xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_znode.c (revision af2c4821c0a23e873f2a63bca4145080aa2183e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/vfs.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/unistd.h>
44 #include <sys/mode.h>
45 #include <sys/atomic.h>
46 #include <vm/pvn.h>
47 #include "fs/fs_subr.h"
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zfs_rlock.h>
52 #include <sys/fs/zfs.h>
53 #endif /* _KERNEL */
54 
55 #include <sys/dmu.h>
56 #include <sys/refcount.h>
57 #include <sys/stat.h>
58 #include <sys/zap.h>
59 #include <sys/zfs_znode.h>
60 
61 /*
62  * Functions needed for userland (ie: libzpool) are not put under
63  * #ifdef_KERNEL; the rest of the functions have dependencies
64  * (such as VFS logic) that will not compile easily in userland.
65  */
66 #ifdef _KERNEL
67 struct kmem_cache *znode_cache = NULL;
68 
69 /*ARGSUSED*/
70 static void
71 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr)
72 {
73 	znode_t *zp = user_ptr;
74 	vnode_t *vp = ZTOV(zp);
75 
76 	mutex_enter(&zp->z_lock);
77 	if (vp->v_count == 0) {
78 		mutex_exit(&zp->z_lock);
79 		vn_invalid(vp);
80 		zfs_znode_free(zp);
81 	} else {
82 		/* signal force unmount that this znode can be freed */
83 		zp->z_dbuf = NULL;
84 		mutex_exit(&zp->z_lock);
85 	}
86 }
87 
88 /*ARGSUSED*/
89 static int
90 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags)
91 {
92 	znode_t *zp = buf;
93 
94 	zp->z_vnode = vn_alloc(KM_SLEEP);
95 	zp->z_vnode->v_data = (caddr_t)zp;
96 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
97 	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
98 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
99 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
100 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
101 
102 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
103 	avl_create(&zp->z_range_avl, zfs_range_compare,
104 	    sizeof (rl_t), offsetof(rl_t, r_node));
105 
106 	zp->z_dbuf_held = 0;
107 	zp->z_dirlocks = 0;
108 	return (0);
109 }
110 
111 /*ARGSUSED*/
112 static void
113 zfs_znode_cache_destructor(void *buf, void *cdarg)
114 {
115 	znode_t *zp = buf;
116 
117 	ASSERT(zp->z_dirlocks == 0);
118 	mutex_destroy(&zp->z_lock);
119 	rw_destroy(&zp->z_map_lock);
120 	rw_destroy(&zp->z_parent_lock);
121 	rw_destroy(&zp->z_name_lock);
122 	mutex_destroy(&zp->z_acl_lock);
123 	avl_destroy(&zp->z_range_avl);
124 
125 	ASSERT(zp->z_dbuf_held == 0);
126 	ASSERT(ZTOV(zp)->v_count == 0);
127 	vn_free(ZTOV(zp));
128 }
129 
130 void
131 zfs_znode_init(void)
132 {
133 	/*
134 	 * Initialize zcache
135 	 */
136 	ASSERT(znode_cache == NULL);
137 	znode_cache = kmem_cache_create("zfs_znode_cache",
138 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
139 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
140 }
141 
142 void
143 zfs_znode_fini(void)
144 {
145 	/*
146 	 * Cleanup vfs & vnode ops
147 	 */
148 	zfs_remove_op_tables();
149 
150 	/*
151 	 * Cleanup zcache
152 	 */
153 	if (znode_cache)
154 		kmem_cache_destroy(znode_cache);
155 	znode_cache = NULL;
156 }
157 
158 struct vnodeops *zfs_dvnodeops;
159 struct vnodeops *zfs_fvnodeops;
160 struct vnodeops *zfs_symvnodeops;
161 struct vnodeops *zfs_xdvnodeops;
162 struct vnodeops *zfs_evnodeops;
163 
164 void
165 zfs_remove_op_tables()
166 {
167 	/*
168 	 * Remove vfs ops
169 	 */
170 	ASSERT(zfsfstype);
171 	(void) vfs_freevfsops_by_type(zfsfstype);
172 	zfsfstype = 0;
173 
174 	/*
175 	 * Remove vnode ops
176 	 */
177 	if (zfs_dvnodeops)
178 		vn_freevnodeops(zfs_dvnodeops);
179 	if (zfs_fvnodeops)
180 		vn_freevnodeops(zfs_fvnodeops);
181 	if (zfs_symvnodeops)
182 		vn_freevnodeops(zfs_symvnodeops);
183 	if (zfs_xdvnodeops)
184 		vn_freevnodeops(zfs_xdvnodeops);
185 	if (zfs_evnodeops)
186 		vn_freevnodeops(zfs_evnodeops);
187 
188 	zfs_dvnodeops = NULL;
189 	zfs_fvnodeops = NULL;
190 	zfs_symvnodeops = NULL;
191 	zfs_xdvnodeops = NULL;
192 	zfs_evnodeops = NULL;
193 }
194 
195 extern const fs_operation_def_t zfs_dvnodeops_template[];
196 extern const fs_operation_def_t zfs_fvnodeops_template[];
197 extern const fs_operation_def_t zfs_xdvnodeops_template[];
198 extern const fs_operation_def_t zfs_symvnodeops_template[];
199 extern const fs_operation_def_t zfs_evnodeops_template[];
200 
201 int
202 zfs_create_op_tables()
203 {
204 	int error;
205 
206 	/*
207 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
208 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
209 	 * In this case we just return as the ops vectors are already set up.
210 	 */
211 	if (zfs_dvnodeops)
212 		return (0);
213 
214 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
215 	    &zfs_dvnodeops);
216 	if (error)
217 		return (error);
218 
219 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
220 	    &zfs_fvnodeops);
221 	if (error)
222 		return (error);
223 
224 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
225 	    &zfs_symvnodeops);
226 	if (error)
227 		return (error);
228 
229 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
230 	    &zfs_xdvnodeops);
231 	if (error)
232 		return (error);
233 
234 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
235 	    &zfs_evnodeops);
236 
237 	return (error);
238 }
239 
240 /*
241  * zfs_init_fs - Initialize the zfsvfs struct and the file system
242  *	incore "master" object.  Verify version compatibility.
243  */
244 int
245 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
246 {
247 	extern int zfsfstype;
248 
249 	objset_t	*os = zfsvfs->z_os;
250 	uint64_t	version = ZPL_VERSION;
251 	int		i, error;
252 	dmu_object_info_t doi;
253 	uint64_t fsid_guid;
254 
255 	*zpp = NULL;
256 
257 	/*
258 	 * XXX - hack to auto-create the pool root filesystem at
259 	 * the first attempted mount.
260 	 */
261 	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
262 		dmu_tx_t *tx = dmu_tx_create(os);
263 
264 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */
265 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */
266 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
267 		error = dmu_tx_assign(tx, TXG_WAIT);
268 		ASSERT3U(error, ==, 0);
269 		zfs_create_fs(os, cr, tx);
270 		dmu_tx_commit(tx);
271 	}
272 
273 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1,
274 	    &version);
275 	if (error) {
276 		return (error);
277 	} else if (version != ZPL_VERSION) {
278 		(void) printf("Mismatched versions:  File system "
279 		    "is version %lld on-disk format, which is "
280 		    "incompatible with this software version %lld!",
281 		    (u_longlong_t)version, ZPL_VERSION);
282 		return (ENOTSUP);
283 	}
284 
285 	/*
286 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
287 	 * separates our fsid from any other filesystem types, and a
288 	 * 56-bit objset unique ID.  The objset unique ID is unique to
289 	 * all objsets open on this system, provided by unique_create().
290 	 * The 8-bit fs type must be put in the low bits of fsid[1]
291 	 * because that's where other Solaris filesystems put it.
292 	 */
293 	fsid_guid = dmu_objset_fsid_guid(os);
294 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
295 	zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid;
296 	zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
297 	    zfsfstype & 0xFF;
298 
299 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
300 	    &zfsvfs->z_root);
301 	if (error)
302 		return (error);
303 	ASSERT(zfsvfs->z_root != 0);
304 
305 	/*
306 	 * Create the per mount vop tables.
307 	 */
308 
309 	/*
310 	 * Initialize zget mutex's
311 	 */
312 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
313 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
314 
315 	error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp);
316 	if (error)
317 		return (error);
318 	ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root);
319 
320 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
321 	    &zfsvfs->z_unlinkedobj);
322 	if (error)
323 		return (error);
324 
325 	return (0);
326 }
327 
328 /*
329  * define a couple of values we need available
330  * for both 64 and 32 bit environments.
331  */
332 #ifndef NBITSMINOR64
333 #define	NBITSMINOR64	32
334 #endif
335 #ifndef MAXMAJ64
336 #define	MAXMAJ64	0xffffffffUL
337 #endif
338 #ifndef	MAXMIN64
339 #define	MAXMIN64	0xffffffffUL
340 #endif
341 
342 /*
343  * Create special expldev for ZFS private use.
344  * Can't use standard expldev since it doesn't do
345  * what we want.  The standard expldev() takes a
346  * dev32_t in LP64 and expands it to a long dev_t.
347  * We need an interface that takes a dev32_t in ILP32
348  * and expands it to a long dev_t.
349  */
350 static uint64_t
351 zfs_expldev(dev_t dev)
352 {
353 #ifndef _LP64
354 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
355 	return (((uint64_t)major << NBITSMINOR64) |
356 	    ((minor_t)dev & MAXMIN32));
357 #else
358 	return (dev);
359 #endif
360 }
361 
362 /*
363  * Special cmpldev for ZFS private use.
364  * Can't use standard cmpldev since it takes
365  * a long dev_t and compresses it to dev32_t in
366  * LP64.  We need to do a compaction of a long dev_t
367  * to a dev32_t in ILP32.
368  */
369 dev_t
370 zfs_cmpldev(uint64_t dev)
371 {
372 #ifndef _LP64
373 	minor_t minor = (minor_t)dev & MAXMIN64;
374 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
375 
376 	if (major > MAXMAJ32 || minor > MAXMIN32)
377 		return (NODEV32);
378 
379 	return (((dev32_t)major << NBITSMINOR32) | minor);
380 #else
381 	return (dev);
382 #endif
383 }
384 
385 /*
386  * Construct a new znode/vnode and intialize.
387  *
388  * This does not do a call to dmu_set_user() that is
389  * up to the caller to do, in case you don't want to
390  * return the znode
391  */
392 static znode_t *
393 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz)
394 {
395 	znode_t	*zp;
396 	vnode_t *vp;
397 
398 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
399 
400 	ASSERT(zp->z_dirlocks == NULL);
401 
402 	zp->z_phys = db->db_data;
403 	zp->z_zfsvfs = zfsvfs;
404 	zp->z_unlinked = 0;
405 	zp->z_atime_dirty = 0;
406 	zp->z_dbuf_held = 0;
407 	zp->z_mapcnt = 0;
408 	zp->z_last_itx = 0;
409 	zp->z_dbuf = db;
410 	zp->z_id = obj_num;
411 	zp->z_blksz = blksz;
412 	zp->z_seq = 0x7A4653;
413 	zp->z_sync_cnt = 0;
414 
415 	mutex_enter(&zfsvfs->z_znodes_lock);
416 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
417 	mutex_exit(&zfsvfs->z_znodes_lock);
418 
419 	vp = ZTOV(zp);
420 	vn_reinit(vp);
421 
422 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
423 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
424 
425 	switch (vp->v_type) {
426 	case VDIR:
427 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
428 			vn_setops(vp, zfs_xdvnodeops);
429 			vp->v_flag |= V_XATTRDIR;
430 		} else
431 			vn_setops(vp, zfs_dvnodeops);
432 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
433 		break;
434 	case VBLK:
435 	case VCHR:
436 		vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
437 		/*FALLTHROUGH*/
438 	case VFIFO:
439 	case VSOCK:
440 	case VDOOR:
441 		vn_setops(vp, zfs_fvnodeops);
442 		break;
443 	case VREG:
444 		vp->v_flag |= VMODSORT;
445 		vn_setops(vp, zfs_fvnodeops);
446 		break;
447 	case VLNK:
448 		vn_setops(vp, zfs_symvnodeops);
449 		break;
450 	default:
451 		vn_setops(vp, zfs_evnodeops);
452 		break;
453 	}
454 
455 	return (zp);
456 }
457 
458 static void
459 zfs_znode_dmu_init(znode_t *zp)
460 {
461 	znode_t		*nzp;
462 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
463 	dmu_buf_t	*db = zp->z_dbuf;
464 
465 	mutex_enter(&zp->z_lock);
466 
467 	nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func);
468 
469 	/*
470 	 * there should be no
471 	 * concurrent zgets on this object.
472 	 */
473 	ASSERT3P(nzp, ==, NULL);
474 
475 	/*
476 	 * Slap on VROOT if we are the root znode
477 	 */
478 	if (zp->z_id == zfsvfs->z_root) {
479 		ZTOV(zp)->v_flag |= VROOT;
480 	}
481 
482 	ASSERT(zp->z_dbuf_held == 0);
483 	zp->z_dbuf_held = 1;
484 	VFS_HOLD(zfsvfs->z_vfs);
485 	mutex_exit(&zp->z_lock);
486 	vn_exists(ZTOV(zp));
487 }
488 
489 /*
490  * Create a new DMU object to hold a zfs znode.
491  *
492  *	IN:	dzp	- parent directory for new znode
493  *		vap	- file attributes for new znode
494  *		tx	- dmu transaction id for zap operations
495  *		cr	- credentials of caller
496  *		flag	- flags:
497  *			  IS_ROOT_NODE	- new object will be root
498  *			  IS_XATTR	- new object is an attribute
499  *			  IS_REPLAY	- intent log replay
500  *
501  *	OUT:	oid	- ID of created object
502  *
503  */
504 void
505 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr,
506 	uint_t flag, znode_t **zpp, int bonuslen)
507 {
508 	dmu_buf_t	*dbp;
509 	znode_phys_t	*pzp;
510 	znode_t		*zp;
511 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
512 	timestruc_t	now;
513 	uint64_t	gen;
514 	int		err;
515 
516 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
517 
518 	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
519 		*oid = vap->va_nodeid;
520 		flag |= IS_REPLAY;
521 		now = vap->va_ctime;		/* see zfs_replay_create() */
522 		gen = vap->va_nblocks;		/* ditto */
523 	} else {
524 		*oid = 0;
525 		gethrestime(&now);
526 		gen = dmu_tx_get_txg(tx);
527 	}
528 
529 	/*
530 	 * Create a new DMU object.
531 	 */
532 	/*
533 	 * There's currently no mechanism for pre-reading the blocks that will
534 	 * be to needed allocate a new object, so we accept the small chance
535 	 * that there will be an i/o error and we will fail one of the
536 	 * assertions below.
537 	 */
538 	if (vap->va_type == VDIR) {
539 		if (flag & IS_REPLAY) {
540 			err = zap_create_claim(zfsvfs->z_os, *oid,
541 			    DMU_OT_DIRECTORY_CONTENTS,
542 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
543 			ASSERT3U(err, ==, 0);
544 		} else {
545 			*oid = zap_create(zfsvfs->z_os,
546 			    DMU_OT_DIRECTORY_CONTENTS,
547 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
548 		}
549 	} else {
550 		if (flag & IS_REPLAY) {
551 			err = dmu_object_claim(zfsvfs->z_os, *oid,
552 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
553 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
554 			ASSERT3U(err, ==, 0);
555 		} else {
556 			*oid = dmu_object_alloc(zfsvfs->z_os,
557 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
558 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
559 		}
560 	}
561 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp));
562 	dmu_buf_will_dirty(dbp, tx);
563 
564 	/*
565 	 * Initialize the znode physical data to zero.
566 	 */
567 	ASSERT(dbp->db_size >= sizeof (znode_phys_t));
568 	bzero(dbp->db_data, dbp->db_size);
569 	pzp = dbp->db_data;
570 
571 	/*
572 	 * If this is the root, fix up the half-initialized parent pointer
573 	 * to reference the just-allocated physical data area.
574 	 */
575 	if (flag & IS_ROOT_NODE) {
576 		dzp->z_phys = pzp;
577 		dzp->z_id = *oid;
578 	}
579 
580 	/*
581 	 * If parent is an xattr, so am I.
582 	 */
583 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
584 		flag |= IS_XATTR;
585 
586 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
587 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
588 	}
589 
590 	if (vap->va_type == VDIR) {
591 		pzp->zp_size = 2;		/* contents ("." and "..") */
592 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
593 	}
594 
595 	pzp->zp_parent = dzp->z_id;
596 	if (flag & IS_XATTR)
597 		pzp->zp_flags |= ZFS_XATTR;
598 
599 	pzp->zp_gen = gen;
600 
601 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
602 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
603 
604 	if (vap->va_mask & AT_ATIME) {
605 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
606 	} else {
607 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
608 	}
609 
610 	if (vap->va_mask & AT_MTIME) {
611 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
612 	} else {
613 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
614 	}
615 
616 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
617 	zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0);
618 
619 	zfs_perm_init(zp, dzp, flag, vap, tx, cr);
620 
621 	if (zpp) {
622 		kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp);
623 
624 		mutex_enter(hash_mtx);
625 		zfs_znode_dmu_init(zp);
626 		mutex_exit(hash_mtx);
627 
628 		*zpp = zp;
629 	} else {
630 		ZTOV(zp)->v_count = 0;
631 		dmu_buf_rele(dbp, NULL);
632 		zfs_znode_free(zp);
633 	}
634 }
635 
636 int
637 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
638 {
639 	dmu_object_info_t doi;
640 	dmu_buf_t	*db;
641 	znode_t		*zp;
642 	int err;
643 
644 	*zpp = NULL;
645 
646 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
647 
648 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
649 	if (err) {
650 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
651 		return (err);
652 	}
653 
654 	dmu_object_info_from_db(db, &doi);
655 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
656 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
657 		dmu_buf_rele(db, NULL);
658 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
659 		return (EINVAL);
660 	}
661 
662 	ASSERT(db->db_object == obj_num);
663 	ASSERT(db->db_offset == -1);
664 	ASSERT(db->db_data != NULL);
665 
666 	zp = dmu_buf_get_user(db);
667 
668 	if (zp != NULL) {
669 		mutex_enter(&zp->z_lock);
670 
671 		ASSERT3U(zp->z_id, ==, obj_num);
672 		if (zp->z_unlinked) {
673 			dmu_buf_rele(db, NULL);
674 			mutex_exit(&zp->z_lock);
675 			ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
676 			return (ENOENT);
677 		} else if (zp->z_dbuf_held) {
678 			dmu_buf_rele(db, NULL);
679 		} else {
680 			zp->z_dbuf_held = 1;
681 			VFS_HOLD(zfsvfs->z_vfs);
682 		}
683 
684 
685 		VN_HOLD(ZTOV(zp));
686 		mutex_exit(&zp->z_lock);
687 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
688 		*zpp = zp;
689 		return (0);
690 	}
691 
692 	/*
693 	 * Not found create new znode/vnode
694 	 */
695 	zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size);
696 	ASSERT3U(zp->z_id, ==, obj_num);
697 	zfs_znode_dmu_init(zp);
698 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
699 	*zpp = zp;
700 	return (0);
701 }
702 
703 void
704 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
705 {
706 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
707 	int error;
708 
709 	ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id);
710 	if (zp->z_phys->zp_acl.z_acl_extern_obj) {
711 		error = dmu_object_free(zfsvfs->z_os,
712 		    zp->z_phys->zp_acl.z_acl_extern_obj, tx);
713 		ASSERT3U(error, ==, 0);
714 	}
715 	error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx);
716 	ASSERT3U(error, ==, 0);
717 	zp->z_dbuf_held = 0;
718 	ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
719 	dmu_buf_rele(zp->z_dbuf, NULL);
720 }
721 
722 void
723 zfs_zinactive(znode_t *zp)
724 {
725 	vnode_t	*vp = ZTOV(zp);
726 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
727 	uint64_t z_id = zp->z_id;
728 
729 	ASSERT(zp->z_dbuf_held && zp->z_phys);
730 
731 	/*
732 	 * Don't allow a zfs_zget() while were trying to release this znode
733 	 */
734 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
735 
736 	mutex_enter(&zp->z_lock);
737 	mutex_enter(&vp->v_lock);
738 	vp->v_count--;
739 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
740 		/*
741 		 * If the hold count is greater than zero, somebody has
742 		 * obtained a new reference on this znode while we were
743 		 * processing it here, so we are done.  If we still have
744 		 * mapped pages then we are also done, since we don't
745 		 * want to inactivate the znode until the pages get pushed.
746 		 *
747 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
748 		 * this seems like it would leave the znode hanging with
749 		 * no chance to go inactive...
750 		 */
751 		mutex_exit(&vp->v_lock);
752 		mutex_exit(&zp->z_lock);
753 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
754 		return;
755 	}
756 	mutex_exit(&vp->v_lock);
757 
758 	/*
759 	 * If this was the last reference to a file with no links,
760 	 * remove the file from the file system.
761 	 */
762 	if (zp->z_unlinked) {
763 		mutex_exit(&zp->z_lock);
764 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
765 		zfs_rmnode(zp);
766 		VFS_RELE(zfsvfs->z_vfs);
767 		return;
768 	}
769 	ASSERT(zp->z_phys);
770 	ASSERT(zp->z_dbuf_held);
771 
772 	zp->z_dbuf_held = 0;
773 	mutex_exit(&zp->z_lock);
774 	dmu_buf_rele(zp->z_dbuf, NULL);
775 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
776 	VFS_RELE(zfsvfs->z_vfs);
777 }
778 
779 void
780 zfs_znode_free(znode_t *zp)
781 {
782 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
783 
784 	mutex_enter(&zfsvfs->z_znodes_lock);
785 	list_remove(&zfsvfs->z_all_znodes, zp);
786 	mutex_exit(&zfsvfs->z_znodes_lock);
787 
788 	kmem_cache_free(znode_cache, zp);
789 }
790 
791 void
792 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
793 {
794 	timestruc_t	now;
795 
796 	ASSERT(MUTEX_HELD(&zp->z_lock));
797 
798 	gethrestime(&now);
799 
800 	if (tx) {
801 		dmu_buf_will_dirty(zp->z_dbuf, tx);
802 		zp->z_atime_dirty = 0;
803 		zp->z_seq++;
804 	} else {
805 		zp->z_atime_dirty = 1;
806 	}
807 
808 	if (flag & AT_ATIME)
809 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
810 
811 	if (flag & AT_MTIME)
812 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
813 
814 	if (flag & AT_CTIME)
815 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
816 }
817 
818 /*
819  * Update the requested znode timestamps with the current time.
820  * If we are in a transaction, then go ahead and mark the znode
821  * dirty in the transaction so the timestamps will go to disk.
822  * Otherwise, we will get pushed next time the znode is updated
823  * in a transaction, or when this znode eventually goes inactive.
824  *
825  * Why is this OK?
826  *  1 - Only the ACCESS time is ever updated outside of a transaction.
827  *  2 - Multiple consecutive updates will be collapsed into a single
828  *	znode update by the transaction grouping semantics of the DMU.
829  */
830 void
831 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
832 {
833 	mutex_enter(&zp->z_lock);
834 	zfs_time_stamper_locked(zp, flag, tx);
835 	mutex_exit(&zp->z_lock);
836 }
837 
838 /*
839  * Grow the block size for a file.
840  *
841  *	IN:	zp	- znode of file to free data in.
842  *		size	- requested block size
843  *		tx	- open transaction.
844  *
845  * NOTE: this function assumes that the znode is write locked.
846  */
847 void
848 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
849 {
850 	int		error;
851 	u_longlong_t	dummy;
852 
853 	if (size <= zp->z_blksz)
854 		return;
855 	/*
856 	 * If the file size is already greater than the current blocksize,
857 	 * we will not grow.  If there is more than one block in a file,
858 	 * the blocksize cannot change.
859 	 */
860 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
861 		return;
862 
863 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
864 	    size, 0, tx);
865 	if (error == ENOTSUP)
866 		return;
867 	ASSERT3U(error, ==, 0);
868 
869 	/* What blocksize did we actually get? */
870 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
871 }
872 
873 /*
874  * This is a dummy interface used when pvn_vplist_dirty() should *not*
875  * be calling back into the fs for a putpage().  E.g.: when truncating
876  * a file, the pages being "thrown away* don't need to be written out.
877  */
878 /* ARGSUSED */
879 static int
880 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
881     int flags, cred_t *cr)
882 {
883 	ASSERT(0);
884 	return (0);
885 }
886 
887 /*
888  * Free space in a file.
889  *
890  *	IN:	zp	- znode of file to free data in.
891  *		off	- start of section to free.
892  *		len	- length of section to free (0 => to EOF).
893  *		flag	- current file open mode flags.
894  *
895  * 	RETURN:	0 if success
896  *		error code if failure
897  */
898 int
899 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
900 {
901 	vnode_t *vp = ZTOV(zp);
902 	dmu_tx_t *tx;
903 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
904 	zilog_t *zilog = zfsvfs->z_log;
905 	rl_t *rl;
906 	uint64_t end = off + len;
907 	uint64_t size, new_blksz;
908 	int error;
909 
910 	if (ZTOV(zp)->v_type == VFIFO)
911 		return (0);
912 
913 	/*
914 	 * If we will change zp_size then lock the whole file,
915 	 * otherwise just lock the range being freed.
916 	 */
917 	if (len == 0 || off + len > zp->z_phys->zp_size) {
918 		rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
919 	} else {
920 		rl = zfs_range_lock(zp, off, len, RL_WRITER);
921 		/* recheck, in case zp_size changed */
922 		if (off + len > zp->z_phys->zp_size) {
923 			/* lost race: file size changed, lock whole file */
924 			zfs_range_unlock(rl);
925 			rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
926 		}
927 	}
928 
929 	/*
930 	 * Nothing to do if file already at desired length.
931 	 */
932 	size = zp->z_phys->zp_size;
933 	if (len == 0 && size == off) {
934 		zfs_range_unlock(rl);
935 		return (0);
936 	}
937 
938 	/*
939 	 * Check for any locks in the region to be freed.
940 	 */
941 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
942 		uint64_t start = off;
943 		uint64_t extent = len;
944 
945 		if (off > size) {
946 			start = size;
947 			extent += off - size;
948 		} else if (len == 0) {
949 			extent = size - off;
950 		}
951 		if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) {
952 			zfs_range_unlock(rl);
953 			return (error);
954 		}
955 	}
956 
957 	tx = dmu_tx_create(zfsvfs->z_os);
958 	dmu_tx_hold_bonus(tx, zp->z_id);
959 	new_blksz = 0;
960 	if (end > size &&
961 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
962 		/*
963 		 * We are growing the file past the current block size.
964 		 */
965 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
966 			ASSERT(!ISP2(zp->z_blksz));
967 			new_blksz = MIN(end, SPA_MAXBLOCKSIZE);
968 		} else {
969 			new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
970 		}
971 		dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz));
972 	} else if (off < size) {
973 		/*
974 		 * If len == 0, we are truncating the file.
975 		 */
976 		dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
977 	}
978 
979 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
980 	if (error) {
981 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT)
982 			dmu_tx_wait(tx);
983 		dmu_tx_abort(tx);
984 		zfs_range_unlock(rl);
985 		return (error);
986 	}
987 
988 	if (new_blksz)
989 		zfs_grow_blocksize(zp, new_blksz, tx);
990 
991 	if (end > size || len == 0)
992 		zp->z_phys->zp_size = end;
993 
994 	if (off < size) {
995 		objset_t *os = zfsvfs->z_os;
996 		uint64_t rlen = len;
997 
998 		if (len == 0)
999 			rlen = -1;
1000 		else if (end > size)
1001 			rlen = size - off;
1002 		VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx));
1003 	}
1004 
1005 	if (log) {
1006 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1007 		zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1008 	}
1009 
1010 	zfs_range_unlock(rl);
1011 
1012 	dmu_tx_commit(tx);
1013 
1014 	/*
1015 	 * Clear any mapped pages in the truncated region.  This has to
1016 	 * happen outside of the transaction to avoid the possibility of
1017 	 * a deadlock with someone trying to push a page that we are
1018 	 * about to invalidate.
1019 	 */
1020 	rw_enter(&zp->z_map_lock, RW_WRITER);
1021 	if (off < size && vn_has_cached_data(vp)) {
1022 		page_t *pp;
1023 		uint64_t start = off & PAGEMASK;
1024 		int poff = off & PAGEOFFSET;
1025 
1026 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1027 			/*
1028 			 * We need to zero a partial page.
1029 			 */
1030 			pagezero(pp, poff, PAGESIZE - poff);
1031 			start += PAGESIZE;
1032 			page_unlock(pp);
1033 		}
1034 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1035 		    B_INVAL | B_TRUNC, NULL);
1036 		ASSERT(error == 0);
1037 	}
1038 	rw_exit(&zp->z_map_lock);
1039 
1040 	return (0);
1041 }
1042 
1043 void
1044 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx)
1045 {
1046 	zfsvfs_t	zfsvfs;
1047 	uint64_t	moid, doid, roid = 0;
1048 	uint64_t	version = ZPL_VERSION;
1049 	int		error;
1050 	znode_t		*rootzp = NULL;
1051 	vnode_t		*vp;
1052 	vattr_t		vattr;
1053 
1054 	/*
1055 	 * First attempt to create master node.
1056 	 */
1057 	/*
1058 	 * In an empty objset, there are no blocks to read and thus
1059 	 * there can be no i/o errors (which we assert below).
1060 	 */
1061 	moid = MASTER_NODE_OBJ;
1062 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1063 	    DMU_OT_NONE, 0, tx);
1064 	ASSERT(error == 0);
1065 
1066 	/*
1067 	 * Set starting attributes.
1068 	 */
1069 
1070 	error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx);
1071 	ASSERT(error == 0);
1072 
1073 	/*
1074 	 * Create a delete queue.
1075 	 */
1076 	doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1077 
1078 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx);
1079 	ASSERT(error == 0);
1080 
1081 	/*
1082 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1083 	 * to allow zfs_mknode to work.
1084 	 */
1085 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1086 	vattr.va_type = VDIR;
1087 	vattr.va_mode = S_IFDIR|0755;
1088 	vattr.va_uid = 0;
1089 	vattr.va_gid = 3;
1090 
1091 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1092 	rootzp->z_zfsvfs = &zfsvfs;
1093 	rootzp->z_unlinked = 0;
1094 	rootzp->z_atime_dirty = 0;
1095 	rootzp->z_dbuf_held = 0;
1096 
1097 	vp = ZTOV(rootzp);
1098 	vn_reinit(vp);
1099 	vp->v_type = VDIR;
1100 
1101 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1102 
1103 	zfsvfs.z_os = os;
1104 	zfsvfs.z_assign = TXG_NOWAIT;
1105 	zfsvfs.z_parent = &zfsvfs;
1106 
1107 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1108 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1109 	    offsetof(znode_t, z_link_node));
1110 
1111 	zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0);
1112 	ASSERT3U(rootzp->z_id, ==, roid);
1113 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx);
1114 	ASSERT(error == 0);
1115 
1116 	ZTOV(rootzp)->v_count = 0;
1117 	kmem_cache_free(znode_cache, rootzp);
1118 }
1119 #endif /* _KERNEL */
1120 
1121 /*
1122  * Given an object number, return its parent object number and whether
1123  * or not the object is an extended attribute directory.
1124  */
1125 static int
1126 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1127 {
1128 	dmu_buf_t *db;
1129 	dmu_object_info_t doi;
1130 	znode_phys_t *zp;
1131 	int error;
1132 
1133 	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1134 		return (error);
1135 
1136 	dmu_object_info_from_db(db, &doi);
1137 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1138 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1139 		dmu_buf_rele(db, FTAG);
1140 		return (EINVAL);
1141 	}
1142 
1143 	zp = db->db_data;
1144 	*pobjp = zp->zp_parent;
1145 	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1146 	    S_ISDIR(zp->zp_mode);
1147 	dmu_buf_rele(db, FTAG);
1148 
1149 	return (0);
1150 }
1151 
1152 int
1153 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1154 {
1155 	char *path = buf + len - 1;
1156 	int error;
1157 
1158 	*path = '\0';
1159 
1160 	for (;;) {
1161 		uint64_t pobj;
1162 		char component[MAXNAMELEN + 2];
1163 		size_t complen;
1164 		int is_xattrdir;
1165 
1166 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1167 		    &is_xattrdir)) != 0)
1168 			break;
1169 
1170 		if (pobj == obj) {
1171 			if (path[0] != '/')
1172 				*--path = '/';
1173 			break;
1174 		}
1175 
1176 		component[0] = '/';
1177 		if (is_xattrdir) {
1178 			(void) sprintf(component + 1, "<xattrdir>");
1179 		} else {
1180 			error = zap_value_search(osp, pobj, obj, component + 1);
1181 			if (error != 0)
1182 				break;
1183 		}
1184 
1185 		complen = strlen(component);
1186 		path -= complen;
1187 		ASSERT(path >= buf);
1188 		bcopy(component, path, complen);
1189 		obj = pobj;
1190 	}
1191 
1192 	if (error == 0)
1193 		(void) memmove(buf, path, buf + len - path);
1194 	return (error);
1195 }
1196