_tree;
1435 		if (foid != 0) {
1436 			ian = avl_find(t, &foid, &where);
1437 			if (ian != NULL) {
1438 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1439 				    &ian->ia_list);
1440 			}
1441 		} else {
1442 			void *cookie = NULL;
1443 
1444 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1445 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1446 				    &ian->ia_list);
1447 				list_destroy(&ian->ia_list);
1448 				kmem_free(ian, sizeof (itx_async_node_t));
1449 			}
1450 		}
1451 		mutex_exit(&itxg->itxg_lock);
1452 	}
1453 }
1454 
1455 static void
1456 zil_commit_writer(zilog_t *zilog)
1457 {
1458 	uint64_t txg;
1459 	itx_t *itx;
1460 	lwb_t *lwb;
1461 	spa_t *spa = zilog->zl_spa;
1462 	int error = 0;
1463 
1464 	ASSERT(zilog->zl_root_zio == NULL);
1465 
1466 	mutex_exit(&zilog->zl_lock);
1467 
1468 	zil_get_commit_list(zilog);
1469 
1470 	/*
1471 	 * Return if there's nothing to commit before we dirty the fs by
1472 	 * calling zil_create().
1473 	 */
1474 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1475 		mutex_enter(&zilog->zl_lock);
1476 		return;
1477 	}
1478 
1479 	if (zilog->zl_suspend) {
1480 		lwb = NULL;
1481 	} else {
1482 		lwb = list_tail(&zilog->zl_lwb_list);
1483 		if (lwb == NULL)
1484 			lwb = zil_create(zilog);
1485 	}
1486 
1487 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1488 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1489 		txg = itx->itx_lr.lrc_txg;
1490 		ASSERT(txg);
1491 
1492 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1493 			lwb = zil_lwb_commit(zilog, itx, lwb);
1494 		list_remove(&zilog->zl_itx_commit_list, itx);
1495 		kmem_free(itx, offsetof(itx_t, itx_lr)
1496 		    + itx->itx_lr.lrc_reclen);
1497 	}
1498 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1499 
1500 	/* write the last block out */
1501 	if (lwb != NULL && lwb->lwb_zio != NULL)
1502 		lwb = zil_lwb_write_start(zilog, lwb);
1503 
1504 	zilog->zl_cur_used = 0;
1505 
1506 	/*
1507 	 * Wait if necessary for the log blocks to be on stable storage.
1508 	 */
1509 	if (zilog->zl_root_zio) {
1510 		error = zio_wait(zilog->zl_root_zio);
1511 		zilog->zl_root_zio = NULL;
1512 		zil_flush_vdevs(zilog);
1513 	}
1514 
1515 	if (error || lwb == NULL)
1516 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1517 
1518 	mutex_enter(&zilog->zl_lock);
1519 
1520 	/*
1521 	 * Remember the highest committed log sequence number for ztest.
1522 	 * We only update this value when all the log writes succeeded,
1523 	 * because ztest wants to ASSERT that it got the whole log chain.
1524 	 */
1525 	if (error == 0 && lwb != NULL)
1526 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1527 }
1528 
1529 /*
1530  * Commit zfs transactions to stable storage.
1531  * If foid is 0 push out all transactions, otherwise push only those
1532  * for that object or might reference that object.
1533  *
1534  * itxs are committed in batches. In a heavily stressed zil there will be
1535  * a commit writer thread who is writing out a bunch of itxs to the log
1536  * for a set of committing threads (cthreads) in the same batch as the writer.
1537  * Those cthreads are all waiting on the same cv for that batch.
1538  *
1539  * There will also be a different and growing batch of threads that are
1540  * waiting to commit (qthreads). When the committing batch completes
1541  * a transition occurs such that the cthreads exit and the qthreads become
1542  * cthreads. One of the new cthreads becomes the writer thread for the
1543  * batch. Any new threads arriving become new qthreads.
1544  *
1545  * Only 2 condition variables are needed and there's no transition
1546  * between the two cvs needed. They just flip-flop between qthreads
1547  * and cthreads.
1548  *
1549  * Using this scheme we can efficiently wakeup up only those threads
1550  * that have been committed.
1551  */
1552 void
1553 zil_commit(zilog_t *zilog, uint64_t foid)
1554 {
1555 	uint64_t mybatch;
1556 
1557 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1558 		return;
1559 
1560 	/* move the async itxs for the foid to the sync queues */
1561 	zil_async_to_sync(zilog, foid);
1562 
1563 	mutex_enter(&zilog->zl_lock);
1564 	mybatch = zilog->zl_next_batch;
1565 	while (zilog->zl_writer) {
1566 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1567 		if (mybatch <= zilog->zl_com_batch) {
1568 			mutex_exit(&zilog->zl_lock);
1569 			return;
1570 		}
1571 	}
1572 
1573 	zilog->zl_next_batch++;
1574 	zilog->zl_writer = B_TRUE;
1575 	zil_commit_writer(zilog);
1576 	zilog->zl_com_batch = mybatch;
1577 	zilog->zl_writer = B_FALSE;
1578 	mutex_exit(&zilog->zl_lock);
1579 
1580 	/* wake up one thread to become the next writer */
1581 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1582 
1583 	/* wake up all threads waiting for this batch to be committed */
1584 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1585 }
1586 
1587 /*
1588  * Called in syncing context to free committed log blocks and update log header.
1589  */
1590 void
1591 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1592 {
1593 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1594 	uint64_t txg = dmu_tx_get_txg(tx);
1595 	spa_t *spa = zilog->zl_spa;
1596 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1597 	lwb_t *lwb;
1598 
1599 	/*
1600 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1601 	 * to destroy it twice.
1602 	 */
1603 	if (spa_sync_pass(spa) != 1)
1604 		return;
1605 
1606 	mutex_enter(&zilog->zl_lock);
1607 
1608 	ASSERT(zilog->zl_stop_sync == 0);
1609 
1610 	if (*replayed_seq != 0) {
1611 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1612 		zh->zh_replay_seq = *replayed_seq;
1613 		*replayed_seq = 0;
1614 	}
1615 
1616 	if (zilog->zl_destroy_txg == txg) {
1617 		blkptr_t blk = zh->zh_log;
1618 
1619 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1620 
1621 		bzero(zh, sizeof (zil_header_t));
1622 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1623 
1624 		if (zilog->zl_keep_first) {
1625 			/*
1626 			 * If this block was part of log chain that couldn't
1627 			 * be claimed because a device was missing during
1628 			 * zil_claim(), but that device later returns,
1629 			 * then this block could erroneously appear valid.
1630 			 * To guard against this, assign a new GUID to the new
1631 			 * log chain so it doesn't matter what blk points to.
1632 			 */
1633 			zil_init_log_chain(zilog, &blk);
1634 			zh->zh_log = blk;
1635 		}
1636 	}
1637 
1638 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1639 		zh->zh_log = lwb->lwb_blk;
1640 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1641 			break;
1642 		list_remove(&zilog->zl_lwb_list, lwb);
1643 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1644 		kmem_cache_free(zil_lwb_cache, lwb);
1645 
1646 		/*
1647 		 * If we don't have anything left in the lwb list then
1648 		 * we've had an allocation failure and we need to zero
1649 		 * out the zil_header blkptr so that we don't end
1650 		 * up freeing the same block twice.
1651 		 */
1652 		if (list_head(&zilog->zl_lwb_list) == NULL)
1653 			BP_ZERO(&zh->zh_log);
1654 	}
1655 	mutex_exit(&zilog->zl_lock);
1656 }
1657 
1658 void
1659 zil_init(void)
1660 {
1661 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1662 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1663 }
1664 
1665 void
1666 zil_fini(void)
1667 {
1668 	kmem_cache_destroy(zil_lwb_cache);
1669 }
1670 
1671 void
1672 zil_set_sync(zilog_t *zilog, uint64_t sync)
1673 {
1674 	zilog->zl_sync = sync;
1675 }
1676 
1677 void
1678 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1679 {
1680 	zilog->zl_logbias = logbias;
1681 }
1682 
1683 zilog_t *
1684 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1685 {
1686 	zilog_t *zilog;
1687 
1688 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1689 
1690 	zilog->zl_header = zh_phys;
1691 	zilog->zl_os = os;
1692 	zilog->zl_spa = dmu_objset_spa(os);
1693 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1694 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1695 	zilog->zl_logbias = dmu_objset_logbias(os);
1696 	zilog->zl_sync = dmu_objset_syncprop(os);
1697 	zilog->zl_next_batch = 1;
1698 
1699 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1700 
1701 	for (int i = 0; i < TXG_SIZE; i++) {
1702 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1703 		    MUTEX_DEFAULT, NULL);
1704 	}
1705 
1706 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1707 	    offsetof(lwb_t, lwb_node));
1708 
1709 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1710 	    offsetof(itx_t, itx_node));
1711 
1712 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1713 
1714 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1715 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1716 
1717 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1718 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1719 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1720 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1721 
1722 	return (zilog);
1723 }
1724 
1725 void
1726 zil_free(zilog_t *zilog)
1727 {
1728 	zilog->zl_stop_sync = 1;
1729 
1730 	ASSERT0(zilog->zl_suspend);
1731 	ASSERT0(zilog->zl_suspending);
1732 
1733 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1734 	list_destroy(&zilog->zl_lwb_list);
1735 
1736 	avl_destroy(&zilog->zl_vdev_tree);
1737 	mutex_destroy(&zilog->zl_vdev_lock);
1738 
1739 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1740 	list_destroy(&zilog->zl_itx_commit_list);
1741 
1742 	for (int i = 0; i < TXG_SIZE; i++) {
1743 		/*
1744 		 * It's possible for an itx to be generated that doesn't dirty
1745 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1746 		 * callback to remove the entry. We remove those here.
1747 		 *
1748 		 * Also free up the ziltest itxs.
1749 		 */
1750 		if (zilog->zl_itxg[i].itxg_itxs)
1751 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1752 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1753 	}
1754 
1755 	mutex_destroy(&zilog->zl_lock);
1756 
1757 	cv_destroy(&zilog->zl_cv_writer);
1758 	cv_destroy(&zilog->zl_cv_suspend);
1759 	cv_destroy(&zilog->zl_cv_batch[0]);
1760 	cv_destroy(&zilog->zl_cv_batch[1]);
1761 
1762 	kmem_free(zilog, sizeof (zilog_t));
1763 }
1764 
1765 /*
1766  * Open an intent log.
1767  */
1768 zilog_t *
1769 zil_open(objset_t *os, zil_get_data_t *get_data)
1770 {
1771 	zilog_t *zilog = dmu_objset_zil(os);
1772 
1773 	ASSERT(zilog->zl_clean_taskq == NULL);
1774 	ASSERT(zilog->zl_get_data == NULL);
1775 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1776 
1777 	zilog->zl_get_data = get_data;
1778 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1779 	    2, 2, TASKQ_PREPOPULATE);
1780 
1781 	return (zilog);
1782 }
1783 
1784 /*
1785  * Close an intent log.
1786  */
1787 void
1788 zil_close(zilog_t *zilog)
1789 {
1790 	lwb_t *lwb;
1791 	uint64_t txg = 0;
1792 
1793 	zil_commit(zilog, 0); /* commit all itx */
1794 
1795 	/*
1796 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1797 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1798 	 * callbacks have occurred that may clean the zil.  Only then can we
1799 	 * destroy the zl_clean_taskq.
1800 	 */
1801 	mutex_enter(&zilog->zl_lock);
1802 	lwb = list_tail(&zilog->zl_lwb_list);
1803 	if (lwb != NULL)
1804 		txg = lwb->lwb_max_txg;
1805 	mutex_exit(&zilog->zl_lock);
1806 	if (txg)
1807 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1808 	ASSERT(!zilog_is_dirty(zilog));
1809 
1810 	taskq_destroy(zilog->zl_clean_taskq);
1811 	zilog->zl_clean_taskq = NULL;
1812 	zilog->zl_get_data = NULL;
1813 
1814 	/*
1815 	 * We should have only one LWB left on the list; remove it now.
1816 	 */
1817 	mutex_enter(&zilog->zl_lock);
1818 	lwb = list_head(&zilog->zl_lwb_list);
1819 	if (lwb != NULL) {
1820 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1821 		list_remove(&zilog->zl_lwb_list, lwb);
1822 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1823 		kmem_cache_free(zil_lwb_cache, lwb);
1824 	}
1825 	mutex_exit(&zilog->zl_lock);
1826 }
1827 
1828 static char *suspend_tag = "zil suspending";
1829 
1830 /*
1831  * Suspend an intent log.  While in suspended mode, we still honor
1832  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1833  * On old version pools, we suspend the log briefly when taking a
1834  * snapshot so that it will have an empty intent log.
1835  *
1836  * Long holds are not really intended to be used the way we do here --
1837  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1838  * could fail.  Therefore we take pains to only put a long hold if it is
1839  * actually necessary.  Fortunately, it will only be necessary if the
1840  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1841  * will already have a long hold, so we are not really making things any worse.
1842  *
1843  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1844  * zvol_state_t), and use their mechanism to prevent their hold from being
1845  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1846  * very little gain.
1847  *
1848  * if cookiep == NULL, this does both the suspend & resume.
1849  * Otherwise, it returns with the dataset "long held", and the cookie
1850  * should be passed into zil_resume().
1851  */
1852 int
1853 zil_suspend(const char *osname, void **cookiep)
1854 {
1855 	objset_t *os;
1856 	zilog_t *zilog;
1857 	const zil_header_t *zh;
1858 	int error;
1859 
1860 	error = dmu_objset_hold(osname, suspend_tag, &os);
1861 	if (error != 0)
1862 		return (error);
1863 	zilog = dmu_objset_zil(os);
1864 
1865 	mutex_enter(&zilog->zl_lock);
1866 	zh = zilog->zl_header;
1867 
1868 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1869 		mutex_exit(&zilog->zl_lock);
1870 		dmu_objset_rele(os, suspend_tag);
1871 		return (SET_ERROR(EBUSY));
1872 	}
1873 
1874 	/*
1875 	 * Don't put a long hold in the cases where we can avoid it.  This
1876 	 * is when there is no cookie so we are doing a suspend & resume
1877 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1878 	 * for the suspend because it's already suspended, or there's no ZIL.
1879 	 */
1880 	if (cookiep == NULL && !zilog->zl_suspending &&
1881 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1882 		mutex_exit(&zilog->zl_lock);
1883 		dmu_objset_rele(os, suspend_tag);
1884 		return (0);
1885 	}
1886 
1887 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1888 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1889 
1890 	zilog->zl_suspend++;
1891 
1892 	if (zilog->zl_suspend > 1) {
1893 		/*
1894 		 * Someone else is already suspending it.
1895 		 * Just wait for them to finish.
1896 		 */
1897 
1898 		while (zilog->zl_suspending)
1899 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1900 		mutex_exit(&zilog->zl_lock);
1901 
1902 		if (cookiep == NULL)
1903 			zil_resume(os);
1904 		else
1905 			*cookiep = os;
1906 		return (0);
1907 	}
1908 
1909 	/*
1910 	 * If there is no pointer to an on-disk block, this ZIL must not
1911 	 * be active (e.g. filesystem not mounted), so there's nothing
1912 	 * to clean up.
1913 	 */
1914 	if (BP_IS_HOLE(&zh->zh_log)) {
1915 		ASSERT(cookiep != NULL); /* fast path already handled */
1916 
1917 		*cookiep = os;
1918 		mutex_exit(&zilog->zl_lock);
1919 		return (0);
1920 	}
1921 
1922 	zilog->zl_suspending = B_TRUE;
1923 	mutex_exit(&zilog->zl_lock);
1924 
1925 	zil_commit(zilog, 0);
1926 
1927 	zil_destroy(zilog, B_FALSE);
1928 
1929 	mutex_enter(&zilog->zl_lock);
1930 	zilog->zl_suspending = B_FALSE;
1931 	cv_broadcast(&zilog->zl_cv_suspend);
1932 	mutex_exit(&zilog->zl_lock);
1933 
1934 	if (cookiep == NULL)
1935 		zil_resume(os);
1936 	else
1937 		*cookiep = os;
1938 	return (0);
1939 }
1940 
1941 void
1942 zil_resume(void *cookie)
1943 {
1944 	objset_t *os = cookie;
1945 	zilog_t *zilog = dmu_objset_zil(os);
1946 
1947 	mutex_enter(&zilog->zl_lock);
1948 	ASSERT(zilog->zl_suspend != 0);
1949 	zilog->zl_suspend--;
1950 	mutex_exit(&zilog->zl_lock);
1951 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1952 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1953 }
1954 
1955 typedef struct zil_replay_arg {
1956 	zil_replay_func_t **zr_replay;
1957 	void		*zr_arg;
1958 	boolean_t	zr_byteswap;
1959 	char		*zr_lr;
1960 } zil_replay_arg_t;
1961 
1962 static int
1963 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1964 {
1965 	char name[ZFS_MAX_DATASET_NAME_LEN];
1966 
1967 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1968 
1969 	dmu_objset_name(zilog->zl_os, name);
1970 
1971 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1972 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1973 	    (u_longlong_t)lr->lrc_seq,
1974 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1975 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1976 
1977 	return (error);
1978 }
1979 
1980 static int
1981 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1982 {
1983 	zil_replay_arg_t *zr = zra;
1984 	const zil_header_t *zh = zilog->zl_header;
1985 	uint64_t reclen = lr->lrc_reclen;
1986 	uint64_t txtype = lr->lrc_txtype;
1987 	int error = 0;
1988 
1989 	zilog->zl_replaying_seq = lr->lrc_seq;
1990 
1991 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1992 		return (0);
1993 
1994 	if (lr->lrc_txg < claim_txg)		/* already committed */
1995 		return (0);
1996 
1997 	/* Strip case-insensitive bit, still present in log record */
1998 	txtype &= ~TX_CI;
1999 
2000 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2001 		return (zil_replay_error(zilog, lr, EINVAL));
2002 
2003 	/*
2004 	 * If this record type can be logged out of order, the object
2005 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2006 	 */
2007 	if (TX_OOO(txtype)) {
2008 		error = dmu_object_info(zilog->zl_os,
2009 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2010 		if (error == ENOENT || error == EEXIST)
2011 			return (0);
2012 	}
2013 
2014 	/*
2015 	 * Make a copy of the data so we can revise and extend it.
2016 	 */
2017 	bcopy(lr, zr->zr_lr, reclen);
2018 
2019 	/*
2020 	 * If this is a TX_WRITE with a blkptr, suck in the data.
2021 	 */
2022 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2023 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2024 		    zr->zr_lr + reclen);
2025 		if (error != 0)
2026 			return (zil_replay_error(zilog, lr, error));
2027 	}
2028 
2029 	/*
2030 	 * The log block containing this lr may have been byteswapped
2031 	 * so that we can easily examine common fields like lrc_txtype.
2032 	 * However, the log is a mix of different record types, and only the
2033 	 * replay vectors know how to byteswap their records.  Therefore, if
2034 	 * the lr was byteswapped, undo it before invoking the replay vector.
2035 	 */
2036 	if (zr->zr_byteswap)
2037 		byteswap_uint64_array(zr->zr_lr, reclen);
2038 
2039 	/*
2040 	 * We must now do two things atomically: replay this log record,
2041 	 * and update the log header sequence number to reflect the fact that
2042 	 * we did so. At the end of each replay function the sequence number
2043 	 * is updated if we are in replay mode.
2044 	 */
2045 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2046 	if (error != 0) {
2047 		/*
2048 		 * The DMU's dnode layer doesn't see removes until the txg
2049 		 * commits, so a subsequent claim can spuriously fail with
2050 		 * EEXIST. So if we receive any error we try syncing out
2051 		 * any removes then retry the transaction.  Note that we
2052 		 * specify B_FALSE for byteswap now, so we don't do it twice.
2053 		 */
2054 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2055 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2056 		if (error != 0)
2057 			return (zil_replay_error(zilog, lr, error));
2058 	}
2059 	return (0);
2060 }
2061 
2062 /* ARGSUSED */
2063 static int
2064 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2065 {
2066 	zilog->zl_replay_blks++;
2067 
2068 	return (0);
2069 }
2070 
2071 /*
2072  * If this dataset has a non-empty intent log, replay it and destroy it.
2073  */
2074 void
2075 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2076 {
2077 	zilog_t *zilog = dmu_objset_zil(os);
2078 	const zil_header_t *zh = zilog->zl_header;
2079 	zil_replay_arg_t zr;
2080 
2081 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2082 		zil_destroy(zilog, B_TRUE);
2083 		return;
2084 	}
2085 
2086 	zr.zr_replay = replay_func;
2087 	zr.zr_arg = arg;
2088 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2089 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2090 
2091 	/*
2092 	 * Wait for in-progress removes to sync before starting replay.
2093 	 */
2094 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2095 
2096 	zilog->zl_replay = B_TRUE;
2097 	zilog->zl_replay_time = ddi_get_lbolt();
2098 	ASSERT(zilog->zl_replay_blks == 0);
2099 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2100 	    zh->zh_claim_txg);
2101 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2102 
2103 	zil_destroy(zilog, B_FALSE);
2104 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2105 	zilog->zl_replay = B_FALSE;
2106 }
2107 
2108 boolean_t
2109 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2110 {
2111 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2112 		return (B_TRUE);
2113 
2114 	if (zilog->zl_replay) {
2115 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2116 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2117 		    zilog->zl_replaying_seq;
2118 		return (B_TRUE);
2119 	}
2120 
2121 	return (B_FALSE);
2122 }
2123 
2124 /* ARGSUSED */
2125 int
2126 zil_vdev_offline(const char *osname, void *arg)
2127 {
2128 	int error;
2129 
2130 	error = zil_suspend(osname, NULL);
2131 	if (error != 0)
2132 		return (SET_ERROR(EEXIST));
2133 	return (0);
2134 }
2135