xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 2889ec41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2015 Joyent, Inc.
27  * Copyright 2017 Nexenta Systems, Inc.
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kmem.h>
45 #include <sys/taskq.h>
46 #include <sys/uio.h>
47 #include <sys/vmsystm.h>
48 #include <sys/atomic.h>
49 #include <sys/vm.h>
50 #include <vm/seg_vn.h>
51 #include <vm/pvn.h>
52 #include <vm/as.h>
53 #include <vm/kpm.h>
54 #include <vm/seg_kpm.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/cmn_err.h>
58 #include <sys/errno.h>
59 #include <sys/unistd.h>
60 #include <sys/zfs_dir.h>
61 #include <sys/zfs_acl.h>
62 #include <sys/zfs_ioctl.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/dmu.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa.h>
67 #include <sys/txg.h>
68 #include <sys/dbuf.h>
69 #include <sys/zap.h>
70 #include <sys/sa.h>
71 #include <sys/dirent.h>
72 #include <sys/policy.h>
73 #include <sys/sunddi.h>
74 #include <sys/filio.h>
75 #include <sys/sid.h>
76 #include "fs/fs_subr.h"
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_fuid.h>
79 #include <sys/zfs_sa.h>
80 #include <sys/dnlc.h>
81 #include <sys/zfs_rlock.h>
82 #include <sys/extdirent.h>
83 #include <sys/kidmap.h>
84 #include <sys/cred.h>
85 #include <sys/attr.h>
86 
87 /*
88  * Programming rules.
89  *
90  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
91  * properly lock its in-core state, create a DMU transaction, do the work,
92  * record this work in the intent log (ZIL), commit the DMU transaction,
93  * and wait for the intent log to commit if it is a synchronous operation.
94  * Moreover, the vnode ops must work in both normal and log replay context.
95  * The ordering of events is important to avoid deadlocks and references
96  * to freed memory.  The example below illustrates the following Big Rules:
97  *
98  *  (1)	A check must be made in each zfs thread for a mounted file system.
99  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
100  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
101  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
102  *	can return EIO from the calling function.
103  *
104  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
105  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
106  *	First, if it's the last reference, the vnode/znode
107  *	can be freed, so the zp may point to freed memory.  Second, the last
108  *	reference will call zfs_zinactive(), which may induce a lot of work --
109  *	pushing cached pages (which acquires range locks) and syncing out
110  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
111  *	which could deadlock the system if you were already holding one.
112  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
113  *
114  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
115  *	as they can span dmu_tx_assign() calls.
116  *
117  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
118  *      dmu_tx_assign().  This is critical because we don't want to block
119  *      while holding locks.
120  *
121  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
122  *	reduces lock contention and CPU usage when we must wait (note that if
123  *	throughput is constrained by the storage, nearly every transaction
124  *	must wait).
125  *
126  *      Note, in particular, that if a lock is sometimes acquired before
127  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
128  *      to use a non-blocking assign can deadlock the system.  The scenario:
129  *
130  *	Thread A has grabbed a lock before calling dmu_tx_assign().
131  *	Thread B is in an already-assigned tx, and blocks for this lock.
132  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
133  *	forever, because the previous txg can't quiesce until B's tx commits.
134  *
135  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
136  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
137  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
138  *	to indicate that this operation has already called dmu_tx_wait().
139  *	This will ensure that we don't retry forever, waiting a short bit
140  *	each time.
141  *
142  *  (5)	If the operation succeeded, generate the intent log entry for it
143  *	before dropping locks.  This ensures that the ordering of events
144  *	in the intent log matches the order in which they actually occurred.
145  *	During ZIL replay the zfs_log_* functions will update the sequence
146  *	number to indicate the zil transaction has replayed.
147  *
148  *  (6)	At the end of each vnode op, the DMU tx must always commit,
149  *	regardless of whether there were any errors.
150  *
151  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
152  *	to ensure that synchronous semantics are provided when necessary.
153  *
154  * In general, this is how things should be ordered in each vnode op:
155  *
156  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
157  * top:
158  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
159  *	rw_enter(...);			// grab any other locks you need
160  *	tx = dmu_tx_create(...);	// get DMU tx
161  *	dmu_tx_hold_*();		// hold each object you might modify
162  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
163  *	if (error) {
164  *		rw_exit(...);		// drop locks
165  *		zfs_dirent_unlock(dl);	// unlock directory entry
166  *		VN_RELE(...);		// release held vnodes
167  *		if (error == ERESTART) {
168  *			waited = B_TRUE;
169  *			dmu_tx_wait(tx);
170  *			dmu_tx_abort(tx);
171  *			goto top;
172  *		}
173  *		dmu_tx_abort(tx);	// abort DMU tx
174  *		ZFS_EXIT(zfsvfs);	// finished in zfs
175  *		return (error);		// really out of space
176  *	}
177  *	error = do_real_work();		// do whatever this VOP does
178  *	if (error == 0)
179  *		zfs_log_*(...);		// on success, make ZIL entry
180  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
181  *	rw_exit(...);			// drop locks
182  *	zfs_dirent_unlock(dl);		// unlock directory entry
183  *	VN_RELE(...);			// release held vnodes
184  *	zil_commit(zilog, foid);	// synchronous when necessary
185  *	ZFS_EXIT(zfsvfs);		// finished in zfs
186  *	return (error);			// done, report error
187  */
188 
189 /* ARGSUSED */
190 static int
191 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
192 {
193 	znode_t	*zp = VTOZ(*vpp);
194 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
195 
196 	ZFS_ENTER(zfsvfs);
197 	ZFS_VERIFY_ZP(zp);
198 
199 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
200 	    ((flag & FAPPEND) == 0)) {
201 		ZFS_EXIT(zfsvfs);
202 		return (SET_ERROR(EPERM));
203 	}
204 
205 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
206 	    ZTOV(zp)->v_type == VREG &&
207 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
208 		if (fs_vscan(*vpp, cr, 0) != 0) {
209 			ZFS_EXIT(zfsvfs);
210 			return (SET_ERROR(EACCES));
211 		}
212 	}
213 
214 	/* Keep a count of the synchronous opens in the znode */
215 	if (flag & (FSYNC | FDSYNC))
216 		atomic_inc_32(&zp->z_sync_cnt);
217 
218 	ZFS_EXIT(zfsvfs);
219 	return (0);
220 }
221 
222 /* ARGSUSED */
223 static int
224 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
225     caller_context_t *ct)
226 {
227 	znode_t	*zp = VTOZ(vp);
228 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
229 
230 	/*
231 	 * Clean up any locks held by this process on the vp.
232 	 */
233 	cleanlocks(vp, ddi_get_pid(), 0);
234 	cleanshares(vp, ddi_get_pid());
235 
236 	ZFS_ENTER(zfsvfs);
237 	ZFS_VERIFY_ZP(zp);
238 
239 	/* Decrement the synchronous opens in the znode */
240 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
241 		atomic_dec_32(&zp->z_sync_cnt);
242 
243 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
244 	    ZTOV(zp)->v_type == VREG &&
245 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 		VERIFY(fs_vscan(vp, cr, 1) == 0);
247 
248 	ZFS_EXIT(zfsvfs);
249 	return (0);
250 }
251 
252 /*
253  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
254  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
255  */
256 static int
257 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
258 {
259 	znode_t	*zp = VTOZ(vp);
260 	uint64_t noff = (uint64_t)*off; /* new offset */
261 	uint64_t file_sz;
262 	int error;
263 	boolean_t hole;
264 
265 	file_sz = zp->z_size;
266 	if (noff >= file_sz)  {
267 		return (SET_ERROR(ENXIO));
268 	}
269 
270 	if (cmd == _FIO_SEEK_HOLE)
271 		hole = B_TRUE;
272 	else
273 		hole = B_FALSE;
274 
275 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
276 
277 	if (error == ESRCH)
278 		return (SET_ERROR(ENXIO));
279 
280 	/*
281 	 * We could find a hole that begins after the logical end-of-file,
282 	 * because dmu_offset_next() only works on whole blocks.  If the
283 	 * EOF falls mid-block, then indicate that the "virtual hole"
284 	 * at the end of the file begins at the logical EOF, rather than
285 	 * at the end of the last block.
286 	 */
287 	if (noff > file_sz) {
288 		ASSERT(hole);
289 		noff = file_sz;
290 	}
291 
292 	if (noff < *off)
293 		return (error);
294 	*off = noff;
295 	return (error);
296 }
297 
298 /* ARGSUSED */
299 static int
300 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
301     int *rvalp, caller_context_t *ct)
302 {
303 	offset_t off;
304 	offset_t ndata;
305 	dmu_object_info_t doi;
306 	int error;
307 	zfsvfs_t *zfsvfs;
308 	znode_t *zp;
309 
310 	switch (com) {
311 	case _FIOFFS:
312 	{
313 		return (zfs_sync(vp->v_vfsp, 0, cred));
314 
315 		/*
316 		 * The following two ioctls are used by bfu.  Faking out,
317 		 * necessary to avoid bfu errors.
318 		 */
319 	}
320 	case _FIOGDIO:
321 	case _FIOSDIO:
322 	{
323 		return (0);
324 	}
325 
326 	case _FIO_SEEK_DATA:
327 	case _FIO_SEEK_HOLE:
328 	{
329 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
330 			return (SET_ERROR(EFAULT));
331 
332 		zp = VTOZ(vp);
333 		zfsvfs = zp->z_zfsvfs;
334 		ZFS_ENTER(zfsvfs);
335 		ZFS_VERIFY_ZP(zp);
336 
337 		/* offset parameter is in/out */
338 		error = zfs_holey(vp, com, &off);
339 		ZFS_EXIT(zfsvfs);
340 		if (error)
341 			return (error);
342 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
343 			return (SET_ERROR(EFAULT));
344 		return (0);
345 	}
346 	case _FIO_COUNT_FILLED:
347 	{
348 		/*
349 		 * _FIO_COUNT_FILLED adds a new ioctl command which
350 		 * exposes the number of filled blocks in a
351 		 * ZFS object.
352 		 */
353 		zp = VTOZ(vp);
354 		zfsvfs = zp->z_zfsvfs;
355 		ZFS_ENTER(zfsvfs);
356 		ZFS_VERIFY_ZP(zp);
357 
358 		/*
359 		 * Wait for all dirty blocks for this object
360 		 * to get synced out to disk, and the DMU info
361 		 * updated.
362 		 */
363 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
364 		if (error) {
365 			ZFS_EXIT(zfsvfs);
366 			return (error);
367 		}
368 
369 		/*
370 		 * Retrieve fill count from DMU object.
371 		 */
372 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
373 		if (error) {
374 			ZFS_EXIT(zfsvfs);
375 			return (error);
376 		}
377 
378 		ndata = doi.doi_fill_count;
379 
380 		ZFS_EXIT(zfsvfs);
381 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
382 			return (SET_ERROR(EFAULT));
383 		return (0);
384 	}
385 	}
386 	return (SET_ERROR(ENOTTY));
387 }
388 
389 /*
390  * Utility functions to map and unmap a single physical page.  These
391  * are used to manage the mappable copies of ZFS file data, and therefore
392  * do not update ref/mod bits.
393  */
394 caddr_t
395 zfs_map_page(page_t *pp, enum seg_rw rw)
396 {
397 	if (kpm_enable)
398 		return (hat_kpm_mapin(pp, 0));
399 	ASSERT(rw == S_READ || rw == S_WRITE);
400 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
401 	    (caddr_t)-1));
402 }
403 
404 void
405 zfs_unmap_page(page_t *pp, caddr_t addr)
406 {
407 	if (kpm_enable) {
408 		hat_kpm_mapout(pp, 0, addr);
409 	} else {
410 		ppmapout(addr);
411 	}
412 }
413 
414 /*
415  * When a file is memory mapped, we must keep the IO data synchronized
416  * between the DMU cache and the memory mapped pages.  What this means:
417  *
418  * On Write:	If we find a memory mapped page, we write to *both*
419  *		the page and the dmu buffer.
420  */
421 static void
422 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
423 {
424 	int64_t	off;
425 
426 	off = start & PAGEOFFSET;
427 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
428 		page_t *pp;
429 		uint64_t nbytes = MIN(PAGESIZE - off, len);
430 
431 		if (pp = page_lookup(vp, start, SE_SHARED)) {
432 			caddr_t va;
433 
434 			va = zfs_map_page(pp, S_WRITE);
435 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
436 			    DMU_READ_PREFETCH);
437 			zfs_unmap_page(pp, va);
438 			page_unlock(pp);
439 		}
440 		len -= nbytes;
441 		off = 0;
442 	}
443 }
444 
445 /*
446  * When a file is memory mapped, we must keep the IO data synchronized
447  * between the DMU cache and the memory mapped pages.  What this means:
448  *
449  * On Read:	We "read" preferentially from memory mapped pages,
450  *		else we default from the dmu buffer.
451  *
452  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
453  *	 the file is memory mapped.
454  */
455 static int
456 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
457 {
458 	znode_t *zp = VTOZ(vp);
459 	int64_t	start, off;
460 	int len = nbytes;
461 	int error = 0;
462 
463 	start = uio->uio_loffset;
464 	off = start & PAGEOFFSET;
465 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
466 		page_t *pp;
467 		uint64_t bytes = MIN(PAGESIZE - off, len);
468 
469 		if (pp = page_lookup(vp, start, SE_SHARED)) {
470 			caddr_t va;
471 
472 			va = zfs_map_page(pp, S_READ);
473 			error = uiomove(va + off, bytes, UIO_READ, uio);
474 			zfs_unmap_page(pp, va);
475 			page_unlock(pp);
476 		} else {
477 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
478 			    uio, bytes);
479 		}
480 		len -= bytes;
481 		off = 0;
482 		if (error)
483 			break;
484 	}
485 	return (error);
486 }
487 
488 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
489 
490 /*
491  * Read bytes from specified file into supplied buffer.
492  *
493  *	IN:	vp	- vnode of file to be read from.
494  *		uio	- structure supplying read location, range info,
495  *			  and return buffer.
496  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
497  *		cr	- credentials of caller.
498  *		ct	- caller context
499  *
500  *	OUT:	uio	- updated offset and range, buffer filled.
501  *
502  *	RETURN:	0 on success, error code on failure.
503  *
504  * Side Effects:
505  *	vp - atime updated if byte count > 0
506  */
507 /* ARGSUSED */
508 static int
509 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
510 {
511 	znode_t		*zp = VTOZ(vp);
512 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
513 	ssize_t		n, nbytes;
514 	int		error = 0;
515 	rl_t		*rl;
516 	xuio_t		*xuio = NULL;
517 
518 	ZFS_ENTER(zfsvfs);
519 	ZFS_VERIFY_ZP(zp);
520 
521 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
522 		ZFS_EXIT(zfsvfs);
523 		return (SET_ERROR(EACCES));
524 	}
525 
526 	/*
527 	 * Validate file offset
528 	 */
529 	if (uio->uio_loffset < (offset_t)0) {
530 		ZFS_EXIT(zfsvfs);
531 		return (SET_ERROR(EINVAL));
532 	}
533 
534 	/*
535 	 * Fasttrack empty reads
536 	 */
537 	if (uio->uio_resid == 0) {
538 		ZFS_EXIT(zfsvfs);
539 		return (0);
540 	}
541 
542 	/*
543 	 * Check for mandatory locks
544 	 */
545 	if (MANDMODE(zp->z_mode)) {
546 		if (error = chklock(vp, FREAD,
547 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
548 			ZFS_EXIT(zfsvfs);
549 			return (error);
550 		}
551 	}
552 
553 	/*
554 	 * If we're in FRSYNC mode, sync out this znode before reading it.
555 	 */
556 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
557 		zil_commit(zfsvfs->z_log, zp->z_id);
558 
559 	/*
560 	 * Lock the range against changes.
561 	 */
562 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
563 
564 	/*
565 	 * If we are reading past end-of-file we can skip
566 	 * to the end; but we might still need to set atime.
567 	 */
568 	if (uio->uio_loffset >= zp->z_size) {
569 		error = 0;
570 		goto out;
571 	}
572 
573 	ASSERT(uio->uio_loffset < zp->z_size);
574 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
575 
576 	if ((uio->uio_extflg == UIO_XUIO) &&
577 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
578 		int nblk;
579 		int blksz = zp->z_blksz;
580 		uint64_t offset = uio->uio_loffset;
581 
582 		xuio = (xuio_t *)uio;
583 		if ((ISP2(blksz))) {
584 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
585 			    blksz)) / blksz;
586 		} else {
587 			ASSERT(offset + n <= blksz);
588 			nblk = 1;
589 		}
590 		(void) dmu_xuio_init(xuio, nblk);
591 
592 		if (vn_has_cached_data(vp)) {
593 			/*
594 			 * For simplicity, we always allocate a full buffer
595 			 * even if we only expect to read a portion of a block.
596 			 */
597 			while (--nblk >= 0) {
598 				(void) dmu_xuio_add(xuio,
599 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
600 				    blksz), 0, blksz);
601 			}
602 		}
603 	}
604 
605 	while (n > 0) {
606 		nbytes = MIN(n, zfs_read_chunk_size -
607 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
608 
609 		if (vn_has_cached_data(vp)) {
610 			error = mappedread(vp, nbytes, uio);
611 		} else {
612 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
613 			    uio, nbytes);
614 		}
615 		if (error) {
616 			/* convert checksum errors into IO errors */
617 			if (error == ECKSUM)
618 				error = SET_ERROR(EIO);
619 			break;
620 		}
621 
622 		n -= nbytes;
623 	}
624 out:
625 	zfs_range_unlock(rl);
626 
627 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
628 	ZFS_EXIT(zfsvfs);
629 	return (error);
630 }
631 
632 /*
633  * Write the bytes to a file.
634  *
635  *	IN:	vp	- vnode of file to be written to.
636  *		uio	- structure supplying write location, range info,
637  *			  and data buffer.
638  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
639  *			  set if in append mode.
640  *		cr	- credentials of caller.
641  *		ct	- caller context (NFS/CIFS fem monitor only)
642  *
643  *	OUT:	uio	- updated offset and range.
644  *
645  *	RETURN:	0 on success, error code on failure.
646  *
647  * Timestamps:
648  *	vp - ctime|mtime updated if byte count > 0
649  */
650 
651 /* ARGSUSED */
652 static int
653 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
654 {
655 	znode_t		*zp = VTOZ(vp);
656 	rlim64_t	limit = uio->uio_llimit;
657 	ssize_t		start_resid = uio->uio_resid;
658 	ssize_t		tx_bytes;
659 	uint64_t	end_size;
660 	dmu_tx_t	*tx;
661 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
662 	zilog_t		*zilog;
663 	offset_t	woff;
664 	ssize_t		n, nbytes;
665 	rl_t		*rl;
666 	int		max_blksz = zfsvfs->z_max_blksz;
667 	int		error = 0;
668 	arc_buf_t	*abuf;
669 	iovec_t		*aiov = NULL;
670 	xuio_t		*xuio = NULL;
671 	int		i_iov = 0;
672 	int		iovcnt = uio->uio_iovcnt;
673 	iovec_t		*iovp = uio->uio_iov;
674 	int		write_eof;
675 	int		count = 0;
676 	sa_bulk_attr_t	bulk[4];
677 	uint64_t	mtime[2], ctime[2];
678 
679 	/*
680 	 * Fasttrack empty write
681 	 */
682 	n = start_resid;
683 	if (n == 0)
684 		return (0);
685 
686 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
687 		limit = MAXOFFSET_T;
688 
689 	ZFS_ENTER(zfsvfs);
690 	ZFS_VERIFY_ZP(zp);
691 
692 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
693 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
694 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
695 	    &zp->z_size, 8);
696 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
697 	    &zp->z_pflags, 8);
698 
699 	/*
700 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
701 	 * callers might not be able to detect properly that we are read-only,
702 	 * so check it explicitly here.
703 	 */
704 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
705 		ZFS_EXIT(zfsvfs);
706 		return (SET_ERROR(EROFS));
707 	}
708 
709 	/*
710 	 * If immutable or not appending then return EPERM.
711 	 * Intentionally allow ZFS_READONLY through here.
712 	 * See zfs_zaccess_common()
713 	 */
714 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
715 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
716 	    (uio->uio_loffset < zp->z_size))) {
717 		ZFS_EXIT(zfsvfs);
718 		return (SET_ERROR(EPERM));
719 	}
720 
721 	zilog = zfsvfs->z_log;
722 
723 	/*
724 	 * Validate file offset
725 	 */
726 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
727 	if (woff < 0) {
728 		ZFS_EXIT(zfsvfs);
729 		return (SET_ERROR(EINVAL));
730 	}
731 
732 	/*
733 	 * Check for mandatory locks before calling zfs_range_lock()
734 	 * in order to prevent a deadlock with locks set via fcntl().
735 	 */
736 	if (MANDMODE((mode_t)zp->z_mode) &&
737 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
738 		ZFS_EXIT(zfsvfs);
739 		return (error);
740 	}
741 
742 	/*
743 	 * Pre-fault the pages to ensure slow (eg NFS) pages
744 	 * don't hold up txg.
745 	 * Skip this if uio contains loaned arc_buf.
746 	 */
747 	if ((uio->uio_extflg == UIO_XUIO) &&
748 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
749 		xuio = (xuio_t *)uio;
750 	else
751 		uio_prefaultpages(MIN(n, max_blksz), uio);
752 
753 	/*
754 	 * If in append mode, set the io offset pointer to eof.
755 	 */
756 	if (ioflag & FAPPEND) {
757 		/*
758 		 * Obtain an appending range lock to guarantee file append
759 		 * semantics.  We reset the write offset once we have the lock.
760 		 */
761 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
762 		woff = rl->r_off;
763 		if (rl->r_len == UINT64_MAX) {
764 			/*
765 			 * We overlocked the file because this write will cause
766 			 * the file block size to increase.
767 			 * Note that zp_size cannot change with this lock held.
768 			 */
769 			woff = zp->z_size;
770 		}
771 		uio->uio_loffset = woff;
772 	} else {
773 		/*
774 		 * Note that if the file block size will change as a result of
775 		 * this write, then this range lock will lock the entire file
776 		 * so that we can re-write the block safely.
777 		 */
778 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
779 	}
780 
781 	if (woff >= limit) {
782 		zfs_range_unlock(rl);
783 		ZFS_EXIT(zfsvfs);
784 		return (SET_ERROR(EFBIG));
785 	}
786 
787 	if ((woff + n) > limit || woff > (limit - n))
788 		n = limit - woff;
789 
790 	/* Will this write extend the file length? */
791 	write_eof = (woff + n > zp->z_size);
792 
793 	end_size = MAX(zp->z_size, woff + n);
794 
795 	/*
796 	 * Write the file in reasonable size chunks.  Each chunk is written
797 	 * in a separate transaction; this keeps the intent log records small
798 	 * and allows us to do more fine-grained space accounting.
799 	 */
800 	while (n > 0) {
801 		abuf = NULL;
802 		woff = uio->uio_loffset;
803 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
804 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
805 			if (abuf != NULL)
806 				dmu_return_arcbuf(abuf);
807 			error = SET_ERROR(EDQUOT);
808 			break;
809 		}
810 
811 		if (xuio && abuf == NULL) {
812 			ASSERT(i_iov < iovcnt);
813 			aiov = &iovp[i_iov];
814 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
815 			dmu_xuio_clear(xuio, i_iov);
816 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
817 			    iovec_t *, aiov, arc_buf_t *, abuf);
818 			ASSERT((aiov->iov_base == abuf->b_data) ||
819 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
820 			    aiov->iov_len == arc_buf_size(abuf)));
821 			i_iov++;
822 		} else if (abuf == NULL && n >= max_blksz &&
823 		    woff >= zp->z_size &&
824 		    P2PHASE(woff, max_blksz) == 0 &&
825 		    zp->z_blksz == max_blksz) {
826 			/*
827 			 * This write covers a full block.  "Borrow" a buffer
828 			 * from the dmu so that we can fill it before we enter
829 			 * a transaction.  This avoids the possibility of
830 			 * holding up the transaction if the data copy hangs
831 			 * up on a pagefault (e.g., from an NFS server mapping).
832 			 */
833 			size_t cbytes;
834 
835 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
836 			    max_blksz);
837 			ASSERT(abuf != NULL);
838 			ASSERT(arc_buf_size(abuf) == max_blksz);
839 			if (error = uiocopy(abuf->b_data, max_blksz,
840 			    UIO_WRITE, uio, &cbytes)) {
841 				dmu_return_arcbuf(abuf);
842 				break;
843 			}
844 			ASSERT(cbytes == max_blksz);
845 		}
846 
847 		/*
848 		 * Start a transaction.
849 		 */
850 		tx = dmu_tx_create(zfsvfs->z_os);
851 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
852 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
853 		zfs_sa_upgrade_txholds(tx, zp);
854 		error = dmu_tx_assign(tx, TXG_WAIT);
855 		if (error) {
856 			dmu_tx_abort(tx);
857 			if (abuf != NULL)
858 				dmu_return_arcbuf(abuf);
859 			break;
860 		}
861 
862 		/*
863 		 * If zfs_range_lock() over-locked we grow the blocksize
864 		 * and then reduce the lock range.  This will only happen
865 		 * on the first iteration since zfs_range_reduce() will
866 		 * shrink down r_len to the appropriate size.
867 		 */
868 		if (rl->r_len == UINT64_MAX) {
869 			uint64_t new_blksz;
870 
871 			if (zp->z_blksz > max_blksz) {
872 				/*
873 				 * File's blocksize is already larger than the
874 				 * "recordsize" property.  Only let it grow to
875 				 * the next power of 2.
876 				 */
877 				ASSERT(!ISP2(zp->z_blksz));
878 				new_blksz = MIN(end_size,
879 				    1 << highbit64(zp->z_blksz));
880 			} else {
881 				new_blksz = MIN(end_size, max_blksz);
882 			}
883 			zfs_grow_blocksize(zp, new_blksz, tx);
884 			zfs_range_reduce(rl, woff, n);
885 		}
886 
887 		/*
888 		 * XXX - should we really limit each write to z_max_blksz?
889 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
890 		 */
891 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
892 
893 		if (abuf == NULL) {
894 			tx_bytes = uio->uio_resid;
895 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
896 			    uio, nbytes, tx);
897 			tx_bytes -= uio->uio_resid;
898 		} else {
899 			tx_bytes = nbytes;
900 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
901 			/*
902 			 * If this is not a full block write, but we are
903 			 * extending the file past EOF and this data starts
904 			 * block-aligned, use assign_arcbuf().  Otherwise,
905 			 * write via dmu_write().
906 			 */
907 			if (tx_bytes < max_blksz && (!write_eof ||
908 			    aiov->iov_base != abuf->b_data)) {
909 				ASSERT(xuio);
910 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
911 				    aiov->iov_len, aiov->iov_base, tx);
912 				dmu_return_arcbuf(abuf);
913 				xuio_stat_wbuf_copied();
914 			} else {
915 				ASSERT(xuio || tx_bytes == max_blksz);
916 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
917 				    woff, abuf, tx);
918 			}
919 			ASSERT(tx_bytes <= uio->uio_resid);
920 			uioskip(uio, tx_bytes);
921 		}
922 		if (tx_bytes && vn_has_cached_data(vp)) {
923 			update_pages(vp, woff,
924 			    tx_bytes, zfsvfs->z_os, zp->z_id);
925 		}
926 
927 		/*
928 		 * If we made no progress, we're done.  If we made even
929 		 * partial progress, update the znode and ZIL accordingly.
930 		 */
931 		if (tx_bytes == 0) {
932 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
933 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
934 			dmu_tx_commit(tx);
935 			ASSERT(error != 0);
936 			break;
937 		}
938 
939 		/*
940 		 * Clear Set-UID/Set-GID bits on successful write if not
941 		 * privileged and at least one of the excute bits is set.
942 		 *
943 		 * It would be nice to to this after all writes have
944 		 * been done, but that would still expose the ISUID/ISGID
945 		 * to another app after the partial write is committed.
946 		 *
947 		 * Note: we don't call zfs_fuid_map_id() here because
948 		 * user 0 is not an ephemeral uid.
949 		 */
950 		mutex_enter(&zp->z_acl_lock);
951 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
952 		    (S_IXUSR >> 6))) != 0 &&
953 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
954 		    secpolicy_vnode_setid_retain(cr,
955 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
956 			uint64_t newmode;
957 			zp->z_mode &= ~(S_ISUID | S_ISGID);
958 			newmode = zp->z_mode;
959 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
960 			    (void *)&newmode, sizeof (uint64_t), tx);
961 		}
962 		mutex_exit(&zp->z_acl_lock);
963 
964 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
965 		    B_TRUE);
966 
967 		/*
968 		 * Update the file size (zp_size) if it has changed;
969 		 * account for possible concurrent updates.
970 		 */
971 		while ((end_size = zp->z_size) < uio->uio_loffset) {
972 			(void) atomic_cas_64(&zp->z_size, end_size,
973 			    uio->uio_loffset);
974 			ASSERT(error == 0);
975 		}
976 		/*
977 		 * If we are replaying and eof is non zero then force
978 		 * the file size to the specified eof. Note, there's no
979 		 * concurrency during replay.
980 		 */
981 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
982 			zp->z_size = zfsvfs->z_replay_eof;
983 
984 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
985 
986 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
987 		dmu_tx_commit(tx);
988 
989 		if (error != 0)
990 			break;
991 		ASSERT(tx_bytes == nbytes);
992 		n -= nbytes;
993 
994 		if (!xuio && n > 0)
995 			uio_prefaultpages(MIN(n, max_blksz), uio);
996 	}
997 
998 	zfs_range_unlock(rl);
999 
1000 	/*
1001 	 * If we're in replay mode, or we made no progress, return error.
1002 	 * Otherwise, it's at least a partial write, so it's successful.
1003 	 */
1004 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1005 		ZFS_EXIT(zfsvfs);
1006 		return (error);
1007 	}
1008 
1009 	if (ioflag & (FSYNC | FDSYNC) ||
1010 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1011 		zil_commit(zilog, zp->z_id);
1012 
1013 	ZFS_EXIT(zfsvfs);
1014 	return (0);
1015 }
1016 
1017 void
1018 zfs_get_done(zgd_t *zgd, int error)
1019 {
1020 	znode_t *zp = zgd->zgd_private;
1021 	objset_t *os = zp->z_zfsvfs->z_os;
1022 
1023 	if (zgd->zgd_db)
1024 		dmu_buf_rele(zgd->zgd_db, zgd);
1025 
1026 	zfs_range_unlock(zgd->zgd_rl);
1027 
1028 	/*
1029 	 * Release the vnode asynchronously as we currently have the
1030 	 * txg stopped from syncing.
1031 	 */
1032 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1033 
1034 	if (error == 0 && zgd->zgd_bp)
1035 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1036 
1037 	kmem_free(zgd, sizeof (zgd_t));
1038 }
1039 
1040 #ifdef DEBUG
1041 static int zil_fault_io = 0;
1042 #endif
1043 
1044 /*
1045  * Get data to generate a TX_WRITE intent log record.
1046  */
1047 int
1048 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1049 {
1050 	zfsvfs_t *zfsvfs = arg;
1051 	objset_t *os = zfsvfs->z_os;
1052 	znode_t *zp;
1053 	uint64_t object = lr->lr_foid;
1054 	uint64_t offset = lr->lr_offset;
1055 	uint64_t size = lr->lr_length;
1056 	blkptr_t *bp = &lr->lr_blkptr;
1057 	dmu_buf_t *db;
1058 	zgd_t *zgd;
1059 	int error = 0;
1060 
1061 	ASSERT(zio != NULL);
1062 	ASSERT(size != 0);
1063 
1064 	/*
1065 	 * Nothing to do if the file has been removed
1066 	 */
1067 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1068 		return (SET_ERROR(ENOENT));
1069 	if (zp->z_unlinked) {
1070 		/*
1071 		 * Release the vnode asynchronously as we currently have the
1072 		 * txg stopped from syncing.
1073 		 */
1074 		VN_RELE_ASYNC(ZTOV(zp),
1075 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1076 		return (SET_ERROR(ENOENT));
1077 	}
1078 
1079 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1080 	zgd->zgd_zilog = zfsvfs->z_log;
1081 	zgd->zgd_private = zp;
1082 
1083 	/*
1084 	 * Write records come in two flavors: immediate and indirect.
1085 	 * For small writes it's cheaper to store the data with the
1086 	 * log record (immediate); for large writes it's cheaper to
1087 	 * sync the data and get a pointer to it (indirect) so that
1088 	 * we don't have to write the data twice.
1089 	 */
1090 	if (buf != NULL) { /* immediate write */
1091 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1092 		/* test for truncation needs to be done while range locked */
1093 		if (offset >= zp->z_size) {
1094 			error = SET_ERROR(ENOENT);
1095 		} else {
1096 			error = dmu_read(os, object, offset, size, buf,
1097 			    DMU_READ_NO_PREFETCH);
1098 		}
1099 		ASSERT(error == 0 || error == ENOENT);
1100 	} else { /* indirect write */
1101 		/*
1102 		 * Have to lock the whole block to ensure when it's
1103 		 * written out and it's checksum is being calculated
1104 		 * that no one can change the data. We need to re-check
1105 		 * blocksize after we get the lock in case it's changed!
1106 		 */
1107 		for (;;) {
1108 			uint64_t blkoff;
1109 			size = zp->z_blksz;
1110 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1111 			offset -= blkoff;
1112 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1113 			    RL_READER);
1114 			if (zp->z_blksz == size)
1115 				break;
1116 			offset += blkoff;
1117 			zfs_range_unlock(zgd->zgd_rl);
1118 		}
1119 		/* test for truncation needs to be done while range locked */
1120 		if (lr->lr_offset >= zp->z_size)
1121 			error = SET_ERROR(ENOENT);
1122 #ifdef DEBUG
1123 		if (zil_fault_io) {
1124 			error = SET_ERROR(EIO);
1125 			zil_fault_io = 0;
1126 		}
1127 #endif
1128 		if (error == 0)
1129 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1130 			    DMU_READ_NO_PREFETCH);
1131 
1132 		if (error == 0) {
1133 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1134 			if (obp) {
1135 				ASSERT(BP_IS_HOLE(bp));
1136 				*bp = *obp;
1137 			}
1138 
1139 			zgd->zgd_db = db;
1140 			zgd->zgd_bp = bp;
1141 
1142 			ASSERT(db->db_offset == offset);
1143 			ASSERT(db->db_size == size);
1144 
1145 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1146 			    zfs_get_done, zgd);
1147 			ASSERT(error || lr->lr_length <= size);
1148 
1149 			/*
1150 			 * On success, we need to wait for the write I/O
1151 			 * initiated by dmu_sync() to complete before we can
1152 			 * release this dbuf.  We will finish everything up
1153 			 * in the zfs_get_done() callback.
1154 			 */
1155 			if (error == 0)
1156 				return (0);
1157 
1158 			if (error == EALREADY) {
1159 				lr->lr_common.lrc_txtype = TX_WRITE2;
1160 				error = 0;
1161 			}
1162 		}
1163 	}
1164 
1165 	zfs_get_done(zgd, error);
1166 
1167 	return (error);
1168 }
1169 
1170 /*ARGSUSED*/
1171 static int
1172 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1173     caller_context_t *ct)
1174 {
1175 	znode_t *zp = VTOZ(vp);
1176 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1177 	int error;
1178 
1179 	ZFS_ENTER(zfsvfs);
1180 	ZFS_VERIFY_ZP(zp);
1181 
1182 	if (flag & V_ACE_MASK)
1183 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1184 	else
1185 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1186 
1187 	ZFS_EXIT(zfsvfs);
1188 	return (error);
1189 }
1190 
1191 /*
1192  * If vnode is for a device return a specfs vnode instead.
1193  */
1194 static int
1195 specvp_check(vnode_t **vpp, cred_t *cr)
1196 {
1197 	int error = 0;
1198 
1199 	if (IS_DEVVP(*vpp)) {
1200 		struct vnode *svp;
1201 
1202 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1203 		VN_RELE(*vpp);
1204 		if (svp == NULL)
1205 			error = SET_ERROR(ENOSYS);
1206 		*vpp = svp;
1207 	}
1208 	return (error);
1209 }
1210 
1211 
1212 /*
1213  * Lookup an entry in a directory, or an extended attribute directory.
1214  * If it exists, return a held vnode reference for it.
1215  *
1216  *	IN:	dvp	- vnode of directory to search.
1217  *		nm	- name of entry to lookup.
1218  *		pnp	- full pathname to lookup [UNUSED].
1219  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1220  *		rdir	- root directory vnode [UNUSED].
1221  *		cr	- credentials of caller.
1222  *		ct	- caller context
1223  *		direntflags - directory lookup flags
1224  *		realpnp - returned pathname.
1225  *
1226  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1227  *
1228  *	RETURN:	0 on success, error code on failure.
1229  *
1230  * Timestamps:
1231  *	NA
1232  */
1233 /* ARGSUSED */
1234 static int
1235 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1236     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1237     int *direntflags, pathname_t *realpnp)
1238 {
1239 	znode_t *zdp = VTOZ(dvp);
1240 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1241 	int	error = 0;
1242 
1243 	/*
1244 	 * Fast path lookup, however we must skip DNLC lookup
1245 	 * for case folding or normalizing lookups because the
1246 	 * DNLC code only stores the passed in name.  This means
1247 	 * creating 'a' and removing 'A' on a case insensitive
1248 	 * file system would work, but DNLC still thinks 'a'
1249 	 * exists and won't let you create it again on the next
1250 	 * pass through fast path.
1251 	 */
1252 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1253 
1254 		if (dvp->v_type != VDIR) {
1255 			return (SET_ERROR(ENOTDIR));
1256 		} else if (zdp->z_sa_hdl == NULL) {
1257 			return (SET_ERROR(EIO));
1258 		}
1259 
1260 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1261 			error = zfs_fastaccesschk_execute(zdp, cr);
1262 			if (!error) {
1263 				*vpp = dvp;
1264 				VN_HOLD(*vpp);
1265 				return (0);
1266 			}
1267 			return (error);
1268 		} else if (!zdp->z_zfsvfs->z_norm &&
1269 		    (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1270 
1271 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1272 
1273 			if (tvp) {
1274 				error = zfs_fastaccesschk_execute(zdp, cr);
1275 				if (error) {
1276 					VN_RELE(tvp);
1277 					return (error);
1278 				}
1279 				if (tvp == DNLC_NO_VNODE) {
1280 					VN_RELE(tvp);
1281 					return (SET_ERROR(ENOENT));
1282 				} else {
1283 					*vpp = tvp;
1284 					return (specvp_check(vpp, cr));
1285 				}
1286 			}
1287 		}
1288 	}
1289 
1290 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1291 
1292 	ZFS_ENTER(zfsvfs);
1293 	ZFS_VERIFY_ZP(zdp);
1294 
1295 	*vpp = NULL;
1296 
1297 	if (flags & LOOKUP_XATTR) {
1298 		/*
1299 		 * If the xattr property is off, refuse the lookup request.
1300 		 */
1301 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1302 			ZFS_EXIT(zfsvfs);
1303 			return (SET_ERROR(EINVAL));
1304 		}
1305 
1306 		/*
1307 		 * We don't allow recursive attributes..
1308 		 * Maybe someday we will.
1309 		 */
1310 		if (zdp->z_pflags & ZFS_XATTR) {
1311 			ZFS_EXIT(zfsvfs);
1312 			return (SET_ERROR(EINVAL));
1313 		}
1314 
1315 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1316 			ZFS_EXIT(zfsvfs);
1317 			return (error);
1318 		}
1319 
1320 		/*
1321 		 * Do we have permission to get into attribute directory?
1322 		 */
1323 
1324 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1325 		    B_FALSE, cr)) {
1326 			VN_RELE(*vpp);
1327 			*vpp = NULL;
1328 		}
1329 
1330 		ZFS_EXIT(zfsvfs);
1331 		return (error);
1332 	}
1333 
1334 	if (dvp->v_type != VDIR) {
1335 		ZFS_EXIT(zfsvfs);
1336 		return (SET_ERROR(ENOTDIR));
1337 	}
1338 
1339 	/*
1340 	 * Check accessibility of directory.
1341 	 */
1342 
1343 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1344 		ZFS_EXIT(zfsvfs);
1345 		return (error);
1346 	}
1347 
1348 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1349 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1350 		ZFS_EXIT(zfsvfs);
1351 		return (SET_ERROR(EILSEQ));
1352 	}
1353 
1354 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1355 	if (error == 0)
1356 		error = specvp_check(vpp, cr);
1357 
1358 	ZFS_EXIT(zfsvfs);
1359 	return (error);
1360 }
1361 
1362 /*
1363  * Attempt to create a new entry in a directory.  If the entry
1364  * already exists, truncate the file if permissible, else return
1365  * an error.  Return the vp of the created or trunc'd file.
1366  *
1367  *	IN:	dvp	- vnode of directory to put new file entry in.
1368  *		name	- name of new file entry.
1369  *		vap	- attributes of new file.
1370  *		excl	- flag indicating exclusive or non-exclusive mode.
1371  *		mode	- mode to open file with.
1372  *		cr	- credentials of caller.
1373  *		flag	- large file flag [UNUSED].
1374  *		ct	- caller context
1375  *		vsecp	- ACL to be set
1376  *
1377  *	OUT:	vpp	- vnode of created or trunc'd entry.
1378  *
1379  *	RETURN:	0 on success, error code on failure.
1380  *
1381  * Timestamps:
1382  *	dvp - ctime|mtime updated if new entry created
1383  *	 vp - ctime|mtime always, atime if new
1384  */
1385 
1386 /* ARGSUSED */
1387 static int
1388 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1389     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1390     vsecattr_t *vsecp)
1391 {
1392 	znode_t		*zp, *dzp = VTOZ(dvp);
1393 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1394 	zilog_t		*zilog;
1395 	objset_t	*os;
1396 	zfs_dirlock_t	*dl;
1397 	dmu_tx_t	*tx;
1398 	int		error;
1399 	ksid_t		*ksid;
1400 	uid_t		uid;
1401 	gid_t		gid = crgetgid(cr);
1402 	zfs_acl_ids_t   acl_ids;
1403 	boolean_t	fuid_dirtied;
1404 	boolean_t	have_acl = B_FALSE;
1405 	boolean_t	waited = B_FALSE;
1406 
1407 	/*
1408 	 * If we have an ephemeral id, ACL, or XVATTR then
1409 	 * make sure file system is at proper version
1410 	 */
1411 
1412 	ksid = crgetsid(cr, KSID_OWNER);
1413 	if (ksid)
1414 		uid = ksid_getid(ksid);
1415 	else
1416 		uid = crgetuid(cr);
1417 
1418 	if (zfsvfs->z_use_fuids == B_FALSE &&
1419 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1420 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1421 		return (SET_ERROR(EINVAL));
1422 
1423 	ZFS_ENTER(zfsvfs);
1424 	ZFS_VERIFY_ZP(dzp);
1425 	os = zfsvfs->z_os;
1426 	zilog = zfsvfs->z_log;
1427 
1428 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1429 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1430 		ZFS_EXIT(zfsvfs);
1431 		return (SET_ERROR(EILSEQ));
1432 	}
1433 
1434 	if (vap->va_mask & AT_XVATTR) {
1435 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1436 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1437 			ZFS_EXIT(zfsvfs);
1438 			return (error);
1439 		}
1440 	}
1441 top:
1442 	*vpp = NULL;
1443 
1444 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1445 		vap->va_mode &= ~VSVTX;
1446 
1447 	if (*name == '\0') {
1448 		/*
1449 		 * Null component name refers to the directory itself.
1450 		 */
1451 		VN_HOLD(dvp);
1452 		zp = dzp;
1453 		dl = NULL;
1454 		error = 0;
1455 	} else {
1456 		/* possible VN_HOLD(zp) */
1457 		int zflg = 0;
1458 
1459 		if (flag & FIGNORECASE)
1460 			zflg |= ZCILOOK;
1461 
1462 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1463 		    NULL, NULL);
1464 		if (error) {
1465 			if (have_acl)
1466 				zfs_acl_ids_free(&acl_ids);
1467 			if (strcmp(name, "..") == 0)
1468 				error = SET_ERROR(EISDIR);
1469 			ZFS_EXIT(zfsvfs);
1470 			return (error);
1471 		}
1472 	}
1473 
1474 	if (zp == NULL) {
1475 		uint64_t txtype;
1476 
1477 		/*
1478 		 * Create a new file object and update the directory
1479 		 * to reference it.
1480 		 */
1481 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1482 			if (have_acl)
1483 				zfs_acl_ids_free(&acl_ids);
1484 			goto out;
1485 		}
1486 
1487 		/*
1488 		 * We only support the creation of regular files in
1489 		 * extended attribute directories.
1490 		 */
1491 
1492 		if ((dzp->z_pflags & ZFS_XATTR) &&
1493 		    (vap->va_type != VREG)) {
1494 			if (have_acl)
1495 				zfs_acl_ids_free(&acl_ids);
1496 			error = SET_ERROR(EINVAL);
1497 			goto out;
1498 		}
1499 
1500 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1501 		    cr, vsecp, &acl_ids)) != 0)
1502 			goto out;
1503 		have_acl = B_TRUE;
1504 
1505 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1506 			zfs_acl_ids_free(&acl_ids);
1507 			error = SET_ERROR(EDQUOT);
1508 			goto out;
1509 		}
1510 
1511 		tx = dmu_tx_create(os);
1512 
1513 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1514 		    ZFS_SA_BASE_ATTR_SIZE);
1515 
1516 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1517 		if (fuid_dirtied)
1518 			zfs_fuid_txhold(zfsvfs, tx);
1519 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1520 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1521 		if (!zfsvfs->z_use_sa &&
1522 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1523 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1524 			    0, acl_ids.z_aclp->z_acl_bytes);
1525 		}
1526 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1527 		if (error) {
1528 			zfs_dirent_unlock(dl);
1529 			if (error == ERESTART) {
1530 				waited = B_TRUE;
1531 				dmu_tx_wait(tx);
1532 				dmu_tx_abort(tx);
1533 				goto top;
1534 			}
1535 			zfs_acl_ids_free(&acl_ids);
1536 			dmu_tx_abort(tx);
1537 			ZFS_EXIT(zfsvfs);
1538 			return (error);
1539 		}
1540 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1541 
1542 		if (fuid_dirtied)
1543 			zfs_fuid_sync(zfsvfs, tx);
1544 
1545 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1546 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1547 		if (flag & FIGNORECASE)
1548 			txtype |= TX_CI;
1549 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1550 		    vsecp, acl_ids.z_fuidp, vap);
1551 		zfs_acl_ids_free(&acl_ids);
1552 		dmu_tx_commit(tx);
1553 	} else {
1554 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1555 
1556 		if (have_acl)
1557 			zfs_acl_ids_free(&acl_ids);
1558 		have_acl = B_FALSE;
1559 
1560 		/*
1561 		 * A directory entry already exists for this name.
1562 		 */
1563 		/*
1564 		 * Can't truncate an existing file if in exclusive mode.
1565 		 */
1566 		if (excl == EXCL) {
1567 			error = SET_ERROR(EEXIST);
1568 			goto out;
1569 		}
1570 		/*
1571 		 * Can't open a directory for writing.
1572 		 */
1573 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1574 			error = SET_ERROR(EISDIR);
1575 			goto out;
1576 		}
1577 		/*
1578 		 * Verify requested access to file.
1579 		 */
1580 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1581 			goto out;
1582 		}
1583 
1584 		mutex_enter(&dzp->z_lock);
1585 		dzp->z_seq++;
1586 		mutex_exit(&dzp->z_lock);
1587 
1588 		/*
1589 		 * Truncate regular files if requested.
1590 		 */
1591 		if ((ZTOV(zp)->v_type == VREG) &&
1592 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1593 			/* we can't hold any locks when calling zfs_freesp() */
1594 			zfs_dirent_unlock(dl);
1595 			dl = NULL;
1596 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1597 			if (error == 0) {
1598 				vnevent_create(ZTOV(zp), ct);
1599 			}
1600 		}
1601 	}
1602 out:
1603 
1604 	if (dl)
1605 		zfs_dirent_unlock(dl);
1606 
1607 	if (error) {
1608 		if (zp)
1609 			VN_RELE(ZTOV(zp));
1610 	} else {
1611 		*vpp = ZTOV(zp);
1612 		error = specvp_check(vpp, cr);
1613 	}
1614 
1615 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1616 		zil_commit(zilog, 0);
1617 
1618 	ZFS_EXIT(zfsvfs);
1619 	return (error);
1620 }
1621 
1622 /*
1623  * Remove an entry from a directory.
1624  *
1625  *	IN:	dvp	- vnode of directory to remove entry from.
1626  *		name	- name of entry to remove.
1627  *		cr	- credentials of caller.
1628  *		ct	- caller context
1629  *		flags	- case flags
1630  *
1631  *	RETURN:	0 on success, error code on failure.
1632  *
1633  * Timestamps:
1634  *	dvp - ctime|mtime
1635  *	 vp - ctime (if nlink > 0)
1636  */
1637 
1638 uint64_t null_xattr = 0;
1639 
1640 /*ARGSUSED*/
1641 static int
1642 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1643     int flags)
1644 {
1645 	znode_t		*zp, *dzp = VTOZ(dvp);
1646 	znode_t		*xzp;
1647 	vnode_t		*vp;
1648 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1649 	zilog_t		*zilog;
1650 	uint64_t	acl_obj, xattr_obj;
1651 	uint64_t	xattr_obj_unlinked = 0;
1652 	uint64_t	obj = 0;
1653 	zfs_dirlock_t	*dl;
1654 	dmu_tx_t	*tx;
1655 	boolean_t	may_delete_now, delete_now = FALSE;
1656 	boolean_t	unlinked, toobig = FALSE;
1657 	uint64_t	txtype;
1658 	pathname_t	*realnmp = NULL;
1659 	pathname_t	realnm;
1660 	int		error;
1661 	int		zflg = ZEXISTS;
1662 	boolean_t	waited = B_FALSE;
1663 
1664 	ZFS_ENTER(zfsvfs);
1665 	ZFS_VERIFY_ZP(dzp);
1666 	zilog = zfsvfs->z_log;
1667 
1668 	if (flags & FIGNORECASE) {
1669 		zflg |= ZCILOOK;
1670 		pn_alloc(&realnm);
1671 		realnmp = &realnm;
1672 	}
1673 
1674 top:
1675 	xattr_obj = 0;
1676 	xzp = NULL;
1677 	/*
1678 	 * Attempt to lock directory; fail if entry doesn't exist.
1679 	 */
1680 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1681 	    NULL, realnmp)) {
1682 		if (realnmp)
1683 			pn_free(realnmp);
1684 		ZFS_EXIT(zfsvfs);
1685 		return (error);
1686 	}
1687 
1688 	vp = ZTOV(zp);
1689 
1690 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1691 		goto out;
1692 	}
1693 
1694 	/*
1695 	 * Need to use rmdir for removing directories.
1696 	 */
1697 	if (vp->v_type == VDIR) {
1698 		error = SET_ERROR(EPERM);
1699 		goto out;
1700 	}
1701 
1702 	vnevent_remove(vp, dvp, name, ct);
1703 
1704 	if (realnmp)
1705 		dnlc_remove(dvp, realnmp->pn_buf);
1706 	else
1707 		dnlc_remove(dvp, name);
1708 
1709 	mutex_enter(&vp->v_lock);
1710 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1711 	mutex_exit(&vp->v_lock);
1712 
1713 	/*
1714 	 * We may delete the znode now, or we may put it in the unlinked set;
1715 	 * it depends on whether we're the last link, and on whether there are
1716 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1717 	 * allow for either case.
1718 	 */
1719 	obj = zp->z_id;
1720 	tx = dmu_tx_create(zfsvfs->z_os);
1721 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1722 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1723 	zfs_sa_upgrade_txholds(tx, zp);
1724 	zfs_sa_upgrade_txholds(tx, dzp);
1725 	if (may_delete_now) {
1726 		toobig =
1727 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1728 		/* if the file is too big, only hold_free a token amount */
1729 		dmu_tx_hold_free(tx, zp->z_id, 0,
1730 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1731 	}
1732 
1733 	/* are there any extended attributes? */
1734 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1735 	    &xattr_obj, sizeof (xattr_obj));
1736 	if (error == 0 && xattr_obj) {
1737 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1738 		ASSERT0(error);
1739 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1740 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1741 	}
1742 
1743 	mutex_enter(&zp->z_lock);
1744 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1745 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1746 	mutex_exit(&zp->z_lock);
1747 
1748 	/* charge as an update -- would be nice not to charge at all */
1749 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1750 
1751 	/*
1752 	 * Mark this transaction as typically resulting in a net free of space
1753 	 */
1754 	dmu_tx_mark_netfree(tx);
1755 
1756 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1757 	if (error) {
1758 		zfs_dirent_unlock(dl);
1759 		VN_RELE(vp);
1760 		if (xzp)
1761 			VN_RELE(ZTOV(xzp));
1762 		if (error == ERESTART) {
1763 			waited = B_TRUE;
1764 			dmu_tx_wait(tx);
1765 			dmu_tx_abort(tx);
1766 			goto top;
1767 		}
1768 		if (realnmp)
1769 			pn_free(realnmp);
1770 		dmu_tx_abort(tx);
1771 		ZFS_EXIT(zfsvfs);
1772 		return (error);
1773 	}
1774 
1775 	/*
1776 	 * Remove the directory entry.
1777 	 */
1778 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1779 
1780 	if (error) {
1781 		dmu_tx_commit(tx);
1782 		goto out;
1783 	}
1784 
1785 	if (unlinked) {
1786 		/*
1787 		 * Hold z_lock so that we can make sure that the ACL obj
1788 		 * hasn't changed.  Could have been deleted due to
1789 		 * zfs_sa_upgrade().
1790 		 */
1791 		mutex_enter(&zp->z_lock);
1792 		mutex_enter(&vp->v_lock);
1793 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1794 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1795 		delete_now = may_delete_now && !toobig &&
1796 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1797 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1798 		    acl_obj;
1799 		mutex_exit(&vp->v_lock);
1800 	}
1801 
1802 	if (delete_now) {
1803 		if (xattr_obj_unlinked) {
1804 			ASSERT3U(xzp->z_links, ==, 2);
1805 			mutex_enter(&xzp->z_lock);
1806 			xzp->z_unlinked = 1;
1807 			xzp->z_links = 0;
1808 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1809 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1810 			ASSERT3U(error,  ==,  0);
1811 			mutex_exit(&xzp->z_lock);
1812 			zfs_unlinked_add(xzp, tx);
1813 
1814 			if (zp->z_is_sa)
1815 				error = sa_remove(zp->z_sa_hdl,
1816 				    SA_ZPL_XATTR(zfsvfs), tx);
1817 			else
1818 				error = sa_update(zp->z_sa_hdl,
1819 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1820 				    sizeof (uint64_t), tx);
1821 			ASSERT0(error);
1822 		}
1823 		mutex_enter(&vp->v_lock);
1824 		VN_RELE_LOCKED(vp);
1825 		ASSERT0(vp->v_count);
1826 		mutex_exit(&vp->v_lock);
1827 		mutex_exit(&zp->z_lock);
1828 		zfs_znode_delete(zp, tx);
1829 	} else if (unlinked) {
1830 		mutex_exit(&zp->z_lock);
1831 		zfs_unlinked_add(zp, tx);
1832 	}
1833 
1834 	txtype = TX_REMOVE;
1835 	if (flags & FIGNORECASE)
1836 		txtype |= TX_CI;
1837 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1838 
1839 	dmu_tx_commit(tx);
1840 out:
1841 	if (realnmp)
1842 		pn_free(realnmp);
1843 
1844 	zfs_dirent_unlock(dl);
1845 
1846 	if (!delete_now)
1847 		VN_RELE(vp);
1848 	if (xzp)
1849 		VN_RELE(ZTOV(xzp));
1850 
1851 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1852 		zil_commit(zilog, 0);
1853 
1854 	ZFS_EXIT(zfsvfs);
1855 	return (error);
1856 }
1857 
1858 /*
1859  * Create a new directory and insert it into dvp using the name
1860  * provided.  Return a pointer to the inserted directory.
1861  *
1862  *	IN:	dvp	- vnode of directory to add subdir to.
1863  *		dirname	- name of new directory.
1864  *		vap	- attributes of new directory.
1865  *		cr	- credentials of caller.
1866  *		ct	- caller context
1867  *		flags	- case flags
1868  *		vsecp	- ACL to be set
1869  *
1870  *	OUT:	vpp	- vnode of created directory.
1871  *
1872  *	RETURN:	0 on success, error code on failure.
1873  *
1874  * Timestamps:
1875  *	dvp - ctime|mtime updated
1876  *	 vp - ctime|mtime|atime updated
1877  */
1878 /*ARGSUSED*/
1879 static int
1880 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1881     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1882 {
1883 	znode_t		*zp, *dzp = VTOZ(dvp);
1884 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1885 	zilog_t		*zilog;
1886 	zfs_dirlock_t	*dl;
1887 	uint64_t	txtype;
1888 	dmu_tx_t	*tx;
1889 	int		error;
1890 	int		zf = ZNEW;
1891 	ksid_t		*ksid;
1892 	uid_t		uid;
1893 	gid_t		gid = crgetgid(cr);
1894 	zfs_acl_ids_t   acl_ids;
1895 	boolean_t	fuid_dirtied;
1896 	boolean_t	waited = B_FALSE;
1897 
1898 	ASSERT(vap->va_type == VDIR);
1899 
1900 	/*
1901 	 * If we have an ephemeral id, ACL, or XVATTR then
1902 	 * make sure file system is at proper version
1903 	 */
1904 
1905 	ksid = crgetsid(cr, KSID_OWNER);
1906 	if (ksid)
1907 		uid = ksid_getid(ksid);
1908 	else
1909 		uid = crgetuid(cr);
1910 	if (zfsvfs->z_use_fuids == B_FALSE &&
1911 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1912 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1913 		return (SET_ERROR(EINVAL));
1914 
1915 	ZFS_ENTER(zfsvfs);
1916 	ZFS_VERIFY_ZP(dzp);
1917 	zilog = zfsvfs->z_log;
1918 
1919 	if (dzp->z_pflags & ZFS_XATTR) {
1920 		ZFS_EXIT(zfsvfs);
1921 		return (SET_ERROR(EINVAL));
1922 	}
1923 
1924 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1925 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1926 		ZFS_EXIT(zfsvfs);
1927 		return (SET_ERROR(EILSEQ));
1928 	}
1929 	if (flags & FIGNORECASE)
1930 		zf |= ZCILOOK;
1931 
1932 	if (vap->va_mask & AT_XVATTR) {
1933 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1934 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1935 			ZFS_EXIT(zfsvfs);
1936 			return (error);
1937 		}
1938 	}
1939 
1940 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1941 	    vsecp, &acl_ids)) != 0) {
1942 		ZFS_EXIT(zfsvfs);
1943 		return (error);
1944 	}
1945 	/*
1946 	 * First make sure the new directory doesn't exist.
1947 	 *
1948 	 * Existence is checked first to make sure we don't return
1949 	 * EACCES instead of EEXIST which can cause some applications
1950 	 * to fail.
1951 	 */
1952 top:
1953 	*vpp = NULL;
1954 
1955 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1956 	    NULL, NULL)) {
1957 		zfs_acl_ids_free(&acl_ids);
1958 		ZFS_EXIT(zfsvfs);
1959 		return (error);
1960 	}
1961 
1962 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1963 		zfs_acl_ids_free(&acl_ids);
1964 		zfs_dirent_unlock(dl);
1965 		ZFS_EXIT(zfsvfs);
1966 		return (error);
1967 	}
1968 
1969 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1970 		zfs_acl_ids_free(&acl_ids);
1971 		zfs_dirent_unlock(dl);
1972 		ZFS_EXIT(zfsvfs);
1973 		return (SET_ERROR(EDQUOT));
1974 	}
1975 
1976 	/*
1977 	 * Add a new entry to the directory.
1978 	 */
1979 	tx = dmu_tx_create(zfsvfs->z_os);
1980 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1981 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1982 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1983 	if (fuid_dirtied)
1984 		zfs_fuid_txhold(zfsvfs, tx);
1985 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1986 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1987 		    acl_ids.z_aclp->z_acl_bytes);
1988 	}
1989 
1990 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1991 	    ZFS_SA_BASE_ATTR_SIZE);
1992 
1993 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1994 	if (error) {
1995 		zfs_dirent_unlock(dl);
1996 		if (error == ERESTART) {
1997 			waited = B_TRUE;
1998 			dmu_tx_wait(tx);
1999 			dmu_tx_abort(tx);
2000 			goto top;
2001 		}
2002 		zfs_acl_ids_free(&acl_ids);
2003 		dmu_tx_abort(tx);
2004 		ZFS_EXIT(zfsvfs);
2005 		return (error);
2006 	}
2007 
2008 	/*
2009 	 * Create new node.
2010 	 */
2011 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2012 
2013 	if (fuid_dirtied)
2014 		zfs_fuid_sync(zfsvfs, tx);
2015 
2016 	/*
2017 	 * Now put new name in parent dir.
2018 	 */
2019 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2020 
2021 	*vpp = ZTOV(zp);
2022 
2023 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2024 	if (flags & FIGNORECASE)
2025 		txtype |= TX_CI;
2026 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2027 	    acl_ids.z_fuidp, vap);
2028 
2029 	zfs_acl_ids_free(&acl_ids);
2030 
2031 	dmu_tx_commit(tx);
2032 
2033 	zfs_dirent_unlock(dl);
2034 
2035 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2036 		zil_commit(zilog, 0);
2037 
2038 	ZFS_EXIT(zfsvfs);
2039 	return (0);
2040 }
2041 
2042 /*
2043  * Remove a directory subdir entry.  If the current working
2044  * directory is the same as the subdir to be removed, the
2045  * remove will fail.
2046  *
2047  *	IN:	dvp	- vnode of directory to remove from.
2048  *		name	- name of directory to be removed.
2049  *		cwd	- vnode of current working directory.
2050  *		cr	- credentials of caller.
2051  *		ct	- caller context
2052  *		flags	- case flags
2053  *
2054  *	RETURN:	0 on success, error code on failure.
2055  *
2056  * Timestamps:
2057  *	dvp - ctime|mtime updated
2058  */
2059 /*ARGSUSED*/
2060 static int
2061 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2062     caller_context_t *ct, int flags)
2063 {
2064 	znode_t		*dzp = VTOZ(dvp);
2065 	znode_t		*zp;
2066 	vnode_t		*vp;
2067 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2068 	zilog_t		*zilog;
2069 	zfs_dirlock_t	*dl;
2070 	dmu_tx_t	*tx;
2071 	int		error;
2072 	int		zflg = ZEXISTS;
2073 	boolean_t	waited = B_FALSE;
2074 
2075 	ZFS_ENTER(zfsvfs);
2076 	ZFS_VERIFY_ZP(dzp);
2077 	zilog = zfsvfs->z_log;
2078 
2079 	if (flags & FIGNORECASE)
2080 		zflg |= ZCILOOK;
2081 top:
2082 	zp = NULL;
2083 
2084 	/*
2085 	 * Attempt to lock directory; fail if entry doesn't exist.
2086 	 */
2087 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2088 	    NULL, NULL)) {
2089 		ZFS_EXIT(zfsvfs);
2090 		return (error);
2091 	}
2092 
2093 	vp = ZTOV(zp);
2094 
2095 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2096 		goto out;
2097 	}
2098 
2099 	if (vp->v_type != VDIR) {
2100 		error = SET_ERROR(ENOTDIR);
2101 		goto out;
2102 	}
2103 
2104 	if (vp == cwd) {
2105 		error = SET_ERROR(EINVAL);
2106 		goto out;
2107 	}
2108 
2109 	vnevent_rmdir(vp, dvp, name, ct);
2110 
2111 	/*
2112 	 * Grab a lock on the directory to make sure that noone is
2113 	 * trying to add (or lookup) entries while we are removing it.
2114 	 */
2115 	rw_enter(&zp->z_name_lock, RW_WRITER);
2116 
2117 	/*
2118 	 * Grab a lock on the parent pointer to make sure we play well
2119 	 * with the treewalk and directory rename code.
2120 	 */
2121 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2122 
2123 	tx = dmu_tx_create(zfsvfs->z_os);
2124 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2125 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2126 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2127 	zfs_sa_upgrade_txholds(tx, zp);
2128 	zfs_sa_upgrade_txholds(tx, dzp);
2129 	dmu_tx_mark_netfree(tx);
2130 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2131 	if (error) {
2132 		rw_exit(&zp->z_parent_lock);
2133 		rw_exit(&zp->z_name_lock);
2134 		zfs_dirent_unlock(dl);
2135 		VN_RELE(vp);
2136 		if (error == ERESTART) {
2137 			waited = B_TRUE;
2138 			dmu_tx_wait(tx);
2139 			dmu_tx_abort(tx);
2140 			goto top;
2141 		}
2142 		dmu_tx_abort(tx);
2143 		ZFS_EXIT(zfsvfs);
2144 		return (error);
2145 	}
2146 
2147 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2148 
2149 	if (error == 0) {
2150 		uint64_t txtype = TX_RMDIR;
2151 		if (flags & FIGNORECASE)
2152 			txtype |= TX_CI;
2153 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2154 	}
2155 
2156 	dmu_tx_commit(tx);
2157 
2158 	rw_exit(&zp->z_parent_lock);
2159 	rw_exit(&zp->z_name_lock);
2160 out:
2161 	zfs_dirent_unlock(dl);
2162 
2163 	VN_RELE(vp);
2164 
2165 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2166 		zil_commit(zilog, 0);
2167 
2168 	ZFS_EXIT(zfsvfs);
2169 	return (error);
2170 }
2171 
2172 /*
2173  * Read as many directory entries as will fit into the provided
2174  * buffer from the given directory cursor position (specified in
2175  * the uio structure).
2176  *
2177  *	IN:	vp	- vnode of directory to read.
2178  *		uio	- structure supplying read location, range info,
2179  *			  and return buffer.
2180  *		cr	- credentials of caller.
2181  *		ct	- caller context
2182  *		flags	- case flags
2183  *
2184  *	OUT:	uio	- updated offset and range, buffer filled.
2185  *		eofp	- set to true if end-of-file detected.
2186  *
2187  *	RETURN:	0 on success, error code on failure.
2188  *
2189  * Timestamps:
2190  *	vp - atime updated
2191  *
2192  * Note that the low 4 bits of the cookie returned by zap is always zero.
2193  * This allows us to use the low range for "special" directory entries:
2194  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2195  * we use the offset 2 for the '.zfs' directory.
2196  */
2197 /* ARGSUSED */
2198 static int
2199 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2200     caller_context_t *ct, int flags)
2201 {
2202 	znode_t		*zp = VTOZ(vp);
2203 	iovec_t		*iovp;
2204 	edirent_t	*eodp;
2205 	dirent64_t	*odp;
2206 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2207 	objset_t	*os;
2208 	caddr_t		outbuf;
2209 	size_t		bufsize;
2210 	zap_cursor_t	zc;
2211 	zap_attribute_t	zap;
2212 	uint_t		bytes_wanted;
2213 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2214 	uint64_t	parent;
2215 	int		local_eof;
2216 	int		outcount;
2217 	int		error;
2218 	uint8_t		prefetch;
2219 	boolean_t	check_sysattrs;
2220 
2221 	ZFS_ENTER(zfsvfs);
2222 	ZFS_VERIFY_ZP(zp);
2223 
2224 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2225 	    &parent, sizeof (parent))) != 0) {
2226 		ZFS_EXIT(zfsvfs);
2227 		return (error);
2228 	}
2229 
2230 	/*
2231 	 * If we are not given an eof variable,
2232 	 * use a local one.
2233 	 */
2234 	if (eofp == NULL)
2235 		eofp = &local_eof;
2236 
2237 	/*
2238 	 * Check for valid iov_len.
2239 	 */
2240 	if (uio->uio_iov->iov_len <= 0) {
2241 		ZFS_EXIT(zfsvfs);
2242 		return (SET_ERROR(EINVAL));
2243 	}
2244 
2245 	/*
2246 	 * Quit if directory has been removed (posix)
2247 	 */
2248 	if ((*eofp = zp->z_unlinked) != 0) {
2249 		ZFS_EXIT(zfsvfs);
2250 		return (0);
2251 	}
2252 
2253 	error = 0;
2254 	os = zfsvfs->z_os;
2255 	offset = uio->uio_loffset;
2256 	prefetch = zp->z_zn_prefetch;
2257 
2258 	/*
2259 	 * Initialize the iterator cursor.
2260 	 */
2261 	if (offset <= 3) {
2262 		/*
2263 		 * Start iteration from the beginning of the directory.
2264 		 */
2265 		zap_cursor_init(&zc, os, zp->z_id);
2266 	} else {
2267 		/*
2268 		 * The offset is a serialized cursor.
2269 		 */
2270 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2271 	}
2272 
2273 	/*
2274 	 * Get space to change directory entries into fs independent format.
2275 	 */
2276 	iovp = uio->uio_iov;
2277 	bytes_wanted = iovp->iov_len;
2278 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2279 		bufsize = bytes_wanted;
2280 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2281 		odp = (struct dirent64 *)outbuf;
2282 	} else {
2283 		bufsize = bytes_wanted;
2284 		outbuf = NULL;
2285 		odp = (struct dirent64 *)iovp->iov_base;
2286 	}
2287 	eodp = (struct edirent *)odp;
2288 
2289 	/*
2290 	 * If this VFS supports the system attribute view interface; and
2291 	 * we're looking at an extended attribute directory; and we care
2292 	 * about normalization conflicts on this vfs; then we must check
2293 	 * for normalization conflicts with the sysattr name space.
2294 	 */
2295 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2296 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2297 	    (flags & V_RDDIR_ENTFLAGS);
2298 
2299 	/*
2300 	 * Transform to file-system independent format
2301 	 */
2302 	outcount = 0;
2303 	while (outcount < bytes_wanted) {
2304 		ino64_t objnum;
2305 		ushort_t reclen;
2306 		off64_t *next = NULL;
2307 
2308 		/*
2309 		 * Special case `.', `..', and `.zfs'.
2310 		 */
2311 		if (offset == 0) {
2312 			(void) strcpy(zap.za_name, ".");
2313 			zap.za_normalization_conflict = 0;
2314 			objnum = zp->z_id;
2315 		} else if (offset == 1) {
2316 			(void) strcpy(zap.za_name, "..");
2317 			zap.za_normalization_conflict = 0;
2318 			objnum = parent;
2319 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2320 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2321 			zap.za_normalization_conflict = 0;
2322 			objnum = ZFSCTL_INO_ROOT;
2323 		} else {
2324 			/*
2325 			 * Grab next entry.
2326 			 */
2327 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2328 				if ((*eofp = (error == ENOENT)) != 0)
2329 					break;
2330 				else
2331 					goto update;
2332 			}
2333 
2334 			if (zap.za_integer_length != 8 ||
2335 			    zap.za_num_integers != 1) {
2336 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2337 				    "entry, obj = %lld, offset = %lld\n",
2338 				    (u_longlong_t)zp->z_id,
2339 				    (u_longlong_t)offset);
2340 				error = SET_ERROR(ENXIO);
2341 				goto update;
2342 			}
2343 
2344 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2345 			/*
2346 			 * MacOS X can extract the object type here such as:
2347 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2348 			 */
2349 
2350 			if (check_sysattrs && !zap.za_normalization_conflict) {
2351 				zap.za_normalization_conflict =
2352 				    xattr_sysattr_casechk(zap.za_name);
2353 			}
2354 		}
2355 
2356 		if (flags & V_RDDIR_ACCFILTER) {
2357 			/*
2358 			 * If we have no access at all, don't include
2359 			 * this entry in the returned information
2360 			 */
2361 			znode_t	*ezp;
2362 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2363 				goto skip_entry;
2364 			if (!zfs_has_access(ezp, cr)) {
2365 				VN_RELE(ZTOV(ezp));
2366 				goto skip_entry;
2367 			}
2368 			VN_RELE(ZTOV(ezp));
2369 		}
2370 
2371 		if (flags & V_RDDIR_ENTFLAGS)
2372 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2373 		else
2374 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2375 
2376 		/*
2377 		 * Will this entry fit in the buffer?
2378 		 */
2379 		if (outcount + reclen > bufsize) {
2380 			/*
2381 			 * Did we manage to fit anything in the buffer?
2382 			 */
2383 			if (!outcount) {
2384 				error = SET_ERROR(EINVAL);
2385 				goto update;
2386 			}
2387 			break;
2388 		}
2389 		if (flags & V_RDDIR_ENTFLAGS) {
2390 			/*
2391 			 * Add extended flag entry:
2392 			 */
2393 			eodp->ed_ino = objnum;
2394 			eodp->ed_reclen = reclen;
2395 			/* NOTE: ed_off is the offset for the *next* entry */
2396 			next = &(eodp->ed_off);
2397 			eodp->ed_eflags = zap.za_normalization_conflict ?
2398 			    ED_CASE_CONFLICT : 0;
2399 			(void) strncpy(eodp->ed_name, zap.za_name,
2400 			    EDIRENT_NAMELEN(reclen));
2401 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2402 		} else {
2403 			/*
2404 			 * Add normal entry:
2405 			 */
2406 			odp->d_ino = objnum;
2407 			odp->d_reclen = reclen;
2408 			/* NOTE: d_off is the offset for the *next* entry */
2409 			next = &(odp->d_off);
2410 			(void) strncpy(odp->d_name, zap.za_name,
2411 			    DIRENT64_NAMELEN(reclen));
2412 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2413 		}
2414 		outcount += reclen;
2415 
2416 		ASSERT(outcount <= bufsize);
2417 
2418 		/* Prefetch znode */
2419 		if (prefetch)
2420 			dmu_prefetch(os, objnum, 0, 0, 0,
2421 			    ZIO_PRIORITY_SYNC_READ);
2422 
2423 	skip_entry:
2424 		/*
2425 		 * Move to the next entry, fill in the previous offset.
2426 		 */
2427 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2428 			zap_cursor_advance(&zc);
2429 			offset = zap_cursor_serialize(&zc);
2430 		} else {
2431 			offset += 1;
2432 		}
2433 		if (next)
2434 			*next = offset;
2435 	}
2436 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2437 
2438 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2439 		iovp->iov_base += outcount;
2440 		iovp->iov_len -= outcount;
2441 		uio->uio_resid -= outcount;
2442 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2443 		/*
2444 		 * Reset the pointer.
2445 		 */
2446 		offset = uio->uio_loffset;
2447 	}
2448 
2449 update:
2450 	zap_cursor_fini(&zc);
2451 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2452 		kmem_free(outbuf, bufsize);
2453 
2454 	if (error == ENOENT)
2455 		error = 0;
2456 
2457 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2458 
2459 	uio->uio_loffset = offset;
2460 	ZFS_EXIT(zfsvfs);
2461 	return (error);
2462 }
2463 
2464 ulong_t zfs_fsync_sync_cnt = 4;
2465 
2466 static int
2467 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2468 {
2469 	znode_t	*zp = VTOZ(vp);
2470 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2471 
2472 	/*
2473 	 * Regardless of whether this is required for standards conformance,
2474 	 * this is the logical behavior when fsync() is called on a file with
2475 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2476 	 * going to be pushed out as part of the zil_commit().
2477 	 */
2478 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2479 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2480 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2481 
2482 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2483 
2484 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2485 		ZFS_ENTER(zfsvfs);
2486 		ZFS_VERIFY_ZP(zp);
2487 		zil_commit(zfsvfs->z_log, zp->z_id);
2488 		ZFS_EXIT(zfsvfs);
2489 	}
2490 	return (0);
2491 }
2492 
2493 
2494 /*
2495  * Get the requested file attributes and place them in the provided
2496  * vattr structure.
2497  *
2498  *	IN:	vp	- vnode of file.
2499  *		vap	- va_mask identifies requested attributes.
2500  *			  If AT_XVATTR set, then optional attrs are requested
2501  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2502  *		cr	- credentials of caller.
2503  *		ct	- caller context
2504  *
2505  *	OUT:	vap	- attribute values.
2506  *
2507  *	RETURN:	0 (always succeeds).
2508  */
2509 /* ARGSUSED */
2510 static int
2511 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2512     caller_context_t *ct)
2513 {
2514 	znode_t *zp = VTOZ(vp);
2515 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2516 	int	error = 0;
2517 	uint64_t links;
2518 	uint64_t mtime[2], ctime[2];
2519 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2520 	xoptattr_t *xoap = NULL;
2521 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2522 	sa_bulk_attr_t bulk[2];
2523 	int count = 0;
2524 
2525 	ZFS_ENTER(zfsvfs);
2526 	ZFS_VERIFY_ZP(zp);
2527 
2528 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2529 
2530 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2531 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2532 
2533 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2534 		ZFS_EXIT(zfsvfs);
2535 		return (error);
2536 	}
2537 
2538 	/*
2539 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2540 	 * Also, if we are the owner don't bother, since owner should
2541 	 * always be allowed to read basic attributes of file.
2542 	 */
2543 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2544 	    (vap->va_uid != crgetuid(cr))) {
2545 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2546 		    skipaclchk, cr)) {
2547 			ZFS_EXIT(zfsvfs);
2548 			return (error);
2549 		}
2550 	}
2551 
2552 	/*
2553 	 * Return all attributes.  It's cheaper to provide the answer
2554 	 * than to determine whether we were asked the question.
2555 	 */
2556 
2557 	mutex_enter(&zp->z_lock);
2558 	vap->va_type = vp->v_type;
2559 	vap->va_mode = zp->z_mode & MODEMASK;
2560 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2561 	vap->va_nodeid = zp->z_id;
2562 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2563 		links = zp->z_links + 1;
2564 	else
2565 		links = zp->z_links;
2566 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2567 	vap->va_size = zp->z_size;
2568 	vap->va_rdev = vp->v_rdev;
2569 	vap->va_seq = zp->z_seq;
2570 
2571 	/*
2572 	 * Add in any requested optional attributes and the create time.
2573 	 * Also set the corresponding bits in the returned attribute bitmap.
2574 	 */
2575 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2576 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2577 			xoap->xoa_archive =
2578 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2579 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2580 		}
2581 
2582 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2583 			xoap->xoa_readonly =
2584 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2585 			XVA_SET_RTN(xvap, XAT_READONLY);
2586 		}
2587 
2588 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2589 			xoap->xoa_system =
2590 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2591 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2592 		}
2593 
2594 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2595 			xoap->xoa_hidden =
2596 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2597 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2598 		}
2599 
2600 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2601 			xoap->xoa_nounlink =
2602 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2603 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2604 		}
2605 
2606 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2607 			xoap->xoa_immutable =
2608 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2609 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2610 		}
2611 
2612 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2613 			xoap->xoa_appendonly =
2614 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2615 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2616 		}
2617 
2618 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2619 			xoap->xoa_nodump =
2620 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2621 			XVA_SET_RTN(xvap, XAT_NODUMP);
2622 		}
2623 
2624 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2625 			xoap->xoa_opaque =
2626 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2627 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2628 		}
2629 
2630 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2631 			xoap->xoa_av_quarantined =
2632 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2633 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2634 		}
2635 
2636 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2637 			xoap->xoa_av_modified =
2638 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2639 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2640 		}
2641 
2642 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2643 		    vp->v_type == VREG) {
2644 			zfs_sa_get_scanstamp(zp, xvap);
2645 		}
2646 
2647 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2648 			uint64_t times[2];
2649 
2650 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2651 			    times, sizeof (times));
2652 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2653 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2654 		}
2655 
2656 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2657 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2658 			XVA_SET_RTN(xvap, XAT_REPARSE);
2659 		}
2660 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2661 			xoap->xoa_generation = zp->z_gen;
2662 			XVA_SET_RTN(xvap, XAT_GEN);
2663 		}
2664 
2665 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2666 			xoap->xoa_offline =
2667 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2668 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2669 		}
2670 
2671 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2672 			xoap->xoa_sparse =
2673 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2674 			XVA_SET_RTN(xvap, XAT_SPARSE);
2675 		}
2676 	}
2677 
2678 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2679 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2680 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2681 
2682 	mutex_exit(&zp->z_lock);
2683 
2684 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2685 
2686 	if (zp->z_blksz == 0) {
2687 		/*
2688 		 * Block size hasn't been set; suggest maximal I/O transfers.
2689 		 */
2690 		vap->va_blksize = zfsvfs->z_max_blksz;
2691 	}
2692 
2693 	ZFS_EXIT(zfsvfs);
2694 	return (0);
2695 }
2696 
2697 /*
2698  * Set the file attributes to the values contained in the
2699  * vattr structure.
2700  *
2701  *	IN:	vp	- vnode of file to be modified.
2702  *		vap	- new attribute values.
2703  *			  If AT_XVATTR set, then optional attrs are being set
2704  *		flags	- ATTR_UTIME set if non-default time values provided.
2705  *			- ATTR_NOACLCHECK (CIFS context only).
2706  *		cr	- credentials of caller.
2707  *		ct	- caller context
2708  *
2709  *	RETURN:	0 on success, error code on failure.
2710  *
2711  * Timestamps:
2712  *	vp - ctime updated, mtime updated if size changed.
2713  */
2714 /* ARGSUSED */
2715 static int
2716 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2717     caller_context_t *ct)
2718 {
2719 	znode_t		*zp = VTOZ(vp);
2720 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2721 	zilog_t		*zilog;
2722 	dmu_tx_t	*tx;
2723 	vattr_t		oldva;
2724 	xvattr_t	tmpxvattr;
2725 	uint_t		mask = vap->va_mask;
2726 	uint_t		saved_mask = 0;
2727 	int		trim_mask = 0;
2728 	uint64_t	new_mode;
2729 	uint64_t	new_uid, new_gid;
2730 	uint64_t	xattr_obj;
2731 	uint64_t	mtime[2], ctime[2];
2732 	znode_t		*attrzp;
2733 	int		need_policy = FALSE;
2734 	int		err, err2;
2735 	zfs_fuid_info_t *fuidp = NULL;
2736 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2737 	xoptattr_t	*xoap;
2738 	zfs_acl_t	*aclp;
2739 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2740 	boolean_t	fuid_dirtied = B_FALSE;
2741 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2742 	int		count = 0, xattr_count = 0;
2743 
2744 	if (mask == 0)
2745 		return (0);
2746 
2747 	if (mask & AT_NOSET)
2748 		return (SET_ERROR(EINVAL));
2749 
2750 	ZFS_ENTER(zfsvfs);
2751 	ZFS_VERIFY_ZP(zp);
2752 
2753 	zilog = zfsvfs->z_log;
2754 
2755 	/*
2756 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2757 	 * that file system is at proper version level
2758 	 */
2759 
2760 	if (zfsvfs->z_use_fuids == B_FALSE &&
2761 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2762 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2763 	    (mask & AT_XVATTR))) {
2764 		ZFS_EXIT(zfsvfs);
2765 		return (SET_ERROR(EINVAL));
2766 	}
2767 
2768 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2769 		ZFS_EXIT(zfsvfs);
2770 		return (SET_ERROR(EISDIR));
2771 	}
2772 
2773 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2774 		ZFS_EXIT(zfsvfs);
2775 		return (SET_ERROR(EINVAL));
2776 	}
2777 
2778 	/*
2779 	 * If this is an xvattr_t, then get a pointer to the structure of
2780 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2781 	 */
2782 	xoap = xva_getxoptattr(xvap);
2783 
2784 	xva_init(&tmpxvattr);
2785 
2786 	/*
2787 	 * Immutable files can only alter immutable bit and atime
2788 	 */
2789 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2790 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2791 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2792 		ZFS_EXIT(zfsvfs);
2793 		return (SET_ERROR(EPERM));
2794 	}
2795 
2796 	/*
2797 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2798 	 */
2799 
2800 	/*
2801 	 * Verify timestamps doesn't overflow 32 bits.
2802 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2803 	 * handle times greater than 2039.  This check should be removed
2804 	 * once large timestamps are fully supported.
2805 	 */
2806 	if (mask & (AT_ATIME | AT_MTIME)) {
2807 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2808 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2809 			ZFS_EXIT(zfsvfs);
2810 			return (SET_ERROR(EOVERFLOW));
2811 		}
2812 	}
2813 
2814 top:
2815 	attrzp = NULL;
2816 	aclp = NULL;
2817 
2818 	/* Can this be moved to before the top label? */
2819 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2820 		ZFS_EXIT(zfsvfs);
2821 		return (SET_ERROR(EROFS));
2822 	}
2823 
2824 	/*
2825 	 * First validate permissions
2826 	 */
2827 
2828 	if (mask & AT_SIZE) {
2829 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2830 		if (err) {
2831 			ZFS_EXIT(zfsvfs);
2832 			return (err);
2833 		}
2834 		/*
2835 		 * XXX - Note, we are not providing any open
2836 		 * mode flags here (like FNDELAY), so we may
2837 		 * block if there are locks present... this
2838 		 * should be addressed in openat().
2839 		 */
2840 		/* XXX - would it be OK to generate a log record here? */
2841 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2842 		if (err) {
2843 			ZFS_EXIT(zfsvfs);
2844 			return (err);
2845 		}
2846 
2847 		if (vap->va_size == 0)
2848 			vnevent_truncate(ZTOV(zp), ct);
2849 	}
2850 
2851 	if (mask & (AT_ATIME|AT_MTIME) ||
2852 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2853 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2854 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2855 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2856 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2857 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2858 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2859 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2860 		    skipaclchk, cr);
2861 	}
2862 
2863 	if (mask & (AT_UID|AT_GID)) {
2864 		int	idmask = (mask & (AT_UID|AT_GID));
2865 		int	take_owner;
2866 		int	take_group;
2867 
2868 		/*
2869 		 * NOTE: even if a new mode is being set,
2870 		 * we may clear S_ISUID/S_ISGID bits.
2871 		 */
2872 
2873 		if (!(mask & AT_MODE))
2874 			vap->va_mode = zp->z_mode;
2875 
2876 		/*
2877 		 * Take ownership or chgrp to group we are a member of
2878 		 */
2879 
2880 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2881 		take_group = (mask & AT_GID) &&
2882 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2883 
2884 		/*
2885 		 * If both AT_UID and AT_GID are set then take_owner and
2886 		 * take_group must both be set in order to allow taking
2887 		 * ownership.
2888 		 *
2889 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2890 		 *
2891 		 */
2892 
2893 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2894 		    ((idmask == AT_UID) && take_owner) ||
2895 		    ((idmask == AT_GID) && take_group)) {
2896 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2897 			    skipaclchk, cr) == 0) {
2898 				/*
2899 				 * Remove setuid/setgid for non-privileged users
2900 				 */
2901 				secpolicy_setid_clear(vap, cr);
2902 				trim_mask = (mask & (AT_UID|AT_GID));
2903 			} else {
2904 				need_policy =  TRUE;
2905 			}
2906 		} else {
2907 			need_policy =  TRUE;
2908 		}
2909 	}
2910 
2911 	mutex_enter(&zp->z_lock);
2912 	oldva.va_mode = zp->z_mode;
2913 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2914 	if (mask & AT_XVATTR) {
2915 		/*
2916 		 * Update xvattr mask to include only those attributes
2917 		 * that are actually changing.
2918 		 *
2919 		 * the bits will be restored prior to actually setting
2920 		 * the attributes so the caller thinks they were set.
2921 		 */
2922 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2923 			if (xoap->xoa_appendonly !=
2924 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2925 				need_policy = TRUE;
2926 			} else {
2927 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2928 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2929 			}
2930 		}
2931 
2932 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2933 			if (xoap->xoa_nounlink !=
2934 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2935 				need_policy = TRUE;
2936 			} else {
2937 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2938 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2939 			}
2940 		}
2941 
2942 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2943 			if (xoap->xoa_immutable !=
2944 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2945 				need_policy = TRUE;
2946 			} else {
2947 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2948 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2949 			}
2950 		}
2951 
2952 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2953 			if (xoap->xoa_nodump !=
2954 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2955 				need_policy = TRUE;
2956 			} else {
2957 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2958 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2959 			}
2960 		}
2961 
2962 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2963 			if (xoap->xoa_av_modified !=
2964 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2965 				need_policy = TRUE;
2966 			} else {
2967 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2968 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2969 			}
2970 		}
2971 
2972 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2973 			if ((vp->v_type != VREG &&
2974 			    xoap->xoa_av_quarantined) ||
2975 			    xoap->xoa_av_quarantined !=
2976 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2977 				need_policy = TRUE;
2978 			} else {
2979 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2980 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2981 			}
2982 		}
2983 
2984 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2985 			mutex_exit(&zp->z_lock);
2986 			ZFS_EXIT(zfsvfs);
2987 			return (SET_ERROR(EPERM));
2988 		}
2989 
2990 		if (need_policy == FALSE &&
2991 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2992 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2993 			need_policy = TRUE;
2994 		}
2995 	}
2996 
2997 	mutex_exit(&zp->z_lock);
2998 
2999 	if (mask & AT_MODE) {
3000 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3001 			err = secpolicy_setid_setsticky_clear(vp, vap,
3002 			    &oldva, cr);
3003 			if (err) {
3004 				ZFS_EXIT(zfsvfs);
3005 				return (err);
3006 			}
3007 			trim_mask |= AT_MODE;
3008 		} else {
3009 			need_policy = TRUE;
3010 		}
3011 	}
3012 
3013 	if (need_policy) {
3014 		/*
3015 		 * If trim_mask is set then take ownership
3016 		 * has been granted or write_acl is present and user
3017 		 * has the ability to modify mode.  In that case remove
3018 		 * UID|GID and or MODE from mask so that
3019 		 * secpolicy_vnode_setattr() doesn't revoke it.
3020 		 */
3021 
3022 		if (trim_mask) {
3023 			saved_mask = vap->va_mask;
3024 			vap->va_mask &= ~trim_mask;
3025 		}
3026 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3027 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3028 		if (err) {
3029 			ZFS_EXIT(zfsvfs);
3030 			return (err);
3031 		}
3032 
3033 		if (trim_mask)
3034 			vap->va_mask |= saved_mask;
3035 	}
3036 
3037 	/*
3038 	 * secpolicy_vnode_setattr, or take ownership may have
3039 	 * changed va_mask
3040 	 */
3041 	mask = vap->va_mask;
3042 
3043 	if ((mask & (AT_UID | AT_GID))) {
3044 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3045 		    &xattr_obj, sizeof (xattr_obj));
3046 
3047 		if (err == 0 && xattr_obj) {
3048 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3049 			if (err)
3050 				goto out2;
3051 		}
3052 		if (mask & AT_UID) {
3053 			new_uid = zfs_fuid_create(zfsvfs,
3054 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3055 			if (new_uid != zp->z_uid &&
3056 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3057 				if (attrzp)
3058 					VN_RELE(ZTOV(attrzp));
3059 				err = SET_ERROR(EDQUOT);
3060 				goto out2;
3061 			}
3062 		}
3063 
3064 		if (mask & AT_GID) {
3065 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3066 			    cr, ZFS_GROUP, &fuidp);
3067 			if (new_gid != zp->z_gid &&
3068 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3069 				if (attrzp)
3070 					VN_RELE(ZTOV(attrzp));
3071 				err = SET_ERROR(EDQUOT);
3072 				goto out2;
3073 			}
3074 		}
3075 	}
3076 	tx = dmu_tx_create(zfsvfs->z_os);
3077 
3078 	if (mask & AT_MODE) {
3079 		uint64_t pmode = zp->z_mode;
3080 		uint64_t acl_obj;
3081 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3082 
3083 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3084 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3085 			err = SET_ERROR(EPERM);
3086 			goto out;
3087 		}
3088 
3089 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3090 			goto out;
3091 
3092 		mutex_enter(&zp->z_lock);
3093 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3094 			/*
3095 			 * Are we upgrading ACL from old V0 format
3096 			 * to V1 format?
3097 			 */
3098 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3099 			    zfs_znode_acl_version(zp) ==
3100 			    ZFS_ACL_VERSION_INITIAL) {
3101 				dmu_tx_hold_free(tx, acl_obj, 0,
3102 				    DMU_OBJECT_END);
3103 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3104 				    0, aclp->z_acl_bytes);
3105 			} else {
3106 				dmu_tx_hold_write(tx, acl_obj, 0,
3107 				    aclp->z_acl_bytes);
3108 			}
3109 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3110 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3111 			    0, aclp->z_acl_bytes);
3112 		}
3113 		mutex_exit(&zp->z_lock);
3114 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3115 	} else {
3116 		if ((mask & AT_XVATTR) &&
3117 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3118 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3119 		else
3120 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3121 	}
3122 
3123 	if (attrzp) {
3124 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3125 	}
3126 
3127 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3128 	if (fuid_dirtied)
3129 		zfs_fuid_txhold(zfsvfs, tx);
3130 
3131 	zfs_sa_upgrade_txholds(tx, zp);
3132 
3133 	err = dmu_tx_assign(tx, TXG_WAIT);
3134 	if (err)
3135 		goto out;
3136 
3137 	count = 0;
3138 	/*
3139 	 * Set each attribute requested.
3140 	 * We group settings according to the locks they need to acquire.
3141 	 *
3142 	 * Note: you cannot set ctime directly, although it will be
3143 	 * updated as a side-effect of calling this function.
3144 	 */
3145 
3146 
3147 	if (mask & (AT_UID|AT_GID|AT_MODE))
3148 		mutex_enter(&zp->z_acl_lock);
3149 	mutex_enter(&zp->z_lock);
3150 
3151 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3152 	    &zp->z_pflags, sizeof (zp->z_pflags));
3153 
3154 	if (attrzp) {
3155 		if (mask & (AT_UID|AT_GID|AT_MODE))
3156 			mutex_enter(&attrzp->z_acl_lock);
3157 		mutex_enter(&attrzp->z_lock);
3158 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3159 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3160 		    sizeof (attrzp->z_pflags));
3161 	}
3162 
3163 	if (mask & (AT_UID|AT_GID)) {
3164 
3165 		if (mask & AT_UID) {
3166 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3167 			    &new_uid, sizeof (new_uid));
3168 			zp->z_uid = new_uid;
3169 			if (attrzp) {
3170 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3171 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3172 				    sizeof (new_uid));
3173 				attrzp->z_uid = new_uid;
3174 			}
3175 		}
3176 
3177 		if (mask & AT_GID) {
3178 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3179 			    NULL, &new_gid, sizeof (new_gid));
3180 			zp->z_gid = new_gid;
3181 			if (attrzp) {
3182 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3183 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3184 				    sizeof (new_gid));
3185 				attrzp->z_gid = new_gid;
3186 			}
3187 		}
3188 		if (!(mask & AT_MODE)) {
3189 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3190 			    NULL, &new_mode, sizeof (new_mode));
3191 			new_mode = zp->z_mode;
3192 		}
3193 		err = zfs_acl_chown_setattr(zp);
3194 		ASSERT(err == 0);
3195 		if (attrzp) {
3196 			err = zfs_acl_chown_setattr(attrzp);
3197 			ASSERT(err == 0);
3198 		}
3199 	}
3200 
3201 	if (mask & AT_MODE) {
3202 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3203 		    &new_mode, sizeof (new_mode));
3204 		zp->z_mode = new_mode;
3205 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3206 		err = zfs_aclset_common(zp, aclp, cr, tx);
3207 		ASSERT0(err);
3208 		if (zp->z_acl_cached)
3209 			zfs_acl_free(zp->z_acl_cached);
3210 		zp->z_acl_cached = aclp;
3211 		aclp = NULL;
3212 	}
3213 
3214 
3215 	if (mask & AT_ATIME) {
3216 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3217 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3218 		    &zp->z_atime, sizeof (zp->z_atime));
3219 	}
3220 
3221 	if (mask & AT_MTIME) {
3222 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3223 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3224 		    mtime, sizeof (mtime));
3225 	}
3226 
3227 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3228 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3229 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3230 		    NULL, mtime, sizeof (mtime));
3231 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3232 		    &ctime, sizeof (ctime));
3233 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3234 		    B_TRUE);
3235 	} else if (mask != 0) {
3236 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3237 		    &ctime, sizeof (ctime));
3238 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3239 		    B_TRUE);
3240 		if (attrzp) {
3241 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3242 			    SA_ZPL_CTIME(zfsvfs), NULL,
3243 			    &ctime, sizeof (ctime));
3244 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3245 			    mtime, ctime, B_TRUE);
3246 		}
3247 	}
3248 	/*
3249 	 * Do this after setting timestamps to prevent timestamp
3250 	 * update from toggling bit
3251 	 */
3252 
3253 	if (xoap && (mask & AT_XVATTR)) {
3254 
3255 		/*
3256 		 * restore trimmed off masks
3257 		 * so that return masks can be set for caller.
3258 		 */
3259 
3260 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3261 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3262 		}
3263 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3264 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3265 		}
3266 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3267 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3268 		}
3269 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3270 			XVA_SET_REQ(xvap, XAT_NODUMP);
3271 		}
3272 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3273 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3274 		}
3275 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3276 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3277 		}
3278 
3279 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3280 			ASSERT(vp->v_type == VREG);
3281 
3282 		zfs_xvattr_set(zp, xvap, tx);
3283 	}
3284 
3285 	if (fuid_dirtied)
3286 		zfs_fuid_sync(zfsvfs, tx);
3287 
3288 	if (mask != 0)
3289 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3290 
3291 	mutex_exit(&zp->z_lock);
3292 	if (mask & (AT_UID|AT_GID|AT_MODE))
3293 		mutex_exit(&zp->z_acl_lock);
3294 
3295 	if (attrzp) {
3296 		if (mask & (AT_UID|AT_GID|AT_MODE))
3297 			mutex_exit(&attrzp->z_acl_lock);
3298 		mutex_exit(&attrzp->z_lock);
3299 	}
3300 out:
3301 	if (err == 0 && attrzp) {
3302 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3303 		    xattr_count, tx);
3304 		ASSERT(err2 == 0);
3305 	}
3306 
3307 	if (attrzp)
3308 		VN_RELE(ZTOV(attrzp));
3309 
3310 	if (aclp)
3311 		zfs_acl_free(aclp);
3312 
3313 	if (fuidp) {
3314 		zfs_fuid_info_free(fuidp);
3315 		fuidp = NULL;
3316 	}
3317 
3318 	if (err) {
3319 		dmu_tx_abort(tx);
3320 		if (err == ERESTART)
3321 			goto top;
3322 	} else {
3323 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3324 		dmu_tx_commit(tx);
3325 	}
3326 
3327 out2:
3328 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3329 		zil_commit(zilog, 0);
3330 
3331 	ZFS_EXIT(zfsvfs);
3332 	return (err);
3333 }
3334 
3335 typedef struct zfs_zlock {
3336 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3337 	znode_t		*zl_znode;	/* znode we held */
3338 	struct zfs_zlock *zl_next;	/* next in list */
3339 } zfs_zlock_t;
3340 
3341 /*
3342  * Drop locks and release vnodes that were held by zfs_rename_lock().
3343  */
3344 static void
3345 zfs_rename_unlock(zfs_zlock_t **zlpp)
3346 {
3347 	zfs_zlock_t *zl;
3348 
3349 	while ((zl = *zlpp) != NULL) {
3350 		if (zl->zl_znode != NULL)
3351 			VN_RELE(ZTOV(zl->zl_znode));
3352 		rw_exit(zl->zl_rwlock);
3353 		*zlpp = zl->zl_next;
3354 		kmem_free(zl, sizeof (*zl));
3355 	}
3356 }
3357 
3358 /*
3359  * Search back through the directory tree, using the ".." entries.
3360  * Lock each directory in the chain to prevent concurrent renames.
3361  * Fail any attempt to move a directory into one of its own descendants.
3362  * XXX - z_parent_lock can overlap with map or grow locks
3363  */
3364 static int
3365 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3366 {
3367 	zfs_zlock_t	*zl;
3368 	znode_t		*zp = tdzp;
3369 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3370 	uint64_t	oidp = zp->z_id;
3371 	krwlock_t	*rwlp = &szp->z_parent_lock;
3372 	krw_t		rw = RW_WRITER;
3373 
3374 	/*
3375 	 * First pass write-locks szp and compares to zp->z_id.
3376 	 * Later passes read-lock zp and compare to zp->z_parent.
3377 	 */
3378 	do {
3379 		if (!rw_tryenter(rwlp, rw)) {
3380 			/*
3381 			 * Another thread is renaming in this path.
3382 			 * Note that if we are a WRITER, we don't have any
3383 			 * parent_locks held yet.
3384 			 */
3385 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3386 				/*
3387 				 * Drop our locks and restart
3388 				 */
3389 				zfs_rename_unlock(&zl);
3390 				*zlpp = NULL;
3391 				zp = tdzp;
3392 				oidp = zp->z_id;
3393 				rwlp = &szp->z_parent_lock;
3394 				rw = RW_WRITER;
3395 				continue;
3396 			} else {
3397 				/*
3398 				 * Wait for other thread to drop its locks
3399 				 */
3400 				rw_enter(rwlp, rw);
3401 			}
3402 		}
3403 
3404 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3405 		zl->zl_rwlock = rwlp;
3406 		zl->zl_znode = NULL;
3407 		zl->zl_next = *zlpp;
3408 		*zlpp = zl;
3409 
3410 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3411 			return (SET_ERROR(EINVAL));
3412 
3413 		if (oidp == rootid)		/* We've hit the top */
3414 			return (0);
3415 
3416 		if (rw == RW_READER) {		/* i.e. not the first pass */
3417 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3418 			if (error)
3419 				return (error);
3420 			zl->zl_znode = zp;
3421 		}
3422 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3423 		    &oidp, sizeof (oidp));
3424 		rwlp = &zp->z_parent_lock;
3425 		rw = RW_READER;
3426 
3427 	} while (zp->z_id != sdzp->z_id);
3428 
3429 	return (0);
3430 }
3431 
3432 /*
3433  * Move an entry from the provided source directory to the target
3434  * directory.  Change the entry name as indicated.
3435  *
3436  *	IN:	sdvp	- Source directory containing the "old entry".
3437  *		snm	- Old entry name.
3438  *		tdvp	- Target directory to contain the "new entry".
3439  *		tnm	- New entry name.
3440  *		cr	- credentials of caller.
3441  *		ct	- caller context
3442  *		flags	- case flags
3443  *
3444  *	RETURN:	0 on success, error code on failure.
3445  *
3446  * Timestamps:
3447  *	sdvp,tdvp - ctime|mtime updated
3448  */
3449 /*ARGSUSED*/
3450 static int
3451 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3452     caller_context_t *ct, int flags)
3453 {
3454 	znode_t		*tdzp, *szp, *tzp;
3455 	znode_t		*sdzp = VTOZ(sdvp);
3456 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3457 	zilog_t		*zilog;
3458 	vnode_t		*realvp;
3459 	zfs_dirlock_t	*sdl, *tdl;
3460 	dmu_tx_t	*tx;
3461 	zfs_zlock_t	*zl;
3462 	int		cmp, serr, terr;
3463 	int		error = 0, rm_err = 0;
3464 	int		zflg = 0;
3465 	boolean_t	waited = B_FALSE;
3466 
3467 	ZFS_ENTER(zfsvfs);
3468 	ZFS_VERIFY_ZP(sdzp);
3469 	zilog = zfsvfs->z_log;
3470 
3471 	/*
3472 	 * Make sure we have the real vp for the target directory.
3473 	 */
3474 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3475 		tdvp = realvp;
3476 
3477 	tdzp = VTOZ(tdvp);
3478 	ZFS_VERIFY_ZP(tdzp);
3479 
3480 	/*
3481 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3482 	 * ctldir appear to have the same v_vfsp.
3483 	 */
3484 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3485 		ZFS_EXIT(zfsvfs);
3486 		return (SET_ERROR(EXDEV));
3487 	}
3488 
3489 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3490 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3491 		ZFS_EXIT(zfsvfs);
3492 		return (SET_ERROR(EILSEQ));
3493 	}
3494 
3495 	if (flags & FIGNORECASE)
3496 		zflg |= ZCILOOK;
3497 
3498 top:
3499 	szp = NULL;
3500 	tzp = NULL;
3501 	zl = NULL;
3502 
3503 	/*
3504 	 * This is to prevent the creation of links into attribute space
3505 	 * by renaming a linked file into/outof an attribute directory.
3506 	 * See the comment in zfs_link() for why this is considered bad.
3507 	 */
3508 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3509 		ZFS_EXIT(zfsvfs);
3510 		return (SET_ERROR(EINVAL));
3511 	}
3512 
3513 	/*
3514 	 * Lock source and target directory entries.  To prevent deadlock,
3515 	 * a lock ordering must be defined.  We lock the directory with
3516 	 * the smallest object id first, or if it's a tie, the one with
3517 	 * the lexically first name.
3518 	 */
3519 	if (sdzp->z_id < tdzp->z_id) {
3520 		cmp = -1;
3521 	} else if (sdzp->z_id > tdzp->z_id) {
3522 		cmp = 1;
3523 	} else {
3524 		/*
3525 		 * First compare the two name arguments without
3526 		 * considering any case folding.
3527 		 */
3528 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3529 
3530 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3531 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3532 		if (cmp == 0) {
3533 			/*
3534 			 * POSIX: "If the old argument and the new argument
3535 			 * both refer to links to the same existing file,
3536 			 * the rename() function shall return successfully
3537 			 * and perform no other action."
3538 			 */
3539 			ZFS_EXIT(zfsvfs);
3540 			return (0);
3541 		}
3542 		/*
3543 		 * If the file system is case-folding, then we may
3544 		 * have some more checking to do.  A case-folding file
3545 		 * system is either supporting mixed case sensitivity
3546 		 * access or is completely case-insensitive.  Note
3547 		 * that the file system is always case preserving.
3548 		 *
3549 		 * In mixed sensitivity mode case sensitive behavior
3550 		 * is the default.  FIGNORECASE must be used to
3551 		 * explicitly request case insensitive behavior.
3552 		 *
3553 		 * If the source and target names provided differ only
3554 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3555 		 * we will treat this as a special case in the
3556 		 * case-insensitive mode: as long as the source name
3557 		 * is an exact match, we will allow this to proceed as
3558 		 * a name-change request.
3559 		 */
3560 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3561 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3562 		    flags & FIGNORECASE)) &&
3563 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3564 		    &error) == 0) {
3565 			/*
3566 			 * case preserving rename request, require exact
3567 			 * name matches
3568 			 */
3569 			zflg |= ZCIEXACT;
3570 			zflg &= ~ZCILOOK;
3571 		}
3572 	}
3573 
3574 	/*
3575 	 * If the source and destination directories are the same, we should
3576 	 * grab the z_name_lock of that directory only once.
3577 	 */
3578 	if (sdzp == tdzp) {
3579 		zflg |= ZHAVELOCK;
3580 		rw_enter(&sdzp->z_name_lock, RW_READER);
3581 	}
3582 
3583 	if (cmp < 0) {
3584 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3585 		    ZEXISTS | zflg, NULL, NULL);
3586 		terr = zfs_dirent_lock(&tdl,
3587 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3588 	} else {
3589 		terr = zfs_dirent_lock(&tdl,
3590 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3591 		serr = zfs_dirent_lock(&sdl,
3592 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3593 		    NULL, NULL);
3594 	}
3595 
3596 	if (serr) {
3597 		/*
3598 		 * Source entry invalid or not there.
3599 		 */
3600 		if (!terr) {
3601 			zfs_dirent_unlock(tdl);
3602 			if (tzp)
3603 				VN_RELE(ZTOV(tzp));
3604 		}
3605 
3606 		if (sdzp == tdzp)
3607 			rw_exit(&sdzp->z_name_lock);
3608 
3609 		if (strcmp(snm, "..") == 0)
3610 			serr = SET_ERROR(EINVAL);
3611 		ZFS_EXIT(zfsvfs);
3612 		return (serr);
3613 	}
3614 	if (terr) {
3615 		zfs_dirent_unlock(sdl);
3616 		VN_RELE(ZTOV(szp));
3617 
3618 		if (sdzp == tdzp)
3619 			rw_exit(&sdzp->z_name_lock);
3620 
3621 		if (strcmp(tnm, "..") == 0)
3622 			terr = SET_ERROR(EINVAL);
3623 		ZFS_EXIT(zfsvfs);
3624 		return (terr);
3625 	}
3626 
3627 	/*
3628 	 * Must have write access at the source to remove the old entry
3629 	 * and write access at the target to create the new entry.
3630 	 * Note that if target and source are the same, this can be
3631 	 * done in a single check.
3632 	 */
3633 
3634 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3635 		goto out;
3636 
3637 	if (ZTOV(szp)->v_type == VDIR) {
3638 		/*
3639 		 * Check to make sure rename is valid.
3640 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3641 		 */
3642 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3643 			goto out;
3644 	}
3645 
3646 	/*
3647 	 * Does target exist?
3648 	 */
3649 	if (tzp) {
3650 		/*
3651 		 * Source and target must be the same type.
3652 		 */
3653 		if (ZTOV(szp)->v_type == VDIR) {
3654 			if (ZTOV(tzp)->v_type != VDIR) {
3655 				error = SET_ERROR(ENOTDIR);
3656 				goto out;
3657 			}
3658 		} else {
3659 			if (ZTOV(tzp)->v_type == VDIR) {
3660 				error = SET_ERROR(EISDIR);
3661 				goto out;
3662 			}
3663 		}
3664 		/*
3665 		 * POSIX dictates that when the source and target
3666 		 * entries refer to the same file object, rename
3667 		 * must do nothing and exit without error.
3668 		 */
3669 		if (szp->z_id == tzp->z_id) {
3670 			error = 0;
3671 			goto out;
3672 		}
3673 	}
3674 
3675 	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3676 	if (tzp)
3677 		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3678 
3679 	/*
3680 	 * notify the target directory if it is not the same
3681 	 * as source directory.
3682 	 */
3683 	if (tdvp != sdvp) {
3684 		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3685 	}
3686 
3687 	tx = dmu_tx_create(zfsvfs->z_os);
3688 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3689 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3690 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3691 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3692 	if (sdzp != tdzp) {
3693 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3694 		zfs_sa_upgrade_txholds(tx, tdzp);
3695 	}
3696 	if (tzp) {
3697 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3698 		zfs_sa_upgrade_txholds(tx, tzp);
3699 	}
3700 
3701 	zfs_sa_upgrade_txholds(tx, szp);
3702 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3703 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3704 	if (error) {
3705 		if (zl != NULL)
3706 			zfs_rename_unlock(&zl);
3707 		zfs_dirent_unlock(sdl);
3708 		zfs_dirent_unlock(tdl);
3709 
3710 		if (sdzp == tdzp)
3711 			rw_exit(&sdzp->z_name_lock);
3712 
3713 		VN_RELE(ZTOV(szp));
3714 		if (tzp)
3715 			VN_RELE(ZTOV(tzp));
3716 		if (error == ERESTART) {
3717 			waited = B_TRUE;
3718 			dmu_tx_wait(tx);
3719 			dmu_tx_abort(tx);
3720 			goto top;
3721 		}
3722 		dmu_tx_abort(tx);
3723 		ZFS_EXIT(zfsvfs);
3724 		return (error);
3725 	}
3726 
3727 	if (tzp)	/* Attempt to remove the existing target */
3728 		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3729 
3730 	if (error == 0) {
3731 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3732 		if (error == 0) {
3733 			szp->z_pflags |= ZFS_AV_MODIFIED;
3734 
3735 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3736 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3737 			ASSERT0(error);
3738 
3739 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3740 			if (error == 0) {
3741 				zfs_log_rename(zilog, tx, TX_RENAME |
3742 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3743 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3744 
3745 				/*
3746 				 * Update path information for the target vnode
3747 				 */
3748 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3749 				    strlen(tnm));
3750 			} else {
3751 				/*
3752 				 * At this point, we have successfully created
3753 				 * the target name, but have failed to remove
3754 				 * the source name.  Since the create was done
3755 				 * with the ZRENAMING flag, there are
3756 				 * complications; for one, the link count is
3757 				 * wrong.  The easiest way to deal with this
3758 				 * is to remove the newly created target, and
3759 				 * return the original error.  This must
3760 				 * succeed; fortunately, it is very unlikely to
3761 				 * fail, since we just created it.
3762 				 */
3763 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3764 				    ZRENAMING, NULL), ==, 0);
3765 			}
3766 		}
3767 	}
3768 
3769 	dmu_tx_commit(tx);
3770 
3771 	if (tzp && rm_err == 0)
3772 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3773 
3774 	if (error == 0) {
3775 		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3776 		/* notify the target dir if it is not the same as source dir */
3777 		if (tdvp != sdvp)
3778 			vnevent_rename_dest_dir(tdvp, ct);
3779 	}
3780 out:
3781 	if (zl != NULL)
3782 		zfs_rename_unlock(&zl);
3783 
3784 	zfs_dirent_unlock(sdl);
3785 	zfs_dirent_unlock(tdl);
3786 
3787 	if (sdzp == tdzp)
3788 		rw_exit(&sdzp->z_name_lock);
3789 
3790 
3791 	VN_RELE(ZTOV(szp));
3792 	if (tzp)
3793 		VN_RELE(ZTOV(tzp));
3794 
3795 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3796 		zil_commit(zilog, 0);
3797 
3798 	ZFS_EXIT(zfsvfs);
3799 	return (error);
3800 }
3801 
3802 /*
3803  * Insert the indicated symbolic reference entry into the directory.
3804  *
3805  *	IN:	dvp	- Directory to contain new symbolic link.
3806  *		link	- Name for new symlink entry.
3807  *		vap	- Attributes of new entry.
3808  *		cr	- credentials of caller.
3809  *		ct	- caller context
3810  *		flags	- case flags
3811  *
3812  *	RETURN:	0 on success, error code on failure.
3813  *
3814  * Timestamps:
3815  *	dvp - ctime|mtime updated
3816  */
3817 /*ARGSUSED*/
3818 static int
3819 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3820     caller_context_t *ct, int flags)
3821 {
3822 	znode_t		*zp, *dzp = VTOZ(dvp);
3823 	zfs_dirlock_t	*dl;
3824 	dmu_tx_t	*tx;
3825 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3826 	zilog_t		*zilog;
3827 	uint64_t	len = strlen(link);
3828 	int		error;
3829 	int		zflg = ZNEW;
3830 	zfs_acl_ids_t	acl_ids;
3831 	boolean_t	fuid_dirtied;
3832 	uint64_t	txtype = TX_SYMLINK;
3833 	boolean_t	waited = B_FALSE;
3834 
3835 	ASSERT(vap->va_type == VLNK);
3836 
3837 	ZFS_ENTER(zfsvfs);
3838 	ZFS_VERIFY_ZP(dzp);
3839 	zilog = zfsvfs->z_log;
3840 
3841 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3842 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3843 		ZFS_EXIT(zfsvfs);
3844 		return (SET_ERROR(EILSEQ));
3845 	}
3846 	if (flags & FIGNORECASE)
3847 		zflg |= ZCILOOK;
3848 
3849 	if (len > MAXPATHLEN) {
3850 		ZFS_EXIT(zfsvfs);
3851 		return (SET_ERROR(ENAMETOOLONG));
3852 	}
3853 
3854 	if ((error = zfs_acl_ids_create(dzp, 0,
3855 	    vap, cr, NULL, &acl_ids)) != 0) {
3856 		ZFS_EXIT(zfsvfs);
3857 		return (error);
3858 	}
3859 top:
3860 	/*
3861 	 * Attempt to lock directory; fail if entry already exists.
3862 	 */
3863 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3864 	if (error) {
3865 		zfs_acl_ids_free(&acl_ids);
3866 		ZFS_EXIT(zfsvfs);
3867 		return (error);
3868 	}
3869 
3870 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3871 		zfs_acl_ids_free(&acl_ids);
3872 		zfs_dirent_unlock(dl);
3873 		ZFS_EXIT(zfsvfs);
3874 		return (error);
3875 	}
3876 
3877 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3878 		zfs_acl_ids_free(&acl_ids);
3879 		zfs_dirent_unlock(dl);
3880 		ZFS_EXIT(zfsvfs);
3881 		return (SET_ERROR(EDQUOT));
3882 	}
3883 	tx = dmu_tx_create(zfsvfs->z_os);
3884 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3885 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3886 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3887 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3888 	    ZFS_SA_BASE_ATTR_SIZE + len);
3889 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3890 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3891 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3892 		    acl_ids.z_aclp->z_acl_bytes);
3893 	}
3894 	if (fuid_dirtied)
3895 		zfs_fuid_txhold(zfsvfs, tx);
3896 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3897 	if (error) {
3898 		zfs_dirent_unlock(dl);
3899 		if (error == ERESTART) {
3900 			waited = B_TRUE;
3901 			dmu_tx_wait(tx);
3902 			dmu_tx_abort(tx);
3903 			goto top;
3904 		}
3905 		zfs_acl_ids_free(&acl_ids);
3906 		dmu_tx_abort(tx);
3907 		ZFS_EXIT(zfsvfs);
3908 		return (error);
3909 	}
3910 
3911 	/*
3912 	 * Create a new object for the symlink.
3913 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3914 	 */
3915 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3916 
3917 	if (fuid_dirtied)
3918 		zfs_fuid_sync(zfsvfs, tx);
3919 
3920 	mutex_enter(&zp->z_lock);
3921 	if (zp->z_is_sa)
3922 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3923 		    link, len, tx);
3924 	else
3925 		zfs_sa_symlink(zp, link, len, tx);
3926 	mutex_exit(&zp->z_lock);
3927 
3928 	zp->z_size = len;
3929 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3930 	    &zp->z_size, sizeof (zp->z_size), tx);
3931 	/*
3932 	 * Insert the new object into the directory.
3933 	 */
3934 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3935 
3936 	if (flags & FIGNORECASE)
3937 		txtype |= TX_CI;
3938 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3939 
3940 	zfs_acl_ids_free(&acl_ids);
3941 
3942 	dmu_tx_commit(tx);
3943 
3944 	zfs_dirent_unlock(dl);
3945 
3946 	VN_RELE(ZTOV(zp));
3947 
3948 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3949 		zil_commit(zilog, 0);
3950 
3951 	ZFS_EXIT(zfsvfs);
3952 	return (error);
3953 }
3954 
3955 /*
3956  * Return, in the buffer contained in the provided uio structure,
3957  * the symbolic path referred to by vp.
3958  *
3959  *	IN:	vp	- vnode of symbolic link.
3960  *		uio	- structure to contain the link path.
3961  *		cr	- credentials of caller.
3962  *		ct	- caller context
3963  *
3964  *	OUT:	uio	- structure containing the link path.
3965  *
3966  *	RETURN:	0 on success, error code on failure.
3967  *
3968  * Timestamps:
3969  *	vp - atime updated
3970  */
3971 /* ARGSUSED */
3972 static int
3973 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3974 {
3975 	znode_t		*zp = VTOZ(vp);
3976 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3977 	int		error;
3978 
3979 	ZFS_ENTER(zfsvfs);
3980 	ZFS_VERIFY_ZP(zp);
3981 
3982 	mutex_enter(&zp->z_lock);
3983 	if (zp->z_is_sa)
3984 		error = sa_lookup_uio(zp->z_sa_hdl,
3985 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3986 	else
3987 		error = zfs_sa_readlink(zp, uio);
3988 	mutex_exit(&zp->z_lock);
3989 
3990 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3991 
3992 	ZFS_EXIT(zfsvfs);
3993 	return (error);
3994 }
3995 
3996 /*
3997  * Insert a new entry into directory tdvp referencing svp.
3998  *
3999  *	IN:	tdvp	- Directory to contain new entry.
4000  *		svp	- vnode of new entry.
4001  *		name	- name of new entry.
4002  *		cr	- credentials of caller.
4003  *		ct	- caller context
4004  *
4005  *	RETURN:	0 on success, error code on failure.
4006  *
4007  * Timestamps:
4008  *	tdvp - ctime|mtime updated
4009  *	 svp - ctime updated
4010  */
4011 /* ARGSUSED */
4012 static int
4013 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4014     caller_context_t *ct, int flags)
4015 {
4016 	znode_t		*dzp = VTOZ(tdvp);
4017 	znode_t		*tzp, *szp;
4018 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4019 	zilog_t		*zilog;
4020 	zfs_dirlock_t	*dl;
4021 	dmu_tx_t	*tx;
4022 	vnode_t		*realvp;
4023 	int		error;
4024 	int		zf = ZNEW;
4025 	uint64_t	parent;
4026 	uid_t		owner;
4027 	boolean_t	waited = B_FALSE;
4028 
4029 	ASSERT(tdvp->v_type == VDIR);
4030 
4031 	ZFS_ENTER(zfsvfs);
4032 	ZFS_VERIFY_ZP(dzp);
4033 	zilog = zfsvfs->z_log;
4034 
4035 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4036 		svp = realvp;
4037 
4038 	/*
4039 	 * POSIX dictates that we return EPERM here.
4040 	 * Better choices include ENOTSUP or EISDIR.
4041 	 */
4042 	if (svp->v_type == VDIR) {
4043 		ZFS_EXIT(zfsvfs);
4044 		return (SET_ERROR(EPERM));
4045 	}
4046 
4047 	szp = VTOZ(svp);
4048 	ZFS_VERIFY_ZP(szp);
4049 
4050 	/*
4051 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4052 	 * ctldir appear to have the same v_vfsp.
4053 	 */
4054 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4055 		ZFS_EXIT(zfsvfs);
4056 		return (SET_ERROR(EXDEV));
4057 	}
4058 
4059 	/* Prevent links to .zfs/shares files */
4060 
4061 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4062 	    &parent, sizeof (uint64_t))) != 0) {
4063 		ZFS_EXIT(zfsvfs);
4064 		return (error);
4065 	}
4066 	if (parent == zfsvfs->z_shares_dir) {
4067 		ZFS_EXIT(zfsvfs);
4068 		return (SET_ERROR(EPERM));
4069 	}
4070 
4071 	if (zfsvfs->z_utf8 && u8_validate(name,
4072 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4073 		ZFS_EXIT(zfsvfs);
4074 		return (SET_ERROR(EILSEQ));
4075 	}
4076 	if (flags & FIGNORECASE)
4077 		zf |= ZCILOOK;
4078 
4079 	/*
4080 	 * We do not support links between attributes and non-attributes
4081 	 * because of the potential security risk of creating links
4082 	 * into "normal" file space in order to circumvent restrictions
4083 	 * imposed in attribute space.
4084 	 */
4085 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4086 		ZFS_EXIT(zfsvfs);
4087 		return (SET_ERROR(EINVAL));
4088 	}
4089 
4090 
4091 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4092 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4093 		ZFS_EXIT(zfsvfs);
4094 		return (SET_ERROR(EPERM));
4095 	}
4096 
4097 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4098 		ZFS_EXIT(zfsvfs);
4099 		return (error);
4100 	}
4101 
4102 top:
4103 	/*
4104 	 * Attempt to lock directory; fail if entry already exists.
4105 	 */
4106 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4107 	if (error) {
4108 		ZFS_EXIT(zfsvfs);
4109 		return (error);
4110 	}
4111 
4112 	tx = dmu_tx_create(zfsvfs->z_os);
4113 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4114 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4115 	zfs_sa_upgrade_txholds(tx, szp);
4116 	zfs_sa_upgrade_txholds(tx, dzp);
4117 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4118 	if (error) {
4119 		zfs_dirent_unlock(dl);
4120 		if (error == ERESTART) {
4121 			waited = B_TRUE;
4122 			dmu_tx_wait(tx);
4123 			dmu_tx_abort(tx);
4124 			goto top;
4125 		}
4126 		dmu_tx_abort(tx);
4127 		ZFS_EXIT(zfsvfs);
4128 		return (error);
4129 	}
4130 
4131 	error = zfs_link_create(dl, szp, tx, 0);
4132 
4133 	if (error == 0) {
4134 		uint64_t txtype = TX_LINK;
4135 		if (flags & FIGNORECASE)
4136 			txtype |= TX_CI;
4137 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4138 	}
4139 
4140 	dmu_tx_commit(tx);
4141 
4142 	zfs_dirent_unlock(dl);
4143 
4144 	if (error == 0) {
4145 		vnevent_link(svp, ct);
4146 	}
4147 
4148 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4149 		zil_commit(zilog, 0);
4150 
4151 	ZFS_EXIT(zfsvfs);
4152 	return (error);
4153 }
4154 
4155 /*
4156  * zfs_null_putapage() is used when the file system has been force
4157  * unmounted. It just drops the pages.
4158  */
4159 /* ARGSUSED */
4160 static int
4161 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4162     size_t *lenp, int flags, cred_t *cr)
4163 {
4164 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4165 	return (0);
4166 }
4167 
4168 /*
4169  * Push a page out to disk, klustering if possible.
4170  *
4171  *	IN:	vp	- file to push page to.
4172  *		pp	- page to push.
4173  *		flags	- additional flags.
4174  *		cr	- credentials of caller.
4175  *
4176  *	OUT:	offp	- start of range pushed.
4177  *		lenp	- len of range pushed.
4178  *
4179  *	RETURN:	0 on success, error code on failure.
4180  *
4181  * NOTE: callers must have locked the page to be pushed.  On
4182  * exit, the page (and all other pages in the kluster) must be
4183  * unlocked.
4184  */
4185 /* ARGSUSED */
4186 static int
4187 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4188     size_t *lenp, int flags, cred_t *cr)
4189 {
4190 	znode_t		*zp = VTOZ(vp);
4191 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4192 	dmu_tx_t	*tx;
4193 	u_offset_t	off, koff;
4194 	size_t		len, klen;
4195 	int		err;
4196 
4197 	off = pp->p_offset;
4198 	len = PAGESIZE;
4199 	/*
4200 	 * If our blocksize is bigger than the page size, try to kluster
4201 	 * multiple pages so that we write a full block (thus avoiding
4202 	 * a read-modify-write).
4203 	 */
4204 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4205 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4206 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4207 		ASSERT(koff <= zp->z_size);
4208 		if (koff + klen > zp->z_size)
4209 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4210 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4211 	}
4212 	ASSERT3U(btop(len), ==, btopr(len));
4213 
4214 	/*
4215 	 * Can't push pages past end-of-file.
4216 	 */
4217 	if (off >= zp->z_size) {
4218 		/* ignore all pages */
4219 		err = 0;
4220 		goto out;
4221 	} else if (off + len > zp->z_size) {
4222 		int npages = btopr(zp->z_size - off);
4223 		page_t *trunc;
4224 
4225 		page_list_break(&pp, &trunc, npages);
4226 		/* ignore pages past end of file */
4227 		if (trunc)
4228 			pvn_write_done(trunc, flags);
4229 		len = zp->z_size - off;
4230 	}
4231 
4232 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4233 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4234 		err = SET_ERROR(EDQUOT);
4235 		goto out;
4236 	}
4237 	tx = dmu_tx_create(zfsvfs->z_os);
4238 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4239 
4240 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4241 	zfs_sa_upgrade_txholds(tx, zp);
4242 	err = dmu_tx_assign(tx, TXG_WAIT);
4243 	if (err != 0) {
4244 		dmu_tx_abort(tx);
4245 		goto out;
4246 	}
4247 
4248 	if (zp->z_blksz <= PAGESIZE) {
4249 		caddr_t va = zfs_map_page(pp, S_READ);
4250 		ASSERT3U(len, <=, PAGESIZE);
4251 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4252 		zfs_unmap_page(pp, va);
4253 	} else {
4254 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4255 	}
4256 
4257 	if (err == 0) {
4258 		uint64_t mtime[2], ctime[2];
4259 		sa_bulk_attr_t bulk[3];
4260 		int count = 0;
4261 
4262 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4263 		    &mtime, 16);
4264 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4265 		    &ctime, 16);
4266 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4267 		    &zp->z_pflags, 8);
4268 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4269 		    B_TRUE);
4270 		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4271 		ASSERT0(err);
4272 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4273 	}
4274 	dmu_tx_commit(tx);
4275 
4276 out:
4277 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4278 	if (offp)
4279 		*offp = off;
4280 	if (lenp)
4281 		*lenp = len;
4282 
4283 	return (err);
4284 }
4285 
4286 /*
4287  * Copy the portion of the file indicated from pages into the file.
4288  * The pages are stored in a page list attached to the files vnode.
4289  *
4290  *	IN:	vp	- vnode of file to push page data to.
4291  *		off	- position in file to put data.
4292  *		len	- amount of data to write.
4293  *		flags	- flags to control the operation.
4294  *		cr	- credentials of caller.
4295  *		ct	- caller context.
4296  *
4297  *	RETURN:	0 on success, error code on failure.
4298  *
4299  * Timestamps:
4300  *	vp - ctime|mtime updated
4301  */
4302 /*ARGSUSED*/
4303 static int
4304 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4305     caller_context_t *ct)
4306 {
4307 	znode_t		*zp = VTOZ(vp);
4308 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4309 	page_t		*pp;
4310 	size_t		io_len;
4311 	u_offset_t	io_off;
4312 	uint_t		blksz;
4313 	rl_t		*rl;
4314 	int		error = 0;
4315 
4316 	ZFS_ENTER(zfsvfs);
4317 	ZFS_VERIFY_ZP(zp);
4318 
4319 	/*
4320 	 * There's nothing to do if no data is cached.
4321 	 */
4322 	if (!vn_has_cached_data(vp)) {
4323 		ZFS_EXIT(zfsvfs);
4324 		return (0);
4325 	}
4326 
4327 	/*
4328 	 * Align this request to the file block size in case we kluster.
4329 	 * XXX - this can result in pretty aggresive locking, which can
4330 	 * impact simultanious read/write access.  One option might be
4331 	 * to break up long requests (len == 0) into block-by-block
4332 	 * operations to get narrower locking.
4333 	 */
4334 	blksz = zp->z_blksz;
4335 	if (ISP2(blksz))
4336 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4337 	else
4338 		io_off = 0;
4339 	if (len > 0 && ISP2(blksz))
4340 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4341 	else
4342 		io_len = 0;
4343 
4344 	if (io_len == 0) {
4345 		/*
4346 		 * Search the entire vp list for pages >= io_off.
4347 		 */
4348 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4349 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4350 		goto out;
4351 	}
4352 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4353 
4354 	if (off > zp->z_size) {
4355 		/* past end of file */
4356 		zfs_range_unlock(rl);
4357 		ZFS_EXIT(zfsvfs);
4358 		return (0);
4359 	}
4360 
4361 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4362 
4363 	for (off = io_off; io_off < off + len; io_off += io_len) {
4364 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4365 			pp = page_lookup(vp, io_off,
4366 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4367 		} else {
4368 			pp = page_lookup_nowait(vp, io_off,
4369 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4370 		}
4371 
4372 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4373 			int err;
4374 
4375 			/*
4376 			 * Found a dirty page to push
4377 			 */
4378 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4379 			if (err)
4380 				error = err;
4381 		} else {
4382 			io_len = PAGESIZE;
4383 		}
4384 	}
4385 out:
4386 	zfs_range_unlock(rl);
4387 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4388 		zil_commit(zfsvfs->z_log, zp->z_id);
4389 	ZFS_EXIT(zfsvfs);
4390 	return (error);
4391 }
4392 
4393 /*ARGSUSED*/
4394 void
4395 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4396 {
4397 	znode_t	*zp = VTOZ(vp);
4398 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4399 	int error;
4400 
4401 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4402 	if (zp->z_sa_hdl == NULL) {
4403 		/*
4404 		 * The fs has been unmounted, or we did a
4405 		 * suspend/resume and this file no longer exists.
4406 		 */
4407 		if (vn_has_cached_data(vp)) {
4408 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4409 			    B_INVAL, cr);
4410 		}
4411 
4412 		mutex_enter(&zp->z_lock);
4413 		mutex_enter(&vp->v_lock);
4414 		ASSERT(vp->v_count == 1);
4415 		VN_RELE_LOCKED(vp);
4416 		mutex_exit(&vp->v_lock);
4417 		mutex_exit(&zp->z_lock);
4418 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4419 		zfs_znode_free(zp);
4420 		return;
4421 	}
4422 
4423 	/*
4424 	 * Attempt to push any data in the page cache.  If this fails
4425 	 * we will get kicked out later in zfs_zinactive().
4426 	 */
4427 	if (vn_has_cached_data(vp)) {
4428 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4429 		    cr);
4430 	}
4431 
4432 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4433 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4434 
4435 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4436 		zfs_sa_upgrade_txholds(tx, zp);
4437 		error = dmu_tx_assign(tx, TXG_WAIT);
4438 		if (error) {
4439 			dmu_tx_abort(tx);
4440 		} else {
4441 			mutex_enter(&zp->z_lock);
4442 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4443 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4444 			zp->z_atime_dirty = 0;
4445 			mutex_exit(&zp->z_lock);
4446 			dmu_tx_commit(tx);
4447 		}
4448 	}
4449 
4450 	zfs_zinactive(zp);
4451 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4452 }
4453 
4454 /*
4455  * Bounds-check the seek operation.
4456  *
4457  *	IN:	vp	- vnode seeking within
4458  *		ooff	- old file offset
4459  *		noffp	- pointer to new file offset
4460  *		ct	- caller context
4461  *
4462  *	RETURN:	0 on success, EINVAL if new offset invalid.
4463  */
4464 /* ARGSUSED */
4465 static int
4466 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4467     caller_context_t *ct)
4468 {
4469 	if (vp->v_type == VDIR)
4470 		return (0);
4471 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4472 }
4473 
4474 /*
4475  * Pre-filter the generic locking function to trap attempts to place
4476  * a mandatory lock on a memory mapped file.
4477  */
4478 static int
4479 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4480     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4481 {
4482 	znode_t *zp = VTOZ(vp);
4483 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4484 
4485 	ZFS_ENTER(zfsvfs);
4486 	ZFS_VERIFY_ZP(zp);
4487 
4488 	/*
4489 	 * We are following the UFS semantics with respect to mapcnt
4490 	 * here: If we see that the file is mapped already, then we will
4491 	 * return an error, but we don't worry about races between this
4492 	 * function and zfs_map().
4493 	 */
4494 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4495 		ZFS_EXIT(zfsvfs);
4496 		return (SET_ERROR(EAGAIN));
4497 	}
4498 	ZFS_EXIT(zfsvfs);
4499 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4500 }
4501 
4502 /*
4503  * If we can't find a page in the cache, we will create a new page
4504  * and fill it with file data.  For efficiency, we may try to fill
4505  * multiple pages at once (klustering) to fill up the supplied page
4506  * list.  Note that the pages to be filled are held with an exclusive
4507  * lock to prevent access by other threads while they are being filled.
4508  */
4509 static int
4510 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4511     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4512 {
4513 	znode_t *zp = VTOZ(vp);
4514 	page_t *pp, *cur_pp;
4515 	objset_t *os = zp->z_zfsvfs->z_os;
4516 	u_offset_t io_off, total;
4517 	size_t io_len;
4518 	int err;
4519 
4520 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4521 		/*
4522 		 * We only have a single page, don't bother klustering
4523 		 */
4524 		io_off = off;
4525 		io_len = PAGESIZE;
4526 		pp = page_create_va(vp, io_off, io_len,
4527 		    PG_EXCL | PG_WAIT, seg, addr);
4528 	} else {
4529 		/*
4530 		 * Try to find enough pages to fill the page list
4531 		 */
4532 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4533 		    &io_len, off, plsz, 0);
4534 	}
4535 	if (pp == NULL) {
4536 		/*
4537 		 * The page already exists, nothing to do here.
4538 		 */
4539 		*pl = NULL;
4540 		return (0);
4541 	}
4542 
4543 	/*
4544 	 * Fill the pages in the kluster.
4545 	 */
4546 	cur_pp = pp;
4547 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4548 		caddr_t va;
4549 
4550 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4551 		va = zfs_map_page(cur_pp, S_WRITE);
4552 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4553 		    DMU_READ_PREFETCH);
4554 		zfs_unmap_page(cur_pp, va);
4555 		if (err) {
4556 			/* On error, toss the entire kluster */
4557 			pvn_read_done(pp, B_ERROR);
4558 			/* convert checksum errors into IO errors */
4559 			if (err == ECKSUM)
4560 				err = SET_ERROR(EIO);
4561 			return (err);
4562 		}
4563 		cur_pp = cur_pp->p_next;
4564 	}
4565 
4566 	/*
4567 	 * Fill in the page list array from the kluster starting
4568 	 * from the desired offset `off'.
4569 	 * NOTE: the page list will always be null terminated.
4570 	 */
4571 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4572 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4573 
4574 	return (0);
4575 }
4576 
4577 /*
4578  * Return pointers to the pages for the file region [off, off + len]
4579  * in the pl array.  If plsz is greater than len, this function may
4580  * also return page pointers from after the specified region
4581  * (i.e. the region [off, off + plsz]).  These additional pages are
4582  * only returned if they are already in the cache, or were created as
4583  * part of a klustered read.
4584  *
4585  *	IN:	vp	- vnode of file to get data from.
4586  *		off	- position in file to get data from.
4587  *		len	- amount of data to retrieve.
4588  *		plsz	- length of provided page list.
4589  *		seg	- segment to obtain pages for.
4590  *		addr	- virtual address of fault.
4591  *		rw	- mode of created pages.
4592  *		cr	- credentials of caller.
4593  *		ct	- caller context.
4594  *
4595  *	OUT:	protp	- protection mode of created pages.
4596  *		pl	- list of pages created.
4597  *
4598  *	RETURN:	0 on success, error code on failure.
4599  *
4600  * Timestamps:
4601  *	vp - atime updated
4602  */
4603 /* ARGSUSED */
4604 static int
4605 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4606     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4607     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4608 {
4609 	znode_t		*zp = VTOZ(vp);
4610 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4611 	page_t		**pl0 = pl;
4612 	int		err = 0;
4613 
4614 	/* we do our own caching, faultahead is unnecessary */
4615 	if (pl == NULL)
4616 		return (0);
4617 	else if (len > plsz)
4618 		len = plsz;
4619 	else
4620 		len = P2ROUNDUP(len, PAGESIZE);
4621 	ASSERT(plsz >= len);
4622 
4623 	ZFS_ENTER(zfsvfs);
4624 	ZFS_VERIFY_ZP(zp);
4625 
4626 	if (protp)
4627 		*protp = PROT_ALL;
4628 
4629 	/*
4630 	 * Loop through the requested range [off, off + len) looking
4631 	 * for pages.  If we don't find a page, we will need to create
4632 	 * a new page and fill it with data from the file.
4633 	 */
4634 	while (len > 0) {
4635 		if (*pl = page_lookup(vp, off, SE_SHARED))
4636 			*(pl+1) = NULL;
4637 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4638 			goto out;
4639 		while (*pl) {
4640 			ASSERT3U((*pl)->p_offset, ==, off);
4641 			off += PAGESIZE;
4642 			addr += PAGESIZE;
4643 			if (len > 0) {
4644 				ASSERT3U(len, >=, PAGESIZE);
4645 				len -= PAGESIZE;
4646 			}
4647 			ASSERT3U(plsz, >=, PAGESIZE);
4648 			plsz -= PAGESIZE;
4649 			pl++;
4650 		}
4651 	}
4652 
4653 	/*
4654 	 * Fill out the page array with any pages already in the cache.
4655 	 */
4656 	while (plsz > 0 &&
4657 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4658 			off += PAGESIZE;
4659 			plsz -= PAGESIZE;
4660 	}
4661 out:
4662 	if (err) {
4663 		/*
4664 		 * Release any pages we have previously locked.
4665 		 */
4666 		while (pl > pl0)
4667 			page_unlock(*--pl);
4668 	} else {
4669 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4670 	}
4671 
4672 	*pl = NULL;
4673 
4674 	ZFS_EXIT(zfsvfs);
4675 	return (err);
4676 }
4677 
4678 /*
4679  * Request a memory map for a section of a file.  This code interacts
4680  * with common code and the VM system as follows:
4681  *
4682  * - common code calls mmap(), which ends up in smmap_common()
4683  * - this calls VOP_MAP(), which takes you into (say) zfs
4684  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4685  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4686  * - zfs_addmap() updates z_mapcnt
4687  */
4688 /*ARGSUSED*/
4689 static int
4690 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4691     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4692     caller_context_t *ct)
4693 {
4694 	znode_t *zp = VTOZ(vp);
4695 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4696 	segvn_crargs_t	vn_a;
4697 	int		error;
4698 
4699 	ZFS_ENTER(zfsvfs);
4700 	ZFS_VERIFY_ZP(zp);
4701 
4702 	/*
4703 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4704 	 */
4705 
4706 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4707 	    (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4708 		ZFS_EXIT(zfsvfs);
4709 		return (SET_ERROR(EPERM));
4710 	}
4711 
4712 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4713 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4714 		ZFS_EXIT(zfsvfs);
4715 		return (SET_ERROR(EACCES));
4716 	}
4717 
4718 	if (vp->v_flag & VNOMAP) {
4719 		ZFS_EXIT(zfsvfs);
4720 		return (SET_ERROR(ENOSYS));
4721 	}
4722 
4723 	if (off < 0 || len > MAXOFFSET_T - off) {
4724 		ZFS_EXIT(zfsvfs);
4725 		return (SET_ERROR(ENXIO));
4726 	}
4727 
4728 	if (vp->v_type != VREG) {
4729 		ZFS_EXIT(zfsvfs);
4730 		return (SET_ERROR(ENODEV));
4731 	}
4732 
4733 	/*
4734 	 * If file is locked, disallow mapping.
4735 	 */
4736 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4737 		ZFS_EXIT(zfsvfs);
4738 		return (SET_ERROR(EAGAIN));
4739 	}
4740 
4741 	as_rangelock(as);
4742 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4743 	if (error != 0) {
4744 		as_rangeunlock(as);
4745 		ZFS_EXIT(zfsvfs);
4746 		return (error);
4747 	}
4748 
4749 	vn_a.vp = vp;
4750 	vn_a.offset = (u_offset_t)off;
4751 	vn_a.type = flags & MAP_TYPE;
4752 	vn_a.prot = prot;
4753 	vn_a.maxprot = maxprot;
4754 	vn_a.cred = cr;
4755 	vn_a.amp = NULL;
4756 	vn_a.flags = flags & ~MAP_TYPE;
4757 	vn_a.szc = 0;
4758 	vn_a.lgrp_mem_policy_flags = 0;
4759 
4760 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4761 
4762 	as_rangeunlock(as);
4763 	ZFS_EXIT(zfsvfs);
4764 	return (error);
4765 }
4766 
4767 /* ARGSUSED */
4768 static int
4769 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4770     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4771     caller_context_t *ct)
4772 {
4773 	uint64_t pages = btopr(len);
4774 
4775 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4776 	return (0);
4777 }
4778 
4779 /*
4780  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4781  * more accurate mtime for the associated file.  Since we don't have a way of
4782  * detecting when the data was actually modified, we have to resort to
4783  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4784  * last page is pushed.  The problem occurs when the msync() call is omitted,
4785  * which by far the most common case:
4786  *
4787  *	open()
4788  *	mmap()
4789  *	<modify memory>
4790  *	munmap()
4791  *	close()
4792  *	<time lapse>
4793  *	putpage() via fsflush
4794  *
4795  * If we wait until fsflush to come along, we can have a modification time that
4796  * is some arbitrary point in the future.  In order to prevent this in the
4797  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4798  * torn down.
4799  */
4800 /* ARGSUSED */
4801 static int
4802 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4803     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4804     caller_context_t *ct)
4805 {
4806 	uint64_t pages = btopr(len);
4807 
4808 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4809 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4810 
4811 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4812 	    vn_has_cached_data(vp))
4813 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4814 
4815 	return (0);
4816 }
4817 
4818 /*
4819  * Free or allocate space in a file.  Currently, this function only
4820  * supports the `F_FREESP' command.  However, this command is somewhat
4821  * misnamed, as its functionality includes the ability to allocate as
4822  * well as free space.
4823  *
4824  *	IN:	vp	- vnode of file to free data in.
4825  *		cmd	- action to take (only F_FREESP supported).
4826  *		bfp	- section of file to free/alloc.
4827  *		flag	- current file open mode flags.
4828  *		offset	- current file offset.
4829  *		cr	- credentials of caller [UNUSED].
4830  *		ct	- caller context.
4831  *
4832  *	RETURN:	0 on success, error code on failure.
4833  *
4834  * Timestamps:
4835  *	vp - ctime|mtime updated
4836  */
4837 /* ARGSUSED */
4838 static int
4839 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4840     offset_t offset, cred_t *cr, caller_context_t *ct)
4841 {
4842 	znode_t		*zp = VTOZ(vp);
4843 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4844 	uint64_t	off, len;
4845 	int		error;
4846 
4847 	ZFS_ENTER(zfsvfs);
4848 	ZFS_VERIFY_ZP(zp);
4849 
4850 	if (cmd != F_FREESP) {
4851 		ZFS_EXIT(zfsvfs);
4852 		return (SET_ERROR(EINVAL));
4853 	}
4854 
4855 	/*
4856 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4857 	 * callers might not be able to detect properly that we are read-only,
4858 	 * so check it explicitly here.
4859 	 */
4860 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4861 		ZFS_EXIT(zfsvfs);
4862 		return (SET_ERROR(EROFS));
4863 	}
4864 
4865 	if (error = convoff(vp, bfp, 0, offset)) {
4866 		ZFS_EXIT(zfsvfs);
4867 		return (error);
4868 	}
4869 
4870 	if (bfp->l_len < 0) {
4871 		ZFS_EXIT(zfsvfs);
4872 		return (SET_ERROR(EINVAL));
4873 	}
4874 
4875 	off = bfp->l_start;
4876 	len = bfp->l_len; /* 0 means from off to end of file */
4877 
4878 	error = zfs_freesp(zp, off, len, flag, TRUE);
4879 
4880 	if (error == 0 && off == 0 && len == 0)
4881 		vnevent_truncate(ZTOV(zp), ct);
4882 
4883 	ZFS_EXIT(zfsvfs);
4884 	return (error);
4885 }
4886 
4887 /*ARGSUSED*/
4888 static int
4889 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4890 {
4891 	znode_t		*zp = VTOZ(vp);
4892 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4893 	uint32_t	gen;
4894 	uint64_t	gen64;
4895 	uint64_t	object = zp->z_id;
4896 	zfid_short_t	*zfid;
4897 	int		size, i, error;
4898 
4899 	ZFS_ENTER(zfsvfs);
4900 	ZFS_VERIFY_ZP(zp);
4901 
4902 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4903 	    &gen64, sizeof (uint64_t))) != 0) {
4904 		ZFS_EXIT(zfsvfs);
4905 		return (error);
4906 	}
4907 
4908 	gen = (uint32_t)gen64;
4909 
4910 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4911 	if (fidp->fid_len < size) {
4912 		fidp->fid_len = size;
4913 		ZFS_EXIT(zfsvfs);
4914 		return (SET_ERROR(ENOSPC));
4915 	}
4916 
4917 	zfid = (zfid_short_t *)fidp;
4918 
4919 	zfid->zf_len = size;
4920 
4921 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4922 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4923 
4924 	/* Must have a non-zero generation number to distinguish from .zfs */
4925 	if (gen == 0)
4926 		gen = 1;
4927 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4928 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4929 
4930 	if (size == LONG_FID_LEN) {
4931 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4932 		zfid_long_t	*zlfid;
4933 
4934 		zlfid = (zfid_long_t *)fidp;
4935 
4936 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4937 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4938 
4939 		/* XXX - this should be the generation number for the objset */
4940 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4941 			zlfid->zf_setgen[i] = 0;
4942 	}
4943 
4944 	ZFS_EXIT(zfsvfs);
4945 	return (0);
4946 }
4947 
4948 static int
4949 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4950     caller_context_t *ct)
4951 {
4952 	znode_t		*zp, *xzp;
4953 	zfsvfs_t	*zfsvfs;
4954 	zfs_dirlock_t	*dl;
4955 	int		error;
4956 
4957 	switch (cmd) {
4958 	case _PC_LINK_MAX:
4959 		*valp = ULONG_MAX;
4960 		return (0);
4961 
4962 	case _PC_FILESIZEBITS:
4963 		*valp = 64;
4964 		return (0);
4965 
4966 	case _PC_XATTR_EXISTS:
4967 		zp = VTOZ(vp);
4968 		zfsvfs = zp->z_zfsvfs;
4969 		ZFS_ENTER(zfsvfs);
4970 		ZFS_VERIFY_ZP(zp);
4971 		*valp = 0;
4972 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4973 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4974 		if (error == 0) {
4975 			zfs_dirent_unlock(dl);
4976 			if (!zfs_dirempty(xzp))
4977 				*valp = 1;
4978 			VN_RELE(ZTOV(xzp));
4979 		} else if (error == ENOENT) {
4980 			/*
4981 			 * If there aren't extended attributes, it's the
4982 			 * same as having zero of them.
4983 			 */
4984 			error = 0;
4985 		}
4986 		ZFS_EXIT(zfsvfs);
4987 		return (error);
4988 
4989 	case _PC_SATTR_ENABLED:
4990 	case _PC_SATTR_EXISTS:
4991 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4992 		    (vp->v_type == VREG || vp->v_type == VDIR);
4993 		return (0);
4994 
4995 	case _PC_ACCESS_FILTERING:
4996 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4997 		    vp->v_type == VDIR;
4998 		return (0);
4999 
5000 	case _PC_ACL_ENABLED:
5001 		*valp = _ACL_ACE_ENABLED;
5002 		return (0);
5003 
5004 	case _PC_MIN_HOLE_SIZE:
5005 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
5006 		return (0);
5007 
5008 	case _PC_TIMESTAMP_RESOLUTION:
5009 		/* nanosecond timestamp resolution */
5010 		*valp = 1L;
5011 		return (0);
5012 
5013 	default:
5014 		return (fs_pathconf(vp, cmd, valp, cr, ct));
5015 	}
5016 }
5017 
5018 /*ARGSUSED*/
5019 static int
5020 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5021     caller_context_t *ct)
5022 {
5023 	znode_t *zp = VTOZ(vp);
5024 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5025 	int error;
5026 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5027 
5028 	ZFS_ENTER(zfsvfs);
5029 	ZFS_VERIFY_ZP(zp);
5030 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5031 	ZFS_EXIT(zfsvfs);
5032 
5033 	return (error);
5034 }
5035 
5036 /*ARGSUSED*/
5037 static int
5038 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5039     caller_context_t *ct)
5040 {
5041 	znode_t *zp = VTOZ(vp);
5042 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5043 	int error;
5044 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5045 	zilog_t	*zilog = zfsvfs->z_log;
5046 
5047 	ZFS_ENTER(zfsvfs);
5048 	ZFS_VERIFY_ZP(zp);
5049 
5050 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5051 
5052 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5053 		zil_commit(zilog, 0);
5054 
5055 	ZFS_EXIT(zfsvfs);
5056 	return (error);
5057 }
5058 
5059 /*
5060  * The smallest read we may consider to loan out an arcbuf.
5061  * This must be a power of 2.
5062  */
5063 int zcr_blksz_min = (1 << 10);	/* 1K */
5064 /*
5065  * If set to less than the file block size, allow loaning out of an
5066  * arcbuf for a partial block read.  This must be a power of 2.
5067  */
5068 int zcr_blksz_max = (1 << 17);	/* 128K */
5069 
5070 /*ARGSUSED*/
5071 static int
5072 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5073     caller_context_t *ct)
5074 {
5075 	znode_t	*zp = VTOZ(vp);
5076 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5077 	int max_blksz = zfsvfs->z_max_blksz;
5078 	uio_t *uio = &xuio->xu_uio;
5079 	ssize_t size = uio->uio_resid;
5080 	offset_t offset = uio->uio_loffset;
5081 	int blksz;
5082 	int fullblk, i;
5083 	arc_buf_t *abuf;
5084 	ssize_t maxsize;
5085 	int preamble, postamble;
5086 
5087 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5088 		return (SET_ERROR(EINVAL));
5089 
5090 	ZFS_ENTER(zfsvfs);
5091 	ZFS_VERIFY_ZP(zp);
5092 	switch (ioflag) {
5093 	case UIO_WRITE:
5094 		/*
5095 		 * Loan out an arc_buf for write if write size is bigger than
5096 		 * max_blksz, and the file's block size is also max_blksz.
5097 		 */
5098 		blksz = max_blksz;
5099 		if (size < blksz || zp->z_blksz != blksz) {
5100 			ZFS_EXIT(zfsvfs);
5101 			return (SET_ERROR(EINVAL));
5102 		}
5103 		/*
5104 		 * Caller requests buffers for write before knowing where the
5105 		 * write offset might be (e.g. NFS TCP write).
5106 		 */
5107 		if (offset == -1) {
5108 			preamble = 0;
5109 		} else {
5110 			preamble = P2PHASE(offset, blksz);
5111 			if (preamble) {
5112 				preamble = blksz - preamble;
5113 				size -= preamble;
5114 			}
5115 		}
5116 
5117 		postamble = P2PHASE(size, blksz);
5118 		size -= postamble;
5119 
5120 		fullblk = size / blksz;
5121 		(void) dmu_xuio_init(xuio,
5122 		    (preamble != 0) + fullblk + (postamble != 0));
5123 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5124 		    int, postamble, int,
5125 		    (preamble != 0) + fullblk + (postamble != 0));
5126 
5127 		/*
5128 		 * Have to fix iov base/len for partial buffers.  They
5129 		 * currently represent full arc_buf's.
5130 		 */
5131 		if (preamble) {
5132 			/* data begins in the middle of the arc_buf */
5133 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5134 			    blksz);
5135 			ASSERT(abuf);
5136 			(void) dmu_xuio_add(xuio, abuf,
5137 			    blksz - preamble, preamble);
5138 		}
5139 
5140 		for (i = 0; i < fullblk; i++) {
5141 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5142 			    blksz);
5143 			ASSERT(abuf);
5144 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5145 		}
5146 
5147 		if (postamble) {
5148 			/* data ends in the middle of the arc_buf */
5149 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5150 			    blksz);
5151 			ASSERT(abuf);
5152 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5153 		}
5154 		break;
5155 	case UIO_READ:
5156 		/*
5157 		 * Loan out an arc_buf for read if the read size is larger than
5158 		 * the current file block size.  Block alignment is not
5159 		 * considered.  Partial arc_buf will be loaned out for read.
5160 		 */
5161 		blksz = zp->z_blksz;
5162 		if (blksz < zcr_blksz_min)
5163 			blksz = zcr_blksz_min;
5164 		if (blksz > zcr_blksz_max)
5165 			blksz = zcr_blksz_max;
5166 		/* avoid potential complexity of dealing with it */
5167 		if (blksz > max_blksz) {
5168 			ZFS_EXIT(zfsvfs);
5169 			return (SET_ERROR(EINVAL));
5170 		}
5171 
5172 		maxsize = zp->z_size - uio->uio_loffset;
5173 		if (size > maxsize)
5174 			size = maxsize;
5175 
5176 		if (size < blksz || vn_has_cached_data(vp)) {
5177 			ZFS_EXIT(zfsvfs);
5178 			return (SET_ERROR(EINVAL));
5179 		}
5180 		break;
5181 	default:
5182 		ZFS_EXIT(zfsvfs);
5183 		return (SET_ERROR(EINVAL));
5184 	}
5185 
5186 	uio->uio_extflg = UIO_XUIO;
5187 	XUIO_XUZC_RW(xuio) = ioflag;
5188 	ZFS_EXIT(zfsvfs);
5189 	return (0);
5190 }
5191 
5192 /*ARGSUSED*/
5193 static int
5194 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5195 {
5196 	int i;
5197 	arc_buf_t *abuf;
5198 	int ioflag = XUIO_XUZC_RW(xuio);
5199 
5200 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5201 
5202 	i = dmu_xuio_cnt(xuio);
5203 	while (i-- > 0) {
5204 		abuf = dmu_xuio_arcbuf(xuio, i);
5205 		/*
5206 		 * if abuf == NULL, it must be a write buffer
5207 		 * that has been returned in zfs_write().
5208 		 */
5209 		if (abuf)
5210 			dmu_return_arcbuf(abuf);
5211 		ASSERT(abuf || ioflag == UIO_WRITE);
5212 	}
5213 
5214 	dmu_xuio_fini(xuio);
5215 	return (0);
5216 }
5217 
5218 /*
5219  * Predeclare these here so that the compiler assumes that
5220  * this is an "old style" function declaration that does
5221  * not include arguments => we won't get type mismatch errors
5222  * in the initializations that follow.
5223  */
5224 static int zfs_inval();
5225 static int zfs_isdir();
5226 
5227 static int
5228 zfs_inval()
5229 {
5230 	return (SET_ERROR(EINVAL));
5231 }
5232 
5233 static int
5234 zfs_isdir()
5235 {
5236 	return (SET_ERROR(EISDIR));
5237 }
5238 /*
5239  * Directory vnode operations template
5240  */
5241 vnodeops_t *zfs_dvnodeops;
5242 const fs_operation_def_t zfs_dvnodeops_template[] = {
5243 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5244 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5245 	VOPNAME_READ,		{ .error = zfs_isdir },
5246 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5247 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5248 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5249 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5250 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5251 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5252 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5253 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5254 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5255 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5256 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5257 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5258 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5259 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5260 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5261 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5262 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5263 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5264 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5265 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5266 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5267 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5268 	NULL,			NULL
5269 };
5270 
5271 /*
5272  * Regular file vnode operations template
5273  */
5274 vnodeops_t *zfs_fvnodeops;
5275 const fs_operation_def_t zfs_fvnodeops_template[] = {
5276 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5277 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5278 	VOPNAME_READ,		{ .vop_read = zfs_read },
5279 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5280 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5281 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5282 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5283 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5284 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5285 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5286 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5287 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5288 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5289 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5290 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5291 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5292 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5293 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5294 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5295 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5296 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5297 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5298 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5299 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5300 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5301 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5302 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5303 	NULL,			NULL
5304 };
5305 
5306 /*
5307  * Symbolic link vnode operations template
5308  */
5309 vnodeops_t *zfs_symvnodeops;
5310 const fs_operation_def_t zfs_symvnodeops_template[] = {
5311 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5312 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5313 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5314 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5315 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5316 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5317 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5318 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5319 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5320 	NULL,			NULL
5321 };
5322 
5323 /*
5324  * special share hidden files vnode operations template
5325  */
5326 vnodeops_t *zfs_sharevnodeops;
5327 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5328 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5329 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5330 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5331 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5332 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5333 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5334 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5335 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5336 	NULL,			NULL
5337 };
5338 
5339 /*
5340  * Extended attribute directory vnode operations template
5341  *
5342  * This template is identical to the directory vnodes
5343  * operation template except for restricted operations:
5344  *	VOP_MKDIR()
5345  *	VOP_SYMLINK()
5346  *
5347  * Note that there are other restrictions embedded in:
5348  *	zfs_create()	- restrict type to VREG
5349  *	zfs_link()	- no links into/out of attribute space
5350  *	zfs_rename()	- no moves into/out of attribute space
5351  */
5352 vnodeops_t *zfs_xdvnodeops;
5353 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5354 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5355 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5356 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5357 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5358 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5359 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5360 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5361 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5362 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5363 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5364 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5365 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5366 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5367 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5368 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5369 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5370 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5371 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5372 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5373 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5374 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5375 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5376 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5377 	NULL,			NULL
5378 };
5379 
5380 /*
5381  * Error vnode operations template
5382  */
5383 vnodeops_t *zfs_evnodeops;
5384 const fs_operation_def_t zfs_evnodeops_template[] = {
5385 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5386 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5387 	NULL,			NULL
5388 };
5389