xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision d5285cae913f4e01ffa0e6693a6d8ef1fbea30ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/varargs.h>
54 #include <sys/policy.h>
55 #include <sys/atomic.h>
56 #include <sys/mkdev.h>
57 #include <sys/modctl.h>
58 #include <sys/refstr.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/bootconf.h>
63 #include <sys/sunddi.h>
64 #include <sys/dnlc.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa_boot.h>
67 #include "zfs_comutil.h"
68 
69 int zfsfstype;
70 vfsops_t *zfs_vfsops = NULL;
71 static major_t zfs_major;
72 static minor_t zfs_minor;
73 static kmutex_t	zfs_dev_mtx;
74 
75 extern int sys_shutdown;
76 
77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 static void zfs_freevfs(vfs_t *vfsp);
84 
85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
87 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
88 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
89 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
90 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
91 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
92 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
99 	NULL,			NULL
100 };
101 
102 /*
103  * We need to keep a count of active fs's.
104  * This is necessary to prevent our module
105  * from being unloaded after a umount -f
106  */
107 static uint32_t	zfs_active_fs_count = 0;
108 
109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113 
114 /*
115  * MO_DEFAULT is not used since the default value is determined
116  * by the equivalent property.
117  */
118 static mntopt_t mntopts[] = {
119 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123 };
124 
125 static mntopts_t zfs_mntopts = {
126 	sizeof (mntopts) / sizeof (mntopt_t),
127 	mntopts
128 };
129 
130 /*ARGSUSED*/
131 int
132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133 {
134 	/*
135 	 * Data integrity is job one.  We don't want a compromised kernel
136 	 * writing to the storage pool, so we never sync during panic.
137 	 */
138 	if (panicstr)
139 		return (0);
140 
141 	/*
142 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 	 * to sync metadata, which they would otherwise cache indefinitely.
144 	 * Semantically, the only requirement is that the sync be initiated.
145 	 * The DMU syncs out txgs frequently, so there's nothing to do.
146 	 */
147 	if (flag & SYNC_ATTR)
148 		return (0);
149 
150 	if (vfsp != NULL) {
151 		/*
152 		 * Sync a specific filesystem.
153 		 */
154 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 		dsl_pool_t *dp;
156 
157 		ZFS_ENTER(zfsvfs);
158 		dp = dmu_objset_pool(zfsvfs->z_os);
159 
160 		/*
161 		 * If the system is shutting down, then skip any
162 		 * filesystems which may exist on a suspended pool.
163 		 */
164 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 			ZFS_EXIT(zfsvfs);
166 			return (0);
167 		}
168 
169 		if (zfsvfs->z_log != NULL)
170 			zil_commit(zfsvfs->z_log, 0);
171 
172 		ZFS_EXIT(zfsvfs);
173 	} else {
174 		/*
175 		 * Sync all ZFS filesystems.  This is what happens when you
176 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
177 		 * request by waiting for all pools to commit all dirty data.
178 		 */
179 		spa_sync_allpools();
180 	}
181 
182 	return (0);
183 }
184 
185 static int
186 zfs_create_unique_device(dev_t *dev)
187 {
188 	major_t new_major;
189 
190 	do {
191 		ASSERT3U(zfs_minor, <=, MAXMIN32);
192 		minor_t start = zfs_minor;
193 		do {
194 			mutex_enter(&zfs_dev_mtx);
195 			if (zfs_minor >= MAXMIN32) {
196 				/*
197 				 * If we're still using the real major
198 				 * keep out of /dev/zfs and /dev/zvol minor
199 				 * number space.  If we're using a getudev()'ed
200 				 * major number, we can use all of its minors.
201 				 */
202 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 					zfs_minor = ZFS_MIN_MINOR;
204 				else
205 					zfs_minor = 0;
206 			} else {
207 				zfs_minor++;
208 			}
209 			*dev = makedevice(zfs_major, zfs_minor);
210 			mutex_exit(&zfs_dev_mtx);
211 		} while (vfs_devismounted(*dev) && zfs_minor != start);
212 		if (zfs_minor == start) {
213 			/*
214 			 * We are using all ~262,000 minor numbers for the
215 			 * current major number.  Create a new major number.
216 			 */
217 			if ((new_major = getudev()) == (major_t)-1) {
218 				cmn_err(CE_WARN,
219 				    "zfs_mount: Can't get unique major "
220 				    "device number.");
221 				return (-1);
222 			}
223 			mutex_enter(&zfs_dev_mtx);
224 			zfs_major = new_major;
225 			zfs_minor = 0;
226 
227 			mutex_exit(&zfs_dev_mtx);
228 		} else {
229 			break;
230 		}
231 		/* CONSTANTCONDITION */
232 	} while (1);
233 
234 	return (0);
235 }
236 
237 static void
238 atime_changed_cb(void *arg, uint64_t newval)
239 {
240 	zfsvfs_t *zfsvfs = arg;
241 
242 	if (newval == TRUE) {
243 		zfsvfs->z_atime = TRUE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 	} else {
247 		zfsvfs->z_atime = FALSE;
248 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 	}
251 }
252 
253 static void
254 xattr_changed_cb(void *arg, uint64_t newval)
255 {
256 	zfsvfs_t *zfsvfs = arg;
257 
258 	if (newval == TRUE) {
259 		/* XXX locking on vfs_flag? */
260 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 	} else {
264 		/* XXX locking on vfs_flag? */
265 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 	}
269 }
270 
271 static void
272 blksz_changed_cb(void *arg, uint64_t newval)
273 {
274 	zfsvfs_t *zfsvfs = arg;
275 
276 	if (newval < SPA_MINBLOCKSIZE ||
277 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 		newval = SPA_MAXBLOCKSIZE;
279 
280 	zfsvfs->z_max_blksz = newval;
281 	zfsvfs->z_vfs->vfs_bsize = newval;
282 }
283 
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
286 {
287 	zfsvfs_t *zfsvfs = arg;
288 
289 	if (newval) {
290 		/* XXX locking on vfs_flag? */
291 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 	} else {
295 		/* XXX locking on vfs_flag? */
296 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 	}
300 }
301 
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
304 {
305 	zfsvfs_t *zfsvfs = arg;
306 
307 	if (newval == FALSE) {
308 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 	} else {
312 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 	}
316 }
317 
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
320 {
321 	zfsvfs_t *zfsvfs = arg;
322 
323 	if (newval == FALSE) {
324 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 	} else {
328 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 	}
332 }
333 
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
336 {
337 	zfsvfs_t *zfsvfs = arg;
338 
339 	if (newval == FALSE) {
340 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 	} else {
344 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 	}
348 }
349 
350 /*
351  * The nbmand mount option can be changed at mount time.
352  * We can't allow it to be toggled on live file systems or incorrect
353  * behavior may be seen from cifs clients
354  *
355  * This property isn't registered via dsl_prop_register(), but this callback
356  * will be called when a file system is first mounted
357  */
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
360 {
361 	zfsvfs_t *zfsvfs = arg;
362 	if (newval == FALSE) {
363 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 	} else {
366 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 	}
369 }
370 
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
373 {
374 	zfsvfs_t *zfsvfs = arg;
375 
376 	zfsvfs->z_show_ctldir = newval;
377 }
378 
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
381 {
382 	zfsvfs_t *zfsvfs = arg;
383 
384 	zfsvfs->z_vscan = newval;
385 }
386 
387 static void
388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 {
390 	zfsvfs_t *zfsvfs = arg;
391 
392 	zfsvfs->z_acl_mode = newval;
393 }
394 
395 static void
396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 {
398 	zfsvfs_t *zfsvfs = arg;
399 
400 	zfsvfs->z_acl_inherit = newval;
401 }
402 
403 static int
404 zfs_register_callbacks(vfs_t *vfsp)
405 {
406 	struct dsl_dataset *ds = NULL;
407 	objset_t *os = NULL;
408 	zfsvfs_t *zfsvfs = NULL;
409 	uint64_t nbmand;
410 	boolean_t readonly = B_FALSE;
411 	boolean_t do_readonly = B_FALSE;
412 	boolean_t setuid = B_FALSE;
413 	boolean_t do_setuid = B_FALSE;
414 	boolean_t exec = B_FALSE;
415 	boolean_t do_exec = B_FALSE;
416 	boolean_t devices = B_FALSE;
417 	boolean_t do_devices = B_FALSE;
418 	boolean_t xattr = B_FALSE;
419 	boolean_t do_xattr = B_FALSE;
420 	boolean_t atime = B_FALSE;
421 	boolean_t do_atime = B_FALSE;
422 	int error = 0;
423 
424 	ASSERT(vfsp);
425 	zfsvfs = vfsp->vfs_data;
426 	ASSERT(zfsvfs);
427 	os = zfsvfs->z_os;
428 
429 	/*
430 	 * The act of registering our callbacks will destroy any mount
431 	 * options we may have.  In order to enable temporary overrides
432 	 * of mount options, we stash away the current values and
433 	 * restore them after we register the callbacks.
434 	 */
435 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
436 	    !spa_writeable(dmu_objset_spa(os))) {
437 		readonly = B_TRUE;
438 		do_readonly = B_TRUE;
439 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
440 		readonly = B_FALSE;
441 		do_readonly = B_TRUE;
442 	}
443 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
444 		devices = B_FALSE;
445 		setuid = B_FALSE;
446 		do_devices = B_TRUE;
447 		do_setuid = B_TRUE;
448 	} else {
449 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
450 			devices = B_FALSE;
451 			do_devices = B_TRUE;
452 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
453 			devices = B_TRUE;
454 			do_devices = B_TRUE;
455 		}
456 
457 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
458 			setuid = B_FALSE;
459 			do_setuid = B_TRUE;
460 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
461 			setuid = B_TRUE;
462 			do_setuid = B_TRUE;
463 		}
464 	}
465 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
466 		exec = B_FALSE;
467 		do_exec = B_TRUE;
468 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
469 		exec = B_TRUE;
470 		do_exec = B_TRUE;
471 	}
472 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
473 		xattr = B_FALSE;
474 		do_xattr = B_TRUE;
475 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
476 		xattr = B_TRUE;
477 		do_xattr = B_TRUE;
478 	}
479 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
480 		atime = B_FALSE;
481 		do_atime = B_TRUE;
482 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
483 		atime = B_TRUE;
484 		do_atime = B_TRUE;
485 	}
486 
487 	/*
488 	 * nbmand is a special property.  It can only be changed at
489 	 * mount time.
490 	 *
491 	 * This is weird, but it is documented to only be changeable
492 	 * at mount time.
493 	 */
494 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
495 		nbmand = B_FALSE;
496 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
497 		nbmand = B_TRUE;
498 	} else {
499 		char osname[MAXNAMELEN];
500 
501 		dmu_objset_name(os, osname);
502 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
503 		    NULL)) {
504 			return (error);
505 		}
506 	}
507 
508 	/*
509 	 * Register property callbacks.
510 	 *
511 	 * It would probably be fine to just check for i/o error from
512 	 * the first prop_register(), but I guess I like to go
513 	 * overboard...
514 	 */
515 	ds = dmu_objset_ds(os);
516 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    "xattr", xattr_changed_cb, zfsvfs);
519 	error = error ? error : dsl_prop_register(ds,
520 	    "recordsize", blksz_changed_cb, zfsvfs);
521 	error = error ? error : dsl_prop_register(ds,
522 	    "readonly", readonly_changed_cb, zfsvfs);
523 	error = error ? error : dsl_prop_register(ds,
524 	    "devices", devices_changed_cb, zfsvfs);
525 	error = error ? error : dsl_prop_register(ds,
526 	    "setuid", setuid_changed_cb, zfsvfs);
527 	error = error ? error : dsl_prop_register(ds,
528 	    "exec", exec_changed_cb, zfsvfs);
529 	error = error ? error : dsl_prop_register(ds,
530 	    "snapdir", snapdir_changed_cb, zfsvfs);
531 	error = error ? error : dsl_prop_register(ds,
532 	    "aclmode", acl_mode_changed_cb, zfsvfs);
533 	error = error ? error : dsl_prop_register(ds,
534 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
535 	error = error ? error : dsl_prop_register(ds,
536 	    "vscan", vscan_changed_cb, zfsvfs);
537 	if (error)
538 		goto unregister;
539 
540 	/*
541 	 * Invoke our callbacks to restore temporary mount options.
542 	 */
543 	if (do_readonly)
544 		readonly_changed_cb(zfsvfs, readonly);
545 	if (do_setuid)
546 		setuid_changed_cb(zfsvfs, setuid);
547 	if (do_exec)
548 		exec_changed_cb(zfsvfs, exec);
549 	if (do_devices)
550 		devices_changed_cb(zfsvfs, devices);
551 	if (do_xattr)
552 		xattr_changed_cb(zfsvfs, xattr);
553 	if (do_atime)
554 		atime_changed_cb(zfsvfs, atime);
555 
556 	nbmand_changed_cb(zfsvfs, nbmand);
557 
558 	return (0);
559 
560 unregister:
561 	/*
562 	 * We may attempt to unregister some callbacks that are not
563 	 * registered, but this is OK; it will simply return ENOMSG,
564 	 * which we will ignore.
565 	 */
566 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
567 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
568 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
569 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
570 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
571 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
572 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
573 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
574 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
575 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
576 	    zfsvfs);
577 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
578 	return (error);
579 
580 }
581 
582 static int
583 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
584     uint64_t *userp, uint64_t *groupp)
585 {
586 	int error = 0;
587 
588 	/*
589 	 * Is it a valid type of object to track?
590 	 */
591 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
592 		return (ENOENT);
593 
594 	/*
595 	 * If we have a NULL data pointer
596 	 * then assume the id's aren't changing and
597 	 * return EEXIST to the dmu to let it know to
598 	 * use the same ids
599 	 */
600 	if (data == NULL)
601 		return (EEXIST);
602 
603 	if (bonustype == DMU_OT_ZNODE) {
604 		znode_phys_t *znp = data;
605 		*userp = znp->zp_uid;
606 		*groupp = znp->zp_gid;
607 	} else {
608 		int hdrsize;
609 		sa_hdr_phys_t *sap = data;
610 		sa_hdr_phys_t sa = *sap;
611 		boolean_t swap = B_FALSE;
612 
613 		ASSERT(bonustype == DMU_OT_SA);
614 
615 		if (sa.sa_magic == 0) {
616 			/*
617 			 * This should only happen for newly created
618 			 * files that haven't had the znode data filled
619 			 * in yet.
620 			 */
621 			*userp = 0;
622 			*groupp = 0;
623 			return (0);
624 		}
625 		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
626 			sa.sa_magic = SA_MAGIC;
627 			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
628 			swap = B_TRUE;
629 		} else {
630 			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
631 		}
632 
633 		hdrsize = sa_hdrsize(&sa);
634 		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
635 		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
636 		    SA_UID_OFFSET));
637 		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
638 		    SA_GID_OFFSET));
639 		if (swap) {
640 			*userp = BSWAP_64(*userp);
641 			*groupp = BSWAP_64(*groupp);
642 		}
643 	}
644 	return (error);
645 }
646 
647 static void
648 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
649     char *domainbuf, int buflen, uid_t *ridp)
650 {
651 	uint64_t fuid;
652 	const char *domain;
653 
654 	fuid = strtonum(fuidstr, NULL);
655 
656 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
657 	if (domain)
658 		(void) strlcpy(domainbuf, domain, buflen);
659 	else
660 		domainbuf[0] = '\0';
661 	*ridp = FUID_RID(fuid);
662 }
663 
664 static uint64_t
665 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
666 {
667 	switch (type) {
668 	case ZFS_PROP_USERUSED:
669 		return (DMU_USERUSED_OBJECT);
670 	case ZFS_PROP_GROUPUSED:
671 		return (DMU_GROUPUSED_OBJECT);
672 	case ZFS_PROP_USERQUOTA:
673 		return (zfsvfs->z_userquota_obj);
674 	case ZFS_PROP_GROUPQUOTA:
675 		return (zfsvfs->z_groupquota_obj);
676 	}
677 	return (0);
678 }
679 
680 int
681 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
682     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
683 {
684 	int error;
685 	zap_cursor_t zc;
686 	zap_attribute_t za;
687 	zfs_useracct_t *buf = vbuf;
688 	uint64_t obj;
689 
690 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
691 		return (ENOTSUP);
692 
693 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
694 	if (obj == 0) {
695 		*bufsizep = 0;
696 		return (0);
697 	}
698 
699 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
700 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
701 	    zap_cursor_advance(&zc)) {
702 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
703 		    *bufsizep)
704 			break;
705 
706 		fuidstr_to_sid(zfsvfs, za.za_name,
707 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
708 
709 		buf->zu_space = za.za_first_integer;
710 		buf++;
711 	}
712 	if (error == ENOENT)
713 		error = 0;
714 
715 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
716 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
717 	*cookiep = zap_cursor_serialize(&zc);
718 	zap_cursor_fini(&zc);
719 	return (error);
720 }
721 
722 /*
723  * buf must be big enough (eg, 32 bytes)
724  */
725 static int
726 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
727     char *buf, boolean_t addok)
728 {
729 	uint64_t fuid;
730 	int domainid = 0;
731 
732 	if (domain && domain[0]) {
733 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
734 		if (domainid == -1)
735 			return (ENOENT);
736 	}
737 	fuid = FUID_ENCODE(domainid, rid);
738 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
739 	return (0);
740 }
741 
742 int
743 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
744     const char *domain, uint64_t rid, uint64_t *valp)
745 {
746 	char buf[32];
747 	int err;
748 	uint64_t obj;
749 
750 	*valp = 0;
751 
752 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
753 		return (ENOTSUP);
754 
755 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
756 	if (obj == 0)
757 		return (0);
758 
759 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
760 	if (err)
761 		return (err);
762 
763 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
764 	if (err == ENOENT)
765 		err = 0;
766 	return (err);
767 }
768 
769 int
770 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
771     const char *domain, uint64_t rid, uint64_t quota)
772 {
773 	char buf[32];
774 	int err;
775 	dmu_tx_t *tx;
776 	uint64_t *objp;
777 	boolean_t fuid_dirtied;
778 
779 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
780 		return (EINVAL);
781 
782 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
783 		return (ENOTSUP);
784 
785 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
786 	    &zfsvfs->z_groupquota_obj;
787 
788 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
789 	if (err)
790 		return (err);
791 	fuid_dirtied = zfsvfs->z_fuid_dirty;
792 
793 	tx = dmu_tx_create(zfsvfs->z_os);
794 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
795 	if (*objp == 0) {
796 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
797 		    zfs_userquota_prop_prefixes[type]);
798 	}
799 	if (fuid_dirtied)
800 		zfs_fuid_txhold(zfsvfs, tx);
801 	err = dmu_tx_assign(tx, TXG_WAIT);
802 	if (err) {
803 		dmu_tx_abort(tx);
804 		return (err);
805 	}
806 
807 	mutex_enter(&zfsvfs->z_lock);
808 	if (*objp == 0) {
809 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
810 		    DMU_OT_NONE, 0, tx);
811 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
812 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
813 	}
814 	mutex_exit(&zfsvfs->z_lock);
815 
816 	if (quota == 0) {
817 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
818 		if (err == ENOENT)
819 			err = 0;
820 	} else {
821 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
822 	}
823 	ASSERT(err == 0);
824 	if (fuid_dirtied)
825 		zfs_fuid_sync(zfsvfs, tx);
826 	dmu_tx_commit(tx);
827 	return (err);
828 }
829 
830 boolean_t
831 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
832 {
833 	char buf[32];
834 	uint64_t used, quota, usedobj, quotaobj;
835 	int err;
836 
837 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
838 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
839 
840 	if (quotaobj == 0 || zfsvfs->z_replay)
841 		return (B_FALSE);
842 
843 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
844 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
845 	if (err != 0)
846 		return (B_FALSE);
847 
848 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
849 	if (err != 0)
850 		return (B_FALSE);
851 	return (used >= quota);
852 }
853 
854 boolean_t
855 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
856 {
857 	uint64_t fuid;
858 	uint64_t quotaobj;
859 
860 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
861 
862 	fuid = isgroup ? zp->z_gid : zp->z_uid;
863 
864 	if (quotaobj == 0 || zfsvfs->z_replay)
865 		return (B_FALSE);
866 
867 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
868 }
869 
870 int
871 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
872 {
873 	objset_t *os;
874 	zfsvfs_t *zfsvfs;
875 	uint64_t zval;
876 	int i, error;
877 	uint64_t sa_obj;
878 
879 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
880 
881 	/*
882 	 * We claim to always be readonly so we can open snapshots;
883 	 * other ZPL code will prevent us from writing to snapshots.
884 	 */
885 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
886 	if (error) {
887 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
888 		return (error);
889 	}
890 
891 	/*
892 	 * Initialize the zfs-specific filesystem structure.
893 	 * Should probably make this a kmem cache, shuffle fields,
894 	 * and just bzero up to z_hold_mtx[].
895 	 */
896 	zfsvfs->z_vfs = NULL;
897 	zfsvfs->z_parent = zfsvfs;
898 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
899 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
900 	zfsvfs->z_os = os;
901 
902 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
903 	if (error) {
904 		goto out;
905 	} else if (zfsvfs->z_version >
906 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
907 		(void) printf("Can't mount a version %lld file system "
908 		    "on a version %lld pool\n. Pool must be upgraded to mount "
909 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
910 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
911 		error = ENOTSUP;
912 		goto out;
913 	}
914 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
915 		goto out;
916 	zfsvfs->z_norm = (int)zval;
917 
918 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
919 		goto out;
920 	zfsvfs->z_utf8 = (zval != 0);
921 
922 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
923 		goto out;
924 	zfsvfs->z_case = (uint_t)zval;
925 
926 	/*
927 	 * Fold case on file systems that are always or sometimes case
928 	 * insensitive.
929 	 */
930 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
931 	    zfsvfs->z_case == ZFS_CASE_MIXED)
932 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
933 
934 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
935 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
936 
937 	if (zfsvfs->z_use_sa) {
938 		/* should either have both of these objects or none */
939 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
940 		    &sa_obj);
941 		if (error)
942 			return (error);
943 	} else {
944 		/*
945 		 * Pre SA versions file systems should never touch
946 		 * either the attribute registration or layout objects.
947 		 */
948 		sa_obj = 0;
949 	}
950 
951 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
952 	    &zfsvfs->z_attr_table);
953 	if (error)
954 		goto out;
955 
956 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
957 		sa_register_update_callback(os, zfs_sa_upgrade);
958 
959 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
960 	    &zfsvfs->z_root);
961 	if (error)
962 		goto out;
963 	ASSERT(zfsvfs->z_root != 0);
964 
965 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
966 	    &zfsvfs->z_unlinkedobj);
967 	if (error)
968 		goto out;
969 
970 	error = zap_lookup(os, MASTER_NODE_OBJ,
971 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
972 	    8, 1, &zfsvfs->z_userquota_obj);
973 	if (error && error != ENOENT)
974 		goto out;
975 
976 	error = zap_lookup(os, MASTER_NODE_OBJ,
977 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
978 	    8, 1, &zfsvfs->z_groupquota_obj);
979 	if (error && error != ENOENT)
980 		goto out;
981 
982 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
983 	    &zfsvfs->z_fuid_obj);
984 	if (error && error != ENOENT)
985 		goto out;
986 
987 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
988 	    &zfsvfs->z_shares_dir);
989 	if (error && error != ENOENT)
990 		goto out;
991 
992 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
993 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
994 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
995 	    offsetof(znode_t, z_link_node));
996 	rrw_init(&zfsvfs->z_teardown_lock);
997 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
998 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
999 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1000 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1001 
1002 	*zfvp = zfsvfs;
1003 	return (0);
1004 
1005 out:
1006 	dmu_objset_disown(os, zfsvfs);
1007 	*zfvp = NULL;
1008 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1009 	return (error);
1010 }
1011 
1012 static int
1013 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1014 {
1015 	int error;
1016 
1017 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1018 	if (error)
1019 		return (error);
1020 
1021 	/*
1022 	 * Set the objset user_ptr to track its zfsvfs.
1023 	 */
1024 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1025 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1026 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1027 
1028 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1029 
1030 	/*
1031 	 * If we are not mounting (ie: online recv), then we don't
1032 	 * have to worry about replaying the log as we blocked all
1033 	 * operations out since we closed the ZIL.
1034 	 */
1035 	if (mounting) {
1036 		boolean_t readonly;
1037 
1038 		/*
1039 		 * During replay we remove the read only flag to
1040 		 * allow replays to succeed.
1041 		 */
1042 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1043 		if (readonly != 0)
1044 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1045 		else
1046 			zfs_unlinked_drain(zfsvfs);
1047 
1048 		/*
1049 		 * Parse and replay the intent log.
1050 		 *
1051 		 * Because of ziltest, this must be done after
1052 		 * zfs_unlinked_drain().  (Further note: ziltest
1053 		 * doesn't use readonly mounts, where
1054 		 * zfs_unlinked_drain() isn't called.)  This is because
1055 		 * ziltest causes spa_sync() to think it's committed,
1056 		 * but actually it is not, so the intent log contains
1057 		 * many txg's worth of changes.
1058 		 *
1059 		 * In particular, if object N is in the unlinked set in
1060 		 * the last txg to actually sync, then it could be
1061 		 * actually freed in a later txg and then reallocated
1062 		 * in a yet later txg.  This would write a "create
1063 		 * object N" record to the intent log.  Normally, this
1064 		 * would be fine because the spa_sync() would have
1065 		 * written out the fact that object N is free, before
1066 		 * we could write the "create object N" intent log
1067 		 * record.
1068 		 *
1069 		 * But when we are in ziltest mode, we advance the "open
1070 		 * txg" without actually spa_sync()-ing the changes to
1071 		 * disk.  So we would see that object N is still
1072 		 * allocated and in the unlinked set, and there is an
1073 		 * intent log record saying to allocate it.
1074 		 */
1075 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1076 			if (zil_replay_disable) {
1077 				zil_destroy(zfsvfs->z_log, B_FALSE);
1078 			} else {
1079 				zfsvfs->z_replay = B_TRUE;
1080 				zil_replay(zfsvfs->z_os, zfsvfs,
1081 				    zfs_replay_vector);
1082 				zfsvfs->z_replay = B_FALSE;
1083 			}
1084 		}
1085 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 void
1092 zfsvfs_free(zfsvfs_t *zfsvfs)
1093 {
1094 	int i;
1095 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1096 
1097 	/*
1098 	 * This is a barrier to prevent the filesystem from going away in
1099 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1100 	 * not unmounted. We consider the filesystem valid before the barrier
1101 	 * and invalid after the barrier.
1102 	 */
1103 	rw_enter(&zfsvfs_lock, RW_READER);
1104 	rw_exit(&zfsvfs_lock);
1105 
1106 	zfs_fuid_destroy(zfsvfs);
1107 
1108 	mutex_destroy(&zfsvfs->z_znodes_lock);
1109 	mutex_destroy(&zfsvfs->z_lock);
1110 	list_destroy(&zfsvfs->z_all_znodes);
1111 	rrw_destroy(&zfsvfs->z_teardown_lock);
1112 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1113 	rw_destroy(&zfsvfs->z_fuid_lock);
1114 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1115 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1116 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1117 }
1118 
1119 static void
1120 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1121 {
1122 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1123 	if (zfsvfs->z_vfs) {
1124 		if (zfsvfs->z_use_fuids) {
1125 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1126 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1127 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1128 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1129 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1130 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1131 		} else {
1132 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1133 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1134 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1135 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1136 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1137 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1138 		}
1139 	}
1140 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1141 }
1142 
1143 static int
1144 zfs_domount(vfs_t *vfsp, char *osname)
1145 {
1146 	dev_t mount_dev;
1147 	uint64_t recordsize, fsid_guid;
1148 	int error = 0;
1149 	zfsvfs_t *zfsvfs;
1150 
1151 	ASSERT(vfsp);
1152 	ASSERT(osname);
1153 
1154 	error = zfsvfs_create(osname, &zfsvfs);
1155 	if (error)
1156 		return (error);
1157 	zfsvfs->z_vfs = vfsp;
1158 
1159 	/* Initialize the generic filesystem structure. */
1160 	vfsp->vfs_bcount = 0;
1161 	vfsp->vfs_data = NULL;
1162 
1163 	if (zfs_create_unique_device(&mount_dev) == -1) {
1164 		error = ENODEV;
1165 		goto out;
1166 	}
1167 	ASSERT(vfs_devismounted(mount_dev) == 0);
1168 
1169 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1170 	    NULL))
1171 		goto out;
1172 
1173 	vfsp->vfs_dev = mount_dev;
1174 	vfsp->vfs_fstype = zfsfstype;
1175 	vfsp->vfs_bsize = recordsize;
1176 	vfsp->vfs_flag |= VFS_NOTRUNC;
1177 	vfsp->vfs_data = zfsvfs;
1178 
1179 	/*
1180 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1181 	 * separates our fsid from any other filesystem types, and a
1182 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1183 	 * all objsets open on this system, provided by unique_create().
1184 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1185 	 * because that's where other Solaris filesystems put it.
1186 	 */
1187 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1188 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1189 	vfsp->vfs_fsid.val[0] = fsid_guid;
1190 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1191 	    zfsfstype & 0xFF;
1192 
1193 	/*
1194 	 * Set features for file system.
1195 	 */
1196 	zfs_set_fuid_feature(zfsvfs);
1197 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1198 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1199 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1200 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1201 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1202 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1203 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1204 	}
1205 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1206 
1207 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1208 		uint64_t pval;
1209 
1210 		atime_changed_cb(zfsvfs, B_FALSE);
1211 		readonly_changed_cb(zfsvfs, B_TRUE);
1212 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1213 			goto out;
1214 		xattr_changed_cb(zfsvfs, pval);
1215 		zfsvfs->z_issnap = B_TRUE;
1216 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1217 
1218 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1219 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1220 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1221 	} else {
1222 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1223 	}
1224 
1225 	if (!zfsvfs->z_issnap)
1226 		zfsctl_create(zfsvfs);
1227 out:
1228 	if (error) {
1229 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1230 		zfsvfs_free(zfsvfs);
1231 	} else {
1232 		atomic_add_32(&zfs_active_fs_count, 1);
1233 	}
1234 
1235 	return (error);
1236 }
1237 
1238 void
1239 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1240 {
1241 	objset_t *os = zfsvfs->z_os;
1242 	struct dsl_dataset *ds;
1243 
1244 	/*
1245 	 * Unregister properties.
1246 	 */
1247 	if (!dmu_objset_is_snapshot(os)) {
1248 		ds = dmu_objset_ds(os);
1249 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1250 		    zfsvfs) == 0);
1251 
1252 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1253 		    zfsvfs) == 0);
1254 
1255 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1256 		    zfsvfs) == 0);
1257 
1258 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1259 		    zfsvfs) == 0);
1260 
1261 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1262 		    zfsvfs) == 0);
1263 
1264 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1265 		    zfsvfs) == 0);
1266 
1267 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1268 		    zfsvfs) == 0);
1269 
1270 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1271 		    zfsvfs) == 0);
1272 
1273 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1274 		    zfsvfs) == 0);
1275 
1276 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1277 		    acl_inherit_changed_cb, zfsvfs) == 0);
1278 
1279 		VERIFY(dsl_prop_unregister(ds, "vscan",
1280 		    vscan_changed_cb, zfsvfs) == 0);
1281 	}
1282 }
1283 
1284 /*
1285  * Convert a decimal digit string to a uint64_t integer.
1286  */
1287 static int
1288 str_to_uint64(char *str, uint64_t *objnum)
1289 {
1290 	uint64_t num = 0;
1291 
1292 	while (*str) {
1293 		if (*str < '0' || *str > '9')
1294 			return (EINVAL);
1295 
1296 		num = num*10 + *str++ - '0';
1297 	}
1298 
1299 	*objnum = num;
1300 	return (0);
1301 }
1302 
1303 /*
1304  * The boot path passed from the boot loader is in the form of
1305  * "rootpool-name/root-filesystem-object-number'. Convert this
1306  * string to a dataset name: "rootpool-name/root-filesystem-name".
1307  */
1308 static int
1309 zfs_parse_bootfs(char *bpath, char *outpath)
1310 {
1311 	char *slashp;
1312 	uint64_t objnum;
1313 	int error;
1314 
1315 	if (*bpath == 0 || *bpath == '/')
1316 		return (EINVAL);
1317 
1318 	(void) strcpy(outpath, bpath);
1319 
1320 	slashp = strchr(bpath, '/');
1321 
1322 	/* if no '/', just return the pool name */
1323 	if (slashp == NULL) {
1324 		return (0);
1325 	}
1326 
1327 	/* if not a number, just return the root dataset name */
1328 	if (str_to_uint64(slashp+1, &objnum)) {
1329 		return (0);
1330 	}
1331 
1332 	*slashp = '\0';
1333 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1334 	*slashp = '/';
1335 
1336 	return (error);
1337 }
1338 
1339 /*
1340  * zfs_check_global_label:
1341  *	Check that the hex label string is appropriate for the dataset
1342  *	being mounted into the global_zone proper.
1343  *
1344  *	Return an error if the hex label string is not default or
1345  *	admin_low/admin_high.  For admin_low labels, the corresponding
1346  *	dataset must be readonly.
1347  */
1348 int
1349 zfs_check_global_label(const char *dsname, const char *hexsl)
1350 {
1351 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1352 		return (0);
1353 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1354 		return (0);
1355 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1356 		/* must be readonly */
1357 		uint64_t rdonly;
1358 
1359 		if (dsl_prop_get_integer(dsname,
1360 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1361 			return (EACCES);
1362 		return (rdonly ? 0 : EACCES);
1363 	}
1364 	return (EACCES);
1365 }
1366 
1367 /*
1368  * zfs_mount_label_policy:
1369  *	Determine whether the mount is allowed according to MAC check.
1370  *	by comparing (where appropriate) label of the dataset against
1371  *	the label of the zone being mounted into.  If the dataset has
1372  *	no label, create one.
1373  *
1374  *	Returns:
1375  *		 0 :	access allowed
1376  *		>0 :	error code, such as EACCES
1377  */
1378 static int
1379 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1380 {
1381 	int		error, retv;
1382 	zone_t		*mntzone = NULL;
1383 	ts_label_t	*mnt_tsl;
1384 	bslabel_t	*mnt_sl;
1385 	bslabel_t	ds_sl;
1386 	char		ds_hexsl[MAXNAMELEN];
1387 
1388 	retv = EACCES;				/* assume the worst */
1389 
1390 	/*
1391 	 * Start by getting the dataset label if it exists.
1392 	 */
1393 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1394 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1395 	if (error)
1396 		return (EACCES);
1397 
1398 	/*
1399 	 * If labeling is NOT enabled, then disallow the mount of datasets
1400 	 * which have a non-default label already.  No other label checks
1401 	 * are needed.
1402 	 */
1403 	if (!is_system_labeled()) {
1404 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1405 			return (0);
1406 		return (EACCES);
1407 	}
1408 
1409 	/*
1410 	 * Get the label of the mountpoint.  If mounting into the global
1411 	 * zone (i.e. mountpoint is not within an active zone and the
1412 	 * zoned property is off), the label must be default or
1413 	 * admin_low/admin_high only; no other checks are needed.
1414 	 */
1415 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1416 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1417 		uint64_t zoned;
1418 
1419 		zone_rele(mntzone);
1420 
1421 		if (dsl_prop_get_integer(osname,
1422 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1423 			return (EACCES);
1424 		if (!zoned)
1425 			return (zfs_check_global_label(osname, ds_hexsl));
1426 		else
1427 			/*
1428 			 * This is the case of a zone dataset being mounted
1429 			 * initially, before the zone has been fully created;
1430 			 * allow this mount into global zone.
1431 			 */
1432 			return (0);
1433 	}
1434 
1435 	mnt_tsl = mntzone->zone_slabel;
1436 	ASSERT(mnt_tsl != NULL);
1437 	label_hold(mnt_tsl);
1438 	mnt_sl = label2bslabel(mnt_tsl);
1439 
1440 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1441 		/*
1442 		 * The dataset doesn't have a real label, so fabricate one.
1443 		 */
1444 		char *str = NULL;
1445 
1446 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1447 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1448 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1449 			retv = 0;
1450 		if (str != NULL)
1451 			kmem_free(str, strlen(str) + 1);
1452 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1453 		/*
1454 		 * Now compare labels to complete the MAC check.  If the
1455 		 * labels are equal then allow access.  If the mountpoint
1456 		 * label dominates the dataset label, allow readonly access.
1457 		 * Otherwise, access is denied.
1458 		 */
1459 		if (blequal(mnt_sl, &ds_sl))
1460 			retv = 0;
1461 		else if (bldominates(mnt_sl, &ds_sl)) {
1462 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1463 			retv = 0;
1464 		}
1465 	}
1466 
1467 	label_rele(mnt_tsl);
1468 	zone_rele(mntzone);
1469 	return (retv);
1470 }
1471 
1472 static int
1473 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1474 {
1475 	int error = 0;
1476 	static int zfsrootdone = 0;
1477 	zfsvfs_t *zfsvfs = NULL;
1478 	znode_t *zp = NULL;
1479 	vnode_t *vp = NULL;
1480 	char *zfs_bootfs;
1481 	char *zfs_devid;
1482 
1483 	ASSERT(vfsp);
1484 
1485 	/*
1486 	 * The filesystem that we mount as root is defined in the
1487 	 * boot property "zfs-bootfs" with a format of
1488 	 * "poolname/root-dataset-objnum".
1489 	 */
1490 	if (why == ROOT_INIT) {
1491 		if (zfsrootdone++)
1492 			return (EBUSY);
1493 		/*
1494 		 * the process of doing a spa_load will require the
1495 		 * clock to be set before we could (for example) do
1496 		 * something better by looking at the timestamp on
1497 		 * an uberblock, so just set it to -1.
1498 		 */
1499 		clkset(-1);
1500 
1501 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1502 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1503 			    "bootfs name");
1504 			return (EINVAL);
1505 		}
1506 		zfs_devid = spa_get_bootprop("diskdevid");
1507 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1508 		if (zfs_devid)
1509 			spa_free_bootprop(zfs_devid);
1510 		if (error) {
1511 			spa_free_bootprop(zfs_bootfs);
1512 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1513 			    error);
1514 			return (error);
1515 		}
1516 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1517 			spa_free_bootprop(zfs_bootfs);
1518 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1519 			    error);
1520 			return (error);
1521 		}
1522 
1523 		spa_free_bootprop(zfs_bootfs);
1524 
1525 		if (error = vfs_lock(vfsp))
1526 			return (error);
1527 
1528 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1529 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1530 			goto out;
1531 		}
1532 
1533 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1534 		ASSERT(zfsvfs);
1535 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1536 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1537 			goto out;
1538 		}
1539 
1540 		vp = ZTOV(zp);
1541 		mutex_enter(&vp->v_lock);
1542 		vp->v_flag |= VROOT;
1543 		mutex_exit(&vp->v_lock);
1544 		rootvp = vp;
1545 
1546 		/*
1547 		 * Leave rootvp held.  The root file system is never unmounted.
1548 		 */
1549 
1550 		vfs_add((struct vnode *)0, vfsp,
1551 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1552 out:
1553 		vfs_unlock(vfsp);
1554 		return (error);
1555 	} else if (why == ROOT_REMOUNT) {
1556 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1557 		vfsp->vfs_flag |= VFS_REMOUNT;
1558 
1559 		/* refresh mount options */
1560 		zfs_unregister_callbacks(vfsp->vfs_data);
1561 		return (zfs_register_callbacks(vfsp));
1562 
1563 	} else if (why == ROOT_UNMOUNT) {
1564 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1565 		(void) zfs_sync(vfsp, 0, 0);
1566 		return (0);
1567 	}
1568 
1569 	/*
1570 	 * if "why" is equal to anything else other than ROOT_INIT,
1571 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1572 	 */
1573 	return (ENOTSUP);
1574 }
1575 
1576 /*ARGSUSED*/
1577 static int
1578 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1579 {
1580 	char		*osname;
1581 	pathname_t	spn;
1582 	int		error = 0;
1583 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1584 	    UIO_SYSSPACE : UIO_USERSPACE;
1585 	int		canwrite;
1586 
1587 	if (mvp->v_type != VDIR)
1588 		return (ENOTDIR);
1589 
1590 	mutex_enter(&mvp->v_lock);
1591 	if ((uap->flags & MS_REMOUNT) == 0 &&
1592 	    (uap->flags & MS_OVERLAY) == 0 &&
1593 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1594 		mutex_exit(&mvp->v_lock);
1595 		return (EBUSY);
1596 	}
1597 	mutex_exit(&mvp->v_lock);
1598 
1599 	/*
1600 	 * ZFS does not support passing unparsed data in via MS_DATA.
1601 	 * Users should use the MS_OPTIONSTR interface; this means
1602 	 * that all option parsing is already done and the options struct
1603 	 * can be interrogated.
1604 	 */
1605 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1606 		return (EINVAL);
1607 
1608 	/*
1609 	 * Get the objset name (the "special" mount argument).
1610 	 */
1611 	if (error = pn_get(uap->spec, fromspace, &spn))
1612 		return (error);
1613 
1614 	osname = spn.pn_path;
1615 
1616 	/*
1617 	 * Check for mount privilege?
1618 	 *
1619 	 * If we don't have privilege then see if
1620 	 * we have local permission to allow it
1621 	 */
1622 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1623 	if (error) {
1624 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1625 			vattr_t		vattr;
1626 
1627 			/*
1628 			 * Make sure user is the owner of the mount point
1629 			 * or has sufficient privileges.
1630 			 */
1631 
1632 			vattr.va_mask = AT_UID;
1633 
1634 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1635 				goto out;
1636 			}
1637 
1638 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1639 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1640 				goto out;
1641 			}
1642 			secpolicy_fs_mount_clearopts(cr, vfsp);
1643 		} else {
1644 			goto out;
1645 		}
1646 	}
1647 
1648 	/*
1649 	 * Refuse to mount a filesystem if we are in a local zone and the
1650 	 * dataset is not visible.
1651 	 */
1652 	if (!INGLOBALZONE(curproc) &&
1653 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1654 		error = EPERM;
1655 		goto out;
1656 	}
1657 
1658 	error = zfs_mount_label_policy(vfsp, osname);
1659 	if (error)
1660 		goto out;
1661 
1662 	/*
1663 	 * When doing a remount, we simply refresh our temporary properties
1664 	 * according to those options set in the current VFS options.
1665 	 */
1666 	if (uap->flags & MS_REMOUNT) {
1667 		/* refresh mount options */
1668 		zfs_unregister_callbacks(vfsp->vfs_data);
1669 		error = zfs_register_callbacks(vfsp);
1670 		goto out;
1671 	}
1672 
1673 	error = zfs_domount(vfsp, osname);
1674 
1675 	/*
1676 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1677 	 * disappear due to a forced unmount.
1678 	 */
1679 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1680 		VFS_HOLD(mvp->v_vfsp);
1681 
1682 out:
1683 	pn_free(&spn);
1684 	return (error);
1685 }
1686 
1687 static int
1688 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1689 {
1690 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1691 	dev32_t d32;
1692 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1693 
1694 	ZFS_ENTER(zfsvfs);
1695 
1696 	dmu_objset_space(zfsvfs->z_os,
1697 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1698 
1699 	/*
1700 	 * The underlying storage pool actually uses multiple block sizes.
1701 	 * We report the fragsize as the smallest block size we support,
1702 	 * and we report our blocksize as the filesystem's maximum blocksize.
1703 	 */
1704 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1705 	statp->f_bsize = zfsvfs->z_max_blksz;
1706 
1707 	/*
1708 	 * The following report "total" blocks of various kinds in the
1709 	 * file system, but reported in terms of f_frsize - the
1710 	 * "fragment" size.
1711 	 */
1712 
1713 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1714 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1715 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1716 
1717 	/*
1718 	 * statvfs() should really be called statufs(), because it assumes
1719 	 * static metadata.  ZFS doesn't preallocate files, so the best
1720 	 * we can do is report the max that could possibly fit in f_files,
1721 	 * and that minus the number actually used in f_ffree.
1722 	 * For f_ffree, report the smaller of the number of object available
1723 	 * and the number of blocks (each object will take at least a block).
1724 	 */
1725 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1726 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1727 	statp->f_files = statp->f_ffree + usedobjs;
1728 
1729 	(void) cmpldev(&d32, vfsp->vfs_dev);
1730 	statp->f_fsid = d32;
1731 
1732 	/*
1733 	 * We're a zfs filesystem.
1734 	 */
1735 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1736 
1737 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1738 
1739 	statp->f_namemax = ZFS_MAXNAMELEN;
1740 
1741 	/*
1742 	 * We have all of 32 characters to stuff a string here.
1743 	 * Is there anything useful we could/should provide?
1744 	 */
1745 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1746 
1747 	ZFS_EXIT(zfsvfs);
1748 	return (0);
1749 }
1750 
1751 static int
1752 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1753 {
1754 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1755 	znode_t *rootzp;
1756 	int error;
1757 
1758 	ZFS_ENTER(zfsvfs);
1759 
1760 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1761 	if (error == 0)
1762 		*vpp = ZTOV(rootzp);
1763 
1764 	ZFS_EXIT(zfsvfs);
1765 	return (error);
1766 }
1767 
1768 /*
1769  * Teardown the zfsvfs::z_os.
1770  *
1771  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1772  * and 'z_teardown_inactive_lock' held.
1773  */
1774 static int
1775 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1776 {
1777 	znode_t	*zp;
1778 
1779 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1780 
1781 	if (!unmounting) {
1782 		/*
1783 		 * We purge the parent filesystem's vfsp as the parent
1784 		 * filesystem and all of its snapshots have their vnode's
1785 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1786 		 * 'z_parent' is self referential for non-snapshots.
1787 		 */
1788 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1789 	}
1790 
1791 	/*
1792 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1793 	 * threads are blocked as zil_close can call zfs_inactive.
1794 	 */
1795 	if (zfsvfs->z_log) {
1796 		zil_close(zfsvfs->z_log);
1797 		zfsvfs->z_log = NULL;
1798 	}
1799 
1800 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1801 
1802 	/*
1803 	 * If we are not unmounting (ie: online recv) and someone already
1804 	 * unmounted this file system while we were doing the switcheroo,
1805 	 * or a reopen of z_os failed then just bail out now.
1806 	 */
1807 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1808 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1809 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1810 		return (EIO);
1811 	}
1812 
1813 	/*
1814 	 * At this point there are no vops active, and any new vops will
1815 	 * fail with EIO since we have z_teardown_lock for writer (only
1816 	 * relavent for forced unmount).
1817 	 *
1818 	 * Release all holds on dbufs.
1819 	 */
1820 	mutex_enter(&zfsvfs->z_znodes_lock);
1821 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1822 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1823 		if (zp->z_sa_hdl) {
1824 			ASSERT(ZTOV(zp)->v_count > 0);
1825 			zfs_znode_dmu_fini(zp);
1826 		}
1827 	mutex_exit(&zfsvfs->z_znodes_lock);
1828 
1829 	/*
1830 	 * If we are unmounting, set the unmounted flag and let new vops
1831 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1832 	 * other vops will fail with EIO.
1833 	 */
1834 	if (unmounting) {
1835 		zfsvfs->z_unmounted = B_TRUE;
1836 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1837 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1838 	}
1839 
1840 	/*
1841 	 * z_os will be NULL if there was an error in attempting to reopen
1842 	 * zfsvfs, so just return as the properties had already been
1843 	 * unregistered and cached data had been evicted before.
1844 	 */
1845 	if (zfsvfs->z_os == NULL)
1846 		return (0);
1847 
1848 	/*
1849 	 * Unregister properties.
1850 	 */
1851 	zfs_unregister_callbacks(zfsvfs);
1852 
1853 	/*
1854 	 * Evict cached data
1855 	 */
1856 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1857 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1858 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1859 	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1860 
1861 	return (0);
1862 }
1863 
1864 /*ARGSUSED*/
1865 static int
1866 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1867 {
1868 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1869 	objset_t *os;
1870 	int ret;
1871 
1872 	ret = secpolicy_fs_unmount(cr, vfsp);
1873 	if (ret) {
1874 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1875 		    ZFS_DELEG_PERM_MOUNT, cr))
1876 			return (ret);
1877 	}
1878 
1879 	/*
1880 	 * We purge the parent filesystem's vfsp as the parent filesystem
1881 	 * and all of its snapshots have their vnode's v_vfsp set to the
1882 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1883 	 * referential for non-snapshots.
1884 	 */
1885 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1886 
1887 	/*
1888 	 * Unmount any snapshots mounted under .zfs before unmounting the
1889 	 * dataset itself.
1890 	 */
1891 	if (zfsvfs->z_ctldir != NULL &&
1892 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1893 		return (ret);
1894 	}
1895 
1896 	if (!(fflag & MS_FORCE)) {
1897 		/*
1898 		 * Check the number of active vnodes in the file system.
1899 		 * Our count is maintained in the vfs structure, but the
1900 		 * number is off by 1 to indicate a hold on the vfs
1901 		 * structure itself.
1902 		 *
1903 		 * The '.zfs' directory maintains a reference of its
1904 		 * own, and any active references underneath are
1905 		 * reflected in the vnode count.
1906 		 */
1907 		if (zfsvfs->z_ctldir == NULL) {
1908 			if (vfsp->vfs_count > 1)
1909 				return (EBUSY);
1910 		} else {
1911 			if (vfsp->vfs_count > 2 ||
1912 			    zfsvfs->z_ctldir->v_count > 1)
1913 				return (EBUSY);
1914 		}
1915 	}
1916 
1917 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1918 
1919 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1920 	os = zfsvfs->z_os;
1921 
1922 	/*
1923 	 * z_os will be NULL if there was an error in
1924 	 * attempting to reopen zfsvfs.
1925 	 */
1926 	if (os != NULL) {
1927 		/*
1928 		 * Unset the objset user_ptr.
1929 		 */
1930 		mutex_enter(&os->os_user_ptr_lock);
1931 		dmu_objset_set_user(os, NULL);
1932 		mutex_exit(&os->os_user_ptr_lock);
1933 
1934 		/*
1935 		 * Finally release the objset
1936 		 */
1937 		dmu_objset_disown(os, zfsvfs);
1938 	}
1939 
1940 	/*
1941 	 * We can now safely destroy the '.zfs' directory node.
1942 	 */
1943 	if (zfsvfs->z_ctldir != NULL)
1944 		zfsctl_destroy(zfsvfs);
1945 
1946 	return (0);
1947 }
1948 
1949 static int
1950 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1951 {
1952 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1953 	znode_t		*zp;
1954 	uint64_t	object = 0;
1955 	uint64_t	fid_gen = 0;
1956 	uint64_t	gen_mask;
1957 	uint64_t	zp_gen;
1958 	int 		i, err;
1959 
1960 	*vpp = NULL;
1961 
1962 	ZFS_ENTER(zfsvfs);
1963 
1964 	if (fidp->fid_len == LONG_FID_LEN) {
1965 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1966 		uint64_t	objsetid = 0;
1967 		uint64_t	setgen = 0;
1968 
1969 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1970 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1971 
1972 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1973 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1974 
1975 		ZFS_EXIT(zfsvfs);
1976 
1977 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1978 		if (err)
1979 			return (EINVAL);
1980 		ZFS_ENTER(zfsvfs);
1981 	}
1982 
1983 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1984 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1985 
1986 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1987 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1988 
1989 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1990 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1991 	} else {
1992 		ZFS_EXIT(zfsvfs);
1993 		return (EINVAL);
1994 	}
1995 
1996 	/* A zero fid_gen means we are in the .zfs control directories */
1997 	if (fid_gen == 0 &&
1998 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1999 		*vpp = zfsvfs->z_ctldir;
2000 		ASSERT(*vpp != NULL);
2001 		if (object == ZFSCTL_INO_SNAPDIR) {
2002 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2003 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2004 		} else {
2005 			VN_HOLD(*vpp);
2006 		}
2007 		ZFS_EXIT(zfsvfs);
2008 		return (0);
2009 	}
2010 
2011 	gen_mask = -1ULL >> (64 - 8 * i);
2012 
2013 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2014 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2015 		ZFS_EXIT(zfsvfs);
2016 		return (err);
2017 	}
2018 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2019 	    sizeof (uint64_t));
2020 	zp_gen = zp_gen & gen_mask;
2021 	if (zp_gen == 0)
2022 		zp_gen = 1;
2023 	if (zp->z_unlinked || zp_gen != fid_gen) {
2024 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2025 		VN_RELE(ZTOV(zp));
2026 		ZFS_EXIT(zfsvfs);
2027 		return (EINVAL);
2028 	}
2029 
2030 	*vpp = ZTOV(zp);
2031 	ZFS_EXIT(zfsvfs);
2032 	return (0);
2033 }
2034 
2035 /*
2036  * Block out VOPs and close zfsvfs_t::z_os
2037  *
2038  * Note, if successful, then we return with the 'z_teardown_lock' and
2039  * 'z_teardown_inactive_lock' write held.
2040  */
2041 int
2042 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2043 {
2044 	int error;
2045 
2046 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2047 		return (error);
2048 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2049 
2050 	return (0);
2051 }
2052 
2053 /*
2054  * Reopen zfsvfs_t::z_os and release VOPs.
2055  */
2056 int
2057 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2058 {
2059 	int err;
2060 
2061 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2062 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2063 
2064 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2065 	    &zfsvfs->z_os);
2066 	if (err) {
2067 		zfsvfs->z_os = NULL;
2068 	} else {
2069 		znode_t *zp;
2070 		uint64_t sa_obj = 0;
2071 
2072 		/*
2073 		 * Make sure version hasn't changed
2074 		 */
2075 
2076 		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2077 		    &zfsvfs->z_version);
2078 
2079 		if (err)
2080 			goto bail;
2081 
2082 		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2083 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2084 
2085 		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2086 			goto bail;
2087 
2088 		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2089 		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2090 			goto bail;
2091 
2092 		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2093 			sa_register_update_callback(zfsvfs->z_os,
2094 			    zfs_sa_upgrade);
2095 
2096 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2097 
2098 		zfs_set_fuid_feature(zfsvfs);
2099 
2100 		/*
2101 		 * Attempt to re-establish all the active znodes with
2102 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2103 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2104 		 * when they try to use their znode.
2105 		 */
2106 		mutex_enter(&zfsvfs->z_znodes_lock);
2107 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2108 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2109 			(void) zfs_rezget(zp);
2110 		}
2111 		mutex_exit(&zfsvfs->z_znodes_lock);
2112 	}
2113 
2114 bail:
2115 	/* release the VOPs */
2116 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2117 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2118 
2119 	if (err) {
2120 		/*
2121 		 * Since we couldn't reopen zfsvfs::z_os, or
2122 		 * setup the sa framework force unmount this file system.
2123 		 */
2124 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2125 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2126 	}
2127 	return (err);
2128 }
2129 
2130 static void
2131 zfs_freevfs(vfs_t *vfsp)
2132 {
2133 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2134 
2135 	/*
2136 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2137 	 * from zfs_mount().  Release it here.  If we came through
2138 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2139 	 * skip the VFS_RELE for rootvfs.
2140 	 */
2141 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2142 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2143 
2144 	zfsvfs_free(zfsvfs);
2145 
2146 	atomic_add_32(&zfs_active_fs_count, -1);
2147 }
2148 
2149 /*
2150  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2151  * so we can't safely do any non-idempotent initialization here.
2152  * Leave that to zfs_init() and zfs_fini(), which are called
2153  * from the module's _init() and _fini() entry points.
2154  */
2155 /*ARGSUSED*/
2156 static int
2157 zfs_vfsinit(int fstype, char *name)
2158 {
2159 	int error;
2160 
2161 	zfsfstype = fstype;
2162 
2163 	/*
2164 	 * Setup vfsops and vnodeops tables.
2165 	 */
2166 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2167 	if (error != 0) {
2168 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2169 	}
2170 
2171 	error = zfs_create_op_tables();
2172 	if (error) {
2173 		zfs_remove_op_tables();
2174 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2175 		(void) vfs_freevfsops_by_type(zfsfstype);
2176 		return (error);
2177 	}
2178 
2179 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2180 
2181 	/*
2182 	 * Unique major number for all zfs mounts.
2183 	 * If we run out of 32-bit minors, we'll getudev() another major.
2184 	 */
2185 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2186 	zfs_minor = ZFS_MIN_MINOR;
2187 
2188 	return (0);
2189 }
2190 
2191 void
2192 zfs_init(void)
2193 {
2194 	/*
2195 	 * Initialize .zfs directory structures
2196 	 */
2197 	zfsctl_init();
2198 
2199 	/*
2200 	 * Initialize znode cache, vnode ops, etc...
2201 	 */
2202 	zfs_znode_init();
2203 
2204 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2205 }
2206 
2207 void
2208 zfs_fini(void)
2209 {
2210 	zfsctl_fini();
2211 	zfs_znode_fini();
2212 }
2213 
2214 int
2215 zfs_busy(void)
2216 {
2217 	return (zfs_active_fs_count != 0);
2218 }
2219 
2220 int
2221 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2222 {
2223 	int error;
2224 	objset_t *os = zfsvfs->z_os;
2225 	dmu_tx_t *tx;
2226 
2227 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2228 		return (EINVAL);
2229 
2230 	if (newvers < zfsvfs->z_version)
2231 		return (EINVAL);
2232 
2233 	if (zfs_spa_version_map(newvers) >
2234 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2235 		return (ENOTSUP);
2236 
2237 	tx = dmu_tx_create(os);
2238 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2239 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2240 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2241 		    ZFS_SA_ATTRS);
2242 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2243 	}
2244 	error = dmu_tx_assign(tx, TXG_WAIT);
2245 	if (error) {
2246 		dmu_tx_abort(tx);
2247 		return (error);
2248 	}
2249 
2250 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2251 	    8, 1, &newvers, tx);
2252 
2253 	if (error) {
2254 		dmu_tx_commit(tx);
2255 		return (error);
2256 	}
2257 
2258 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2259 		uint64_t sa_obj;
2260 
2261 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2262 		    SPA_VERSION_SA);
2263 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2264 		    DMU_OT_NONE, 0, tx);
2265 
2266 		error = zap_add(os, MASTER_NODE_OBJ,
2267 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2268 		ASSERT0(error);
2269 
2270 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2271 		sa_register_update_callback(os, zfs_sa_upgrade);
2272 	}
2273 
2274 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2275 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2276 
2277 	dmu_tx_commit(tx);
2278 
2279 	zfsvfs->z_version = newvers;
2280 
2281 	zfs_set_fuid_feature(zfsvfs);
2282 
2283 	return (0);
2284 }
2285 
2286 /*
2287  * Read a property stored within the master node.
2288  */
2289 int
2290 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2291 {
2292 	const char *pname;
2293 	int error = ENOENT;
2294 
2295 	/*
2296 	 * Look up the file system's value for the property.  For the
2297 	 * version property, we look up a slightly different string.
2298 	 */
2299 	if (prop == ZFS_PROP_VERSION)
2300 		pname = ZPL_VERSION_STR;
2301 	else
2302 		pname = zfs_prop_to_name(prop);
2303 
2304 	if (os != NULL)
2305 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2306 
2307 	if (error == ENOENT) {
2308 		/* No value set, use the default value */
2309 		switch (prop) {
2310 		case ZFS_PROP_VERSION:
2311 			*value = ZPL_VERSION;
2312 			break;
2313 		case ZFS_PROP_NORMALIZE:
2314 		case ZFS_PROP_UTF8ONLY:
2315 			*value = 0;
2316 			break;
2317 		case ZFS_PROP_CASE:
2318 			*value = ZFS_CASE_SENSITIVE;
2319 			break;
2320 		default:
2321 			return (error);
2322 		}
2323 		error = 0;
2324 	}
2325 	return (error);
2326 }
2327 
2328 static vfsdef_t vfw = {
2329 	VFSDEF_VERSION,
2330 	MNTTYPE_ZFS,
2331 	zfs_vfsinit,
2332 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2333 	    VSW_XID|VSW_ZMOUNT,
2334 	&zfs_mntopts
2335 };
2336 
2337 struct modlfs zfs_modlfs = {
2338 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2339 };
2340