xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision f18faf3f3e5def85fdfff681617d227703ace2ad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/bootconf.h>
60 #include <sys/sunddi.h>
61 #include <sys/dnlc.h>
62 #include <sys/dmu_objset.h>
63 
64 int zfsfstype;
65 vfsops_t *zfs_vfsops = NULL;
66 static major_t zfs_major;
67 static minor_t zfs_minor;
68 static kmutex_t	zfs_dev_mtx;
69 
70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
76 static void zfs_freevfs(vfs_t *vfsp);
77 
78 static const fs_operation_def_t zfs_vfsops_template[] = {
79 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
80 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
81 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
82 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
83 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
84 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
85 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
86 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
87 	NULL,			NULL
88 };
89 
90 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
91 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
92 	NULL,			NULL
93 };
94 
95 /*
96  * We need to keep a count of active fs's.
97  * This is necessary to prevent our module
98  * from being unloaded after a umount -f
99  */
100 static uint32_t	zfs_active_fs_count = 0;
101 
102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
106 
107 /*
108  * MO_DEFAULT is not used since the default value is determined
109  * by the equivalent property.
110  */
111 static mntopt_t mntopts[] = {
112 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
113 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
114 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
115 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
116 };
117 
118 static mntopts_t zfs_mntopts = {
119 	sizeof (mntopts) / sizeof (mntopt_t),
120 	mntopts
121 };
122 
123 /*ARGSUSED*/
124 int
125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
126 {
127 	/*
128 	 * Data integrity is job one.  We don't want a compromised kernel
129 	 * writing to the storage pool, so we never sync during panic.
130 	 */
131 	if (panicstr)
132 		return (0);
133 
134 	/*
135 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
136 	 * to sync metadata, which they would otherwise cache indefinitely.
137 	 * Semantically, the only requirement is that the sync be initiated.
138 	 * The DMU syncs out txgs frequently, so there's nothing to do.
139 	 */
140 	if (flag & SYNC_ATTR)
141 		return (0);
142 
143 	if (vfsp != NULL) {
144 		/*
145 		 * Sync a specific filesystem.
146 		 */
147 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
148 
149 		ZFS_ENTER(zfsvfs);
150 		if (zfsvfs->z_log != NULL)
151 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
152 		else
153 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
154 		ZFS_EXIT(zfsvfs);
155 	} else {
156 		/*
157 		 * Sync all ZFS filesystems.  This is what happens when you
158 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
159 		 * request by waiting for all pools to commit all dirty data.
160 		 */
161 		spa_sync_allpools();
162 	}
163 
164 	return (0);
165 }
166 
167 static int
168 zfs_create_unique_device(dev_t *dev)
169 {
170 	major_t new_major;
171 
172 	do {
173 		ASSERT3U(zfs_minor, <=, MAXMIN32);
174 		minor_t start = zfs_minor;
175 		do {
176 			mutex_enter(&zfs_dev_mtx);
177 			if (zfs_minor >= MAXMIN32) {
178 				/*
179 				 * If we're still using the real major
180 				 * keep out of /dev/zfs and /dev/zvol minor
181 				 * number space.  If we're using a getudev()'ed
182 				 * major number, we can use all of its minors.
183 				 */
184 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
185 					zfs_minor = ZFS_MIN_MINOR;
186 				else
187 					zfs_minor = 0;
188 			} else {
189 				zfs_minor++;
190 			}
191 			*dev = makedevice(zfs_major, zfs_minor);
192 			mutex_exit(&zfs_dev_mtx);
193 		} while (vfs_devismounted(*dev) && zfs_minor != start);
194 		if (zfs_minor == start) {
195 			/*
196 			 * We are using all ~262,000 minor numbers for the
197 			 * current major number.  Create a new major number.
198 			 */
199 			if ((new_major = getudev()) == (major_t)-1) {
200 				cmn_err(CE_WARN,
201 				    "zfs_mount: Can't get unique major "
202 				    "device number.");
203 				return (-1);
204 			}
205 			mutex_enter(&zfs_dev_mtx);
206 			zfs_major = new_major;
207 			zfs_minor = 0;
208 
209 			mutex_exit(&zfs_dev_mtx);
210 		} else {
211 			break;
212 		}
213 		/* CONSTANTCONDITION */
214 	} while (1);
215 
216 	return (0);
217 }
218 
219 static void
220 atime_changed_cb(void *arg, uint64_t newval)
221 {
222 	zfsvfs_t *zfsvfs = arg;
223 
224 	if (newval == TRUE) {
225 		zfsvfs->z_atime = TRUE;
226 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
227 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
228 	} else {
229 		zfsvfs->z_atime = FALSE;
230 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
231 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
232 	}
233 }
234 
235 static void
236 xattr_changed_cb(void *arg, uint64_t newval)
237 {
238 	zfsvfs_t *zfsvfs = arg;
239 
240 	if (newval == TRUE) {
241 		/* XXX locking on vfs_flag? */
242 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
243 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
244 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
245 	} else {
246 		/* XXX locking on vfs_flag? */
247 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
248 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
249 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
250 	}
251 }
252 
253 static void
254 blksz_changed_cb(void *arg, uint64_t newval)
255 {
256 	zfsvfs_t *zfsvfs = arg;
257 
258 	if (newval < SPA_MINBLOCKSIZE ||
259 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
260 		newval = SPA_MAXBLOCKSIZE;
261 
262 	zfsvfs->z_max_blksz = newval;
263 	zfsvfs->z_vfs->vfs_bsize = newval;
264 }
265 
266 static void
267 readonly_changed_cb(void *arg, uint64_t newval)
268 {
269 	zfsvfs_t *zfsvfs = arg;
270 
271 	if (newval) {
272 		/* XXX locking on vfs_flag? */
273 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
274 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
275 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
276 	} else {
277 		/* XXX locking on vfs_flag? */
278 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
279 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
280 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
281 	}
282 }
283 
284 static void
285 devices_changed_cb(void *arg, uint64_t newval)
286 {
287 	zfsvfs_t *zfsvfs = arg;
288 
289 	if (newval == FALSE) {
290 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
291 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
292 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
293 	} else {
294 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
295 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
296 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
297 	}
298 }
299 
300 static void
301 setuid_changed_cb(void *arg, uint64_t newval)
302 {
303 	zfsvfs_t *zfsvfs = arg;
304 
305 	if (newval == FALSE) {
306 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309 	} else {
310 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313 	}
314 }
315 
316 static void
317 exec_changed_cb(void *arg, uint64_t newval)
318 {
319 	zfsvfs_t *zfsvfs = arg;
320 
321 	if (newval == FALSE) {
322 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325 	} else {
326 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329 	}
330 }
331 
332 static void
333 snapdir_changed_cb(void *arg, uint64_t newval)
334 {
335 	zfsvfs_t *zfsvfs = arg;
336 
337 	zfsvfs->z_show_ctldir = newval;
338 }
339 
340 static void
341 acl_mode_changed_cb(void *arg, uint64_t newval)
342 {
343 	zfsvfs_t *zfsvfs = arg;
344 
345 	zfsvfs->z_acl_mode = newval;
346 }
347 
348 static void
349 acl_inherit_changed_cb(void *arg, uint64_t newval)
350 {
351 	zfsvfs_t *zfsvfs = arg;
352 
353 	zfsvfs->z_acl_inherit = newval;
354 }
355 
356 static int
357 zfs_register_callbacks(vfs_t *vfsp)
358 {
359 	struct dsl_dataset *ds = NULL;
360 	objset_t *os = NULL;
361 	zfsvfs_t *zfsvfs = NULL;
362 	int readonly, do_readonly = FALSE;
363 	int setuid, do_setuid = FALSE;
364 	int exec, do_exec = FALSE;
365 	int devices, do_devices = FALSE;
366 	int xattr, do_xattr = FALSE;
367 	int atime, do_atime = FALSE;
368 	int error = 0;
369 
370 	ASSERT(vfsp);
371 	zfsvfs = vfsp->vfs_data;
372 	ASSERT(zfsvfs);
373 	os = zfsvfs->z_os;
374 
375 	/*
376 	 * The act of registering our callbacks will destroy any mount
377 	 * options we may have.  In order to enable temporary overrides
378 	 * of mount options, we stash away the current values and
379 	 * restore them after we register the callbacks.
380 	 */
381 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
382 		readonly = B_TRUE;
383 		do_readonly = B_TRUE;
384 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
385 		readonly = B_FALSE;
386 		do_readonly = B_TRUE;
387 	}
388 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
389 		devices = B_FALSE;
390 		setuid = B_FALSE;
391 		do_devices = B_TRUE;
392 		do_setuid = B_TRUE;
393 	} else {
394 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
395 			devices = B_FALSE;
396 			do_devices = B_TRUE;
397 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
398 			devices = B_TRUE;
399 			do_devices = B_TRUE;
400 		}
401 
402 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
403 			setuid = B_FALSE;
404 			do_setuid = B_TRUE;
405 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
406 			setuid = B_TRUE;
407 			do_setuid = B_TRUE;
408 		}
409 	}
410 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
411 		exec = B_FALSE;
412 		do_exec = B_TRUE;
413 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
414 		exec = B_TRUE;
415 		do_exec = B_TRUE;
416 	}
417 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
418 		xattr = B_FALSE;
419 		do_xattr = B_TRUE;
420 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
421 		xattr = B_TRUE;
422 		do_xattr = B_TRUE;
423 	}
424 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
425 		atime = B_FALSE;
426 		do_atime = B_TRUE;
427 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
428 		atime = B_TRUE;
429 		do_atime = B_TRUE;
430 	}
431 
432 	/*
433 	 * Register property callbacks.
434 	 *
435 	 * It would probably be fine to just check for i/o error from
436 	 * the first prop_register(), but I guess I like to go
437 	 * overboard...
438 	 */
439 	ds = dmu_objset_ds(os);
440 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
441 	error = error ? error : dsl_prop_register(ds,
442 	    "xattr", xattr_changed_cb, zfsvfs);
443 	error = error ? error : dsl_prop_register(ds,
444 	    "recordsize", blksz_changed_cb, zfsvfs);
445 	error = error ? error : dsl_prop_register(ds,
446 	    "readonly", readonly_changed_cb, zfsvfs);
447 	error = error ? error : dsl_prop_register(ds,
448 	    "devices", devices_changed_cb, zfsvfs);
449 	error = error ? error : dsl_prop_register(ds,
450 	    "setuid", setuid_changed_cb, zfsvfs);
451 	error = error ? error : dsl_prop_register(ds,
452 	    "exec", exec_changed_cb, zfsvfs);
453 	error = error ? error : dsl_prop_register(ds,
454 	    "snapdir", snapdir_changed_cb, zfsvfs);
455 	error = error ? error : dsl_prop_register(ds,
456 	    "aclmode", acl_mode_changed_cb, zfsvfs);
457 	error = error ? error : dsl_prop_register(ds,
458 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
459 	if (error)
460 		goto unregister;
461 
462 	/*
463 	 * Invoke our callbacks to restore temporary mount options.
464 	 */
465 	if (do_readonly)
466 		readonly_changed_cb(zfsvfs, readonly);
467 	if (do_setuid)
468 		setuid_changed_cb(zfsvfs, setuid);
469 	if (do_exec)
470 		exec_changed_cb(zfsvfs, exec);
471 	if (do_devices)
472 		devices_changed_cb(zfsvfs, devices);
473 	if (do_xattr)
474 		xattr_changed_cb(zfsvfs, xattr);
475 	if (do_atime)
476 		atime_changed_cb(zfsvfs, atime);
477 
478 	return (0);
479 
480 unregister:
481 	/*
482 	 * We may attempt to unregister some callbacks that are not
483 	 * registered, but this is OK; it will simply return ENOMSG,
484 	 * which we will ignore.
485 	 */
486 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
487 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
488 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
489 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
490 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
491 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
492 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
493 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
494 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
495 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
496 	    zfsvfs);
497 	return (error);
498 
499 }
500 
501 static int
502 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
503 {
504 	uint_t readonly;
505 	int error;
506 
507 	error = zfs_register_callbacks(zfsvfs->z_vfs);
508 	if (error)
509 		return (error);
510 
511 	/*
512 	 * Set the objset user_ptr to track its zfsvfs.
513 	 */
514 	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
515 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
516 	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
517 
518 	/*
519 	 * If we are not mounting (ie: online recv), then we don't
520 	 * have to worry about replaying the log as we blocked all
521 	 * operations out since we closed the ZIL.
522 	 */
523 	if (mounting) {
524 		/*
525 		 * During replay we remove the read only flag to
526 		 * allow replays to succeed.
527 		 */
528 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
529 		if (readonly != 0)
530 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
531 		else
532 			zfs_unlinked_drain(zfsvfs);
533 
534 		/*
535 		 * Parse and replay the intent log.
536 		 *
537 		 * Because of ziltest, this must be done after
538 		 * zfs_unlinked_drain().  (Further note: ziltest doesn't
539 		 * use readonly mounts, where zfs_unlinked_drain() isn't
540 		 * called.)  This is because ziltest causes spa_sync()
541 		 * to think it's committed, but actually it is not, so
542 		 * the intent log contains many txg's worth of changes.
543 		 *
544 		 * In particular, if object N is in the unlinked set in
545 		 * the last txg to actually sync, then it could be
546 		 * actually freed in a later txg and then reallocated in
547 		 * a yet later txg.  This would write a "create object
548 		 * N" record to the intent log.  Normally, this would be
549 		 * fine because the spa_sync() would have written out
550 		 * the fact that object N is free, before we could write
551 		 * the "create object N" intent log record.
552 		 *
553 		 * But when we are in ziltest mode, we advance the "open
554 		 * txg" without actually spa_sync()-ing the changes to
555 		 * disk.  So we would see that object N is still
556 		 * allocated and in the unlinked set, and there is an
557 		 * intent log record saying to allocate it.
558 		 */
559 		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
560 		    zfs_replay_vector);
561 
562 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
563 	}
564 
565 	if (!zil_disable)
566 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
567 
568 	return (0);
569 }
570 
571 static int
572 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr)
573 {
574 	dev_t mount_dev;
575 	uint64_t recordsize, readonly;
576 	int error = 0;
577 	int mode;
578 	zfsvfs_t *zfsvfs;
579 	znode_t *zp = NULL;
580 
581 	ASSERT(vfsp);
582 	ASSERT(osname);
583 
584 	/*
585 	 * Initialize the zfs-specific filesystem structure.
586 	 * Should probably make this a kmem cache, shuffle fields,
587 	 * and just bzero up to z_hold_mtx[].
588 	 */
589 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
590 	zfsvfs->z_vfs = vfsp;
591 	zfsvfs->z_parent = zfsvfs;
592 	zfsvfs->z_assign = TXG_NOWAIT;
593 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
594 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
595 
596 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
597 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
598 	    offsetof(znode_t, z_link_node));
599 	rrw_init(&zfsvfs->z_teardown_lock);
600 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
601 
602 	/* Initialize the generic filesystem structure. */
603 	vfsp->vfs_bcount = 0;
604 	vfsp->vfs_data = NULL;
605 
606 	if (zfs_create_unique_device(&mount_dev) == -1) {
607 		error = ENODEV;
608 		goto out;
609 	}
610 	ASSERT(vfs_devismounted(mount_dev) == 0);
611 
612 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
613 	    NULL))
614 		goto out;
615 
616 	vfsp->vfs_dev = mount_dev;
617 	vfsp->vfs_fstype = zfsfstype;
618 	vfsp->vfs_bsize = recordsize;
619 	vfsp->vfs_flag |= VFS_NOTRUNC;
620 	vfsp->vfs_data = zfsvfs;
621 
622 	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
623 		goto out;
624 
625 	if (readonly)
626 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
627 	else
628 		mode = DS_MODE_PRIMARY;
629 
630 	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
631 	if (error == EROFS) {
632 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
633 		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
634 		    &zfsvfs->z_os);
635 	}
636 
637 	if (error)
638 		goto out;
639 
640 	if (error = zfs_init_fs(zfsvfs, &zp, cr))
641 		goto out;
642 
643 	/* The call to zfs_init_fs leaves the vnode held, release it here. */
644 	VN_RELE(ZTOV(zp));
645 
646 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
647 		uint64_t xattr;
648 
649 		ASSERT(mode & DS_MODE_READONLY);
650 		atime_changed_cb(zfsvfs, B_FALSE);
651 		readonly_changed_cb(zfsvfs, B_TRUE);
652 		if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL))
653 			goto out;
654 		xattr_changed_cb(zfsvfs, xattr);
655 		zfsvfs->z_issnap = B_TRUE;
656 	} else {
657 		error = zfsvfs_setup(zfsvfs, B_TRUE);
658 	}
659 
660 	if (!zfsvfs->z_issnap)
661 		zfsctl_create(zfsvfs);
662 out:
663 	if (error) {
664 		if (zfsvfs->z_os)
665 			dmu_objset_close(zfsvfs->z_os);
666 		mutex_destroy(&zfsvfs->z_znodes_lock);
667 		list_destroy(&zfsvfs->z_all_znodes);
668 		rrw_destroy(&zfsvfs->z_teardown_lock);
669 		rw_destroy(&zfsvfs->z_teardown_inactive_lock);
670 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
671 	} else {
672 		atomic_add_32(&zfs_active_fs_count, 1);
673 	}
674 
675 	return (error);
676 }
677 
678 void
679 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
680 {
681 	objset_t *os = zfsvfs->z_os;
682 	struct dsl_dataset *ds;
683 
684 	/*
685 	 * Unregister properties.
686 	 */
687 	if (!dmu_objset_is_snapshot(os)) {
688 		ds = dmu_objset_ds(os);
689 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
690 		    zfsvfs) == 0);
691 
692 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
693 		    zfsvfs) == 0);
694 
695 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
696 		    zfsvfs) == 0);
697 
698 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
699 		    zfsvfs) == 0);
700 
701 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
702 		    zfsvfs) == 0);
703 
704 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
705 		    zfsvfs) == 0);
706 
707 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
708 		    zfsvfs) == 0);
709 
710 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
711 		    zfsvfs) == 0);
712 
713 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
714 		    zfsvfs) == 0);
715 
716 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
717 		    acl_inherit_changed_cb, zfsvfs) == 0);
718 	}
719 }
720 
721 /*
722  * Convert a decimal digit string to a uint64_t integer.
723  */
724 static int
725 str_to_uint64(char *str, uint64_t *objnum)
726 {
727 	uint64_t num = 0;
728 
729 	while (*str) {
730 		if (*str < '0' || *str > '9')
731 			return (EINVAL);
732 
733 		num = num*10 + *str++ - '0';
734 	}
735 
736 	*objnum = num;
737 	return (0);
738 }
739 
740 /*
741  * The boot path passed from the boot loader is in the form of
742  * "rootpool-name/root-filesystem-object-number'. Convert this
743  * string to a dataset name: "rootpool-name/root-filesystem-name".
744  */
745 static int
746 parse_bootpath(char *bpath, char *outpath)
747 {
748 	char *slashp;
749 	uint64_t objnum;
750 	int error;
751 
752 	if (*bpath == 0 || *bpath == '/')
753 		return (EINVAL);
754 
755 	slashp = strchr(bpath, '/');
756 
757 	/* if no '/', just return the pool name */
758 	if (slashp == NULL) {
759 		(void) strcpy(outpath, bpath);
760 		return (0);
761 	}
762 
763 	if (error = str_to_uint64(slashp+1, &objnum))
764 		return (error);
765 
766 	*slashp = '\0';
767 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
768 	*slashp = '/';
769 
770 	return (error);
771 }
772 
773 static int
774 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
775 {
776 	int error = 0;
777 	int ret = 0;
778 	static int zfsrootdone = 0;
779 	zfsvfs_t *zfsvfs = NULL;
780 	znode_t *zp = NULL;
781 	vnode_t *vp = NULL;
782 	char *zfs_bootpath;
783 
784 	ASSERT(vfsp);
785 
786 	/*
787 	 * The filesystem that we mount as root is defined in the
788 	 * "zfs-bootfs" property.
789 	 */
790 	if (why == ROOT_INIT) {
791 		if (zfsrootdone++)
792 			return (EBUSY);
793 
794 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
795 		    DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) !=
796 		    DDI_SUCCESS)
797 			return (EIO);
798 
799 		error = parse_bootpath(zfs_bootpath, rootfs.bo_name);
800 		ddi_prop_free(zfs_bootpath);
801 
802 		if (error)
803 			return (error);
804 
805 		if (error = vfs_lock(vfsp))
806 			return (error);
807 
808 		if (error = zfs_domount(vfsp, rootfs.bo_name, CRED()))
809 			goto out;
810 
811 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
812 		ASSERT(zfsvfs);
813 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp))
814 			goto out;
815 
816 		vp = ZTOV(zp);
817 		mutex_enter(&vp->v_lock);
818 		vp->v_flag |= VROOT;
819 		mutex_exit(&vp->v_lock);
820 		rootvp = vp;
821 
822 		/*
823 		 * The zfs_zget call above returns with a hold on vp, we release
824 		 * it here.
825 		 */
826 		VN_RELE(vp);
827 
828 		/*
829 		 * Mount root as readonly initially, it will be remouted
830 		 * read/write by /lib/svc/method/fs-usr.
831 		 */
832 		readonly_changed_cb(vfsp->vfs_data, B_TRUE);
833 		vfs_add((struct vnode *)0, vfsp,
834 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
835 out:
836 		vfs_unlock(vfsp);
837 		ret = (error) ? error : 0;
838 		return (ret);
839 	} else if (why == ROOT_REMOUNT) {
840 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
841 		vfsp->vfs_flag |= VFS_REMOUNT;
842 
843 		/* refresh mount options */
844 		zfs_unregister_callbacks(vfsp->vfs_data);
845 		return (zfs_register_callbacks(vfsp));
846 
847 	} else if (why == ROOT_UNMOUNT) {
848 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
849 		(void) zfs_sync(vfsp, 0, 0);
850 		return (0);
851 	}
852 
853 	/*
854 	 * if "why" is equal to anything else other than ROOT_INIT,
855 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
856 	 */
857 	return (ENOTSUP);
858 }
859 
860 /*ARGSUSED*/
861 static int
862 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
863 {
864 	char		*osname;
865 	pathname_t	spn;
866 	int		error = 0;
867 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
868 	    UIO_SYSSPACE : UIO_USERSPACE;
869 	int		canwrite;
870 
871 	if (mvp->v_type != VDIR)
872 		return (ENOTDIR);
873 
874 	mutex_enter(&mvp->v_lock);
875 	if ((uap->flags & MS_REMOUNT) == 0 &&
876 	    (uap->flags & MS_OVERLAY) == 0 &&
877 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
878 		mutex_exit(&mvp->v_lock);
879 		return (EBUSY);
880 	}
881 	mutex_exit(&mvp->v_lock);
882 
883 	/*
884 	 * ZFS does not support passing unparsed data in via MS_DATA.
885 	 * Users should use the MS_OPTIONSTR interface; this means
886 	 * that all option parsing is already done and the options struct
887 	 * can be interrogated.
888 	 */
889 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
890 		return (EINVAL);
891 
892 	/*
893 	 * Get the objset name (the "special" mount argument).
894 	 */
895 	if (error = pn_get(uap->spec, fromspace, &spn))
896 		return (error);
897 
898 	osname = spn.pn_path;
899 
900 	/*
901 	 * Check for mount privilege?
902 	 *
903 	 * If we don't have privilege then see if
904 	 * we have local permission to allow it
905 	 */
906 	error = secpolicy_fs_mount(cr, mvp, vfsp);
907 	if (error) {
908 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
909 		if (error == 0) {
910 			vattr_t		vattr;
911 
912 			/*
913 			 * Make sure user is the owner of the mount point
914 			 * or has sufficient privileges.
915 			 */
916 
917 			vattr.va_mask = AT_UID;
918 
919 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr)) {
920 				goto out;
921 			}
922 
923 			if (error = secpolicy_vnode_owner(cr, vattr.va_uid)) {
924 				goto out;
925 			}
926 
927 			if (error = VOP_ACCESS(mvp, VWRITE, 0, cr)) {
928 				goto out;
929 			}
930 
931 			secpolicy_fs_mount_clearopts(cr, vfsp);
932 		} else {
933 			goto out;
934 		}
935 	}
936 
937 	/*
938 	 * Refuse to mount a filesystem if we are in a local zone and the
939 	 * dataset is not visible.
940 	 */
941 	if (!INGLOBALZONE(curproc) &&
942 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
943 		error = EPERM;
944 		goto out;
945 	}
946 
947 	/*
948 	 * When doing a remount, we simply refresh our temporary properties
949 	 * according to those options set in the current VFS options.
950 	 */
951 	if (uap->flags & MS_REMOUNT) {
952 		/* refresh mount options */
953 		zfs_unregister_callbacks(vfsp->vfs_data);
954 		error = zfs_register_callbacks(vfsp);
955 		goto out;
956 	}
957 
958 	error = zfs_domount(vfsp, osname, cr);
959 
960 out:
961 	pn_free(&spn);
962 	return (error);
963 }
964 
965 static int
966 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
967 {
968 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
969 	dev32_t d32;
970 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
971 
972 	ZFS_ENTER(zfsvfs);
973 
974 	dmu_objset_space(zfsvfs->z_os,
975 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
976 
977 	/*
978 	 * The underlying storage pool actually uses multiple block sizes.
979 	 * We report the fragsize as the smallest block size we support,
980 	 * and we report our blocksize as the filesystem's maximum blocksize.
981 	 */
982 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
983 	statp->f_bsize = zfsvfs->z_max_blksz;
984 
985 	/*
986 	 * The following report "total" blocks of various kinds in the
987 	 * file system, but reported in terms of f_frsize - the
988 	 * "fragment" size.
989 	 */
990 
991 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
992 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
993 	statp->f_bavail = statp->f_bfree; /* no root reservation */
994 
995 	/*
996 	 * statvfs() should really be called statufs(), because it assumes
997 	 * static metadata.  ZFS doesn't preallocate files, so the best
998 	 * we can do is report the max that could possibly fit in f_files,
999 	 * and that minus the number actually used in f_ffree.
1000 	 * For f_ffree, report the smaller of the number of object available
1001 	 * and the number of blocks (each object will take at least a block).
1002 	 */
1003 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1004 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1005 	statp->f_files = statp->f_ffree + usedobjs;
1006 
1007 	(void) cmpldev(&d32, vfsp->vfs_dev);
1008 	statp->f_fsid = d32;
1009 
1010 	/*
1011 	 * We're a zfs filesystem.
1012 	 */
1013 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1014 
1015 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1016 
1017 	statp->f_namemax = ZFS_MAXNAMELEN;
1018 
1019 	/*
1020 	 * We have all of 32 characters to stuff a string here.
1021 	 * Is there anything useful we could/should provide?
1022 	 */
1023 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1024 
1025 	ZFS_EXIT(zfsvfs);
1026 	return (0);
1027 }
1028 
1029 static int
1030 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1031 {
1032 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1033 	znode_t *rootzp;
1034 	int error;
1035 
1036 	ZFS_ENTER(zfsvfs);
1037 
1038 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1039 	if (error == 0)
1040 		*vpp = ZTOV(rootzp);
1041 
1042 	ZFS_EXIT(zfsvfs);
1043 	return (error);
1044 }
1045 
1046 /*
1047  * Teardown the zfsvfs::z_os.
1048  *
1049  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1050  * and 'z_teardown_inactive_lock' held.
1051  */
1052 static int
1053 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1054 {
1055 	objset_t *os = zfsvfs->z_os;
1056 	znode_t	*zp, *nextzp;
1057 	znode_t markerzp;
1058 
1059 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1060 
1061 	if (!unmounting) {
1062 		/*
1063 		 * We purge the parent filesystem's vfsp as the parent
1064 		 * filesystem and all of its snapshots have their vnode's
1065 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1066 		 * 'z_parent' is self referential for non-snapshots.
1067 		 */
1068 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1069 	}
1070 
1071 	/*
1072 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1073 	 * threads are blocked as zil_close can call zfs_inactive.
1074 	 */
1075 	if (zfsvfs->z_log) {
1076 		zil_close(zfsvfs->z_log);
1077 		zfsvfs->z_log = NULL;
1078 	}
1079 
1080 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1081 
1082 	/*
1083 	 * If we are not unmounting (ie: online recv) and someone already
1084 	 * unmounted this file system while we were doing the switcheroo,
1085 	 * or a reopen of z_os failed then just bail out now.
1086 	 */
1087 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1088 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1089 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1090 		return (EIO);
1091 	}
1092 
1093 	/*
1094 	 * At this point there are no vops active, and any new vops will
1095 	 * fail with EIO since we have z_teardown_lock for writer (only
1096 	 * relavent for forced unmount).
1097 	 *
1098 	 * Release all holds on dbufs.
1099 	 * Note, the dmu can still callback via znode_pageout_func()
1100 	 * which can zfs_znode_free() the znode.  So we lock
1101 	 * z_all_znodes; search the list for a held dbuf; drop the lock
1102 	 * (we know zp can't disappear if we hold a dbuf lock) then
1103 	 * regrab the lock and restart.
1104 	 *
1105 	 * Since we have to restart the search after finding each held dbuf,
1106 	 * we do two things to speed up searching: we insert a dummy znode
1107 	 * ('markerzp') to detect the original tail of the list, and move
1108 	 * non-held znodes to the end of the list.  Once we hit 'markerzp',
1109 	 * we know we've looked at each znode and can break out.
1110 	 */
1111 	mutex_enter(&zfsvfs->z_znodes_lock);
1112 	list_insert_tail(&zfsvfs->z_all_znodes, &markerzp);
1113 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != &markerzp;
1114 	    zp = nextzp) {
1115 		nextzp = list_next(&zfsvfs->z_all_znodes, zp);
1116 		if (zp->z_dbuf_held) {
1117 			/* dbufs should only be held when force unmounting */
1118 			zp->z_dbuf_held = 0;
1119 			mutex_exit(&zfsvfs->z_znodes_lock);
1120 			dmu_buf_rele(zp->z_dbuf, NULL);
1121 			/* Start again */
1122 			mutex_enter(&zfsvfs->z_znodes_lock);
1123 			nextzp = list_head(&zfsvfs->z_all_znodes);
1124 		} else {
1125 			list_remove(&zfsvfs->z_all_znodes, zp);
1126 			list_insert_tail(&zfsvfs->z_all_znodes, zp);
1127 		}
1128 	}
1129 	list_remove(&zfsvfs->z_all_znodes, &markerzp);
1130 	mutex_exit(&zfsvfs->z_znodes_lock);
1131 
1132 	/*
1133 	 * If we are unmounting, set the unmounted flag and let new vops
1134 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1135 	 * other vops will fail with EIO.
1136 	 */
1137 	if (unmounting) {
1138 		zfsvfs->z_unmounted = B_TRUE;
1139 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1140 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1141 	}
1142 
1143 	/*
1144 	 * z_os will be NULL if there was an error in attempting to reopen
1145 	 * zfsvfs, so just return as the properties had already been
1146 	 * unregistered and cached data had been evicted before.
1147 	 */
1148 	if (zfsvfs->z_os == NULL)
1149 		return (0);
1150 
1151 	/*
1152 	 * Unregister properties.
1153 	 */
1154 	zfs_unregister_callbacks(zfsvfs);
1155 
1156 	/*
1157 	 * Evict cached data
1158 	 */
1159 	(void) dmu_objset_evict_dbufs(os);
1160 
1161 	return (0);
1162 }
1163 
1164 /*ARGSUSED*/
1165 static int
1166 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1167 {
1168 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1169 	objset_t *os;
1170 	int ret;
1171 
1172 	ret = secpolicy_fs_unmount(cr, vfsp);
1173 	if (ret) {
1174 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1175 		    ZFS_DELEG_PERM_MOUNT, cr);
1176 		if (ret)
1177 			return (ret);
1178 	}
1179 
1180 	/*
1181 	 * We purge the parent filesystem's vfsp as the parent filesystem
1182 	 * and all of its snapshots have their vnode's v_vfsp set to the
1183 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1184 	 * referential for non-snapshots.
1185 	 */
1186 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1187 
1188 	/*
1189 	 * Unmount any snapshots mounted under .zfs before unmounting the
1190 	 * dataset itself.
1191 	 */
1192 	if (zfsvfs->z_ctldir != NULL &&
1193 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1194 		return (ret);
1195 	}
1196 
1197 	if (!(fflag & MS_FORCE)) {
1198 		/*
1199 		 * Check the number of active vnodes in the file system.
1200 		 * Our count is maintained in the vfs structure, but the
1201 		 * number is off by 1 to indicate a hold on the vfs
1202 		 * structure itself.
1203 		 *
1204 		 * The '.zfs' directory maintains a reference of its
1205 		 * own, and any active references underneath are
1206 		 * reflected in the vnode count.
1207 		 */
1208 		if (zfsvfs->z_ctldir == NULL) {
1209 			if (vfsp->vfs_count > 1)
1210 				return (EBUSY);
1211 		} else {
1212 			if (vfsp->vfs_count > 2 ||
1213 			    zfsvfs->z_ctldir->v_count > 1)
1214 				return (EBUSY);
1215 		}
1216 	}
1217 
1218 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1219 
1220 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1221 	os = zfsvfs->z_os;
1222 
1223 	/*
1224 	 * z_os will be NULL if there was an error in
1225 	 * attempting to reopen zfsvfs.
1226 	 */
1227 	if (os != NULL) {
1228 		/*
1229 		 * Unset the objset user_ptr.
1230 		 */
1231 		mutex_enter(&os->os->os_user_ptr_lock);
1232 		dmu_objset_set_user(os, NULL);
1233 		mutex_exit(&os->os->os_user_ptr_lock);
1234 
1235 		/*
1236 		 * Finally close the objset
1237 		 */
1238 		dmu_objset_close(os);
1239 	}
1240 
1241 	/*
1242 	 * We can now safely destroy the '.zfs' directory node.
1243 	 */
1244 	if (zfsvfs->z_ctldir != NULL)
1245 		zfsctl_destroy(zfsvfs);
1246 
1247 	return (0);
1248 }
1249 
1250 static int
1251 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1252 {
1253 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1254 	znode_t		*zp;
1255 	uint64_t	object = 0;
1256 	uint64_t	fid_gen = 0;
1257 	uint64_t	gen_mask;
1258 	uint64_t	zp_gen;
1259 	int 		i, err;
1260 
1261 	*vpp = NULL;
1262 
1263 	ZFS_ENTER(zfsvfs);
1264 
1265 	if (fidp->fid_len == LONG_FID_LEN) {
1266 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1267 		uint64_t	objsetid = 0;
1268 		uint64_t	setgen = 0;
1269 
1270 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1271 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1272 
1273 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1274 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1275 
1276 		ZFS_EXIT(zfsvfs);
1277 
1278 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1279 		if (err)
1280 			return (EINVAL);
1281 		ZFS_ENTER(zfsvfs);
1282 	}
1283 
1284 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1285 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1286 
1287 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1288 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1289 
1290 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1291 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1292 	} else {
1293 		ZFS_EXIT(zfsvfs);
1294 		return (EINVAL);
1295 	}
1296 
1297 	/* A zero fid_gen means we are in the .zfs control directories */
1298 	if (fid_gen == 0 &&
1299 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1300 		*vpp = zfsvfs->z_ctldir;
1301 		ASSERT(*vpp != NULL);
1302 		if (object == ZFSCTL_INO_SNAPDIR) {
1303 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1304 			    0, NULL, NULL) == 0);
1305 		} else {
1306 			VN_HOLD(*vpp);
1307 		}
1308 		ZFS_EXIT(zfsvfs);
1309 		return (0);
1310 	}
1311 
1312 	gen_mask = -1ULL >> (64 - 8 * i);
1313 
1314 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1315 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1316 		ZFS_EXIT(zfsvfs);
1317 		return (err);
1318 	}
1319 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1320 	if (zp_gen == 0)
1321 		zp_gen = 1;
1322 	if (zp->z_unlinked || zp_gen != fid_gen) {
1323 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1324 		VN_RELE(ZTOV(zp));
1325 		ZFS_EXIT(zfsvfs);
1326 		return (EINVAL);
1327 	}
1328 
1329 	*vpp = ZTOV(zp);
1330 	ZFS_EXIT(zfsvfs);
1331 	return (0);
1332 }
1333 
1334 /*
1335  * Block out VOPs and close zfsvfs_t::z_os
1336  *
1337  * Note, if successful, then we return with the 'z_teardown_lock' and
1338  * 'z_teardown_inactive_lock' write held.
1339  */
1340 int
1341 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode)
1342 {
1343 	int error;
1344 
1345 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1346 		return (error);
1347 
1348 	*mode = zfsvfs->z_os->os_mode;
1349 	dmu_objset_name(zfsvfs->z_os, name);
1350 	dmu_objset_close(zfsvfs->z_os);
1351 
1352 	return (0);
1353 }
1354 
1355 /*
1356  * Reopen zfsvfs_t::z_os and release VOPs.
1357  */
1358 int
1359 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1360 {
1361 	int err;
1362 
1363 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1364 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1365 
1366 	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1367 	if (err) {
1368 		zfsvfs->z_os = NULL;
1369 	} else {
1370 		znode_t *zp;
1371 
1372 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1373 
1374 		/*
1375 		 * Attempt to re-establish all the active znodes with
1376 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1377 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1378 		 * when they try to use their znode.
1379 		 */
1380 		mutex_enter(&zfsvfs->z_znodes_lock);
1381 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1382 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1383 			ASSERT(!zp->z_dbuf_held);
1384 			(void) zfs_rezget(zp);
1385 		}
1386 		mutex_exit(&zfsvfs->z_znodes_lock);
1387 
1388 	}
1389 
1390 	/* release the VOPs */
1391 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1392 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1393 
1394 	if (err) {
1395 		/*
1396 		 * Since we couldn't reopen zfsvfs::z_os, force
1397 		 * unmount this file system.
1398 		 */
1399 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1400 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
1401 	}
1402 	return (err);
1403 }
1404 
1405 static void
1406 zfs_freevfs(vfs_t *vfsp)
1407 {
1408 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1409 	int i;
1410 
1411 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1412 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1413 
1414 	mutex_destroy(&zfsvfs->z_znodes_lock);
1415 	list_destroy(&zfsvfs->z_all_znodes);
1416 	rrw_destroy(&zfsvfs->z_teardown_lock);
1417 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1418 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1419 
1420 	atomic_add_32(&zfs_active_fs_count, -1);
1421 }
1422 
1423 /*
1424  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1425  * so we can't safely do any non-idempotent initialization here.
1426  * Leave that to zfs_init() and zfs_fini(), which are called
1427  * from the module's _init() and _fini() entry points.
1428  */
1429 /*ARGSUSED*/
1430 static int
1431 zfs_vfsinit(int fstype, char *name)
1432 {
1433 	int error;
1434 
1435 	zfsfstype = fstype;
1436 
1437 	/*
1438 	 * Setup vfsops and vnodeops tables.
1439 	 */
1440 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1441 	if (error != 0) {
1442 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1443 	}
1444 
1445 	error = zfs_create_op_tables();
1446 	if (error) {
1447 		zfs_remove_op_tables();
1448 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1449 		(void) vfs_freevfsops_by_type(zfsfstype);
1450 		return (error);
1451 	}
1452 
1453 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1454 
1455 	/*
1456 	 * Unique major number for all zfs mounts.
1457 	 * If we run out of 32-bit minors, we'll getudev() another major.
1458 	 */
1459 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1460 	zfs_minor = ZFS_MIN_MINOR;
1461 
1462 	return (0);
1463 }
1464 
1465 void
1466 zfs_init(void)
1467 {
1468 	/*
1469 	 * Initialize .zfs directory structures
1470 	 */
1471 	zfsctl_init();
1472 
1473 	/*
1474 	 * Initialize znode cache, vnode ops, etc...
1475 	 */
1476 	zfs_znode_init();
1477 }
1478 
1479 void
1480 zfs_fini(void)
1481 {
1482 	zfsctl_fini();
1483 	zfs_znode_fini();
1484 }
1485 
1486 int
1487 zfs_busy(void)
1488 {
1489 	return (zfs_active_fs_count != 0);
1490 }
1491 
1492 int
1493 zfs_get_version(objset_t *os, uint64_t *version)
1494 {
1495 	int error;
1496 
1497 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, version);
1498 	return (error);
1499 }
1500 
1501 int
1502 zfs_set_version(const char *name, uint64_t newvers)
1503 {
1504 	int error;
1505 	objset_t *os;
1506 	dmu_tx_t *tx;
1507 	uint64_t curvers;
1508 
1509 	/*
1510 	 * XXX for now, require that the filesystem be unmounted.  Would
1511 	 * be nice to find the zfsvfs_t and just update that if
1512 	 * possible.
1513 	 */
1514 
1515 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1516 		return (EINVAL);
1517 
1518 	error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os);
1519 	if (error)
1520 		return (error);
1521 
1522 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1523 	    8, 1, &curvers);
1524 	if (error)
1525 		goto out;
1526 	if (newvers < curvers) {
1527 		error = EINVAL;
1528 		goto out;
1529 	}
1530 
1531 	tx = dmu_tx_create(os);
1532 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR);
1533 	error = dmu_tx_assign(tx, TXG_WAIT);
1534 	if (error) {
1535 		dmu_tx_abort(tx);
1536 		goto out;
1537 	}
1538 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1,
1539 	    &newvers, tx);
1540 
1541 	spa_history_internal_log(LOG_DS_UPGRADE,
1542 	    dmu_objset_spa(os), tx, CRED(),
1543 	    "oldver=%llu newver=%llu dataset = %llu", curvers, newvers,
1544 	    dmu_objset_id(os));
1545 	dmu_tx_commit(tx);
1546 
1547 out:
1548 	dmu_objset_close(os);
1549 	return (error);
1550 }
1551 
1552 static vfsdef_t vfw = {
1553 	VFSDEF_VERSION,
1554 	MNTTYPE_ZFS,
1555 	zfs_vfsinit,
1556 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS,
1557 	&zfs_mntopts
1558 };
1559 
1560 struct modlfs zfs_modlfs = {
1561 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
1562 };
1563