xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision c5c6ffa0498b9c8555798756141b4a3061a138c1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev.h>
39 
40 /*
41  * The zfs intent log (ZIL) saves transaction records of system calls
42  * that change the file system in memory with enough information
43  * to be able to replay them. These are stored in memory until
44  * either the DMU transaction group (txg) commits them to the stable pool
45  * and they can be discarded, or they are flushed to the stable log
46  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
47  * requirement. In the event of a panic or power fail then those log
48  * records (transactions) are replayed.
49  *
50  * There is one ZIL per file system. Its on-disk (pool) format consists
51  * of 3 parts:
52  *
53  * 	- ZIL header
54  * 	- ZIL blocks
55  * 	- ZIL records
56  *
57  * A log record holds a system call transaction. Log blocks can
58  * hold many log records and the blocks are chained together.
59  * Each ZIL block contains a block pointer (blkptr_t) to the next
60  * ZIL block in the chain. The ZIL header points to the first
61  * block in the chain. Note there is not a fixed place in the pool
62  * to hold blocks. They are dynamically allocated and freed as
63  * needed from the blocks available. Figure X shows the ZIL structure:
64  */
65 
66 /*
67  * These global ZIL switches affect all pools
68  */
69 int zil_disable = 0;	/* disable intent logging */
70 int zil_always = 0;	/* make every transaction synchronous */
71 int zil_purge = 0;	/* at pool open, just throw everything away */
72 int zil_noflush = 0;	/* don't flush write cache buffers on disks */
73 
74 static kmem_cache_t *zil_lwb_cache;
75 
76 static int
77 zil_dva_compare(const void *x1, const void *x2)
78 {
79 	const dva_t *dva1 = x1;
80 	const dva_t *dva2 = x2;
81 
82 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
83 		return (-1);
84 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
85 		return (1);
86 
87 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
88 		return (-1);
89 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
90 		return (1);
91 
92 	return (0);
93 }
94 
95 static void
96 zil_dva_tree_init(avl_tree_t *t)
97 {
98 	avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
99 	    offsetof(zil_dva_node_t, zn_node));
100 }
101 
102 static void
103 zil_dva_tree_fini(avl_tree_t *t)
104 {
105 	zil_dva_node_t *zn;
106 	void *cookie = NULL;
107 
108 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
109 		kmem_free(zn, sizeof (zil_dva_node_t));
110 
111 	avl_destroy(t);
112 }
113 
114 static int
115 zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
116 {
117 	zil_dva_node_t *zn;
118 	avl_index_t where;
119 
120 	if (avl_find(t, dva, &where) != NULL)
121 		return (EEXIST);
122 
123 	zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
124 	zn->zn_dva = *dva;
125 	avl_insert(t, zn, where);
126 
127 	return (0);
128 }
129 
130 static zil_header_t *
131 zil_header_in_syncing_context(zilog_t *zilog)
132 {
133 	return ((zil_header_t *)zilog->zl_header);
134 }
135 
136 static void
137 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
138 {
139 	zio_cksum_t *zc = &bp->blk_cksum;
140 
141 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
142 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
143 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
144 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
145 }
146 
147 /*
148  * Read a log block, make sure it's valid, and byteswap it if necessary.
149  */
150 static int
151 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
152 {
153 	blkptr_t blk = *bp;
154 	zbookmark_t zb;
155 	int error;
156 
157 	zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
158 	zb.zb_object = 0;
159 	zb.zb_level = -1;
160 	zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
161 
162 	*abufpp = NULL;
163 
164 	error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array,
165 	    arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
166 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, ARC_WAIT, &zb);
167 
168 	if (error == 0) {
169 		char *data = (*abufpp)->b_data;
170 		uint64_t blksz = BP_GET_LSIZE(bp);
171 		zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
172 		zio_cksum_t cksum = bp->blk_cksum;
173 
174 		/*
175 		 * Sequence numbers should be... sequential.  The checksum
176 		 * verifier for the next block should be bp's checksum plus 1.
177 		 */
178 		cksum.zc_word[ZIL_ZC_SEQ]++;
179 
180 		if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum)))
181 			error = ESTALE;
182 		else if (BP_IS_HOLE(&ztp->zit_next_blk))
183 			error = ENOENT;
184 		else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))
185 			error = EOVERFLOW;
186 
187 		if (error) {
188 			VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
189 			*abufpp = NULL;
190 		}
191 	}
192 
193 	dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
194 
195 	return (error);
196 }
197 
198 /*
199  * Parse the intent log, and call parse_func for each valid record within.
200  * Return the highest sequence number.
201  */
202 uint64_t
203 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
204     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
205 {
206 	const zil_header_t *zh = zilog->zl_header;
207 	uint64_t claim_seq = zh->zh_claim_seq;
208 	uint64_t seq = 0;
209 	uint64_t max_seq = 0;
210 	blkptr_t blk = zh->zh_log;
211 	arc_buf_t *abuf;
212 	char *lrbuf, *lrp;
213 	zil_trailer_t *ztp;
214 	int reclen, error;
215 
216 	if (BP_IS_HOLE(&blk))
217 		return (max_seq);
218 
219 	/*
220 	 * Starting at the block pointed to by zh_log we read the log chain.
221 	 * For each block in the chain we strongly check that block to
222 	 * ensure its validity.  We stop when an invalid block is found.
223 	 * For each block pointer in the chain we call parse_blk_func().
224 	 * For each record in each valid block we call parse_lr_func().
225 	 * If the log has been claimed, stop if we encounter a sequence
226 	 * number greater than the highest claimed sequence number.
227 	 */
228 	zil_dva_tree_init(&zilog->zl_dva_tree);
229 	for (;;) {
230 		seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
231 
232 		if (claim_seq != 0 && seq > claim_seq)
233 			break;
234 
235 		ASSERT(max_seq < seq);
236 		max_seq = seq;
237 
238 		error = zil_read_log_block(zilog, &blk, &abuf);
239 
240 		if (parse_blk_func != NULL)
241 			parse_blk_func(zilog, &blk, arg, txg);
242 
243 		if (error)
244 			break;
245 
246 		lrbuf = abuf->b_data;
247 		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
248 		blk = ztp->zit_next_blk;
249 
250 		if (parse_lr_func == NULL) {
251 			VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
252 			continue;
253 		}
254 
255 		for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
256 			lr_t *lr = (lr_t *)lrp;
257 			reclen = lr->lrc_reclen;
258 			ASSERT3U(reclen, >=, sizeof (lr_t));
259 			parse_lr_func(zilog, lr, arg, txg);
260 		}
261 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
262 	}
263 	zil_dva_tree_fini(&zilog->zl_dva_tree);
264 
265 	return (max_seq);
266 }
267 
268 /* ARGSUSED */
269 static void
270 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
271 {
272 	spa_t *spa = zilog->zl_spa;
273 	int err;
274 
275 	/*
276 	 * Claim log block if not already committed and not already claimed.
277 	 */
278 	if (bp->blk_birth >= first_txg &&
279 	    zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
280 		err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL));
281 		ASSERT(err == 0);
282 	}
283 }
284 
285 static void
286 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
287 {
288 	if (lrc->lrc_txtype == TX_WRITE) {
289 		lr_write_t *lr = (lr_write_t *)lrc;
290 		zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
291 	}
292 }
293 
294 /* ARGSUSED */
295 static void
296 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
297 {
298 	zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
299 }
300 
301 static void
302 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
303 {
304 	/*
305 	 * If we previously claimed it, we need to free it.
306 	 */
307 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
308 		lr_write_t *lr = (lr_write_t *)lrc;
309 		blkptr_t *bp = &lr->lr_blkptr;
310 		if (bp->blk_birth >= claim_txg &&
311 		    !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
312 			(void) arc_free(NULL, zilog->zl_spa,
313 			    dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
314 		}
315 	}
316 }
317 
318 /*
319  * Create an on-disk intent log.
320  */
321 static void
322 zil_create(zilog_t *zilog)
323 {
324 	const zil_header_t *zh = zilog->zl_header;
325 	lwb_t *lwb;
326 	uint64_t txg = 0;
327 	dmu_tx_t *tx = NULL;
328 	blkptr_t blk;
329 	int error = 0;
330 
331 	/*
332 	 * Wait for any previous destroy to complete.
333 	 */
334 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
335 
336 	ASSERT(zh->zh_claim_txg == 0);
337 	ASSERT(zh->zh_replay_seq == 0);
338 
339 	blk = zh->zh_log;
340 
341 	/*
342 	 * If we don't already have an initial log block, allocate one now.
343 	 */
344 	if (BP_IS_HOLE(&blk)) {
345 		tx = dmu_tx_create(zilog->zl_os);
346 		(void) dmu_tx_assign(tx, TXG_WAIT);
347 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
348 		txg = dmu_tx_get_txg(tx);
349 
350 		error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, txg);
351 
352 		if (error == 0)
353 			zil_init_log_chain(zilog, &blk);
354 	}
355 
356 	/*
357 	 * Allocate a log write buffer (lwb) for the first log block.
358 	 */
359 	if (error == 0) {
360 		lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
361 		lwb->lwb_zilog = zilog;
362 		lwb->lwb_blk = blk;
363 		lwb->lwb_nused = 0;
364 		lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
365 		lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
366 		lwb->lwb_max_txg = txg;
367 		lwb->lwb_seq = 0;
368 		lwb->lwb_state = UNWRITTEN;
369 		lwb->lwb_zio = NULL;
370 
371 		mutex_enter(&zilog->zl_lock);
372 		list_insert_tail(&zilog->zl_lwb_list, lwb);
373 		mutex_exit(&zilog->zl_lock);
374 	}
375 
376 	/*
377 	 * If we just allocated the first log block, commit our transaction
378 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
379 	 * (zh is part of the MOS, so we cannot modify it in open context.)
380 	 */
381 	if (tx != NULL) {
382 		dmu_tx_commit(tx);
383 		txg_wait_synced(zilog->zl_dmu_pool, txg);
384 	}
385 
386 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
387 }
388 
389 /*
390  * In one tx, free all log blocks and clear the log header.
391  * If keep_first is set, then we're replaying a log with no content.
392  * We want to keep the first block, however, so that the first
393  * synchronous transaction doesn't require a txg_wait_synced()
394  * in zil_create().  We don't need to txg_wait_synced() here either
395  * when keep_first is set, because both zil_create() and zil_destroy()
396  * will wait for any in-progress destroys to complete.
397  */
398 void
399 zil_destroy(zilog_t *zilog, boolean_t keep_first)
400 {
401 	const zil_header_t *zh = zilog->zl_header;
402 	lwb_t *lwb;
403 	dmu_tx_t *tx;
404 	uint64_t txg;
405 
406 	/*
407 	 * Wait for any previous destroy to complete.
408 	 */
409 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
410 
411 	if (BP_IS_HOLE(&zh->zh_log))
412 		return;
413 
414 	tx = dmu_tx_create(zilog->zl_os);
415 	(void) dmu_tx_assign(tx, TXG_WAIT);
416 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
417 	txg = dmu_tx_get_txg(tx);
418 
419 	mutex_enter(&zilog->zl_lock);
420 
421 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
422 	zilog->zl_destroy_txg = txg;
423 	zilog->zl_keep_first = keep_first;
424 
425 	if (!list_is_empty(&zilog->zl_lwb_list)) {
426 		ASSERT(zh->zh_claim_txg == 0);
427 		ASSERT(!keep_first);
428 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
429 			list_remove(&zilog->zl_lwb_list, lwb);
430 			if (lwb->lwb_buf != NULL)
431 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
432 			zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
433 			kmem_cache_free(zil_lwb_cache, lwb);
434 		}
435 		mutex_exit(&zilog->zl_lock);
436 	} else {
437 		mutex_exit(&zilog->zl_lock);
438 		if (!keep_first) {
439 			(void) zil_parse(zilog, zil_free_log_block,
440 			    zil_free_log_record, tx, zh->zh_claim_txg);
441 		}
442 	}
443 
444 	dmu_tx_commit(tx);
445 
446 	if (keep_first)			/* no need to wait in this case */
447 		return;
448 
449 	txg_wait_synced(zilog->zl_dmu_pool, txg);
450 	ASSERT(BP_IS_HOLE(&zh->zh_log));
451 }
452 
453 int
454 zil_claim(char *osname, void *txarg)
455 {
456 	dmu_tx_t *tx = txarg;
457 	uint64_t first_txg = dmu_tx_get_txg(tx);
458 	zilog_t *zilog;
459 	zil_header_t *zh;
460 	objset_t *os;
461 	int error;
462 
463 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os);
464 	if (error) {
465 		cmn_err(CE_WARN, "can't process intent log for %s", osname);
466 		return (0);
467 	}
468 
469 	zilog = dmu_objset_zil(os);
470 	zh = zil_header_in_syncing_context(zilog);
471 
472 	/*
473 	 * Claim all log blocks if we haven't already done so, and remember
474 	 * the highest claimed sequence number.  This ensures that if we can
475 	 * read only part of the log now (e.g. due to a missing device),
476 	 * but we can read the entire log later, we will not try to replay
477 	 * or destroy beyond the last block we successfully claimed.
478 	 */
479 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
480 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
481 		zh->zh_claim_txg = first_txg;
482 		zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
483 		    zil_claim_log_record, tx, first_txg);
484 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
485 	}
486 
487 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
488 	dmu_objset_close(os);
489 	return (0);
490 }
491 
492 void
493 zil_add_vdev(zilog_t *zilog, uint64_t vdev, uint64_t seq)
494 {
495 	zil_vdev_t *zv;
496 
497 	if (zil_noflush)
498 		return;
499 
500 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
501 	zv = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP);
502 	zv->vdev = vdev;
503 	zv->seq = seq;
504 	list_insert_tail(&zilog->zl_vdev_list, zv);
505 }
506 
507 void
508 zil_flush_vdevs(zilog_t *zilog, uint64_t seq)
509 {
510 	vdev_t *vd;
511 	zil_vdev_t *zv, *zv2;
512 	zio_t *zio;
513 	spa_t *spa;
514 	uint64_t vdev;
515 
516 	if (zil_noflush)
517 		return;
518 
519 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
520 
521 	spa = zilog->zl_spa;
522 	zio = NULL;
523 
524 	while ((zv = list_head(&zilog->zl_vdev_list)) != NULL &&
525 	    zv->seq <= seq) {
526 		vdev = zv->vdev;
527 		list_remove(&zilog->zl_vdev_list, zv);
528 		kmem_free(zv, sizeof (zil_vdev_t));
529 
530 		/*
531 		 * remove all chained entries <= seq with same vdev
532 		 */
533 		zv = list_head(&zilog->zl_vdev_list);
534 		while (zv && zv->seq <= seq) {
535 			zv2 = list_next(&zilog->zl_vdev_list, zv);
536 			if (zv->vdev == vdev) {
537 				list_remove(&zilog->zl_vdev_list, zv);
538 				kmem_free(zv, sizeof (zil_vdev_t));
539 			}
540 			zv = zv2;
541 		}
542 
543 		/* flush the write cache for this vdev */
544 		mutex_exit(&zilog->zl_lock);
545 		if (zio == NULL)
546 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
547 		vd = vdev_lookup_top(spa, vdev);
548 		ASSERT(vd);
549 		(void) zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
550 		    NULL, NULL, ZIO_PRIORITY_NOW,
551 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
552 		mutex_enter(&zilog->zl_lock);
553 	}
554 
555 	/*
556 	 * Wait for all the flushes to complete.  Not all devices actually
557 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
558 	 */
559 	if (zio != NULL) {
560 		mutex_exit(&zilog->zl_lock);
561 		(void) zio_wait(zio);
562 		mutex_enter(&zilog->zl_lock);
563 	}
564 }
565 
566 /*
567  * Function called when a log block write completes
568  */
569 static void
570 zil_lwb_write_done(zio_t *zio)
571 {
572 	lwb_t *prev;
573 	lwb_t *lwb = zio->io_private;
574 	zilog_t *zilog = lwb->lwb_zilog;
575 	uint64_t max_seq;
576 
577 	/*
578 	 * Now that we've written this log block, we have a stable pointer
579 	 * to the next block in the chain, so it's OK to let the txg in
580 	 * which we allocated the next block sync.
581 	 */
582 	txg_rele_to_sync(&lwb->lwb_txgh);
583 
584 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
585 	mutex_enter(&zilog->zl_lock);
586 	lwb->lwb_buf = NULL;
587 	if (zio->io_error) {
588 		zilog->zl_log_error = B_TRUE;
589 		mutex_exit(&zilog->zl_lock);
590 		cv_broadcast(&zilog->zl_cv_seq);
591 		return;
592 	}
593 
594 	prev = list_prev(&zilog->zl_lwb_list, lwb);
595 	if (prev && prev->lwb_state != SEQ_COMPLETE) {
596 		/* There's an unwritten buffer in the chain before this one */
597 		lwb->lwb_state = SEQ_INCOMPLETE;
598 		mutex_exit(&zilog->zl_lock);
599 		return;
600 	}
601 
602 	max_seq = lwb->lwb_seq;
603 	lwb->lwb_state = SEQ_COMPLETE;
604 	/*
605 	 * We must also follow up the chain for already written buffers
606 	 * to see if we can set zl_ss_seq even higher.
607 	 */
608 	while (lwb = list_next(&zilog->zl_lwb_list, lwb)) {
609 		if (lwb->lwb_state != SEQ_INCOMPLETE)
610 			break;
611 		lwb->lwb_state = SEQ_COMPLETE;
612 		/* lwb_seq will be zero if we've written an empty buffer */
613 		if (lwb->lwb_seq) {
614 			ASSERT3U(max_seq, <, lwb->lwb_seq);
615 			max_seq = lwb->lwb_seq;
616 		}
617 	}
618 	zilog->zl_ss_seq = MAX(max_seq, zilog->zl_ss_seq);
619 	mutex_exit(&zilog->zl_lock);
620 	cv_broadcast(&zilog->zl_cv_seq);
621 }
622 
623 /*
624  * Initialize the io for a log block.
625  *
626  * Note, we should not initialize the IO until we are about
627  * to use it, since zio_rewrite() does a spa_config_enter().
628  */
629 static void
630 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
631 {
632 	zbookmark_t zb;
633 
634 	zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
635 	zb.zb_object = 0;
636 	zb.zb_level = -1;
637 	zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
638 
639 	ASSERT(lwb->lwb_zio == NULL);
640 	lwb->lwb_zio = zio_rewrite(NULL, zilog->zl_spa,
641 	    ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf,
642 	    lwb->lwb_sz, zil_lwb_write_done, lwb,
643 	    ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
644 }
645 
646 /*
647  * Start a log block write and advance to the next log block.
648  * Calls are serialized.
649  */
650 static lwb_t *
651 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
652 {
653 	lwb_t *nlwb;
654 	zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
655 	spa_t *spa = zilog->zl_spa;
656 	blkptr_t *bp = &ztp->zit_next_blk;
657 	uint64_t txg;
658 	uint64_t zil_blksz;
659 	int error;
660 
661 	ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
662 
663 	/*
664 	 * Allocate the next block and save its address in this block
665 	 * before writing it in order to establish the log chain.
666 	 * Note that if the allocation of nlwb synced before we wrote
667 	 * the block that points at it (lwb), we'd leak it if we crashed.
668 	 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
669 	 */
670 	txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
671 	txg_rele_to_quiesce(&lwb->lwb_txgh);
672 
673 	/*
674 	 * Pick a ZIL blocksize. We request a size that is the
675 	 * maximum of the previous used size, the current used size and
676 	 * the amount waiting in the queue.
677 	 */
678 	zil_blksz = MAX(zilog->zl_prev_used,
679 	    zilog->zl_cur_used + sizeof (*ztp));
680 	zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
681 	zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
682 	if (zil_blksz > ZIL_MAX_BLKSZ)
683 		zil_blksz = ZIL_MAX_BLKSZ;
684 
685 	error = zio_alloc_blk(spa, zil_blksz, bp, txg);
686 	if (error) {
687 		/*
688 		 * Reinitialise the lwb.
689 		 * By returning NULL the caller will call tx_wait_synced()
690 		 */
691 		mutex_enter(&zilog->zl_lock);
692 		ASSERT(lwb->lwb_state == UNWRITTEN);
693 		lwb->lwb_nused = 0;
694 		lwb->lwb_seq = 0;
695 		mutex_exit(&zilog->zl_lock);
696 		txg_rele_to_sync(&lwb->lwb_txgh);
697 		return (NULL);
698 	}
699 
700 	ASSERT3U(bp->blk_birth, ==, txg);
701 	ztp->zit_pad = 0;
702 	ztp->zit_nused = lwb->lwb_nused;
703 	ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
704 	bp->blk_cksum = lwb->lwb_blk.blk_cksum;
705 	bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
706 
707 	/*
708 	 * Allocate a new log write buffer (lwb).
709 	 */
710 	nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
711 
712 	nlwb->lwb_zilog = zilog;
713 	nlwb->lwb_blk = *bp;
714 	nlwb->lwb_nused = 0;
715 	nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
716 	nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
717 	nlwb->lwb_max_txg = txg;
718 	nlwb->lwb_seq = 0;
719 	nlwb->lwb_state = UNWRITTEN;
720 	nlwb->lwb_zio = NULL;
721 
722 	/*
723 	 * Put new lwb at the end of the log chain,
724 	 * and record the vdev for later flushing
725 	 */
726 	mutex_enter(&zilog->zl_lock);
727 	list_insert_tail(&zilog->zl_lwb_list, nlwb);
728 	zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk))),
729 	    lwb->lwb_seq);
730 	mutex_exit(&zilog->zl_lock);
731 
732 	/*
733 	 * kick off the write for the old log block
734 	 */
735 	dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
736 	if (lwb->lwb_zio == NULL) {
737 		/*
738 		 * This can only happen if there are no log records in this
739 		 * block (i.e. the first record to go in was too big to fit).
740 		 * XXX - would be nice if we could avoid this IO
741 		 */
742 		ASSERT(lwb->lwb_nused == 0);
743 		zil_lwb_write_init(zilog, lwb);
744 	}
745 	zio_nowait(lwb->lwb_zio);
746 
747 	return (nlwb);
748 }
749 
750 static lwb_t *
751 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
752 {
753 	lr_t *lrc = &itx->itx_lr; /* common log record */
754 	lr_write_t *lr = (lr_write_t *)lrc;
755 	uint64_t seq = lrc->lrc_seq;
756 	uint64_t txg = lrc->lrc_txg;
757 	uint64_t reclen = lrc->lrc_reclen;
758 	uint64_t dlen;
759 
760 	if (lwb == NULL)
761 		return (NULL);
762 	ASSERT(lwb->lwb_buf != NULL);
763 
764 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
765 		dlen = P2ROUNDUP_TYPED(
766 		    lr->lr_length, sizeof (uint64_t), uint64_t);
767 	else
768 		dlen = 0;
769 
770 	zilog->zl_cur_used += (reclen + dlen);
771 
772 	/*
773 	 * If this record won't fit in the current log block, start a new one.
774 	 */
775 	if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
776 		lwb = zil_lwb_write_start(zilog, lwb);
777 		if (lwb == NULL)
778 			return (NULL);
779 		ASSERT(lwb->lwb_nused == 0);
780 		if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
781 			txg_wait_synced(zilog->zl_dmu_pool, txg);
782 			mutex_enter(&zilog->zl_lock);
783 			zilog->zl_ss_seq = MAX(seq, zilog->zl_ss_seq);
784 			mutex_exit(&zilog->zl_lock);
785 			return (lwb);
786 		}
787 	}
788 
789 	if (lwb->lwb_zio == NULL)
790 		zil_lwb_write_init(zilog, lwb);
791 
792 	bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
793 
794 	/*
795 	 * If it's a write, fetch the data or get its blkptr as appropriate.
796 	 */
797 	if (lrc->lrc_txtype == TX_WRITE) {
798 		if (txg > spa_freeze_txg(zilog->zl_spa))
799 			txg_wait_synced(zilog->zl_dmu_pool, txg);
800 		if (itx->itx_wr_state != WR_COPIED) {
801 			char *dbuf;
802 			int error;
803 
804 			/* alignment is guaranteed */
805 			lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
806 			if (dlen) {
807 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
808 				dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
809 				lr->lr_common.lrc_reclen += dlen;
810 			} else {
811 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
812 				dbuf = NULL;
813 			}
814 			error = zilog->zl_get_data(
815 			    itx->itx_private, lr, dbuf, lwb->lwb_zio);
816 			if (error) {
817 				ASSERT(error == ENOENT || error == EEXIST ||
818 				    error == EALREADY);
819 				return (lwb);
820 			}
821 		}
822 	}
823 
824 	mutex_enter(&zilog->zl_lock);
825 	ASSERT(seq > zilog->zl_wait_seq);
826 	zilog->zl_wait_seq = seq;
827 	mutex_exit(&zilog->zl_lock);
828 	lwb->lwb_nused += reclen + dlen;
829 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
830 	ASSERT3U(lwb->lwb_seq, <, seq);
831 	lwb->lwb_seq = seq;
832 	ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
833 	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
834 
835 	return (lwb);
836 }
837 
838 itx_t *
839 zil_itx_create(int txtype, size_t lrsize)
840 {
841 	itx_t *itx;
842 
843 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
844 
845 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
846 	itx->itx_lr.lrc_txtype = txtype;
847 	itx->itx_lr.lrc_reclen = lrsize;
848 	itx->itx_lr.lrc_seq = 0;	/* defensive */
849 
850 	return (itx);
851 }
852 
853 uint64_t
854 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
855 {
856 	uint64_t seq;
857 
858 	ASSERT(itx->itx_lr.lrc_seq == 0);
859 
860 	mutex_enter(&zilog->zl_lock);
861 	list_insert_tail(&zilog->zl_itx_list, itx);
862 	zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen;
863 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
864 	itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
865 	mutex_exit(&zilog->zl_lock);
866 
867 	return (seq);
868 }
869 
870 /*
871  * Free up all in-memory intent log transactions that have now been synced.
872  */
873 static void
874 zil_itx_clean(zilog_t *zilog)
875 {
876 	uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
877 	uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
878 	uint64_t max_seq = 0;
879 	itx_t *itx;
880 
881 	mutex_enter(&zilog->zl_lock);
882 	while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
883 	    itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
884 		list_remove(&zilog->zl_itx_list, itx);
885 		zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen;
886 		ASSERT3U(max_seq, <, itx->itx_lr.lrc_seq);
887 		max_seq = itx->itx_lr.lrc_seq;
888 		kmem_free(itx, offsetof(itx_t, itx_lr)
889 		    + itx->itx_lr.lrc_reclen);
890 	}
891 	if (max_seq > zilog->zl_ss_seq) {
892 		zilog->zl_ss_seq = max_seq;
893 		cv_broadcast(&zilog->zl_cv_seq);
894 	}
895 	mutex_exit(&zilog->zl_lock);
896 }
897 
898 void
899 zil_clean(zilog_t *zilog)
900 {
901 	/*
902 	 * Check for any log blocks that can be freed.
903 	 * Log blocks are only freed when the log block allocation and
904 	 * log records contained within are both known to be committed.
905 	 */
906 	mutex_enter(&zilog->zl_lock);
907 	if (list_head(&zilog->zl_itx_list) != NULL)
908 		(void) taskq_dispatch(zilog->zl_clean_taskq,
909 		    (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP);
910 	mutex_exit(&zilog->zl_lock);
911 }
912 
913 /*
914  * Push zfs transactions to stable storage up to the supplied sequence number.
915  */
916 void
917 zil_commit(zilog_t *zilog, uint64_t seq, int ioflag)
918 {
919 	uint64_t txg;
920 	uint64_t max_seq;
921 	uint64_t reclen;
922 	itx_t *itx;
923 	lwb_t *lwb;
924 	spa_t *spa;
925 
926 	if (zilog == NULL || seq == 0 ||
927 	    ((ioflag & (FSYNC | FDSYNC | FRSYNC)) == 0 && !zil_always))
928 		return;
929 
930 	spa = zilog->zl_spa;
931 	mutex_enter(&zilog->zl_lock);
932 
933 	seq = MIN(seq, zilog->zl_itx_seq);	/* cap seq at largest itx seq */
934 
935 	for (;;) {
936 		if (zilog->zl_ss_seq >= seq) {	/* already on stable storage */
937 			mutex_exit(&zilog->zl_lock);
938 			return;
939 		}
940 
941 		if (zilog->zl_writer == B_FALSE) /* no one writing, do it */
942 			break;
943 
944 		cv_wait(&zilog->zl_cv_write, &zilog->zl_lock);
945 	}
946 
947 	zilog->zl_writer = B_TRUE;
948 	max_seq = 0;
949 
950 	if (zilog->zl_suspend) {
951 		lwb = NULL;
952 	} else {
953 		lwb = list_tail(&zilog->zl_lwb_list);
954 		if (lwb == NULL) {
955 			mutex_exit(&zilog->zl_lock);
956 			zil_create(zilog);
957 			mutex_enter(&zilog->zl_lock);
958 			lwb = list_tail(&zilog->zl_lwb_list);
959 		}
960 	}
961 
962 	/*
963 	 * Loop through in-memory log transactions filling log blocks,
964 	 * until we reach the given sequence number and there's no more
965 	 * room in the write buffer.
966 	 */
967 	for (;;) {
968 		itx = list_head(&zilog->zl_itx_list);
969 		if (itx == NULL)
970 			break;
971 
972 		reclen = itx->itx_lr.lrc_reclen;
973 		if ((itx->itx_lr.lrc_seq > seq) &&
974 		    ((lwb == NULL) || (lwb->lwb_nused + reclen >
975 		    ZIL_BLK_DATA_SZ(lwb))))
976 			break;
977 
978 		list_remove(&zilog->zl_itx_list, itx);
979 		txg = itx->itx_lr.lrc_txg;
980 		ASSERT(txg);
981 
982 		mutex_exit(&zilog->zl_lock);
983 		if (txg > spa_last_synced_txg(spa) ||
984 		    txg > spa_freeze_txg(spa))
985 			lwb = zil_lwb_commit(zilog, itx, lwb);
986 		else
987 			max_seq = itx->itx_lr.lrc_seq;
988 		kmem_free(itx, offsetof(itx_t, itx_lr)
989 		    + itx->itx_lr.lrc_reclen);
990 		mutex_enter(&zilog->zl_lock);
991 		zilog->zl_itx_list_sz -= reclen;
992 	}
993 
994 	mutex_exit(&zilog->zl_lock);
995 
996 	/* write the last block out */
997 	if (lwb != NULL && lwb->lwb_nused != 0)
998 		lwb = zil_lwb_write_start(zilog, lwb);
999 
1000 	zilog->zl_prev_used = zilog->zl_cur_used;
1001 	zilog->zl_cur_used = 0;
1002 
1003 	mutex_enter(&zilog->zl_lock);
1004 	if (max_seq > zilog->zl_ss_seq) {
1005 		zilog->zl_ss_seq = max_seq;
1006 		cv_broadcast(&zilog->zl_cv_seq);
1007 	}
1008 	/*
1009 	 * Wait if necessary for our seq to be committed.
1010 	 */
1011 	if (lwb && zilog->zl_wait_seq) {
1012 		while (zilog->zl_ss_seq < zilog->zl_wait_seq &&
1013 		    zilog->zl_log_error == 0)
1014 			cv_wait(&zilog->zl_cv_seq, &zilog->zl_lock);
1015 		zil_flush_vdevs(zilog, seq);
1016 	}
1017 
1018 	if (zilog->zl_log_error || lwb == NULL) {
1019 		zilog->zl_log_error = 0;
1020 		max_seq = zilog->zl_itx_seq;
1021 		mutex_exit(&zilog->zl_lock);
1022 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1023 		mutex_enter(&zilog->zl_lock);
1024 		zilog->zl_ss_seq = MAX(max_seq, zilog->zl_ss_seq);
1025 		cv_broadcast(&zilog->zl_cv_seq);
1026 	}
1027 	/* wake up others waiting to start a write */
1028 	zilog->zl_wait_seq = 0;
1029 	zilog->zl_writer = B_FALSE;
1030 	mutex_exit(&zilog->zl_lock);
1031 	cv_broadcast(&zilog->zl_cv_write);
1032 }
1033 
1034 /*
1035  * Called in syncing context to free committed log blocks and update log header.
1036  */
1037 void
1038 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1039 {
1040 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1041 	uint64_t txg = dmu_tx_get_txg(tx);
1042 	spa_t *spa = zilog->zl_spa;
1043 	lwb_t *lwb;
1044 
1045 	mutex_enter(&zilog->zl_lock);
1046 
1047 	ASSERT(zilog->zl_stop_sync == 0);
1048 
1049 	zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK];
1050 
1051 	if (zilog->zl_destroy_txg == txg) {
1052 		blkptr_t blk = zh->zh_log;
1053 
1054 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1055 		ASSERT(spa_sync_pass(spa) == 1);
1056 
1057 		bzero(zh, sizeof (zil_header_t));
1058 		bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq));
1059 
1060 		if (zilog->zl_keep_first) {
1061 			/*
1062 			 * If this block was part of log chain that couldn't
1063 			 * be claimed because a device was missing during
1064 			 * zil_claim(), but that device later returns,
1065 			 * then this block could erroneously appear valid.
1066 			 * To guard against this, assign a new GUID to the new
1067 			 * log chain so it doesn't matter what blk points to.
1068 			 */
1069 			zil_init_log_chain(zilog, &blk);
1070 			zh->zh_log = blk;
1071 		}
1072 	}
1073 
1074 	for (;;) {
1075 		lwb = list_head(&zilog->zl_lwb_list);
1076 		if (lwb == NULL) {
1077 			mutex_exit(&zilog->zl_lock);
1078 			return;
1079 		}
1080 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1081 			break;
1082 		list_remove(&zilog->zl_lwb_list, lwb);
1083 		zio_free_blk(spa, &lwb->lwb_blk, txg);
1084 		kmem_cache_free(zil_lwb_cache, lwb);
1085 	}
1086 	zh->zh_log = lwb->lwb_blk;
1087 	mutex_exit(&zilog->zl_lock);
1088 }
1089 
1090 void
1091 zil_init(void)
1092 {
1093 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1094 	    sizeof (struct lwb), NULL, NULL, NULL, NULL, NULL, NULL, 0);
1095 }
1096 
1097 void
1098 zil_fini(void)
1099 {
1100 	kmem_cache_destroy(zil_lwb_cache);
1101 }
1102 
1103 zilog_t *
1104 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1105 {
1106 	zilog_t *zilog;
1107 
1108 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1109 
1110 	zilog->zl_header = zh_phys;
1111 	zilog->zl_os = os;
1112 	zilog->zl_spa = dmu_objset_spa(os);
1113 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1114 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1115 
1116 	list_create(&zilog->zl_itx_list, sizeof (itx_t),
1117 	    offsetof(itx_t, itx_node));
1118 
1119 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1120 	    offsetof(lwb_t, lwb_node));
1121 
1122 	list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t),
1123 	    offsetof(zil_vdev_t, vdev_seq_node));
1124 
1125 	return (zilog);
1126 }
1127 
1128 void
1129 zil_free(zilog_t *zilog)
1130 {
1131 	lwb_t *lwb;
1132 	zil_vdev_t *zv;
1133 
1134 	zilog->zl_stop_sync = 1;
1135 
1136 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1137 		list_remove(&zilog->zl_lwb_list, lwb);
1138 		if (lwb->lwb_buf != NULL)
1139 			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1140 		kmem_cache_free(zil_lwb_cache, lwb);
1141 	}
1142 	list_destroy(&zilog->zl_lwb_list);
1143 
1144 	while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
1145 		list_remove(&zilog->zl_vdev_list, zv);
1146 		kmem_free(zv, sizeof (zil_vdev_t));
1147 	}
1148 	list_destroy(&zilog->zl_vdev_list);
1149 
1150 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1151 	list_destroy(&zilog->zl_itx_list);
1152 
1153 	kmem_free(zilog, sizeof (zilog_t));
1154 }
1155 
1156 /*
1157  * return true if the initial log block is not valid
1158  */
1159 static int
1160 zil_empty(zilog_t *zilog)
1161 {
1162 	const zil_header_t *zh = zilog->zl_header;
1163 	arc_buf_t *abuf = NULL;
1164 
1165 	if (BP_IS_HOLE(&zh->zh_log))
1166 		return (1);
1167 
1168 	if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
1169 		return (1);
1170 
1171 	VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Open an intent log.
1177  */
1178 zilog_t *
1179 zil_open(objset_t *os, zil_get_data_t *get_data)
1180 {
1181 	zilog_t *zilog = dmu_objset_zil(os);
1182 
1183 	zilog->zl_get_data = get_data;
1184 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1185 	    2, 2, TASKQ_PREPOPULATE);
1186 
1187 	return (zilog);
1188 }
1189 
1190 /*
1191  * Close an intent log.
1192  */
1193 void
1194 zil_close(zilog_t *zilog)
1195 {
1196 	/*
1197 	 * If the log isn't already committed, mark the objset dirty
1198 	 * (so zil_sync() will be called) and wait for that txg to sync.
1199 	 */
1200 	if (!zil_is_committed(zilog)) {
1201 		uint64_t txg;
1202 		dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1203 		(void) dmu_tx_assign(tx, TXG_WAIT);
1204 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1205 		txg = dmu_tx_get_txg(tx);
1206 		dmu_tx_commit(tx);
1207 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1208 	}
1209 
1210 	taskq_destroy(zilog->zl_clean_taskq);
1211 	zilog->zl_clean_taskq = NULL;
1212 	zilog->zl_get_data = NULL;
1213 
1214 	zil_itx_clean(zilog);
1215 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1216 }
1217 
1218 /*
1219  * Suspend an intent log.  While in suspended mode, we still honor
1220  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1221  * We suspend the log briefly when taking a snapshot so that the snapshot
1222  * contains all the data it's supposed to, and has an empty intent log.
1223  */
1224 int
1225 zil_suspend(zilog_t *zilog)
1226 {
1227 	const zil_header_t *zh = zilog->zl_header;
1228 	lwb_t *lwb;
1229 
1230 	mutex_enter(&zilog->zl_lock);
1231 	if (zh->zh_claim_txg != 0) {		/* unplayed log */
1232 		mutex_exit(&zilog->zl_lock);
1233 		return (EBUSY);
1234 	}
1235 	if (zilog->zl_suspend++ != 0) {
1236 		/*
1237 		 * Someone else already began a suspend.
1238 		 * Just wait for them to finish.
1239 		 */
1240 		while (zilog->zl_suspending)
1241 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1242 		ASSERT(BP_IS_HOLE(&zh->zh_log));
1243 		mutex_exit(&zilog->zl_lock);
1244 		return (0);
1245 	}
1246 	zilog->zl_suspending = B_TRUE;
1247 	mutex_exit(&zilog->zl_lock);
1248 
1249 	zil_commit(zilog, UINT64_MAX, FSYNC);
1250 
1251 	mutex_enter(&zilog->zl_lock);
1252 	for (;;) {
1253 		/*
1254 		 * Wait for any in-flight log writes to complete.
1255 		 */
1256 		for (lwb = list_head(&zilog->zl_lwb_list); lwb != NULL;
1257 		    lwb = list_next(&zilog->zl_lwb_list, lwb))
1258 			if (lwb->lwb_seq != 0 && lwb->lwb_state != SEQ_COMPLETE)
1259 				break;
1260 
1261 		if (lwb == NULL)
1262 			break;
1263 
1264 		cv_wait(&zilog->zl_cv_seq, &zilog->zl_lock);
1265 	}
1266 
1267 	mutex_exit(&zilog->zl_lock);
1268 
1269 	zil_destroy(zilog, B_FALSE);
1270 
1271 	mutex_enter(&zilog->zl_lock);
1272 	ASSERT(BP_IS_HOLE(&zh->zh_log));
1273 	zilog->zl_suspending = B_FALSE;
1274 	cv_broadcast(&zilog->zl_cv_suspend);
1275 	mutex_exit(&zilog->zl_lock);
1276 
1277 	return (0);
1278 }
1279 
1280 void
1281 zil_resume(zilog_t *zilog)
1282 {
1283 	mutex_enter(&zilog->zl_lock);
1284 	ASSERT(zilog->zl_suspend != 0);
1285 	zilog->zl_suspend--;
1286 	mutex_exit(&zilog->zl_lock);
1287 }
1288 
1289 typedef struct zil_replay_arg {
1290 	objset_t	*zr_os;
1291 	zil_replay_func_t **zr_replay;
1292 	void		*zr_arg;
1293 	void		(*zr_rm_sync)(void *arg);
1294 	uint64_t	*zr_txgp;
1295 	boolean_t	zr_byteswap;
1296 	char		*zr_lrbuf;
1297 } zil_replay_arg_t;
1298 
1299 static void
1300 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1301 {
1302 	zil_replay_arg_t *zr = zra;
1303 	const zil_header_t *zh = zilog->zl_header;
1304 	uint64_t reclen = lr->lrc_reclen;
1305 	uint64_t txtype = lr->lrc_txtype;
1306 	int pass, error;
1307 
1308 	if (zilog->zl_stop_replay)
1309 		return;
1310 
1311 	if (lr->lrc_txg < claim_txg)		/* already committed */
1312 		return;
1313 
1314 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1315 		return;
1316 
1317 	/*
1318 	 * Make a copy of the data so we can revise and extend it.
1319 	 */
1320 	bcopy(lr, zr->zr_lrbuf, reclen);
1321 
1322 	/*
1323 	 * The log block containing this lr may have been byteswapped
1324 	 * so that we can easily examine common fields like lrc_txtype.
1325 	 * However, the log is a mix of different data types, and only the
1326 	 * replay vectors know how to byteswap their records.  Therefore, if
1327 	 * the lr was byteswapped, undo it before invoking the replay vector.
1328 	 */
1329 	if (zr->zr_byteswap)
1330 		byteswap_uint64_array(zr->zr_lrbuf, reclen);
1331 
1332 	/*
1333 	 * If this is a TX_WRITE with a blkptr, suck in the data.
1334 	 */
1335 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1336 		lr_write_t *lrw = (lr_write_t *)lr;
1337 		blkptr_t *wbp = &lrw->lr_blkptr;
1338 		uint64_t wlen = lrw->lr_length;
1339 		char *wbuf = zr->zr_lrbuf + reclen;
1340 
1341 		if (BP_IS_HOLE(wbp)) {	/* compressed to a hole */
1342 			bzero(wbuf, wlen);
1343 		} else {
1344 			/*
1345 			 * A subsequent write may have overwritten this block,
1346 			 * in which case wbp may have been been freed and
1347 			 * reallocated, and our read of wbp may fail with a
1348 			 * checksum error.  We can safely ignore this because
1349 			 * the later write will provide the correct data.
1350 			 */
1351 			zbookmark_t zb;
1352 
1353 			zb.zb_objset = dmu_objset_id(zilog->zl_os);
1354 			zb.zb_object = lrw->lr_foid;
1355 			zb.zb_level = -1;
1356 			zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp);
1357 
1358 			(void) zio_wait(zio_read(NULL, zilog->zl_spa,
1359 			    wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL,
1360 			    ZIO_PRIORITY_SYNC_READ,
1361 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
1362 			(void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen);
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * We must now do two things atomically: replay this log record,
1368 	 * and update the log header to reflect the fact that we did so.
1369 	 * We use the DMU's ability to assign into a specific txg to do this.
1370 	 */
1371 	for (pass = 1; /* CONSTANTCONDITION */; pass++) {
1372 		uint64_t replay_txg;
1373 		dmu_tx_t *replay_tx;
1374 
1375 		replay_tx = dmu_tx_create(zr->zr_os);
1376 		error = dmu_tx_assign(replay_tx, TXG_WAIT);
1377 		if (error) {
1378 			dmu_tx_abort(replay_tx);
1379 			break;
1380 		}
1381 
1382 		replay_txg = dmu_tx_get_txg(replay_tx);
1383 
1384 		if (txtype == 0 || txtype >= TX_MAX_TYPE) {
1385 			error = EINVAL;
1386 		} else {
1387 			/*
1388 			 * On the first pass, arrange for the replay vector
1389 			 * to fail its dmu_tx_assign().  That's the only way
1390 			 * to ensure that those code paths remain well tested.
1391 			 */
1392 			*zr->zr_txgp = replay_txg - (pass == 1);
1393 			error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
1394 			    zr->zr_byteswap);
1395 			*zr->zr_txgp = TXG_NOWAIT;
1396 		}
1397 
1398 		if (error == 0) {
1399 			dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx);
1400 			zilog->zl_replay_seq[replay_txg & TXG_MASK] =
1401 			    lr->lrc_seq;
1402 		}
1403 
1404 		dmu_tx_commit(replay_tx);
1405 
1406 		if (error != ERESTART)
1407 			break;
1408 
1409 		if (pass != 1)
1410 			txg_wait_open(spa_get_dsl(zilog->zl_spa),
1411 			    replay_txg + 1);
1412 
1413 		dprintf("pass %d, retrying\n", pass);
1414 	}
1415 
1416 	if (error) {
1417 		char *name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1418 		dmu_objset_name(zr->zr_os, name);
1419 		cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1420 		    "dataset %s, seq 0x%llx, txtype %llu\n",
1421 		    error, name,
1422 		    (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype);
1423 		zilog->zl_stop_replay = 1;
1424 		kmem_free(name, MAXNAMELEN);
1425 	}
1426 
1427 	/*
1428 	 * The DMU's dnode layer doesn't see removes until the txg commits,
1429 	 * so a subsequent claim can spuriously fail with EEXIST.
1430 	 * To prevent this, if we might have removed an object,
1431 	 * wait for the delete thread to delete it, and then
1432 	 * wait for the transaction group to sync.
1433 	 */
1434 	if (txtype == TX_REMOVE || txtype == TX_RMDIR || txtype == TX_RENAME) {
1435 		if (zr->zr_rm_sync != NULL)
1436 			zr->zr_rm_sync(zr->zr_arg);
1437 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1438 	}
1439 }
1440 
1441 /*
1442  * If this dataset has a non-empty intent log, replay it and destroy it.
1443  */
1444 void
1445 zil_replay(objset_t *os, void *arg, uint64_t *txgp,
1446 	zil_replay_func_t *replay_func[TX_MAX_TYPE], void (*rm_sync)(void *arg))
1447 {
1448 	zilog_t *zilog = dmu_objset_zil(os);
1449 	const zil_header_t *zh = zilog->zl_header;
1450 	zil_replay_arg_t zr;
1451 
1452 	if (zil_empty(zilog)) {
1453 		zil_destroy(zilog, B_TRUE);
1454 		return;
1455 	}
1456 
1457 	zr.zr_os = os;
1458 	zr.zr_replay = replay_func;
1459 	zr.zr_arg = arg;
1460 	zr.zr_rm_sync = rm_sync;
1461 	zr.zr_txgp = txgp;
1462 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1463 	zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1464 
1465 	/*
1466 	 * Wait for in-progress removes to sync before starting replay.
1467 	 */
1468 	if (rm_sync != NULL)
1469 		rm_sync(arg);
1470 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1471 
1472 	zilog->zl_stop_replay = 0;
1473 	(void) zil_parse(zilog, NULL, zil_replay_log_record, &zr,
1474 	    zh->zh_claim_txg);
1475 	kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
1476 
1477 	zil_destroy(zilog, B_FALSE);
1478 }
1479 
1480 /*
1481  * Report whether all transactions are committed
1482  */
1483 int
1484 zil_is_committed(zilog_t *zilog)
1485 {
1486 	lwb_t *lwb;
1487 
1488 	if (!list_is_empty(&zilog->zl_itx_list))
1489 		return (B_FALSE);
1490 
1491 	/*
1492 	 * A log write buffer at the head of the list that is not UNWRITTEN
1493 	 * means there's a lwb yet to be freed after a txg commit
1494 	 */
1495 	lwb = list_head(&zilog->zl_lwb_list);
1496 	if (lwb && lwb->lwb_state != UNWRITTEN)
1497 		return (B_FALSE);
1498 	ASSERT(zil_empty(zilog));
1499 	return (B_TRUE);
1500 }
1501