1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2020 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 #include <sys/sa_impl.h> 88 #include <sys/zfs_project.h> 89 90 /* 91 * Programming rules. 92 * 93 * Each vnode op performs some logical unit of work. To do this, the ZPL must 94 * properly lock its in-core state, create a DMU transaction, do the work, 95 * record this work in the intent log (ZIL), commit the DMU transaction, 96 * and wait for the intent log to commit if it is a synchronous operation. 97 * Moreover, the vnode ops must work in both normal and log replay context. 98 * The ordering of events is important to avoid deadlocks and references 99 * to freed memory. The example below illustrates the following Big Rules: 100 * 101 * (1) A check must be made in each zfs thread for a mounted file system. 102 * This is done avoiding races using ZFS_ENTER(zfsvfs). 103 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 104 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 105 * can return EIO from the calling function. 106 * 107 * (2) VN_RELE() should always be the last thing except for zil_commit() 108 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 109 * First, if it's the last reference, the vnode/znode 110 * can be freed, so the zp may point to freed memory. Second, the last 111 * reference will call zfs_zinactive(), which may induce a lot of work -- 112 * pushing cached pages (which acquires range locks) and syncing out 113 * cached atime changes. Third, zfs_zinactive() may require a new tx, 114 * which could deadlock the system if you were already holding one. 115 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 116 * 117 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 118 * as they can span dmu_tx_assign() calls. 119 * 120 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 121 * dmu_tx_assign(). This is critical because we don't want to block 122 * while holding locks. 123 * 124 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 125 * reduces lock contention and CPU usage when we must wait (note that if 126 * throughput is constrained by the storage, nearly every transaction 127 * must wait). 128 * 129 * Note, in particular, that if a lock is sometimes acquired before 130 * the tx assigns, and sometimes after (e.g. z_lock), then failing 131 * to use a non-blocking assign can deadlock the system. The scenario: 132 * 133 * Thread A has grabbed a lock before calling dmu_tx_assign(). 134 * Thread B is in an already-assigned tx, and blocks for this lock. 135 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 136 * forever, because the previous txg can't quiesce until B's tx commits. 137 * 138 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 139 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 140 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 141 * to indicate that this operation has already called dmu_tx_wait(). 142 * This will ensure that we don't retry forever, waiting a short bit 143 * each time. 144 * 145 * (5) If the operation succeeded, generate the intent log entry for it 146 * before dropping locks. This ensures that the ordering of events 147 * in the intent log matches the order in which they actually occurred. 148 * During ZIL replay the zfs_log_* functions will update the sequence 149 * number to indicate the zil transaction has replayed. 150 * 151 * (6) At the end of each vnode op, the DMU tx must always commit, 152 * regardless of whether there were any errors. 153 * 154 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 155 * to ensure that synchronous semantics are provided when necessary. 156 * 157 * In general, this is how things should be ordered in each vnode op: 158 * 159 * ZFS_ENTER(zfsvfs); // exit if unmounted 160 * top: 161 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 162 * rw_enter(...); // grab any other locks you need 163 * tx = dmu_tx_create(...); // get DMU tx 164 * dmu_tx_hold_*(); // hold each object you might modify 165 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 166 * if (error) { 167 * rw_exit(...); // drop locks 168 * zfs_dirent_unlock(dl); // unlock directory entry 169 * VN_RELE(...); // release held vnodes 170 * if (error == ERESTART) { 171 * waited = B_TRUE; 172 * dmu_tx_wait(tx); 173 * dmu_tx_abort(tx); 174 * goto top; 175 * } 176 * dmu_tx_abort(tx); // abort DMU tx 177 * ZFS_EXIT(zfsvfs); // finished in zfs 178 * return (error); // really out of space 179 * } 180 * error = do_real_work(); // do whatever this VOP does 181 * if (error == 0) 182 * zfs_log_*(...); // on success, make ZIL entry 183 * dmu_tx_commit(tx); // commit DMU tx -- error or not 184 * rw_exit(...); // drop locks 185 * zfs_dirent_unlock(dl); // unlock directory entry 186 * VN_RELE(...); // release held vnodes 187 * zil_commit(zilog, foid); // synchronous when necessary 188 * ZFS_EXIT(zfsvfs); // finished in zfs 189 * return (error); // done, report error 190 */ 191 192 /* ARGSUSED */ 193 static int 194 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 195 { 196 znode_t *zp = VTOZ(*vpp); 197 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 198 199 ZFS_ENTER(zfsvfs); 200 ZFS_VERIFY_ZP(zp); 201 202 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 203 ((flag & FAPPEND) == 0)) { 204 ZFS_EXIT(zfsvfs); 205 return (SET_ERROR(EPERM)); 206 } 207 208 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 209 ZTOV(zp)->v_type == VREG && 210 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 211 if (fs_vscan(*vpp, cr, 0) != 0) { 212 ZFS_EXIT(zfsvfs); 213 return (SET_ERROR(EACCES)); 214 } 215 } 216 217 /* Keep a count of the synchronous opens in the znode */ 218 if (flag & (FSYNC | FDSYNC)) 219 atomic_inc_32(&zp->z_sync_cnt); 220 221 ZFS_EXIT(zfsvfs); 222 return (0); 223 } 224 225 /* ARGSUSED */ 226 static int 227 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 228 caller_context_t *ct) 229 { 230 znode_t *zp = VTOZ(vp); 231 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 232 233 /* 234 * Clean up any locks held by this process on the vp. 235 */ 236 cleanlocks(vp, ddi_get_pid(), 0); 237 cleanshares(vp, ddi_get_pid()); 238 239 ZFS_ENTER(zfsvfs); 240 ZFS_VERIFY_ZP(zp); 241 242 /* Decrement the synchronous opens in the znode */ 243 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 244 atomic_dec_32(&zp->z_sync_cnt); 245 246 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 247 ZTOV(zp)->v_type == VREG && 248 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 249 VERIFY(fs_vscan(vp, cr, 1) == 0); 250 251 ZFS_EXIT(zfsvfs); 252 return (0); 253 } 254 255 /* 256 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 257 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 258 */ 259 static int 260 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 261 { 262 znode_t *zp = VTOZ(vp); 263 uint64_t noff = (uint64_t)*off; /* new offset */ 264 uint64_t file_sz; 265 int error; 266 boolean_t hole; 267 268 file_sz = zp->z_size; 269 if (noff >= file_sz) { 270 return (SET_ERROR(ENXIO)); 271 } 272 273 if (cmd == _FIO_SEEK_HOLE) 274 hole = B_TRUE; 275 else 276 hole = B_FALSE; 277 278 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 279 280 if (error == ESRCH) 281 return (SET_ERROR(ENXIO)); 282 283 /* 284 * We could find a hole that begins after the logical end-of-file, 285 * because dmu_offset_next() only works on whole blocks. If the 286 * EOF falls mid-block, then indicate that the "virtual hole" 287 * at the end of the file begins at the logical EOF, rather than 288 * at the end of the last block. 289 */ 290 if (noff > file_sz) { 291 ASSERT(hole); 292 noff = file_sz; 293 } 294 295 if (noff < *off) 296 return (error); 297 *off = noff; 298 return (error); 299 } 300 301 static int 302 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr, 303 caller_context_t *ct) 304 { 305 zfsxattr_t fsx = { 0 }; 306 znode_t *zp = VTOZ(vp); 307 308 if (zp->z_pflags & ZFS_PROJINHERIT) 309 fsx.fsx_xflags = ZFS_PROJINHERIT_FL; 310 if (zp->z_pflags & ZFS_PROJID) 311 fsx.fsx_projid = zp->z_projid; 312 if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag)) 313 return (SET_ERROR(EFAULT)); 314 315 return (0); 316 } 317 318 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *); 319 320 static int 321 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr, 322 caller_context_t *ct) 323 { 324 znode_t *zp = VTOZ(vp); 325 zfsxattr_t fsx; 326 xvattr_t xva; 327 xoptattr_t *xoap; 328 int err; 329 330 if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags)) 331 return (SET_ERROR(EFAULT)); 332 333 if (!zpl_is_valid_projid(fsx.fsx_projid)) 334 return (SET_ERROR(EINVAL)); 335 336 if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL) 337 return (SET_ERROR(EOPNOTSUPP)); 338 339 xva_init(&xva); 340 xoap = xva_getxoptattr(&xva); 341 342 XVA_SET_REQ(&xva, XAT_PROJINHERIT); 343 if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL) 344 xoap->xoa_projinherit = B_TRUE; 345 346 XVA_SET_REQ(&xva, XAT_PROJID); 347 xoap->xoa_projid = fsx.fsx_projid; 348 349 return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct)); 350 } 351 352 /* ARGSUSED */ 353 static int 354 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 355 int *rvalp, caller_context_t *ct) 356 { 357 offset_t off; 358 offset_t ndata; 359 dmu_object_info_t doi; 360 int error; 361 zfsvfs_t *zfsvfs; 362 znode_t *zp; 363 364 switch (com) { 365 case _FIOFFS: 366 { 367 return (zfs_sync(vp->v_vfsp, 0, cred)); 368 369 /* 370 * The following two ioctls are used by bfu. Faking out, 371 * necessary to avoid bfu errors. 372 */ 373 } 374 case _FIOGDIO: 375 case _FIOSDIO: 376 { 377 return (0); 378 } 379 380 case _FIODIRECTIO: 381 { 382 /* 383 * ZFS inherently provides the basic semantics for directio. 384 * This is the summary from the ZFS on Linux support for 385 * O_DIRECT, which is the common form of directio, and required 386 * no changes to ZFS. 387 * 388 * 1. Minimize cache effects of the I/O. 389 * 390 * By design the ARC is already scan-resistant, which helps 391 * mitigate the need for special O_DIRECT handling. 392 * 393 * 2. O_DIRECT _MAY_ impose restrictions on IO alignment and 394 * length. 395 * 396 * No additional alignment or length restrictions are 397 * imposed by ZFS. 398 * 399 * 3. O_DIRECT _MAY_ perform unbuffered IO operations directly 400 * between user memory and block device. 401 * 402 * No unbuffered IO operations are currently supported. In 403 * order to support features such as compression, encryption, 404 * and checksumming a copy must be made to transform the 405 * data. 406 * 407 * 4. O_DIRECT _MAY_ imply O_DSYNC (XFS). 408 * 409 * O_DIRECT does not imply O_DSYNC for ZFS. 410 * 411 * 5. O_DIRECT _MAY_ disable file locking that serializes IO 412 * operations. 413 * 414 * All I/O in ZFS is locked for correctness and this locking 415 * is not disabled by O_DIRECT. 416 */ 417 return (0); 418 } 419 420 case _FIO_SEEK_DATA: 421 case _FIO_SEEK_HOLE: 422 { 423 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 424 return (SET_ERROR(EFAULT)); 425 426 zp = VTOZ(vp); 427 zfsvfs = zp->z_zfsvfs; 428 ZFS_ENTER(zfsvfs); 429 ZFS_VERIFY_ZP(zp); 430 431 /* offset parameter is in/out */ 432 error = zfs_holey(vp, com, &off); 433 ZFS_EXIT(zfsvfs); 434 if (error) 435 return (error); 436 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 437 return (SET_ERROR(EFAULT)); 438 return (0); 439 } 440 case _FIO_COUNT_FILLED: 441 { 442 /* 443 * _FIO_COUNT_FILLED adds a new ioctl command which 444 * exposes the number of filled blocks in a 445 * ZFS object. 446 */ 447 zp = VTOZ(vp); 448 zfsvfs = zp->z_zfsvfs; 449 ZFS_ENTER(zfsvfs); 450 ZFS_VERIFY_ZP(zp); 451 452 /* 453 * Wait for all dirty blocks for this object 454 * to get synced out to disk, and the DMU info 455 * updated. 456 */ 457 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 458 if (error) { 459 ZFS_EXIT(zfsvfs); 460 return (error); 461 } 462 463 /* 464 * Retrieve fill count from DMU object. 465 */ 466 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 467 if (error) { 468 ZFS_EXIT(zfsvfs); 469 return (error); 470 } 471 472 ndata = doi.doi_fill_count; 473 474 ZFS_EXIT(zfsvfs); 475 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 476 return (SET_ERROR(EFAULT)); 477 return (0); 478 } 479 case ZFS_IOC_FSGETXATTR: 480 return (zfs_ioctl_getxattr(vp, data, flag, cred, ct)); 481 case ZFS_IOC_FSSETXATTR: 482 return (zfs_ioctl_setxattr(vp, data, flag, cred, ct)); 483 } 484 return (SET_ERROR(ENOTTY)); 485 } 486 487 /* 488 * Utility functions to map and unmap a single physical page. These 489 * are used to manage the mappable copies of ZFS file data, and therefore 490 * do not update ref/mod bits. 491 */ 492 caddr_t 493 zfs_map_page(page_t *pp, enum seg_rw rw) 494 { 495 if (kpm_enable) 496 return (hat_kpm_mapin(pp, 0)); 497 ASSERT(rw == S_READ || rw == S_WRITE); 498 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 499 (caddr_t)-1)); 500 } 501 502 void 503 zfs_unmap_page(page_t *pp, caddr_t addr) 504 { 505 if (kpm_enable) { 506 hat_kpm_mapout(pp, 0, addr); 507 } else { 508 ppmapout(addr); 509 } 510 } 511 512 /* 513 * When a file is memory mapped, we must keep the IO data synchronized 514 * between the DMU cache and the memory mapped pages. What this means: 515 * 516 * On Write: If we find a memory mapped page, we write to *both* 517 * the page and the dmu buffer. 518 */ 519 static void 520 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 521 { 522 int64_t off; 523 524 off = start & PAGEOFFSET; 525 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 526 page_t *pp; 527 uint64_t nbytes = MIN(PAGESIZE - off, len); 528 529 if (pp = page_lookup(vp, start, SE_SHARED)) { 530 caddr_t va; 531 532 va = zfs_map_page(pp, S_WRITE); 533 (void) dmu_read(os, oid, start+off, nbytes, va+off, 534 DMU_READ_PREFETCH); 535 zfs_unmap_page(pp, va); 536 page_unlock(pp); 537 } 538 len -= nbytes; 539 off = 0; 540 } 541 } 542 543 /* 544 * When a file is memory mapped, we must keep the IO data synchronized 545 * between the DMU cache and the memory mapped pages. What this means: 546 * 547 * On Read: We "read" preferentially from memory mapped pages, 548 * else we default from the dmu buffer. 549 * 550 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 551 * the file is memory mapped. 552 */ 553 static int 554 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 555 { 556 znode_t *zp = VTOZ(vp); 557 int64_t start, off; 558 int len = nbytes; 559 int error = 0; 560 561 start = uio->uio_loffset; 562 off = start & PAGEOFFSET; 563 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 564 page_t *pp; 565 uint64_t bytes = MIN(PAGESIZE - off, len); 566 567 if (pp = page_lookup(vp, start, SE_SHARED)) { 568 caddr_t va; 569 570 va = zfs_map_page(pp, S_READ); 571 error = uiomove(va + off, bytes, UIO_READ, uio); 572 zfs_unmap_page(pp, va); 573 page_unlock(pp); 574 } else { 575 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 576 uio, bytes); 577 } 578 len -= bytes; 579 off = 0; 580 if (error) 581 break; 582 } 583 return (error); 584 } 585 586 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 587 588 /* 589 * Read bytes from specified file into supplied buffer. 590 * 591 * IN: vp - vnode of file to be read from. 592 * uio - structure supplying read location, range info, 593 * and return buffer. 594 * ioflag - SYNC flags; used to provide FRSYNC semantics. 595 * cr - credentials of caller. 596 * ct - caller context 597 * 598 * OUT: uio - updated offset and range, buffer filled. 599 * 600 * RETURN: 0 on success, error code on failure. 601 * 602 * Side Effects: 603 * vp - atime updated if byte count > 0 604 */ 605 /* ARGSUSED */ 606 static int 607 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 608 { 609 znode_t *zp = VTOZ(vp); 610 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 611 ssize_t n, nbytes; 612 int error = 0; 613 boolean_t frsync = B_FALSE; 614 xuio_t *xuio = NULL; 615 616 ZFS_ENTER(zfsvfs); 617 ZFS_VERIFY_ZP(zp); 618 619 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 620 ZFS_EXIT(zfsvfs); 621 return (SET_ERROR(EACCES)); 622 } 623 624 /* 625 * Validate file offset 626 */ 627 if (uio->uio_loffset < (offset_t)0) { 628 ZFS_EXIT(zfsvfs); 629 return (SET_ERROR(EINVAL)); 630 } 631 632 /* 633 * Fasttrack empty reads 634 */ 635 if (uio->uio_resid == 0) { 636 ZFS_EXIT(zfsvfs); 637 return (0); 638 } 639 640 /* 641 * Check for mandatory locks 642 */ 643 if (MANDMODE(zp->z_mode)) { 644 if (error = chklock(vp, FREAD, 645 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 646 ZFS_EXIT(zfsvfs); 647 return (error); 648 } 649 } 650 651 #ifdef FRSYNC 652 /* 653 * If we're in FRSYNC mode, sync out this znode before reading it. 654 * Only do this for non-snapshots. 655 * 656 * Some platforms do not support FRSYNC and instead map it 657 * to FSYNC, which results in unnecessary calls to zil_commit. We 658 * only honor FRSYNC requests on platforms which support it. 659 */ 660 frsync = !!(ioflag & FRSYNC); 661 #endif 662 663 if (zfsvfs->z_log && 664 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 665 zil_commit(zfsvfs->z_log, zp->z_id); 666 667 /* 668 * Lock the range against changes. 669 */ 670 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 671 uio->uio_loffset, uio->uio_resid, RL_READER); 672 673 /* 674 * If we are reading past end-of-file we can skip 675 * to the end; but we might still need to set atime. 676 */ 677 if (uio->uio_loffset >= zp->z_size) { 678 error = 0; 679 goto out; 680 } 681 682 ASSERT(uio->uio_loffset < zp->z_size); 683 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 684 685 if ((uio->uio_extflg == UIO_XUIO) && 686 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 687 int nblk; 688 int blksz = zp->z_blksz; 689 uint64_t offset = uio->uio_loffset; 690 691 xuio = (xuio_t *)uio; 692 if ((ISP2(blksz))) { 693 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 694 blksz)) / blksz; 695 } else { 696 ASSERT(offset + n <= blksz); 697 nblk = 1; 698 } 699 (void) dmu_xuio_init(xuio, nblk); 700 701 if (vn_has_cached_data(vp)) { 702 /* 703 * For simplicity, we always allocate a full buffer 704 * even if we only expect to read a portion of a block. 705 */ 706 while (--nblk >= 0) { 707 (void) dmu_xuio_add(xuio, 708 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 709 blksz), 0, blksz); 710 } 711 } 712 } 713 714 while (n > 0) { 715 nbytes = MIN(n, zfs_read_chunk_size - 716 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 717 718 if (vn_has_cached_data(vp)) { 719 error = mappedread(vp, nbytes, uio); 720 } else { 721 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 722 uio, nbytes); 723 } 724 if (error) { 725 /* convert checksum errors into IO errors */ 726 if (error == ECKSUM) 727 error = SET_ERROR(EIO); 728 break; 729 } 730 731 n -= nbytes; 732 } 733 out: 734 rangelock_exit(lr); 735 736 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 737 ZFS_EXIT(zfsvfs); 738 return (error); 739 } 740 741 /* 742 * Write the bytes to a file. 743 * 744 * IN: vp - vnode of file to be written to. 745 * uio - structure supplying write location, range info, 746 * and data buffer. 747 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 748 * set if in append mode. 749 * cr - credentials of caller. 750 * ct - caller context (NFS/CIFS fem monitor only) 751 * 752 * OUT: uio - updated offset and range. 753 * 754 * RETURN: 0 on success, error code on failure. 755 * 756 * Timestamps: 757 * vp - ctime|mtime updated if byte count > 0 758 */ 759 760 /* ARGSUSED */ 761 static int 762 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 763 { 764 znode_t *zp = VTOZ(vp); 765 rlim64_t limit = uio->uio_llimit; 766 ssize_t start_resid = uio->uio_resid; 767 ssize_t tx_bytes; 768 uint64_t end_size; 769 dmu_tx_t *tx; 770 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 771 zilog_t *zilog; 772 offset_t woff; 773 ssize_t n, nbytes; 774 int max_blksz = zfsvfs->z_max_blksz; 775 int error = 0; 776 int prev_error; 777 arc_buf_t *abuf; 778 iovec_t *aiov = NULL; 779 xuio_t *xuio = NULL; 780 int i_iov = 0; 781 int iovcnt = uio->uio_iovcnt; 782 iovec_t *iovp = uio->uio_iov; 783 int write_eof; 784 int count = 0; 785 sa_bulk_attr_t bulk[4]; 786 uint64_t mtime[2], ctime[2]; 787 788 /* 789 * Fasttrack empty write 790 */ 791 n = start_resid; 792 if (n == 0) 793 return (0); 794 795 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 796 limit = MAXOFFSET_T; 797 798 ZFS_ENTER(zfsvfs); 799 ZFS_VERIFY_ZP(zp); 800 801 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 802 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 803 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 804 &zp->z_size, 8); 805 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 806 &zp->z_pflags, 8); 807 808 /* 809 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 810 * callers might not be able to detect properly that we are read-only, 811 * so check it explicitly here. 812 */ 813 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 814 ZFS_EXIT(zfsvfs); 815 return (SET_ERROR(EROFS)); 816 } 817 818 /* 819 * If immutable or not appending then return EPERM. 820 * Intentionally allow ZFS_READONLY through here. 821 * See zfs_zaccess_common() 822 */ 823 if ((zp->z_pflags & ZFS_IMMUTABLE) || 824 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 825 (uio->uio_loffset < zp->z_size))) { 826 ZFS_EXIT(zfsvfs); 827 return (SET_ERROR(EPERM)); 828 } 829 830 zilog = zfsvfs->z_log; 831 832 /* 833 * Validate file offset 834 */ 835 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 836 if (woff < 0) { 837 ZFS_EXIT(zfsvfs); 838 return (SET_ERROR(EINVAL)); 839 } 840 841 /* 842 * Check for mandatory locks before calling rangelock_enter() 843 * in order to prevent a deadlock with locks set via fcntl(). 844 */ 845 if (MANDMODE((mode_t)zp->z_mode) && 846 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 847 ZFS_EXIT(zfsvfs); 848 return (error); 849 } 850 851 /* 852 * Pre-fault the pages to ensure slow (eg NFS) pages 853 * don't hold up txg. 854 * Skip this if uio contains loaned arc_buf. 855 */ 856 if ((uio->uio_extflg == UIO_XUIO) && 857 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 858 xuio = (xuio_t *)uio; 859 else 860 uio_prefaultpages(MIN(n, max_blksz), uio); 861 862 /* 863 * If in append mode, set the io offset pointer to eof. 864 */ 865 locked_range_t *lr; 866 if (ioflag & FAPPEND) { 867 /* 868 * Obtain an appending range lock to guarantee file append 869 * semantics. We reset the write offset once we have the lock. 870 */ 871 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 872 woff = lr->lr_offset; 873 if (lr->lr_length == UINT64_MAX) { 874 /* 875 * We overlocked the file because this write will cause 876 * the file block size to increase. 877 * Note that zp_size cannot change with this lock held. 878 */ 879 woff = zp->z_size; 880 } 881 uio->uio_loffset = woff; 882 } else { 883 /* 884 * Note that if the file block size will change as a result of 885 * this write, then this range lock will lock the entire file 886 * so that we can re-write the block safely. 887 */ 888 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 889 } 890 891 if (woff >= limit) { 892 rangelock_exit(lr); 893 ZFS_EXIT(zfsvfs); 894 return (SET_ERROR(EFBIG)); 895 } 896 897 if ((woff + n) > limit || woff > (limit - n)) 898 n = limit - woff; 899 900 /* Will this write extend the file length? */ 901 write_eof = (woff + n > zp->z_size); 902 903 end_size = MAX(zp->z_size, woff + n); 904 905 /* 906 * Write the file in reasonable size chunks. Each chunk is written 907 * in a separate transaction; this keeps the intent log records small 908 * and allows us to do more fine-grained space accounting. 909 */ 910 while (n > 0) { 911 woff = uio->uio_loffset; 912 913 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 914 zp->z_uid) || 915 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 916 zp->z_gid) || 917 (zp->z_projid != ZFS_DEFAULT_PROJID && 918 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 919 zp->z_projid))) { 920 error = SET_ERROR(EDQUOT); 921 break; 922 } 923 924 arc_buf_t *abuf = NULL; 925 if (xuio) { 926 ASSERT(i_iov < iovcnt); 927 aiov = &iovp[i_iov]; 928 abuf = dmu_xuio_arcbuf(xuio, i_iov); 929 dmu_xuio_clear(xuio, i_iov); 930 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 931 iovec_t *, aiov, arc_buf_t *, abuf); 932 ASSERT((aiov->iov_base == abuf->b_data) || 933 ((char *)aiov->iov_base - (char *)abuf->b_data + 934 aiov->iov_len == arc_buf_size(abuf))); 935 i_iov++; 936 } else if (n >= max_blksz && woff >= zp->z_size && 937 P2PHASE(woff, max_blksz) == 0 && 938 zp->z_blksz == max_blksz) { 939 /* 940 * This write covers a full block. "Borrow" a buffer 941 * from the dmu so that we can fill it before we enter 942 * a transaction. This avoids the possibility of 943 * holding up the transaction if the data copy hangs 944 * up on a pagefault (e.g., from an NFS server mapping). 945 */ 946 size_t cbytes; 947 948 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 949 max_blksz); 950 ASSERT(abuf != NULL); 951 ASSERT(arc_buf_size(abuf) == max_blksz); 952 if (error = uiocopy(abuf->b_data, max_blksz, 953 UIO_WRITE, uio, &cbytes)) { 954 dmu_return_arcbuf(abuf); 955 break; 956 } 957 ASSERT(cbytes == max_blksz); 958 } 959 960 /* 961 * Start a transaction. 962 */ 963 tx = dmu_tx_create(zfsvfs->z_os); 964 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 965 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 966 zfs_sa_upgrade_txholds(tx, zp); 967 error = dmu_tx_assign(tx, TXG_WAIT); 968 if (error) { 969 dmu_tx_abort(tx); 970 if (abuf != NULL) 971 dmu_return_arcbuf(abuf); 972 break; 973 } 974 975 /* 976 * If rangelock_enter() over-locked we grow the blocksize 977 * and then reduce the lock range. This will only happen 978 * on the first iteration since rangelock_reduce() will 979 * shrink down lr_length to the appropriate size. 980 */ 981 if (lr->lr_length == UINT64_MAX) { 982 uint64_t new_blksz; 983 984 if (zp->z_blksz > max_blksz) { 985 /* 986 * File's blocksize is already larger than the 987 * "recordsize" property. Only let it grow to 988 * the next power of 2. 989 */ 990 ASSERT(!ISP2(zp->z_blksz)); 991 new_blksz = MIN(end_size, 992 1 << highbit64(zp->z_blksz)); 993 } else { 994 new_blksz = MIN(end_size, max_blksz); 995 } 996 zfs_grow_blocksize(zp, new_blksz, tx); 997 rangelock_reduce(lr, woff, n); 998 } 999 1000 /* 1001 * XXX - should we really limit each write to z_max_blksz? 1002 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 1003 */ 1004 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 1005 1006 if (abuf == NULL) { 1007 tx_bytes = uio->uio_resid; 1008 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 1009 uio, nbytes, tx); 1010 tx_bytes -= uio->uio_resid; 1011 } else { 1012 tx_bytes = nbytes; 1013 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 1014 /* 1015 * If this is not a full block write, but we are 1016 * extending the file past EOF and this data starts 1017 * block-aligned, use assign_arcbuf(). Otherwise, 1018 * write via dmu_write(). 1019 */ 1020 if (tx_bytes < max_blksz && (!write_eof || 1021 aiov->iov_base != abuf->b_data)) { 1022 ASSERT(xuio); 1023 dmu_write(zfsvfs->z_os, zp->z_id, woff, 1024 aiov->iov_len, aiov->iov_base, tx); 1025 dmu_return_arcbuf(abuf); 1026 xuio_stat_wbuf_copied(); 1027 } else { 1028 ASSERT(xuio || tx_bytes == max_blksz); 1029 dmu_assign_arcbuf_by_dbuf( 1030 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 1031 } 1032 ASSERT(tx_bytes <= uio->uio_resid); 1033 uioskip(uio, tx_bytes); 1034 } 1035 if (tx_bytes && vn_has_cached_data(vp)) { 1036 update_pages(vp, woff, 1037 tx_bytes, zfsvfs->z_os, zp->z_id); 1038 } 1039 1040 /* 1041 * If we made no progress, we're done. If we made even 1042 * partial progress, update the znode and ZIL accordingly. 1043 */ 1044 if (tx_bytes == 0) { 1045 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 1046 (void *)&zp->z_size, sizeof (uint64_t), tx); 1047 dmu_tx_commit(tx); 1048 ASSERT(error != 0); 1049 break; 1050 } 1051 1052 /* 1053 * Clear Set-UID/Set-GID bits on successful write if not 1054 * privileged and at least one of the excute bits is set. 1055 * 1056 * It would be nice to to this after all writes have 1057 * been done, but that would still expose the ISUID/ISGID 1058 * to another app after the partial write is committed. 1059 * 1060 * Note: we don't call zfs_fuid_map_id() here because 1061 * user 0 is not an ephemeral uid. 1062 */ 1063 mutex_enter(&zp->z_acl_lock); 1064 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 1065 (S_IXUSR >> 6))) != 0 && 1066 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 1067 secpolicy_vnode_setid_retain(cr, 1068 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 1069 uint64_t newmode; 1070 zp->z_mode &= ~(S_ISUID | S_ISGID); 1071 newmode = zp->z_mode; 1072 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 1073 (void *)&newmode, sizeof (uint64_t), tx); 1074 } 1075 mutex_exit(&zp->z_acl_lock); 1076 1077 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 1078 B_TRUE); 1079 1080 /* 1081 * Update the file size (zp_size) if it has changed; 1082 * account for possible concurrent updates. 1083 */ 1084 while ((end_size = zp->z_size) < uio->uio_loffset) { 1085 (void) atomic_cas_64(&zp->z_size, end_size, 1086 uio->uio_loffset); 1087 } 1088 /* 1089 * If we are replaying and eof is non zero then force 1090 * the file size to the specified eof. Note, there's no 1091 * concurrency during replay. 1092 */ 1093 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1094 zp->z_size = zfsvfs->z_replay_eof; 1095 1096 /* 1097 * Keep track of a possible pre-existing error from a partial 1098 * write via dmu_write_uio_dbuf above. 1099 */ 1100 prev_error = error; 1101 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1102 1103 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 1104 dmu_tx_commit(tx); 1105 1106 if (prev_error != 0 || error != 0) 1107 break; 1108 ASSERT(tx_bytes == nbytes); 1109 n -= nbytes; 1110 1111 if (!xuio && n > 0) 1112 uio_prefaultpages(MIN(n, max_blksz), uio); 1113 } 1114 1115 rangelock_exit(lr); 1116 1117 /* 1118 * If we're in replay mode, or we made no progress, return error. 1119 * Otherwise, it's at least a partial write, so it's successful. 1120 */ 1121 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1122 ZFS_EXIT(zfsvfs); 1123 return (error); 1124 } 1125 1126 if (ioflag & (FSYNC | FDSYNC) || 1127 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1128 zil_commit(zilog, zp->z_id); 1129 1130 ZFS_EXIT(zfsvfs); 1131 return (0); 1132 } 1133 1134 /* ARGSUSED */ 1135 void 1136 zfs_get_done(zgd_t *zgd, int error) 1137 { 1138 znode_t *zp = zgd->zgd_private; 1139 objset_t *os = zp->z_zfsvfs->z_os; 1140 1141 if (zgd->zgd_db) 1142 dmu_buf_rele(zgd->zgd_db, zgd); 1143 1144 rangelock_exit(zgd->zgd_lr); 1145 1146 /* 1147 * Release the vnode asynchronously as we currently have the 1148 * txg stopped from syncing. 1149 */ 1150 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1151 1152 kmem_free(zgd, sizeof (zgd_t)); 1153 } 1154 1155 #ifdef DEBUG 1156 static int zil_fault_io = 0; 1157 #endif 1158 1159 /* 1160 * Get data to generate a TX_WRITE intent log record. 1161 */ 1162 int 1163 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1164 { 1165 zfsvfs_t *zfsvfs = arg; 1166 objset_t *os = zfsvfs->z_os; 1167 znode_t *zp; 1168 uint64_t object = lr->lr_foid; 1169 uint64_t offset = lr->lr_offset; 1170 uint64_t size = lr->lr_length; 1171 dmu_buf_t *db; 1172 zgd_t *zgd; 1173 int error = 0; 1174 1175 ASSERT3P(lwb, !=, NULL); 1176 ASSERT3P(zio, !=, NULL); 1177 ASSERT3U(size, !=, 0); 1178 1179 /* 1180 * Nothing to do if the file has been removed 1181 */ 1182 if (zfs_zget(zfsvfs, object, &zp) != 0) 1183 return (SET_ERROR(ENOENT)); 1184 if (zp->z_unlinked) { 1185 /* 1186 * Release the vnode asynchronously as we currently have the 1187 * txg stopped from syncing. 1188 */ 1189 VN_RELE_ASYNC(ZTOV(zp), 1190 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1191 return (SET_ERROR(ENOENT)); 1192 } 1193 1194 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1195 zgd->zgd_lwb = lwb; 1196 zgd->zgd_private = zp; 1197 1198 /* 1199 * Write records come in two flavors: immediate and indirect. 1200 * For small writes it's cheaper to store the data with the 1201 * log record (immediate); for large writes it's cheaper to 1202 * sync the data and get a pointer to it (indirect) so that 1203 * we don't have to write the data twice. 1204 */ 1205 if (buf != NULL) { /* immediate write */ 1206 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1207 offset, size, RL_READER); 1208 /* test for truncation needs to be done while range locked */ 1209 if (offset >= zp->z_size) { 1210 error = SET_ERROR(ENOENT); 1211 } else { 1212 error = dmu_read(os, object, offset, size, buf, 1213 DMU_READ_NO_PREFETCH); 1214 } 1215 ASSERT(error == 0 || error == ENOENT); 1216 } else { /* indirect write */ 1217 /* 1218 * Have to lock the whole block to ensure when it's 1219 * written out and its checksum is being calculated 1220 * that no one can change the data. We need to re-check 1221 * blocksize after we get the lock in case it's changed! 1222 */ 1223 for (;;) { 1224 uint64_t blkoff; 1225 size = zp->z_blksz; 1226 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1227 offset -= blkoff; 1228 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1229 offset, size, RL_READER); 1230 if (zp->z_blksz == size) 1231 break; 1232 offset += blkoff; 1233 rangelock_exit(zgd->zgd_lr); 1234 } 1235 /* test for truncation needs to be done while range locked */ 1236 if (lr->lr_offset >= zp->z_size) 1237 error = SET_ERROR(ENOENT); 1238 #ifdef DEBUG 1239 if (zil_fault_io) { 1240 error = SET_ERROR(EIO); 1241 zil_fault_io = 0; 1242 } 1243 #endif 1244 if (error == 0) 1245 error = dmu_buf_hold(os, object, offset, zgd, &db, 1246 DMU_READ_NO_PREFETCH); 1247 1248 if (error == 0) { 1249 blkptr_t *bp = &lr->lr_blkptr; 1250 1251 zgd->zgd_db = db; 1252 zgd->zgd_bp = bp; 1253 1254 ASSERT(db->db_offset == offset); 1255 ASSERT(db->db_size == size); 1256 1257 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1258 zfs_get_done, zgd); 1259 ASSERT(error || lr->lr_length <= size); 1260 1261 /* 1262 * On success, we need to wait for the write I/O 1263 * initiated by dmu_sync() to complete before we can 1264 * release this dbuf. We will finish everything up 1265 * in the zfs_get_done() callback. 1266 */ 1267 if (error == 0) 1268 return (0); 1269 1270 if (error == EALREADY) { 1271 lr->lr_common.lrc_txtype = TX_WRITE2; 1272 /* 1273 * TX_WRITE2 relies on the data previously 1274 * written by the TX_WRITE that caused 1275 * EALREADY. We zero out the BP because 1276 * it is the old, currently-on-disk BP. 1277 */ 1278 zgd->zgd_bp = NULL; 1279 BP_ZERO(bp); 1280 error = 0; 1281 } 1282 } 1283 } 1284 1285 zfs_get_done(zgd, error); 1286 1287 return (error); 1288 } 1289 1290 /*ARGSUSED*/ 1291 static int 1292 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1293 caller_context_t *ct) 1294 { 1295 znode_t *zp = VTOZ(vp); 1296 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1297 int error; 1298 1299 ZFS_ENTER(zfsvfs); 1300 ZFS_VERIFY_ZP(zp); 1301 1302 if (flag & V_ACE_MASK) 1303 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1304 else 1305 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1306 1307 ZFS_EXIT(zfsvfs); 1308 return (error); 1309 } 1310 1311 /* 1312 * If vnode is for a device return a specfs vnode instead. 1313 */ 1314 static int 1315 specvp_check(vnode_t **vpp, cred_t *cr) 1316 { 1317 int error = 0; 1318 1319 if (IS_DEVVP(*vpp)) { 1320 struct vnode *svp; 1321 1322 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1323 VN_RELE(*vpp); 1324 if (svp == NULL) 1325 error = SET_ERROR(ENOSYS); 1326 *vpp = svp; 1327 } 1328 return (error); 1329 } 1330 1331 1332 /* 1333 * Lookup an entry in a directory, or an extended attribute directory. 1334 * If it exists, return a held vnode reference for it. 1335 * 1336 * IN: dvp - vnode of directory to search. 1337 * nm - name of entry to lookup. 1338 * pnp - full pathname to lookup [UNUSED]. 1339 * flags - LOOKUP_XATTR set if looking for an attribute. 1340 * rdir - root directory vnode [UNUSED]. 1341 * cr - credentials of caller. 1342 * ct - caller context 1343 * direntflags - directory lookup flags 1344 * realpnp - returned pathname. 1345 * 1346 * OUT: vpp - vnode of located entry, NULL if not found. 1347 * 1348 * RETURN: 0 on success, error code on failure. 1349 * 1350 * Timestamps: 1351 * NA 1352 */ 1353 /* ARGSUSED */ 1354 static int 1355 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1356 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1357 int *direntflags, pathname_t *realpnp) 1358 { 1359 znode_t *zdp = VTOZ(dvp); 1360 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1361 int error = 0; 1362 1363 /* 1364 * Fast path lookup, however we must skip DNLC lookup 1365 * for case folding or normalizing lookups because the 1366 * DNLC code only stores the passed in name. This means 1367 * creating 'a' and removing 'A' on a case insensitive 1368 * file system would work, but DNLC still thinks 'a' 1369 * exists and won't let you create it again on the next 1370 * pass through fast path. 1371 */ 1372 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1373 1374 if (dvp->v_type != VDIR) { 1375 return (SET_ERROR(ENOTDIR)); 1376 } else if (zdp->z_sa_hdl == NULL) { 1377 return (SET_ERROR(EIO)); 1378 } 1379 1380 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1381 error = zfs_fastaccesschk_execute(zdp, cr); 1382 if (!error) { 1383 *vpp = dvp; 1384 VN_HOLD(*vpp); 1385 return (0); 1386 } 1387 return (error); 1388 } else if (!zdp->z_zfsvfs->z_norm && 1389 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1390 1391 vnode_t *tvp = dnlc_lookup(dvp, nm); 1392 1393 if (tvp) { 1394 error = zfs_fastaccesschk_execute(zdp, cr); 1395 if (error) { 1396 VN_RELE(tvp); 1397 return (error); 1398 } 1399 if (tvp == DNLC_NO_VNODE) { 1400 VN_RELE(tvp); 1401 return (SET_ERROR(ENOENT)); 1402 } else { 1403 *vpp = tvp; 1404 return (specvp_check(vpp, cr)); 1405 } 1406 } 1407 } 1408 } 1409 1410 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1411 1412 ZFS_ENTER(zfsvfs); 1413 ZFS_VERIFY_ZP(zdp); 1414 1415 *vpp = NULL; 1416 1417 if (flags & LOOKUP_XATTR) { 1418 /* 1419 * If the xattr property is off, refuse the lookup request. 1420 */ 1421 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1422 ZFS_EXIT(zfsvfs); 1423 return (SET_ERROR(EINVAL)); 1424 } 1425 1426 /* 1427 * We don't allow recursive attributes.. 1428 * Maybe someday we will. 1429 */ 1430 if (zdp->z_pflags & ZFS_XATTR) { 1431 ZFS_EXIT(zfsvfs); 1432 return (SET_ERROR(EINVAL)); 1433 } 1434 1435 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1436 ZFS_EXIT(zfsvfs); 1437 return (error); 1438 } 1439 1440 /* 1441 * Do we have permission to get into attribute directory? 1442 */ 1443 1444 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1445 B_FALSE, cr)) { 1446 VN_RELE(*vpp); 1447 *vpp = NULL; 1448 } 1449 1450 ZFS_EXIT(zfsvfs); 1451 return (error); 1452 } 1453 1454 if (dvp->v_type != VDIR) { 1455 ZFS_EXIT(zfsvfs); 1456 return (SET_ERROR(ENOTDIR)); 1457 } 1458 1459 /* 1460 * Check accessibility of directory. 1461 */ 1462 1463 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1464 ZFS_EXIT(zfsvfs); 1465 return (error); 1466 } 1467 1468 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1469 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1470 ZFS_EXIT(zfsvfs); 1471 return (SET_ERROR(EILSEQ)); 1472 } 1473 1474 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1475 if (error == 0) 1476 error = specvp_check(vpp, cr); 1477 1478 ZFS_EXIT(zfsvfs); 1479 return (error); 1480 } 1481 1482 /* 1483 * Attempt to create a new entry in a directory. If the entry 1484 * already exists, truncate the file if permissible, else return 1485 * an error. Return the vp of the created or trunc'd file. 1486 * 1487 * IN: dvp - vnode of directory to put new file entry in. 1488 * name - name of new file entry. 1489 * vap - attributes of new file. 1490 * excl - flag indicating exclusive or non-exclusive mode. 1491 * mode - mode to open file with. 1492 * cr - credentials of caller. 1493 * flag - large file flag [UNUSED]. 1494 * ct - caller context 1495 * vsecp - ACL to be set 1496 * 1497 * OUT: vpp - vnode of created or trunc'd entry. 1498 * 1499 * RETURN: 0 on success, error code on failure. 1500 * 1501 * Timestamps: 1502 * dvp - ctime|mtime updated if new entry created 1503 * vp - ctime|mtime always, atime if new 1504 */ 1505 1506 /* ARGSUSED */ 1507 static int 1508 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1509 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1510 vsecattr_t *vsecp) 1511 { 1512 znode_t *zp, *dzp = VTOZ(dvp); 1513 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1514 zilog_t *zilog; 1515 objset_t *os; 1516 zfs_dirlock_t *dl; 1517 dmu_tx_t *tx; 1518 int error; 1519 ksid_t *ksid; 1520 uid_t uid; 1521 gid_t gid = crgetgid(cr); 1522 zfs_acl_ids_t acl_ids; 1523 boolean_t fuid_dirtied; 1524 boolean_t have_acl = B_FALSE; 1525 boolean_t waited = B_FALSE; 1526 1527 /* 1528 * If we have an ephemeral id, ACL, or XVATTR then 1529 * make sure file system is at proper version 1530 */ 1531 1532 ksid = crgetsid(cr, KSID_OWNER); 1533 if (ksid) 1534 uid = ksid_getid(ksid); 1535 else 1536 uid = crgetuid(cr); 1537 1538 if (zfsvfs->z_use_fuids == B_FALSE && 1539 (vsecp || (vap->va_mask & AT_XVATTR) || 1540 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1541 return (SET_ERROR(EINVAL)); 1542 1543 ZFS_ENTER(zfsvfs); 1544 ZFS_VERIFY_ZP(dzp); 1545 os = zfsvfs->z_os; 1546 zilog = zfsvfs->z_log; 1547 1548 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1549 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1550 ZFS_EXIT(zfsvfs); 1551 return (SET_ERROR(EILSEQ)); 1552 } 1553 1554 if (vap->va_mask & AT_XVATTR) { 1555 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1556 crgetuid(cr), cr, vap->va_type)) != 0) { 1557 ZFS_EXIT(zfsvfs); 1558 return (error); 1559 } 1560 } 1561 top: 1562 *vpp = NULL; 1563 1564 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1565 vap->va_mode &= ~VSVTX; 1566 1567 if (*name == '\0') { 1568 /* 1569 * Null component name refers to the directory itself. 1570 */ 1571 VN_HOLD(dvp); 1572 zp = dzp; 1573 dl = NULL; 1574 error = 0; 1575 } else { 1576 /* possible VN_HOLD(zp) */ 1577 int zflg = 0; 1578 1579 if (flag & FIGNORECASE) 1580 zflg |= ZCILOOK; 1581 1582 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1583 NULL, NULL); 1584 if (error) { 1585 if (have_acl) 1586 zfs_acl_ids_free(&acl_ids); 1587 if (strcmp(name, "..") == 0) 1588 error = SET_ERROR(EISDIR); 1589 ZFS_EXIT(zfsvfs); 1590 return (error); 1591 } 1592 } 1593 1594 if (zp == NULL) { 1595 uint64_t txtype; 1596 uint64_t projid = ZFS_DEFAULT_PROJID; 1597 1598 /* 1599 * Create a new file object and update the directory 1600 * to reference it. 1601 */ 1602 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1603 if (have_acl) 1604 zfs_acl_ids_free(&acl_ids); 1605 goto out; 1606 } 1607 1608 /* 1609 * We only support the creation of regular files in 1610 * extended attribute directories. 1611 */ 1612 1613 if ((dzp->z_pflags & ZFS_XATTR) && 1614 (vap->va_type != VREG)) { 1615 if (have_acl) 1616 zfs_acl_ids_free(&acl_ids); 1617 error = SET_ERROR(EINVAL); 1618 goto out; 1619 } 1620 1621 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1622 cr, vsecp, &acl_ids)) != 0) 1623 goto out; 1624 have_acl = B_TRUE; 1625 1626 if (vap->va_type == VREG || vap->va_type == VDIR) 1627 projid = zfs_inherit_projid(dzp); 1628 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1629 zfs_acl_ids_free(&acl_ids); 1630 error = SET_ERROR(EDQUOT); 1631 goto out; 1632 } 1633 1634 tx = dmu_tx_create(os); 1635 1636 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1637 ZFS_SA_BASE_ATTR_SIZE); 1638 1639 fuid_dirtied = zfsvfs->z_fuid_dirty; 1640 if (fuid_dirtied) 1641 zfs_fuid_txhold(zfsvfs, tx); 1642 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1643 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1644 if (!zfsvfs->z_use_sa && 1645 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1646 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1647 0, acl_ids.z_aclp->z_acl_bytes); 1648 } 1649 error = dmu_tx_assign(tx, 1650 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1651 if (error) { 1652 zfs_dirent_unlock(dl); 1653 if (error == ERESTART) { 1654 waited = B_TRUE; 1655 dmu_tx_wait(tx); 1656 dmu_tx_abort(tx); 1657 goto top; 1658 } 1659 zfs_acl_ids_free(&acl_ids); 1660 dmu_tx_abort(tx); 1661 ZFS_EXIT(zfsvfs); 1662 return (error); 1663 } 1664 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1665 1666 if (fuid_dirtied) 1667 zfs_fuid_sync(zfsvfs, tx); 1668 1669 (void) zfs_link_create(dl, zp, tx, ZNEW); 1670 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1671 if (flag & FIGNORECASE) 1672 txtype |= TX_CI; 1673 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1674 vsecp, acl_ids.z_fuidp, vap); 1675 zfs_acl_ids_free(&acl_ids); 1676 dmu_tx_commit(tx); 1677 } else { 1678 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1679 1680 if (have_acl) 1681 zfs_acl_ids_free(&acl_ids); 1682 have_acl = B_FALSE; 1683 1684 /* 1685 * A directory entry already exists for this name. 1686 */ 1687 /* 1688 * Can't truncate an existing file if in exclusive mode. 1689 */ 1690 if (excl == EXCL) { 1691 error = SET_ERROR(EEXIST); 1692 goto out; 1693 } 1694 /* 1695 * Can't open a directory for writing. 1696 */ 1697 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1698 error = SET_ERROR(EISDIR); 1699 goto out; 1700 } 1701 /* 1702 * Verify requested access to file. 1703 */ 1704 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1705 goto out; 1706 } 1707 1708 mutex_enter(&dzp->z_lock); 1709 dzp->z_seq++; 1710 mutex_exit(&dzp->z_lock); 1711 1712 /* 1713 * Truncate regular files if requested. 1714 */ 1715 if ((ZTOV(zp)->v_type == VREG) && 1716 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1717 /* we can't hold any locks when calling zfs_freesp() */ 1718 zfs_dirent_unlock(dl); 1719 dl = NULL; 1720 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1721 if (error == 0) { 1722 vnevent_create(ZTOV(zp), ct); 1723 } 1724 } 1725 } 1726 out: 1727 1728 if (dl) 1729 zfs_dirent_unlock(dl); 1730 1731 if (error) { 1732 if (zp) 1733 VN_RELE(ZTOV(zp)); 1734 } else { 1735 *vpp = ZTOV(zp); 1736 error = specvp_check(vpp, cr); 1737 } 1738 1739 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1740 zil_commit(zilog, 0); 1741 1742 ZFS_EXIT(zfsvfs); 1743 return (error); 1744 } 1745 1746 /* 1747 * Remove an entry from a directory. 1748 * 1749 * IN: dvp - vnode of directory to remove entry from. 1750 * name - name of entry to remove. 1751 * cr - credentials of caller. 1752 * ct - caller context 1753 * flags - case flags 1754 * 1755 * RETURN: 0 on success, error code on failure. 1756 * 1757 * Timestamps: 1758 * dvp - ctime|mtime 1759 * vp - ctime (if nlink > 0) 1760 */ 1761 1762 uint64_t null_xattr = 0; 1763 1764 /*ARGSUSED*/ 1765 static int 1766 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1767 int flags) 1768 { 1769 znode_t *zp, *dzp = VTOZ(dvp); 1770 znode_t *xzp; 1771 vnode_t *vp; 1772 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1773 zilog_t *zilog; 1774 uint64_t acl_obj, xattr_obj; 1775 uint64_t xattr_obj_unlinked = 0; 1776 uint64_t obj = 0; 1777 zfs_dirlock_t *dl; 1778 dmu_tx_t *tx; 1779 boolean_t may_delete_now, delete_now = FALSE; 1780 boolean_t unlinked, toobig = FALSE; 1781 uint64_t txtype; 1782 pathname_t *realnmp = NULL; 1783 pathname_t realnm; 1784 int error; 1785 int zflg = ZEXISTS; 1786 boolean_t waited = B_FALSE; 1787 1788 ZFS_ENTER(zfsvfs); 1789 ZFS_VERIFY_ZP(dzp); 1790 zilog = zfsvfs->z_log; 1791 1792 if (flags & FIGNORECASE) { 1793 zflg |= ZCILOOK; 1794 pn_alloc(&realnm); 1795 realnmp = &realnm; 1796 } 1797 1798 top: 1799 xattr_obj = 0; 1800 xzp = NULL; 1801 /* 1802 * Attempt to lock directory; fail if entry doesn't exist. 1803 */ 1804 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1805 NULL, realnmp)) { 1806 if (realnmp) 1807 pn_free(realnmp); 1808 ZFS_EXIT(zfsvfs); 1809 return (error); 1810 } 1811 1812 vp = ZTOV(zp); 1813 1814 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1815 goto out; 1816 } 1817 1818 /* 1819 * Need to use rmdir for removing directories. 1820 */ 1821 if (vp->v_type == VDIR) { 1822 error = SET_ERROR(EPERM); 1823 goto out; 1824 } 1825 1826 vnevent_remove(vp, dvp, name, ct); 1827 1828 if (realnmp) 1829 dnlc_remove(dvp, realnmp->pn_buf); 1830 else 1831 dnlc_remove(dvp, name); 1832 1833 mutex_enter(&vp->v_lock); 1834 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1835 mutex_exit(&vp->v_lock); 1836 1837 /* 1838 * We may delete the znode now, or we may put it in the unlinked set; 1839 * it depends on whether we're the last link, and on whether there are 1840 * other holds on the vnode. So we dmu_tx_hold() the right things to 1841 * allow for either case. 1842 */ 1843 obj = zp->z_id; 1844 tx = dmu_tx_create(zfsvfs->z_os); 1845 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1846 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1847 zfs_sa_upgrade_txholds(tx, zp); 1848 zfs_sa_upgrade_txholds(tx, dzp); 1849 if (may_delete_now) { 1850 toobig = 1851 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1852 /* if the file is too big, only hold_free a token amount */ 1853 dmu_tx_hold_free(tx, zp->z_id, 0, 1854 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1855 } 1856 1857 /* are there any extended attributes? */ 1858 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1859 &xattr_obj, sizeof (xattr_obj)); 1860 if (error == 0 && xattr_obj) { 1861 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1862 ASSERT0(error); 1863 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1864 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1865 } 1866 1867 mutex_enter(&zp->z_lock); 1868 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1869 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1870 mutex_exit(&zp->z_lock); 1871 1872 /* charge as an update -- would be nice not to charge at all */ 1873 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1874 1875 /* 1876 * Mark this transaction as typically resulting in a net free of space 1877 */ 1878 dmu_tx_mark_netfree(tx); 1879 1880 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1881 if (error) { 1882 zfs_dirent_unlock(dl); 1883 VN_RELE(vp); 1884 if (xzp) 1885 VN_RELE(ZTOV(xzp)); 1886 if (error == ERESTART) { 1887 waited = B_TRUE; 1888 dmu_tx_wait(tx); 1889 dmu_tx_abort(tx); 1890 goto top; 1891 } 1892 if (realnmp) 1893 pn_free(realnmp); 1894 dmu_tx_abort(tx); 1895 ZFS_EXIT(zfsvfs); 1896 return (error); 1897 } 1898 1899 /* 1900 * Remove the directory entry. 1901 */ 1902 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1903 1904 if (error) { 1905 dmu_tx_commit(tx); 1906 goto out; 1907 } 1908 1909 if (unlinked) { 1910 /* 1911 * Hold z_lock so that we can make sure that the ACL obj 1912 * hasn't changed. Could have been deleted due to 1913 * zfs_sa_upgrade(). 1914 */ 1915 mutex_enter(&zp->z_lock); 1916 mutex_enter(&vp->v_lock); 1917 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1918 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1919 delete_now = may_delete_now && !toobig && 1920 vp->v_count == 1 && !vn_has_cached_data(vp) && 1921 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1922 acl_obj; 1923 mutex_exit(&vp->v_lock); 1924 } 1925 1926 if (delete_now) { 1927 if (xattr_obj_unlinked) { 1928 ASSERT3U(xzp->z_links, ==, 2); 1929 mutex_enter(&xzp->z_lock); 1930 xzp->z_unlinked = 1; 1931 xzp->z_links = 0; 1932 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1933 &xzp->z_links, sizeof (xzp->z_links), tx); 1934 ASSERT3U(error, ==, 0); 1935 mutex_exit(&xzp->z_lock); 1936 zfs_unlinked_add(xzp, tx); 1937 1938 if (zp->z_is_sa) 1939 error = sa_remove(zp->z_sa_hdl, 1940 SA_ZPL_XATTR(zfsvfs), tx); 1941 else 1942 error = sa_update(zp->z_sa_hdl, 1943 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1944 sizeof (uint64_t), tx); 1945 ASSERT0(error); 1946 } 1947 mutex_enter(&vp->v_lock); 1948 VN_RELE_LOCKED(vp); 1949 ASSERT0(vp->v_count); 1950 mutex_exit(&vp->v_lock); 1951 mutex_exit(&zp->z_lock); 1952 zfs_znode_delete(zp, tx); 1953 } else if (unlinked) { 1954 mutex_exit(&zp->z_lock); 1955 zfs_unlinked_add(zp, tx); 1956 } 1957 1958 txtype = TX_REMOVE; 1959 if (flags & FIGNORECASE) 1960 txtype |= TX_CI; 1961 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 1962 1963 dmu_tx_commit(tx); 1964 out: 1965 if (realnmp) 1966 pn_free(realnmp); 1967 1968 zfs_dirent_unlock(dl); 1969 1970 if (!delete_now) 1971 VN_RELE(vp); 1972 if (xzp) 1973 VN_RELE(ZTOV(xzp)); 1974 1975 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1976 zil_commit(zilog, 0); 1977 1978 ZFS_EXIT(zfsvfs); 1979 return (error); 1980 } 1981 1982 /* 1983 * Create a new directory and insert it into dvp using the name 1984 * provided. Return a pointer to the inserted directory. 1985 * 1986 * IN: dvp - vnode of directory to add subdir to. 1987 * dirname - name of new directory. 1988 * vap - attributes of new directory. 1989 * cr - credentials of caller. 1990 * ct - caller context 1991 * flags - case flags 1992 * vsecp - ACL to be set 1993 * 1994 * OUT: vpp - vnode of created directory. 1995 * 1996 * RETURN: 0 on success, error code on failure. 1997 * 1998 * Timestamps: 1999 * dvp - ctime|mtime updated 2000 * vp - ctime|mtime|atime updated 2001 */ 2002 /*ARGSUSED*/ 2003 static int 2004 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 2005 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2006 { 2007 znode_t *zp, *dzp = VTOZ(dvp); 2008 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2009 zilog_t *zilog; 2010 zfs_dirlock_t *dl; 2011 uint64_t txtype; 2012 dmu_tx_t *tx; 2013 int error; 2014 int zf = ZNEW; 2015 ksid_t *ksid; 2016 uid_t uid; 2017 gid_t gid = crgetgid(cr); 2018 zfs_acl_ids_t acl_ids; 2019 boolean_t fuid_dirtied; 2020 boolean_t waited = B_FALSE; 2021 2022 ASSERT(vap->va_type == VDIR); 2023 2024 /* 2025 * If we have an ephemeral id, ACL, or XVATTR then 2026 * make sure file system is at proper version 2027 */ 2028 2029 ksid = crgetsid(cr, KSID_OWNER); 2030 if (ksid) 2031 uid = ksid_getid(ksid); 2032 else 2033 uid = crgetuid(cr); 2034 if (zfsvfs->z_use_fuids == B_FALSE && 2035 (vsecp || (vap->va_mask & AT_XVATTR) || 2036 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 2037 return (SET_ERROR(EINVAL)); 2038 2039 ZFS_ENTER(zfsvfs); 2040 ZFS_VERIFY_ZP(dzp); 2041 zilog = zfsvfs->z_log; 2042 2043 if (dzp->z_pflags & ZFS_XATTR) { 2044 ZFS_EXIT(zfsvfs); 2045 return (SET_ERROR(EINVAL)); 2046 } 2047 2048 if (zfsvfs->z_utf8 && u8_validate(dirname, 2049 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2050 ZFS_EXIT(zfsvfs); 2051 return (SET_ERROR(EILSEQ)); 2052 } 2053 if (flags & FIGNORECASE) 2054 zf |= ZCILOOK; 2055 2056 if (vap->va_mask & AT_XVATTR) { 2057 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2058 crgetuid(cr), cr, vap->va_type)) != 0) { 2059 ZFS_EXIT(zfsvfs); 2060 return (error); 2061 } 2062 } 2063 2064 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 2065 vsecp, &acl_ids)) != 0) { 2066 ZFS_EXIT(zfsvfs); 2067 return (error); 2068 } 2069 /* 2070 * First make sure the new directory doesn't exist. 2071 * 2072 * Existence is checked first to make sure we don't return 2073 * EACCES instead of EEXIST which can cause some applications 2074 * to fail. 2075 */ 2076 top: 2077 *vpp = NULL; 2078 2079 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 2080 NULL, NULL)) { 2081 zfs_acl_ids_free(&acl_ids); 2082 ZFS_EXIT(zfsvfs); 2083 return (error); 2084 } 2085 2086 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2087 zfs_acl_ids_free(&acl_ids); 2088 zfs_dirent_unlock(dl); 2089 ZFS_EXIT(zfsvfs); 2090 return (error); 2091 } 2092 2093 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 2094 zfs_acl_ids_free(&acl_ids); 2095 zfs_dirent_unlock(dl); 2096 ZFS_EXIT(zfsvfs); 2097 return (SET_ERROR(EDQUOT)); 2098 } 2099 2100 /* 2101 * Add a new entry to the directory. 2102 */ 2103 tx = dmu_tx_create(zfsvfs->z_os); 2104 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2105 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2106 fuid_dirtied = zfsvfs->z_fuid_dirty; 2107 if (fuid_dirtied) 2108 zfs_fuid_txhold(zfsvfs, tx); 2109 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2110 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2111 acl_ids.z_aclp->z_acl_bytes); 2112 } 2113 2114 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2115 ZFS_SA_BASE_ATTR_SIZE); 2116 2117 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2118 if (error) { 2119 zfs_dirent_unlock(dl); 2120 if (error == ERESTART) { 2121 waited = B_TRUE; 2122 dmu_tx_wait(tx); 2123 dmu_tx_abort(tx); 2124 goto top; 2125 } 2126 zfs_acl_ids_free(&acl_ids); 2127 dmu_tx_abort(tx); 2128 ZFS_EXIT(zfsvfs); 2129 return (error); 2130 } 2131 2132 /* 2133 * Create new node. 2134 */ 2135 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2136 2137 if (fuid_dirtied) 2138 zfs_fuid_sync(zfsvfs, tx); 2139 2140 /* 2141 * Now put new name in parent dir. 2142 */ 2143 (void) zfs_link_create(dl, zp, tx, ZNEW); 2144 2145 *vpp = ZTOV(zp); 2146 2147 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2148 if (flags & FIGNORECASE) 2149 txtype |= TX_CI; 2150 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2151 acl_ids.z_fuidp, vap); 2152 2153 zfs_acl_ids_free(&acl_ids); 2154 2155 dmu_tx_commit(tx); 2156 2157 zfs_dirent_unlock(dl); 2158 2159 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2160 zil_commit(zilog, 0); 2161 2162 ZFS_EXIT(zfsvfs); 2163 return (0); 2164 } 2165 2166 /* 2167 * Remove a directory subdir entry. If the current working 2168 * directory is the same as the subdir to be removed, the 2169 * remove will fail. 2170 * 2171 * IN: dvp - vnode of directory to remove from. 2172 * name - name of directory to be removed. 2173 * cwd - vnode of current working directory. 2174 * cr - credentials of caller. 2175 * ct - caller context 2176 * flags - case flags 2177 * 2178 * RETURN: 0 on success, error code on failure. 2179 * 2180 * Timestamps: 2181 * dvp - ctime|mtime updated 2182 */ 2183 /*ARGSUSED*/ 2184 static int 2185 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2186 caller_context_t *ct, int flags) 2187 { 2188 znode_t *dzp = VTOZ(dvp); 2189 znode_t *zp; 2190 vnode_t *vp; 2191 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2192 zilog_t *zilog; 2193 zfs_dirlock_t *dl; 2194 dmu_tx_t *tx; 2195 int error; 2196 int zflg = ZEXISTS; 2197 boolean_t waited = B_FALSE; 2198 2199 ZFS_ENTER(zfsvfs); 2200 ZFS_VERIFY_ZP(dzp); 2201 zilog = zfsvfs->z_log; 2202 2203 if (flags & FIGNORECASE) 2204 zflg |= ZCILOOK; 2205 top: 2206 zp = NULL; 2207 2208 /* 2209 * Attempt to lock directory; fail if entry doesn't exist. 2210 */ 2211 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2212 NULL, NULL)) { 2213 ZFS_EXIT(zfsvfs); 2214 return (error); 2215 } 2216 2217 vp = ZTOV(zp); 2218 2219 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2220 goto out; 2221 } 2222 2223 if (vp->v_type != VDIR) { 2224 error = SET_ERROR(ENOTDIR); 2225 goto out; 2226 } 2227 2228 if (vp == cwd) { 2229 error = SET_ERROR(EINVAL); 2230 goto out; 2231 } 2232 2233 vnevent_rmdir(vp, dvp, name, ct); 2234 2235 /* 2236 * Grab a lock on the directory to make sure that noone is 2237 * trying to add (or lookup) entries while we are removing it. 2238 */ 2239 rw_enter(&zp->z_name_lock, RW_WRITER); 2240 2241 /* 2242 * Grab a lock on the parent pointer to make sure we play well 2243 * with the treewalk and directory rename code. 2244 */ 2245 rw_enter(&zp->z_parent_lock, RW_WRITER); 2246 2247 tx = dmu_tx_create(zfsvfs->z_os); 2248 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2249 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2250 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2251 zfs_sa_upgrade_txholds(tx, zp); 2252 zfs_sa_upgrade_txholds(tx, dzp); 2253 dmu_tx_mark_netfree(tx); 2254 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2255 if (error) { 2256 rw_exit(&zp->z_parent_lock); 2257 rw_exit(&zp->z_name_lock); 2258 zfs_dirent_unlock(dl); 2259 VN_RELE(vp); 2260 if (error == ERESTART) { 2261 waited = B_TRUE; 2262 dmu_tx_wait(tx); 2263 dmu_tx_abort(tx); 2264 goto top; 2265 } 2266 dmu_tx_abort(tx); 2267 ZFS_EXIT(zfsvfs); 2268 return (error); 2269 } 2270 2271 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2272 2273 if (error == 0) { 2274 uint64_t txtype = TX_RMDIR; 2275 if (flags & FIGNORECASE) 2276 txtype |= TX_CI; 2277 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, 2278 B_FALSE); 2279 } 2280 2281 dmu_tx_commit(tx); 2282 2283 rw_exit(&zp->z_parent_lock); 2284 rw_exit(&zp->z_name_lock); 2285 out: 2286 zfs_dirent_unlock(dl); 2287 2288 VN_RELE(vp); 2289 2290 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2291 zil_commit(zilog, 0); 2292 2293 ZFS_EXIT(zfsvfs); 2294 return (error); 2295 } 2296 2297 /* 2298 * Read as many directory entries as will fit into the provided 2299 * buffer from the given directory cursor position (specified in 2300 * the uio structure). 2301 * 2302 * IN: vp - vnode of directory to read. 2303 * uio - structure supplying read location, range info, 2304 * and return buffer. 2305 * cr - credentials of caller. 2306 * ct - caller context 2307 * flags - case flags 2308 * 2309 * OUT: uio - updated offset and range, buffer filled. 2310 * eofp - set to true if end-of-file detected. 2311 * 2312 * RETURN: 0 on success, error code on failure. 2313 * 2314 * Timestamps: 2315 * vp - atime updated 2316 * 2317 * Note that the low 4 bits of the cookie returned by zap is always zero. 2318 * This allows us to use the low range for "special" directory entries: 2319 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2320 * we use the offset 2 for the '.zfs' directory. 2321 */ 2322 /* ARGSUSED */ 2323 static int 2324 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2325 caller_context_t *ct, int flags) 2326 { 2327 znode_t *zp = VTOZ(vp); 2328 iovec_t *iovp; 2329 edirent_t *eodp; 2330 dirent64_t *odp; 2331 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2332 objset_t *os; 2333 caddr_t outbuf; 2334 size_t bufsize; 2335 zap_cursor_t zc; 2336 zap_attribute_t zap; 2337 uint_t bytes_wanted; 2338 uint64_t offset; /* must be unsigned; checks for < 1 */ 2339 uint64_t parent; 2340 int local_eof; 2341 int outcount; 2342 int error; 2343 uint8_t prefetch; 2344 boolean_t check_sysattrs; 2345 2346 ZFS_ENTER(zfsvfs); 2347 ZFS_VERIFY_ZP(zp); 2348 2349 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2350 &parent, sizeof (parent))) != 0) { 2351 ZFS_EXIT(zfsvfs); 2352 return (error); 2353 } 2354 2355 /* 2356 * If we are not given an eof variable, 2357 * use a local one. 2358 */ 2359 if (eofp == NULL) 2360 eofp = &local_eof; 2361 2362 /* 2363 * Check for valid iov_len. 2364 */ 2365 if (uio->uio_iov->iov_len <= 0) { 2366 ZFS_EXIT(zfsvfs); 2367 return (SET_ERROR(EINVAL)); 2368 } 2369 2370 /* 2371 * Quit if directory has been removed (posix) 2372 */ 2373 if ((*eofp = zp->z_unlinked) != 0) { 2374 ZFS_EXIT(zfsvfs); 2375 return (0); 2376 } 2377 2378 error = 0; 2379 os = zfsvfs->z_os; 2380 offset = uio->uio_loffset; 2381 prefetch = zp->z_zn_prefetch; 2382 2383 /* 2384 * Initialize the iterator cursor. 2385 */ 2386 if (offset <= 3) { 2387 /* 2388 * Start iteration from the beginning of the directory. 2389 */ 2390 zap_cursor_init(&zc, os, zp->z_id); 2391 } else { 2392 /* 2393 * The offset is a serialized cursor. 2394 */ 2395 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2396 } 2397 2398 /* 2399 * Get space to change directory entries into fs independent format. 2400 */ 2401 iovp = uio->uio_iov; 2402 bytes_wanted = iovp->iov_len; 2403 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2404 bufsize = bytes_wanted; 2405 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2406 odp = (struct dirent64 *)outbuf; 2407 } else { 2408 bufsize = bytes_wanted; 2409 outbuf = NULL; 2410 odp = (struct dirent64 *)iovp->iov_base; 2411 } 2412 eodp = (struct edirent *)odp; 2413 2414 /* 2415 * If this VFS supports the system attribute view interface; and 2416 * we're looking at an extended attribute directory; and we care 2417 * about normalization conflicts on this vfs; then we must check 2418 * for normalization conflicts with the sysattr name space. 2419 */ 2420 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2421 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2422 (flags & V_RDDIR_ENTFLAGS); 2423 2424 /* 2425 * Transform to file-system independent format 2426 */ 2427 outcount = 0; 2428 while (outcount < bytes_wanted) { 2429 ino64_t objnum; 2430 ushort_t reclen; 2431 off64_t *next = NULL; 2432 2433 /* 2434 * Special case `.', `..', and `.zfs'. 2435 */ 2436 if (offset == 0) { 2437 (void) strcpy(zap.za_name, "."); 2438 zap.za_normalization_conflict = 0; 2439 objnum = zp->z_id; 2440 } else if (offset == 1) { 2441 (void) strcpy(zap.za_name, ".."); 2442 zap.za_normalization_conflict = 0; 2443 objnum = parent; 2444 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2445 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2446 zap.za_normalization_conflict = 0; 2447 objnum = ZFSCTL_INO_ROOT; 2448 } else { 2449 /* 2450 * Grab next entry. 2451 */ 2452 if (error = zap_cursor_retrieve(&zc, &zap)) { 2453 if ((*eofp = (error == ENOENT)) != 0) 2454 break; 2455 else 2456 goto update; 2457 } 2458 2459 if (zap.za_integer_length != 8 || 2460 zap.za_num_integers != 1) { 2461 cmn_err(CE_WARN, "zap_readdir: bad directory " 2462 "entry, obj = %lld, offset = %lld\n", 2463 (u_longlong_t)zp->z_id, 2464 (u_longlong_t)offset); 2465 error = SET_ERROR(ENXIO); 2466 goto update; 2467 } 2468 2469 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2470 /* 2471 * MacOS X can extract the object type here such as: 2472 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2473 */ 2474 2475 if (check_sysattrs && !zap.za_normalization_conflict) { 2476 zap.za_normalization_conflict = 2477 xattr_sysattr_casechk(zap.za_name); 2478 } 2479 } 2480 2481 if (flags & V_RDDIR_ACCFILTER) { 2482 /* 2483 * If we have no access at all, don't include 2484 * this entry in the returned information 2485 */ 2486 znode_t *ezp; 2487 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2488 goto skip_entry; 2489 if (!zfs_has_access(ezp, cr)) { 2490 VN_RELE(ZTOV(ezp)); 2491 goto skip_entry; 2492 } 2493 VN_RELE(ZTOV(ezp)); 2494 } 2495 2496 if (flags & V_RDDIR_ENTFLAGS) 2497 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2498 else 2499 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2500 2501 /* 2502 * Will this entry fit in the buffer? 2503 */ 2504 if (outcount + reclen > bufsize) { 2505 /* 2506 * Did we manage to fit anything in the buffer? 2507 */ 2508 if (!outcount) { 2509 error = SET_ERROR(EINVAL); 2510 goto update; 2511 } 2512 break; 2513 } 2514 if (flags & V_RDDIR_ENTFLAGS) { 2515 /* 2516 * Add extended flag entry: 2517 */ 2518 eodp->ed_ino = objnum; 2519 eodp->ed_reclen = reclen; 2520 /* NOTE: ed_off is the offset for the *next* entry */ 2521 next = &(eodp->ed_off); 2522 eodp->ed_eflags = zap.za_normalization_conflict ? 2523 ED_CASE_CONFLICT : 0; 2524 (void) strncpy(eodp->ed_name, zap.za_name, 2525 EDIRENT_NAMELEN(reclen)); 2526 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2527 } else { 2528 /* 2529 * Add normal entry: 2530 */ 2531 odp->d_ino = objnum; 2532 odp->d_reclen = reclen; 2533 /* NOTE: d_off is the offset for the *next* entry */ 2534 next = &(odp->d_off); 2535 (void) strncpy(odp->d_name, zap.za_name, 2536 DIRENT64_NAMELEN(reclen)); 2537 odp = (dirent64_t *)((intptr_t)odp + reclen); 2538 } 2539 outcount += reclen; 2540 2541 ASSERT(outcount <= bufsize); 2542 2543 /* Prefetch znode */ 2544 if (prefetch) 2545 dmu_prefetch(os, objnum, 0, 0, 0, 2546 ZIO_PRIORITY_SYNC_READ); 2547 2548 skip_entry: 2549 /* 2550 * Move to the next entry, fill in the previous offset. 2551 */ 2552 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2553 zap_cursor_advance(&zc); 2554 offset = zap_cursor_serialize(&zc); 2555 } else { 2556 offset += 1; 2557 } 2558 if (next) 2559 *next = offset; 2560 } 2561 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2562 2563 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2564 iovp->iov_base += outcount; 2565 iovp->iov_len -= outcount; 2566 uio->uio_resid -= outcount; 2567 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2568 /* 2569 * Reset the pointer. 2570 */ 2571 offset = uio->uio_loffset; 2572 } 2573 2574 update: 2575 zap_cursor_fini(&zc); 2576 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2577 kmem_free(outbuf, bufsize); 2578 2579 if (error == ENOENT) 2580 error = 0; 2581 2582 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2583 2584 uio->uio_loffset = offset; 2585 ZFS_EXIT(zfsvfs); 2586 return (error); 2587 } 2588 2589 ulong_t zfs_fsync_sync_cnt = 4; 2590 2591 static int 2592 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2593 { 2594 znode_t *zp = VTOZ(vp); 2595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2596 2597 /* 2598 * Regardless of whether this is required for standards conformance, 2599 * this is the logical behavior when fsync() is called on a file with 2600 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2601 * going to be pushed out as part of the zil_commit(). 2602 */ 2603 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2604 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2605 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2606 2607 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2608 2609 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2610 ZFS_ENTER(zfsvfs); 2611 ZFS_VERIFY_ZP(zp); 2612 zil_commit(zfsvfs->z_log, zp->z_id); 2613 ZFS_EXIT(zfsvfs); 2614 } 2615 return (0); 2616 } 2617 2618 2619 /* 2620 * Get the requested file attributes and place them in the provided 2621 * vattr structure. 2622 * 2623 * IN: vp - vnode of file. 2624 * vap - va_mask identifies requested attributes. 2625 * If AT_XVATTR set, then optional attrs are requested 2626 * flags - ATTR_NOACLCHECK (CIFS server context) 2627 * cr - credentials of caller. 2628 * ct - caller context 2629 * 2630 * OUT: vap - attribute values. 2631 * 2632 * RETURN: 0 (always succeeds). 2633 */ 2634 /* ARGSUSED */ 2635 static int 2636 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2637 caller_context_t *ct) 2638 { 2639 znode_t *zp = VTOZ(vp); 2640 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2641 int error = 0; 2642 uint64_t links; 2643 uint64_t mtime[2], ctime[2]; 2644 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2645 xoptattr_t *xoap = NULL; 2646 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2647 sa_bulk_attr_t bulk[2]; 2648 int count = 0; 2649 2650 ZFS_ENTER(zfsvfs); 2651 ZFS_VERIFY_ZP(zp); 2652 2653 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2654 2655 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2657 2658 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2659 ZFS_EXIT(zfsvfs); 2660 return (error); 2661 } 2662 2663 /* 2664 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2665 * Also, if we are the owner don't bother, since owner should 2666 * always be allowed to read basic attributes of file. 2667 */ 2668 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2669 (vap->va_uid != crgetuid(cr))) { 2670 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2671 skipaclchk, cr)) { 2672 ZFS_EXIT(zfsvfs); 2673 return (error); 2674 } 2675 } 2676 2677 /* 2678 * Return all attributes. It's cheaper to provide the answer 2679 * than to determine whether we were asked the question. 2680 */ 2681 2682 mutex_enter(&zp->z_lock); 2683 vap->va_type = vp->v_type; 2684 vap->va_mode = zp->z_mode & MODEMASK; 2685 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2686 vap->va_nodeid = zp->z_id; 2687 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2688 links = zp->z_links + 1; 2689 else 2690 links = zp->z_links; 2691 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2692 vap->va_size = zp->z_size; 2693 vap->va_rdev = vp->v_rdev; 2694 vap->va_seq = zp->z_seq; 2695 2696 /* 2697 * Add in any requested optional attributes and the create time. 2698 * Also set the corresponding bits in the returned attribute bitmap. 2699 */ 2700 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2701 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2702 xoap->xoa_archive = 2703 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2704 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2705 } 2706 2707 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2708 xoap->xoa_readonly = 2709 ((zp->z_pflags & ZFS_READONLY) != 0); 2710 XVA_SET_RTN(xvap, XAT_READONLY); 2711 } 2712 2713 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2714 xoap->xoa_system = 2715 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2716 XVA_SET_RTN(xvap, XAT_SYSTEM); 2717 } 2718 2719 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2720 xoap->xoa_hidden = 2721 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2722 XVA_SET_RTN(xvap, XAT_HIDDEN); 2723 } 2724 2725 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2726 xoap->xoa_nounlink = 2727 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2728 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2729 } 2730 2731 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2732 xoap->xoa_immutable = 2733 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2734 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2735 } 2736 2737 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2738 xoap->xoa_appendonly = 2739 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2740 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2741 } 2742 2743 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2744 xoap->xoa_nodump = 2745 ((zp->z_pflags & ZFS_NODUMP) != 0); 2746 XVA_SET_RTN(xvap, XAT_NODUMP); 2747 } 2748 2749 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2750 xoap->xoa_opaque = 2751 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2752 XVA_SET_RTN(xvap, XAT_OPAQUE); 2753 } 2754 2755 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2756 xoap->xoa_av_quarantined = 2757 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2758 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2759 } 2760 2761 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2762 xoap->xoa_av_modified = 2763 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2764 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2765 } 2766 2767 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2768 vp->v_type == VREG) { 2769 zfs_sa_get_scanstamp(zp, xvap); 2770 } 2771 2772 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2773 uint64_t times[2]; 2774 2775 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2776 times, sizeof (times)); 2777 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2778 XVA_SET_RTN(xvap, XAT_CREATETIME); 2779 } 2780 2781 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2782 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2783 XVA_SET_RTN(xvap, XAT_REPARSE); 2784 } 2785 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2786 xoap->xoa_generation = zp->z_gen; 2787 XVA_SET_RTN(xvap, XAT_GEN); 2788 } 2789 2790 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2791 xoap->xoa_offline = 2792 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2793 XVA_SET_RTN(xvap, XAT_OFFLINE); 2794 } 2795 2796 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2797 xoap->xoa_sparse = 2798 ((zp->z_pflags & ZFS_SPARSE) != 0); 2799 XVA_SET_RTN(xvap, XAT_SPARSE); 2800 } 2801 2802 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2803 xoap->xoa_projinherit = 2804 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 2805 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 2806 } 2807 2808 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2809 xoap->xoa_projid = zp->z_projid; 2810 XVA_SET_RTN(xvap, XAT_PROJID); 2811 } 2812 } 2813 2814 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2815 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2816 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2817 2818 mutex_exit(&zp->z_lock); 2819 2820 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2821 2822 if (zp->z_blksz == 0) { 2823 /* 2824 * Block size hasn't been set; suggest maximal I/O transfers. 2825 */ 2826 vap->va_blksize = zfsvfs->z_max_blksz; 2827 } 2828 2829 ZFS_EXIT(zfsvfs); 2830 return (0); 2831 } 2832 2833 /* 2834 * For the operation of changing file's user/group/project, we need to 2835 * handle not only the main object that is assigned to the file directly, 2836 * but also the ones that are used by the file via hidden xattr directory. 2837 * 2838 * Because the xattr directory may contain many EA entries, it may be 2839 * impossible to change all of them in the same transaction as changing the 2840 * main object's user/group/project attributes. If so, we have to change them 2841 * via other multiple independent transactions one by one. It may be not a good 2842 * solution, but we have no better idea yet. 2843 */ 2844 static int 2845 zfs_setattr_dir(znode_t *dzp) 2846 { 2847 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2848 objset_t *os = zfsvfs->z_os; 2849 zap_cursor_t zc; 2850 zap_attribute_t zap; 2851 zfs_dirlock_t *dl; 2852 znode_t *zp = NULL; 2853 dmu_tx_t *tx = NULL; 2854 sa_bulk_attr_t bulk[4]; 2855 int count; 2856 int err; 2857 2858 zap_cursor_init(&zc, os, dzp->z_id); 2859 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 2860 count = 0; 2861 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 2862 err = ENXIO; 2863 break; 2864 } 2865 2866 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 2867 ZEXISTS, NULL, NULL); 2868 if (err == ENOENT) 2869 goto next; 2870 if (err) 2871 break; 2872 2873 if (zp->z_uid == dzp->z_uid && 2874 zp->z_gid == dzp->z_gid && 2875 zp->z_projid == dzp->z_projid) 2876 goto next; 2877 2878 tx = dmu_tx_create(os); 2879 if (!(zp->z_pflags & ZFS_PROJID)) 2880 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2881 else 2882 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2883 2884 err = dmu_tx_assign(tx, TXG_WAIT); 2885 if (err) 2886 break; 2887 2888 mutex_enter(&dzp->z_lock); 2889 2890 if (zp->z_uid != dzp->z_uid) { 2891 zp->z_uid = dzp->z_uid; 2892 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2893 &dzp->z_uid, sizeof (dzp->z_uid)); 2894 } 2895 2896 if (zp->z_gid != dzp->z_gid) { 2897 zp->z_gid = dzp->z_gid; 2898 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2899 &dzp->z_gid, sizeof (dzp->z_gid)); 2900 } 2901 2902 if (zp->z_projid != dzp->z_projid) { 2903 if (!(zp->z_pflags & ZFS_PROJID)) { 2904 zp->z_pflags |= ZFS_PROJID; 2905 SA_ADD_BULK_ATTR(bulk, count, 2906 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 2907 sizeof (zp->z_pflags)); 2908 } 2909 2910 zp->z_projid = dzp->z_projid; 2911 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 2912 NULL, &zp->z_projid, sizeof (zp->z_projid)); 2913 } 2914 2915 mutex_exit(&dzp->z_lock); 2916 2917 if (likely(count > 0)) { 2918 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2919 dmu_tx_commit(tx); 2920 } else { 2921 dmu_tx_abort(tx); 2922 } 2923 tx = NULL; 2924 if (err != 0 && err != ENOENT) 2925 break; 2926 2927 next: 2928 if (zp) { 2929 VN_RELE(ZTOV(zp)); 2930 zp = NULL; 2931 zfs_dirent_unlock(dl); 2932 } 2933 zap_cursor_advance(&zc); 2934 } 2935 2936 if (tx) 2937 dmu_tx_abort(tx); 2938 if (zp) { 2939 VN_RELE(ZTOV(zp)); 2940 zfs_dirent_unlock(dl); 2941 } 2942 zap_cursor_fini(&zc); 2943 2944 return (err == ENOENT ? 0 : err); 2945 } 2946 2947 /* 2948 * Set the file attributes to the values contained in the 2949 * vattr structure. 2950 * 2951 * IN: vp - vnode of file to be modified. 2952 * vap - new attribute values. 2953 * If AT_XVATTR set, then optional attrs are being set 2954 * flags - ATTR_UTIME set if non-default time values provided. 2955 * - ATTR_NOACLCHECK (CIFS context only). 2956 * cr - credentials of caller. 2957 * ct - caller context 2958 * 2959 * RETURN: 0 on success, error code on failure. 2960 * 2961 * Timestamps: 2962 * vp - ctime updated, mtime updated if size changed. 2963 */ 2964 /* ARGSUSED */ 2965 static int 2966 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2967 caller_context_t *ct) 2968 { 2969 znode_t *zp = VTOZ(vp); 2970 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2971 objset_t *os = zfsvfs->z_os; 2972 zilog_t *zilog; 2973 dmu_tx_t *tx; 2974 vattr_t oldva; 2975 xvattr_t tmpxvattr; 2976 uint_t mask = vap->va_mask; 2977 uint_t saved_mask = 0; 2978 int trim_mask = 0; 2979 uint64_t new_mode; 2980 uint64_t new_uid, new_gid; 2981 uint64_t xattr_obj; 2982 uint64_t mtime[2], ctime[2]; 2983 uint64_t projid = ZFS_INVALID_PROJID; 2984 znode_t *attrzp; 2985 int need_policy = FALSE; 2986 int err, err2 = 0; 2987 zfs_fuid_info_t *fuidp = NULL; 2988 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2989 xoptattr_t *xoap; 2990 zfs_acl_t *aclp; 2991 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2992 boolean_t fuid_dirtied = B_FALSE; 2993 boolean_t handle_eadir = B_FALSE; 2994 sa_bulk_attr_t bulk[8], xattr_bulk[8]; 2995 int count = 0, xattr_count = 0; 2996 2997 if (mask == 0) 2998 return (0); 2999 3000 if (mask & AT_NOSET) 3001 return (SET_ERROR(EINVAL)); 3002 3003 ZFS_ENTER(zfsvfs); 3004 ZFS_VERIFY_ZP(zp); 3005 3006 /* 3007 * If this is a xvattr_t, then get a pointer to the structure of 3008 * optional attributes. If this is NULL, then we have a vattr_t. 3009 */ 3010 xoap = xva_getxoptattr(xvap); 3011 if (xoap != NULL && (mask & AT_XVATTR)) { 3012 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 3013 if (!dmu_objset_projectquota_enabled(os) || 3014 (vp->v_type != VREG && vp->v_type != VDIR)) { 3015 ZFS_EXIT(zfsvfs); 3016 return (SET_ERROR(ENOTSUP)); 3017 } 3018 3019 projid = xoap->xoa_projid; 3020 if (unlikely(projid == ZFS_INVALID_PROJID)) { 3021 ZFS_EXIT(zfsvfs); 3022 return (SET_ERROR(EINVAL)); 3023 } 3024 3025 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 3026 projid = ZFS_INVALID_PROJID; 3027 else 3028 need_policy = TRUE; 3029 } 3030 3031 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 3032 (!dmu_objset_projectquota_enabled(os) || 3033 (vp->v_type != VREG && vp->v_type != VDIR))) { 3034 ZFS_EXIT(zfsvfs); 3035 return (SET_ERROR(ENOTSUP)); 3036 } 3037 } 3038 3039 zilog = zfsvfs->z_log; 3040 3041 /* 3042 * Make sure that if we have ephemeral uid/gid or xvattr specified 3043 * that file system is at proper version level 3044 */ 3045 3046 if (zfsvfs->z_use_fuids == B_FALSE && 3047 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 3048 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 3049 (mask & AT_XVATTR))) { 3050 ZFS_EXIT(zfsvfs); 3051 return (SET_ERROR(EINVAL)); 3052 } 3053 3054 if (mask & AT_SIZE && vp->v_type == VDIR) { 3055 ZFS_EXIT(zfsvfs); 3056 return (SET_ERROR(EISDIR)); 3057 } 3058 3059 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 3060 ZFS_EXIT(zfsvfs); 3061 return (SET_ERROR(EINVAL)); 3062 } 3063 3064 xva_init(&tmpxvattr); 3065 3066 /* 3067 * Immutable files can only alter immutable bit and atime 3068 */ 3069 if ((zp->z_pflags & ZFS_IMMUTABLE) && 3070 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 3071 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 3072 ZFS_EXIT(zfsvfs); 3073 return (SET_ERROR(EPERM)); 3074 } 3075 3076 /* 3077 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 3078 */ 3079 3080 /* 3081 * Verify timestamps doesn't overflow 32 bits. 3082 * ZFS can handle large timestamps, but 32bit syscalls can't 3083 * handle times greater than 2039. This check should be removed 3084 * once large timestamps are fully supported. 3085 */ 3086 if (mask & (AT_ATIME | AT_MTIME)) { 3087 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 3088 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 3089 ZFS_EXIT(zfsvfs); 3090 return (SET_ERROR(EOVERFLOW)); 3091 } 3092 } 3093 3094 top: 3095 attrzp = NULL; 3096 aclp = NULL; 3097 3098 /* Can this be moved to before the top label? */ 3099 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 3100 ZFS_EXIT(zfsvfs); 3101 return (SET_ERROR(EROFS)); 3102 } 3103 3104 /* 3105 * First validate permissions 3106 */ 3107 3108 if (mask & AT_SIZE) { 3109 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 3110 if (err) { 3111 ZFS_EXIT(zfsvfs); 3112 return (err); 3113 } 3114 /* 3115 * XXX - Note, we are not providing any open 3116 * mode flags here (like FNDELAY), so we may 3117 * block if there are locks present... this 3118 * should be addressed in openat(). 3119 */ 3120 /* XXX - would it be OK to generate a log record here? */ 3121 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 3122 if (err) { 3123 ZFS_EXIT(zfsvfs); 3124 return (err); 3125 } 3126 3127 if (vap->va_size == 0) 3128 vnevent_truncate(ZTOV(zp), ct); 3129 } 3130 3131 if (mask & (AT_ATIME|AT_MTIME) || 3132 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 3133 XVA_ISSET_REQ(xvap, XAT_READONLY) || 3134 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 3135 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 3136 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 3137 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 3138 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 3139 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 3140 skipaclchk, cr); 3141 } 3142 3143 if (mask & (AT_UID|AT_GID)) { 3144 int idmask = (mask & (AT_UID|AT_GID)); 3145 int take_owner; 3146 int take_group; 3147 3148 /* 3149 * NOTE: even if a new mode is being set, 3150 * we may clear S_ISUID/S_ISGID bits. 3151 */ 3152 3153 if (!(mask & AT_MODE)) 3154 vap->va_mode = zp->z_mode; 3155 3156 /* 3157 * Take ownership or chgrp to group we are a member of 3158 */ 3159 3160 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 3161 take_group = (mask & AT_GID) && 3162 zfs_groupmember(zfsvfs, vap->va_gid, cr); 3163 3164 /* 3165 * If both AT_UID and AT_GID are set then take_owner and 3166 * take_group must both be set in order to allow taking 3167 * ownership. 3168 * 3169 * Otherwise, send the check through secpolicy_vnode_setattr() 3170 * 3171 */ 3172 3173 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 3174 ((idmask == AT_UID) && take_owner) || 3175 ((idmask == AT_GID) && take_group)) { 3176 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 3177 skipaclchk, cr) == 0) { 3178 /* 3179 * Remove setuid/setgid for non-privileged users 3180 */ 3181 secpolicy_setid_clear(vap, cr); 3182 trim_mask = (mask & (AT_UID|AT_GID)); 3183 } else { 3184 need_policy = TRUE; 3185 } 3186 } else { 3187 need_policy = TRUE; 3188 } 3189 } 3190 3191 mutex_enter(&zp->z_lock); 3192 oldva.va_mode = zp->z_mode; 3193 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 3194 if (mask & AT_XVATTR) { 3195 /* 3196 * Update xvattr mask to include only those attributes 3197 * that are actually changing. 3198 * 3199 * the bits will be restored prior to actually setting 3200 * the attributes so the caller thinks they were set. 3201 */ 3202 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 3203 if (xoap->xoa_appendonly != 3204 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 3205 need_policy = TRUE; 3206 } else { 3207 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 3208 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 3209 } 3210 } 3211 3212 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 3213 if (xoap->xoa_projinherit != 3214 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 3215 need_policy = TRUE; 3216 } else { 3217 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 3218 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 3219 } 3220 } 3221 3222 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 3223 if (xoap->xoa_nounlink != 3224 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 3225 need_policy = TRUE; 3226 } else { 3227 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 3228 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 3229 } 3230 } 3231 3232 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 3233 if (xoap->xoa_immutable != 3234 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 3235 need_policy = TRUE; 3236 } else { 3237 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 3238 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 3239 } 3240 } 3241 3242 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 3243 if (xoap->xoa_nodump != 3244 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 3245 need_policy = TRUE; 3246 } else { 3247 XVA_CLR_REQ(xvap, XAT_NODUMP); 3248 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3249 } 3250 } 3251 3252 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3253 if (xoap->xoa_av_modified != 3254 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3255 need_policy = TRUE; 3256 } else { 3257 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3258 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3259 } 3260 } 3261 3262 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3263 if ((vp->v_type != VREG && 3264 xoap->xoa_av_quarantined) || 3265 xoap->xoa_av_quarantined != 3266 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3267 need_policy = TRUE; 3268 } else { 3269 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3270 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3271 } 3272 } 3273 3274 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3275 mutex_exit(&zp->z_lock); 3276 ZFS_EXIT(zfsvfs); 3277 return (SET_ERROR(EPERM)); 3278 } 3279 3280 if (need_policy == FALSE && 3281 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3282 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3283 need_policy = TRUE; 3284 } 3285 } 3286 3287 mutex_exit(&zp->z_lock); 3288 3289 if (mask & AT_MODE) { 3290 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3291 err = secpolicy_setid_setsticky_clear(vp, vap, 3292 &oldva, cr); 3293 if (err) { 3294 ZFS_EXIT(zfsvfs); 3295 return (err); 3296 } 3297 trim_mask |= AT_MODE; 3298 } else { 3299 need_policy = TRUE; 3300 } 3301 } 3302 3303 if (need_policy) { 3304 /* 3305 * If trim_mask is set then take ownership 3306 * has been granted or write_acl is present and user 3307 * has the ability to modify mode. In that case remove 3308 * UID|GID and or MODE from mask so that 3309 * secpolicy_vnode_setattr() doesn't revoke it. 3310 */ 3311 3312 if (trim_mask) { 3313 saved_mask = vap->va_mask; 3314 vap->va_mask &= ~trim_mask; 3315 } 3316 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3317 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3318 if (err) { 3319 ZFS_EXIT(zfsvfs); 3320 return (err); 3321 } 3322 3323 if (trim_mask) 3324 vap->va_mask |= saved_mask; 3325 } 3326 3327 /* 3328 * secpolicy_vnode_setattr, or take ownership may have 3329 * changed va_mask 3330 */ 3331 mask = vap->va_mask; 3332 3333 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 3334 handle_eadir = B_TRUE; 3335 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3336 &xattr_obj, sizeof (xattr_obj)); 3337 3338 if (err == 0 && xattr_obj) { 3339 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3340 if (err) 3341 goto out2; 3342 } 3343 if (mask & AT_UID) { 3344 new_uid = zfs_fuid_create(zfsvfs, 3345 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3346 if (new_uid != zp->z_uid && 3347 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 3348 new_uid)) { 3349 if (attrzp) 3350 VN_RELE(ZTOV(attrzp)); 3351 err = SET_ERROR(EDQUOT); 3352 goto out2; 3353 } 3354 } 3355 3356 if (mask & AT_GID) { 3357 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3358 cr, ZFS_GROUP, &fuidp); 3359 if (new_gid != zp->z_gid && 3360 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3361 new_gid)) { 3362 if (attrzp) 3363 VN_RELE(ZTOV(attrzp)); 3364 err = SET_ERROR(EDQUOT); 3365 goto out2; 3366 } 3367 } 3368 3369 if (projid != ZFS_INVALID_PROJID && 3370 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 3371 if (attrzp) 3372 VN_RELE(ZTOV(attrzp)); 3373 err = EDQUOT; 3374 goto out2; 3375 } 3376 } 3377 tx = dmu_tx_create(os); 3378 3379