xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 5ad820458efd0fdb914baff9c1447c22b819fa23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/mntent.h>
35 #include <sys/mkdev.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/cmn_err.h>
41 #include <sys/errno.h>
42 #include <sys/unistd.h>
43 #include <sys/stat.h>
44 #include <sys/mode.h>
45 #include <sys/atomic.h>
46 #include <vm/pvn.h>
47 #include "fs/fs_subr.h"
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zfs_rlock.h>
53 #include <sys/zap.h>
54 #include <sys/dmu.h>
55 #include <sys/fs/zfs.h>
56 
57 struct kmem_cache *znode_cache = NULL;
58 
59 /*ARGSUSED*/
60 static void
61 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr)
62 {
63 	znode_t *zp = user_ptr;
64 	vnode_t *vp = ZTOV(zp);
65 
66 	mutex_enter(&zp->z_lock);
67 	if (vp->v_count == 0) {
68 		mutex_exit(&zp->z_lock);
69 		vn_invalid(vp);
70 		zfs_znode_free(zp);
71 	} else {
72 		/* signal force unmount that this znode can be freed */
73 		zp->z_dbuf = NULL;
74 		mutex_exit(&zp->z_lock);
75 	}
76 }
77 
78 /*ARGSUSED*/
79 static int
80 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags)
81 {
82 	znode_t *zp = buf;
83 
84 	zp->z_vnode = vn_alloc(KM_SLEEP);
85 	zp->z_vnode->v_data = (caddr_t)zp;
86 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
87 	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
88 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
89 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
90 
91 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
92 	avl_create(&zp->z_range_avl, zfs_range_compare,
93 	    sizeof (rl_t), offsetof(rl_t, r_node));
94 
95 	zp->z_dbuf_held = 0;
96 	zp->z_dirlocks = 0;
97 	return (0);
98 }
99 
100 /*ARGSUSED*/
101 static void
102 zfs_znode_cache_destructor(void *buf, void *cdarg)
103 {
104 	znode_t *zp = buf;
105 
106 	ASSERT(zp->z_dirlocks == 0);
107 	mutex_destroy(&zp->z_lock);
108 	rw_destroy(&zp->z_map_lock);
109 	rw_destroy(&zp->z_parent_lock);
110 	mutex_destroy(&zp->z_acl_lock);
111 	avl_destroy(&zp->z_range_avl);
112 
113 	ASSERT(zp->z_dbuf_held == 0);
114 	ASSERT(ZTOV(zp)->v_count == 0);
115 	vn_free(ZTOV(zp));
116 }
117 
118 void
119 zfs_znode_init(void)
120 {
121 	/*
122 	 * Initialize zcache
123 	 */
124 	ASSERT(znode_cache == NULL);
125 	znode_cache = kmem_cache_create("zfs_znode_cache",
126 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
127 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
128 }
129 
130 void
131 zfs_znode_fini(void)
132 {
133 	/*
134 	 * Cleanup vfs & vnode ops
135 	 */
136 	zfs_remove_op_tables();
137 
138 	/*
139 	 * Cleanup zcache
140 	 */
141 	if (znode_cache)
142 		kmem_cache_destroy(znode_cache);
143 	znode_cache = NULL;
144 }
145 
146 struct vnodeops *zfs_dvnodeops;
147 struct vnodeops *zfs_fvnodeops;
148 struct vnodeops *zfs_symvnodeops;
149 struct vnodeops *zfs_xdvnodeops;
150 struct vnodeops *zfs_evnodeops;
151 
152 void
153 zfs_remove_op_tables()
154 {
155 	/*
156 	 * Remove vfs ops
157 	 */
158 	ASSERT(zfsfstype);
159 	(void) vfs_freevfsops_by_type(zfsfstype);
160 	zfsfstype = 0;
161 
162 	/*
163 	 * Remove vnode ops
164 	 */
165 	if (zfs_dvnodeops)
166 		vn_freevnodeops(zfs_dvnodeops);
167 	if (zfs_fvnodeops)
168 		vn_freevnodeops(zfs_fvnodeops);
169 	if (zfs_symvnodeops)
170 		vn_freevnodeops(zfs_symvnodeops);
171 	if (zfs_xdvnodeops)
172 		vn_freevnodeops(zfs_xdvnodeops);
173 	if (zfs_evnodeops)
174 		vn_freevnodeops(zfs_evnodeops);
175 
176 	zfs_dvnodeops = NULL;
177 	zfs_fvnodeops = NULL;
178 	zfs_symvnodeops = NULL;
179 	zfs_xdvnodeops = NULL;
180 	zfs_evnodeops = NULL;
181 }
182 
183 extern const fs_operation_def_t zfs_dvnodeops_template[];
184 extern const fs_operation_def_t zfs_fvnodeops_template[];
185 extern const fs_operation_def_t zfs_xdvnodeops_template[];
186 extern const fs_operation_def_t zfs_symvnodeops_template[];
187 extern const fs_operation_def_t zfs_evnodeops_template[];
188 
189 int
190 zfs_create_op_tables()
191 {
192 	int error;
193 
194 	/*
195 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
196 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
197 	 * In this case we just return as the ops vectors are already set up.
198 	 */
199 	if (zfs_dvnodeops)
200 		return (0);
201 
202 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
203 	    &zfs_dvnodeops);
204 	if (error)
205 		return (error);
206 
207 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
208 	    &zfs_fvnodeops);
209 	if (error)
210 		return (error);
211 
212 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
213 	    &zfs_symvnodeops);
214 	if (error)
215 		return (error);
216 
217 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
218 	    &zfs_xdvnodeops);
219 	if (error)
220 		return (error);
221 
222 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
223 	    &zfs_evnodeops);
224 
225 	return (error);
226 }
227 
228 /*
229  * zfs_init_fs - Initialize the zfsvfs struct and the file system
230  *	incore "master" object.  Verify version compatibility.
231  */
232 int
233 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
234 {
235 	extern int zfsfstype;
236 
237 	objset_t	*os = zfsvfs->z_os;
238 	uint64_t	zoid;
239 	uint64_t	version = ZPL_VERSION;
240 	int		i, error;
241 	dmu_object_info_t doi;
242 	dmu_objset_stats_t *stats;
243 
244 	*zpp = NULL;
245 
246 	/*
247 	 * XXX - hack to auto-create the pool root filesystem at
248 	 * the first attempted mount.
249 	 */
250 	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
251 		dmu_tx_t *tx = dmu_tx_create(os);
252 
253 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */
254 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */
255 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
256 		error = dmu_tx_assign(tx, TXG_WAIT);
257 		ASSERT3U(error, ==, 0);
258 		zfs_create_fs(os, cr, tx);
259 		dmu_tx_commit(tx);
260 	}
261 
262 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1,
263 	    &version);
264 	if (error) {
265 		return (error);
266 	} else if (version != ZPL_VERSION) {
267 		(void) printf("Mismatched versions:  File system "
268 		    "is version %lld on-disk format, which is "
269 		    "incompatible with this software version %lld!",
270 		    (u_longlong_t)version, ZPL_VERSION);
271 		return (ENOTSUP);
272 	}
273 
274 	/*
275 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
276 	 * separates our fsid from any other filesystem types, and a
277 	 * 56-bit objset unique ID.  The objset unique ID is unique to
278 	 * all objsets open on this system, provided by unique_create().
279 	 * The 8-bit fs type must be put in the low bits of fsid[1]
280 	 * because that's where other Solaris filesystems put it.
281 	 */
282 	stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP);
283 	dmu_objset_stats(os, stats);
284 	ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0);
285 	zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid;
286 	zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) |
287 	    zfsfstype & 0xFF;
288 	kmem_free(stats, sizeof (dmu_objset_stats_t));
289 	stats = NULL;
290 
291 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid);
292 	if (error)
293 		return (error);
294 	ASSERT(zoid != 0);
295 	zfsvfs->z_root = zoid;
296 
297 	/*
298 	 * Create the per mount vop tables.
299 	 */
300 
301 	/*
302 	 * Initialize zget mutex's
303 	 */
304 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
305 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
306 
307 	error = zfs_zget(zfsvfs, zoid, zpp);
308 	if (error)
309 		return (error);
310 	ASSERT3U((*zpp)->z_id, ==, zoid);
311 
312 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid);
313 	if (error)
314 		return (error);
315 
316 	zfsvfs->z_dqueue = zoid;
317 
318 	/*
319 	 * Initialize delete head structure
320 	 * Thread(s) will be started/stopped via
321 	 * readonly_changed_cb() depending
322 	 * on whether this is rw/ro mount.
323 	 */
324 	list_create(&zfsvfs->z_delete_head.z_znodes,
325 	    sizeof (znode_t), offsetof(znode_t, z_list_node));
326 	/* Mutex never destroyed. */
327 	mutex_init(&zfsvfs->z_delete_head.z_mutex, NULL, MUTEX_DEFAULT, NULL);
328 
329 	return (0);
330 }
331 
332 /*
333  * define a couple of values we need available
334  * for both 64 and 32 bit environments.
335  */
336 #ifndef NBITSMINOR64
337 #define	NBITSMINOR64	32
338 #endif
339 #ifndef MAXMAJ64
340 #define	MAXMAJ64	0xffffffffUL
341 #endif
342 #ifndef	MAXMIN64
343 #define	MAXMIN64	0xffffffffUL
344 #endif
345 
346 /*
347  * Create special expldev for ZFS private use.
348  * Can't use standard expldev since it doesn't do
349  * what we want.  The standard expldev() takes a
350  * dev32_t in LP64 and expands it to a long dev_t.
351  * We need an interface that takes a dev32_t in ILP32
352  * and expands it to a long dev_t.
353  */
354 static uint64_t
355 zfs_expldev(dev_t dev)
356 {
357 #ifndef _LP64
358 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
359 	return (((uint64_t)major << NBITSMINOR64) |
360 	    ((minor_t)dev & MAXMIN32));
361 #else
362 	return (dev);
363 #endif
364 }
365 
366 /*
367  * Special cmpldev for ZFS private use.
368  * Can't use standard cmpldev since it takes
369  * a long dev_t and compresses it to dev32_t in
370  * LP64.  We need to do a compaction of a long dev_t
371  * to a dev32_t in ILP32.
372  */
373 dev_t
374 zfs_cmpldev(uint64_t dev)
375 {
376 #ifndef _LP64
377 	minor_t minor = (minor_t)dev & MAXMIN64;
378 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
379 
380 	if (major > MAXMAJ32 || minor > MAXMIN32)
381 		return (NODEV32);
382 
383 	return (((dev32_t)major << NBITSMINOR32) | minor);
384 #else
385 	return (dev);
386 #endif
387 }
388 
389 /*
390  * Construct a new znode/vnode and intialize.
391  *
392  * This does not do a call to dmu_set_user() that is
393  * up to the caller to do, in case you don't want to
394  * return the znode
395  */
396 static znode_t *
397 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz)
398 {
399 	znode_t	*zp;
400 	vnode_t *vp;
401 
402 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
403 
404 	ASSERT(zp->z_dirlocks == NULL);
405 
406 	zp->z_phys = db->db_data;
407 	zp->z_zfsvfs = zfsvfs;
408 	zp->z_reap = 0;
409 	zp->z_atime_dirty = 0;
410 	zp->z_dbuf_held = 0;
411 	zp->z_mapcnt = 0;
412 	zp->z_last_itx = 0;
413 	zp->z_dbuf = db;
414 	zp->z_id = obj_num;
415 	zp->z_blksz = blksz;
416 	zp->z_seq = 0x7A4653;
417 
418 	mutex_enter(&zfsvfs->z_znodes_lock);
419 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
420 	mutex_exit(&zfsvfs->z_znodes_lock);
421 
422 	vp = ZTOV(zp);
423 	vn_reinit(vp);
424 
425 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
426 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
427 
428 	switch (vp->v_type) {
429 	case VDIR:
430 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
431 			vn_setops(vp, zfs_xdvnodeops);
432 			vp->v_flag |= V_XATTRDIR;
433 		} else
434 			vn_setops(vp, zfs_dvnodeops);
435 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
436 		break;
437 	case VBLK:
438 	case VCHR:
439 		vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
440 		/*FALLTHROUGH*/
441 	case VFIFO:
442 	case VSOCK:
443 	case VDOOR:
444 		vn_setops(vp, zfs_fvnodeops);
445 		break;
446 	case VREG:
447 		vp->v_flag |= VMODSORT;
448 		vn_setops(vp, zfs_fvnodeops);
449 		break;
450 	case VLNK:
451 		vn_setops(vp, zfs_symvnodeops);
452 		break;
453 	default:
454 		vn_setops(vp, zfs_evnodeops);
455 		break;
456 	}
457 
458 	return (zp);
459 }
460 
461 static void
462 zfs_znode_dmu_init(znode_t *zp)
463 {
464 	znode_t		*nzp;
465 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
466 	dmu_buf_t	*db = zp->z_dbuf;
467 
468 	mutex_enter(&zp->z_lock);
469 
470 	nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func);
471 
472 	/*
473 	 * there should be no
474 	 * concurrent zgets on this object.
475 	 */
476 	ASSERT3P(nzp, ==, NULL);
477 
478 	/*
479 	 * Slap on VROOT if we are the root znode
480 	 */
481 	if (zp->z_id == zfsvfs->z_root) {
482 		ZTOV(zp)->v_flag |= VROOT;
483 	}
484 
485 	ASSERT(zp->z_dbuf_held == 0);
486 	zp->z_dbuf_held = 1;
487 	VFS_HOLD(zfsvfs->z_vfs);
488 	mutex_exit(&zp->z_lock);
489 	vn_exists(ZTOV(zp));
490 }
491 
492 /*
493  * Create a new DMU object to hold a zfs znode.
494  *
495  *	IN:	dzp	- parent directory for new znode
496  *		vap	- file attributes for new znode
497  *		tx	- dmu transaction id for zap operations
498  *		cr	- credentials of caller
499  *		flag	- flags:
500  *			  IS_ROOT_NODE	- new object will be root
501  *			  IS_XATTR	- new object is an attribute
502  *			  IS_REPLAY	- intent log replay
503  *
504  *	OUT:	oid	- ID of created object
505  *
506  */
507 void
508 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr,
509 	uint_t flag, znode_t **zpp, int bonuslen)
510 {
511 	dmu_buf_t	*dbp;
512 	znode_phys_t	*pzp;
513 	znode_t		*zp;
514 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
515 	timestruc_t	now;
516 	uint64_t	gen;
517 	int		err;
518 
519 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
520 
521 	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
522 		*oid = vap->va_nodeid;
523 		flag |= IS_REPLAY;
524 		now = vap->va_ctime;		/* see zfs_replay_create() */
525 		gen = vap->va_nblocks;		/* ditto */
526 	} else {
527 		*oid = 0;
528 		gethrestime(&now);
529 		gen = dmu_tx_get_txg(tx);
530 	}
531 
532 	/*
533 	 * Create a new DMU object.
534 	 */
535 	/*
536 	 * There's currently no mechanism for pre-reading the blocks that will
537 	 * be to needed allocate a new object, so we accept the small chance
538 	 * that there will be an i/o error and we will fail one of the
539 	 * assertions below.
540 	 */
541 	if (vap->va_type == VDIR) {
542 		if (flag & IS_REPLAY) {
543 			err = zap_create_claim(zfsvfs->z_os, *oid,
544 			    DMU_OT_DIRECTORY_CONTENTS,
545 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
546 			ASSERT3U(err, ==, 0);
547 		} else {
548 			*oid = zap_create(zfsvfs->z_os,
549 			    DMU_OT_DIRECTORY_CONTENTS,
550 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
551 		}
552 	} else {
553 		if (flag & IS_REPLAY) {
554 			err = dmu_object_claim(zfsvfs->z_os, *oid,
555 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
556 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
557 			ASSERT3U(err, ==, 0);
558 		} else {
559 			*oid = dmu_object_alloc(zfsvfs->z_os,
560 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
561 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
562 		}
563 	}
564 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp));
565 	dmu_buf_will_dirty(dbp, tx);
566 
567 	/*
568 	 * Initialize the znode physical data to zero.
569 	 */
570 	ASSERT(dbp->db_size >= sizeof (znode_phys_t));
571 	bzero(dbp->db_data, dbp->db_size);
572 	pzp = dbp->db_data;
573 
574 	/*
575 	 * If this is the root, fix up the half-initialized parent pointer
576 	 * to reference the just-allocated physical data area.
577 	 */
578 	if (flag & IS_ROOT_NODE) {
579 		dzp->z_phys = pzp;
580 		dzp->z_id = *oid;
581 	}
582 
583 	/*
584 	 * If parent is an xattr, so am I.
585 	 */
586 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
587 		flag |= IS_XATTR;
588 
589 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
590 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
591 	}
592 
593 	if (vap->va_type == VDIR) {
594 		pzp->zp_size = 2;		/* contents ("." and "..") */
595 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
596 	}
597 
598 	pzp->zp_parent = dzp->z_id;
599 	if (flag & IS_XATTR)
600 		pzp->zp_flags |= ZFS_XATTR;
601 
602 	pzp->zp_gen = gen;
603 
604 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
605 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
606 
607 	if (vap->va_mask & AT_ATIME) {
608 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
609 	} else {
610 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
611 	}
612 
613 	if (vap->va_mask & AT_MTIME) {
614 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
615 	} else {
616 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
617 	}
618 
619 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
620 	zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0);
621 
622 	zfs_perm_init(zp, dzp, flag, vap, tx, cr);
623 
624 	if (zpp) {
625 		kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp);
626 
627 		mutex_enter(hash_mtx);
628 		zfs_znode_dmu_init(zp);
629 		mutex_exit(hash_mtx);
630 
631 		*zpp = zp;
632 	} else {
633 		ZTOV(zp)->v_count = 0;
634 		dmu_buf_rele(dbp, NULL);
635 		zfs_znode_free(zp);
636 	}
637 }
638 
639 int
640 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
641 {
642 	dmu_object_info_t doi;
643 	dmu_buf_t	*db;
644 	znode_t		*zp;
645 	int err;
646 
647 	*zpp = NULL;
648 
649 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
650 
651 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
652 	if (err) {
653 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
654 		return (err);
655 	}
656 
657 	dmu_object_info_from_db(db, &doi);
658 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
659 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
660 		dmu_buf_rele(db, NULL);
661 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
662 		return (EINVAL);
663 	}
664 
665 	ASSERT(db->db_object == obj_num);
666 	ASSERT(db->db_offset == -1);
667 	ASSERT(db->db_data != NULL);
668 
669 	zp = dmu_buf_get_user(db);
670 
671 	if (zp != NULL) {
672 		mutex_enter(&zp->z_lock);
673 
674 		ASSERT3U(zp->z_id, ==, obj_num);
675 		if (zp->z_reap) {
676 			dmu_buf_rele(db, NULL);
677 			mutex_exit(&zp->z_lock);
678 			ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
679 			return (ENOENT);
680 		} else if (zp->z_dbuf_held) {
681 			dmu_buf_rele(db, NULL);
682 		} else {
683 			zp->z_dbuf_held = 1;
684 			VFS_HOLD(zfsvfs->z_vfs);
685 		}
686 
687 
688 		VN_HOLD(ZTOV(zp));
689 		mutex_exit(&zp->z_lock);
690 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
691 		*zpp = zp;
692 		return (0);
693 	}
694 
695 	/*
696 	 * Not found create new znode/vnode
697 	 */
698 	zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size);
699 	ASSERT3U(zp->z_id, ==, obj_num);
700 	zfs_znode_dmu_init(zp);
701 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
702 	*zpp = zp;
703 	return (0);
704 }
705 
706 void
707 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
708 {
709 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
710 	int error;
711 
712 	ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id);
713 	if (zp->z_phys->zp_acl.z_acl_extern_obj) {
714 		error = dmu_object_free(zfsvfs->z_os,
715 		    zp->z_phys->zp_acl.z_acl_extern_obj, tx);
716 		ASSERT3U(error, ==, 0);
717 	}
718 	error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx);
719 	ASSERT3U(error, ==, 0);
720 	zp->z_dbuf_held = 0;
721 	ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
722 	dmu_buf_rele(zp->z_dbuf, NULL);
723 }
724 
725 void
726 zfs_zinactive(znode_t *zp)
727 {
728 	vnode_t	*vp = ZTOV(zp);
729 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
730 	uint64_t z_id = zp->z_id;
731 
732 	ASSERT(zp->z_dbuf_held && zp->z_phys);
733 
734 	/*
735 	 * Don't allow a zfs_zget() while were trying to release this znode
736 	 */
737 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
738 
739 	mutex_enter(&zp->z_lock);
740 	mutex_enter(&vp->v_lock);
741 	vp->v_count--;
742 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
743 		/*
744 		 * If the hold count is greater than zero, somebody has
745 		 * obtained a new reference on this znode while we were
746 		 * processing it here, so we are done.  If we still have
747 		 * mapped pages then we are also done, since we don't
748 		 * want to inactivate the znode until the pages get pushed.
749 		 *
750 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
751 		 * this seems like it would leave the znode hanging with
752 		 * no chance to go inactive...
753 		 */
754 		mutex_exit(&vp->v_lock);
755 		mutex_exit(&zp->z_lock);
756 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
757 		return;
758 	}
759 	mutex_exit(&vp->v_lock);
760 
761 	/*
762 	 * If this was the last reference to a file with no links,
763 	 * remove the file from the file system.
764 	 */
765 	if (zp->z_reap) {
766 		mutex_exit(&zp->z_lock);
767 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
768 		/* XATTR files are not put on the delete queue */
769 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
770 			zfs_rmnode(zp);
771 		} else {
772 			mutex_enter(&zfsvfs->z_delete_head.z_mutex);
773 			list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp);
774 			zfsvfs->z_delete_head.z_znode_count++;
775 			cv_broadcast(&zfsvfs->z_delete_head.z_cv);
776 			mutex_exit(&zfsvfs->z_delete_head.z_mutex);
777 		}
778 		VFS_RELE(zfsvfs->z_vfs);
779 		return;
780 	}
781 	ASSERT(zp->z_phys);
782 	ASSERT(zp->z_dbuf_held);
783 
784 	zp->z_dbuf_held = 0;
785 	mutex_exit(&zp->z_lock);
786 	dmu_buf_rele(zp->z_dbuf, NULL);
787 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
788 	VFS_RELE(zfsvfs->z_vfs);
789 }
790 
791 void
792 zfs_znode_free(znode_t *zp)
793 {
794 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
795 
796 	mutex_enter(&zfsvfs->z_znodes_lock);
797 	list_remove(&zfsvfs->z_all_znodes, zp);
798 	mutex_exit(&zfsvfs->z_znodes_lock);
799 
800 	kmem_cache_free(znode_cache, zp);
801 }
802 
803 void
804 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
805 {
806 	timestruc_t	now;
807 
808 	ASSERT(MUTEX_HELD(&zp->z_lock));
809 
810 	gethrestime(&now);
811 
812 	if (tx) {
813 		dmu_buf_will_dirty(zp->z_dbuf, tx);
814 		zp->z_atime_dirty = 0;
815 		zp->z_seq++;
816 	} else {
817 		zp->z_atime_dirty = 1;
818 	}
819 
820 	if (flag & AT_ATIME)
821 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
822 
823 	if (flag & AT_MTIME)
824 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
825 
826 	if (flag & AT_CTIME)
827 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
828 }
829 
830 /*
831  * Update the requested znode timestamps with the current time.
832  * If we are in a transaction, then go ahead and mark the znode
833  * dirty in the transaction so the timestamps will go to disk.
834  * Otherwise, we will get pushed next time the znode is updated
835  * in a transaction, or when this znode eventually goes inactive.
836  *
837  * Why is this OK?
838  *  1 - Only the ACCESS time is ever updated outside of a transaction.
839  *  2 - Multiple consecutive updates will be collapsed into a single
840  *	znode update by the transaction grouping semantics of the DMU.
841  */
842 void
843 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
844 {
845 	mutex_enter(&zp->z_lock);
846 	zfs_time_stamper_locked(zp, flag, tx);
847 	mutex_exit(&zp->z_lock);
848 }
849 
850 /*
851  * Grow the block size for a file.
852  *
853  *	IN:	zp	- znode of file to free data in.
854  *		size	- requested block size
855  *		tx	- open transaction.
856  *
857  * NOTE: this function assumes that the znode is write locked.
858  */
859 void
860 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
861 {
862 	int		error;
863 	u_longlong_t	dummy;
864 
865 	if (size <= zp->z_blksz)
866 		return;
867 	/*
868 	 * If the file size is already greater than the current blocksize,
869 	 * we will not grow.  If there is more than one block in a file,
870 	 * the blocksize cannot change.
871 	 */
872 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
873 		return;
874 
875 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
876 	    size, 0, tx);
877 	if (error == ENOTSUP)
878 		return;
879 	ASSERT3U(error, ==, 0);
880 
881 	/* What blocksize did we actually get? */
882 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
883 }
884 
885 /*
886  * This is a dummy interface used when pvn_vplist_dirty() should *not*
887  * be calling back into the fs for a putpage().  E.g.: when truncating
888  * a file, the pages being "thrown away* don't need to be written out.
889  */
890 /* ARGSUSED */
891 static int
892 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
893     int flags, cred_t *cr)
894 {
895 	ASSERT(0);
896 	return (0);
897 }
898 
899 /*
900  * Free space in a file.
901  *
902  *	IN:	zp	- znode of file to free data in.
903  *		off	- start of section to free.
904  *		len	- length of section to free (0 => to EOF).
905  *		flag	- current file open mode flags.
906  *
907  * 	RETURN:	0 if success
908  *		error code if failure
909  */
910 int
911 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
912 {
913 	vnode_t *vp = ZTOV(zp);
914 	dmu_tx_t *tx;
915 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
916 	zilog_t *zilog = zfsvfs->z_log;
917 	rl_t *rl;
918 	uint64_t end = off + len;
919 	uint64_t size, new_blksz;
920 	int error;
921 
922 	if (ZTOV(zp)->v_type == VFIFO)
923 		return (0);
924 
925 	/*
926 	 * If we will change zp_size then lock the whole file,
927 	 * otherwise just lock the range being freed.
928 	 */
929 	if (len == 0 || off + len > zp->z_phys->zp_size) {
930 		rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
931 	} else {
932 		rl = zfs_range_lock(zp, off, len, RL_WRITER);
933 		/* recheck, in case zp_size changed */
934 		if (off + len > zp->z_phys->zp_size) {
935 			/* lost race: file size changed, lock whole file */
936 			zfs_range_unlock(rl);
937 			rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
938 		}
939 	}
940 
941 	/*
942 	 * Nothing to do if file already at desired length.
943 	 */
944 	size = zp->z_phys->zp_size;
945 	if (len == 0 && size == off) {
946 		zfs_range_unlock(rl);
947 		return (0);
948 	}
949 
950 	/*
951 	 * Check for any locks in the region to be freed.
952 	 */
953 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
954 		uint64_t start = off;
955 		uint64_t extent = len;
956 
957 		if (off > size) {
958 			start = size;
959 			extent += off - size;
960 		} else if (len == 0) {
961 			extent = size - off;
962 		}
963 		if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) {
964 			zfs_range_unlock(rl);
965 			return (error);
966 		}
967 	}
968 
969 	tx = dmu_tx_create(zfsvfs->z_os);
970 	dmu_tx_hold_bonus(tx, zp->z_id);
971 	new_blksz = 0;
972 	if (end > size &&
973 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
974 		/*
975 		 * We are growing the file past the current block size.
976 		 */
977 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
978 			ASSERT(!ISP2(zp->z_blksz));
979 			new_blksz = MIN(end, SPA_MAXBLOCKSIZE);
980 		} else {
981 			new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
982 		}
983 		dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz));
984 	} else if (off < size) {
985 		/*
986 		 * If len == 0, we are truncating the file.
987 		 */
988 		dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
989 	}
990 
991 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
992 	if (error) {
993 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT)
994 			dmu_tx_wait(tx);
995 		dmu_tx_abort(tx);
996 		zfs_range_unlock(rl);
997 		return (error);
998 	}
999 
1000 	if (new_blksz)
1001 		zfs_grow_blocksize(zp, new_blksz, tx);
1002 
1003 	if (end > size || len == 0)
1004 		zp->z_phys->zp_size = end;
1005 
1006 	if (off < size) {
1007 		objset_t *os = zfsvfs->z_os;
1008 		uint64_t rlen = len;
1009 
1010 		if (len == 0)
1011 			rlen = -1;
1012 		else if (end > size)
1013 			rlen = size - off;
1014 		VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx));
1015 	}
1016 
1017 	if (log) {
1018 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1019 		zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1020 	}
1021 
1022 	zfs_range_unlock(rl);
1023 
1024 	dmu_tx_commit(tx);
1025 
1026 	/*
1027 	 * Clear any mapped pages in the truncated region.  This has to
1028 	 * happen outside of the transaction to avoid the possibility of
1029 	 * a deadlock with someone trying to push a page that we are
1030 	 * about to invalidate.
1031 	 */
1032 	rw_enter(&zp->z_map_lock, RW_WRITER);
1033 	if (off < size && vn_has_cached_data(vp)) {
1034 		page_t *pp;
1035 		uint64_t start = off & PAGEMASK;
1036 		int poff = off & PAGEOFFSET;
1037 
1038 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1039 			/*
1040 			 * We need to zero a partial page.
1041 			 */
1042 			pagezero(pp, poff, PAGESIZE - poff);
1043 			start += PAGESIZE;
1044 			page_unlock(pp);
1045 		}
1046 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1047 		    B_INVAL | B_TRUNC, NULL);
1048 		ASSERT(error == 0);
1049 	}
1050 	rw_exit(&zp->z_map_lock);
1051 
1052 	return (0);
1053 }
1054 
1055 void
1056 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx)
1057 {
1058 	zfsvfs_t	zfsvfs;
1059 	uint64_t	moid, doid, roid = 0;
1060 	uint64_t	version = ZPL_VERSION;
1061 	int		error;
1062 	znode_t		*rootzp = NULL;
1063 	vnode_t		*vp;
1064 	vattr_t		vattr;
1065 
1066 	/*
1067 	 * First attempt to create master node.
1068 	 */
1069 	/*
1070 	 * In an empty objset, there are no blocks to read and thus
1071 	 * there can be no i/o errors (which we assert below).
1072 	 */
1073 	moid = MASTER_NODE_OBJ;
1074 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1075 	    DMU_OT_NONE, 0, tx);
1076 	ASSERT(error == 0);
1077 
1078 	/*
1079 	 * Set starting attributes.
1080 	 */
1081 
1082 	error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx);
1083 	ASSERT(error == 0);
1084 
1085 	/*
1086 	 * Create a delete queue.
1087 	 */
1088 	doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx);
1089 
1090 	error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx);
1091 	ASSERT(error == 0);
1092 
1093 	/*
1094 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1095 	 * to allow zfs_mknode to work.
1096 	 */
1097 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1098 	vattr.va_type = VDIR;
1099 	vattr.va_mode = S_IFDIR|0755;
1100 	vattr.va_uid = 0;
1101 	vattr.va_gid = 3;
1102 
1103 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1104 	rootzp->z_zfsvfs = &zfsvfs;
1105 	rootzp->z_reap = 0;
1106 	rootzp->z_atime_dirty = 0;
1107 	rootzp->z_dbuf_held = 0;
1108 
1109 	vp = ZTOV(rootzp);
1110 	vn_reinit(vp);
1111 	vp->v_type = VDIR;
1112 
1113 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1114 
1115 	zfsvfs.z_os = os;
1116 	zfsvfs.z_assign = TXG_NOWAIT;
1117 	zfsvfs.z_parent = &zfsvfs;
1118 
1119 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1120 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1121 	    offsetof(znode_t, z_link_node));
1122 
1123 	zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0);
1124 	ASSERT3U(rootzp->z_id, ==, roid);
1125 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx);
1126 	ASSERT(error == 0);
1127 
1128 	ZTOV(rootzp)->v_count = 0;
1129 	kmem_cache_free(znode_cache, rootzp);
1130 }
1131