xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 8671400134a11c848244896ca51a7db4d0f69da4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44 
45 /*
46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47  * calls that change the file system. Each itx has enough information to
48  * be able to replay them after a system crash, power loss, or
49  * equivalent failure mode. These are stored in memory until either:
50  *
51  *   1. they are committed to the pool by the DMU transaction group
52  *      (txg), at which point they can be discarded; or
53  *   2. they are committed to the on-disk ZIL for the dataset being
54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55  *      requirement).
56  *
57  * In the event of a crash or power loss, the itxs contained by each
58  * dataset's on-disk ZIL will be replayed when that dataset is first
59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
60  * first mounted).
61  *
62  * As hinted at above, there is one ZIL per dataset (both the in-memory
63  * representation, and the on-disk representation). The on-disk format
64  * consists of 3 parts:
65  *
66  * 	- a single, per-dataset, ZIL header; which points to a chain of
67  * 	- zero or more ZIL blocks; each of which contains
68  * 	- zero or more ZIL records
69  *
70  * A ZIL record holds the information necessary to replay a single
71  * system call transaction. A ZIL block can hold many ZIL records, and
72  * the blocks are chained together, similarly to a singly linked list.
73  *
74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75  * block in the chain, and the ZIL header points to the first block in
76  * the chain.
77  *
78  * Note, there is not a fixed place in the pool to hold these ZIL
79  * blocks; they are dynamically allocated and freed as needed from the
80  * blocks available on the pool, though they can be preferentially
81  * allocated from a dedicated "log" vdev.
82  */
83 
84 /*
85  * This controls the amount of time that a ZIL block (lwb) will remain
86  * "open" when it isn't "full", and it has a thread waiting for it to be
87  * committed to stable storage. Please refer to the zil_commit_waiter()
88  * function (and the comments within it) for more details.
89  */
90 int zfs_commit_timeout_pct = 5;
91 
92 /*
93  * Disable intent logging replay.  This global ZIL switch affects all pools.
94  */
95 int zil_replay_disable = 0;
96 
97 /*
98  * Tunable parameter for debugging or performance analysis.  Setting
99  * zfs_nocacheflush will cause corruption on power loss if a volatile
100  * out-of-order write cache is enabled.
101  */
102 boolean_t zfs_nocacheflush = B_FALSE;
103 
104 /*
105  * Limit SLOG write size per commit executed with synchronous priority.
106  * Any writes above that will be executed with lower (asynchronous) priority
107  * to limit potential SLOG device abuse by single active ZIL writer.
108  */
109 uint64_t zil_slog_bulk = 768 * 1024;
110 
111 static kmem_cache_t *zil_lwb_cache;
112 static kmem_cache_t *zil_zcw_cache;
113 
114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115 
116 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118 
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
121 {
122 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124 
125 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
126 		return (-1);
127 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
128 		return (1);
129 
130 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
131 		return (-1);
132 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
133 		return (1);
134 
135 	return (0);
136 }
137 
138 static void
139 zil_bp_tree_init(zilog_t *zilog)
140 {
141 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
142 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
143 }
144 
145 static void
146 zil_bp_tree_fini(zilog_t *zilog)
147 {
148 	avl_tree_t *t = &zilog->zl_bp_tree;
149 	zil_bp_node_t *zn;
150 	void *cookie = NULL;
151 
152 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
153 		kmem_free(zn, sizeof (zil_bp_node_t));
154 
155 	avl_destroy(t);
156 }
157 
158 int
159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
160 {
161 	avl_tree_t *t = &zilog->zl_bp_tree;
162 	const dva_t *dva;
163 	zil_bp_node_t *zn;
164 	avl_index_t where;
165 
166 	if (BP_IS_EMBEDDED(bp))
167 		return (0);
168 
169 	dva = BP_IDENTITY(bp);
170 
171 	if (avl_find(t, dva, &where) != NULL)
172 		return (SET_ERROR(EEXIST));
173 
174 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
175 	zn->zn_dva = *dva;
176 	avl_insert(t, zn, where);
177 
178 	return (0);
179 }
180 
181 static zil_header_t *
182 zil_header_in_syncing_context(zilog_t *zilog)
183 {
184 	return ((zil_header_t *)zilog->zl_header);
185 }
186 
187 static void
188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
189 {
190 	zio_cksum_t *zc = &bp->blk_cksum;
191 
192 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
193 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
194 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
195 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
196 }
197 
198 /*
199  * Read a log block and make sure it's valid.
200  */
201 static int
202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
203     char **end)
204 {
205 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
206 	arc_flags_t aflags = ARC_FLAG_WAIT;
207 	arc_buf_t *abuf = NULL;
208 	zbookmark_phys_t zb;
209 	int error;
210 
211 	if (zilog->zl_header->zh_claim_txg == 0)
212 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
213 
214 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
215 		zio_flags |= ZIO_FLAG_SPECULATIVE;
216 
217 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
218 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
219 
220 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
221 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
222 
223 	if (error == 0) {
224 		zio_cksum_t cksum = bp->blk_cksum;
225 
226 		/*
227 		 * Validate the checksummed log block.
228 		 *
229 		 * Sequence numbers should be... sequential.  The checksum
230 		 * verifier for the next block should be bp's checksum plus 1.
231 		 *
232 		 * Also check the log chain linkage and size used.
233 		 */
234 		cksum.zc_word[ZIL_ZC_SEQ]++;
235 
236 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
237 			zil_chain_t *zilc = abuf->b_data;
238 			char *lr = (char *)(zilc + 1);
239 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
240 
241 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
242 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
243 				error = SET_ERROR(ECKSUM);
244 			} else {
245 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
246 				bcopy(lr, dst, len);
247 				*end = (char *)dst + len;
248 				*nbp = zilc->zc_next_blk;
249 			}
250 		} else {
251 			char *lr = abuf->b_data;
252 			uint64_t size = BP_GET_LSIZE(bp);
253 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
254 
255 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
256 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
257 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
258 				error = SET_ERROR(ECKSUM);
259 			} else {
260 				ASSERT3U(zilc->zc_nused, <=,
261 				    SPA_OLD_MAXBLOCKSIZE);
262 				bcopy(lr, dst, zilc->zc_nused);
263 				*end = (char *)dst + zilc->zc_nused;
264 				*nbp = zilc->zc_next_blk;
265 			}
266 		}
267 
268 		arc_buf_destroy(abuf, &abuf);
269 	}
270 
271 	return (error);
272 }
273 
274 /*
275  * Read a TX_WRITE log data block.
276  */
277 static int
278 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
279 {
280 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
281 	const blkptr_t *bp = &lr->lr_blkptr;
282 	arc_flags_t aflags = ARC_FLAG_WAIT;
283 	arc_buf_t *abuf = NULL;
284 	zbookmark_phys_t zb;
285 	int error;
286 
287 	if (BP_IS_HOLE(bp)) {
288 		if (wbuf != NULL)
289 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
290 		return (0);
291 	}
292 
293 	if (zilog->zl_header->zh_claim_txg == 0)
294 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
295 
296 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
297 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
298 
299 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
300 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
301 
302 	if (error == 0) {
303 		if (wbuf != NULL)
304 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
305 		arc_buf_destroy(abuf, &abuf);
306 	}
307 
308 	return (error);
309 }
310 
311 /*
312  * Parse the intent log, and call parse_func for each valid record within.
313  */
314 int
315 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
316     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
317 {
318 	const zil_header_t *zh = zilog->zl_header;
319 	boolean_t claimed = !!zh->zh_claim_txg;
320 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
321 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
322 	uint64_t max_blk_seq = 0;
323 	uint64_t max_lr_seq = 0;
324 	uint64_t blk_count = 0;
325 	uint64_t lr_count = 0;
326 	blkptr_t blk, next_blk;
327 	char *lrbuf, *lrp;
328 	int error = 0;
329 
330 	/*
331 	 * Old logs didn't record the maximum zh_claim_lr_seq.
332 	 */
333 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
334 		claim_lr_seq = UINT64_MAX;
335 
336 	/*
337 	 * Starting at the block pointed to by zh_log we read the log chain.
338 	 * For each block in the chain we strongly check that block to
339 	 * ensure its validity.  We stop when an invalid block is found.
340 	 * For each block pointer in the chain we call parse_blk_func().
341 	 * For each record in each valid block we call parse_lr_func().
342 	 * If the log has been claimed, stop if we encounter a sequence
343 	 * number greater than the highest claimed sequence number.
344 	 */
345 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
346 	zil_bp_tree_init(zilog);
347 
348 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
349 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
350 		int reclen;
351 		char *end;
352 
353 		if (blk_seq > claim_blk_seq)
354 			break;
355 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
356 			break;
357 		ASSERT3U(max_blk_seq, <, blk_seq);
358 		max_blk_seq = blk_seq;
359 		blk_count++;
360 
361 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
362 			break;
363 
364 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
365 		if (error != 0)
366 			break;
367 
368 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
369 			lr_t *lr = (lr_t *)lrp;
370 			reclen = lr->lrc_reclen;
371 			ASSERT3U(reclen, >=, sizeof (lr_t));
372 			if (lr->lrc_seq > claim_lr_seq)
373 				goto done;
374 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
375 				goto done;
376 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
377 			max_lr_seq = lr->lrc_seq;
378 			lr_count++;
379 		}
380 	}
381 done:
382 	zilog->zl_parse_error = error;
383 	zilog->zl_parse_blk_seq = max_blk_seq;
384 	zilog->zl_parse_lr_seq = max_lr_seq;
385 	zilog->zl_parse_blk_count = blk_count;
386 	zilog->zl_parse_lr_count = lr_count;
387 
388 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
389 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
390 
391 	zil_bp_tree_fini(zilog);
392 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
393 
394 	return (error);
395 }
396 
397 /* ARGSUSED */
398 static int
399 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
400 {
401 	ASSERT(!BP_IS_HOLE(bp));
402 
403 	/*
404 	 * As we call this function from the context of a rewind to a
405 	 * checkpoint, each ZIL block whose txg is later than the txg
406 	 * that we rewind to is invalid. Thus, we return -1 so
407 	 * zil_parse() doesn't attempt to read it.
408 	 */
409 	if (bp->blk_birth >= first_txg)
410 		return (-1);
411 
412 	if (zil_bp_tree_add(zilog, bp) != 0)
413 		return (0);
414 
415 	zio_free(zilog->zl_spa, first_txg, bp);
416 	return (0);
417 }
418 
419 /* ARGSUSED */
420 static int
421 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
422 {
423 	return (0);
424 }
425 
426 static int
427 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
428 {
429 	/*
430 	 * Claim log block if not already committed and not already claimed.
431 	 * If tx == NULL, just verify that the block is claimable.
432 	 */
433 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
434 	    zil_bp_tree_add(zilog, bp) != 0)
435 		return (0);
436 
437 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
438 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
439 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
440 }
441 
442 static int
443 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
444 {
445 	lr_write_t *lr = (lr_write_t *)lrc;
446 	int error;
447 
448 	if (lrc->lrc_txtype != TX_WRITE)
449 		return (0);
450 
451 	/*
452 	 * If the block is not readable, don't claim it.  This can happen
453 	 * in normal operation when a log block is written to disk before
454 	 * some of the dmu_sync() blocks it points to.  In this case, the
455 	 * transaction cannot have been committed to anyone (we would have
456 	 * waited for all writes to be stable first), so it is semantically
457 	 * correct to declare this the end of the log.
458 	 */
459 	if (lr->lr_blkptr.blk_birth >= first_txg &&
460 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
461 		return (error);
462 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
463 }
464 
465 /* ARGSUSED */
466 static int
467 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
468 {
469 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
470 
471 	return (0);
472 }
473 
474 static int
475 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
476 {
477 	lr_write_t *lr = (lr_write_t *)lrc;
478 	blkptr_t *bp = &lr->lr_blkptr;
479 
480 	/*
481 	 * If we previously claimed it, we need to free it.
482 	 */
483 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
484 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
485 	    !BP_IS_HOLE(bp))
486 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
487 
488 	return (0);
489 }
490 
491 static int
492 zil_lwb_vdev_compare(const void *x1, const void *x2)
493 {
494 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
495 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
496 
497 	if (v1 < v2)
498 		return (-1);
499 	if (v1 > v2)
500 		return (1);
501 
502 	return (0);
503 }
504 
505 static lwb_t *
506 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
507 {
508 	lwb_t *lwb;
509 
510 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
511 	lwb->lwb_zilog = zilog;
512 	lwb->lwb_blk = *bp;
513 	lwb->lwb_slog = slog;
514 	lwb->lwb_state = LWB_STATE_CLOSED;
515 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
516 	lwb->lwb_max_txg = txg;
517 	lwb->lwb_write_zio = NULL;
518 	lwb->lwb_root_zio = NULL;
519 	lwb->lwb_tx = NULL;
520 	lwb->lwb_issued_timestamp = 0;
521 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
522 		lwb->lwb_nused = sizeof (zil_chain_t);
523 		lwb->lwb_sz = BP_GET_LSIZE(bp);
524 	} else {
525 		lwb->lwb_nused = 0;
526 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
527 	}
528 
529 	mutex_enter(&zilog->zl_lock);
530 	list_insert_tail(&zilog->zl_lwb_list, lwb);
531 	mutex_exit(&zilog->zl_lock);
532 
533 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
534 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
535 	VERIFY(list_is_empty(&lwb->lwb_waiters));
536 
537 	return (lwb);
538 }
539 
540 static void
541 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
542 {
543 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
544 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545 	VERIFY(list_is_empty(&lwb->lwb_waiters));
546 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
550 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
551 	    lwb->lwb_state == LWB_STATE_DONE);
552 
553 	/*
554 	 * Clear the zilog's field to indicate this lwb is no longer
555 	 * valid, and prevent use-after-free errors.
556 	 */
557 	if (zilog->zl_last_lwb_opened == lwb)
558 		zilog->zl_last_lwb_opened = NULL;
559 
560 	kmem_cache_free(zil_lwb_cache, lwb);
561 }
562 
563 /*
564  * Called when we create in-memory log transactions so that we know
565  * to cleanup the itxs at the end of spa_sync().
566  */
567 void
568 zilog_dirty(zilog_t *zilog, uint64_t txg)
569 {
570 	dsl_pool_t *dp = zilog->zl_dmu_pool;
571 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
572 
573 	ASSERT(spa_writeable(zilog->zl_spa));
574 
575 	if (ds->ds_is_snapshot)
576 		panic("dirtying snapshot!");
577 
578 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
579 		/* up the hold count until we can be written out */
580 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
581 
582 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
583 	}
584 }
585 
586 /*
587  * Determine if the zil is dirty in the specified txg. Callers wanting to
588  * ensure that the dirty state does not change must hold the itxg_lock for
589  * the specified txg. Holding the lock will ensure that the zil cannot be
590  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
591  * state.
592  */
593 boolean_t
594 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
595 {
596 	dsl_pool_t *dp = zilog->zl_dmu_pool;
597 
598 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
599 		return (B_TRUE);
600 	return (B_FALSE);
601 }
602 
603 /*
604  * Determine if the zil is dirty. The zil is considered dirty if it has
605  * any pending itx records that have not been cleaned by zil_clean().
606  */
607 boolean_t
608 zilog_is_dirty(zilog_t *zilog)
609 {
610 	dsl_pool_t *dp = zilog->zl_dmu_pool;
611 
612 	for (int t = 0; t < TXG_SIZE; t++) {
613 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
614 			return (B_TRUE);
615 	}
616 	return (B_FALSE);
617 }
618 
619 /*
620  * Create an on-disk intent log.
621  */
622 static lwb_t *
623 zil_create(zilog_t *zilog)
624 {
625 	const zil_header_t *zh = zilog->zl_header;
626 	lwb_t *lwb = NULL;
627 	uint64_t txg = 0;
628 	dmu_tx_t *tx = NULL;
629 	blkptr_t blk;
630 	int error = 0;
631 	boolean_t slog = FALSE;
632 
633 	/*
634 	 * Wait for any previous destroy to complete.
635 	 */
636 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
637 
638 	ASSERT(zh->zh_claim_txg == 0);
639 	ASSERT(zh->zh_replay_seq == 0);
640 
641 	blk = zh->zh_log;
642 
643 	/*
644 	 * Allocate an initial log block if:
645 	 *    - there isn't one already
646 	 *    - the existing block is the wrong endianess
647 	 */
648 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
649 		tx = dmu_tx_create(zilog->zl_os);
650 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
651 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
652 		txg = dmu_tx_get_txg(tx);
653 
654 		if (!BP_IS_HOLE(&blk)) {
655 			zio_free(zilog->zl_spa, txg, &blk);
656 			BP_ZERO(&blk);
657 		}
658 
659 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
660 		    ZIL_MIN_BLKSZ, &slog);
661 
662 		if (error == 0)
663 			zil_init_log_chain(zilog, &blk);
664 	}
665 
666 	/*
667 	 * Allocate a log write block (lwb) for the first log block.
668 	 */
669 	if (error == 0)
670 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
671 
672 	/*
673 	 * If we just allocated the first log block, commit our transaction
674 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
675 	 * (zh is part of the MOS, so we cannot modify it in open context.)
676 	 */
677 	if (tx != NULL) {
678 		dmu_tx_commit(tx);
679 		txg_wait_synced(zilog->zl_dmu_pool, txg);
680 	}
681 
682 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
683 
684 	return (lwb);
685 }
686 
687 /*
688  * In one tx, free all log blocks and clear the log header. If keep_first
689  * is set, then we're replaying a log with no content. We want to keep the
690  * first block, however, so that the first synchronous transaction doesn't
691  * require a txg_wait_synced() in zil_create(). We don't need to
692  * txg_wait_synced() here either when keep_first is set, because both
693  * zil_create() and zil_destroy() will wait for any in-progress destroys
694  * to complete.
695  */
696 void
697 zil_destroy(zilog_t *zilog, boolean_t keep_first)
698 {
699 	const zil_header_t *zh = zilog->zl_header;
700 	lwb_t *lwb;
701 	dmu_tx_t *tx;
702 	uint64_t txg;
703 
704 	/*
705 	 * Wait for any previous destroy to complete.
706 	 */
707 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
708 
709 	zilog->zl_old_header = *zh;		/* debugging aid */
710 
711 	if (BP_IS_HOLE(&zh->zh_log))
712 		return;
713 
714 	tx = dmu_tx_create(zilog->zl_os);
715 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
716 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
717 	txg = dmu_tx_get_txg(tx);
718 
719 	mutex_enter(&zilog->zl_lock);
720 
721 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
722 	zilog->zl_destroy_txg = txg;
723 	zilog->zl_keep_first = keep_first;
724 
725 	if (!list_is_empty(&zilog->zl_lwb_list)) {
726 		ASSERT(zh->zh_claim_txg == 0);
727 		VERIFY(!keep_first);
728 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
729 			list_remove(&zilog->zl_lwb_list, lwb);
730 			if (lwb->lwb_buf != NULL)
731 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
732 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
733 			zil_free_lwb(zilog, lwb);
734 		}
735 	} else if (!keep_first) {
736 		zil_destroy_sync(zilog, tx);
737 	}
738 	mutex_exit(&zilog->zl_lock);
739 
740 	dmu_tx_commit(tx);
741 }
742 
743 void
744 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
745 {
746 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
747 	(void) zil_parse(zilog, zil_free_log_block,
748 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
749 }
750 
751 int
752 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
753 {
754 	dmu_tx_t *tx = txarg;
755 	zilog_t *zilog;
756 	uint64_t first_txg;
757 	zil_header_t *zh;
758 	objset_t *os;
759 	int error;
760 
761 	error = dmu_objset_own_obj(dp, ds->ds_object,
762 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
763 	if (error != 0) {
764 		/*
765 		 * EBUSY indicates that the objset is inconsistent, in which
766 		 * case it can not have a ZIL.
767 		 */
768 		if (error != EBUSY) {
769 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
770 			    (unsigned long long)ds->ds_object, error);
771 		}
772 		return (0);
773 	}
774 
775 	zilog = dmu_objset_zil(os);
776 	zh = zil_header_in_syncing_context(zilog);
777 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
778 	first_txg = spa_min_claim_txg(zilog->zl_spa);
779 
780 	/*
781 	 * If the spa_log_state is not set to be cleared, check whether
782 	 * the current uberblock is a checkpoint one and if the current
783 	 * header has been claimed before moving on.
784 	 *
785 	 * If the current uberblock is a checkpointed uberblock then
786 	 * one of the following scenarios took place:
787 	 *
788 	 * 1] We are currently rewinding to the checkpoint of the pool.
789 	 * 2] We crashed in the middle of a checkpoint rewind but we
790 	 *    did manage to write the checkpointed uberblock to the
791 	 *    vdev labels, so when we tried to import the pool again
792 	 *    the checkpointed uberblock was selected from the import
793 	 *    procedure.
794 	 *
795 	 * In both cases we want to zero out all the ZIL blocks, except
796 	 * the ones that have been claimed at the time of the checkpoint
797 	 * (their zh_claim_txg != 0). The reason is that these blocks
798 	 * may be corrupted since we may have reused their locations on
799 	 * disk after we took the checkpoint.
800 	 *
801 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
802 	 * when we first figure out whether the current uberblock is
803 	 * checkpointed or not. Unfortunately, that would discard all
804 	 * the logs, including the ones that are claimed, and we would
805 	 * leak space.
806 	 */
807 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
808 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
809 	    zh->zh_claim_txg == 0)) {
810 		if (!BP_IS_HOLE(&zh->zh_log)) {
811 			(void) zil_parse(zilog, zil_clear_log_block,
812 			    zil_noop_log_record, tx, first_txg);
813 		}
814 		BP_ZERO(&zh->zh_log);
815 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
816 		dmu_objset_disown(os, FTAG);
817 		return (0);
818 	}
819 
820 	/*
821 	 * If we are not rewinding and opening the pool normally, then
822 	 * the min_claim_txg should be equal to the first txg of the pool.
823 	 */
824 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
825 
826 	/*
827 	 * Claim all log blocks if we haven't already done so, and remember
828 	 * the highest claimed sequence number.  This ensures that if we can
829 	 * read only part of the log now (e.g. due to a missing device),
830 	 * but we can read the entire log later, we will not try to replay
831 	 * or destroy beyond the last block we successfully claimed.
832 	 */
833 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
834 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
835 		(void) zil_parse(zilog, zil_claim_log_block,
836 		    zil_claim_log_record, tx, first_txg);
837 		zh->zh_claim_txg = first_txg;
838 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
839 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
840 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
841 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
842 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
843 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
844 	}
845 
846 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
847 	dmu_objset_disown(os, FTAG);
848 	return (0);
849 }
850 
851 /*
852  * Check the log by walking the log chain.
853  * Checksum errors are ok as they indicate the end of the chain.
854  * Any other error (no device or read failure) returns an error.
855  */
856 /* ARGSUSED */
857 int
858 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
859 {
860 	zilog_t *zilog;
861 	objset_t *os;
862 	blkptr_t *bp;
863 	int error;
864 
865 	ASSERT(tx == NULL);
866 
867 	error = dmu_objset_from_ds(ds, &os);
868 	if (error != 0) {
869 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
870 		    (unsigned long long)ds->ds_object, error);
871 		return (0);
872 	}
873 
874 	zilog = dmu_objset_zil(os);
875 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
876 
877 	if (!BP_IS_HOLE(bp)) {
878 		vdev_t *vd;
879 		boolean_t valid = B_TRUE;
880 
881 		/*
882 		 * Check the first block and determine if it's on a log device
883 		 * which may have been removed or faulted prior to loading this
884 		 * pool.  If so, there's no point in checking the rest of the
885 		 * log as its content should have already been synced to the
886 		 * pool.
887 		 */
888 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
889 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
890 		if (vd->vdev_islog && vdev_is_dead(vd))
891 			valid = vdev_log_state_valid(vd);
892 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
893 
894 		if (!valid)
895 			return (0);
896 
897 		/*
898 		 * Check whether the current uberblock is checkpointed (e.g.
899 		 * we are rewinding) and whether the current header has been
900 		 * claimed or not. If it hasn't then skip verifying it. We
901 		 * do this because its ZIL blocks may be part of the pool's
902 		 * state before the rewind, which is no longer valid.
903 		 */
904 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
905 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
906 		    zh->zh_claim_txg == 0)
907 			return (0);
908 	}
909 
910 	/*
911 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
912 	 * any blocks, but just determine whether it is possible to do so.
913 	 * In addition to checking the log chain, zil_claim_log_block()
914 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
915 	 * which will update spa_max_claim_txg.  See spa_load() for details.
916 	 */
917 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
918 	    zilog->zl_header->zh_claim_txg ? -1ULL :
919 	    spa_min_claim_txg(os->os_spa));
920 
921 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
922 }
923 
924 /*
925  * When an itx is "skipped", this function is used to properly mark the
926  * waiter as "done, and signal any thread(s) waiting on it. An itx can
927  * be skipped (and not committed to an lwb) for a variety of reasons,
928  * one of them being that the itx was committed via spa_sync(), prior to
929  * it being committed to an lwb; this can happen if a thread calling
930  * zil_commit() is racing with spa_sync().
931  */
932 static void
933 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
934 {
935 	mutex_enter(&zcw->zcw_lock);
936 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
937 	zcw->zcw_done = B_TRUE;
938 	cv_broadcast(&zcw->zcw_cv);
939 	mutex_exit(&zcw->zcw_lock);
940 }
941 
942 /*
943  * This function is used when the given waiter is to be linked into an
944  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
945  * At this point, the waiter will no longer be referenced by the itx,
946  * and instead, will be referenced by the lwb.
947  */
948 static void
949 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
950 {
951 	/*
952 	 * The lwb_waiters field of the lwb is protected by the zilog's
953 	 * zl_lock, thus it must be held when calling this function.
954 	 */
955 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
956 
957 	mutex_enter(&zcw->zcw_lock);
958 	ASSERT(!list_link_active(&zcw->zcw_node));
959 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
960 	ASSERT3P(lwb, !=, NULL);
961 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
962 	    lwb->lwb_state == LWB_STATE_ISSUED);
963 
964 	list_insert_tail(&lwb->lwb_waiters, zcw);
965 	zcw->zcw_lwb = lwb;
966 	mutex_exit(&zcw->zcw_lock);
967 }
968 
969 /*
970  * This function is used when zio_alloc_zil() fails to allocate a ZIL
971  * block, and the given waiter must be linked to the "nolwb waiters"
972  * list inside of zil_process_commit_list().
973  */
974 static void
975 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
976 {
977 	mutex_enter(&zcw->zcw_lock);
978 	ASSERT(!list_link_active(&zcw->zcw_node));
979 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
980 	list_insert_tail(nolwb, zcw);
981 	mutex_exit(&zcw->zcw_lock);
982 }
983 
984 void
985 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
986 {
987 	avl_tree_t *t = &lwb->lwb_vdev_tree;
988 	avl_index_t where;
989 	zil_vdev_node_t *zv, zvsearch;
990 	int ndvas = BP_GET_NDVAS(bp);
991 	int i;
992 
993 	if (zfs_nocacheflush)
994 		return;
995 
996 	mutex_enter(&lwb->lwb_vdev_lock);
997 	for (i = 0; i < ndvas; i++) {
998 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
999 		if (avl_find(t, &zvsearch, &where) == NULL) {
1000 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1001 			zv->zv_vdev = zvsearch.zv_vdev;
1002 			avl_insert(t, zv, where);
1003 		}
1004 	}
1005 	mutex_exit(&lwb->lwb_vdev_lock);
1006 }
1007 
1008 void
1009 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1010 {
1011 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1012 }
1013 
1014 /*
1015  * This function is a called after all VDEVs associated with a given lwb
1016  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1017  * as the lwb write completes, if "zfs_nocacheflush" is set.
1018  *
1019  * The intention is for this function to be called as soon as the
1020  * contents of an lwb are considered "stable" on disk, and will survive
1021  * any sudden loss of power. At this point, any threads waiting for the
1022  * lwb to reach this state are signalled, and the "waiter" structures
1023  * are marked "done".
1024  */
1025 static void
1026 zil_lwb_flush_vdevs_done(zio_t *zio)
1027 {
1028 	lwb_t *lwb = zio->io_private;
1029 	zilog_t *zilog = lwb->lwb_zilog;
1030 	dmu_tx_t *tx = lwb->lwb_tx;
1031 	zil_commit_waiter_t *zcw;
1032 
1033 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1034 
1035 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1036 
1037 	mutex_enter(&zilog->zl_lock);
1038 
1039 	/*
1040 	 * Ensure the lwb buffer pointer is cleared before releasing the
1041 	 * txg. If we have had an allocation failure and the txg is
1042 	 * waiting to sync then we want zil_sync() to remove the lwb so
1043 	 * that it's not picked up as the next new one in
1044 	 * zil_process_commit_list(). zil_sync() will only remove the
1045 	 * lwb if lwb_buf is null.
1046 	 */
1047 	lwb->lwb_buf = NULL;
1048 	lwb->lwb_tx = NULL;
1049 
1050 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1051 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1052 
1053 	lwb->lwb_root_zio = NULL;
1054 	lwb->lwb_state = LWB_STATE_DONE;
1055 
1056 	if (zilog->zl_last_lwb_opened == lwb) {
1057 		/*
1058 		 * Remember the highest committed log sequence number
1059 		 * for ztest. We only update this value when all the log
1060 		 * writes succeeded, because ztest wants to ASSERT that
1061 		 * it got the whole log chain.
1062 		 */
1063 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1064 	}
1065 
1066 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1067 		mutex_enter(&zcw->zcw_lock);
1068 
1069 		ASSERT(list_link_active(&zcw->zcw_node));
1070 		list_remove(&lwb->lwb_waiters, zcw);
1071 
1072 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1073 		zcw->zcw_lwb = NULL;
1074 
1075 		zcw->zcw_zio_error = zio->io_error;
1076 
1077 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1078 		zcw->zcw_done = B_TRUE;
1079 		cv_broadcast(&zcw->zcw_cv);
1080 
1081 		mutex_exit(&zcw->zcw_lock);
1082 	}
1083 
1084 	mutex_exit(&zilog->zl_lock);
1085 
1086 	/*
1087 	 * Now that we've written this log block, we have a stable pointer
1088 	 * to the next block in the chain, so it's OK to let the txg in
1089 	 * which we allocated the next block sync.
1090 	 */
1091 	dmu_tx_commit(tx);
1092 }
1093 
1094 /*
1095  * This is called when an lwb write completes. This means, this specific
1096  * lwb was written to disk, and all dependent lwb have also been
1097  * written to disk.
1098  *
1099  * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1100  * the VDEVs involved in writing out this specific lwb. The lwb will be
1101  * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1102  * zio completion callback for the lwb's root zio.
1103  */
1104 static void
1105 zil_lwb_write_done(zio_t *zio)
1106 {
1107 	lwb_t *lwb = zio->io_private;
1108 	spa_t *spa = zio->io_spa;
1109 	zilog_t *zilog = lwb->lwb_zilog;
1110 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1111 	void *cookie = NULL;
1112 	zil_vdev_node_t *zv;
1113 
1114 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1115 
1116 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1117 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1118 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1119 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1120 	ASSERT(!BP_IS_GANG(zio->io_bp));
1121 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1122 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1123 
1124 	abd_put(zio->io_abd);
1125 
1126 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1127 
1128 	mutex_enter(&zilog->zl_lock);
1129 	lwb->lwb_write_zio = NULL;
1130 	mutex_exit(&zilog->zl_lock);
1131 
1132 	if (avl_numnodes(t) == 0)
1133 		return;
1134 
1135 	/*
1136 	 * If there was an IO error, we're not going to call zio_flush()
1137 	 * on these vdevs, so we simply empty the tree and free the
1138 	 * nodes. We avoid calling zio_flush() since there isn't any
1139 	 * good reason for doing so, after the lwb block failed to be
1140 	 * written out.
1141 	 */
1142 	if (zio->io_error != 0) {
1143 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1144 			kmem_free(zv, sizeof (*zv));
1145 		return;
1146 	}
1147 
1148 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1149 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1150 		if (vd != NULL)
1151 			zio_flush(lwb->lwb_root_zio, vd);
1152 		kmem_free(zv, sizeof (*zv));
1153 	}
1154 }
1155 
1156 /*
1157  * This function's purpose is to "open" an lwb such that it is ready to
1158  * accept new itxs being committed to it. To do this, the lwb's zio
1159  * structures are created, and linked to the lwb. This function is
1160  * idempotent; if the passed in lwb has already been opened, this
1161  * function is essentially a no-op.
1162  */
1163 static void
1164 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1165 {
1166 	zbookmark_phys_t zb;
1167 	zio_priority_t prio;
1168 
1169 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1170 	ASSERT3P(lwb, !=, NULL);
1171 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1172 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1173 
1174 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1175 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1176 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1177 
1178 	if (lwb->lwb_root_zio == NULL) {
1179 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1180 		    BP_GET_LSIZE(&lwb->lwb_blk));
1181 
1182 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1183 			prio = ZIO_PRIORITY_SYNC_WRITE;
1184 		else
1185 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1186 
1187 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1188 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1189 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1190 
1191 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1192 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1193 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1194 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1195 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1196 
1197 		lwb->lwb_state = LWB_STATE_OPENED;
1198 
1199 		mutex_enter(&zilog->zl_lock);
1200 
1201 		/*
1202 		 * The zilog's "zl_last_lwb_opened" field is used to
1203 		 * build the lwb/zio dependency chain, which is used to
1204 		 * preserve the ordering of lwb completions that is
1205 		 * required by the semantics of the ZIL. Each new lwb
1206 		 * zio becomes a parent of the "previous" lwb zio, such
1207 		 * that the new lwb's zio cannot complete until the
1208 		 * "previous" lwb's zio completes.
1209 		 *
1210 		 * This is required by the semantics of zil_commit();
1211 		 * the commit waiters attached to the lwbs will be woken
1212 		 * in the lwb zio's completion callback, so this zio
1213 		 * dependency graph ensures the waiters are woken in the
1214 		 * correct order (the same order the lwbs were created).
1215 		 */
1216 		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1217 		if (last_lwb_opened != NULL &&
1218 		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1219 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1220 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1221 			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1222 			zio_add_child(lwb->lwb_root_zio,
1223 			    last_lwb_opened->lwb_root_zio);
1224 		}
1225 		zilog->zl_last_lwb_opened = lwb;
1226 
1227 		mutex_exit(&zilog->zl_lock);
1228 	}
1229 
1230 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1231 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1232 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1233 }
1234 
1235 /*
1236  * Define a limited set of intent log block sizes.
1237  *
1238  * These must be a multiple of 4KB. Note only the amount used (again
1239  * aligned to 4KB) actually gets written. However, we can't always just
1240  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1241  */
1242 uint64_t zil_block_buckets[] = {
1243     4096,		/* non TX_WRITE */
1244     8192+4096,		/* data base */
1245     32*1024 + 4096, 	/* NFS writes */
1246     UINT64_MAX
1247 };
1248 
1249 /*
1250  * Start a log block write and advance to the next log block.
1251  * Calls are serialized.
1252  */
1253 static lwb_t *
1254 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1255 {
1256 	lwb_t *nlwb = NULL;
1257 	zil_chain_t *zilc;
1258 	spa_t *spa = zilog->zl_spa;
1259 	blkptr_t *bp;
1260 	dmu_tx_t *tx;
1261 	uint64_t txg;
1262 	uint64_t zil_blksz, wsz;
1263 	int i, error;
1264 	boolean_t slog;
1265 
1266 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1267 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1268 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1269 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1270 
1271 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1272 		zilc = (zil_chain_t *)lwb->lwb_buf;
1273 		bp = &zilc->zc_next_blk;
1274 	} else {
1275 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1276 		bp = &zilc->zc_next_blk;
1277 	}
1278 
1279 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1280 
1281 	/*
1282 	 * Allocate the next block and save its address in this block
1283 	 * before writing it in order to establish the log chain.
1284 	 * Note that if the allocation of nlwb synced before we wrote
1285 	 * the block that points at it (lwb), we'd leak it if we crashed.
1286 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1287 	 * We dirty the dataset to ensure that zil_sync() will be called
1288 	 * to clean up in the event of allocation failure or I/O failure.
1289 	 */
1290 
1291 	tx = dmu_tx_create(zilog->zl_os);
1292 
1293 	/*
1294 	 * Since we are not going to create any new dirty data, and we
1295 	 * can even help with clearing the existing dirty data, we
1296 	 * should not be subject to the dirty data based delays. We
1297 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1298 	 */
1299 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1300 
1301 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1302 	txg = dmu_tx_get_txg(tx);
1303 
1304 	lwb->lwb_tx = tx;
1305 
1306 	/*
1307 	 * Log blocks are pre-allocated. Here we select the size of the next
1308 	 * block, based on size used in the last block.
1309 	 * - first find the smallest bucket that will fit the block from a
1310 	 *   limited set of block sizes. This is because it's faster to write
1311 	 *   blocks allocated from the same metaslab as they are adjacent or
1312 	 *   close.
1313 	 * - next find the maximum from the new suggested size and an array of
1314 	 *   previous sizes. This lessens a picket fence effect of wrongly
1315 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1316 	 *   requests.
1317 	 *
1318 	 * Note we only write what is used, but we can't just allocate
1319 	 * the maximum block size because we can exhaust the available
1320 	 * pool log space.
1321 	 */
1322 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1323 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1324 		continue;
1325 	zil_blksz = zil_block_buckets[i];
1326 	if (zil_blksz == UINT64_MAX)
1327 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1328 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1329 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1330 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1331 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1332 
1333 	BP_ZERO(bp);
1334 
1335 	/* pass the old blkptr in order to spread log blocks across devs */
1336 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1337 	if (error == 0) {
1338 		ASSERT3U(bp->blk_birth, ==, txg);
1339 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1340 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1341 
1342 		/*
1343 		 * Allocate a new log write block (lwb).
1344 		 */
1345 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1346 	}
1347 
1348 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1349 		/* For Slim ZIL only write what is used. */
1350 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1351 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1352 		zio_shrink(lwb->lwb_write_zio, wsz);
1353 
1354 	} else {
1355 		wsz = lwb->lwb_sz;
1356 	}
1357 
1358 	zilc->zc_pad = 0;
1359 	zilc->zc_nused = lwb->lwb_nused;
1360 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1361 
1362 	/*
1363 	 * clear unused data for security
1364 	 */
1365 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1366 
1367 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1368 
1369 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1370 	lwb->lwb_issued_timestamp = gethrtime();
1371 	lwb->lwb_state = LWB_STATE_ISSUED;
1372 
1373 	zio_nowait(lwb->lwb_root_zio);
1374 	zio_nowait(lwb->lwb_write_zio);
1375 
1376 	/*
1377 	 * If there was an allocation failure then nlwb will be null which
1378 	 * forces a txg_wait_synced().
1379 	 */
1380 	return (nlwb);
1381 }
1382 
1383 static lwb_t *
1384 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1385 {
1386 	lr_t *lrcb, *lrc;
1387 	lr_write_t *lrwb, *lrw;
1388 	char *lr_buf;
1389 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1390 
1391 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1392 	ASSERT3P(lwb, !=, NULL);
1393 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1394 
1395 	zil_lwb_write_open(zilog, lwb);
1396 
1397 	lrc = &itx->itx_lr;
1398 	lrw = (lr_write_t *)lrc;
1399 
1400 	/*
1401 	 * A commit itx doesn't represent any on-disk state; instead
1402 	 * it's simply used as a place holder on the commit list, and
1403 	 * provides a mechanism for attaching a "commit waiter" onto the
1404 	 * correct lwb (such that the waiter can be signalled upon
1405 	 * completion of that lwb). Thus, we don't process this itx's
1406 	 * log record if it's a commit itx (these itx's don't have log
1407 	 * records), and instead link the itx's waiter onto the lwb's
1408 	 * list of waiters.
1409 	 *
1410 	 * For more details, see the comment above zil_commit().
1411 	 */
1412 	if (lrc->lrc_txtype == TX_COMMIT) {
1413 		mutex_enter(&zilog->zl_lock);
1414 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1415 		itx->itx_private = NULL;
1416 		mutex_exit(&zilog->zl_lock);
1417 		return (lwb);
1418 	}
1419 
1420 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1421 		dlen = P2ROUNDUP_TYPED(
1422 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1423 	} else {
1424 		dlen = 0;
1425 	}
1426 	reclen = lrc->lrc_reclen;
1427 	zilog->zl_cur_used += (reclen + dlen);
1428 	txg = lrc->lrc_txg;
1429 
1430 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1431 
1432 cont:
1433 	/*
1434 	 * If this record won't fit in the current log block, start a new one.
1435 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1436 	 */
1437 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1438 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1439 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1440 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1441 		lwb = zil_lwb_write_issue(zilog, lwb);
1442 		if (lwb == NULL)
1443 			return (NULL);
1444 		zil_lwb_write_open(zilog, lwb);
1445 		ASSERT(LWB_EMPTY(lwb));
1446 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1447 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1448 	}
1449 
1450 	dnow = MIN(dlen, lwb_sp - reclen);
1451 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1452 	bcopy(lrc, lr_buf, reclen);
1453 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1454 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1455 
1456 	/*
1457 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1458 	 */
1459 	if (lrc->lrc_txtype == TX_WRITE) {
1460 		if (txg > spa_freeze_txg(zilog->zl_spa))
1461 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1462 		if (itx->itx_wr_state != WR_COPIED) {
1463 			char *dbuf;
1464 			int error;
1465 
1466 			if (itx->itx_wr_state == WR_NEED_COPY) {
1467 				dbuf = lr_buf + reclen;
1468 				lrcb->lrc_reclen += dnow;
1469 				if (lrwb->lr_length > dnow)
1470 					lrwb->lr_length = dnow;
1471 				lrw->lr_offset += dnow;
1472 				lrw->lr_length -= dnow;
1473 			} else {
1474 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1475 				dbuf = NULL;
1476 			}
1477 
1478 			/*
1479 			 * We pass in the "lwb_write_zio" rather than
1480 			 * "lwb_root_zio" so that the "lwb_write_zio"
1481 			 * becomes the parent of any zio's created by
1482 			 * the "zl_get_data" callback. The vdevs are
1483 			 * flushed after the "lwb_write_zio" completes,
1484 			 * so we want to make sure that completion
1485 			 * callback waits for these additional zio's,
1486 			 * such that the vdevs used by those zio's will
1487 			 * be included in the lwb's vdev tree, and those
1488 			 * vdevs will be properly flushed. If we passed
1489 			 * in "lwb_root_zio" here, then these additional
1490 			 * vdevs may not be flushed; e.g. if these zio's
1491 			 * completed after "lwb_write_zio" completed.
1492 			 */
1493 			error = zilog->zl_get_data(itx->itx_private,
1494 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1495 
1496 			if (error == EIO) {
1497 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1498 				return (lwb);
1499 			}
1500 			if (error != 0) {
1501 				ASSERT(error == ENOENT || error == EEXIST ||
1502 				    error == EALREADY);
1503 				return (lwb);
1504 			}
1505 		}
1506 	}
1507 
1508 	/*
1509 	 * We're actually making an entry, so update lrc_seq to be the
1510 	 * log record sequence number.  Note that this is generally not
1511 	 * equal to the itx sequence number because not all transactions
1512 	 * are synchronous, and sometimes spa_sync() gets there first.
1513 	 */
1514 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1515 	lwb->lwb_nused += reclen + dnow;
1516 
1517 	zil_lwb_add_txg(lwb, txg);
1518 
1519 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1520 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1521 
1522 	dlen -= dnow;
1523 	if (dlen > 0) {
1524 		zilog->zl_cur_used += reclen;
1525 		goto cont;
1526 	}
1527 
1528 	return (lwb);
1529 }
1530 
1531 itx_t *
1532 zil_itx_create(uint64_t txtype, size_t lrsize)
1533 {
1534 	itx_t *itx;
1535 
1536 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1537 
1538 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1539 	itx->itx_lr.lrc_txtype = txtype;
1540 	itx->itx_lr.lrc_reclen = lrsize;
1541 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1542 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1543 
1544 	return (itx);
1545 }
1546 
1547 void
1548 zil_itx_destroy(itx_t *itx)
1549 {
1550 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1551 }
1552 
1553 /*
1554  * Free up the sync and async itxs. The itxs_t has already been detached
1555  * so no locks are needed.
1556  */
1557 static void
1558 zil_itxg_clean(itxs_t *itxs)
1559 {
1560 	itx_t *itx;
1561 	list_t *list;
1562 	avl_tree_t *t;
1563 	void *cookie;
1564 	itx_async_node_t *ian;
1565 
1566 	list = &itxs->i_sync_list;
1567 	while ((itx = list_head(list)) != NULL) {
1568 		/*
1569 		 * In the general case, commit itxs will not be found
1570 		 * here, as they'll be committed to an lwb via
1571 		 * zil_lwb_commit(), and free'd in that function. Having
1572 		 * said that, it is still possible for commit itxs to be
1573 		 * found here, due to the following race:
1574 		 *
1575 		 *	- a thread calls zil_commit() which assigns the
1576 		 *	  commit itx to a per-txg i_sync_list
1577 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1578 		 *	  while the waiter is still on the i_sync_list
1579 		 *
1580 		 * There's nothing to prevent syncing the txg while the
1581 		 * waiter is on the i_sync_list. This normally doesn't
1582 		 * happen because spa_sync() is slower than zil_commit(),
1583 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1584 		 * because zil_create() or zil_commit_writer_stall() is
1585 		 * called) we will hit this case.
1586 		 */
1587 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1588 			zil_commit_waiter_skip(itx->itx_private);
1589 
1590 		list_remove(list, itx);
1591 		zil_itx_destroy(itx);
1592 	}
1593 
1594 	cookie = NULL;
1595 	t = &itxs->i_async_tree;
1596 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1597 		list = &ian->ia_list;
1598 		while ((itx = list_head(list)) != NULL) {
1599 			list_remove(list, itx);
1600 			/* commit itxs should never be on the async lists. */
1601 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1602 			zil_itx_destroy(itx);
1603 		}
1604 		list_destroy(list);
1605 		kmem_free(ian, sizeof (itx_async_node_t));
1606 	}
1607 	avl_destroy(t);
1608 
1609 	kmem_free(itxs, sizeof (itxs_t));
1610 }
1611 
1612 static int
1613 zil_aitx_compare(const void *x1, const void *x2)
1614 {
1615 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1616 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1617 
1618 	if (o1 < o2)
1619 		return (-1);
1620 	if (o1 > o2)
1621 		return (1);
1622 
1623 	return (0);
1624 }
1625 
1626 /*
1627  * Remove all async itx with the given oid.
1628  */
1629 static void
1630 zil_remove_async(zilog_t *zilog, uint64_t oid)
1631 {
1632 	uint64_t otxg, txg;
1633 	itx_async_node_t *ian;
1634 	avl_tree_t *t;
1635 	avl_index_t where;
1636 	list_t clean_list;
1637 	itx_t *itx;
1638 
1639 	ASSERT(oid != 0);
1640 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1641 
1642 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1643 		otxg = ZILTEST_TXG;
1644 	else
1645 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1646 
1647 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1648 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1649 
1650 		mutex_enter(&itxg->itxg_lock);
1651 		if (itxg->itxg_txg != txg) {
1652 			mutex_exit(&itxg->itxg_lock);
1653 			continue;
1654 		}
1655 
1656 		/*
1657 		 * Locate the object node and append its list.
1658 		 */
1659 		t = &itxg->itxg_itxs->i_async_tree;
1660 		ian = avl_find(t, &oid, &where);
1661 		if (ian != NULL)
1662 			list_move_tail(&clean_list, &ian->ia_list);
1663 		mutex_exit(&itxg->itxg_lock);
1664 	}
1665 	while ((itx = list_head(&clean_list)) != NULL) {
1666 		list_remove(&clean_list, itx);
1667 		/* commit itxs should never be on the async lists. */
1668 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1669 		zil_itx_destroy(itx);
1670 	}
1671 	list_destroy(&clean_list);
1672 }
1673 
1674 void
1675 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1676 {
1677 	uint64_t txg;
1678 	itxg_t *itxg;
1679 	itxs_t *itxs, *clean = NULL;
1680 
1681 	/*
1682 	 * Object ids can be re-instantiated in the next txg so
1683 	 * remove any async transactions to avoid future leaks.
1684 	 * This can happen if a fsync occurs on the re-instantiated
1685 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1686 	 * the new file data and flushes a write record for the old object.
1687 	 */
1688 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1689 		zil_remove_async(zilog, itx->itx_oid);
1690 
1691 	/*
1692 	 * Ensure the data of a renamed file is committed before the rename.
1693 	 */
1694 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1695 		zil_async_to_sync(zilog, itx->itx_oid);
1696 
1697 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1698 		txg = ZILTEST_TXG;
1699 	else
1700 		txg = dmu_tx_get_txg(tx);
1701 
1702 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1703 	mutex_enter(&itxg->itxg_lock);
1704 	itxs = itxg->itxg_itxs;
1705 	if (itxg->itxg_txg != txg) {
1706 		if (itxs != NULL) {
1707 			/*
1708 			 * The zil_clean callback hasn't got around to cleaning
1709 			 * this itxg. Save the itxs for release below.
1710 			 * This should be rare.
1711 			 */
1712 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1713 			    "txg %llu", itxg->itxg_txg);
1714 			clean = itxg->itxg_itxs;
1715 		}
1716 		itxg->itxg_txg = txg;
1717 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1718 
1719 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1720 		    offsetof(itx_t, itx_node));
1721 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1722 		    sizeof (itx_async_node_t),
1723 		    offsetof(itx_async_node_t, ia_node));
1724 	}
1725 	if (itx->itx_sync) {
1726 		list_insert_tail(&itxs->i_sync_list, itx);
1727 	} else {
1728 		avl_tree_t *t = &itxs->i_async_tree;
1729 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1730 		itx_async_node_t *ian;
1731 		avl_index_t where;
1732 
1733 		ian = avl_find(t, &foid, &where);
1734 		if (ian == NULL) {
1735 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1736 			list_create(&ian->ia_list, sizeof (itx_t),
1737 			    offsetof(itx_t, itx_node));
1738 			ian->ia_foid = foid;
1739 			avl_insert(t, ian, where);
1740 		}
1741 		list_insert_tail(&ian->ia_list, itx);
1742 	}
1743 
1744 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1745 
1746 	/*
1747 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1748 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1749 	 * need to be careful to always dirty the ZIL using the "real"
1750 	 * TXG (not itxg_txg) even when the SPA is frozen.
1751 	 */
1752 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1753 	mutex_exit(&itxg->itxg_lock);
1754 
1755 	/* Release the old itxs now we've dropped the lock */
1756 	if (clean != NULL)
1757 		zil_itxg_clean(clean);
1758 }
1759 
1760 /*
1761  * If there are any in-memory intent log transactions which have now been
1762  * synced then start up a taskq to free them. We should only do this after we
1763  * have written out the uberblocks (i.e. txg has been comitted) so that
1764  * don't inadvertently clean out in-memory log records that would be required
1765  * by zil_commit().
1766  */
1767 void
1768 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1769 {
1770 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1771 	itxs_t *clean_me;
1772 
1773 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1774 
1775 	mutex_enter(&itxg->itxg_lock);
1776 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1777 		mutex_exit(&itxg->itxg_lock);
1778 		return;
1779 	}
1780 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1781 	ASSERT3U(itxg->itxg_txg, !=, 0);
1782 	clean_me = itxg->itxg_itxs;
1783 	itxg->itxg_itxs = NULL;
1784 	itxg->itxg_txg = 0;
1785 	mutex_exit(&itxg->itxg_lock);
1786 	/*
1787 	 * Preferably start a task queue to free up the old itxs but
1788 	 * if taskq_dispatch can't allocate resources to do that then
1789 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1790 	 * created a bad performance problem.
1791 	 */
1792 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1793 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1794 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1795 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1796 		zil_itxg_clean(clean_me);
1797 }
1798 
1799 /*
1800  * This function will traverse the queue of itxs that need to be
1801  * committed, and move them onto the ZIL's zl_itx_commit_list.
1802  */
1803 static void
1804 zil_get_commit_list(zilog_t *zilog)
1805 {
1806 	uint64_t otxg, txg;
1807 	list_t *commit_list = &zilog->zl_itx_commit_list;
1808 
1809 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1810 
1811 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1812 		otxg = ZILTEST_TXG;
1813 	else
1814 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1815 
1816 	/*
1817 	 * This is inherently racy, since there is nothing to prevent
1818 	 * the last synced txg from changing. That's okay since we'll
1819 	 * only commit things in the future.
1820 	 */
1821 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1822 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1823 
1824 		mutex_enter(&itxg->itxg_lock);
1825 		if (itxg->itxg_txg != txg) {
1826 			mutex_exit(&itxg->itxg_lock);
1827 			continue;
1828 		}
1829 
1830 		/*
1831 		 * If we're adding itx records to the zl_itx_commit_list,
1832 		 * then the zil better be dirty in this "txg". We can assert
1833 		 * that here since we're holding the itxg_lock which will
1834 		 * prevent spa_sync from cleaning it. Once we add the itxs
1835 		 * to the zl_itx_commit_list we must commit it to disk even
1836 		 * if it's unnecessary (i.e. the txg was synced).
1837 		 */
1838 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1839 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1840 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1841 
1842 		mutex_exit(&itxg->itxg_lock);
1843 	}
1844 }
1845 
1846 /*
1847  * Move the async itxs for a specified object to commit into sync lists.
1848  */
1849 static void
1850 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1851 {
1852 	uint64_t otxg, txg;
1853 	itx_async_node_t *ian;
1854 	avl_tree_t *t;
1855 	avl_index_t where;
1856 
1857 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1858 		otxg = ZILTEST_TXG;
1859 	else
1860 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1861 
1862 	/*
1863 	 * This is inherently racy, since there is nothing to prevent
1864 	 * the last synced txg from changing.
1865 	 */
1866 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1867 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1868 
1869 		mutex_enter(&itxg->itxg_lock);
1870 		if (itxg->itxg_txg != txg) {
1871 			mutex_exit(&itxg->itxg_lock);
1872 			continue;
1873 		}
1874 
1875 		/*
1876 		 * If a foid is specified then find that node and append its
1877 		 * list. Otherwise walk the tree appending all the lists
1878 		 * to the sync list. We add to the end rather than the
1879 		 * beginning to ensure the create has happened.
1880 		 */
1881 		t = &itxg->itxg_itxs->i_async_tree;
1882 		if (foid != 0) {
1883 			ian = avl_find(t, &foid, &where);
1884 			if (ian != NULL) {
1885 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1886 				    &ian->ia_list);
1887 			}
1888 		} else {
1889 			void *cookie = NULL;
1890 
1891 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1892 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1893 				    &ian->ia_list);
1894 				list_destroy(&ian->ia_list);
1895 				kmem_free(ian, sizeof (itx_async_node_t));
1896 			}
1897 		}
1898 		mutex_exit(&itxg->itxg_lock);
1899 	}
1900 }
1901 
1902 /*
1903  * This function will prune commit itxs that are at the head of the
1904  * commit list (it won't prune past the first non-commit itx), and
1905  * either: a) attach them to the last lwb that's still pending
1906  * completion, or b) skip them altogether.
1907  *
1908  * This is used as a performance optimization to prevent commit itxs
1909  * from generating new lwbs when it's unnecessary to do so.
1910  */
1911 static void
1912 zil_prune_commit_list(zilog_t *zilog)
1913 {
1914 	itx_t *itx;
1915 
1916 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1917 
1918 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1919 		lr_t *lrc = &itx->itx_lr;
1920 		if (lrc->lrc_txtype != TX_COMMIT)
1921 			break;
1922 
1923 		mutex_enter(&zilog->zl_lock);
1924 
1925 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1926 		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1927 			/*
1928 			 * All of the itxs this waiter was waiting on
1929 			 * must have already completed (or there were
1930 			 * never any itx's for it to wait on), so it's
1931 			 * safe to skip this waiter and mark it done.
1932 			 */
1933 			zil_commit_waiter_skip(itx->itx_private);
1934 		} else {
1935 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1936 			itx->itx_private = NULL;
1937 		}
1938 
1939 		mutex_exit(&zilog->zl_lock);
1940 
1941 		list_remove(&zilog->zl_itx_commit_list, itx);
1942 		zil_itx_destroy(itx);
1943 	}
1944 
1945 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1946 }
1947 
1948 static void
1949 zil_commit_writer_stall(zilog_t *zilog)
1950 {
1951 	/*
1952 	 * When zio_alloc_zil() fails to allocate the next lwb block on
1953 	 * disk, we must call txg_wait_synced() to ensure all of the
1954 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1955 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1956 	 * to zil_process_commit_list()) will have to call zil_create(),
1957 	 * and start a new ZIL chain.
1958 	 *
1959 	 * Since zil_alloc_zil() failed, the lwb that was previously
1960 	 * issued does not have a pointer to the "next" lwb on disk.
1961 	 * Thus, if another ZIL writer thread was to allocate the "next"
1962 	 * on-disk lwb, that block could be leaked in the event of a
1963 	 * crash (because the previous lwb on-disk would not point to
1964 	 * it).
1965 	 *
1966 	 * We must hold the zilog's zl_issuer_lock while we do this, to
1967 	 * ensure no new threads enter zil_process_commit_list() until
1968 	 * all lwb's in the zl_lwb_list have been synced and freed
1969 	 * (which is achieved via the txg_wait_synced() call).
1970 	 */
1971 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1972 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1973 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1974 }
1975 
1976 /*
1977  * This function will traverse the commit list, creating new lwbs as
1978  * needed, and committing the itxs from the commit list to these newly
1979  * created lwbs. Additionally, as a new lwb is created, the previous
1980  * lwb will be issued to the zio layer to be written to disk.
1981  */
1982 static void
1983 zil_process_commit_list(zilog_t *zilog)
1984 {
1985 	spa_t *spa = zilog->zl_spa;
1986 	list_t nolwb_waiters;
1987 	lwb_t *lwb;
1988 	itx_t *itx;
1989 
1990 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1991 
1992 	/*
1993 	 * Return if there's nothing to commit before we dirty the fs by
1994 	 * calling zil_create().
1995 	 */
1996 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
1997 		return;
1998 
1999 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2000 	    offsetof(zil_commit_waiter_t, zcw_node));
2001 
2002 	lwb = list_tail(&zilog->zl_lwb_list);
2003 	if (lwb == NULL) {
2004 		lwb = zil_create(zilog);
2005 	} else {
2006 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2007 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2008 	}
2009 
2010 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2011 		lr_t *lrc = &itx->itx_lr;
2012 		uint64_t txg = lrc->lrc_txg;
2013 
2014 		ASSERT3U(txg, !=, 0);
2015 
2016 		if (lrc->lrc_txtype == TX_COMMIT) {
2017 			DTRACE_PROBE2(zil__process__commit__itx,
2018 			    zilog_t *, zilog, itx_t *, itx);
2019 		} else {
2020 			DTRACE_PROBE2(zil__process__normal__itx,
2021 			    zilog_t *, zilog, itx_t *, itx);
2022 		}
2023 
2024 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2025 		boolean_t frozen = txg > spa_freeze_txg(spa);
2026 
2027 		/*
2028 		 * If the txg of this itx has already been synced out, then
2029 		 * we don't need to commit this itx to an lwb. This is
2030 		 * because the data of this itx will have already been
2031 		 * written to the main pool. This is inherently racy, and
2032 		 * it's still ok to commit an itx whose txg has already
2033 		 * been synced; this will result in a write that's
2034 		 * unnecessary, but will do no harm.
2035 		 *
2036 		 * With that said, we always want to commit TX_COMMIT itxs
2037 		 * to an lwb, regardless of whether or not that itx's txg
2038 		 * has been synced out. We do this to ensure any OPENED lwb
2039 		 * will always have at least one zil_commit_waiter_t linked
2040 		 * to the lwb.
2041 		 *
2042 		 * As a counter-example, if we skipped TX_COMMIT itx's
2043 		 * whose txg had already been synced, the following
2044 		 * situation could occur if we happened to be racing with
2045 		 * spa_sync:
2046 		 *
2047 		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2048 		 *    itx's txg is 10 and the last synced txg is 9.
2049 		 * 2. spa_sync finishes syncing out txg 10.
2050 		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2051 		 *    whose txg is 10, so we skip it rather than committing
2052 		 *    it to the lwb used in (1).
2053 		 *
2054 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2055 		 * itx in the commit list, than it's possible for the lwb
2056 		 * used in (1) to remain in the OPENED state indefinitely.
2057 		 *
2058 		 * To prevent the above scenario from occuring, ensuring
2059 		 * that once an lwb is OPENED it will transition to ISSUED
2060 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2061 		 * an lwb here, even if that itx's txg has already been
2062 		 * synced.
2063 		 *
2064 		 * Finally, if the pool is frozen, we _always_ commit the
2065 		 * itx.  The point of freezing the pool is to prevent data
2066 		 * from being written to the main pool via spa_sync, and
2067 		 * instead rely solely on the ZIL to persistently store the
2068 		 * data; i.e.  when the pool is frozen, the last synced txg
2069 		 * value can't be trusted.
2070 		 */
2071 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2072 			if (lwb != NULL) {
2073 				lwb = zil_lwb_commit(zilog, itx, lwb);
2074 			} else if (lrc->lrc_txtype == TX_COMMIT) {
2075 				ASSERT3P(lwb, ==, NULL);
2076 				zil_commit_waiter_link_nolwb(
2077 				    itx->itx_private, &nolwb_waiters);
2078 			}
2079 		}
2080 
2081 		list_remove(&zilog->zl_itx_commit_list, itx);
2082 		zil_itx_destroy(itx);
2083 	}
2084 
2085 	if (lwb == NULL) {
2086 		/*
2087 		 * This indicates zio_alloc_zil() failed to allocate the
2088 		 * "next" lwb on-disk. When this happens, we must stall
2089 		 * the ZIL write pipeline; see the comment within
2090 		 * zil_commit_writer_stall() for more details.
2091 		 */
2092 		zil_commit_writer_stall(zilog);
2093 
2094 		/*
2095 		 * Additionally, we have to signal and mark the "nolwb"
2096 		 * waiters as "done" here, since without an lwb, we
2097 		 * can't do this via zil_lwb_flush_vdevs_done() like
2098 		 * normal.
2099 		 */
2100 		zil_commit_waiter_t *zcw;
2101 		while (zcw = list_head(&nolwb_waiters)) {
2102 			zil_commit_waiter_skip(zcw);
2103 			list_remove(&nolwb_waiters, zcw);
2104 		}
2105 	} else {
2106 		ASSERT(list_is_empty(&nolwb_waiters));
2107 		ASSERT3P(lwb, !=, NULL);
2108 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2109 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2110 
2111 		/*
2112 		 * At this point, the ZIL block pointed at by the "lwb"
2113 		 * variable is in one of the following states: "closed"
2114 		 * or "open".
2115 		 *
2116 		 * If its "closed", then no itxs have been committed to
2117 		 * it, so there's no point in issuing its zio (i.e.
2118 		 * it's "empty").
2119 		 *
2120 		 * If its "open" state, then it contains one or more
2121 		 * itxs that eventually need to be committed to stable
2122 		 * storage. In this case we intentionally do not issue
2123 		 * the lwb's zio to disk yet, and instead rely on one of
2124 		 * the following two mechanisms for issuing the zio:
2125 		 *
2126 		 * 1. Ideally, there will be more ZIL activity occuring
2127 		 * on the system, such that this function will be
2128 		 * immediately called again (not necessarily by the same
2129 		 * thread) and this lwb's zio will be issued via
2130 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2131 		 * be "full" when it is issued to disk, and we'll make
2132 		 * use of the lwb's size the best we can.
2133 		 *
2134 		 * 2. If there isn't sufficient ZIL activity occuring on
2135 		 * the system, such that this lwb's zio isn't issued via
2136 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2137 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2138 		 * to be "full" by the time its zio is issued, and means
2139 		 * the size of the lwb was "too large" given the amount
2140 		 * of ZIL activity occuring on the system at that time.
2141 		 *
2142 		 * We do this for a couple of reasons:
2143 		 *
2144 		 * 1. To try and reduce the number of IOPs needed to
2145 		 * write the same number of itxs. If an lwb has space
2146 		 * available in it's buffer for more itxs, and more itxs
2147 		 * will be committed relatively soon (relative to the
2148 		 * latency of performing a write), then it's beneficial
2149 		 * to wait for these "next" itxs. This way, more itxs
2150 		 * can be committed to stable storage with fewer writes.
2151 		 *
2152 		 * 2. To try and use the largest lwb block size that the
2153 		 * incoming rate of itxs can support. Again, this is to
2154 		 * try and pack as many itxs into as few lwbs as
2155 		 * possible, without significantly impacting the latency
2156 		 * of each individual itx.
2157 		 */
2158 	}
2159 }
2160 
2161 /*
2162  * This function is responsible for ensuring the passed in commit waiter
2163  * (and associated commit itx) is committed to an lwb. If the waiter is
2164  * not already committed to an lwb, all itxs in the zilog's queue of
2165  * itxs will be processed. The assumption is the passed in waiter's
2166  * commit itx will found in the queue just like the other non-commit
2167  * itxs, such that when the entire queue is processed, the waiter will
2168  * have been commited to an lwb.
2169  *
2170  * The lwb associated with the passed in waiter is not guaranteed to
2171  * have been issued by the time this function completes. If the lwb is
2172  * not issued, we rely on future calls to zil_commit_writer() to issue
2173  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2174  */
2175 static void
2176 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2177 {
2178 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2179 	ASSERT(spa_writeable(zilog->zl_spa));
2180 
2181 	mutex_enter(&zilog->zl_issuer_lock);
2182 
2183 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2184 		/*
2185 		 * It's possible that, while we were waiting to acquire
2186 		 * the "zl_issuer_lock", another thread committed this
2187 		 * waiter to an lwb. If that occurs, we bail out early,
2188 		 * without processing any of the zilog's queue of itxs.
2189 		 *
2190 		 * On certain workloads and system configurations, the
2191 		 * "zl_issuer_lock" can become highly contended. In an
2192 		 * attempt to reduce this contention, we immediately drop
2193 		 * the lock if the waiter has already been processed.
2194 		 *
2195 		 * We've measured this optimization to reduce CPU spent
2196 		 * contending on this lock by up to 5%, using a system
2197 		 * with 32 CPUs, low latency storage (~50 usec writes),
2198 		 * and 1024 threads performing sync writes.
2199 		 */
2200 		goto out;
2201 	}
2202 
2203 	zil_get_commit_list(zilog);
2204 	zil_prune_commit_list(zilog);
2205 	zil_process_commit_list(zilog);
2206 
2207 out:
2208 	mutex_exit(&zilog->zl_issuer_lock);
2209 }
2210 
2211 static void
2212 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2213 {
2214 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2215 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2216 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2217 
2218 	lwb_t *lwb = zcw->zcw_lwb;
2219 	ASSERT3P(lwb, !=, NULL);
2220 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2221 
2222 	/*
2223 	 * If the lwb has already been issued by another thread, we can
2224 	 * immediately return since there's no work to be done (the
2225 	 * point of this function is to issue the lwb). Additionally, we
2226 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2227 	 * acquiring it when it's not necessary to do so.
2228 	 */
2229 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2230 	    lwb->lwb_state == LWB_STATE_DONE)
2231 		return;
2232 
2233 	/*
2234 	 * In order to call zil_lwb_write_issue() we must hold the
2235 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2236 	 * since we're already holding the commit waiter's "zcw_lock",
2237 	 * and those two locks are aquired in the opposite order
2238 	 * elsewhere.
2239 	 */
2240 	mutex_exit(&zcw->zcw_lock);
2241 	mutex_enter(&zilog->zl_issuer_lock);
2242 	mutex_enter(&zcw->zcw_lock);
2243 
2244 	/*
2245 	 * Since we just dropped and re-acquired the commit waiter's
2246 	 * lock, we have to re-check to see if the waiter was marked
2247 	 * "done" during that process. If the waiter was marked "done",
2248 	 * the "lwb" pointer is no longer valid (it can be free'd after
2249 	 * the waiter is marked "done"), so without this check we could
2250 	 * wind up with a use-after-free error below.
2251 	 */
2252 	if (zcw->zcw_done)
2253 		goto out;
2254 
2255 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2256 
2257 	/*
2258 	 * We've already checked this above, but since we hadn't acquired
2259 	 * the zilog's zl_issuer_lock, we have to perform this check a
2260 	 * second time while holding the lock.
2261 	 *
2262 	 * We don't need to hold the zl_lock since the lwb cannot transition
2263 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2264 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2265 	 * that transition since we treat the lwb the same, whether it's in
2266 	 * the ISSUED or DONE states.
2267 	 *
2268 	 * The important thing, is we treat the lwb differently depending on
2269 	 * if it's ISSUED or OPENED, and block any other threads that might
2270 	 * attempt to issue this lwb. For that reason we hold the
2271 	 * zl_issuer_lock when checking the lwb_state; we must not call
2272 	 * zil_lwb_write_issue() if the lwb had already been issued.
2273 	 *
2274 	 * See the comment above the lwb_state_t structure definition for
2275 	 * more details on the lwb states, and locking requirements.
2276 	 */
2277 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2278 	    lwb->lwb_state == LWB_STATE_DONE)
2279 		goto out;
2280 
2281 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2282 
2283 	/*
2284 	 * As described in the comments above zil_commit_waiter() and
2285 	 * zil_process_commit_list(), we need to issue this lwb's zio
2286 	 * since we've reached the commit waiter's timeout and it still
2287 	 * hasn't been issued.
2288 	 */
2289 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2290 
2291 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2292 
2293 	/*
2294 	 * Since the lwb's zio hadn't been issued by the time this thread
2295 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2296 	 * to influence the zil block size selection algorithm.
2297 	 *
2298 	 * By having to issue the lwb's zio here, it means the size of the
2299 	 * lwb was too large, given the incoming throughput of itxs.  By
2300 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2301 	 * block size selection algorithm, so it can take this informaiton
2302 	 * into account, and potentially select a smaller size for the
2303 	 * next lwb block that is allocated.
2304 	 */
2305 	zilog->zl_cur_used = 0;
2306 
2307 	if (nlwb == NULL) {
2308 		/*
2309 		 * When zil_lwb_write_issue() returns NULL, this
2310 		 * indicates zio_alloc_zil() failed to allocate the
2311 		 * "next" lwb on-disk. When this occurs, the ZIL write
2312 		 * pipeline must be stalled; see the comment within the
2313 		 * zil_commit_writer_stall() function for more details.
2314 		 *
2315 		 * We must drop the commit waiter's lock prior to
2316 		 * calling zil_commit_writer_stall() or else we can wind
2317 		 * up with the following deadlock:
2318 		 *
2319 		 * - This thread is waiting for the txg to sync while
2320 		 *   holding the waiter's lock; txg_wait_synced() is
2321 		 *   used within txg_commit_writer_stall().
2322 		 *
2323 		 * - The txg can't sync because it is waiting for this
2324 		 *   lwb's zio callback to call dmu_tx_commit().
2325 		 *
2326 		 * - The lwb's zio callback can't call dmu_tx_commit()
2327 		 *   because it's blocked trying to acquire the waiter's
2328 		 *   lock, which occurs prior to calling dmu_tx_commit()
2329 		 */
2330 		mutex_exit(&zcw->zcw_lock);
2331 		zil_commit_writer_stall(zilog);
2332 		mutex_enter(&zcw->zcw_lock);
2333 	}
2334 
2335 out:
2336 	mutex_exit(&zilog->zl_issuer_lock);
2337 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2338 }
2339 
2340 /*
2341  * This function is responsible for performing the following two tasks:
2342  *
2343  * 1. its primary responsibility is to block until the given "commit
2344  *    waiter" is considered "done".
2345  *
2346  * 2. its secondary responsibility is to issue the zio for the lwb that
2347  *    the given "commit waiter" is waiting on, if this function has
2348  *    waited "long enough" and the lwb is still in the "open" state.
2349  *
2350  * Given a sufficient amount of itxs being generated and written using
2351  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2352  * function. If this does not occur, this secondary responsibility will
2353  * ensure the lwb is issued even if there is not other synchronous
2354  * activity on the system.
2355  *
2356  * For more details, see zil_process_commit_list(); more specifically,
2357  * the comment at the bottom of that function.
2358  */
2359 static void
2360 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2361 {
2362 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2363 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2364 	ASSERT(spa_writeable(zilog->zl_spa));
2365 
2366 	mutex_enter(&zcw->zcw_lock);
2367 
2368 	/*
2369 	 * The timeout is scaled based on the lwb latency to avoid
2370 	 * significantly impacting the latency of each individual itx.
2371 	 * For more details, see the comment at the bottom of the
2372 	 * zil_process_commit_list() function.
2373 	 */
2374 	int pct = MAX(zfs_commit_timeout_pct, 1);
2375 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2376 	hrtime_t wakeup = gethrtime() + sleep;
2377 	boolean_t timedout = B_FALSE;
2378 
2379 	while (!zcw->zcw_done) {
2380 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2381 
2382 		lwb_t *lwb = zcw->zcw_lwb;
2383 
2384 		/*
2385 		 * Usually, the waiter will have a non-NULL lwb field here,
2386 		 * but it's possible for it to be NULL as a result of
2387 		 * zil_commit() racing with spa_sync().
2388 		 *
2389 		 * When zil_clean() is called, it's possible for the itxg
2390 		 * list (which may be cleaned via a taskq) to contain
2391 		 * commit itxs. When this occurs, the commit waiters linked
2392 		 * off of these commit itxs will not be committed to an
2393 		 * lwb.  Additionally, these commit waiters will not be
2394 		 * marked done until zil_commit_waiter_skip() is called via
2395 		 * zil_itxg_clean().
2396 		 *
2397 		 * Thus, it's possible for this commit waiter (i.e. the
2398 		 * "zcw" variable) to be found in this "in between" state;
2399 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2400 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2401 		 */
2402 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2403 
2404 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2405 			ASSERT3B(timedout, ==, B_FALSE);
2406 
2407 			/*
2408 			 * If the lwb hasn't been issued yet, then we
2409 			 * need to wait with a timeout, in case this
2410 			 * function needs to issue the lwb after the
2411 			 * timeout is reached; responsibility (2) from
2412 			 * the comment above this function.
2413 			 */
2414 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2415 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2416 			    CALLOUT_FLAG_ABSOLUTE);
2417 
2418 			if (timeleft >= 0 || zcw->zcw_done)
2419 				continue;
2420 
2421 			timedout = B_TRUE;
2422 			zil_commit_waiter_timeout(zilog, zcw);
2423 
2424 			if (!zcw->zcw_done) {
2425 				/*
2426 				 * If the commit waiter has already been
2427 				 * marked "done", it's possible for the
2428 				 * waiter's lwb structure to have already
2429 				 * been freed.  Thus, we can only reliably
2430 				 * make these assertions if the waiter
2431 				 * isn't done.
2432 				 */
2433 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2434 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2435 			}
2436 		} else {
2437 			/*
2438 			 * If the lwb isn't open, then it must have already
2439 			 * been issued. In that case, there's no need to
2440 			 * use a timeout when waiting for the lwb to
2441 			 * complete.
2442 			 *
2443 			 * Additionally, if the lwb is NULL, the waiter
2444 			 * will soon be signalled and marked done via
2445 			 * zil_clean() and zil_itxg_clean(), so no timeout
2446 			 * is required.
2447 			 */
2448 
2449 			IMPLY(lwb != NULL,
2450 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2451 			    lwb->lwb_state == LWB_STATE_DONE);
2452 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2453 		}
2454 	}
2455 
2456 	mutex_exit(&zcw->zcw_lock);
2457 }
2458 
2459 static zil_commit_waiter_t *
2460 zil_alloc_commit_waiter()
2461 {
2462 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2463 
2464 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2465 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2466 	list_link_init(&zcw->zcw_node);
2467 	zcw->zcw_lwb = NULL;
2468 	zcw->zcw_done = B_FALSE;
2469 	zcw->zcw_zio_error = 0;
2470 
2471 	return (zcw);
2472 }
2473 
2474 static void
2475 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2476 {
2477 	ASSERT(!list_link_active(&zcw->zcw_node));
2478 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2479 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2480 	mutex_destroy(&zcw->zcw_lock);
2481 	cv_destroy(&zcw->zcw_cv);
2482 	kmem_cache_free(zil_zcw_cache, zcw);
2483 }
2484 
2485 /*
2486  * This function is used to create a TX_COMMIT itx and assign it. This
2487  * way, it will be linked into the ZIL's list of synchronous itxs, and
2488  * then later committed to an lwb (or skipped) when
2489  * zil_process_commit_list() is called.
2490  */
2491 static void
2492 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2493 {
2494 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2495 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2496 
2497 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2498 	itx->itx_sync = B_TRUE;
2499 	itx->itx_private = zcw;
2500 
2501 	zil_itx_assign(zilog, itx, tx);
2502 
2503 	dmu_tx_commit(tx);
2504 }
2505 
2506 /*
2507  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2508  *
2509  * When writing ZIL transactions to the on-disk representation of the
2510  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2511  * itxs can be committed to a single lwb. Once a lwb is written and
2512  * committed to stable storage (i.e. the lwb is written, and vdevs have
2513  * been flushed), each itx that was committed to that lwb is also
2514  * considered to be committed to stable storage.
2515  *
2516  * When an itx is committed to an lwb, the log record (lr_t) contained
2517  * by the itx is copied into the lwb's zio buffer, and once this buffer
2518  * is written to disk, it becomes an on-disk ZIL block.
2519  *
2520  * As itxs are generated, they're inserted into the ZIL's queue of
2521  * uncommitted itxs. The semantics of zil_commit() are such that it will
2522  * block until all itxs that were in the queue when it was called, are
2523  * committed to stable storage.
2524  *
2525  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2526  * itxs, for all objects in the dataset, will be committed to stable
2527  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2528  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2529  * that correspond to the foid passed in, will be committed to stable
2530  * storage prior to zil_commit() returning.
2531  *
2532  * Generally speaking, when zil_commit() is called, the consumer doesn't
2533  * actually care about _all_ of the uncommitted itxs. Instead, they're
2534  * simply trying to waiting for a specific itx to be committed to disk,
2535  * but the interface(s) for interacting with the ZIL don't allow such
2536  * fine-grained communication. A better interface would allow a consumer
2537  * to create and assign an itx, and then pass a reference to this itx to
2538  * zil_commit(); such that zil_commit() would return as soon as that
2539  * specific itx was committed to disk (instead of waiting for _all_
2540  * itxs to be committed).
2541  *
2542  * When a thread calls zil_commit() a special "commit itx" will be
2543  * generated, along with a corresponding "waiter" for this commit itx.
2544  * zil_commit() will wait on this waiter's CV, such that when the waiter
2545  * is marked done, and signalled, zil_commit() will return.
2546  *
2547  * This commit itx is inserted into the queue of uncommitted itxs. This
2548  * provides an easy mechanism for determining which itxs were in the
2549  * queue prior to zil_commit() having been called, and which itxs were
2550  * added after zil_commit() was called.
2551  *
2552  * The commit it is special; it doesn't have any on-disk representation.
2553  * When a commit itx is "committed" to an lwb, the waiter associated
2554  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2555  * completes, each waiter on the lwb's list is marked done and signalled
2556  * -- allowing the thread waiting on the waiter to return from zil_commit().
2557  *
2558  * It's important to point out a few critical factors that allow us
2559  * to make use of the commit itxs, commit waiters, per-lwb lists of
2560  * commit waiters, and zio completion callbacks like we're doing:
2561  *
2562  *   1. The list of waiters for each lwb is traversed, and each commit
2563  *      waiter is marked "done" and signalled, in the zio completion
2564  *      callback of the lwb's zio[*].
2565  *
2566  *      * Actually, the waiters are signalled in the zio completion
2567  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2568  *        that are sent to the vdevs upon completion of the lwb zio.
2569  *
2570  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2571  *      itxs, the order in which they are inserted is preserved[*]; as
2572  *      itxs are added to the queue, they are added to the tail of
2573  *      in-memory linked lists.
2574  *
2575  *      When committing the itxs to lwbs (to be written to disk), they
2576  *      are committed in the same order in which the itxs were added to
2577  *      the uncommitted queue's linked list(s); i.e. the linked list of
2578  *      itxs to commit is traversed from head to tail, and each itx is
2579  *      committed to an lwb in that order.
2580  *
2581  *      * To clarify:
2582  *
2583  *        - the order of "sync" itxs is preserved w.r.t. other
2584  *          "sync" itxs, regardless of the corresponding objects.
2585  *        - the order of "async" itxs is preserved w.r.t. other
2586  *          "async" itxs corresponding to the same object.
2587  *        - the order of "async" itxs is *not* preserved w.r.t. other
2588  *          "async" itxs corresponding to different objects.
2589  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2590  *          versa) is *not* preserved, even for itxs that correspond
2591  *          to the same object.
2592  *
2593  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2594  *      zil_get_commit_list(), and zil_process_commit_list().
2595  *
2596  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2597  *      lwb cannot be considered committed to stable storage, until its
2598  *      "previous" lwb is also committed to stable storage. This fact,
2599  *      coupled with the fact described above, means that itxs are
2600  *      committed in (roughly) the order in which they were generated.
2601  *      This is essential because itxs are dependent on prior itxs.
2602  *      Thus, we *must not* deem an itx as being committed to stable
2603  *      storage, until *all* prior itxs have also been committed to
2604  *      stable storage.
2605  *
2606  *      To enforce this ordering of lwb zio's, while still leveraging as
2607  *      much of the underlying storage performance as possible, we rely
2608  *      on two fundamental concepts:
2609  *
2610  *          1. The creation and issuance of lwb zio's is protected by
2611  *             the zilog's "zl_issuer_lock", which ensures only a single
2612  *             thread is creating and/or issuing lwb's at a time
2613  *          2. The "previous" lwb is a child of the "current" lwb
2614  *             (leveraging the zio parent-child depenency graph)
2615  *
2616  *      By relying on this parent-child zio relationship, we can have
2617  *      many lwb zio's concurrently issued to the underlying storage,
2618  *      but the order in which they complete will be the same order in
2619  *      which they were created.
2620  */
2621 void
2622 zil_commit(zilog_t *zilog, uint64_t foid)
2623 {
2624 	/*
2625 	 * We should never attempt to call zil_commit on a snapshot for
2626 	 * a couple of reasons:
2627 	 *
2628 	 * 1. A snapshot may never be modified, thus it cannot have any
2629 	 *    in-flight itxs that would have modified the dataset.
2630 	 *
2631 	 * 2. By design, when zil_commit() is called, a commit itx will
2632 	 *    be assigned to this zilog; as a result, the zilog will be
2633 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2634 	 *    checks in the code that enforce this invariant, and will
2635 	 *    cause a panic if it's not upheld.
2636 	 */
2637 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2638 
2639 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2640 		return;
2641 
2642 	if (!spa_writeable(zilog->zl_spa)) {
2643 		/*
2644 		 * If the SPA is not writable, there should never be any
2645 		 * pending itxs waiting to be committed to disk. If that
2646 		 * weren't true, we'd skip writing those itxs out, and
2647 		 * would break the sematics of zil_commit(); thus, we're
2648 		 * verifying that truth before we return to the caller.
2649 		 */
2650 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2651 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2652 		for (int i = 0; i < TXG_SIZE; i++)
2653 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2654 		return;
2655 	}
2656 
2657 	/*
2658 	 * If the ZIL is suspended, we don't want to dirty it by calling
2659 	 * zil_commit_itx_assign() below, nor can we write out
2660 	 * lwbs like would be done in zil_commit_write(). Thus, we
2661 	 * simply rely on txg_wait_synced() to maintain the necessary
2662 	 * semantics, and avoid calling those functions altogether.
2663 	 */
2664 	if (zilog->zl_suspend > 0) {
2665 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2666 		return;
2667 	}
2668 
2669 	zil_commit_impl(zilog, foid);
2670 }
2671 
2672 void
2673 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2674 {
2675 	/*
2676 	 * Move the "async" itxs for the specified foid to the "sync"
2677 	 * queues, such that they will be later committed (or skipped)
2678 	 * to an lwb when zil_process_commit_list() is called.
2679 	 *
2680 	 * Since these "async" itxs must be committed prior to this
2681 	 * call to zil_commit returning, we must perform this operation
2682 	 * before we call zil_commit_itx_assign().
2683 	 */
2684 	zil_async_to_sync(zilog, foid);
2685 
2686 	/*
2687 	 * We allocate a new "waiter" structure which will initially be
2688 	 * linked to the commit itx using the itx's "itx_private" field.
2689 	 * Since the commit itx doesn't represent any on-disk state,
2690 	 * when it's committed to an lwb, rather than copying the its
2691 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2692 	 * added to the lwb's list of waiters. Then, when the lwb is
2693 	 * committed to stable storage, each waiter in the lwb's list of
2694 	 * waiters will be marked "done", and signalled.
2695 	 *
2696 	 * We must create the waiter and assign the commit itx prior to
2697 	 * calling zil_commit_writer(), or else our specific commit itx
2698 	 * is not guaranteed to be committed to an lwb prior to calling
2699 	 * zil_commit_waiter().
2700 	 */
2701 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2702 	zil_commit_itx_assign(zilog, zcw);
2703 
2704 	zil_commit_writer(zilog, zcw);
2705 	zil_commit_waiter(zilog, zcw);
2706 
2707 	if (zcw->zcw_zio_error != 0) {
2708 		/*
2709 		 * If there was an error writing out the ZIL blocks that
2710 		 * this thread is waiting on, then we fallback to
2711 		 * relying on spa_sync() to write out the data this
2712 		 * thread is waiting on. Obviously this has performance
2713 		 * implications, but the expectation is for this to be
2714 		 * an exceptional case, and shouldn't occur often.
2715 		 */
2716 		DTRACE_PROBE2(zil__commit__io__error,
2717 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2718 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2719 	}
2720 
2721 	zil_free_commit_waiter(zcw);
2722 }
2723 
2724 /*
2725  * Called in syncing context to free committed log blocks and update log header.
2726  */
2727 void
2728 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2729 {
2730 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2731 	uint64_t txg = dmu_tx_get_txg(tx);
2732 	spa_t *spa = zilog->zl_spa;
2733 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2734 	lwb_t *lwb;
2735 
2736 	/*
2737 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2738 	 * to destroy it twice.
2739 	 */
2740 	if (spa_sync_pass(spa) != 1)
2741 		return;
2742 
2743 	mutex_enter(&zilog->zl_lock);
2744 
2745 	ASSERT(zilog->zl_stop_sync == 0);
2746 
2747 	if (*replayed_seq != 0) {
2748 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2749 		zh->zh_replay_seq = *replayed_seq;
2750 		*replayed_seq = 0;
2751 	}
2752 
2753 	if (zilog->zl_destroy_txg == txg) {
2754 		blkptr_t blk = zh->zh_log;
2755 
2756 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2757 
2758 		bzero(zh, sizeof (zil_header_t));
2759 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2760 
2761 		if (zilog->zl_keep_first) {
2762 			/*
2763 			 * If this block was part of log chain that couldn't
2764 			 * be claimed because a device was missing during
2765 			 * zil_claim(), but that device later returns,
2766 			 * then this block could erroneously appear valid.
2767 			 * To guard against this, assign a new GUID to the new
2768 			 * log chain so it doesn't matter what blk points to.
2769 			 */
2770 			zil_init_log_chain(zilog, &blk);
2771 			zh->zh_log = blk;
2772 		}
2773 	}
2774 
2775 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2776 		zh->zh_log = lwb->lwb_blk;
2777 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2778 			break;
2779 		list_remove(&zilog->zl_lwb_list, lwb);
2780 		zio_free(spa, txg, &lwb->lwb_blk);
2781 		zil_free_lwb(zilog, lwb);
2782 
2783 		/*
2784 		 * If we don't have anything left in the lwb list then
2785 		 * we've had an allocation failure and we need to zero
2786 		 * out the zil_header blkptr so that we don't end
2787 		 * up freeing the same block twice.
2788 		 */
2789 		if (list_head(&zilog->zl_lwb_list) == NULL)
2790 			BP_ZERO(&zh->zh_log);
2791 	}
2792 	mutex_exit(&zilog->zl_lock);
2793 }
2794 
2795 /* ARGSUSED */
2796 static int
2797 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2798 {
2799 	lwb_t *lwb = vbuf;
2800 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2801 	    offsetof(zil_commit_waiter_t, zcw_node));
2802 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2803 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2804 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2805 	return (0);
2806 }
2807 
2808 /* ARGSUSED */
2809 static void
2810 zil_lwb_dest(void *vbuf, void *unused)
2811 {
2812 	lwb_t *lwb = vbuf;
2813 	mutex_destroy(&lwb->lwb_vdev_lock);
2814 	avl_destroy(&lwb->lwb_vdev_tree);
2815 	list_destroy(&lwb->lwb_waiters);
2816 }
2817 
2818 void
2819 zil_init(void)
2820 {
2821 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2822 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2823 
2824 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2825 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2826 }
2827 
2828 void
2829 zil_fini(void)
2830 {
2831 	kmem_cache_destroy(zil_zcw_cache);
2832 	kmem_cache_destroy(zil_lwb_cache);
2833 }
2834 
2835 void
2836 zil_set_sync(zilog_t *zilog, uint64_t sync)
2837 {
2838 	zilog->zl_sync = sync;
2839 }
2840 
2841 void
2842 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2843 {
2844 	zilog->zl_logbias = logbias;
2845 }
2846 
2847 zilog_t *
2848 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2849 {
2850 	zilog_t *zilog;
2851 
2852 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2853 
2854 	zilog->zl_header = zh_phys;
2855 	zilog->zl_os = os;
2856 	zilog->zl_spa = dmu_objset_spa(os);
2857 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2858 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2859 	zilog->zl_logbias = dmu_objset_logbias(os);
2860 	zilog->zl_sync = dmu_objset_syncprop(os);
2861 	zilog->zl_dirty_max_txg = 0;
2862 	zilog->zl_last_lwb_opened = NULL;
2863 	zilog->zl_last_lwb_latency = 0;
2864 
2865 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2866 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2867 
2868 	for (int i = 0; i < TXG_SIZE; i++) {
2869 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2870 		    MUTEX_DEFAULT, NULL);
2871 	}
2872 
2873 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2874 	    offsetof(lwb_t, lwb_node));
2875 
2876 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2877 	    offsetof(itx_t, itx_node));
2878 
2879 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2880 
2881 	return (zilog);
2882 }
2883 
2884 void
2885 zil_free(zilog_t *zilog)
2886 {
2887 	zilog->zl_stop_sync = 1;
2888 
2889 	ASSERT0(zilog->zl_suspend);
2890 	ASSERT0(zilog->zl_suspending);
2891 
2892 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2893 	list_destroy(&zilog->zl_lwb_list);
2894 
2895 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2896 	list_destroy(&zilog->zl_itx_commit_list);
2897 
2898 	for (int i = 0; i < TXG_SIZE; i++) {
2899 		/*
2900 		 * It's possible for an itx to be generated that doesn't dirty
2901 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2902 		 * callback to remove the entry. We remove those here.
2903 		 *
2904 		 * Also free up the ziltest itxs.
2905 		 */
2906 		if (zilog->zl_itxg[i].itxg_itxs)
2907 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2908 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2909 	}
2910 
2911 	mutex_destroy(&zilog->zl_issuer_lock);
2912 	mutex_destroy(&zilog->zl_lock);
2913 
2914 	cv_destroy(&zilog->zl_cv_suspend);
2915 
2916 	kmem_free(zilog, sizeof (zilog_t));
2917 }
2918 
2919 /*
2920  * Open an intent log.
2921  */
2922 zilog_t *
2923 zil_open(objset_t *os, zil_get_data_t *get_data)
2924 {
2925 	zilog_t *zilog = dmu_objset_zil(os);
2926 
2927 	ASSERT3P(zilog->zl_get_data, ==, NULL);
2928 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2929 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2930 
2931 	zilog->zl_get_data = get_data;
2932 
2933 	return (zilog);
2934 }
2935 
2936 /*
2937  * Close an intent log.
2938  */
2939 void
2940 zil_close(zilog_t *zilog)
2941 {
2942 	lwb_t *lwb;
2943 	uint64_t txg;
2944 
2945 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2946 		zil_commit(zilog, 0);
2947 	} else {
2948 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2949 		ASSERT0(zilog->zl_dirty_max_txg);
2950 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2951 	}
2952 
2953 	mutex_enter(&zilog->zl_lock);
2954 	lwb = list_tail(&zilog->zl_lwb_list);
2955 	if (lwb == NULL)
2956 		txg = zilog->zl_dirty_max_txg;
2957 	else
2958 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2959 	mutex_exit(&zilog->zl_lock);
2960 
2961 	/*
2962 	 * We need to use txg_wait_synced() to wait long enough for the
2963 	 * ZIL to be clean, and to wait for all pending lwbs to be
2964 	 * written out.
2965 	 */
2966 	if (txg != 0)
2967 		txg_wait_synced(zilog->zl_dmu_pool, txg);
2968 
2969 	if (zilog_is_dirty(zilog))
2970 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2971 	VERIFY(!zilog_is_dirty(zilog));
2972 
2973 	zilog->zl_get_data = NULL;
2974 
2975 	/*
2976 	 * We should have only one lwb left on the list; remove it now.
2977 	 */
2978 	mutex_enter(&zilog->zl_lock);
2979 	lwb = list_head(&zilog->zl_lwb_list);
2980 	if (lwb != NULL) {
2981 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2982 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2983 		list_remove(&zilog->zl_lwb_list, lwb);
2984 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2985 		zil_free_lwb(zilog, lwb);
2986 	}
2987 	mutex_exit(&zilog->zl_lock);
2988 }
2989 
2990 static char *suspend_tag = "zil suspending";
2991 
2992 /*
2993  * Suspend an intent log.  While in suspended mode, we still honor
2994  * synchronous semantics, but we rely on txg_wait_synced() to do it.
2995  * On old version pools, we suspend the log briefly when taking a
2996  * snapshot so that it will have an empty intent log.
2997  *
2998  * Long holds are not really intended to be used the way we do here --
2999  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3000  * could fail.  Therefore we take pains to only put a long hold if it is
3001  * actually necessary.  Fortunately, it will only be necessary if the
3002  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3003  * will already have a long hold, so we are not really making things any worse.
3004  *
3005  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3006  * zvol_state_t), and use their mechanism to prevent their hold from being
3007  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3008  * very little gain.
3009  *
3010  * if cookiep == NULL, this does both the suspend & resume.
3011  * Otherwise, it returns with the dataset "long held", and the cookie
3012  * should be passed into zil_resume().
3013  */
3014 int
3015 zil_suspend(const char *osname, void **cookiep)
3016 {
3017 	objset_t *os;
3018 	zilog_t *zilog;
3019 	const zil_header_t *zh;
3020 	int error;
3021 
3022 	error = dmu_objset_hold(osname, suspend_tag, &os);
3023 	if (error != 0)
3024 		return (error);
3025 	zilog = dmu_objset_zil(os);
3026 
3027 	mutex_enter(&zilog->zl_lock);
3028 	zh = zilog->zl_header;
3029 
3030 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3031 		mutex_exit(&zilog->zl_lock);
3032 		dmu_objset_rele(os, suspend_tag);
3033 		return (SET_ERROR(EBUSY));
3034 	}
3035 
3036 	/*
3037 	 * Don't put a long hold in the cases where we can avoid it.  This
3038 	 * is when there is no cookie so we are doing a suspend & resume
3039 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3040 	 * for the suspend because it's already suspended, or there's no ZIL.
3041 	 */
3042 	if (cookiep == NULL && !zilog->zl_suspending &&
3043 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3044 		mutex_exit(&zilog->zl_lock);
3045 		dmu_objset_rele(os, suspend_tag);
3046 		return (0);
3047 	}
3048 
3049 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3050 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3051 
3052 	zilog->zl_suspend++;
3053 
3054 	if (zilog->zl_suspend > 1) {
3055 		/*
3056 		 * Someone else is already suspending it.
3057 		 * Just wait for them to finish.
3058 		 */
3059 
3060 		while (zilog->zl_suspending)
3061 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3062 		mutex_exit(&zilog->zl_lock);
3063 
3064 		if (cookiep == NULL)
3065 			zil_resume(os);
3066 		else
3067 			*cookiep = os;
3068 		return (0);
3069 	}
3070 
3071 	/*
3072 	 * If there is no pointer to an on-disk block, this ZIL must not
3073 	 * be active (e.g. filesystem not mounted), so there's nothing
3074 	 * to clean up.
3075 	 */
3076 	if (BP_IS_HOLE(&zh->zh_log)) {
3077 		ASSERT(cookiep != NULL); /* fast path already handled */
3078 
3079 		*cookiep = os;
3080 		mutex_exit(&zilog->zl_lock);
3081 		return (0);
3082 	}
3083 
3084 	zilog->zl_suspending = B_TRUE;
3085 	mutex_exit(&zilog->zl_lock);
3086 
3087 	/*
3088 	 * We need to use zil_commit_impl to ensure we wait for all
3089 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3090 	 * to disk before proceeding. If we used zil_commit instead, it
3091 	 * would just call txg_wait_synced(), because zl_suspend is set.
3092 	 * txg_wait_synced() doesn't wait for these lwb's to be
3093 	 * LWB_STATE_DONE before returning.
3094 	 */
3095 	zil_commit_impl(zilog, 0);
3096 
3097 	/*
3098 	 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3099 	 * txg_wait_synced() to ensure the data from the zilog has
3100 	 * migrated to the main pool before calling zil_destroy().
3101 	 */
3102 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3103 
3104 	zil_destroy(zilog, B_FALSE);
3105 
3106 	mutex_enter(&zilog->zl_lock);
3107 	zilog->zl_suspending = B_FALSE;
3108 	cv_broadcast(&zilog->zl_cv_suspend);
3109 	mutex_exit(&zilog->zl_lock);
3110 
3111 	if (cookiep == NULL)
3112 		zil_resume(os);
3113 	else
3114 		*cookiep = os;
3115 	return (0);
3116 }
3117 
3118 void
3119 zil_resume(void *cookie)
3120 {
3121 	objset_t *os = cookie;
3122 	zilog_t *zilog = dmu_objset_zil(os);
3123 
3124 	mutex_enter(&zilog->zl_lock);
3125 	ASSERT(zilog->zl_suspend != 0);
3126 	zilog->zl_suspend--;
3127 	mutex_exit(&zilog->zl_lock);
3128 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3129 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3130 }
3131 
3132 typedef struct zil_replay_arg {
3133 	zil_replay_func_t **zr_replay;
3134 	void		*zr_arg;
3135 	boolean_t	zr_byteswap;
3136 	char		*zr_lr;
3137 } zil_replay_arg_t;
3138 
3139 static int
3140 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3141 {
3142 	char name[ZFS_MAX_DATASET_NAME_LEN];
3143 
3144 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3145 
3146 	dmu_objset_name(zilog->zl_os, name);
3147 
3148 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3149 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3150 	    (u_longlong_t)lr->lrc_seq,
3151 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3152 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3153 
3154 	return (error);
3155 }
3156 
3157 static int
3158 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3159 {
3160 	zil_replay_arg_t *zr = zra;
3161 	const zil_header_t *zh = zilog->zl_header;
3162 	uint64_t reclen = lr->lrc_reclen;
3163 	uint64_t txtype = lr->lrc_txtype;
3164 	int error = 0;
3165 
3166 	zilog->zl_replaying_seq = lr->lrc_seq;
3167 
3168 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3169 		return (0);
3170 
3171 	if (lr->lrc_txg < claim_txg)		/* already committed */
3172 		return (0);
3173 
3174 	/* Strip case-insensitive bit, still present in log record */
3175 	txtype &= ~TX_CI;
3176 
3177 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3178 		return (zil_replay_error(zilog, lr, EINVAL));
3179 
3180 	/*
3181 	 * If this record type can be logged out of order, the object
3182 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3183 	 */
3184 	if (TX_OOO(txtype)) {
3185 		error = dmu_object_info(zilog->zl_os,
3186 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3187 		if (error == ENOENT || error == EEXIST)
3188 			return (0);
3189 	}
3190 
3191 	/*
3192 	 * Make a copy of the data so we can revise and extend it.
3193 	 */
3194 	bcopy(lr, zr->zr_lr, reclen);
3195 
3196 	/*
3197 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3198 	 */
3199 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3200 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3201 		    zr->zr_lr + reclen);
3202 		if (error != 0)
3203 			return (zil_replay_error(zilog, lr, error));
3204 	}
3205 
3206 	/*
3207 	 * The log block containing this lr may have been byteswapped
3208 	 * so that we can easily examine common fields like lrc_txtype.
3209 	 * However, the log is a mix of different record types, and only the
3210 	 * replay vectors know how to byteswap their records.  Therefore, if
3211 	 * the lr was byteswapped, undo it before invoking the replay vector.
3212 	 */
3213 	if (zr->zr_byteswap)
3214 		byteswap_uint64_array(zr->zr_lr, reclen);
3215 
3216 	/*
3217 	 * We must now do two things atomically: replay this log record,
3218 	 * and update the log header sequence number to reflect the fact that
3219 	 * we did so. At the end of each replay function the sequence number
3220 	 * is updated if we are in replay mode.
3221 	 */
3222 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3223 	if (error != 0) {
3224 		/*
3225 		 * The DMU's dnode layer doesn't see removes until the txg
3226 		 * commits, so a subsequent claim can spuriously fail with
3227 		 * EEXIST. So if we receive any error we try syncing out
3228 		 * any removes then retry the transaction.  Note that we
3229 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3230 		 */
3231 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3232 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3233 		if (error != 0)
3234 			return (zil_replay_error(zilog, lr, error));
3235 	}
3236 	return (0);
3237 }
3238 
3239 /* ARGSUSED */
3240 static int
3241 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3242 {
3243 	zilog->zl_replay_blks++;
3244 
3245 	return (0);
3246 }
3247 
3248 /*
3249  * If this dataset has a non-empty intent log, replay it and destroy it.
3250  */
3251 void
3252 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3253 {
3254 	zilog_t *zilog = dmu_objset_zil(os);
3255 	const zil_header_t *zh = zilog->zl_header;
3256 	zil_replay_arg_t zr;
3257 
3258 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3259 		zil_destroy(zilog, B_TRUE);
3260 		return;
3261 	}
3262 
3263 	zr.zr_replay = replay_func;
3264 	zr.zr_arg = arg;
3265 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3266 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3267 
3268 	/*
3269 	 * Wait for in-progress removes to sync before starting replay.
3270 	 */
3271 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3272 
3273 	zilog->zl_replay = B_TRUE;
3274 	zilog->zl_replay_time = ddi_get_lbolt();
3275 	ASSERT(zilog->zl_replay_blks == 0);
3276 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3277 	    zh->zh_claim_txg);
3278 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3279 
3280 	zil_destroy(zilog, B_FALSE);
3281 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3282 	zilog->zl_replay = B_FALSE;
3283 }
3284 
3285 boolean_t
3286 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3287 {
3288 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3289 		return (B_TRUE);
3290 
3291 	if (zilog->zl_replay) {
3292 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3293 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3294 		    zilog->zl_replaying_seq;
3295 		return (B_TRUE);
3296 	}
3297 
3298 	return (B_FALSE);
3299 }
3300 
3301 /* ARGSUSED */
3302 int
3303 zil_reset(const char *osname, void *arg)
3304 {
3305 	int error;
3306 
3307 	error = zil_suspend(osname, NULL);
3308 	if (error != 0)
3309 		return (SET_ERROR(EEXIST));
3310 	return (0);
3311 }
3312