xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 99189164)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2015 Joyent, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <sys/vm.h>
49 #include <vm/seg_vn.h>
50 #include <vm/pvn.h>
51 #include <vm/as.h>
52 #include <vm/kpm.h>
53 #include <vm/seg_kpm.h>
54 #include <sys/mman.h>
55 #include <sys/pathname.h>
56 #include <sys/cmn_err.h>
57 #include <sys/errno.h>
58 #include <sys/unistd.h>
59 #include <sys/zfs_dir.h>
60 #include <sys/zfs_acl.h>
61 #include <sys/zfs_ioctl.h>
62 #include <sys/fs/zfs.h>
63 #include <sys/dmu.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa.h>
66 #include <sys/txg.h>
67 #include <sys/dbuf.h>
68 #include <sys/zap.h>
69 #include <sys/sa.h>
70 #include <sys/dirent.h>
71 #include <sys/policy.h>
72 #include <sys/sunddi.h>
73 #include <sys/filio.h>
74 #include <sys/sid.h>
75 #include "fs/fs_subr.h"
76 #include <sys/zfs_ctldir.h>
77 #include <sys/zfs_fuid.h>
78 #include <sys/zfs_sa.h>
79 #include <sys/dnlc.h>
80 #include <sys/zfs_rlock.h>
81 #include <sys/extdirent.h>
82 #include <sys/kidmap.h>
83 #include <sys/cred.h>
84 #include <sys/attr.h>
85 
86 /*
87  * Programming rules.
88  *
89  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
90  * properly lock its in-core state, create a DMU transaction, do the work,
91  * record this work in the intent log (ZIL), commit the DMU transaction,
92  * and wait for the intent log to commit if it is a synchronous operation.
93  * Moreover, the vnode ops must work in both normal and log replay context.
94  * The ordering of events is important to avoid deadlocks and references
95  * to freed memory.  The example below illustrates the following Big Rules:
96  *
97  *  (1)	A check must be made in each zfs thread for a mounted file system.
98  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
99  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
100  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
101  *	can return EIO from the calling function.
102  *
103  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
104  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
105  *	First, if it's the last reference, the vnode/znode
106  *	can be freed, so the zp may point to freed memory.  Second, the last
107  *	reference will call zfs_zinactive(), which may induce a lot of work --
108  *	pushing cached pages (which acquires range locks) and syncing out
109  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
110  *	which could deadlock the system if you were already holding one.
111  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112  *
113  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
114  *	as they can span dmu_tx_assign() calls.
115  *
116  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
117  *      dmu_tx_assign().  This is critical because we don't want to block
118  *      while holding locks.
119  *
120  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
121  *	reduces lock contention and CPU usage when we must wait (note that if
122  *	throughput is constrained by the storage, nearly every transaction
123  *	must wait).
124  *
125  *      Note, in particular, that if a lock is sometimes acquired before
126  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
127  *      to use a non-blocking assign can deadlock the system.  The scenario:
128  *
129  *	Thread A has grabbed a lock before calling dmu_tx_assign().
130  *	Thread B is in an already-assigned tx, and blocks for this lock.
131  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
132  *	forever, because the previous txg can't quiesce until B's tx commits.
133  *
134  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
135  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
136  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
137  *	to indicate that this operation has already called dmu_tx_wait().
138  *	This will ensure that we don't retry forever, waiting a short bit
139  *	each time.
140  *
141  *  (5)	If the operation succeeded, generate the intent log entry for it
142  *	before dropping locks.  This ensures that the ordering of events
143  *	in the intent log matches the order in which they actually occurred.
144  *	During ZIL replay the zfs_log_* functions will update the sequence
145  *	number to indicate the zil transaction has replayed.
146  *
147  *  (6)	At the end of each vnode op, the DMU tx must always commit,
148  *	regardless of whether there were any errors.
149  *
150  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
151  *	to ensure that synchronous semantics are provided when necessary.
152  *
153  * In general, this is how things should be ordered in each vnode op:
154  *
155  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
156  * top:
157  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
158  *	rw_enter(...);			// grab any other locks you need
159  *	tx = dmu_tx_create(...);	// get DMU tx
160  *	dmu_tx_hold_*();		// hold each object you might modify
161  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
162  *	if (error) {
163  *		rw_exit(...);		// drop locks
164  *		zfs_dirent_unlock(dl);	// unlock directory entry
165  *		VN_RELE(...);		// release held vnodes
166  *		if (error == ERESTART) {
167  *			waited = B_TRUE;
168  *			dmu_tx_wait(tx);
169  *			dmu_tx_abort(tx);
170  *			goto top;
171  *		}
172  *		dmu_tx_abort(tx);	// abort DMU tx
173  *		ZFS_EXIT(zfsvfs);	// finished in zfs
174  *		return (error);		// really out of space
175  *	}
176  *	error = do_real_work();		// do whatever this VOP does
177  *	if (error == 0)
178  *		zfs_log_*(...);		// on success, make ZIL entry
179  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
180  *	rw_exit(...);			// drop locks
181  *	zfs_dirent_unlock(dl);		// unlock directory entry
182  *	VN_RELE(...);			// release held vnodes
183  *	zil_commit(zilog, foid);	// synchronous when necessary
184  *	ZFS_EXIT(zfsvfs);		// finished in zfs
185  *	return (error);			// done, report error
186  */
187 
188 /* ARGSUSED */
189 static int
190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
191 {
192 	znode_t	*zp = VTOZ(*vpp);
193 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
194 
195 	ZFS_ENTER(zfsvfs);
196 	ZFS_VERIFY_ZP(zp);
197 
198 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 	    ((flag & FAPPEND) == 0)) {
200 		ZFS_EXIT(zfsvfs);
201 		return (SET_ERROR(EPERM));
202 	}
203 
204 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
205 	    ZTOV(zp)->v_type == VREG &&
206 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 		if (fs_vscan(*vpp, cr, 0) != 0) {
208 			ZFS_EXIT(zfsvfs);
209 			return (SET_ERROR(EACCES));
210 		}
211 	}
212 
213 	/* Keep a count of the synchronous opens in the znode */
214 	if (flag & (FSYNC | FDSYNC))
215 		atomic_inc_32(&zp->z_sync_cnt);
216 
217 	ZFS_EXIT(zfsvfs);
218 	return (0);
219 }
220 
221 /* ARGSUSED */
222 static int
223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224     caller_context_t *ct)
225 {
226 	znode_t	*zp = VTOZ(vp);
227 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
228 
229 	/*
230 	 * Clean up any locks held by this process on the vp.
231 	 */
232 	cleanlocks(vp, ddi_get_pid(), 0);
233 	cleanshares(vp, ddi_get_pid());
234 
235 	ZFS_ENTER(zfsvfs);
236 	ZFS_VERIFY_ZP(zp);
237 
238 	/* Decrement the synchronous opens in the znode */
239 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
240 		atomic_dec_32(&zp->z_sync_cnt);
241 
242 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
243 	    ZTOV(zp)->v_type == VREG &&
244 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
245 		VERIFY(fs_vscan(vp, cr, 1) == 0);
246 
247 	ZFS_EXIT(zfsvfs);
248 	return (0);
249 }
250 
251 /*
252  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
253  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
254  */
255 static int
256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
257 {
258 	znode_t	*zp = VTOZ(vp);
259 	uint64_t noff = (uint64_t)*off; /* new offset */
260 	uint64_t file_sz;
261 	int error;
262 	boolean_t hole;
263 
264 	file_sz = zp->z_size;
265 	if (noff >= file_sz)  {
266 		return (SET_ERROR(ENXIO));
267 	}
268 
269 	if (cmd == _FIO_SEEK_HOLE)
270 		hole = B_TRUE;
271 	else
272 		hole = B_FALSE;
273 
274 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
275 
276 	if (error == ESRCH)
277 		return (SET_ERROR(ENXIO));
278 
279 	/*
280 	 * We could find a hole that begins after the logical end-of-file,
281 	 * because dmu_offset_next() only works on whole blocks.  If the
282 	 * EOF falls mid-block, then indicate that the "virtual hole"
283 	 * at the end of the file begins at the logical EOF, rather than
284 	 * at the end of the last block.
285 	 */
286 	if (noff > file_sz) {
287 		ASSERT(hole);
288 		noff = file_sz;
289 	}
290 
291 	if (noff < *off)
292 		return (error);
293 	*off = noff;
294 	return (error);
295 }
296 
297 /* ARGSUSED */
298 static int
299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
300     int *rvalp, caller_context_t *ct)
301 {
302 	offset_t off;
303 	offset_t ndata;
304 	dmu_object_info_t doi;
305 	int error;
306 	zfsvfs_t *zfsvfs;
307 	znode_t *zp;
308 
309 	switch (com) {
310 	case _FIOFFS:
311 	{
312 		return (zfs_sync(vp->v_vfsp, 0, cred));
313 
314 		/*
315 		 * The following two ioctls are used by bfu.  Faking out,
316 		 * necessary to avoid bfu errors.
317 		 */
318 	}
319 	case _FIOGDIO:
320 	case _FIOSDIO:
321 	{
322 		return (0);
323 	}
324 
325 	case _FIO_SEEK_DATA:
326 	case _FIO_SEEK_HOLE:
327 	{
328 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
329 			return (SET_ERROR(EFAULT));
330 
331 		zp = VTOZ(vp);
332 		zfsvfs = zp->z_zfsvfs;
333 		ZFS_ENTER(zfsvfs);
334 		ZFS_VERIFY_ZP(zp);
335 
336 		/* offset parameter is in/out */
337 		error = zfs_holey(vp, com, &off);
338 		ZFS_EXIT(zfsvfs);
339 		if (error)
340 			return (error);
341 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
342 			return (SET_ERROR(EFAULT));
343 		return (0);
344 	}
345 	case _FIO_COUNT_FILLED:
346 	{
347 		/*
348 		 * _FIO_COUNT_FILLED adds a new ioctl command which
349 		 * exposes the number of filled blocks in a
350 		 * ZFS object.
351 		 */
352 		zp = VTOZ(vp);
353 		zfsvfs = zp->z_zfsvfs;
354 		ZFS_ENTER(zfsvfs);
355 		ZFS_VERIFY_ZP(zp);
356 
357 		/*
358 		 * Wait for all dirty blocks for this object
359 		 * to get synced out to disk, and the DMU info
360 		 * updated.
361 		 */
362 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
363 		if (error) {
364 			ZFS_EXIT(zfsvfs);
365 			return (error);
366 		}
367 
368 		/*
369 		 * Retrieve fill count from DMU object.
370 		 */
371 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
372 		if (error) {
373 			ZFS_EXIT(zfsvfs);
374 			return (error);
375 		}
376 
377 		ndata = doi.doi_fill_count;
378 
379 		ZFS_EXIT(zfsvfs);
380 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
381 			return (SET_ERROR(EFAULT));
382 		return (0);
383 	}
384 	}
385 	return (SET_ERROR(ENOTTY));
386 }
387 
388 /*
389  * Utility functions to map and unmap a single physical page.  These
390  * are used to manage the mappable copies of ZFS file data, and therefore
391  * do not update ref/mod bits.
392  */
393 caddr_t
394 zfs_map_page(page_t *pp, enum seg_rw rw)
395 {
396 	if (kpm_enable)
397 		return (hat_kpm_mapin(pp, 0));
398 	ASSERT(rw == S_READ || rw == S_WRITE);
399 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
400 	    (caddr_t)-1));
401 }
402 
403 void
404 zfs_unmap_page(page_t *pp, caddr_t addr)
405 {
406 	if (kpm_enable) {
407 		hat_kpm_mapout(pp, 0, addr);
408 	} else {
409 		ppmapout(addr);
410 	}
411 }
412 
413 /*
414  * When a file is memory mapped, we must keep the IO data synchronized
415  * between the DMU cache and the memory mapped pages.  What this means:
416  *
417  * On Write:	If we find a memory mapped page, we write to *both*
418  *		the page and the dmu buffer.
419  */
420 static void
421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
422 {
423 	int64_t	off;
424 
425 	off = start & PAGEOFFSET;
426 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
427 		page_t *pp;
428 		uint64_t nbytes = MIN(PAGESIZE - off, len);
429 
430 		if (pp = page_lookup(vp, start, SE_SHARED)) {
431 			caddr_t va;
432 
433 			va = zfs_map_page(pp, S_WRITE);
434 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
435 			    DMU_READ_PREFETCH);
436 			zfs_unmap_page(pp, va);
437 			page_unlock(pp);
438 		}
439 		len -= nbytes;
440 		off = 0;
441 	}
442 }
443 
444 /*
445  * When a file is memory mapped, we must keep the IO data synchronized
446  * between the DMU cache and the memory mapped pages.  What this means:
447  *
448  * On Read:	We "read" preferentially from memory mapped pages,
449  *		else we default from the dmu buffer.
450  *
451  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
452  *	 the file is memory mapped.
453  */
454 static int
455 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
456 {
457 	znode_t *zp = VTOZ(vp);
458 	int64_t	start, off;
459 	int len = nbytes;
460 	int error = 0;
461 
462 	start = uio->uio_loffset;
463 	off = start & PAGEOFFSET;
464 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
465 		page_t *pp;
466 		uint64_t bytes = MIN(PAGESIZE - off, len);
467 
468 		if (pp = page_lookup(vp, start, SE_SHARED)) {
469 			caddr_t va;
470 
471 			va = zfs_map_page(pp, S_READ);
472 			error = uiomove(va + off, bytes, UIO_READ, uio);
473 			zfs_unmap_page(pp, va);
474 			page_unlock(pp);
475 		} else {
476 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
477 			    uio, bytes);
478 		}
479 		len -= bytes;
480 		off = 0;
481 		if (error)
482 			break;
483 	}
484 	return (error);
485 }
486 
487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
488 
489 /*
490  * Read bytes from specified file into supplied buffer.
491  *
492  *	IN:	vp	- vnode of file to be read from.
493  *		uio	- structure supplying read location, range info,
494  *			  and return buffer.
495  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
496  *		cr	- credentials of caller.
497  *		ct	- caller context
498  *
499  *	OUT:	uio	- updated offset and range, buffer filled.
500  *
501  *	RETURN:	0 on success, error code on failure.
502  *
503  * Side Effects:
504  *	vp - atime updated if byte count > 0
505  */
506 /* ARGSUSED */
507 static int
508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
509 {
510 	znode_t		*zp = VTOZ(vp);
511 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
512 	ssize_t		n, nbytes;
513 	int		error = 0;
514 	rl_t		*rl;
515 	xuio_t		*xuio = NULL;
516 
517 	ZFS_ENTER(zfsvfs);
518 	ZFS_VERIFY_ZP(zp);
519 
520 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
521 		ZFS_EXIT(zfsvfs);
522 		return (SET_ERROR(EACCES));
523 	}
524 
525 	/*
526 	 * Validate file offset
527 	 */
528 	if (uio->uio_loffset < (offset_t)0) {
529 		ZFS_EXIT(zfsvfs);
530 		return (SET_ERROR(EINVAL));
531 	}
532 
533 	/*
534 	 * Fasttrack empty reads
535 	 */
536 	if (uio->uio_resid == 0) {
537 		ZFS_EXIT(zfsvfs);
538 		return (0);
539 	}
540 
541 	/*
542 	 * Check for mandatory locks
543 	 */
544 	if (MANDMODE(zp->z_mode)) {
545 		if (error = chklock(vp, FREAD,
546 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
547 			ZFS_EXIT(zfsvfs);
548 			return (error);
549 		}
550 	}
551 
552 	/*
553 	 * If we're in FRSYNC mode, sync out this znode before reading it.
554 	 */
555 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
556 		zil_commit(zfsvfs->z_log, zp->z_id);
557 
558 	/*
559 	 * Lock the range against changes.
560 	 */
561 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
562 
563 	/*
564 	 * If we are reading past end-of-file we can skip
565 	 * to the end; but we might still need to set atime.
566 	 */
567 	if (uio->uio_loffset >= zp->z_size) {
568 		error = 0;
569 		goto out;
570 	}
571 
572 	ASSERT(uio->uio_loffset < zp->z_size);
573 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
574 
575 	if ((uio->uio_extflg == UIO_XUIO) &&
576 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
577 		int nblk;
578 		int blksz = zp->z_blksz;
579 		uint64_t offset = uio->uio_loffset;
580 
581 		xuio = (xuio_t *)uio;
582 		if ((ISP2(blksz))) {
583 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
584 			    blksz)) / blksz;
585 		} else {
586 			ASSERT(offset + n <= blksz);
587 			nblk = 1;
588 		}
589 		(void) dmu_xuio_init(xuio, nblk);
590 
591 		if (vn_has_cached_data(vp)) {
592 			/*
593 			 * For simplicity, we always allocate a full buffer
594 			 * even if we only expect to read a portion of a block.
595 			 */
596 			while (--nblk >= 0) {
597 				(void) dmu_xuio_add(xuio,
598 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
599 				    blksz), 0, blksz);
600 			}
601 		}
602 	}
603 
604 	while (n > 0) {
605 		nbytes = MIN(n, zfs_read_chunk_size -
606 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
607 
608 		if (vn_has_cached_data(vp)) {
609 			error = mappedread(vp, nbytes, uio);
610 		} else {
611 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
612 			    uio, nbytes);
613 		}
614 		if (error) {
615 			/* convert checksum errors into IO errors */
616 			if (error == ECKSUM)
617 				error = SET_ERROR(EIO);
618 			break;
619 		}
620 
621 		n -= nbytes;
622 	}
623 out:
624 	zfs_range_unlock(rl);
625 
626 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
627 	ZFS_EXIT(zfsvfs);
628 	return (error);
629 }
630 
631 /*
632  * Write the bytes to a file.
633  *
634  *	IN:	vp	- vnode of file to be written to.
635  *		uio	- structure supplying write location, range info,
636  *			  and data buffer.
637  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
638  *			  set if in append mode.
639  *		cr	- credentials of caller.
640  *		ct	- caller context (NFS/CIFS fem monitor only)
641  *
642  *	OUT:	uio	- updated offset and range.
643  *
644  *	RETURN:	0 on success, error code on failure.
645  *
646  * Timestamps:
647  *	vp - ctime|mtime updated if byte count > 0
648  */
649 
650 /* ARGSUSED */
651 static int
652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
653 {
654 	znode_t		*zp = VTOZ(vp);
655 	rlim64_t	limit = uio->uio_llimit;
656 	ssize_t		start_resid = uio->uio_resid;
657 	ssize_t		tx_bytes;
658 	uint64_t	end_size;
659 	dmu_tx_t	*tx;
660 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
661 	zilog_t		*zilog;
662 	offset_t	woff;
663 	ssize_t		n, nbytes;
664 	rl_t		*rl;
665 	int		max_blksz = zfsvfs->z_max_blksz;
666 	int		error = 0;
667 	arc_buf_t	*abuf;
668 	iovec_t		*aiov = NULL;
669 	xuio_t		*xuio = NULL;
670 	int		i_iov = 0;
671 	int		iovcnt = uio->uio_iovcnt;
672 	iovec_t		*iovp = uio->uio_iov;
673 	int		write_eof;
674 	int		count = 0;
675 	sa_bulk_attr_t	bulk[4];
676 	uint64_t	mtime[2], ctime[2];
677 
678 	/*
679 	 * Fasttrack empty write
680 	 */
681 	n = start_resid;
682 	if (n == 0)
683 		return (0);
684 
685 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
686 		limit = MAXOFFSET_T;
687 
688 	ZFS_ENTER(zfsvfs);
689 	ZFS_VERIFY_ZP(zp);
690 
691 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
692 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
693 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
694 	    &zp->z_size, 8);
695 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
696 	    &zp->z_pflags, 8);
697 
698 	/*
699 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
700 	 * callers might not be able to detect properly that we are read-only,
701 	 * so check it explicitly here.
702 	 */
703 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
704 		ZFS_EXIT(zfsvfs);
705 		return (SET_ERROR(EROFS));
706 	}
707 
708 	/*
709 	 * If immutable or not appending then return EPERM
710 	 */
711 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
712 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
713 	    (uio->uio_loffset < zp->z_size))) {
714 		ZFS_EXIT(zfsvfs);
715 		return (SET_ERROR(EPERM));
716 	}
717 
718 	zilog = zfsvfs->z_log;
719 
720 	/*
721 	 * Validate file offset
722 	 */
723 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
724 	if (woff < 0) {
725 		ZFS_EXIT(zfsvfs);
726 		return (SET_ERROR(EINVAL));
727 	}
728 
729 	/*
730 	 * Check for mandatory locks before calling zfs_range_lock()
731 	 * in order to prevent a deadlock with locks set via fcntl().
732 	 */
733 	if (MANDMODE((mode_t)zp->z_mode) &&
734 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
735 		ZFS_EXIT(zfsvfs);
736 		return (error);
737 	}
738 
739 	/*
740 	 * Pre-fault the pages to ensure slow (eg NFS) pages
741 	 * don't hold up txg.
742 	 * Skip this if uio contains loaned arc_buf.
743 	 */
744 	if ((uio->uio_extflg == UIO_XUIO) &&
745 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
746 		xuio = (xuio_t *)uio;
747 	else
748 		uio_prefaultpages(MIN(n, max_blksz), uio);
749 
750 	/*
751 	 * If in append mode, set the io offset pointer to eof.
752 	 */
753 	if (ioflag & FAPPEND) {
754 		/*
755 		 * Obtain an appending range lock to guarantee file append
756 		 * semantics.  We reset the write offset once we have the lock.
757 		 */
758 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
759 		woff = rl->r_off;
760 		if (rl->r_len == UINT64_MAX) {
761 			/*
762 			 * We overlocked the file because this write will cause
763 			 * the file block size to increase.
764 			 * Note that zp_size cannot change with this lock held.
765 			 */
766 			woff = zp->z_size;
767 		}
768 		uio->uio_loffset = woff;
769 	} else {
770 		/*
771 		 * Note that if the file block size will change as a result of
772 		 * this write, then this range lock will lock the entire file
773 		 * so that we can re-write the block safely.
774 		 */
775 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
776 	}
777 
778 	if (woff >= limit) {
779 		zfs_range_unlock(rl);
780 		ZFS_EXIT(zfsvfs);
781 		return (SET_ERROR(EFBIG));
782 	}
783 
784 	if ((woff + n) > limit || woff > (limit - n))
785 		n = limit - woff;
786 
787 	/* Will this write extend the file length? */
788 	write_eof = (woff + n > zp->z_size);
789 
790 	end_size = MAX(zp->z_size, woff + n);
791 
792 	/*
793 	 * Write the file in reasonable size chunks.  Each chunk is written
794 	 * in a separate transaction; this keeps the intent log records small
795 	 * and allows us to do more fine-grained space accounting.
796 	 */
797 	while (n > 0) {
798 		abuf = NULL;
799 		woff = uio->uio_loffset;
800 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
801 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
802 			if (abuf != NULL)
803 				dmu_return_arcbuf(abuf);
804 			error = SET_ERROR(EDQUOT);
805 			break;
806 		}
807 
808 		if (xuio && abuf == NULL) {
809 			ASSERT(i_iov < iovcnt);
810 			aiov = &iovp[i_iov];
811 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
812 			dmu_xuio_clear(xuio, i_iov);
813 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
814 			    iovec_t *, aiov, arc_buf_t *, abuf);
815 			ASSERT((aiov->iov_base == abuf->b_data) ||
816 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
817 			    aiov->iov_len == arc_buf_size(abuf)));
818 			i_iov++;
819 		} else if (abuf == NULL && n >= max_blksz &&
820 		    woff >= zp->z_size &&
821 		    P2PHASE(woff, max_blksz) == 0 &&
822 		    zp->z_blksz == max_blksz) {
823 			/*
824 			 * This write covers a full block.  "Borrow" a buffer
825 			 * from the dmu so that we can fill it before we enter
826 			 * a transaction.  This avoids the possibility of
827 			 * holding up the transaction if the data copy hangs
828 			 * up on a pagefault (e.g., from an NFS server mapping).
829 			 */
830 			size_t cbytes;
831 
832 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
833 			    max_blksz);
834 			ASSERT(abuf != NULL);
835 			ASSERT(arc_buf_size(abuf) == max_blksz);
836 			if (error = uiocopy(abuf->b_data, max_blksz,
837 			    UIO_WRITE, uio, &cbytes)) {
838 				dmu_return_arcbuf(abuf);
839 				break;
840 			}
841 			ASSERT(cbytes == max_blksz);
842 		}
843 
844 		/*
845 		 * Start a transaction.
846 		 */
847 		tx = dmu_tx_create(zfsvfs->z_os);
848 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
849 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
850 		zfs_sa_upgrade_txholds(tx, zp);
851 		error = dmu_tx_assign(tx, TXG_WAIT);
852 		if (error) {
853 			dmu_tx_abort(tx);
854 			if (abuf != NULL)
855 				dmu_return_arcbuf(abuf);
856 			break;
857 		}
858 
859 		/*
860 		 * If zfs_range_lock() over-locked we grow the blocksize
861 		 * and then reduce the lock range.  This will only happen
862 		 * on the first iteration since zfs_range_reduce() will
863 		 * shrink down r_len to the appropriate size.
864 		 */
865 		if (rl->r_len == UINT64_MAX) {
866 			uint64_t new_blksz;
867 
868 			if (zp->z_blksz > max_blksz) {
869 				/*
870 				 * File's blocksize is already larger than the
871 				 * "recordsize" property.  Only let it grow to
872 				 * the next power of 2.
873 				 */
874 				ASSERT(!ISP2(zp->z_blksz));
875 				new_blksz = MIN(end_size,
876 				    1 << highbit64(zp->z_blksz));
877 			} else {
878 				new_blksz = MIN(end_size, max_blksz);
879 			}
880 			zfs_grow_blocksize(zp, new_blksz, tx);
881 			zfs_range_reduce(rl, woff, n);
882 		}
883 
884 		/*
885 		 * XXX - should we really limit each write to z_max_blksz?
886 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
887 		 */
888 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
889 
890 		if (abuf == NULL) {
891 			tx_bytes = uio->uio_resid;
892 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
893 			    uio, nbytes, tx);
894 			tx_bytes -= uio->uio_resid;
895 		} else {
896 			tx_bytes = nbytes;
897 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
898 			/*
899 			 * If this is not a full block write, but we are
900 			 * extending the file past EOF and this data starts
901 			 * block-aligned, use assign_arcbuf().  Otherwise,
902 			 * write via dmu_write().
903 			 */
904 			if (tx_bytes < max_blksz && (!write_eof ||
905 			    aiov->iov_base != abuf->b_data)) {
906 				ASSERT(xuio);
907 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
908 				    aiov->iov_len, aiov->iov_base, tx);
909 				dmu_return_arcbuf(abuf);
910 				xuio_stat_wbuf_copied();
911 			} else {
912 				ASSERT(xuio || tx_bytes == max_blksz);
913 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
914 				    woff, abuf, tx);
915 			}
916 			ASSERT(tx_bytes <= uio->uio_resid);
917 			uioskip(uio, tx_bytes);
918 		}
919 		if (tx_bytes && vn_has_cached_data(vp)) {
920 			update_pages(vp, woff,
921 			    tx_bytes, zfsvfs->z_os, zp->z_id);
922 		}
923 
924 		/*
925 		 * If we made no progress, we're done.  If we made even
926 		 * partial progress, update the znode and ZIL accordingly.
927 		 */
928 		if (tx_bytes == 0) {
929 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
930 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
931 			dmu_tx_commit(tx);
932 			ASSERT(error != 0);
933 			break;
934 		}
935 
936 		/*
937 		 * Clear Set-UID/Set-GID bits on successful write if not
938 		 * privileged and at least one of the excute bits is set.
939 		 *
940 		 * It would be nice to to this after all writes have
941 		 * been done, but that would still expose the ISUID/ISGID
942 		 * to another app after the partial write is committed.
943 		 *
944 		 * Note: we don't call zfs_fuid_map_id() here because
945 		 * user 0 is not an ephemeral uid.
946 		 */
947 		mutex_enter(&zp->z_acl_lock);
948 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
949 		    (S_IXUSR >> 6))) != 0 &&
950 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
951 		    secpolicy_vnode_setid_retain(cr,
952 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
953 			uint64_t newmode;
954 			zp->z_mode &= ~(S_ISUID | S_ISGID);
955 			newmode = zp->z_mode;
956 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
957 			    (void *)&newmode, sizeof (uint64_t), tx);
958 		}
959 		mutex_exit(&zp->z_acl_lock);
960 
961 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
962 		    B_TRUE);
963 
964 		/*
965 		 * Update the file size (zp_size) if it has changed;
966 		 * account for possible concurrent updates.
967 		 */
968 		while ((end_size = zp->z_size) < uio->uio_loffset) {
969 			(void) atomic_cas_64(&zp->z_size, end_size,
970 			    uio->uio_loffset);
971 			ASSERT(error == 0);
972 		}
973 		/*
974 		 * If we are replaying and eof is non zero then force
975 		 * the file size to the specified eof. Note, there's no
976 		 * concurrency during replay.
977 		 */
978 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
979 			zp->z_size = zfsvfs->z_replay_eof;
980 
981 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
982 
983 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
984 		dmu_tx_commit(tx);
985 
986 		if (error != 0)
987 			break;
988 		ASSERT(tx_bytes == nbytes);
989 		n -= nbytes;
990 
991 		if (!xuio && n > 0)
992 			uio_prefaultpages(MIN(n, max_blksz), uio);
993 	}
994 
995 	zfs_range_unlock(rl);
996 
997 	/*
998 	 * If we're in replay mode, or we made no progress, return error.
999 	 * Otherwise, it's at least a partial write, so it's successful.
1000 	 */
1001 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1002 		ZFS_EXIT(zfsvfs);
1003 		return (error);
1004 	}
1005 
1006 	if (ioflag & (FSYNC | FDSYNC) ||
1007 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1008 		zil_commit(zilog, zp->z_id);
1009 
1010 	ZFS_EXIT(zfsvfs);
1011 	return (0);
1012 }
1013 
1014 void
1015 zfs_get_done(zgd_t *zgd, int error)
1016 {
1017 	znode_t *zp = zgd->zgd_private;
1018 	objset_t *os = zp->z_zfsvfs->z_os;
1019 
1020 	if (zgd->zgd_db)
1021 		dmu_buf_rele(zgd->zgd_db, zgd);
1022 
1023 	zfs_range_unlock(zgd->zgd_rl);
1024 
1025 	/*
1026 	 * Release the vnode asynchronously as we currently have the
1027 	 * txg stopped from syncing.
1028 	 */
1029 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1030 
1031 	if (error == 0 && zgd->zgd_bp)
1032 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1033 
1034 	kmem_free(zgd, sizeof (zgd_t));
1035 }
1036 
1037 #ifdef DEBUG
1038 static int zil_fault_io = 0;
1039 #endif
1040 
1041 /*
1042  * Get data to generate a TX_WRITE intent log record.
1043  */
1044 int
1045 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1046 {
1047 	zfsvfs_t *zfsvfs = arg;
1048 	objset_t *os = zfsvfs->z_os;
1049 	znode_t *zp;
1050 	uint64_t object = lr->lr_foid;
1051 	uint64_t offset = lr->lr_offset;
1052 	uint64_t size = lr->lr_length;
1053 	blkptr_t *bp = &lr->lr_blkptr;
1054 	dmu_buf_t *db;
1055 	zgd_t *zgd;
1056 	int error = 0;
1057 
1058 	ASSERT(zio != NULL);
1059 	ASSERT(size != 0);
1060 
1061 	/*
1062 	 * Nothing to do if the file has been removed
1063 	 */
1064 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1065 		return (SET_ERROR(ENOENT));
1066 	if (zp->z_unlinked) {
1067 		/*
1068 		 * Release the vnode asynchronously as we currently have the
1069 		 * txg stopped from syncing.
1070 		 */
1071 		VN_RELE_ASYNC(ZTOV(zp),
1072 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1073 		return (SET_ERROR(ENOENT));
1074 	}
1075 
1076 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1077 	zgd->zgd_zilog = zfsvfs->z_log;
1078 	zgd->zgd_private = zp;
1079 
1080 	/*
1081 	 * Write records come in two flavors: immediate and indirect.
1082 	 * For small writes it's cheaper to store the data with the
1083 	 * log record (immediate); for large writes it's cheaper to
1084 	 * sync the data and get a pointer to it (indirect) so that
1085 	 * we don't have to write the data twice.
1086 	 */
1087 	if (buf != NULL) { /* immediate write */
1088 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1089 		/* test for truncation needs to be done while range locked */
1090 		if (offset >= zp->z_size) {
1091 			error = SET_ERROR(ENOENT);
1092 		} else {
1093 			error = dmu_read(os, object, offset, size, buf,
1094 			    DMU_READ_NO_PREFETCH);
1095 		}
1096 		ASSERT(error == 0 || error == ENOENT);
1097 	} else { /* indirect write */
1098 		/*
1099 		 * Have to lock the whole block to ensure when it's
1100 		 * written out and it's checksum is being calculated
1101 		 * that no one can change the data. We need to re-check
1102 		 * blocksize after we get the lock in case it's changed!
1103 		 */
1104 		for (;;) {
1105 			uint64_t blkoff;
1106 			size = zp->z_blksz;
1107 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1108 			offset -= blkoff;
1109 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1110 			    RL_READER);
1111 			if (zp->z_blksz == size)
1112 				break;
1113 			offset += blkoff;
1114 			zfs_range_unlock(zgd->zgd_rl);
1115 		}
1116 		/* test for truncation needs to be done while range locked */
1117 		if (lr->lr_offset >= zp->z_size)
1118 			error = SET_ERROR(ENOENT);
1119 #ifdef DEBUG
1120 		if (zil_fault_io) {
1121 			error = SET_ERROR(EIO);
1122 			zil_fault_io = 0;
1123 		}
1124 #endif
1125 		if (error == 0)
1126 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1127 			    DMU_READ_NO_PREFETCH);
1128 
1129 		if (error == 0) {
1130 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1131 			if (obp) {
1132 				ASSERT(BP_IS_HOLE(bp));
1133 				*bp = *obp;
1134 			}
1135 
1136 			zgd->zgd_db = db;
1137 			zgd->zgd_bp = bp;
1138 
1139 			ASSERT(db->db_offset == offset);
1140 			ASSERT(db->db_size == size);
1141 
1142 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143 			    zfs_get_done, zgd);
1144 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1145 
1146 			/*
1147 			 * On success, we need to wait for the write I/O
1148 			 * initiated by dmu_sync() to complete before we can
1149 			 * release this dbuf.  We will finish everything up
1150 			 * in the zfs_get_done() callback.
1151 			 */
1152 			if (error == 0)
1153 				return (0);
1154 
1155 			if (error == EALREADY) {
1156 				lr->lr_common.lrc_txtype = TX_WRITE2;
1157 				error = 0;
1158 			}
1159 		}
1160 	}
1161 
1162 	zfs_get_done(zgd, error);
1163 
1164 	return (error);
1165 }
1166 
1167 /*ARGSUSED*/
1168 static int
1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170     caller_context_t *ct)
1171 {
1172 	znode_t *zp = VTOZ(vp);
1173 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174 	int error;
1175 
1176 	ZFS_ENTER(zfsvfs);
1177 	ZFS_VERIFY_ZP(zp);
1178 
1179 	if (flag & V_ACE_MASK)
1180 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181 	else
1182 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1183 
1184 	ZFS_EXIT(zfsvfs);
1185 	return (error);
1186 }
1187 
1188 /*
1189  * If vnode is for a device return a specfs vnode instead.
1190  */
1191 static int
1192 specvp_check(vnode_t **vpp, cred_t *cr)
1193 {
1194 	int error = 0;
1195 
1196 	if (IS_DEVVP(*vpp)) {
1197 		struct vnode *svp;
1198 
1199 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200 		VN_RELE(*vpp);
1201 		if (svp == NULL)
1202 			error = SET_ERROR(ENOSYS);
1203 		*vpp = svp;
1204 	}
1205 	return (error);
1206 }
1207 
1208 
1209 /*
1210  * Lookup an entry in a directory, or an extended attribute directory.
1211  * If it exists, return a held vnode reference for it.
1212  *
1213  *	IN:	dvp	- vnode of directory to search.
1214  *		nm	- name of entry to lookup.
1215  *		pnp	- full pathname to lookup [UNUSED].
1216  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1217  *		rdir	- root directory vnode [UNUSED].
1218  *		cr	- credentials of caller.
1219  *		ct	- caller context
1220  *		direntflags - directory lookup flags
1221  *		realpnp - returned pathname.
1222  *
1223  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1224  *
1225  *	RETURN:	0 on success, error code on failure.
1226  *
1227  * Timestamps:
1228  *	NA
1229  */
1230 /* ARGSUSED */
1231 static int
1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1234     int *direntflags, pathname_t *realpnp)
1235 {
1236 	znode_t *zdp = VTOZ(dvp);
1237 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238 	int	error = 0;
1239 
1240 	/* fast path */
1241 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1242 
1243 		if (dvp->v_type != VDIR) {
1244 			return (SET_ERROR(ENOTDIR));
1245 		} else if (zdp->z_sa_hdl == NULL) {
1246 			return (SET_ERROR(EIO));
1247 		}
1248 
1249 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1250 			error = zfs_fastaccesschk_execute(zdp, cr);
1251 			if (!error) {
1252 				*vpp = dvp;
1253 				VN_HOLD(*vpp);
1254 				return (0);
1255 			}
1256 			return (error);
1257 		} else {
1258 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1259 
1260 			if (tvp) {
1261 				error = zfs_fastaccesschk_execute(zdp, cr);
1262 				if (error) {
1263 					VN_RELE(tvp);
1264 					return (error);
1265 				}
1266 				if (tvp == DNLC_NO_VNODE) {
1267 					VN_RELE(tvp);
1268 					return (SET_ERROR(ENOENT));
1269 				} else {
1270 					*vpp = tvp;
1271 					return (specvp_check(vpp, cr));
1272 				}
1273 			}
1274 		}
1275 	}
1276 
1277 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1278 
1279 	ZFS_ENTER(zfsvfs);
1280 	ZFS_VERIFY_ZP(zdp);
1281 
1282 	*vpp = NULL;
1283 
1284 	if (flags & LOOKUP_XATTR) {
1285 		/*
1286 		 * If the xattr property is off, refuse the lookup request.
1287 		 */
1288 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1289 			ZFS_EXIT(zfsvfs);
1290 			return (SET_ERROR(EINVAL));
1291 		}
1292 
1293 		/*
1294 		 * We don't allow recursive attributes..
1295 		 * Maybe someday we will.
1296 		 */
1297 		if (zdp->z_pflags & ZFS_XATTR) {
1298 			ZFS_EXIT(zfsvfs);
1299 			return (SET_ERROR(EINVAL));
1300 		}
1301 
1302 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1303 			ZFS_EXIT(zfsvfs);
1304 			return (error);
1305 		}
1306 
1307 		/*
1308 		 * Do we have permission to get into attribute directory?
1309 		 */
1310 
1311 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1312 		    B_FALSE, cr)) {
1313 			VN_RELE(*vpp);
1314 			*vpp = NULL;
1315 		}
1316 
1317 		ZFS_EXIT(zfsvfs);
1318 		return (error);
1319 	}
1320 
1321 	if (dvp->v_type != VDIR) {
1322 		ZFS_EXIT(zfsvfs);
1323 		return (SET_ERROR(ENOTDIR));
1324 	}
1325 
1326 	/*
1327 	 * Check accessibility of directory.
1328 	 */
1329 
1330 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1331 		ZFS_EXIT(zfsvfs);
1332 		return (error);
1333 	}
1334 
1335 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1336 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337 		ZFS_EXIT(zfsvfs);
1338 		return (SET_ERROR(EILSEQ));
1339 	}
1340 
1341 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1342 	if (error == 0)
1343 		error = specvp_check(vpp, cr);
1344 
1345 	ZFS_EXIT(zfsvfs);
1346 	return (error);
1347 }
1348 
1349 /*
1350  * Attempt to create a new entry in a directory.  If the entry
1351  * already exists, truncate the file if permissible, else return
1352  * an error.  Return the vp of the created or trunc'd file.
1353  *
1354  *	IN:	dvp	- vnode of directory to put new file entry in.
1355  *		name	- name of new file entry.
1356  *		vap	- attributes of new file.
1357  *		excl	- flag indicating exclusive or non-exclusive mode.
1358  *		mode	- mode to open file with.
1359  *		cr	- credentials of caller.
1360  *		flag	- large file flag [UNUSED].
1361  *		ct	- caller context
1362  *		vsecp	- ACL to be set
1363  *
1364  *	OUT:	vpp	- vnode of created or trunc'd entry.
1365  *
1366  *	RETURN:	0 on success, error code on failure.
1367  *
1368  * Timestamps:
1369  *	dvp - ctime|mtime updated if new entry created
1370  *	 vp - ctime|mtime always, atime if new
1371  */
1372 
1373 /* ARGSUSED */
1374 static int
1375 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1376     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1377     vsecattr_t *vsecp)
1378 {
1379 	znode_t		*zp, *dzp = VTOZ(dvp);
1380 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1381 	zilog_t		*zilog;
1382 	objset_t	*os;
1383 	zfs_dirlock_t	*dl;
1384 	dmu_tx_t	*tx;
1385 	int		error;
1386 	ksid_t		*ksid;
1387 	uid_t		uid;
1388 	gid_t		gid = crgetgid(cr);
1389 	zfs_acl_ids_t   acl_ids;
1390 	boolean_t	fuid_dirtied;
1391 	boolean_t	have_acl = B_FALSE;
1392 	boolean_t	waited = B_FALSE;
1393 
1394 	/*
1395 	 * If we have an ephemeral id, ACL, or XVATTR then
1396 	 * make sure file system is at proper version
1397 	 */
1398 
1399 	ksid = crgetsid(cr, KSID_OWNER);
1400 	if (ksid)
1401 		uid = ksid_getid(ksid);
1402 	else
1403 		uid = crgetuid(cr);
1404 
1405 	if (zfsvfs->z_use_fuids == B_FALSE &&
1406 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1407 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1408 		return (SET_ERROR(EINVAL));
1409 
1410 	ZFS_ENTER(zfsvfs);
1411 	ZFS_VERIFY_ZP(dzp);
1412 	os = zfsvfs->z_os;
1413 	zilog = zfsvfs->z_log;
1414 
1415 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1416 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1417 		ZFS_EXIT(zfsvfs);
1418 		return (SET_ERROR(EILSEQ));
1419 	}
1420 
1421 	if (vap->va_mask & AT_XVATTR) {
1422 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1423 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1424 			ZFS_EXIT(zfsvfs);
1425 			return (error);
1426 		}
1427 	}
1428 top:
1429 	*vpp = NULL;
1430 
1431 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1432 		vap->va_mode &= ~VSVTX;
1433 
1434 	if (*name == '\0') {
1435 		/*
1436 		 * Null component name refers to the directory itself.
1437 		 */
1438 		VN_HOLD(dvp);
1439 		zp = dzp;
1440 		dl = NULL;
1441 		error = 0;
1442 	} else {
1443 		/* possible VN_HOLD(zp) */
1444 		int zflg = 0;
1445 
1446 		if (flag & FIGNORECASE)
1447 			zflg |= ZCILOOK;
1448 
1449 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1450 		    NULL, NULL);
1451 		if (error) {
1452 			if (have_acl)
1453 				zfs_acl_ids_free(&acl_ids);
1454 			if (strcmp(name, "..") == 0)
1455 				error = SET_ERROR(EISDIR);
1456 			ZFS_EXIT(zfsvfs);
1457 			return (error);
1458 		}
1459 	}
1460 
1461 	if (zp == NULL) {
1462 		uint64_t txtype;
1463 
1464 		/*
1465 		 * Create a new file object and update the directory
1466 		 * to reference it.
1467 		 */
1468 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1469 			if (have_acl)
1470 				zfs_acl_ids_free(&acl_ids);
1471 			goto out;
1472 		}
1473 
1474 		/*
1475 		 * We only support the creation of regular files in
1476 		 * extended attribute directories.
1477 		 */
1478 
1479 		if ((dzp->z_pflags & ZFS_XATTR) &&
1480 		    (vap->va_type != VREG)) {
1481 			if (have_acl)
1482 				zfs_acl_ids_free(&acl_ids);
1483 			error = SET_ERROR(EINVAL);
1484 			goto out;
1485 		}
1486 
1487 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1488 		    cr, vsecp, &acl_ids)) != 0)
1489 			goto out;
1490 		have_acl = B_TRUE;
1491 
1492 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1493 			zfs_acl_ids_free(&acl_ids);
1494 			error = SET_ERROR(EDQUOT);
1495 			goto out;
1496 		}
1497 
1498 		tx = dmu_tx_create(os);
1499 
1500 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1501 		    ZFS_SA_BASE_ATTR_SIZE);
1502 
1503 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1504 		if (fuid_dirtied)
1505 			zfs_fuid_txhold(zfsvfs, tx);
1506 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1507 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1508 		if (!zfsvfs->z_use_sa &&
1509 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1510 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1511 			    0, acl_ids.z_aclp->z_acl_bytes);
1512 		}
1513 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1514 		if (error) {
1515 			zfs_dirent_unlock(dl);
1516 			if (error == ERESTART) {
1517 				waited = B_TRUE;
1518 				dmu_tx_wait(tx);
1519 				dmu_tx_abort(tx);
1520 				goto top;
1521 			}
1522 			zfs_acl_ids_free(&acl_ids);
1523 			dmu_tx_abort(tx);
1524 			ZFS_EXIT(zfsvfs);
1525 			return (error);
1526 		}
1527 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1528 
1529 		if (fuid_dirtied)
1530 			zfs_fuid_sync(zfsvfs, tx);
1531 
1532 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1533 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1534 		if (flag & FIGNORECASE)
1535 			txtype |= TX_CI;
1536 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1537 		    vsecp, acl_ids.z_fuidp, vap);
1538 		zfs_acl_ids_free(&acl_ids);
1539 		dmu_tx_commit(tx);
1540 	} else {
1541 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1542 
1543 		if (have_acl)
1544 			zfs_acl_ids_free(&acl_ids);
1545 		have_acl = B_FALSE;
1546 
1547 		/*
1548 		 * A directory entry already exists for this name.
1549 		 */
1550 		/*
1551 		 * Can't truncate an existing file if in exclusive mode.
1552 		 */
1553 		if (excl == EXCL) {
1554 			error = SET_ERROR(EEXIST);
1555 			goto out;
1556 		}
1557 		/*
1558 		 * Can't open a directory for writing.
1559 		 */
1560 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1561 			error = SET_ERROR(EISDIR);
1562 			goto out;
1563 		}
1564 		/*
1565 		 * Verify requested access to file.
1566 		 */
1567 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1568 			goto out;
1569 		}
1570 
1571 		mutex_enter(&dzp->z_lock);
1572 		dzp->z_seq++;
1573 		mutex_exit(&dzp->z_lock);
1574 
1575 		/*
1576 		 * Truncate regular files if requested.
1577 		 */
1578 		if ((ZTOV(zp)->v_type == VREG) &&
1579 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1580 			/* we can't hold any locks when calling zfs_freesp() */
1581 			zfs_dirent_unlock(dl);
1582 			dl = NULL;
1583 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1584 			if (error == 0) {
1585 				vnevent_create(ZTOV(zp), ct);
1586 			}
1587 		}
1588 	}
1589 out:
1590 
1591 	if (dl)
1592 		zfs_dirent_unlock(dl);
1593 
1594 	if (error) {
1595 		if (zp)
1596 			VN_RELE(ZTOV(zp));
1597 	} else {
1598 		*vpp = ZTOV(zp);
1599 		error = specvp_check(vpp, cr);
1600 	}
1601 
1602 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1603 		zil_commit(zilog, 0);
1604 
1605 	ZFS_EXIT(zfsvfs);
1606 	return (error);
1607 }
1608 
1609 /*
1610  * Remove an entry from a directory.
1611  *
1612  *	IN:	dvp	- vnode of directory to remove entry from.
1613  *		name	- name of entry to remove.
1614  *		cr	- credentials of caller.
1615  *		ct	- caller context
1616  *		flags	- case flags
1617  *
1618  *	RETURN:	0 on success, error code on failure.
1619  *
1620  * Timestamps:
1621  *	dvp - ctime|mtime
1622  *	 vp - ctime (if nlink > 0)
1623  */
1624 
1625 uint64_t null_xattr = 0;
1626 
1627 /*ARGSUSED*/
1628 static int
1629 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1630     int flags)
1631 {
1632 	znode_t		*zp, *dzp = VTOZ(dvp);
1633 	znode_t		*xzp;
1634 	vnode_t		*vp;
1635 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1636 	zilog_t		*zilog;
1637 	uint64_t	acl_obj, xattr_obj;
1638 	uint64_t	xattr_obj_unlinked = 0;
1639 	uint64_t	obj = 0;
1640 	zfs_dirlock_t	*dl;
1641 	dmu_tx_t	*tx;
1642 	boolean_t	may_delete_now, delete_now = FALSE;
1643 	boolean_t	unlinked, toobig = FALSE;
1644 	uint64_t	txtype;
1645 	pathname_t	*realnmp = NULL;
1646 	pathname_t	realnm;
1647 	int		error;
1648 	int		zflg = ZEXISTS;
1649 	boolean_t	waited = B_FALSE;
1650 
1651 	ZFS_ENTER(zfsvfs);
1652 	ZFS_VERIFY_ZP(dzp);
1653 	zilog = zfsvfs->z_log;
1654 
1655 	if (flags & FIGNORECASE) {
1656 		zflg |= ZCILOOK;
1657 		pn_alloc(&realnm);
1658 		realnmp = &realnm;
1659 	}
1660 
1661 top:
1662 	xattr_obj = 0;
1663 	xzp = NULL;
1664 	/*
1665 	 * Attempt to lock directory; fail if entry doesn't exist.
1666 	 */
1667 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1668 	    NULL, realnmp)) {
1669 		if (realnmp)
1670 			pn_free(realnmp);
1671 		ZFS_EXIT(zfsvfs);
1672 		return (error);
1673 	}
1674 
1675 	vp = ZTOV(zp);
1676 
1677 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1678 		goto out;
1679 	}
1680 
1681 	/*
1682 	 * Need to use rmdir for removing directories.
1683 	 */
1684 	if (vp->v_type == VDIR) {
1685 		error = SET_ERROR(EPERM);
1686 		goto out;
1687 	}
1688 
1689 	vnevent_remove(vp, dvp, name, ct);
1690 
1691 	if (realnmp)
1692 		dnlc_remove(dvp, realnmp->pn_buf);
1693 	else
1694 		dnlc_remove(dvp, name);
1695 
1696 	mutex_enter(&vp->v_lock);
1697 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1698 	mutex_exit(&vp->v_lock);
1699 
1700 	/*
1701 	 * We may delete the znode now, or we may put it in the unlinked set;
1702 	 * it depends on whether we're the last link, and on whether there are
1703 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1704 	 * allow for either case.
1705 	 */
1706 	obj = zp->z_id;
1707 	tx = dmu_tx_create(zfsvfs->z_os);
1708 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1709 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1710 	zfs_sa_upgrade_txholds(tx, zp);
1711 	zfs_sa_upgrade_txholds(tx, dzp);
1712 	if (may_delete_now) {
1713 		toobig =
1714 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1715 		/* if the file is too big, only hold_free a token amount */
1716 		dmu_tx_hold_free(tx, zp->z_id, 0,
1717 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1718 	}
1719 
1720 	/* are there any extended attributes? */
1721 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1722 	    &xattr_obj, sizeof (xattr_obj));
1723 	if (error == 0 && xattr_obj) {
1724 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1725 		ASSERT0(error);
1726 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1727 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1728 	}
1729 
1730 	mutex_enter(&zp->z_lock);
1731 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1732 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1733 	mutex_exit(&zp->z_lock);
1734 
1735 	/* charge as an update -- would be nice not to charge at all */
1736 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1737 
1738 	/*
1739 	 * Mark this transaction as typically resulting in a net free of space
1740 	 */
1741 	dmu_tx_mark_netfree(tx);
1742 
1743 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1744 	if (error) {
1745 		zfs_dirent_unlock(dl);
1746 		VN_RELE(vp);
1747 		if (xzp)
1748 			VN_RELE(ZTOV(xzp));
1749 		if (error == ERESTART) {
1750 			waited = B_TRUE;
1751 			dmu_tx_wait(tx);
1752 			dmu_tx_abort(tx);
1753 			goto top;
1754 		}
1755 		if (realnmp)
1756 			pn_free(realnmp);
1757 		dmu_tx_abort(tx);
1758 		ZFS_EXIT(zfsvfs);
1759 		return (error);
1760 	}
1761 
1762 	/*
1763 	 * Remove the directory entry.
1764 	 */
1765 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1766 
1767 	if (error) {
1768 		dmu_tx_commit(tx);
1769 		goto out;
1770 	}
1771 
1772 	if (unlinked) {
1773 		/*
1774 		 * Hold z_lock so that we can make sure that the ACL obj
1775 		 * hasn't changed.  Could have been deleted due to
1776 		 * zfs_sa_upgrade().
1777 		 */
1778 		mutex_enter(&zp->z_lock);
1779 		mutex_enter(&vp->v_lock);
1780 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1781 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1782 		delete_now = may_delete_now && !toobig &&
1783 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1784 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1785 		    acl_obj;
1786 		mutex_exit(&vp->v_lock);
1787 	}
1788 
1789 	if (delete_now) {
1790 		if (xattr_obj_unlinked) {
1791 			ASSERT3U(xzp->z_links, ==, 2);
1792 			mutex_enter(&xzp->z_lock);
1793 			xzp->z_unlinked = 1;
1794 			xzp->z_links = 0;
1795 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1796 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1797 			ASSERT3U(error,  ==,  0);
1798 			mutex_exit(&xzp->z_lock);
1799 			zfs_unlinked_add(xzp, tx);
1800 
1801 			if (zp->z_is_sa)
1802 				error = sa_remove(zp->z_sa_hdl,
1803 				    SA_ZPL_XATTR(zfsvfs), tx);
1804 			else
1805 				error = sa_update(zp->z_sa_hdl,
1806 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1807 				    sizeof (uint64_t), tx);
1808 			ASSERT0(error);
1809 		}
1810 		mutex_enter(&vp->v_lock);
1811 		vp->v_count--;
1812 		ASSERT0(vp->v_count);
1813 		mutex_exit(&vp->v_lock);
1814 		mutex_exit(&zp->z_lock);
1815 		zfs_znode_delete(zp, tx);
1816 	} else if (unlinked) {
1817 		mutex_exit(&zp->z_lock);
1818 		zfs_unlinked_add(zp, tx);
1819 	}
1820 
1821 	txtype = TX_REMOVE;
1822 	if (flags & FIGNORECASE)
1823 		txtype |= TX_CI;
1824 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1825 
1826 	dmu_tx_commit(tx);
1827 out:
1828 	if (realnmp)
1829 		pn_free(realnmp);
1830 
1831 	zfs_dirent_unlock(dl);
1832 
1833 	if (!delete_now)
1834 		VN_RELE(vp);
1835 	if (xzp)
1836 		VN_RELE(ZTOV(xzp));
1837 
1838 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1839 		zil_commit(zilog, 0);
1840 
1841 	ZFS_EXIT(zfsvfs);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Create a new directory and insert it into dvp using the name
1847  * provided.  Return a pointer to the inserted directory.
1848  *
1849  *	IN:	dvp	- vnode of directory to add subdir to.
1850  *		dirname	- name of new directory.
1851  *		vap	- attributes of new directory.
1852  *		cr	- credentials of caller.
1853  *		ct	- caller context
1854  *		flags	- case flags
1855  *		vsecp	- ACL to be set
1856  *
1857  *	OUT:	vpp	- vnode of created directory.
1858  *
1859  *	RETURN:	0 on success, error code on failure.
1860  *
1861  * Timestamps:
1862  *	dvp - ctime|mtime updated
1863  *	 vp - ctime|mtime|atime updated
1864  */
1865 /*ARGSUSED*/
1866 static int
1867 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1868     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1869 {
1870 	znode_t		*zp, *dzp = VTOZ(dvp);
1871 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1872 	zilog_t		*zilog;
1873 	zfs_dirlock_t	*dl;
1874 	uint64_t	txtype;
1875 	dmu_tx_t	*tx;
1876 	int		error;
1877 	int		zf = ZNEW;
1878 	ksid_t		*ksid;
1879 	uid_t		uid;
1880 	gid_t		gid = crgetgid(cr);
1881 	zfs_acl_ids_t   acl_ids;
1882 	boolean_t	fuid_dirtied;
1883 	boolean_t	waited = B_FALSE;
1884 
1885 	ASSERT(vap->va_type == VDIR);
1886 
1887 	/*
1888 	 * If we have an ephemeral id, ACL, or XVATTR then
1889 	 * make sure file system is at proper version
1890 	 */
1891 
1892 	ksid = crgetsid(cr, KSID_OWNER);
1893 	if (ksid)
1894 		uid = ksid_getid(ksid);
1895 	else
1896 		uid = crgetuid(cr);
1897 	if (zfsvfs->z_use_fuids == B_FALSE &&
1898 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1899 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1900 		return (SET_ERROR(EINVAL));
1901 
1902 	ZFS_ENTER(zfsvfs);
1903 	ZFS_VERIFY_ZP(dzp);
1904 	zilog = zfsvfs->z_log;
1905 
1906 	if (dzp->z_pflags & ZFS_XATTR) {
1907 		ZFS_EXIT(zfsvfs);
1908 		return (SET_ERROR(EINVAL));
1909 	}
1910 
1911 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1912 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1913 		ZFS_EXIT(zfsvfs);
1914 		return (SET_ERROR(EILSEQ));
1915 	}
1916 	if (flags & FIGNORECASE)
1917 		zf |= ZCILOOK;
1918 
1919 	if (vap->va_mask & AT_XVATTR) {
1920 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1921 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1922 			ZFS_EXIT(zfsvfs);
1923 			return (error);
1924 		}
1925 	}
1926 
1927 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1928 	    vsecp, &acl_ids)) != 0) {
1929 		ZFS_EXIT(zfsvfs);
1930 		return (error);
1931 	}
1932 	/*
1933 	 * First make sure the new directory doesn't exist.
1934 	 *
1935 	 * Existence is checked first to make sure we don't return
1936 	 * EACCES instead of EEXIST which can cause some applications
1937 	 * to fail.
1938 	 */
1939 top:
1940 	*vpp = NULL;
1941 
1942 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1943 	    NULL, NULL)) {
1944 		zfs_acl_ids_free(&acl_ids);
1945 		ZFS_EXIT(zfsvfs);
1946 		return (error);
1947 	}
1948 
1949 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1950 		zfs_acl_ids_free(&acl_ids);
1951 		zfs_dirent_unlock(dl);
1952 		ZFS_EXIT(zfsvfs);
1953 		return (error);
1954 	}
1955 
1956 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1957 		zfs_acl_ids_free(&acl_ids);
1958 		zfs_dirent_unlock(dl);
1959 		ZFS_EXIT(zfsvfs);
1960 		return (SET_ERROR(EDQUOT));
1961 	}
1962 
1963 	/*
1964 	 * Add a new entry to the directory.
1965 	 */
1966 	tx = dmu_tx_create(zfsvfs->z_os);
1967 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1968 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1969 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1970 	if (fuid_dirtied)
1971 		zfs_fuid_txhold(zfsvfs, tx);
1972 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1973 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1974 		    acl_ids.z_aclp->z_acl_bytes);
1975 	}
1976 
1977 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1978 	    ZFS_SA_BASE_ATTR_SIZE);
1979 
1980 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1981 	if (error) {
1982 		zfs_dirent_unlock(dl);
1983 		if (error == ERESTART) {
1984 			waited = B_TRUE;
1985 			dmu_tx_wait(tx);
1986 			dmu_tx_abort(tx);
1987 			goto top;
1988 		}
1989 		zfs_acl_ids_free(&acl_ids);
1990 		dmu_tx_abort(tx);
1991 		ZFS_EXIT(zfsvfs);
1992 		return (error);
1993 	}
1994 
1995 	/*
1996 	 * Create new node.
1997 	 */
1998 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1999 
2000 	if (fuid_dirtied)
2001 		zfs_fuid_sync(zfsvfs, tx);
2002 
2003 	/*
2004 	 * Now put new name in parent dir.
2005 	 */
2006 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2007 
2008 	*vpp = ZTOV(zp);
2009 
2010 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2011 	if (flags & FIGNORECASE)
2012 		txtype |= TX_CI;
2013 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2014 	    acl_ids.z_fuidp, vap);
2015 
2016 	zfs_acl_ids_free(&acl_ids);
2017 
2018 	dmu_tx_commit(tx);
2019 
2020 	zfs_dirent_unlock(dl);
2021 
2022 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2023 		zil_commit(zilog, 0);
2024 
2025 	ZFS_EXIT(zfsvfs);
2026 	return (0);
2027 }
2028 
2029 /*
2030  * Remove a directory subdir entry.  If the current working
2031  * directory is the same as the subdir to be removed, the
2032  * remove will fail.
2033  *
2034  *	IN:	dvp	- vnode of directory to remove from.
2035  *		name	- name of directory to be removed.
2036  *		cwd	- vnode of current working directory.
2037  *		cr	- credentials of caller.
2038  *		ct	- caller context
2039  *		flags	- case flags
2040  *
2041  *	RETURN:	0 on success, error code on failure.
2042  *
2043  * Timestamps:
2044  *	dvp - ctime|mtime updated
2045  */
2046 /*ARGSUSED*/
2047 static int
2048 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2049     caller_context_t *ct, int flags)
2050 {
2051 	znode_t		*dzp = VTOZ(dvp);
2052 	znode_t		*zp;
2053 	vnode_t		*vp;
2054 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2055 	zilog_t		*zilog;
2056 	zfs_dirlock_t	*dl;
2057 	dmu_tx_t	*tx;
2058 	int		error;
2059 	int		zflg = ZEXISTS;
2060 	boolean_t	waited = B_FALSE;
2061 
2062 	ZFS_ENTER(zfsvfs);
2063 	ZFS_VERIFY_ZP(dzp);
2064 	zilog = zfsvfs->z_log;
2065 
2066 	if (flags & FIGNORECASE)
2067 		zflg |= ZCILOOK;
2068 top:
2069 	zp = NULL;
2070 
2071 	/*
2072 	 * Attempt to lock directory; fail if entry doesn't exist.
2073 	 */
2074 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2075 	    NULL, NULL)) {
2076 		ZFS_EXIT(zfsvfs);
2077 		return (error);
2078 	}
2079 
2080 	vp = ZTOV(zp);
2081 
2082 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2083 		goto out;
2084 	}
2085 
2086 	if (vp->v_type != VDIR) {
2087 		error = SET_ERROR(ENOTDIR);
2088 		goto out;
2089 	}
2090 
2091 	if (vp == cwd) {
2092 		error = SET_ERROR(EINVAL);
2093 		goto out;
2094 	}
2095 
2096 	vnevent_rmdir(vp, dvp, name, ct);
2097 
2098 	/*
2099 	 * Grab a lock on the directory to make sure that noone is
2100 	 * trying to add (or lookup) entries while we are removing it.
2101 	 */
2102 	rw_enter(&zp->z_name_lock, RW_WRITER);
2103 
2104 	/*
2105 	 * Grab a lock on the parent pointer to make sure we play well
2106 	 * with the treewalk and directory rename code.
2107 	 */
2108 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2109 
2110 	tx = dmu_tx_create(zfsvfs->z_os);
2111 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2112 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2113 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2114 	zfs_sa_upgrade_txholds(tx, zp);
2115 	zfs_sa_upgrade_txholds(tx, dzp);
2116 	dmu_tx_mark_netfree(tx);
2117 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2118 	if (error) {
2119 		rw_exit(&zp->z_parent_lock);
2120 		rw_exit(&zp->z_name_lock);
2121 		zfs_dirent_unlock(dl);
2122 		VN_RELE(vp);
2123 		if (error == ERESTART) {
2124 			waited = B_TRUE;
2125 			dmu_tx_wait(tx);
2126 			dmu_tx_abort(tx);
2127 			goto top;
2128 		}
2129 		dmu_tx_abort(tx);
2130 		ZFS_EXIT(zfsvfs);
2131 		return (error);
2132 	}
2133 
2134 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2135 
2136 	if (error == 0) {
2137 		uint64_t txtype = TX_RMDIR;
2138 		if (flags & FIGNORECASE)
2139 			txtype |= TX_CI;
2140 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2141 	}
2142 
2143 	dmu_tx_commit(tx);
2144 
2145 	rw_exit(&zp->z_parent_lock);
2146 	rw_exit(&zp->z_name_lock);
2147 out:
2148 	zfs_dirent_unlock(dl);
2149 
2150 	VN_RELE(vp);
2151 
2152 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2153 		zil_commit(zilog, 0);
2154 
2155 	ZFS_EXIT(zfsvfs);
2156 	return (error);
2157 }
2158 
2159 /*
2160  * Read as many directory entries as will fit into the provided
2161  * buffer from the given directory cursor position (specified in
2162  * the uio structure).
2163  *
2164  *	IN:	vp	- vnode of directory to read.
2165  *		uio	- structure supplying read location, range info,
2166  *			  and return buffer.
2167  *		cr	- credentials of caller.
2168  *		ct	- caller context
2169  *		flags	- case flags
2170  *
2171  *	OUT:	uio	- updated offset and range, buffer filled.
2172  *		eofp	- set to true if end-of-file detected.
2173  *
2174  *	RETURN:	0 on success, error code on failure.
2175  *
2176  * Timestamps:
2177  *	vp - atime updated
2178  *
2179  * Note that the low 4 bits of the cookie returned by zap is always zero.
2180  * This allows us to use the low range for "special" directory entries:
2181  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2182  * we use the offset 2 for the '.zfs' directory.
2183  */
2184 /* ARGSUSED */
2185 static int
2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2187     caller_context_t *ct, int flags)
2188 {
2189 	znode_t		*zp = VTOZ(vp);
2190 	iovec_t		*iovp;
2191 	edirent_t	*eodp;
2192 	dirent64_t	*odp;
2193 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2194 	objset_t	*os;
2195 	caddr_t		outbuf;
2196 	size_t		bufsize;
2197 	zap_cursor_t	zc;
2198 	zap_attribute_t	zap;
2199 	uint_t		bytes_wanted;
2200 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2201 	uint64_t	parent;
2202 	int		local_eof;
2203 	int		outcount;
2204 	int		error;
2205 	uint8_t		prefetch;
2206 	boolean_t	check_sysattrs;
2207 
2208 	ZFS_ENTER(zfsvfs);
2209 	ZFS_VERIFY_ZP(zp);
2210 
2211 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2212 	    &parent, sizeof (parent))) != 0) {
2213 		ZFS_EXIT(zfsvfs);
2214 		return (error);
2215 	}
2216 
2217 	/*
2218 	 * If we are not given an eof variable,
2219 	 * use a local one.
2220 	 */
2221 	if (eofp == NULL)
2222 		eofp = &local_eof;
2223 
2224 	/*
2225 	 * Check for valid iov_len.
2226 	 */
2227 	if (uio->uio_iov->iov_len <= 0) {
2228 		ZFS_EXIT(zfsvfs);
2229 		return (SET_ERROR(EINVAL));
2230 	}
2231 
2232 	/*
2233 	 * Quit if directory has been removed (posix)
2234 	 */
2235 	if ((*eofp = zp->z_unlinked) != 0) {
2236 		ZFS_EXIT(zfsvfs);
2237 		return (0);
2238 	}
2239 
2240 	error = 0;
2241 	os = zfsvfs->z_os;
2242 	offset = uio->uio_loffset;
2243 	prefetch = zp->z_zn_prefetch;
2244 
2245 	/*
2246 	 * Initialize the iterator cursor.
2247 	 */
2248 	if (offset <= 3) {
2249 		/*
2250 		 * Start iteration from the beginning of the directory.
2251 		 */
2252 		zap_cursor_init(&zc, os, zp->z_id);
2253 	} else {
2254 		/*
2255 		 * The offset is a serialized cursor.
2256 		 */
2257 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2258 	}
2259 
2260 	/*
2261 	 * Get space to change directory entries into fs independent format.
2262 	 */
2263 	iovp = uio->uio_iov;
2264 	bytes_wanted = iovp->iov_len;
2265 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2266 		bufsize = bytes_wanted;
2267 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2268 		odp = (struct dirent64 *)outbuf;
2269 	} else {
2270 		bufsize = bytes_wanted;
2271 		outbuf = NULL;
2272 		odp = (struct dirent64 *)iovp->iov_base;
2273 	}
2274 	eodp = (struct edirent *)odp;
2275 
2276 	/*
2277 	 * If this VFS supports the system attribute view interface; and
2278 	 * we're looking at an extended attribute directory; and we care
2279 	 * about normalization conflicts on this vfs; then we must check
2280 	 * for normalization conflicts with the sysattr name space.
2281 	 */
2282 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2283 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2284 	    (flags & V_RDDIR_ENTFLAGS);
2285 
2286 	/*
2287 	 * Transform to file-system independent format
2288 	 */
2289 	outcount = 0;
2290 	while (outcount < bytes_wanted) {
2291 		ino64_t objnum;
2292 		ushort_t reclen;
2293 		off64_t *next = NULL;
2294 
2295 		/*
2296 		 * Special case `.', `..', and `.zfs'.
2297 		 */
2298 		if (offset == 0) {
2299 			(void) strcpy(zap.za_name, ".");
2300 			zap.za_normalization_conflict = 0;
2301 			objnum = zp->z_id;
2302 		} else if (offset == 1) {
2303 			(void) strcpy(zap.za_name, "..");
2304 			zap.za_normalization_conflict = 0;
2305 			objnum = parent;
2306 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2307 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2308 			zap.za_normalization_conflict = 0;
2309 			objnum = ZFSCTL_INO_ROOT;
2310 		} else {
2311 			/*
2312 			 * Grab next entry.
2313 			 */
2314 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2315 				if ((*eofp = (error == ENOENT)) != 0)
2316 					break;
2317 				else
2318 					goto update;
2319 			}
2320 
2321 			if (zap.za_integer_length != 8 ||
2322 			    zap.za_num_integers != 1) {
2323 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2324 				    "entry, obj = %lld, offset = %lld\n",
2325 				    (u_longlong_t)zp->z_id,
2326 				    (u_longlong_t)offset);
2327 				error = SET_ERROR(ENXIO);
2328 				goto update;
2329 			}
2330 
2331 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2332 			/*
2333 			 * MacOS X can extract the object type here such as:
2334 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2335 			 */
2336 
2337 			if (check_sysattrs && !zap.za_normalization_conflict) {
2338 				zap.za_normalization_conflict =
2339 				    xattr_sysattr_casechk(zap.za_name);
2340 			}
2341 		}
2342 
2343 		if (flags & V_RDDIR_ACCFILTER) {
2344 			/*
2345 			 * If we have no access at all, don't include
2346 			 * this entry in the returned information
2347 			 */
2348 			znode_t	*ezp;
2349 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2350 				goto skip_entry;
2351 			if (!zfs_has_access(ezp, cr)) {
2352 				VN_RELE(ZTOV(ezp));
2353 				goto skip_entry;
2354 			}
2355 			VN_RELE(ZTOV(ezp));
2356 		}
2357 
2358 		if (flags & V_RDDIR_ENTFLAGS)
2359 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2360 		else
2361 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2362 
2363 		/*
2364 		 * Will this entry fit in the buffer?
2365 		 */
2366 		if (outcount + reclen > bufsize) {
2367 			/*
2368 			 * Did we manage to fit anything in the buffer?
2369 			 */
2370 			if (!outcount) {
2371 				error = SET_ERROR(EINVAL);
2372 				goto update;
2373 			}
2374 			break;
2375 		}
2376 		if (flags & V_RDDIR_ENTFLAGS) {
2377 			/*
2378 			 * Add extended flag entry:
2379 			 */
2380 			eodp->ed_ino = objnum;
2381 			eodp->ed_reclen = reclen;
2382 			/* NOTE: ed_off is the offset for the *next* entry */
2383 			next = &(eodp->ed_off);
2384 			eodp->ed_eflags = zap.za_normalization_conflict ?
2385 			    ED_CASE_CONFLICT : 0;
2386 			(void) strncpy(eodp->ed_name, zap.za_name,
2387 			    EDIRENT_NAMELEN(reclen));
2388 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2389 		} else {
2390 			/*
2391 			 * Add normal entry:
2392 			 */
2393 			odp->d_ino = objnum;
2394 			odp->d_reclen = reclen;
2395 			/* NOTE: d_off is the offset for the *next* entry */
2396 			next = &(odp->d_off);
2397 			(void) strncpy(odp->d_name, zap.za_name,
2398 			    DIRENT64_NAMELEN(reclen));
2399 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2400 		}
2401 		outcount += reclen;
2402 
2403 		ASSERT(outcount <= bufsize);
2404 
2405 		/* Prefetch znode */
2406 		if (prefetch)
2407 			dmu_prefetch(os, objnum, 0, 0, 0,
2408 			    ZIO_PRIORITY_SYNC_READ);
2409 
2410 	skip_entry:
2411 		/*
2412 		 * Move to the next entry, fill in the previous offset.
2413 		 */
2414 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2415 			zap_cursor_advance(&zc);
2416 			offset = zap_cursor_serialize(&zc);
2417 		} else {
2418 			offset += 1;
2419 		}
2420 		if (next)
2421 			*next = offset;
2422 	}
2423 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2424 
2425 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2426 		iovp->iov_base += outcount;
2427 		iovp->iov_len -= outcount;
2428 		uio->uio_resid -= outcount;
2429 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2430 		/*
2431 		 * Reset the pointer.
2432 		 */
2433 		offset = uio->uio_loffset;
2434 	}
2435 
2436 update:
2437 	zap_cursor_fini(&zc);
2438 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2439 		kmem_free(outbuf, bufsize);
2440 
2441 	if (error == ENOENT)
2442 		error = 0;
2443 
2444 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2445 
2446 	uio->uio_loffset = offset;
2447 	ZFS_EXIT(zfsvfs);
2448 	return (error);
2449 }
2450 
2451 ulong_t zfs_fsync_sync_cnt = 4;
2452 
2453 static int
2454 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2455 {
2456 	znode_t	*zp = VTOZ(vp);
2457 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2458 
2459 	/*
2460 	 * Regardless of whether this is required for standards conformance,
2461 	 * this is the logical behavior when fsync() is called on a file with
2462 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2463 	 * going to be pushed out as part of the zil_commit().
2464 	 */
2465 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2466 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2467 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2468 
2469 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2470 
2471 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2472 		ZFS_ENTER(zfsvfs);
2473 		ZFS_VERIFY_ZP(zp);
2474 		zil_commit(zfsvfs->z_log, zp->z_id);
2475 		ZFS_EXIT(zfsvfs);
2476 	}
2477 	return (0);
2478 }
2479 
2480 
2481 /*
2482  * Get the requested file attributes and place them in the provided
2483  * vattr structure.
2484  *
2485  *	IN:	vp	- vnode of file.
2486  *		vap	- va_mask identifies requested attributes.
2487  *			  If AT_XVATTR set, then optional attrs are requested
2488  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2489  *		cr	- credentials of caller.
2490  *		ct	- caller context
2491  *
2492  *	OUT:	vap	- attribute values.
2493  *
2494  *	RETURN:	0 (always succeeds).
2495  */
2496 /* ARGSUSED */
2497 static int
2498 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2499     caller_context_t *ct)
2500 {
2501 	znode_t *zp = VTOZ(vp);
2502 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2503 	int	error = 0;
2504 	uint64_t links;
2505 	uint64_t mtime[2], ctime[2];
2506 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2507 	xoptattr_t *xoap = NULL;
2508 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2509 	sa_bulk_attr_t bulk[2];
2510 	int count = 0;
2511 
2512 	ZFS_ENTER(zfsvfs);
2513 	ZFS_VERIFY_ZP(zp);
2514 
2515 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2516 
2517 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2518 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2519 
2520 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2521 		ZFS_EXIT(zfsvfs);
2522 		return (error);
2523 	}
2524 
2525 	/*
2526 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2527 	 * Also, if we are the owner don't bother, since owner should
2528 	 * always be allowed to read basic attributes of file.
2529 	 */
2530 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2531 	    (vap->va_uid != crgetuid(cr))) {
2532 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2533 		    skipaclchk, cr)) {
2534 			ZFS_EXIT(zfsvfs);
2535 			return (error);
2536 		}
2537 	}
2538 
2539 	/*
2540 	 * Return all attributes.  It's cheaper to provide the answer
2541 	 * than to determine whether we were asked the question.
2542 	 */
2543 
2544 	mutex_enter(&zp->z_lock);
2545 	vap->va_type = vp->v_type;
2546 	vap->va_mode = zp->z_mode & MODEMASK;
2547 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2548 	vap->va_nodeid = zp->z_id;
2549 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2550 		links = zp->z_links + 1;
2551 	else
2552 		links = zp->z_links;
2553 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2554 	vap->va_size = zp->z_size;
2555 	vap->va_rdev = vp->v_rdev;
2556 	vap->va_seq = zp->z_seq;
2557 
2558 	/*
2559 	 * Add in any requested optional attributes and the create time.
2560 	 * Also set the corresponding bits in the returned attribute bitmap.
2561 	 */
2562 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2563 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2564 			xoap->xoa_archive =
2565 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2566 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2567 		}
2568 
2569 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2570 			xoap->xoa_readonly =
2571 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2572 			XVA_SET_RTN(xvap, XAT_READONLY);
2573 		}
2574 
2575 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2576 			xoap->xoa_system =
2577 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2578 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2579 		}
2580 
2581 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2582 			xoap->xoa_hidden =
2583 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2584 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2585 		}
2586 
2587 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2588 			xoap->xoa_nounlink =
2589 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2590 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2591 		}
2592 
2593 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2594 			xoap->xoa_immutable =
2595 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2596 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2597 		}
2598 
2599 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2600 			xoap->xoa_appendonly =
2601 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2602 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2603 		}
2604 
2605 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2606 			xoap->xoa_nodump =
2607 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2608 			XVA_SET_RTN(xvap, XAT_NODUMP);
2609 		}
2610 
2611 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2612 			xoap->xoa_opaque =
2613 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2614 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2615 		}
2616 
2617 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2618 			xoap->xoa_av_quarantined =
2619 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2620 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2621 		}
2622 
2623 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2624 			xoap->xoa_av_modified =
2625 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2626 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2627 		}
2628 
2629 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2630 		    vp->v_type == VREG) {
2631 			zfs_sa_get_scanstamp(zp, xvap);
2632 		}
2633 
2634 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2635 			uint64_t times[2];
2636 
2637 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2638 			    times, sizeof (times));
2639 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2640 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2641 		}
2642 
2643 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2644 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2645 			XVA_SET_RTN(xvap, XAT_REPARSE);
2646 		}
2647 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2648 			xoap->xoa_generation = zp->z_gen;
2649 			XVA_SET_RTN(xvap, XAT_GEN);
2650 		}
2651 
2652 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2653 			xoap->xoa_offline =
2654 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2655 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2656 		}
2657 
2658 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2659 			xoap->xoa_sparse =
2660 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2661 			XVA_SET_RTN(xvap, XAT_SPARSE);
2662 		}
2663 	}
2664 
2665 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2666 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2667 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2668 
2669 	mutex_exit(&zp->z_lock);
2670 
2671 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2672 
2673 	if (zp->z_blksz == 0) {
2674 		/*
2675 		 * Block size hasn't been set; suggest maximal I/O transfers.
2676 		 */
2677 		vap->va_blksize = zfsvfs->z_max_blksz;
2678 	}
2679 
2680 	ZFS_EXIT(zfsvfs);
2681 	return (0);
2682 }
2683 
2684 /*
2685  * Set the file attributes to the values contained in the
2686  * vattr structure.
2687  *
2688  *	IN:	vp	- vnode of file to be modified.
2689  *		vap	- new attribute values.
2690  *			  If AT_XVATTR set, then optional attrs are being set
2691  *		flags	- ATTR_UTIME set if non-default time values provided.
2692  *			- ATTR_NOACLCHECK (CIFS context only).
2693  *		cr	- credentials of caller.
2694  *		ct	- caller context
2695  *
2696  *	RETURN:	0 on success, error code on failure.
2697  *
2698  * Timestamps:
2699  *	vp - ctime updated, mtime updated if size changed.
2700  */
2701 /* ARGSUSED */
2702 static int
2703 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2704     caller_context_t *ct)
2705 {
2706 	znode_t		*zp = VTOZ(vp);
2707 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2708 	zilog_t		*zilog;
2709 	dmu_tx_t	*tx;
2710 	vattr_t		oldva;
2711 	xvattr_t	tmpxvattr;
2712 	uint_t		mask = vap->va_mask;
2713 	uint_t		saved_mask = 0;
2714 	int		trim_mask = 0;
2715 	uint64_t	new_mode;
2716 	uint64_t	new_uid, new_gid;
2717 	uint64_t	xattr_obj;
2718 	uint64_t	mtime[2], ctime[2];
2719 	znode_t		*attrzp;
2720 	int		need_policy = FALSE;
2721 	int		err, err2;
2722 	zfs_fuid_info_t *fuidp = NULL;
2723 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2724 	xoptattr_t	*xoap;
2725 	zfs_acl_t	*aclp;
2726 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2727 	boolean_t	fuid_dirtied = B_FALSE;
2728 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2729 	int		count = 0, xattr_count = 0;
2730 
2731 	if (mask == 0)
2732 		return (0);
2733 
2734 	if (mask & AT_NOSET)
2735 		return (SET_ERROR(EINVAL));
2736 
2737 	ZFS_ENTER(zfsvfs);
2738 	ZFS_VERIFY_ZP(zp);
2739 
2740 	zilog = zfsvfs->z_log;
2741 
2742 	/*
2743 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2744 	 * that file system is at proper version level
2745 	 */
2746 
2747 	if (zfsvfs->z_use_fuids == B_FALSE &&
2748 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2749 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2750 	    (mask & AT_XVATTR))) {
2751 		ZFS_EXIT(zfsvfs);
2752 		return (SET_ERROR(EINVAL));
2753 	}
2754 
2755 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2756 		ZFS_EXIT(zfsvfs);
2757 		return (SET_ERROR(EISDIR));
2758 	}
2759 
2760 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2761 		ZFS_EXIT(zfsvfs);
2762 		return (SET_ERROR(EINVAL));
2763 	}
2764 
2765 	/*
2766 	 * If this is an xvattr_t, then get a pointer to the structure of
2767 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2768 	 */
2769 	xoap = xva_getxoptattr(xvap);
2770 
2771 	xva_init(&tmpxvattr);
2772 
2773 	/*
2774 	 * Immutable files can only alter immutable bit and atime
2775 	 */
2776 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2777 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2778 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2779 		ZFS_EXIT(zfsvfs);
2780 		return (SET_ERROR(EPERM));
2781 	}
2782 
2783 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2784 		ZFS_EXIT(zfsvfs);
2785 		return (SET_ERROR(EPERM));
2786 	}
2787 
2788 	/*
2789 	 * Verify timestamps doesn't overflow 32 bits.
2790 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2791 	 * handle times greater than 2039.  This check should be removed
2792 	 * once large timestamps are fully supported.
2793 	 */
2794 	if (mask & (AT_ATIME | AT_MTIME)) {
2795 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2796 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2797 			ZFS_EXIT(zfsvfs);
2798 			return (SET_ERROR(EOVERFLOW));
2799 		}
2800 	}
2801 
2802 top:
2803 	attrzp = NULL;
2804 	aclp = NULL;
2805 
2806 	/* Can this be moved to before the top label? */
2807 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2808 		ZFS_EXIT(zfsvfs);
2809 		return (SET_ERROR(EROFS));
2810 	}
2811 
2812 	/*
2813 	 * First validate permissions
2814 	 */
2815 
2816 	if (mask & AT_SIZE) {
2817 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2818 		if (err) {
2819 			ZFS_EXIT(zfsvfs);
2820 			return (err);
2821 		}
2822 		/*
2823 		 * XXX - Note, we are not providing any open
2824 		 * mode flags here (like FNDELAY), so we may
2825 		 * block if there are locks present... this
2826 		 * should be addressed in openat().
2827 		 */
2828 		/* XXX - would it be OK to generate a log record here? */
2829 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2830 		if (err) {
2831 			ZFS_EXIT(zfsvfs);
2832 			return (err);
2833 		}
2834 
2835 		if (vap->va_size == 0)
2836 			vnevent_truncate(ZTOV(zp), ct);
2837 	}
2838 
2839 	if (mask & (AT_ATIME|AT_MTIME) ||
2840 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2841 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2842 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2843 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2844 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2845 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2846 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2847 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2848 		    skipaclchk, cr);
2849 	}
2850 
2851 	if (mask & (AT_UID|AT_GID)) {
2852 		int	idmask = (mask & (AT_UID|AT_GID));
2853 		int	take_owner;
2854 		int	take_group;
2855 
2856 		/*
2857 		 * NOTE: even if a new mode is being set,
2858 		 * we may clear S_ISUID/S_ISGID bits.
2859 		 */
2860 
2861 		if (!(mask & AT_MODE))
2862 			vap->va_mode = zp->z_mode;
2863 
2864 		/*
2865 		 * Take ownership or chgrp to group we are a member of
2866 		 */
2867 
2868 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2869 		take_group = (mask & AT_GID) &&
2870 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2871 
2872 		/*
2873 		 * If both AT_UID and AT_GID are set then take_owner and
2874 		 * take_group must both be set in order to allow taking
2875 		 * ownership.
2876 		 *
2877 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2878 		 *
2879 		 */
2880 
2881 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2882 		    ((idmask == AT_UID) && take_owner) ||
2883 		    ((idmask == AT_GID) && take_group)) {
2884 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2885 			    skipaclchk, cr) == 0) {
2886 				/*
2887 				 * Remove setuid/setgid for non-privileged users
2888 				 */
2889 				secpolicy_setid_clear(vap, cr);
2890 				trim_mask = (mask & (AT_UID|AT_GID));
2891 			} else {
2892 				need_policy =  TRUE;
2893 			}
2894 		} else {
2895 			need_policy =  TRUE;
2896 		}
2897 	}
2898 
2899 	mutex_enter(&zp->z_lock);
2900 	oldva.va_mode = zp->z_mode;
2901 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2902 	if (mask & AT_XVATTR) {
2903 		/*
2904 		 * Update xvattr mask to include only those attributes
2905 		 * that are actually changing.
2906 		 *
2907 		 * the bits will be restored prior to actually setting
2908 		 * the attributes so the caller thinks they were set.
2909 		 */
2910 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2911 			if (xoap->xoa_appendonly !=
2912 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2913 				need_policy = TRUE;
2914 			} else {
2915 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2916 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2917 			}
2918 		}
2919 
2920 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2921 			if (xoap->xoa_nounlink !=
2922 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2923 				need_policy = TRUE;
2924 			} else {
2925 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2926 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2927 			}
2928 		}
2929 
2930 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2931 			if (xoap->xoa_immutable !=
2932 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2933 				need_policy = TRUE;
2934 			} else {
2935 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2936 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2937 			}
2938 		}
2939 
2940 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2941 			if (xoap->xoa_nodump !=
2942 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2943 				need_policy = TRUE;
2944 			} else {
2945 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2946 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2947 			}
2948 		}
2949 
2950 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2951 			if (xoap->xoa_av_modified !=
2952 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2953 				need_policy = TRUE;
2954 			} else {
2955 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2956 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2957 			}
2958 		}
2959 
2960 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2961 			if ((vp->v_type != VREG &&
2962 			    xoap->xoa_av_quarantined) ||
2963 			    xoap->xoa_av_quarantined !=
2964 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2965 				need_policy = TRUE;
2966 			} else {
2967 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2968 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2969 			}
2970 		}
2971 
2972 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2973 			mutex_exit(&zp->z_lock);
2974 			ZFS_EXIT(zfsvfs);
2975 			return (SET_ERROR(EPERM));
2976 		}
2977 
2978 		if (need_policy == FALSE &&
2979 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2980 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2981 			need_policy = TRUE;
2982 		}
2983 	}
2984 
2985 	mutex_exit(&zp->z_lock);
2986 
2987 	if (mask & AT_MODE) {
2988 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2989 			err = secpolicy_setid_setsticky_clear(vp, vap,
2990 			    &oldva, cr);
2991 			if (err) {
2992 				ZFS_EXIT(zfsvfs);
2993 				return (err);
2994 			}
2995 			trim_mask |= AT_MODE;
2996 		} else {
2997 			need_policy = TRUE;
2998 		}
2999 	}
3000 
3001 	if (need_policy) {
3002 		/*
3003 		 * If trim_mask is set then take ownership
3004 		 * has been granted or write_acl is present and user
3005 		 * has the ability to modify mode.  In that case remove
3006 		 * UID|GID and or MODE from mask so that
3007 		 * secpolicy_vnode_setattr() doesn't revoke it.
3008 		 */
3009 
3010 		if (trim_mask) {
3011 			saved_mask = vap->va_mask;
3012 			vap->va_mask &= ~trim_mask;
3013 		}
3014 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3015 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3016 		if (err) {
3017 			ZFS_EXIT(zfsvfs);
3018 			return (err);
3019 		}
3020 
3021 		if (trim_mask)
3022 			vap->va_mask |= saved_mask;
3023 	}
3024 
3025 	/*
3026 	 * secpolicy_vnode_setattr, or take ownership may have
3027 	 * changed va_mask
3028 	 */
3029 	mask = vap->va_mask;
3030 
3031 	if ((mask & (AT_UID | AT_GID))) {
3032 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3033 		    &xattr_obj, sizeof (xattr_obj));
3034 
3035 		if (err == 0 && xattr_obj) {
3036 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3037 			if (err)
3038 				goto out2;
3039 		}
3040 		if (mask & AT_UID) {
3041 			new_uid = zfs_fuid_create(zfsvfs,
3042 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3043 			if (new_uid != zp->z_uid &&
3044 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3045 				if (attrzp)
3046 					VN_RELE(ZTOV(attrzp));
3047 				err = SET_ERROR(EDQUOT);
3048 				goto out2;
3049 			}
3050 		}
3051 
3052 		if (mask & AT_GID) {
3053 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3054 			    cr, ZFS_GROUP, &fuidp);
3055 			if (new_gid != zp->z_gid &&
3056 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3057 				if (attrzp)
3058 					VN_RELE(ZTOV(attrzp));
3059 				err = SET_ERROR(EDQUOT);
3060 				goto out2;
3061 			}
3062 		}
3063 	}
3064 	tx = dmu_tx_create(zfsvfs->z_os);
3065 
3066 	if (mask & AT_MODE) {
3067 		uint64_t pmode = zp->z_mode;
3068 		uint64_t acl_obj;
3069 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3070 
3071 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3072 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3073 			err = SET_ERROR(EPERM);
3074 			goto out;
3075 		}
3076 
3077 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3078 			goto out;
3079 
3080 		mutex_enter(&zp->z_lock);
3081 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3082 			/*
3083 			 * Are we upgrading ACL from old V0 format
3084 			 * to V1 format?
3085 			 */
3086 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3087 			    zfs_znode_acl_version(zp) ==
3088 			    ZFS_ACL_VERSION_INITIAL) {
3089 				dmu_tx_hold_free(tx, acl_obj, 0,
3090 				    DMU_OBJECT_END);
3091 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3092 				    0, aclp->z_acl_bytes);
3093 			} else {
3094 				dmu_tx_hold_write(tx, acl_obj, 0,
3095 				    aclp->z_acl_bytes);
3096 			}
3097 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3098 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3099 			    0, aclp->z_acl_bytes);
3100 		}
3101 		mutex_exit(&zp->z_lock);
3102 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3103 	} else {
3104 		if ((mask & AT_XVATTR) &&
3105 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3106 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3107 		else
3108 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3109 	}
3110 
3111 	if (attrzp) {
3112 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3113 	}
3114 
3115 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3116 	if (fuid_dirtied)
3117 		zfs_fuid_txhold(zfsvfs, tx);
3118 
3119 	zfs_sa_upgrade_txholds(tx, zp);
3120 
3121 	err = dmu_tx_assign(tx, TXG_WAIT);
3122 	if (err)
3123 		goto out;
3124 
3125 	count = 0;
3126 	/*
3127 	 * Set each attribute requested.
3128 	 * We group settings according to the locks they need to acquire.
3129 	 *
3130 	 * Note: you cannot set ctime directly, although it will be
3131 	 * updated as a side-effect of calling this function.
3132 	 */
3133 
3134 
3135 	if (mask & (AT_UID|AT_GID|AT_MODE))
3136 		mutex_enter(&zp->z_acl_lock);
3137 	mutex_enter(&zp->z_lock);
3138 
3139 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3140 	    &zp->z_pflags, sizeof (zp->z_pflags));
3141 
3142 	if (attrzp) {
3143 		if (mask & (AT_UID|AT_GID|AT_MODE))
3144 			mutex_enter(&attrzp->z_acl_lock);
3145 		mutex_enter(&attrzp->z_lock);
3146 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3147 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3148 		    sizeof (attrzp->z_pflags));
3149 	}
3150 
3151 	if (mask & (AT_UID|AT_GID)) {
3152 
3153 		if (mask & AT_UID) {
3154 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3155 			    &new_uid, sizeof (new_uid));
3156 			zp->z_uid = new_uid;
3157 			if (attrzp) {
3158 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3159 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3160 				    sizeof (new_uid));
3161 				attrzp->z_uid = new_uid;
3162 			}
3163 		}
3164 
3165 		if (mask & AT_GID) {
3166 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3167 			    NULL, &new_gid, sizeof (new_gid));
3168 			zp->z_gid = new_gid;
3169 			if (attrzp) {
3170 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3171 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3172 				    sizeof (new_gid));
3173 				attrzp->z_gid = new_gid;
3174 			}
3175 		}
3176 		if (!(mask & AT_MODE)) {
3177 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3178 			    NULL, &new_mode, sizeof (new_mode));
3179 			new_mode = zp->z_mode;
3180 		}
3181 		err = zfs_acl_chown_setattr(zp);
3182 		ASSERT(err == 0);
3183 		if (attrzp) {
3184 			err = zfs_acl_chown_setattr(attrzp);
3185 			ASSERT(err == 0);
3186 		}
3187 	}
3188 
3189 	if (mask & AT_MODE) {
3190 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3191 		    &new_mode, sizeof (new_mode));
3192 		zp->z_mode = new_mode;
3193 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3194 		err = zfs_aclset_common(zp, aclp, cr, tx);
3195 		ASSERT0(err);
3196 		if (zp->z_acl_cached)
3197 			zfs_acl_free(zp->z_acl_cached);
3198 		zp->z_acl_cached = aclp;
3199 		aclp = NULL;
3200 	}
3201 
3202 
3203 	if (mask & AT_ATIME) {
3204 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3205 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3206 		    &zp->z_atime, sizeof (zp->z_atime));
3207 	}
3208 
3209 	if (mask & AT_MTIME) {
3210 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3211 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3212 		    mtime, sizeof (mtime));
3213 	}
3214 
3215 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3216 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3217 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3218 		    NULL, mtime, sizeof (mtime));
3219 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3220 		    &ctime, sizeof (ctime));
3221 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3222 		    B_TRUE);
3223 	} else if (mask != 0) {
3224 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3225 		    &ctime, sizeof (ctime));
3226 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3227 		    B_TRUE);
3228 		if (attrzp) {
3229 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3230 			    SA_ZPL_CTIME(zfsvfs), NULL,
3231 			    &ctime, sizeof (ctime));
3232 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3233 			    mtime, ctime, B_TRUE);
3234 		}
3235 	}
3236 	/*
3237 	 * Do this after setting timestamps to prevent timestamp
3238 	 * update from toggling bit
3239 	 */
3240 
3241 	if (xoap && (mask & AT_XVATTR)) {
3242 
3243 		/*
3244 		 * restore trimmed off masks
3245 		 * so that return masks can be set for caller.
3246 		 */
3247 
3248 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3249 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3250 		}
3251 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3252 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3253 		}
3254 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3255 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3256 		}
3257 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3258 			XVA_SET_REQ(xvap, XAT_NODUMP);
3259 		}
3260 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3261 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3262 		}
3263 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3264 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3265 		}
3266 
3267 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3268 			ASSERT(vp->v_type == VREG);
3269 
3270 		zfs_xvattr_set(zp, xvap, tx);
3271 	}
3272 
3273 	if (fuid_dirtied)
3274 		zfs_fuid_sync(zfsvfs, tx);
3275 
3276 	if (mask != 0)
3277 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3278 
3279 	mutex_exit(&zp->z_lock);
3280 	if (mask & (AT_UID|AT_GID|AT_MODE))
3281 		mutex_exit(&zp->z_acl_lock);
3282 
3283 	if (attrzp) {
3284 		if (mask & (AT_UID|AT_GID|AT_MODE))
3285 			mutex_exit(&attrzp->z_acl_lock);
3286 		mutex_exit(&attrzp->z_lock);
3287 	}
3288 out:
3289 	if (err == 0 && attrzp) {
3290 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3291 		    xattr_count, tx);
3292 		ASSERT(err2 == 0);
3293 	}
3294 
3295 	if (attrzp)
3296 		VN_RELE(ZTOV(attrzp));
3297 
3298 	if (aclp)
3299 		zfs_acl_free(aclp);
3300 
3301 	if (fuidp) {
3302 		zfs_fuid_info_free(fuidp);
3303 		fuidp = NULL;
3304 	}
3305 
3306 	if (err) {
3307 		dmu_tx_abort(tx);
3308 		if (err == ERESTART)
3309 			goto top;
3310 	} else {
3311 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3312 		dmu_tx_commit(tx);
3313 	}
3314 
3315 out2:
3316 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3317 		zil_commit(zilog, 0);
3318 
3319 	ZFS_EXIT(zfsvfs);
3320 	return (err);
3321 }
3322 
3323 typedef struct zfs_zlock {
3324 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3325 	znode_t		*zl_znode;	/* znode we held */
3326 	struct zfs_zlock *zl_next;	/* next in list */
3327 } zfs_zlock_t;
3328 
3329 /*
3330  * Drop locks and release vnodes that were held by zfs_rename_lock().
3331  */
3332 static void
3333 zfs_rename_unlock(zfs_zlock_t **zlpp)
3334 {
3335 	zfs_zlock_t *zl;
3336 
3337 	while ((zl = *zlpp) != NULL) {
3338 		if (zl->zl_znode != NULL)
3339 			VN_RELE(ZTOV(zl->zl_znode));
3340 		rw_exit(zl->zl_rwlock);
3341 		*zlpp = zl->zl_next;
3342 		kmem_free(zl, sizeof (*zl));
3343 	}
3344 }
3345 
3346 /*
3347  * Search back through the directory tree, using the ".." entries.
3348  * Lock each directory in the chain to prevent concurrent renames.
3349  * Fail any attempt to move a directory into one of its own descendants.
3350  * XXX - z_parent_lock can overlap with map or grow locks
3351  */
3352 static int
3353 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3354 {
3355 	zfs_zlock_t	*zl;
3356 	znode_t		*zp = tdzp;
3357 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3358 	uint64_t	oidp = zp->z_id;
3359 	krwlock_t	*rwlp = &szp->z_parent_lock;
3360 	krw_t		rw = RW_WRITER;
3361 
3362 	/*
3363 	 * First pass write-locks szp and compares to zp->z_id.
3364 	 * Later passes read-lock zp and compare to zp->z_parent.
3365 	 */
3366 	do {
3367 		if (!rw_tryenter(rwlp, rw)) {
3368 			/*
3369 			 * Another thread is renaming in this path.
3370 			 * Note that if we are a WRITER, we don't have any
3371 			 * parent_locks held yet.
3372 			 */
3373 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3374 				/*
3375 				 * Drop our locks and restart
3376 				 */
3377 				zfs_rename_unlock(&zl);
3378 				*zlpp = NULL;
3379 				zp = tdzp;
3380 				oidp = zp->z_id;
3381 				rwlp = &szp->z_parent_lock;
3382 				rw = RW_WRITER;
3383 				continue;
3384 			} else {
3385 				/*
3386 				 * Wait for other thread to drop its locks
3387 				 */
3388 				rw_enter(rwlp, rw);
3389 			}
3390 		}
3391 
3392 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3393 		zl->zl_rwlock = rwlp;
3394 		zl->zl_znode = NULL;
3395 		zl->zl_next = *zlpp;
3396 		*zlpp = zl;
3397 
3398 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3399 			return (SET_ERROR(EINVAL));
3400 
3401 		if (oidp == rootid)		/* We've hit the top */
3402 			return (0);
3403 
3404 		if (rw == RW_READER) {		/* i.e. not the first pass */
3405 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3406 			if (error)
3407 				return (error);
3408 			zl->zl_znode = zp;
3409 		}
3410 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3411 		    &oidp, sizeof (oidp));
3412 		rwlp = &zp->z_parent_lock;
3413 		rw = RW_READER;
3414 
3415 	} while (zp->z_id != sdzp->z_id);
3416 
3417 	return (0);
3418 }
3419 
3420 /*
3421  * Move an entry from the provided source directory to the target
3422  * directory.  Change the entry name as indicated.
3423  *
3424  *	IN:	sdvp	- Source directory containing the "old entry".
3425  *		snm	- Old entry name.
3426  *		tdvp	- Target directory to contain the "new entry".
3427  *		tnm	- New entry name.
3428  *		cr	- credentials of caller.
3429  *		ct	- caller context
3430  *		flags	- case flags
3431  *
3432  *	RETURN:	0 on success, error code on failure.
3433  *
3434  * Timestamps:
3435  *	sdvp,tdvp - ctime|mtime updated
3436  */
3437 /*ARGSUSED*/
3438 static int
3439 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3440     caller_context_t *ct, int flags)
3441 {
3442 	znode_t		*tdzp, *szp, *tzp;
3443 	znode_t		*sdzp = VTOZ(sdvp);
3444 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3445 	zilog_t		*zilog;
3446 	vnode_t		*realvp;
3447 	zfs_dirlock_t	*sdl, *tdl;
3448 	dmu_tx_t	*tx;
3449 	zfs_zlock_t	*zl;
3450 	int		cmp, serr, terr;
3451 	int		error = 0, rm_err = 0;
3452 	int		zflg = 0;
3453 	boolean_t	waited = B_FALSE;
3454 
3455 	ZFS_ENTER(zfsvfs);
3456 	ZFS_VERIFY_ZP(sdzp);
3457 	zilog = zfsvfs->z_log;
3458 
3459 	/*
3460 	 * Make sure we have the real vp for the target directory.
3461 	 */
3462 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3463 		tdvp = realvp;
3464 
3465 	tdzp = VTOZ(tdvp);
3466 	ZFS_VERIFY_ZP(tdzp);
3467 
3468 	/*
3469 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3470 	 * ctldir appear to have the same v_vfsp.
3471 	 */
3472 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3473 		ZFS_EXIT(zfsvfs);
3474 		return (SET_ERROR(EXDEV));
3475 	}
3476 
3477 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3478 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3479 		ZFS_EXIT(zfsvfs);
3480 		return (SET_ERROR(EILSEQ));
3481 	}
3482 
3483 	if (flags & FIGNORECASE)
3484 		zflg |= ZCILOOK;
3485 
3486 top:
3487 	szp = NULL;
3488 	tzp = NULL;
3489 	zl = NULL;
3490 
3491 	/*
3492 	 * This is to prevent the creation of links into attribute space
3493 	 * by renaming a linked file into/outof an attribute directory.
3494 	 * See the comment in zfs_link() for why this is considered bad.
3495 	 */
3496 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3497 		ZFS_EXIT(zfsvfs);
3498 		return (SET_ERROR(EINVAL));
3499 	}
3500 
3501 	/*
3502 	 * Lock source and target directory entries.  To prevent deadlock,
3503 	 * a lock ordering must be defined.  We lock the directory with
3504 	 * the smallest object id first, or if it's a tie, the one with
3505 	 * the lexically first name.
3506 	 */
3507 	if (sdzp->z_id < tdzp->z_id) {
3508 		cmp = -1;
3509 	} else if (sdzp->z_id > tdzp->z_id) {
3510 		cmp = 1;
3511 	} else {
3512 		/*
3513 		 * First compare the two name arguments without
3514 		 * considering any case folding.
3515 		 */
3516 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3517 
3518 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3519 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3520 		if (cmp == 0) {
3521 			/*
3522 			 * POSIX: "If the old argument and the new argument
3523 			 * both refer to links to the same existing file,
3524 			 * the rename() function shall return successfully
3525 			 * and perform no other action."
3526 			 */
3527 			ZFS_EXIT(zfsvfs);
3528 			return (0);
3529 		}
3530 		/*
3531 		 * If the file system is case-folding, then we may
3532 		 * have some more checking to do.  A case-folding file
3533 		 * system is either supporting mixed case sensitivity
3534 		 * access or is completely case-insensitive.  Note
3535 		 * that the file system is always case preserving.
3536 		 *
3537 		 * In mixed sensitivity mode case sensitive behavior
3538 		 * is the default.  FIGNORECASE must be used to
3539 		 * explicitly request case insensitive behavior.
3540 		 *
3541 		 * If the source and target names provided differ only
3542 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3543 		 * we will treat this as a special case in the
3544 		 * case-insensitive mode: as long as the source name
3545 		 * is an exact match, we will allow this to proceed as
3546 		 * a name-change request.
3547 		 */
3548 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3549 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3550 		    flags & FIGNORECASE)) &&
3551 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3552 		    &error) == 0) {
3553 			/*
3554 			 * case preserving rename request, require exact
3555 			 * name matches
3556 			 */
3557 			zflg |= ZCIEXACT;
3558 			zflg &= ~ZCILOOK;
3559 		}
3560 	}
3561 
3562 	/*
3563 	 * If the source and destination directories are the same, we should
3564 	 * grab the z_name_lock of that directory only once.
3565 	 */
3566 	if (sdzp == tdzp) {
3567 		zflg |= ZHAVELOCK;
3568 		rw_enter(&sdzp->z_name_lock, RW_READER);
3569 	}
3570 
3571 	if (cmp < 0) {
3572 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3573 		    ZEXISTS | zflg, NULL, NULL);
3574 		terr = zfs_dirent_lock(&tdl,
3575 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3576 	} else {
3577 		terr = zfs_dirent_lock(&tdl,
3578 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3579 		serr = zfs_dirent_lock(&sdl,
3580 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3581 		    NULL, NULL);
3582 	}
3583 
3584 	if (serr) {
3585 		/*
3586 		 * Source entry invalid or not there.
3587 		 */
3588 		if (!terr) {
3589 			zfs_dirent_unlock(tdl);
3590 			if (tzp)
3591 				VN_RELE(ZTOV(tzp));
3592 		}
3593 
3594 		if (sdzp == tdzp)
3595 			rw_exit(&sdzp->z_name_lock);
3596 
3597 		if (strcmp(snm, "..") == 0)
3598 			serr = SET_ERROR(EINVAL);
3599 		ZFS_EXIT(zfsvfs);
3600 		return (serr);
3601 	}
3602 	if (terr) {
3603 		zfs_dirent_unlock(sdl);
3604 		VN_RELE(ZTOV(szp));
3605 
3606 		if (sdzp == tdzp)
3607 			rw_exit(&sdzp->z_name_lock);
3608 
3609 		if (strcmp(tnm, "..") == 0)
3610 			terr = SET_ERROR(EINVAL);
3611 		ZFS_EXIT(zfsvfs);
3612 		return (terr);
3613 	}
3614 
3615 	/*
3616 	 * Must have write access at the source to remove the old entry
3617 	 * and write access at the target to create the new entry.
3618 	 * Note that if target and source are the same, this can be
3619 	 * done in a single check.
3620 	 */
3621 
3622 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3623 		goto out;
3624 
3625 	if (ZTOV(szp)->v_type == VDIR) {
3626 		/*
3627 		 * Check to make sure rename is valid.
3628 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3629 		 */
3630 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3631 			goto out;
3632 	}
3633 
3634 	/*
3635 	 * Does target exist?
3636 	 */
3637 	if (tzp) {
3638 		/*
3639 		 * Source and target must be the same type.
3640 		 */
3641 		if (ZTOV(szp)->v_type == VDIR) {
3642 			if (ZTOV(tzp)->v_type != VDIR) {
3643 				error = SET_ERROR(ENOTDIR);
3644 				goto out;
3645 			}
3646 		} else {
3647 			if (ZTOV(tzp)->v_type == VDIR) {
3648 				error = SET_ERROR(EISDIR);
3649 				goto out;
3650 			}
3651 		}
3652 		/*
3653 		 * POSIX dictates that when the source and target
3654 		 * entries refer to the same file object, rename
3655 		 * must do nothing and exit without error.
3656 		 */
3657 		if (szp->z_id == tzp->z_id) {
3658 			error = 0;
3659 			goto out;
3660 		}
3661 	}
3662 
3663 	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3664 	if (tzp)
3665 		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3666 
3667 	/*
3668 	 * notify the target directory if it is not the same
3669 	 * as source directory.
3670 	 */
3671 	if (tdvp != sdvp) {
3672 		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3673 	}
3674 
3675 	tx = dmu_tx_create(zfsvfs->z_os);
3676 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3677 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3678 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3679 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3680 	if (sdzp != tdzp) {
3681 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3682 		zfs_sa_upgrade_txholds(tx, tdzp);
3683 	}
3684 	if (tzp) {
3685 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3686 		zfs_sa_upgrade_txholds(tx, tzp);
3687 	}
3688 
3689 	zfs_sa_upgrade_txholds(tx, szp);
3690 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3691 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3692 	if (error) {
3693 		if (zl != NULL)
3694 			zfs_rename_unlock(&zl);
3695 		zfs_dirent_unlock(sdl);
3696 		zfs_dirent_unlock(tdl);
3697 
3698 		if (sdzp == tdzp)
3699 			rw_exit(&sdzp->z_name_lock);
3700 
3701 		VN_RELE(ZTOV(szp));
3702 		if (tzp)
3703 			VN_RELE(ZTOV(tzp));
3704 		if (error == ERESTART) {
3705 			waited = B_TRUE;
3706 			dmu_tx_wait(tx);
3707 			dmu_tx_abort(tx);
3708 			goto top;
3709 		}
3710 		dmu_tx_abort(tx);
3711 		ZFS_EXIT(zfsvfs);
3712 		return (error);
3713 	}
3714 
3715 	if (tzp)	/* Attempt to remove the existing target */
3716 		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3717 
3718 	if (error == 0) {
3719 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3720 		if (error == 0) {
3721 			szp->z_pflags |= ZFS_AV_MODIFIED;
3722 
3723 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3724 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3725 			ASSERT0(error);
3726 
3727 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3728 			if (error == 0) {
3729 				zfs_log_rename(zilog, tx, TX_RENAME |
3730 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3731 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3732 
3733 				/*
3734 				 * Update path information for the target vnode
3735 				 */
3736 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3737 				    strlen(tnm));
3738 			} else {
3739 				/*
3740 				 * At this point, we have successfully created
3741 				 * the target name, but have failed to remove
3742 				 * the source name.  Since the create was done
3743 				 * with the ZRENAMING flag, there are
3744 				 * complications; for one, the link count is
3745 				 * wrong.  The easiest way to deal with this
3746 				 * is to remove the newly created target, and
3747 				 * return the original error.  This must
3748 				 * succeed; fortunately, it is very unlikely to
3749 				 * fail, since we just created it.
3750 				 */
3751 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3752 				    ZRENAMING, NULL), ==, 0);
3753 			}
3754 		}
3755 	}
3756 
3757 	dmu_tx_commit(tx);
3758 
3759 	if (tzp && rm_err == 0)
3760 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3761 
3762 	if (error == 0) {
3763 		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3764 		/* notify the target dir if it is not the same as source dir */
3765 		if (tdvp != sdvp)
3766 			vnevent_rename_dest_dir(tdvp, ct);
3767 	}
3768 out:
3769 	if (zl != NULL)
3770 		zfs_rename_unlock(&zl);
3771 
3772 	zfs_dirent_unlock(sdl);
3773 	zfs_dirent_unlock(tdl);
3774 
3775 	if (sdzp == tdzp)
3776 		rw_exit(&sdzp->z_name_lock);
3777 
3778 
3779 	VN_RELE(ZTOV(szp));
3780 	if (tzp)
3781 		VN_RELE(ZTOV(tzp));
3782 
3783 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3784 		zil_commit(zilog, 0);
3785 
3786 	ZFS_EXIT(zfsvfs);
3787 	return (error);
3788 }
3789 
3790 /*
3791  * Insert the indicated symbolic reference entry into the directory.
3792  *
3793  *	IN:	dvp	- Directory to contain new symbolic link.
3794  *		link	- Name for new symlink entry.
3795  *		vap	- Attributes of new entry.
3796  *		cr	- credentials of caller.
3797  *		ct	- caller context
3798  *		flags	- case flags
3799  *
3800  *	RETURN:	0 on success, error code on failure.
3801  *
3802  * Timestamps:
3803  *	dvp - ctime|mtime updated
3804  */
3805 /*ARGSUSED*/
3806 static int
3807 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3808     caller_context_t *ct, int flags)
3809 {
3810 	znode_t		*zp, *dzp = VTOZ(dvp);
3811 	zfs_dirlock_t	*dl;
3812 	dmu_tx_t	*tx;
3813 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3814 	zilog_t		*zilog;
3815 	uint64_t	len = strlen(link);
3816 	int		error;
3817 	int		zflg = ZNEW;
3818 	zfs_acl_ids_t	acl_ids;
3819 	boolean_t	fuid_dirtied;
3820 	uint64_t	txtype = TX_SYMLINK;
3821 	boolean_t	waited = B_FALSE;
3822 
3823 	ASSERT(vap->va_type == VLNK);
3824 
3825 	ZFS_ENTER(zfsvfs);
3826 	ZFS_VERIFY_ZP(dzp);
3827 	zilog = zfsvfs->z_log;
3828 
3829 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3830 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3831 		ZFS_EXIT(zfsvfs);
3832 		return (SET_ERROR(EILSEQ));
3833 	}
3834 	if (flags & FIGNORECASE)
3835 		zflg |= ZCILOOK;
3836 
3837 	if (len > MAXPATHLEN) {
3838 		ZFS_EXIT(zfsvfs);
3839 		return (SET_ERROR(ENAMETOOLONG));
3840 	}
3841 
3842 	if ((error = zfs_acl_ids_create(dzp, 0,
3843 	    vap, cr, NULL, &acl_ids)) != 0) {
3844 		ZFS_EXIT(zfsvfs);
3845 		return (error);
3846 	}
3847 top:
3848 	/*
3849 	 * Attempt to lock directory; fail if entry already exists.
3850 	 */
3851 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3852 	if (error) {
3853 		zfs_acl_ids_free(&acl_ids);
3854 		ZFS_EXIT(zfsvfs);
3855 		return (error);
3856 	}
3857 
3858 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3859 		zfs_acl_ids_free(&acl_ids);
3860 		zfs_dirent_unlock(dl);
3861 		ZFS_EXIT(zfsvfs);
3862 		return (error);
3863 	}
3864 
3865 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3866 		zfs_acl_ids_free(&acl_ids);
3867 		zfs_dirent_unlock(dl);
3868 		ZFS_EXIT(zfsvfs);
3869 		return (SET_ERROR(EDQUOT));
3870 	}
3871 	tx = dmu_tx_create(zfsvfs->z_os);
3872 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3873 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3874 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3875 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3876 	    ZFS_SA_BASE_ATTR_SIZE + len);
3877 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3878 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3879 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3880 		    acl_ids.z_aclp->z_acl_bytes);
3881 	}
3882 	if (fuid_dirtied)
3883 		zfs_fuid_txhold(zfsvfs, tx);
3884 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3885 	if (error) {
3886 		zfs_dirent_unlock(dl);
3887 		if (error == ERESTART) {
3888 			waited = B_TRUE;
3889 			dmu_tx_wait(tx);
3890 			dmu_tx_abort(tx);
3891 			goto top;
3892 		}
3893 		zfs_acl_ids_free(&acl_ids);
3894 		dmu_tx_abort(tx);
3895 		ZFS_EXIT(zfsvfs);
3896 		return (error);
3897 	}
3898 
3899 	/*
3900 	 * Create a new object for the symlink.
3901 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3902 	 */
3903 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3904 
3905 	if (fuid_dirtied)
3906 		zfs_fuid_sync(zfsvfs, tx);
3907 
3908 	mutex_enter(&zp->z_lock);
3909 	if (zp->z_is_sa)
3910 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3911 		    link, len, tx);
3912 	else
3913 		zfs_sa_symlink(zp, link, len, tx);
3914 	mutex_exit(&zp->z_lock);
3915 
3916 	zp->z_size = len;
3917 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3918 	    &zp->z_size, sizeof (zp->z_size), tx);
3919 	/*
3920 	 * Insert the new object into the directory.
3921 	 */
3922 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3923 
3924 	if (flags & FIGNORECASE)
3925 		txtype |= TX_CI;
3926 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3927 
3928 	zfs_acl_ids_free(&acl_ids);
3929 
3930 	dmu_tx_commit(tx);
3931 
3932 	zfs_dirent_unlock(dl);
3933 
3934 	VN_RELE(ZTOV(zp));
3935 
3936 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3937 		zil_commit(zilog, 0);
3938 
3939 	ZFS_EXIT(zfsvfs);
3940 	return (error);
3941 }
3942 
3943 /*
3944  * Return, in the buffer contained in the provided uio structure,
3945  * the symbolic path referred to by vp.
3946  *
3947  *	IN:	vp	- vnode of symbolic link.
3948  *		uio	- structure to contain the link path.
3949  *		cr	- credentials of caller.
3950  *		ct	- caller context
3951  *
3952  *	OUT:	uio	- structure containing the link path.
3953  *
3954  *	RETURN:	0 on success, error code on failure.
3955  *
3956  * Timestamps:
3957  *	vp - atime updated
3958  */
3959 /* ARGSUSED */
3960 static int
3961 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3962 {
3963 	znode_t		*zp = VTOZ(vp);
3964 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3965 	int		error;
3966 
3967 	ZFS_ENTER(zfsvfs);
3968 	ZFS_VERIFY_ZP(zp);
3969 
3970 	mutex_enter(&zp->z_lock);
3971 	if (zp->z_is_sa)
3972 		error = sa_lookup_uio(zp->z_sa_hdl,
3973 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3974 	else
3975 		error = zfs_sa_readlink(zp, uio);
3976 	mutex_exit(&zp->z_lock);
3977 
3978 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3979 
3980 	ZFS_EXIT(zfsvfs);
3981 	return (error);
3982 }
3983 
3984 /*
3985  * Insert a new entry into directory tdvp referencing svp.
3986  *
3987  *	IN:	tdvp	- Directory to contain new entry.
3988  *		svp	- vnode of new entry.
3989  *		name	- name of new entry.
3990  *		cr	- credentials of caller.
3991  *		ct	- caller context
3992  *
3993  *	RETURN:	0 on success, error code on failure.
3994  *
3995  * Timestamps:
3996  *	tdvp - ctime|mtime updated
3997  *	 svp - ctime updated
3998  */
3999 /* ARGSUSED */
4000 static int
4001 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4002     caller_context_t *ct, int flags)
4003 {
4004 	znode_t		*dzp = VTOZ(tdvp);
4005 	znode_t		*tzp, *szp;
4006 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4007 	zilog_t		*zilog;
4008 	zfs_dirlock_t	*dl;
4009 	dmu_tx_t	*tx;
4010 	vnode_t		*realvp;
4011 	int		error;
4012 	int		zf = ZNEW;
4013 	uint64_t	parent;
4014 	uid_t		owner;
4015 	boolean_t	waited = B_FALSE;
4016 
4017 	ASSERT(tdvp->v_type == VDIR);
4018 
4019 	ZFS_ENTER(zfsvfs);
4020 	ZFS_VERIFY_ZP(dzp);
4021 	zilog = zfsvfs->z_log;
4022 
4023 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4024 		svp = realvp;
4025 
4026 	/*
4027 	 * POSIX dictates that we return EPERM here.
4028 	 * Better choices include ENOTSUP or EISDIR.
4029 	 */
4030 	if (svp->v_type == VDIR) {
4031 		ZFS_EXIT(zfsvfs);
4032 		return (SET_ERROR(EPERM));
4033 	}
4034 
4035 	szp = VTOZ(svp);
4036 	ZFS_VERIFY_ZP(szp);
4037 
4038 	/*
4039 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4040 	 * ctldir appear to have the same v_vfsp.
4041 	 */
4042 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4043 		ZFS_EXIT(zfsvfs);
4044 		return (SET_ERROR(EXDEV));
4045 	}
4046 
4047 	/* Prevent links to .zfs/shares files */
4048 
4049 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4050 	    &parent, sizeof (uint64_t))) != 0) {
4051 		ZFS_EXIT(zfsvfs);
4052 		return (error);
4053 	}
4054 	if (parent == zfsvfs->z_shares_dir) {
4055 		ZFS_EXIT(zfsvfs);
4056 		return (SET_ERROR(EPERM));
4057 	}
4058 
4059 	if (zfsvfs->z_utf8 && u8_validate(name,
4060 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4061 		ZFS_EXIT(zfsvfs);
4062 		return (SET_ERROR(EILSEQ));
4063 	}
4064 	if (flags & FIGNORECASE)
4065 		zf |= ZCILOOK;
4066 
4067 	/*
4068 	 * We do not support links between attributes and non-attributes
4069 	 * because of the potential security risk of creating links
4070 	 * into "normal" file space in order to circumvent restrictions
4071 	 * imposed in attribute space.
4072 	 */
4073 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4074 		ZFS_EXIT(zfsvfs);
4075 		return (SET_ERROR(EINVAL));
4076 	}
4077 
4078 
4079 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4080 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4081 		ZFS_EXIT(zfsvfs);
4082 		return (SET_ERROR(EPERM));
4083 	}
4084 
4085 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4086 		ZFS_EXIT(zfsvfs);
4087 		return (error);
4088 	}
4089 
4090 top:
4091 	/*
4092 	 * Attempt to lock directory; fail if entry already exists.
4093 	 */
4094 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4095 	if (error) {
4096 		ZFS_EXIT(zfsvfs);
4097 		return (error);
4098 	}
4099 
4100 	tx = dmu_tx_create(zfsvfs->z_os);
4101 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4102 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4103 	zfs_sa_upgrade_txholds(tx, szp);
4104 	zfs_sa_upgrade_txholds(tx, dzp);
4105 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4106 	if (error) {
4107 		zfs_dirent_unlock(dl);
4108 		if (error == ERESTART) {
4109 			waited = B_TRUE;
4110 			dmu_tx_wait(tx);
4111 			dmu_tx_abort(tx);
4112 			goto top;
4113 		}
4114 		dmu_tx_abort(tx);
4115 		ZFS_EXIT(zfsvfs);
4116 		return (error);
4117 	}
4118 
4119 	error = zfs_link_create(dl, szp, tx, 0);
4120 
4121 	if (error == 0) {
4122 		uint64_t txtype = TX_LINK;
4123 		if (flags & FIGNORECASE)
4124 			txtype |= TX_CI;
4125 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4126 	}
4127 
4128 	dmu_tx_commit(tx);
4129 
4130 	zfs_dirent_unlock(dl);
4131 
4132 	if (error == 0) {
4133 		vnevent_link(svp, ct);
4134 	}
4135 
4136 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4137 		zil_commit(zilog, 0);
4138 
4139 	ZFS_EXIT(zfsvfs);
4140 	return (error);
4141 }
4142 
4143 /*
4144  * zfs_null_putapage() is used when the file system has been force
4145  * unmounted. It just drops the pages.
4146  */
4147 /* ARGSUSED */
4148 static int
4149 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4150     size_t *lenp, int flags, cred_t *cr)
4151 {
4152 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4153 	return (0);
4154 }
4155 
4156 /*
4157  * Push a page out to disk, klustering if possible.
4158  *
4159  *	IN:	vp	- file to push page to.
4160  *		pp	- page to push.
4161  *		flags	- additional flags.
4162  *		cr	- credentials of caller.
4163  *
4164  *	OUT:	offp	- start of range pushed.
4165  *		lenp	- len of range pushed.
4166  *
4167  *	RETURN:	0 on success, error code on failure.
4168  *
4169  * NOTE: callers must have locked the page to be pushed.  On
4170  * exit, the page (and all other pages in the kluster) must be
4171  * unlocked.
4172  */
4173 /* ARGSUSED */
4174 static int
4175 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4176     size_t *lenp, int flags, cred_t *cr)
4177 {
4178 	znode_t		*zp = VTOZ(vp);
4179 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4180 	dmu_tx_t	*tx;
4181 	u_offset_t	off, koff;
4182 	size_t		len, klen;
4183 	int		err;
4184 
4185 	off = pp->p_offset;
4186 	len = PAGESIZE;
4187 	/*
4188 	 * If our blocksize is bigger than the page size, try to kluster
4189 	 * multiple pages so that we write a full block (thus avoiding
4190 	 * a read-modify-write).
4191 	 */
4192 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4193 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4194 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4195 		ASSERT(koff <= zp->z_size);
4196 		if (koff + klen > zp->z_size)
4197 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4198 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4199 	}
4200 	ASSERT3U(btop(len), ==, btopr(len));
4201 
4202 	/*
4203 	 * Can't push pages past end-of-file.
4204 	 */
4205 	if (off >= zp->z_size) {
4206 		/* ignore all pages */
4207 		err = 0;
4208 		goto out;
4209 	} else if (off + len > zp->z_size) {
4210 		int npages = btopr(zp->z_size - off);
4211 		page_t *trunc;
4212 
4213 		page_list_break(&pp, &trunc, npages);
4214 		/* ignore pages past end of file */
4215 		if (trunc)
4216 			pvn_write_done(trunc, flags);
4217 		len = zp->z_size - off;
4218 	}
4219 
4220 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4221 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4222 		err = SET_ERROR(EDQUOT);
4223 		goto out;
4224 	}
4225 	tx = dmu_tx_create(zfsvfs->z_os);
4226 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4227 
4228 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4229 	zfs_sa_upgrade_txholds(tx, zp);
4230 	err = dmu_tx_assign(tx, TXG_WAIT);
4231 	if (err != 0) {
4232 		dmu_tx_abort(tx);
4233 		goto out;
4234 	}
4235 
4236 	if (zp->z_blksz <= PAGESIZE) {
4237 		caddr_t va = zfs_map_page(pp, S_READ);
4238 		ASSERT3U(len, <=, PAGESIZE);
4239 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4240 		zfs_unmap_page(pp, va);
4241 	} else {
4242 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4243 	}
4244 
4245 	if (err == 0) {
4246 		uint64_t mtime[2], ctime[2];
4247 		sa_bulk_attr_t bulk[3];
4248 		int count = 0;
4249 
4250 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4251 		    &mtime, 16);
4252 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4253 		    &ctime, 16);
4254 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4255 		    &zp->z_pflags, 8);
4256 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4257 		    B_TRUE);
4258 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4259 	}
4260 	dmu_tx_commit(tx);
4261 
4262 out:
4263 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4264 	if (offp)
4265 		*offp = off;
4266 	if (lenp)
4267 		*lenp = len;
4268 
4269 	return (err);
4270 }
4271 
4272 /*
4273  * Copy the portion of the file indicated from pages into the file.
4274  * The pages are stored in a page list attached to the files vnode.
4275  *
4276  *	IN:	vp	- vnode of file to push page data to.
4277  *		off	- position in file to put data.
4278  *		len	- amount of data to write.
4279  *		flags	- flags to control the operation.
4280  *		cr	- credentials of caller.
4281  *		ct	- caller context.
4282  *
4283  *	RETURN:	0 on success, error code on failure.
4284  *
4285  * Timestamps:
4286  *	vp - ctime|mtime updated
4287  */
4288 /*ARGSUSED*/
4289 static int
4290 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4291     caller_context_t *ct)
4292 {
4293 	znode_t		*zp = VTOZ(vp);
4294 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4295 	page_t		*pp;
4296 	size_t		io_len;
4297 	u_offset_t	io_off;
4298 	uint_t		blksz;
4299 	rl_t		*rl;
4300 	int		error = 0;
4301 
4302 	ZFS_ENTER(zfsvfs);
4303 	ZFS_VERIFY_ZP(zp);
4304 
4305 	/*
4306 	 * There's nothing to do if no data is cached.
4307 	 */
4308 	if (!vn_has_cached_data(vp)) {
4309 		ZFS_EXIT(zfsvfs);
4310 		return (0);
4311 	}
4312 
4313 	/*
4314 	 * Align this request to the file block size in case we kluster.
4315 	 * XXX - this can result in pretty aggresive locking, which can
4316 	 * impact simultanious read/write access.  One option might be
4317 	 * to break up long requests (len == 0) into block-by-block
4318 	 * operations to get narrower locking.
4319 	 */
4320 	blksz = zp->z_blksz;
4321 	if (ISP2(blksz))
4322 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4323 	else
4324 		io_off = 0;
4325 	if (len > 0 && ISP2(blksz))
4326 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4327 	else
4328 		io_len = 0;
4329 
4330 	if (io_len == 0) {
4331 		/*
4332 		 * Search the entire vp list for pages >= io_off.
4333 		 */
4334 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4335 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4336 		goto out;
4337 	}
4338 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4339 
4340 	if (off > zp->z_size) {
4341 		/* past end of file */
4342 		zfs_range_unlock(rl);
4343 		ZFS_EXIT(zfsvfs);
4344 		return (0);
4345 	}
4346 
4347 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4348 
4349 	for (off = io_off; io_off < off + len; io_off += io_len) {
4350 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4351 			pp = page_lookup(vp, io_off,
4352 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4353 		} else {
4354 			pp = page_lookup_nowait(vp, io_off,
4355 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4356 		}
4357 
4358 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4359 			int err;
4360 
4361 			/*
4362 			 * Found a dirty page to push
4363 			 */
4364 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4365 			if (err)
4366 				error = err;
4367 		} else {
4368 			io_len = PAGESIZE;
4369 		}
4370 	}
4371 out:
4372 	zfs_range_unlock(rl);
4373 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4374 		zil_commit(zfsvfs->z_log, zp->z_id);
4375 	ZFS_EXIT(zfsvfs);
4376 	return (error);
4377 }
4378 
4379 /*ARGSUSED*/
4380 void
4381 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4382 {
4383 	znode_t	*zp = VTOZ(vp);
4384 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4385 	int error;
4386 
4387 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4388 	if (zp->z_sa_hdl == NULL) {
4389 		/*
4390 		 * The fs has been unmounted, or we did a
4391 		 * suspend/resume and this file no longer exists.
4392 		 */
4393 		if (vn_has_cached_data(vp)) {
4394 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4395 			    B_INVAL, cr);
4396 		}
4397 
4398 		mutex_enter(&zp->z_lock);
4399 		mutex_enter(&vp->v_lock);
4400 		ASSERT(vp->v_count == 1);
4401 		vp->v_count = 0;
4402 		mutex_exit(&vp->v_lock);
4403 		mutex_exit(&zp->z_lock);
4404 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4405 		zfs_znode_free(zp);
4406 		return;
4407 	}
4408 
4409 	/*
4410 	 * Attempt to push any data in the page cache.  If this fails
4411 	 * we will get kicked out later in zfs_zinactive().
4412 	 */
4413 	if (vn_has_cached_data(vp)) {
4414 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4415 		    cr);
4416 	}
4417 
4418 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4419 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4420 
4421 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4422 		zfs_sa_upgrade_txholds(tx, zp);
4423 		error = dmu_tx_assign(tx, TXG_WAIT);
4424 		if (error) {
4425 			dmu_tx_abort(tx);
4426 		} else {
4427 			mutex_enter(&zp->z_lock);
4428 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4429 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4430 			zp->z_atime_dirty = 0;
4431 			mutex_exit(&zp->z_lock);
4432 			dmu_tx_commit(tx);
4433 		}
4434 	}
4435 
4436 	zfs_zinactive(zp);
4437 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4438 }
4439 
4440 /*
4441  * Bounds-check the seek operation.
4442  *
4443  *	IN:	vp	- vnode seeking within
4444  *		ooff	- old file offset
4445  *		noffp	- pointer to new file offset
4446  *		ct	- caller context
4447  *
4448  *	RETURN:	0 on success, EINVAL if new offset invalid.
4449  */
4450 /* ARGSUSED */
4451 static int
4452 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4453     caller_context_t *ct)
4454 {
4455 	if (vp->v_type == VDIR)
4456 		return (0);
4457 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4458 }
4459 
4460 /*
4461  * Pre-filter the generic locking function to trap attempts to place
4462  * a mandatory lock on a memory mapped file.
4463  */
4464 static int
4465 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4466     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4467 {
4468 	znode_t *zp = VTOZ(vp);
4469 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4470 
4471 	ZFS_ENTER(zfsvfs);
4472 	ZFS_VERIFY_ZP(zp);
4473 
4474 	/*
4475 	 * We are following the UFS semantics with respect to mapcnt
4476 	 * here: If we see that the file is mapped already, then we will
4477 	 * return an error, but we don't worry about races between this
4478 	 * function and zfs_map().
4479 	 */
4480 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4481 		ZFS_EXIT(zfsvfs);
4482 		return (SET_ERROR(EAGAIN));
4483 	}
4484 	ZFS_EXIT(zfsvfs);
4485 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4486 }
4487 
4488 /*
4489  * If we can't find a page in the cache, we will create a new page
4490  * and fill it with file data.  For efficiency, we may try to fill
4491  * multiple pages at once (klustering) to fill up the supplied page
4492  * list.  Note that the pages to be filled are held with an exclusive
4493  * lock to prevent access by other threads while they are being filled.
4494  */
4495 static int
4496 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4497     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4498 {
4499 	znode_t *zp = VTOZ(vp);
4500 	page_t *pp, *cur_pp;
4501 	objset_t *os = zp->z_zfsvfs->z_os;
4502 	u_offset_t io_off, total;
4503 	size_t io_len;
4504 	int err;
4505 
4506 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4507 		/*
4508 		 * We only have a single page, don't bother klustering
4509 		 */
4510 		io_off = off;
4511 		io_len = PAGESIZE;
4512 		pp = page_create_va(vp, io_off, io_len,
4513 		    PG_EXCL | PG_WAIT, seg, addr);
4514 	} else {
4515 		/*
4516 		 * Try to find enough pages to fill the page list
4517 		 */
4518 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4519 		    &io_len, off, plsz, 0);
4520 	}
4521 	if (pp == NULL) {
4522 		/*
4523 		 * The page already exists, nothing to do here.
4524 		 */
4525 		*pl = NULL;
4526 		return (0);
4527 	}
4528 
4529 	/*
4530 	 * Fill the pages in the kluster.
4531 	 */
4532 	cur_pp = pp;
4533 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4534 		caddr_t va;
4535 
4536 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4537 		va = zfs_map_page(cur_pp, S_WRITE);
4538 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4539 		    DMU_READ_PREFETCH);
4540 		zfs_unmap_page(cur_pp, va);
4541 		if (err) {
4542 			/* On error, toss the entire kluster */
4543 			pvn_read_done(pp, B_ERROR);
4544 			/* convert checksum errors into IO errors */
4545 			if (err == ECKSUM)
4546 				err = SET_ERROR(EIO);
4547 			return (err);
4548 		}
4549 		cur_pp = cur_pp->p_next;
4550 	}
4551 
4552 	/*
4553 	 * Fill in the page list array from the kluster starting
4554 	 * from the desired offset `off'.
4555 	 * NOTE: the page list will always be null terminated.
4556 	 */
4557 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4558 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4559 
4560 	return (0);
4561 }
4562 
4563 /*
4564  * Return pointers to the pages for the file region [off, off + len]
4565  * in the pl array.  If plsz is greater than len, this function may
4566  * also return page pointers from after the specified region
4567  * (i.e. the region [off, off + plsz]).  These additional pages are
4568  * only returned if they are already in the cache, or were created as
4569  * part of a klustered read.
4570  *
4571  *	IN:	vp	- vnode of file to get data from.
4572  *		off	- position in file to get data from.
4573  *		len	- amount of data to retrieve.
4574  *		plsz	- length of provided page list.
4575  *		seg	- segment to obtain pages for.
4576  *		addr	- virtual address of fault.
4577  *		rw	- mode of created pages.
4578  *		cr	- credentials of caller.
4579  *		ct	- caller context.
4580  *
4581  *	OUT:	protp	- protection mode of created pages.
4582  *		pl	- list of pages created.
4583  *
4584  *	RETURN:	0 on success, error code on failure.
4585  *
4586  * Timestamps:
4587  *	vp - atime updated
4588  */
4589 /* ARGSUSED */
4590 static int
4591 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4592     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4593     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4594 {
4595 	znode_t		*zp = VTOZ(vp);
4596 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4597 	page_t		**pl0 = pl;
4598 	int		err = 0;
4599 
4600 	/* we do our own caching, faultahead is unnecessary */
4601 	if (pl == NULL)
4602 		return (0);
4603 	else if (len > plsz)
4604 		len = plsz;
4605 	else
4606 		len = P2ROUNDUP(len, PAGESIZE);
4607 	ASSERT(plsz >= len);
4608 
4609 	ZFS_ENTER(zfsvfs);
4610 	ZFS_VERIFY_ZP(zp);
4611 
4612 	if (protp)
4613 		*protp = PROT_ALL;
4614 
4615 	/*
4616 	 * Loop through the requested range [off, off + len) looking
4617 	 * for pages.  If we don't find a page, we will need to create
4618 	 * a new page and fill it with data from the file.
4619 	 */
4620 	while (len > 0) {
4621 		if (*pl = page_lookup(vp, off, SE_SHARED))
4622 			*(pl+1) = NULL;
4623 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4624 			goto out;
4625 		while (*pl) {
4626 			ASSERT3U((*pl)->p_offset, ==, off);
4627 			off += PAGESIZE;
4628 			addr += PAGESIZE;
4629 			if (len > 0) {
4630 				ASSERT3U(len, >=, PAGESIZE);
4631 				len -= PAGESIZE;
4632 			}
4633 			ASSERT3U(plsz, >=, PAGESIZE);
4634 			plsz -= PAGESIZE;
4635 			pl++;
4636 		}
4637 	}
4638 
4639 	/*
4640 	 * Fill out the page array with any pages already in the cache.
4641 	 */
4642 	while (plsz > 0 &&
4643 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4644 			off += PAGESIZE;
4645 			plsz -= PAGESIZE;
4646 	}
4647 out:
4648 	if (err) {
4649 		/*
4650 		 * Release any pages we have previously locked.
4651 		 */
4652 		while (pl > pl0)
4653 			page_unlock(*--pl);
4654 	} else {
4655 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4656 	}
4657 
4658 	*pl = NULL;
4659 
4660 	ZFS_EXIT(zfsvfs);
4661 	return (err);
4662 }
4663 
4664 /*
4665  * Request a memory map for a section of a file.  This code interacts
4666  * with common code and the VM system as follows:
4667  *
4668  * - common code calls mmap(), which ends up in smmap_common()
4669  * - this calls VOP_MAP(), which takes you into (say) zfs
4670  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4671  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4672  * - zfs_addmap() updates z_mapcnt
4673  */
4674 /*ARGSUSED*/
4675 static int
4676 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4677     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4678     caller_context_t *ct)
4679 {
4680 	znode_t *zp = VTOZ(vp);
4681 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4682 	segvn_crargs_t	vn_a;
4683 	int		error;
4684 
4685 	ZFS_ENTER(zfsvfs);
4686 	ZFS_VERIFY_ZP(zp);
4687 
4688 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4689 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4690 		ZFS_EXIT(zfsvfs);
4691 		return (SET_ERROR(EPERM));
4692 	}
4693 
4694 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4695 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4696 		ZFS_EXIT(zfsvfs);
4697 		return (SET_ERROR(EACCES));
4698 	}
4699 
4700 	if (vp->v_flag & VNOMAP) {
4701 		ZFS_EXIT(zfsvfs);
4702 		return (SET_ERROR(ENOSYS));
4703 	}
4704 
4705 	if (off < 0 || len > MAXOFFSET_T - off) {
4706 		ZFS_EXIT(zfsvfs);
4707 		return (SET_ERROR(ENXIO));
4708 	}
4709 
4710 	if (vp->v_type != VREG) {
4711 		ZFS_EXIT(zfsvfs);
4712 		return (SET_ERROR(ENODEV));
4713 	}
4714 
4715 	/*
4716 	 * If file is locked, disallow mapping.
4717 	 */
4718 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4719 		ZFS_EXIT(zfsvfs);
4720 		return (SET_ERROR(EAGAIN));
4721 	}
4722 
4723 	as_rangelock(as);
4724 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4725 	if (error != 0) {
4726 		as_rangeunlock(as);
4727 		ZFS_EXIT(zfsvfs);
4728 		return (error);
4729 	}
4730 
4731 	vn_a.vp = vp;
4732 	vn_a.offset = (u_offset_t)off;
4733 	vn_a.type = flags & MAP_TYPE;
4734 	vn_a.prot = prot;
4735 	vn_a.maxprot = maxprot;
4736 	vn_a.cred = cr;
4737 	vn_a.amp = NULL;
4738 	vn_a.flags = flags & ~MAP_TYPE;
4739 	vn_a.szc = 0;
4740 	vn_a.lgrp_mem_policy_flags = 0;
4741 
4742 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4743 
4744 	as_rangeunlock(as);
4745 	ZFS_EXIT(zfsvfs);
4746 	return (error);
4747 }
4748 
4749 /* ARGSUSED */
4750 static int
4751 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4752     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4753     caller_context_t *ct)
4754 {
4755 	uint64_t pages = btopr(len);
4756 
4757 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4758 	return (0);
4759 }
4760 
4761 /*
4762  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4763  * more accurate mtime for the associated file.  Since we don't have a way of
4764  * detecting when the data was actually modified, we have to resort to
4765  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4766  * last page is pushed.  The problem occurs when the msync() call is omitted,
4767  * which by far the most common case:
4768  *
4769  *	open()
4770  *	mmap()
4771  *	<modify memory>
4772  *	munmap()
4773  *	close()
4774  *	<time lapse>
4775  *	putpage() via fsflush
4776  *
4777  * If we wait until fsflush to come along, we can have a modification time that
4778  * is some arbitrary point in the future.  In order to prevent this in the
4779  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4780  * torn down.
4781  */
4782 /* ARGSUSED */
4783 static int
4784 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4785     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4786     caller_context_t *ct)
4787 {
4788 	uint64_t pages = btopr(len);
4789 
4790 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4791 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4792 
4793 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4794 	    vn_has_cached_data(vp))
4795 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4796 
4797 	return (0);
4798 }
4799 
4800 /*
4801  * Free or allocate space in a file.  Currently, this function only
4802  * supports the `F_FREESP' command.  However, this command is somewhat
4803  * misnamed, as its functionality includes the ability to allocate as
4804  * well as free space.
4805  *
4806  *	IN:	vp	- vnode of file to free data in.
4807  *		cmd	- action to take (only F_FREESP supported).
4808  *		bfp	- section of file to free/alloc.
4809  *		flag	- current file open mode flags.
4810  *		offset	- current file offset.
4811  *		cr	- credentials of caller [UNUSED].
4812  *		ct	- caller context.
4813  *
4814  *	RETURN:	0 on success, error code on failure.
4815  *
4816  * Timestamps:
4817  *	vp - ctime|mtime updated
4818  */
4819 /* ARGSUSED */
4820 static int
4821 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4822     offset_t offset, cred_t *cr, caller_context_t *ct)
4823 {
4824 	znode_t		*zp = VTOZ(vp);
4825 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4826 	uint64_t	off, len;
4827 	int		error;
4828 
4829 	ZFS_ENTER(zfsvfs);
4830 	ZFS_VERIFY_ZP(zp);
4831 
4832 	if (cmd != F_FREESP) {
4833 		ZFS_EXIT(zfsvfs);
4834 		return (SET_ERROR(EINVAL));
4835 	}
4836 
4837 	/*
4838 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4839 	 * callers might not be able to detect properly that we are read-only,
4840 	 * so check it explicitly here.
4841 	 */
4842 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4843 		ZFS_EXIT(zfsvfs);
4844 		return (SET_ERROR(EROFS));
4845 	}
4846 
4847 	if (error = convoff(vp, bfp, 0, offset)) {
4848 		ZFS_EXIT(zfsvfs);
4849 		return (error);
4850 	}
4851 
4852 	if (bfp->l_len < 0) {
4853 		ZFS_EXIT(zfsvfs);
4854 		return (SET_ERROR(EINVAL));
4855 	}
4856 
4857 	off = bfp->l_start;
4858 	len = bfp->l_len; /* 0 means from off to end of file */
4859 
4860 	error = zfs_freesp(zp, off, len, flag, TRUE);
4861 
4862 	if (error == 0 && off == 0 && len == 0)
4863 		vnevent_truncate(ZTOV(zp), ct);
4864 
4865 	ZFS_EXIT(zfsvfs);
4866 	return (error);
4867 }
4868 
4869 /*ARGSUSED*/
4870 static int
4871 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4872 {
4873 	znode_t		*zp = VTOZ(vp);
4874 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4875 	uint32_t	gen;
4876 	uint64_t	gen64;
4877 	uint64_t	object = zp->z_id;
4878 	zfid_short_t	*zfid;
4879 	int		size, i, error;
4880 
4881 	ZFS_ENTER(zfsvfs);
4882 	ZFS_VERIFY_ZP(zp);
4883 
4884 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4885 	    &gen64, sizeof (uint64_t))) != 0) {
4886 		ZFS_EXIT(zfsvfs);
4887 		return (error);
4888 	}
4889 
4890 	gen = (uint32_t)gen64;
4891 
4892 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4893 	if (fidp->fid_len < size) {
4894 		fidp->fid_len = size;
4895 		ZFS_EXIT(zfsvfs);
4896 		return (SET_ERROR(ENOSPC));
4897 	}
4898 
4899 	zfid = (zfid_short_t *)fidp;
4900 
4901 	zfid->zf_len = size;
4902 
4903 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4904 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4905 
4906 	/* Must have a non-zero generation number to distinguish from .zfs */
4907 	if (gen == 0)
4908 		gen = 1;
4909 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4910 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4911 
4912 	if (size == LONG_FID_LEN) {
4913 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4914 		zfid_long_t	*zlfid;
4915 
4916 		zlfid = (zfid_long_t *)fidp;
4917 
4918 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4919 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4920 
4921 		/* XXX - this should be the generation number for the objset */
4922 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4923 			zlfid->zf_setgen[i] = 0;
4924 	}
4925 
4926 	ZFS_EXIT(zfsvfs);
4927 	return (0);
4928 }
4929 
4930 static int
4931 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4932     caller_context_t *ct)
4933 {
4934 	znode_t		*zp, *xzp;
4935 	zfsvfs_t	*zfsvfs;
4936 	zfs_dirlock_t	*dl;
4937 	int		error;
4938 
4939 	switch (cmd) {
4940 	case _PC_LINK_MAX:
4941 		*valp = ULONG_MAX;
4942 		return (0);
4943 
4944 	case _PC_FILESIZEBITS:
4945 		*valp = 64;
4946 		return (0);
4947 
4948 	case _PC_XATTR_EXISTS:
4949 		zp = VTOZ(vp);
4950 		zfsvfs = zp->z_zfsvfs;
4951 		ZFS_ENTER(zfsvfs);
4952 		ZFS_VERIFY_ZP(zp);
4953 		*valp = 0;
4954 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4955 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4956 		if (error == 0) {
4957 			zfs_dirent_unlock(dl);
4958 			if (!zfs_dirempty(xzp))
4959 				*valp = 1;
4960 			VN_RELE(ZTOV(xzp));
4961 		} else if (error == ENOENT) {
4962 			/*
4963 			 * If there aren't extended attributes, it's the
4964 			 * same as having zero of them.
4965 			 */
4966 			error = 0;
4967 		}
4968 		ZFS_EXIT(zfsvfs);
4969 		return (error);
4970 
4971 	case _PC_SATTR_ENABLED:
4972 	case _PC_SATTR_EXISTS:
4973 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4974 		    (vp->v_type == VREG || vp->v_type == VDIR);
4975 		return (0);
4976 
4977 	case _PC_ACCESS_FILTERING:
4978 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4979 		    vp->v_type == VDIR;
4980 		return (0);
4981 
4982 	case _PC_ACL_ENABLED:
4983 		*valp = _ACL_ACE_ENABLED;
4984 		return (0);
4985 
4986 	case _PC_MIN_HOLE_SIZE:
4987 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4988 		return (0);
4989 
4990 	case _PC_TIMESTAMP_RESOLUTION:
4991 		/* nanosecond timestamp resolution */
4992 		*valp = 1L;
4993 		return (0);
4994 
4995 	default:
4996 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4997 	}
4998 }
4999 
5000 /*ARGSUSED*/
5001 static int
5002 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5003     caller_context_t *ct)
5004 {
5005 	znode_t *zp = VTOZ(vp);
5006 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5007 	int error;
5008 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5009 
5010 	ZFS_ENTER(zfsvfs);
5011 	ZFS_VERIFY_ZP(zp);
5012 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5013 	ZFS_EXIT(zfsvfs);
5014 
5015 	return (error);
5016 }
5017 
5018 /*ARGSUSED*/
5019 static int
5020 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5021     caller_context_t *ct)
5022 {
5023 	znode_t *zp = VTOZ(vp);
5024 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5025 	int error;
5026 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5027 	zilog_t	*zilog = zfsvfs->z_log;
5028 
5029 	ZFS_ENTER(zfsvfs);
5030 	ZFS_VERIFY_ZP(zp);
5031 
5032 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5033 
5034 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5035 		zil_commit(zilog, 0);
5036 
5037 	ZFS_EXIT(zfsvfs);
5038 	return (error);
5039 }
5040 
5041 /*
5042  * The smallest read we may consider to loan out an arcbuf.
5043  * This must be a power of 2.
5044  */
5045 int zcr_blksz_min = (1 << 10);	/* 1K */
5046 /*
5047  * If set to less than the file block size, allow loaning out of an
5048  * arcbuf for a partial block read.  This must be a power of 2.
5049  */
5050 int zcr_blksz_max = (1 << 17);	/* 128K */
5051 
5052 /*ARGSUSED*/
5053 static int
5054 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5055     caller_context_t *ct)
5056 {
5057 	znode_t	*zp = VTOZ(vp);
5058 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5059 	int max_blksz = zfsvfs->z_max_blksz;
5060 	uio_t *uio = &xuio->xu_uio;
5061 	ssize_t size = uio->uio_resid;
5062 	offset_t offset = uio->uio_loffset;
5063 	int blksz;
5064 	int fullblk, i;
5065 	arc_buf_t *abuf;
5066 	ssize_t maxsize;
5067 	int preamble, postamble;
5068 
5069 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5070 		return (SET_ERROR(EINVAL));
5071 
5072 	ZFS_ENTER(zfsvfs);
5073 	ZFS_VERIFY_ZP(zp);
5074 	switch (ioflag) {
5075 	case UIO_WRITE:
5076 		/*
5077 		 * Loan out an arc_buf for write if write size is bigger than
5078 		 * max_blksz, and the file's block size is also max_blksz.
5079 		 */
5080 		blksz = max_blksz;
5081 		if (size < blksz || zp->z_blksz != blksz) {
5082 			ZFS_EXIT(zfsvfs);
5083 			return (SET_ERROR(EINVAL));
5084 		}
5085 		/*
5086 		 * Caller requests buffers for write before knowing where the
5087 		 * write offset might be (e.g. NFS TCP write).
5088 		 */
5089 		if (offset == -1) {
5090 			preamble = 0;
5091 		} else {
5092 			preamble = P2PHASE(offset, blksz);
5093 			if (preamble) {
5094 				preamble = blksz - preamble;
5095 				size -= preamble;
5096 			}
5097 		}
5098 
5099 		postamble = P2PHASE(size, blksz);
5100 		size -= postamble;
5101 
5102 		fullblk = size / blksz;
5103 		(void) dmu_xuio_init(xuio,
5104 		    (preamble != 0) + fullblk + (postamble != 0));
5105 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5106 		    int, postamble, int,
5107 		    (preamble != 0) + fullblk + (postamble != 0));
5108 
5109 		/*
5110 		 * Have to fix iov base/len for partial buffers.  They
5111 		 * currently represent full arc_buf's.
5112 		 */
5113 		if (preamble) {
5114 			/* data begins in the middle of the arc_buf */
5115 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5116 			    blksz);
5117 			ASSERT(abuf);
5118 			(void) dmu_xuio_add(xuio, abuf,
5119 			    blksz - preamble, preamble);
5120 		}
5121 
5122 		for (i = 0; i < fullblk; i++) {
5123 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5124 			    blksz);
5125 			ASSERT(abuf);
5126 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5127 		}
5128 
5129 		if (postamble) {
5130 			/* data ends in the middle of the arc_buf */
5131 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5132 			    blksz);
5133 			ASSERT(abuf);
5134 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5135 		}
5136 		break;
5137 	case UIO_READ:
5138 		/*
5139 		 * Loan out an arc_buf for read if the read size is larger than
5140 		 * the current file block size.  Block alignment is not
5141 		 * considered.  Partial arc_buf will be loaned out for read.
5142 		 */
5143 		blksz = zp->z_blksz;
5144 		if (blksz < zcr_blksz_min)
5145 			blksz = zcr_blksz_min;
5146 		if (blksz > zcr_blksz_max)
5147 			blksz = zcr_blksz_max;
5148 		/* avoid potential complexity of dealing with it */
5149 		if (blksz > max_blksz) {
5150 			ZFS_EXIT(zfsvfs);
5151 			return (SET_ERROR(EINVAL));
5152 		}
5153 
5154 		maxsize = zp->z_size - uio->uio_loffset;
5155 		if (size > maxsize)
5156 			size = maxsize;
5157 
5158 		if (size < blksz || vn_has_cached_data(vp)) {
5159 			ZFS_EXIT(zfsvfs);
5160 			return (SET_ERROR(EINVAL));
5161 		}
5162 		break;
5163 	default:
5164 		ZFS_EXIT(zfsvfs);
5165 		return (SET_ERROR(EINVAL));
5166 	}
5167 
5168 	uio->uio_extflg = UIO_XUIO;
5169 	XUIO_XUZC_RW(xuio) = ioflag;
5170 	ZFS_EXIT(zfsvfs);
5171 	return (0);
5172 }
5173 
5174 /*ARGSUSED*/
5175 static int
5176 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5177 {
5178 	int i;
5179 	arc_buf_t *abuf;
5180 	int ioflag = XUIO_XUZC_RW(xuio);
5181 
5182 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5183 
5184 	i = dmu_xuio_cnt(xuio);
5185 	while (i-- > 0) {
5186 		abuf = dmu_xuio_arcbuf(xuio, i);
5187 		/*
5188 		 * if abuf == NULL, it must be a write buffer
5189 		 * that has been returned in zfs_write().
5190 		 */
5191 		if (abuf)
5192 			dmu_return_arcbuf(abuf);
5193 		ASSERT(abuf || ioflag == UIO_WRITE);
5194 	}
5195 
5196 	dmu_xuio_fini(xuio);
5197 	return (0);
5198 }
5199 
5200 /*
5201  * Predeclare these here so that the compiler assumes that
5202  * this is an "old style" function declaration that does
5203  * not include arguments => we won't get type mismatch errors
5204  * in the initializations that follow.
5205  */
5206 static int zfs_inval();
5207 static int zfs_isdir();
5208 
5209 static int
5210 zfs_inval()
5211 {
5212 	return (SET_ERROR(EINVAL));
5213 }
5214 
5215 static int
5216 zfs_isdir()
5217 {
5218 	return (SET_ERROR(EISDIR));
5219 }
5220 /*
5221  * Directory vnode operations template
5222  */
5223 vnodeops_t *zfs_dvnodeops;
5224 const fs_operation_def_t zfs_dvnodeops_template[] = {
5225 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5226 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5227 	VOPNAME_READ,		{ .error = zfs_isdir },
5228 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5229 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5230 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5231 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5232 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5233 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5234 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5235 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5236 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5237 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5238 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5239 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5240 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5241 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5242 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5243 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5244 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5245 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5246 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5247 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5248 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5249 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5250 	NULL,			NULL
5251 };
5252 
5253 /*
5254  * Regular file vnode operations template
5255  */
5256 vnodeops_t *zfs_fvnodeops;
5257 const fs_operation_def_t zfs_fvnodeops_template[] = {
5258 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5259 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5260 	VOPNAME_READ,		{ .vop_read = zfs_read },
5261 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5262 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5263 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5264 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5265 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5266 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5267 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5268 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5269 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5270 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5271 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5272 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5273 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5274 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5275 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5276 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5277 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5278 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5279 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5280 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5281 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5282 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5283 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5284 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5285 	NULL,			NULL
5286 };
5287 
5288 /*
5289  * Symbolic link vnode operations template
5290  */
5291 vnodeops_t *zfs_symvnodeops;
5292 const fs_operation_def_t zfs_symvnodeops_template[] = {
5293 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5294 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5295 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5296 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5297 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5298 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5299 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5300 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5301 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5302 	NULL,			NULL
5303 };
5304 
5305 /*
5306  * special share hidden files vnode operations template
5307  */
5308 vnodeops_t *zfs_sharevnodeops;
5309 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5310 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5311 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5312 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5313 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5314 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5315 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5316 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5317 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5318 	NULL,			NULL
5319 };
5320 
5321 /*
5322  * Extended attribute directory vnode operations template
5323  *
5324  * This template is identical to the directory vnodes
5325  * operation template except for restricted operations:
5326  *	VOP_MKDIR()
5327  *	VOP_SYMLINK()
5328  *
5329  * Note that there are other restrictions embedded in:
5330  *	zfs_create()	- restrict type to VREG
5331  *	zfs_link()	- no links into/out of attribute space
5332  *	zfs_rename()	- no moves into/out of attribute space
5333  */
5334 vnodeops_t *zfs_xdvnodeops;
5335 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5336 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5337 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5338 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5339 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5340 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5341 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5342 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5343 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5344 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5345 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5346 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5347 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5348 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5349 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5350 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5351 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5352 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5353 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5354 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5355 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5356 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5357 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5358 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5359 	NULL,			NULL
5360 };
5361 
5362 /*
5363  * Error vnode operations template
5364  */
5365 vnodeops_t *zfs_evnodeops;
5366 const fs_operation_def_t zfs_evnodeops_template[] = {
5367 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5368 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5369 	NULL,			NULL
5370 };
5371