xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 9adfa60d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/kmem.h>
34 #include <sys/pathname.h>
35 #include <sys/vnode.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/mntent.h>
39 #include <sys/mount.h>
40 #include <sys/cmn_err.h>
41 #include "fs/fs_subr.h"
42 #include <sys/zfs_znode.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include "zfs_comutil.h"
69 
70 int zfsfstype;
71 vfsops_t *zfs_vfsops = NULL;
72 static major_t zfs_major;
73 static minor_t zfs_minor;
74 static kmutex_t	zfs_dev_mtx;
75 
76 extern int sys_shutdown;
77 
78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
84 static void zfs_freevfs(vfs_t *vfsp);
85 
86 static const fs_operation_def_t zfs_vfsops_template[] = {
87 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
88 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
89 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
90 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
91 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
92 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
93 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
94 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
95 	NULL,			NULL
96 };
97 
98 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
99 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
100 	NULL,			NULL
101 };
102 
103 /*
104  * We need to keep a count of active fs's.
105  * This is necessary to prevent our module
106  * from being unloaded after a umount -f
107  */
108 static uint32_t	zfs_active_fs_count = 0;
109 
110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
114 
115 /*
116  * MO_DEFAULT is not used since the default value is determined
117  * by the equivalent property.
118  */
119 static mntopt_t mntopts[] = {
120 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
121 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
122 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
123 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
124 };
125 
126 static mntopts_t zfs_mntopts = {
127 	sizeof (mntopts) / sizeof (mntopt_t),
128 	mntopts
129 };
130 
131 /*ARGSUSED*/
132 int
133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
134 {
135 	/*
136 	 * Data integrity is job one.  We don't want a compromised kernel
137 	 * writing to the storage pool, so we never sync during panic.
138 	 */
139 	if (panicstr)
140 		return (0);
141 
142 	/*
143 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
144 	 * to sync metadata, which they would otherwise cache indefinitely.
145 	 * Semantically, the only requirement is that the sync be initiated.
146 	 * The DMU syncs out txgs frequently, so there's nothing to do.
147 	 */
148 	if (flag & SYNC_ATTR)
149 		return (0);
150 
151 	if (vfsp != NULL) {
152 		/*
153 		 * Sync a specific filesystem.
154 		 */
155 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
156 		dsl_pool_t *dp;
157 
158 		ZFS_ENTER(zfsvfs);
159 		dp = dmu_objset_pool(zfsvfs->z_os);
160 
161 		/*
162 		 * If the system is shutting down, then skip any
163 		 * filesystems which may exist on a suspended pool.
164 		 */
165 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
166 			ZFS_EXIT(zfsvfs);
167 			return (0);
168 		}
169 
170 		if (zfsvfs->z_log != NULL)
171 			zil_commit(zfsvfs->z_log, 0);
172 
173 		ZFS_EXIT(zfsvfs);
174 	} else {
175 		/*
176 		 * Sync all ZFS filesystems.  This is what happens when you
177 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
178 		 * request by waiting for all pools to commit all dirty data.
179 		 */
180 		spa_sync_allpools();
181 	}
182 
183 	return (0);
184 }
185 
186 static int
187 zfs_create_unique_device(dev_t *dev)
188 {
189 	major_t new_major;
190 
191 	do {
192 		ASSERT3U(zfs_minor, <=, MAXMIN32);
193 		minor_t start = zfs_minor;
194 		do {
195 			mutex_enter(&zfs_dev_mtx);
196 			if (zfs_minor >= MAXMIN32) {
197 				/*
198 				 * If we're still using the real major
199 				 * keep out of /dev/zfs and /dev/zvol minor
200 				 * number space.  If we're using a getudev()'ed
201 				 * major number, we can use all of its minors.
202 				 */
203 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
204 					zfs_minor = ZFS_MIN_MINOR;
205 				else
206 					zfs_minor = 0;
207 			} else {
208 				zfs_minor++;
209 			}
210 			*dev = makedevice(zfs_major, zfs_minor);
211 			mutex_exit(&zfs_dev_mtx);
212 		} while (vfs_devismounted(*dev) && zfs_minor != start);
213 		if (zfs_minor == start) {
214 			/*
215 			 * We are using all ~262,000 minor numbers for the
216 			 * current major number.  Create a new major number.
217 			 */
218 			if ((new_major = getudev()) == (major_t)-1) {
219 				cmn_err(CE_WARN,
220 				    "zfs_mount: Can't get unique major "
221 				    "device number.");
222 				return (-1);
223 			}
224 			mutex_enter(&zfs_dev_mtx);
225 			zfs_major = new_major;
226 			zfs_minor = 0;
227 
228 			mutex_exit(&zfs_dev_mtx);
229 		} else {
230 			break;
231 		}
232 		/* CONSTANTCONDITION */
233 	} while (1);
234 
235 	return (0);
236 }
237 
238 static void
239 atime_changed_cb(void *arg, uint64_t newval)
240 {
241 	zfsvfs_t *zfsvfs = arg;
242 
243 	if (newval == TRUE) {
244 		zfsvfs->z_atime = TRUE;
245 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247 	} else {
248 		zfsvfs->z_atime = FALSE;
249 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
250 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
251 	}
252 }
253 
254 static void
255 xattr_changed_cb(void *arg, uint64_t newval)
256 {
257 	zfsvfs_t *zfsvfs = arg;
258 
259 	if (newval == TRUE) {
260 		/* XXX locking on vfs_flag? */
261 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
264 	} else {
265 		/* XXX locking on vfs_flag? */
266 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
267 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
268 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
269 	}
270 }
271 
272 static void
273 blksz_changed_cb(void *arg, uint64_t newval)
274 {
275 	zfsvfs_t *zfsvfs = arg;
276 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
277 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
278 	ASSERT(ISP2(newval));
279 
280 	zfsvfs->z_max_blksz = newval;
281 	zfsvfs->z_vfs->vfs_bsize = newval;
282 }
283 
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
286 {
287 	zfsvfs_t *zfsvfs = arg;
288 
289 	if (newval) {
290 		/* XXX locking on vfs_flag? */
291 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 	} else {
295 		/* XXX locking on vfs_flag? */
296 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 	}
300 }
301 
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
304 {
305 	zfsvfs_t *zfsvfs = arg;
306 
307 	if (newval == FALSE) {
308 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 	} else {
312 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 	}
316 }
317 
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
320 {
321 	zfsvfs_t *zfsvfs = arg;
322 
323 	if (newval == FALSE) {
324 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 	} else {
328 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 	}
332 }
333 
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
336 {
337 	zfsvfs_t *zfsvfs = arg;
338 
339 	if (newval == FALSE) {
340 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 	} else {
344 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 	}
348 }
349 
350 /*
351  * The nbmand mount option can be changed at mount time.
352  * We can't allow it to be toggled on live file systems or incorrect
353  * behavior may be seen from cifs clients
354  *
355  * This property isn't registered via dsl_prop_register(), but this callback
356  * will be called when a file system is first mounted
357  */
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
360 {
361 	zfsvfs_t *zfsvfs = arg;
362 	if (newval == FALSE) {
363 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 	} else {
366 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 	}
369 }
370 
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
373 {
374 	zfsvfs_t *zfsvfs = arg;
375 
376 	zfsvfs->z_show_ctldir = newval;
377 }
378 
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
381 {
382 	zfsvfs_t *zfsvfs = arg;
383 
384 	zfsvfs->z_vscan = newval;
385 }
386 
387 static void
388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 {
390 	zfsvfs_t *zfsvfs = arg;
391 
392 	zfsvfs->z_acl_mode = newval;
393 }
394 
395 static void
396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 {
398 	zfsvfs_t *zfsvfs = arg;
399 
400 	zfsvfs->z_acl_inherit = newval;
401 }
402 
403 static int
404 zfs_register_callbacks(vfs_t *vfsp)
405 {
406 	struct dsl_dataset *ds = NULL;
407 	objset_t *os = NULL;
408 	zfsvfs_t *zfsvfs = NULL;
409 	uint64_t nbmand;
410 	boolean_t readonly = B_FALSE;
411 	boolean_t do_readonly = B_FALSE;
412 	boolean_t setuid = B_FALSE;
413 	boolean_t do_setuid = B_FALSE;
414 	boolean_t exec = B_FALSE;
415 	boolean_t do_exec = B_FALSE;
416 	boolean_t devices = B_FALSE;
417 	boolean_t do_devices = B_FALSE;
418 	boolean_t xattr = B_FALSE;
419 	boolean_t do_xattr = B_FALSE;
420 	boolean_t atime = B_FALSE;
421 	boolean_t do_atime = B_FALSE;
422 	int error = 0;
423 
424 	ASSERT(vfsp);
425 	zfsvfs = vfsp->vfs_data;
426 	ASSERT(zfsvfs);
427 	os = zfsvfs->z_os;
428 
429 	/*
430 	 * The act of registering our callbacks will destroy any mount
431 	 * options we may have.  In order to enable temporary overrides
432 	 * of mount options, we stash away the current values and
433 	 * restore them after we register the callbacks.
434 	 */
435 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
436 	    !spa_writeable(dmu_objset_spa(os))) {
437 		readonly = B_TRUE;
438 		do_readonly = B_TRUE;
439 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
440 		readonly = B_FALSE;
441 		do_readonly = B_TRUE;
442 	}
443 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
444 		devices = B_FALSE;
445 		setuid = B_FALSE;
446 		do_devices = B_TRUE;
447 		do_setuid = B_TRUE;
448 	} else {
449 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
450 			devices = B_FALSE;
451 			do_devices = B_TRUE;
452 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
453 			devices = B_TRUE;
454 			do_devices = B_TRUE;
455 		}
456 
457 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
458 			setuid = B_FALSE;
459 			do_setuid = B_TRUE;
460 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
461 			setuid = B_TRUE;
462 			do_setuid = B_TRUE;
463 		}
464 	}
465 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
466 		exec = B_FALSE;
467 		do_exec = B_TRUE;
468 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
469 		exec = B_TRUE;
470 		do_exec = B_TRUE;
471 	}
472 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
473 		xattr = B_FALSE;
474 		do_xattr = B_TRUE;
475 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
476 		xattr = B_TRUE;
477 		do_xattr = B_TRUE;
478 	}
479 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
480 		atime = B_FALSE;
481 		do_atime = B_TRUE;
482 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
483 		atime = B_TRUE;
484 		do_atime = B_TRUE;
485 	}
486 
487 	/*
488 	 * nbmand is a special property.  It can only be changed at
489 	 * mount time.
490 	 *
491 	 * This is weird, but it is documented to only be changeable
492 	 * at mount time.
493 	 */
494 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
495 		nbmand = B_FALSE;
496 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
497 		nbmand = B_TRUE;
498 	} else {
499 		char osname[ZFS_MAX_DATASET_NAME_LEN];
500 
501 		dmu_objset_name(os, osname);
502 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
503 		    NULL)) {
504 			return (error);
505 		}
506 	}
507 
508 	/*
509 	 * Register property callbacks.
510 	 *
511 	 * It would probably be fine to just check for i/o error from
512 	 * the first prop_register(), but I guess I like to go
513 	 * overboard...
514 	 */
515 	ds = dmu_objset_ds(os);
516 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
517 	error = dsl_prop_register(ds,
518 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
519 	error = error ? error : dsl_prop_register(ds,
520 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
521 	error = error ? error : dsl_prop_register(ds,
522 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
523 	error = error ? error : dsl_prop_register(ds,
524 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
525 	error = error ? error : dsl_prop_register(ds,
526 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
527 	error = error ? error : dsl_prop_register(ds,
528 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
529 	error = error ? error : dsl_prop_register(ds,
530 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
531 	error = error ? error : dsl_prop_register(ds,
532 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
533 	error = error ? error : dsl_prop_register(ds,
534 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
535 	error = error ? error : dsl_prop_register(ds,
536 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
537 	    zfsvfs);
538 	error = error ? error : dsl_prop_register(ds,
539 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
540 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
541 	if (error)
542 		goto unregister;
543 
544 	/*
545 	 * Invoke our callbacks to restore temporary mount options.
546 	 */
547 	if (do_readonly)
548 		readonly_changed_cb(zfsvfs, readonly);
549 	if (do_setuid)
550 		setuid_changed_cb(zfsvfs, setuid);
551 	if (do_exec)
552 		exec_changed_cb(zfsvfs, exec);
553 	if (do_devices)
554 		devices_changed_cb(zfsvfs, devices);
555 	if (do_xattr)
556 		xattr_changed_cb(zfsvfs, xattr);
557 	if (do_atime)
558 		atime_changed_cb(zfsvfs, atime);
559 
560 	nbmand_changed_cb(zfsvfs, nbmand);
561 
562 	return (0);
563 
564 unregister:
565 	dsl_prop_unregister_all(ds, zfsvfs);
566 	return (error);
567 }
568 
569 static int
570 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
571     uint64_t *userp, uint64_t *groupp)
572 {
573 	/*
574 	 * Is it a valid type of object to track?
575 	 */
576 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
577 		return (SET_ERROR(ENOENT));
578 
579 	/*
580 	 * If we have a NULL data pointer
581 	 * then assume the id's aren't changing and
582 	 * return EEXIST to the dmu to let it know to
583 	 * use the same ids
584 	 */
585 	if (data == NULL)
586 		return (SET_ERROR(EEXIST));
587 
588 	if (bonustype == DMU_OT_ZNODE) {
589 		znode_phys_t *znp = data;
590 		*userp = znp->zp_uid;
591 		*groupp = znp->zp_gid;
592 	} else {
593 		int hdrsize;
594 		sa_hdr_phys_t *sap = data;
595 		sa_hdr_phys_t sa = *sap;
596 		boolean_t swap = B_FALSE;
597 
598 		ASSERT(bonustype == DMU_OT_SA);
599 
600 		if (sa.sa_magic == 0) {
601 			/*
602 			 * This should only happen for newly created
603 			 * files that haven't had the znode data filled
604 			 * in yet.
605 			 */
606 			*userp = 0;
607 			*groupp = 0;
608 			return (0);
609 		}
610 		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
611 			sa.sa_magic = SA_MAGIC;
612 			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
613 			swap = B_TRUE;
614 		} else {
615 			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
616 		}
617 
618 		hdrsize = sa_hdrsize(&sa);
619 		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
620 		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
621 		    SA_UID_OFFSET));
622 		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
623 		    SA_GID_OFFSET));
624 		if (swap) {
625 			*userp = BSWAP_64(*userp);
626 			*groupp = BSWAP_64(*groupp);
627 		}
628 	}
629 	return (0);
630 }
631 
632 static void
633 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
634     char *domainbuf, int buflen, uid_t *ridp)
635 {
636 	uint64_t fuid;
637 	const char *domain;
638 
639 	fuid = strtonum(fuidstr, NULL);
640 
641 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
642 	if (domain)
643 		(void) strlcpy(domainbuf, domain, buflen);
644 	else
645 		domainbuf[0] = '\0';
646 	*ridp = FUID_RID(fuid);
647 }
648 
649 static uint64_t
650 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
651 {
652 	switch (type) {
653 	case ZFS_PROP_USERUSED:
654 		return (DMU_USERUSED_OBJECT);
655 	case ZFS_PROP_GROUPUSED:
656 		return (DMU_GROUPUSED_OBJECT);
657 	case ZFS_PROP_USERQUOTA:
658 		return (zfsvfs->z_userquota_obj);
659 	case ZFS_PROP_GROUPQUOTA:
660 		return (zfsvfs->z_groupquota_obj);
661 	}
662 	return (0);
663 }
664 
665 int
666 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
667     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
668 {
669 	int error;
670 	zap_cursor_t zc;
671 	zap_attribute_t za;
672 	zfs_useracct_t *buf = vbuf;
673 	uint64_t obj;
674 
675 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
676 		return (SET_ERROR(ENOTSUP));
677 
678 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
679 	if (obj == 0) {
680 		*bufsizep = 0;
681 		return (0);
682 	}
683 
684 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
685 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
686 	    zap_cursor_advance(&zc)) {
687 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
688 		    *bufsizep)
689 			break;
690 
691 		fuidstr_to_sid(zfsvfs, za.za_name,
692 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
693 
694 		buf->zu_space = za.za_first_integer;
695 		buf++;
696 	}
697 	if (error == ENOENT)
698 		error = 0;
699 
700 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
701 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
702 	*cookiep = zap_cursor_serialize(&zc);
703 	zap_cursor_fini(&zc);
704 	return (error);
705 }
706 
707 /*
708  * buf must be big enough (eg, 32 bytes)
709  */
710 static int
711 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
712     char *buf, boolean_t addok)
713 {
714 	uint64_t fuid;
715 	int domainid = 0;
716 
717 	if (domain && domain[0]) {
718 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
719 		if (domainid == -1)
720 			return (SET_ERROR(ENOENT));
721 	}
722 	fuid = FUID_ENCODE(domainid, rid);
723 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
724 	return (0);
725 }
726 
727 int
728 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
729     const char *domain, uint64_t rid, uint64_t *valp)
730 {
731 	char buf[32];
732 	int err;
733 	uint64_t obj;
734 
735 	*valp = 0;
736 
737 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
738 		return (SET_ERROR(ENOTSUP));
739 
740 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
741 	if (obj == 0)
742 		return (0);
743 
744 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
745 	if (err)
746 		return (err);
747 
748 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
749 	if (err == ENOENT)
750 		err = 0;
751 	return (err);
752 }
753 
754 int
755 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
756     const char *domain, uint64_t rid, uint64_t quota)
757 {
758 	char buf[32];
759 	int err;
760 	dmu_tx_t *tx;
761 	uint64_t *objp;
762 	boolean_t fuid_dirtied;
763 
764 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
765 		return (SET_ERROR(EINVAL));
766 
767 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
768 		return (SET_ERROR(ENOTSUP));
769 
770 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
771 	    &zfsvfs->z_groupquota_obj;
772 
773 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
774 	if (err)
775 		return (err);
776 	fuid_dirtied = zfsvfs->z_fuid_dirty;
777 
778 	tx = dmu_tx_create(zfsvfs->z_os);
779 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
780 	if (*objp == 0) {
781 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
782 		    zfs_userquota_prop_prefixes[type]);
783 	}
784 	if (fuid_dirtied)
785 		zfs_fuid_txhold(zfsvfs, tx);
786 	err = dmu_tx_assign(tx, TXG_WAIT);
787 	if (err) {
788 		dmu_tx_abort(tx);
789 		return (err);
790 	}
791 
792 	mutex_enter(&zfsvfs->z_lock);
793 	if (*objp == 0) {
794 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
795 		    DMU_OT_NONE, 0, tx);
796 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
797 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
798 	}
799 	mutex_exit(&zfsvfs->z_lock);
800 
801 	if (quota == 0) {
802 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
803 		if (err == ENOENT)
804 			err = 0;
805 	} else {
806 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
807 	}
808 	ASSERT(err == 0);
809 	if (fuid_dirtied)
810 		zfs_fuid_sync(zfsvfs, tx);
811 	dmu_tx_commit(tx);
812 	return (err);
813 }
814 
815 boolean_t
816 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
817 {
818 	char buf[32];
819 	uint64_t used, quota, usedobj, quotaobj;
820 	int err;
821 
822 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
823 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
824 
825 	if (quotaobj == 0 || zfsvfs->z_replay)
826 		return (B_FALSE);
827 
828 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
829 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
830 	if (err != 0)
831 		return (B_FALSE);
832 
833 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
834 	if (err != 0)
835 		return (B_FALSE);
836 	return (used >= quota);
837 }
838 
839 boolean_t
840 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
841 {
842 	uint64_t fuid;
843 	uint64_t quotaobj;
844 
845 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
846 
847 	fuid = isgroup ? zp->z_gid : zp->z_uid;
848 
849 	if (quotaobj == 0 || zfsvfs->z_replay)
850 		return (B_FALSE);
851 
852 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
853 }
854 
855 /*
856  * Associate this zfsvfs with the given objset, which must be owned.
857  * This will cache a bunch of on-disk state from the objset in the
858  * zfsvfs.
859  */
860 static int
861 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
862 {
863 	int error;
864 	uint64_t val;
865 
866 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
867 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
868 	zfsvfs->z_os = os;
869 
870 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
871 	if (error != 0)
872 		return (error);
873 	if (zfsvfs->z_version >
874 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
875 		(void) printf("Can't mount a version %lld file system "
876 		    "on a version %lld pool\n. Pool must be upgraded to mount "
877 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
878 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
879 		return (SET_ERROR(ENOTSUP));
880 	}
881 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
882 	if (error != 0)
883 		return (error);
884 	zfsvfs->z_norm = (int)val;
885 
886 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
887 	if (error != 0)
888 		return (error);
889 	zfsvfs->z_utf8 = (val != 0);
890 
891 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
892 	if (error != 0)
893 		return (error);
894 	zfsvfs->z_case = (uint_t)val;
895 
896 	/*
897 	 * Fold case on file systems that are always or sometimes case
898 	 * insensitive.
899 	 */
900 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
901 	    zfsvfs->z_case == ZFS_CASE_MIXED)
902 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
903 
904 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
905 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
906 
907 	uint64_t sa_obj = 0;
908 	if (zfsvfs->z_use_sa) {
909 		/* should either have both of these objects or none */
910 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
911 		    &sa_obj);
912 		if (error != 0)
913 			return (error);
914 	}
915 
916 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
917 	    &zfsvfs->z_attr_table);
918 	if (error != 0)
919 		return (error);
920 
921 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
922 		sa_register_update_callback(os, zfs_sa_upgrade);
923 
924 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
925 	    &zfsvfs->z_root);
926 	if (error != 0)
927 		return (error);
928 	ASSERT(zfsvfs->z_root != 0);
929 
930 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
931 	    &zfsvfs->z_unlinkedobj);
932 	if (error != 0)
933 		return (error);
934 
935 	error = zap_lookup(os, MASTER_NODE_OBJ,
936 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
937 	    8, 1, &zfsvfs->z_userquota_obj);
938 	if (error == ENOENT)
939 		zfsvfs->z_userquota_obj = 0;
940 	else if (error != 0)
941 		return (error);
942 
943 	error = zap_lookup(os, MASTER_NODE_OBJ,
944 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
945 	    8, 1, &zfsvfs->z_groupquota_obj);
946 	if (error == ENOENT)
947 		zfsvfs->z_groupquota_obj = 0;
948 	else if (error != 0)
949 		return (error);
950 
951 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
952 	    &zfsvfs->z_fuid_obj);
953 	if (error == ENOENT)
954 		zfsvfs->z_fuid_obj = 0;
955 	else if (error != 0)
956 		return (error);
957 
958 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
959 	    &zfsvfs->z_shares_dir);
960 	if (error == ENOENT)
961 		zfsvfs->z_shares_dir = 0;
962 	else if (error != 0)
963 		return (error);
964 
965 	return (0);
966 }
967 
968 int
969 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
970 {
971 	objset_t *os;
972 	zfsvfs_t *zfsvfs;
973 	int error;
974 
975 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
976 
977 	/*
978 	 * We claim to always be readonly so we can open snapshots;
979 	 * other ZPL code will prevent us from writing to snapshots.
980 	 */
981 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
982 	if (error) {
983 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
984 		return (error);
985 	}
986 
987 	zfsvfs->z_vfs = NULL;
988 	zfsvfs->z_parent = zfsvfs;
989 
990 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
991 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
992 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
993 	    offsetof(znode_t, z_link_node));
994 	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
995 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
996 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
997 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
998 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
999 
1000 	error = zfsvfs_init(zfsvfs, os);
1001 	if (error != 0) {
1002 		dmu_objset_disown(os, zfsvfs);
1003 		*zfvp = NULL;
1004 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1005 		return (error);
1006 	}
1007 
1008 	*zfvp = zfsvfs;
1009 	return (0);
1010 }
1011 
1012 static int
1013 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1014 {
1015 	int error;
1016 
1017 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1018 	if (error)
1019 		return (error);
1020 
1021 	/*
1022 	 * Set the objset user_ptr to track its zfsvfs.
1023 	 */
1024 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1025 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1026 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1027 
1028 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1029 
1030 	/*
1031 	 * If we are not mounting (ie: online recv), then we don't
1032 	 * have to worry about replaying the log as we blocked all
1033 	 * operations out since we closed the ZIL.
1034 	 */
1035 	if (mounting) {
1036 		boolean_t readonly;
1037 
1038 		/*
1039 		 * During replay we remove the read only flag to
1040 		 * allow replays to succeed.
1041 		 */
1042 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1043 		if (readonly != 0)
1044 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1045 		else
1046 			zfs_unlinked_drain(zfsvfs);
1047 
1048 		/*
1049 		 * Parse and replay the intent log.
1050 		 *
1051 		 * Because of ziltest, this must be done after
1052 		 * zfs_unlinked_drain().  (Further note: ziltest
1053 		 * doesn't use readonly mounts, where
1054 		 * zfs_unlinked_drain() isn't called.)  This is because
1055 		 * ziltest causes spa_sync() to think it's committed,
1056 		 * but actually it is not, so the intent log contains
1057 		 * many txg's worth of changes.
1058 		 *
1059 		 * In particular, if object N is in the unlinked set in
1060 		 * the last txg to actually sync, then it could be
1061 		 * actually freed in a later txg and then reallocated
1062 		 * in a yet later txg.  This would write a "create
1063 		 * object N" record to the intent log.  Normally, this
1064 		 * would be fine because the spa_sync() would have
1065 		 * written out the fact that object N is free, before
1066 		 * we could write the "create object N" intent log
1067 		 * record.
1068 		 *
1069 		 * But when we are in ziltest mode, we advance the "open
1070 		 * txg" without actually spa_sync()-ing the changes to
1071 		 * disk.  So we would see that object N is still
1072 		 * allocated and in the unlinked set, and there is an
1073 		 * intent log record saying to allocate it.
1074 		 */
1075 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1076 			if (zil_replay_disable) {
1077 				zil_destroy(zfsvfs->z_log, B_FALSE);
1078 			} else {
1079 				zfsvfs->z_replay = B_TRUE;
1080 				zil_replay(zfsvfs->z_os, zfsvfs,
1081 				    zfs_replay_vector);
1082 				zfsvfs->z_replay = B_FALSE;
1083 			}
1084 		}
1085 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 void
1092 zfsvfs_free(zfsvfs_t *zfsvfs)
1093 {
1094 	int i;
1095 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1096 
1097 	/*
1098 	 * This is a barrier to prevent the filesystem from going away in
1099 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1100 	 * not unmounted. We consider the filesystem valid before the barrier
1101 	 * and invalid after the barrier.
1102 	 */
1103 	rw_enter(&zfsvfs_lock, RW_READER);
1104 	rw_exit(&zfsvfs_lock);
1105 
1106 	zfs_fuid_destroy(zfsvfs);
1107 
1108 	mutex_destroy(&zfsvfs->z_znodes_lock);
1109 	mutex_destroy(&zfsvfs->z_lock);
1110 	list_destroy(&zfsvfs->z_all_znodes);
1111 	rrm_destroy(&zfsvfs->z_teardown_lock);
1112 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1113 	rw_destroy(&zfsvfs->z_fuid_lock);
1114 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1115 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1116 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1117 }
1118 
1119 static void
1120 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1121 {
1122 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1123 	if (zfsvfs->z_vfs) {
1124 		if (zfsvfs->z_use_fuids) {
1125 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1126 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1127 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1128 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1129 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1130 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1131 		} else {
1132 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1133 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1134 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1135 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1136 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1137 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1138 		}
1139 	}
1140 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1141 }
1142 
1143 static int
1144 zfs_domount(vfs_t *vfsp, char *osname)
1145 {
1146 	dev_t mount_dev;
1147 	uint64_t recordsize, fsid_guid;
1148 	int error = 0;
1149 	zfsvfs_t *zfsvfs;
1150 
1151 	ASSERT(vfsp);
1152 	ASSERT(osname);
1153 
1154 	error = zfsvfs_create(osname, &zfsvfs);
1155 	if (error)
1156 		return (error);
1157 	zfsvfs->z_vfs = vfsp;
1158 
1159 	/* Initialize the generic filesystem structure. */
1160 	vfsp->vfs_bcount = 0;
1161 	vfsp->vfs_data = NULL;
1162 
1163 	if (zfs_create_unique_device(&mount_dev) == -1) {
1164 		error = SET_ERROR(ENODEV);
1165 		goto out;
1166 	}
1167 	ASSERT(vfs_devismounted(mount_dev) == 0);
1168 
1169 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1170 	    NULL))
1171 		goto out;
1172 
1173 	vfsp->vfs_dev = mount_dev;
1174 	vfsp->vfs_fstype = zfsfstype;
1175 	vfsp->vfs_bsize = recordsize;
1176 	vfsp->vfs_flag |= VFS_NOTRUNC;
1177 	vfsp->vfs_data = zfsvfs;
1178 
1179 	/*
1180 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1181 	 * separates our fsid from any other filesystem types, and a
1182 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1183 	 * all objsets open on this system, provided by unique_create().
1184 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1185 	 * because that's where other Solaris filesystems put it.
1186 	 */
1187 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1188 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1189 	vfsp->vfs_fsid.val[0] = fsid_guid;
1190 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1191 	    zfsfstype & 0xFF;
1192 
1193 	/*
1194 	 * Set features for file system.
1195 	 */
1196 	zfs_set_fuid_feature(zfsvfs);
1197 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1198 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1199 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1200 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1201 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1202 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1203 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1204 	}
1205 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1206 
1207 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1208 		uint64_t pval;
1209 
1210 		atime_changed_cb(zfsvfs, B_FALSE);
1211 		readonly_changed_cb(zfsvfs, B_TRUE);
1212 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1213 			goto out;
1214 		xattr_changed_cb(zfsvfs, pval);
1215 		zfsvfs->z_issnap = B_TRUE;
1216 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1217 
1218 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1219 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1220 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1221 	} else {
1222 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1223 	}
1224 
1225 	if (!zfsvfs->z_issnap)
1226 		zfsctl_create(zfsvfs);
1227 out:
1228 	if (error) {
1229 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1230 		zfsvfs_free(zfsvfs);
1231 	} else {
1232 		atomic_inc_32(&zfs_active_fs_count);
1233 	}
1234 
1235 	return (error);
1236 }
1237 
1238 void
1239 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1240 {
1241 	objset_t *os = zfsvfs->z_os;
1242 
1243 	if (!dmu_objset_is_snapshot(os))
1244 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1245 }
1246 
1247 /*
1248  * Convert a decimal digit string to a uint64_t integer.
1249  */
1250 static int
1251 str_to_uint64(char *str, uint64_t *objnum)
1252 {
1253 	uint64_t num = 0;
1254 
1255 	while (*str) {
1256 		if (*str < '0' || *str > '9')
1257 			return (SET_ERROR(EINVAL));
1258 
1259 		num = num*10 + *str++ - '0';
1260 	}
1261 
1262 	*objnum = num;
1263 	return (0);
1264 }
1265 
1266 /*
1267  * The boot path passed from the boot loader is in the form of
1268  * "rootpool-name/root-filesystem-object-number'. Convert this
1269  * string to a dataset name: "rootpool-name/root-filesystem-name".
1270  */
1271 static int
1272 zfs_parse_bootfs(char *bpath, char *outpath)
1273 {
1274 	char *slashp;
1275 	uint64_t objnum;
1276 	int error;
1277 
1278 	if (*bpath == 0 || *bpath == '/')
1279 		return (SET_ERROR(EINVAL));
1280 
1281 	(void) strcpy(outpath, bpath);
1282 
1283 	slashp = strchr(bpath, '/');
1284 
1285 	/* if no '/', just return the pool name */
1286 	if (slashp == NULL) {
1287 		return (0);
1288 	}
1289 
1290 	/* if not a number, just return the root dataset name */
1291 	if (str_to_uint64(slashp+1, &objnum)) {
1292 		return (0);
1293 	}
1294 
1295 	*slashp = '\0';
1296 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1297 	*slashp = '/';
1298 
1299 	return (error);
1300 }
1301 
1302 /*
1303  * Check that the hex label string is appropriate for the dataset being
1304  * mounted into the global_zone proper.
1305  *
1306  * Return an error if the hex label string is not default or
1307  * admin_low/admin_high.  For admin_low labels, the corresponding
1308  * dataset must be readonly.
1309  */
1310 int
1311 zfs_check_global_label(const char *dsname, const char *hexsl)
1312 {
1313 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1314 		return (0);
1315 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1316 		return (0);
1317 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1318 		/* must be readonly */
1319 		uint64_t rdonly;
1320 
1321 		if (dsl_prop_get_integer(dsname,
1322 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1323 			return (SET_ERROR(EACCES));
1324 		return (rdonly ? 0 : EACCES);
1325 	}
1326 	return (SET_ERROR(EACCES));
1327 }
1328 
1329 /*
1330  * Determine whether the mount is allowed according to MAC check.
1331  * by comparing (where appropriate) label of the dataset against
1332  * the label of the zone being mounted into.  If the dataset has
1333  * no label, create one.
1334  *
1335  * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1336  */
1337 static int
1338 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1339 {
1340 	int		error, retv;
1341 	zone_t		*mntzone = NULL;
1342 	ts_label_t	*mnt_tsl;
1343 	bslabel_t	*mnt_sl;
1344 	bslabel_t	ds_sl;
1345 	char		ds_hexsl[MAXNAMELEN];
1346 
1347 	retv = EACCES;				/* assume the worst */
1348 
1349 	/*
1350 	 * Start by getting the dataset label if it exists.
1351 	 */
1352 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1353 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1354 	if (error)
1355 		return (SET_ERROR(EACCES));
1356 
1357 	/*
1358 	 * If labeling is NOT enabled, then disallow the mount of datasets
1359 	 * which have a non-default label already.  No other label checks
1360 	 * are needed.
1361 	 */
1362 	if (!is_system_labeled()) {
1363 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1364 			return (0);
1365 		return (SET_ERROR(EACCES));
1366 	}
1367 
1368 	/*
1369 	 * Get the label of the mountpoint.  If mounting into the global
1370 	 * zone (i.e. mountpoint is not within an active zone and the
1371 	 * zoned property is off), the label must be default or
1372 	 * admin_low/admin_high only; no other checks are needed.
1373 	 */
1374 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1375 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1376 		uint64_t zoned;
1377 
1378 		zone_rele(mntzone);
1379 
1380 		if (dsl_prop_get_integer(osname,
1381 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1382 			return (SET_ERROR(EACCES));
1383 		if (!zoned)
1384 			return (zfs_check_global_label(osname, ds_hexsl));
1385 		else
1386 			/*
1387 			 * This is the case of a zone dataset being mounted
1388 			 * initially, before the zone has been fully created;
1389 			 * allow this mount into global zone.
1390 			 */
1391 			return (0);
1392 	}
1393 
1394 	mnt_tsl = mntzone->zone_slabel;
1395 	ASSERT(mnt_tsl != NULL);
1396 	label_hold(mnt_tsl);
1397 	mnt_sl = label2bslabel(mnt_tsl);
1398 
1399 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1400 		/*
1401 		 * The dataset doesn't have a real label, so fabricate one.
1402 		 */
1403 		char *str = NULL;
1404 
1405 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1406 		    dsl_prop_set_string(osname,
1407 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1408 		    ZPROP_SRC_LOCAL, str) == 0)
1409 			retv = 0;
1410 		if (str != NULL)
1411 			kmem_free(str, strlen(str) + 1);
1412 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1413 		/*
1414 		 * Now compare labels to complete the MAC check.  If the
1415 		 * labels are equal then allow access.  If the mountpoint
1416 		 * label dominates the dataset label, allow readonly access.
1417 		 * Otherwise, access is denied.
1418 		 */
1419 		if (blequal(mnt_sl, &ds_sl))
1420 			retv = 0;
1421 		else if (bldominates(mnt_sl, &ds_sl)) {
1422 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1423 			retv = 0;
1424 		}
1425 	}
1426 
1427 	label_rele(mnt_tsl);
1428 	zone_rele(mntzone);
1429 	return (retv);
1430 }
1431 
1432 static int
1433 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1434 {
1435 	int error = 0;
1436 	static int zfsrootdone = 0;
1437 	zfsvfs_t *zfsvfs = NULL;
1438 	znode_t *zp = NULL;
1439 	vnode_t *vp = NULL;
1440 	char *zfs_bootfs;
1441 	char *zfs_devid;
1442 
1443 	ASSERT(vfsp);
1444 
1445 	/*
1446 	 * The filesystem that we mount as root is defined in the
1447 	 * boot property "zfs-bootfs" with a format of
1448 	 * "poolname/root-dataset-objnum".
1449 	 */
1450 	if (why == ROOT_INIT) {
1451 		if (zfsrootdone++)
1452 			return (SET_ERROR(EBUSY));
1453 		/*
1454 		 * the process of doing a spa_load will require the
1455 		 * clock to be set before we could (for example) do
1456 		 * something better by looking at the timestamp on
1457 		 * an uberblock, so just set it to -1.
1458 		 */
1459 		clkset(-1);
1460 
1461 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1462 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1463 			    "bootfs name");
1464 			return (SET_ERROR(EINVAL));
1465 		}
1466 		zfs_devid = spa_get_bootprop("diskdevid");
1467 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1468 		if (zfs_devid)
1469 			spa_free_bootprop(zfs_devid);
1470 		if (error) {
1471 			spa_free_bootprop(zfs_bootfs);
1472 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1473 			    error);
1474 			return (error);
1475 		}
1476 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1477 			spa_free_bootprop(zfs_bootfs);
1478 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1479 			    error);
1480 			return (error);
1481 		}
1482 
1483 		spa_free_bootprop(zfs_bootfs);
1484 
1485 		if (error = vfs_lock(vfsp))
1486 			return (error);
1487 
1488 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1489 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1490 			goto out;
1491 		}
1492 
1493 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1494 		ASSERT(zfsvfs);
1495 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1496 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1497 			goto out;
1498 		}
1499 
1500 		vp = ZTOV(zp);
1501 		mutex_enter(&vp->v_lock);
1502 		vp->v_flag |= VROOT;
1503 		mutex_exit(&vp->v_lock);
1504 		rootvp = vp;
1505 
1506 		/*
1507 		 * Leave rootvp held.  The root file system is never unmounted.
1508 		 */
1509 
1510 		vfs_add((struct vnode *)0, vfsp,
1511 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1512 out:
1513 		vfs_unlock(vfsp);
1514 		return (error);
1515 	} else if (why == ROOT_REMOUNT) {
1516 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1517 		vfsp->vfs_flag |= VFS_REMOUNT;
1518 
1519 		/* refresh mount options */
1520 		zfs_unregister_callbacks(vfsp->vfs_data);
1521 		return (zfs_register_callbacks(vfsp));
1522 
1523 	} else if (why == ROOT_UNMOUNT) {
1524 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1525 		(void) zfs_sync(vfsp, 0, 0);
1526 		return (0);
1527 	}
1528 
1529 	/*
1530 	 * if "why" is equal to anything else other than ROOT_INIT,
1531 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1532 	 */
1533 	return (SET_ERROR(ENOTSUP));
1534 }
1535 
1536 /*ARGSUSED*/
1537 static int
1538 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1539 {
1540 	char		*osname;
1541 	pathname_t	spn;
1542 	int		error = 0;
1543 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1544 	    UIO_SYSSPACE : UIO_USERSPACE;
1545 	int		canwrite;
1546 
1547 	if (mvp->v_type != VDIR)
1548 		return (SET_ERROR(ENOTDIR));
1549 
1550 	mutex_enter(&mvp->v_lock);
1551 	if ((uap->flags & MS_REMOUNT) == 0 &&
1552 	    (uap->flags & MS_OVERLAY) == 0 &&
1553 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1554 		mutex_exit(&mvp->v_lock);
1555 		return (SET_ERROR(EBUSY));
1556 	}
1557 	mutex_exit(&mvp->v_lock);
1558 
1559 	/*
1560 	 * ZFS does not support passing unparsed data in via MS_DATA.
1561 	 * Users should use the MS_OPTIONSTR interface; this means
1562 	 * that all option parsing is already done and the options struct
1563 	 * can be interrogated.
1564 	 */
1565 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1566 		return (SET_ERROR(EINVAL));
1567 
1568 	/*
1569 	 * Get the objset name (the "special" mount argument).
1570 	 */
1571 	if (error = pn_get(uap->spec, fromspace, &spn))
1572 		return (error);
1573 
1574 	osname = spn.pn_path;
1575 
1576 	/*
1577 	 * Check for mount privilege?
1578 	 *
1579 	 * If we don't have privilege then see if
1580 	 * we have local permission to allow it
1581 	 */
1582 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1583 	if (error) {
1584 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1585 			vattr_t		vattr;
1586 
1587 			/*
1588 			 * Make sure user is the owner of the mount point
1589 			 * or has sufficient privileges.
1590 			 */
1591 
1592 			vattr.va_mask = AT_UID;
1593 
1594 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1595 				goto out;
1596 			}
1597 
1598 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1599 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1600 				goto out;
1601 			}
1602 			secpolicy_fs_mount_clearopts(cr, vfsp);
1603 		} else {
1604 			goto out;
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Refuse to mount a filesystem if we are in a local zone and the
1610 	 * dataset is not visible.
1611 	 */
1612 	if (!INGLOBALZONE(curproc) &&
1613 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1614 		error = SET_ERROR(EPERM);
1615 		goto out;
1616 	}
1617 
1618 	error = zfs_mount_label_policy(vfsp, osname);
1619 	if (error)
1620 		goto out;
1621 
1622 	/*
1623 	 * When doing a remount, we simply refresh our temporary properties
1624 	 * according to those options set in the current VFS options.
1625 	 */
1626 	if (uap->flags & MS_REMOUNT) {
1627 		/* refresh mount options */
1628 		zfs_unregister_callbacks(vfsp->vfs_data);
1629 		error = zfs_register_callbacks(vfsp);
1630 		goto out;
1631 	}
1632 
1633 	error = zfs_domount(vfsp, osname);
1634 
1635 	/*
1636 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1637 	 * disappear due to a forced unmount.
1638 	 */
1639 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1640 		VFS_HOLD(mvp->v_vfsp);
1641 
1642 out:
1643 	pn_free(&spn);
1644 	return (error);
1645 }
1646 
1647 static int
1648 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1649 {
1650 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1651 	dev32_t d32;
1652 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1653 
1654 	ZFS_ENTER(zfsvfs);
1655 
1656 	dmu_objset_space(zfsvfs->z_os,
1657 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1658 
1659 	/*
1660 	 * The underlying storage pool actually uses multiple block sizes.
1661 	 * We report the fragsize as the smallest block size we support,
1662 	 * and we report our blocksize as the filesystem's maximum blocksize.
1663 	 */
1664 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1665 	statp->f_bsize = zfsvfs->z_max_blksz;
1666 
1667 	/*
1668 	 * The following report "total" blocks of various kinds in the
1669 	 * file system, but reported in terms of f_frsize - the
1670 	 * "fragment" size.
1671 	 */
1672 
1673 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1674 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1675 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1676 
1677 	/*
1678 	 * statvfs() should really be called statufs(), because it assumes
1679 	 * static metadata.  ZFS doesn't preallocate files, so the best
1680 	 * we can do is report the max that could possibly fit in f_files,
1681 	 * and that minus the number actually used in f_ffree.
1682 	 * For f_ffree, report the smaller of the number of object available
1683 	 * and the number of blocks (each object will take at least a block).
1684 	 */
1685 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1686 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1687 	statp->f_files = statp->f_ffree + usedobjs;
1688 
1689 	(void) cmpldev(&d32, vfsp->vfs_dev);
1690 	statp->f_fsid = d32;
1691 
1692 	/*
1693 	 * We're a zfs filesystem.
1694 	 */
1695 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1696 
1697 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1698 
1699 	statp->f_namemax = MAXNAMELEN - 1;
1700 
1701 	/*
1702 	 * We have all of 32 characters to stuff a string here.
1703 	 * Is there anything useful we could/should provide?
1704 	 */
1705 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1706 
1707 	ZFS_EXIT(zfsvfs);
1708 	return (0);
1709 }
1710 
1711 static int
1712 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1713 {
1714 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1715 	znode_t *rootzp;
1716 	int error;
1717 
1718 	ZFS_ENTER(zfsvfs);
1719 
1720 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1721 	if (error == 0)
1722 		*vpp = ZTOV(rootzp);
1723 
1724 	ZFS_EXIT(zfsvfs);
1725 	return (error);
1726 }
1727 
1728 /*
1729  * Teardown the zfsvfs::z_os.
1730  *
1731  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1732  * and 'z_teardown_inactive_lock' held.
1733  */
1734 static int
1735 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1736 {
1737 	znode_t	*zp;
1738 
1739 	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1740 
1741 	if (!unmounting) {
1742 		/*
1743 		 * We purge the parent filesystem's vfsp as the parent
1744 		 * filesystem and all of its snapshots have their vnode's
1745 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1746 		 * 'z_parent' is self referential for non-snapshots.
1747 		 */
1748 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1749 	}
1750 
1751 	/*
1752 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1753 	 * threads are blocked as zil_close can call zfs_inactive.
1754 	 */
1755 	if (zfsvfs->z_log) {
1756 		zil_close(zfsvfs->z_log);
1757 		zfsvfs->z_log = NULL;
1758 	}
1759 
1760 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1761 
1762 	/*
1763 	 * If we are not unmounting (ie: online recv) and someone already
1764 	 * unmounted this file system while we were doing the switcheroo,
1765 	 * or a reopen of z_os failed then just bail out now.
1766 	 */
1767 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1768 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1769 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1770 		return (SET_ERROR(EIO));
1771 	}
1772 
1773 	/*
1774 	 * At this point there are no vops active, and any new vops will
1775 	 * fail with EIO since we have z_teardown_lock for writer (only
1776 	 * relavent for forced unmount).
1777 	 *
1778 	 * Release all holds on dbufs.
1779 	 */
1780 	mutex_enter(&zfsvfs->z_znodes_lock);
1781 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1782 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1783 		if (zp->z_sa_hdl) {
1784 			ASSERT(ZTOV(zp)->v_count > 0);
1785 			zfs_znode_dmu_fini(zp);
1786 		}
1787 	mutex_exit(&zfsvfs->z_znodes_lock);
1788 
1789 	/*
1790 	 * If we are unmounting, set the unmounted flag and let new vops
1791 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1792 	 * other vops will fail with EIO.
1793 	 */
1794 	if (unmounting) {
1795 		zfsvfs->z_unmounted = B_TRUE;
1796 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1797 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1798 	}
1799 
1800 	/*
1801 	 * z_os will be NULL if there was an error in attempting to reopen
1802 	 * zfsvfs, so just return as the properties had already been
1803 	 * unregistered and cached data had been evicted before.
1804 	 */
1805 	if (zfsvfs->z_os == NULL)
1806 		return (0);
1807 
1808 	/*
1809 	 * Unregister properties.
1810 	 */
1811 	zfs_unregister_callbacks(zfsvfs);
1812 
1813 	/*
1814 	 * Evict cached data
1815 	 */
1816 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1817 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1818 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1819 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1820 
1821 	return (0);
1822 }
1823 
1824 /*ARGSUSED*/
1825 static int
1826 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1827 {
1828 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1829 	objset_t *os;
1830 	int ret;
1831 
1832 	ret = secpolicy_fs_unmount(cr, vfsp);
1833 	if (ret) {
1834 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1835 		    ZFS_DELEG_PERM_MOUNT, cr))
1836 			return (ret);
1837 	}
1838 
1839 	/*
1840 	 * We purge the parent filesystem's vfsp as the parent filesystem
1841 	 * and all of its snapshots have their vnode's v_vfsp set to the
1842 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1843 	 * referential for non-snapshots.
1844 	 */
1845 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1846 
1847 	/*
1848 	 * Unmount any snapshots mounted under .zfs before unmounting the
1849 	 * dataset itself.
1850 	 */
1851 	if (zfsvfs->z_ctldir != NULL &&
1852 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1853 		return (ret);
1854 	}
1855 
1856 	if (!(fflag & MS_FORCE)) {
1857 		/*
1858 		 * Check the number of active vnodes in the file system.
1859 		 * Our count is maintained in the vfs structure, but the
1860 		 * number is off by 1 to indicate a hold on the vfs
1861 		 * structure itself.
1862 		 *
1863 		 * The '.zfs' directory maintains a reference of its
1864 		 * own, and any active references underneath are
1865 		 * reflected in the vnode count.
1866 		 */
1867 		if (zfsvfs->z_ctldir == NULL) {
1868 			if (vfsp->vfs_count > 1)
1869 				return (SET_ERROR(EBUSY));
1870 		} else {
1871 			if (vfsp->vfs_count > 2 ||
1872 			    zfsvfs->z_ctldir->v_count > 1)
1873 				return (SET_ERROR(EBUSY));
1874 		}
1875 	}
1876 
1877 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1878 
1879 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1880 	os = zfsvfs->z_os;
1881 
1882 	/*
1883 	 * z_os will be NULL if there was an error in
1884 	 * attempting to reopen zfsvfs.
1885 	 */
1886 	if (os != NULL) {
1887 		/*
1888 		 * Unset the objset user_ptr.
1889 		 */
1890 		mutex_enter(&os->os_user_ptr_lock);
1891 		dmu_objset_set_user(os, NULL);
1892 		mutex_exit(&os->os_user_ptr_lock);
1893 
1894 		/*
1895 		 * Finally release the objset
1896 		 */
1897 		dmu_objset_disown(os, zfsvfs);
1898 	}
1899 
1900 	/*
1901 	 * We can now safely destroy the '.zfs' directory node.
1902 	 */
1903 	if (zfsvfs->z_ctldir != NULL)
1904 		zfsctl_destroy(zfsvfs);
1905 
1906 	return (0);
1907 }
1908 
1909 static int
1910 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1911 {
1912 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1913 	znode_t		*zp;
1914 	uint64_t	object = 0;
1915 	uint64_t	fid_gen = 0;
1916 	uint64_t	gen_mask;
1917 	uint64_t	zp_gen;
1918 	int 		i, err;
1919 
1920 	*vpp = NULL;
1921 
1922 	ZFS_ENTER(zfsvfs);
1923 
1924 	if (fidp->fid_len == LONG_FID_LEN) {
1925 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1926 		uint64_t	objsetid = 0;
1927 		uint64_t	setgen = 0;
1928 
1929 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1930 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1931 
1932 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1933 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1934 
1935 		ZFS_EXIT(zfsvfs);
1936 
1937 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1938 		if (err)
1939 			return (SET_ERROR(EINVAL));
1940 		ZFS_ENTER(zfsvfs);
1941 	}
1942 
1943 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1944 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1945 
1946 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1947 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1948 
1949 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1950 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1951 	} else {
1952 		ZFS_EXIT(zfsvfs);
1953 		return (SET_ERROR(EINVAL));
1954 	}
1955 
1956 	/* A zero fid_gen means we are in the .zfs control directories */
1957 	if (fid_gen == 0 &&
1958 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1959 		*vpp = zfsvfs->z_ctldir;
1960 		ASSERT(*vpp != NULL);
1961 		if (object == ZFSCTL_INO_SNAPDIR) {
1962 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1963 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1964 		} else {
1965 			VN_HOLD(*vpp);
1966 		}
1967 		ZFS_EXIT(zfsvfs);
1968 		return (0);
1969 	}
1970 
1971 	gen_mask = -1ULL >> (64 - 8 * i);
1972 
1973 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1974 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1975 		ZFS_EXIT(zfsvfs);
1976 		return (err);
1977 	}
1978 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1979 	    sizeof (uint64_t));
1980 	zp_gen = zp_gen & gen_mask;
1981 	if (zp_gen == 0)
1982 		zp_gen = 1;
1983 	if (zp->z_unlinked || zp_gen != fid_gen) {
1984 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1985 		VN_RELE(ZTOV(zp));
1986 		ZFS_EXIT(zfsvfs);
1987 		return (SET_ERROR(EINVAL));
1988 	}
1989 
1990 	*vpp = ZTOV(zp);
1991 	ZFS_EXIT(zfsvfs);
1992 	return (0);
1993 }
1994 
1995 /*
1996  * Block out VOPs and close zfsvfs_t::z_os
1997  *
1998  * Note, if successful, then we return with the 'z_teardown_lock' and
1999  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2000  * dataset and objset intact so that they can be atomically handed off during
2001  * a subsequent rollback or recv operation and the resume thereafter.
2002  */
2003 int
2004 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2005 {
2006 	int error;
2007 
2008 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2009 		return (error);
2010 
2011 	return (0);
2012 }
2013 
2014 /*
2015  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2016  * is an invariant across any of the operations that can be performed while the
2017  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2018  * are the same: the relevant objset and associated dataset are owned by
2019  * zfsvfs, held, and long held on entry.
2020  */
2021 int
2022 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2023 {
2024 	int err;
2025 	znode_t *zp;
2026 
2027 	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2028 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2029 
2030 	/*
2031 	 * We already own this, so just hold and rele it to update the
2032 	 * objset_t, as the one we had before may have been evicted.
2033 	 */
2034 	objset_t *os;
2035 	VERIFY0(dmu_objset_hold(osname, zfsvfs, &os));
2036 	VERIFY3P(os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2037 	VERIFY(dsl_dataset_long_held(os->os_dsl_dataset));
2038 	dmu_objset_rele(os, zfsvfs);
2039 
2040 	err = zfsvfs_init(zfsvfs, os);
2041 	if (err != 0)
2042 		goto bail;
2043 
2044 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2045 
2046 	zfs_set_fuid_feature(zfsvfs);
2047 
2048 	/*
2049 	 * Attempt to re-establish all the active znodes with
2050 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2051 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2052 	 * when they try to use their znode.
2053 	 */
2054 	mutex_enter(&zfsvfs->z_znodes_lock);
2055 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2056 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2057 		(void) zfs_rezget(zp);
2058 	}
2059 	mutex_exit(&zfsvfs->z_znodes_lock);
2060 
2061 bail:
2062 	/* release the VOPs */
2063 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2064 	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2065 
2066 	if (err) {
2067 		/*
2068 		 * Since we couldn't setup the sa framework, try to force
2069 		 * unmount this file system.
2070 		 */
2071 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2072 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2073 	}
2074 	return (err);
2075 }
2076 
2077 static void
2078 zfs_freevfs(vfs_t *vfsp)
2079 {
2080 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2081 
2082 	/*
2083 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2084 	 * from zfs_mount().  Release it here.  If we came through
2085 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2086 	 * skip the VFS_RELE for rootvfs.
2087 	 */
2088 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2089 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2090 
2091 	zfsvfs_free(zfsvfs);
2092 
2093 	atomic_dec_32(&zfs_active_fs_count);
2094 }
2095 
2096 /*
2097  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2098  * so we can't safely do any non-idempotent initialization here.
2099  * Leave that to zfs_init() and zfs_fini(), which are called
2100  * from the module's _init() and _fini() entry points.
2101  */
2102 /*ARGSUSED*/
2103 static int
2104 zfs_vfsinit(int fstype, char *name)
2105 {
2106 	int error;
2107 
2108 	zfsfstype = fstype;
2109 
2110 	/*
2111 	 * Setup vfsops and vnodeops tables.
2112 	 */
2113 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2114 	if (error != 0) {
2115 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2116 	}
2117 
2118 	error = zfs_create_op_tables();
2119 	if (error) {
2120 		zfs_remove_op_tables();
2121 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2122 		(void) vfs_freevfsops_by_type(zfsfstype);
2123 		return (error);
2124 	}
2125 
2126 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2127 
2128 	/*
2129 	 * Unique major number for all zfs mounts.
2130 	 * If we run out of 32-bit minors, we'll getudev() another major.
2131 	 */
2132 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2133 	zfs_minor = ZFS_MIN_MINOR;
2134 
2135 	return (0);
2136 }
2137 
2138 void
2139 zfs_init(void)
2140 {
2141 	/*
2142 	 * Initialize .zfs directory structures
2143 	 */
2144 	zfsctl_init();
2145 
2146 	/*
2147 	 * Initialize znode cache, vnode ops, etc...
2148 	 */
2149 	zfs_znode_init();
2150 
2151 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2152 }
2153 
2154 void
2155 zfs_fini(void)
2156 {
2157 	zfsctl_fini();
2158 	zfs_znode_fini();
2159 }
2160 
2161 int
2162 zfs_busy(void)
2163 {
2164 	return (zfs_active_fs_count != 0);
2165 }
2166 
2167 int
2168 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2169 {
2170 	int error;
2171 	objset_t *os = zfsvfs->z_os;
2172 	dmu_tx_t *tx;
2173 
2174 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2175 		return (SET_ERROR(EINVAL));
2176 
2177 	if (newvers < zfsvfs->z_version)
2178 		return (SET_ERROR(EINVAL));
2179 
2180 	if (zfs_spa_version_map(newvers) >
2181 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2182 		return (SET_ERROR(ENOTSUP));
2183 
2184 	tx = dmu_tx_create(os);
2185 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2186 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2187 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2188 		    ZFS_SA_ATTRS);
2189 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2190 	}
2191 	error = dmu_tx_assign(tx, TXG_WAIT);
2192 	if (error) {
2193 		dmu_tx_abort(tx);
2194 		return (error);
2195 	}
2196 
2197 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2198 	    8, 1, &newvers, tx);
2199 
2200 	if (error) {
2201 		dmu_tx_commit(tx);
2202 		return (error);
2203 	}
2204 
2205 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2206 		uint64_t sa_obj;
2207 
2208 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2209 		    SPA_VERSION_SA);
2210 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2211 		    DMU_OT_NONE, 0, tx);
2212 
2213 		error = zap_add(os, MASTER_NODE_OBJ,
2214 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2215 		ASSERT0(error);
2216 
2217 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2218 		sa_register_update_callback(os, zfs_sa_upgrade);
2219 	}
2220 
2221 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2222 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2223 
2224 	dmu_tx_commit(tx);
2225 
2226 	zfsvfs->z_version = newvers;
2227 
2228 	zfs_set_fuid_feature(zfsvfs);
2229 
2230 	return (0);
2231 }
2232 
2233 /*
2234  * Read a property stored within the master node.
2235  */
2236 int
2237 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2238 {
2239 	const char *pname;
2240 	int error = ENOENT;
2241 
2242 	/*
2243 	 * Look up the file system's value for the property.  For the
2244 	 * version property, we look up a slightly different string.
2245 	 */
2246 	if (prop == ZFS_PROP_VERSION)
2247 		pname = ZPL_VERSION_STR;
2248 	else
2249 		pname = zfs_prop_to_name(prop);
2250 
2251 	if (os != NULL)
2252 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2253 
2254 	if (error == ENOENT) {
2255 		/* No value set, use the default value */
2256 		switch (prop) {
2257 		case ZFS_PROP_VERSION:
2258 			*value = ZPL_VERSION;
2259 			break;
2260 		case ZFS_PROP_NORMALIZE:
2261 		case ZFS_PROP_UTF8ONLY:
2262 			*value = 0;
2263 			break;
2264 		case ZFS_PROP_CASE:
2265 			*value = ZFS_CASE_SENSITIVE;
2266 			break;
2267 		default:
2268 			return (error);
2269 		}
2270 		error = 0;
2271 	}
2272 	return (error);
2273 }
2274 
2275 static vfsdef_t vfw = {
2276 	VFSDEF_VERSION,
2277 	MNTTYPE_ZFS,
2278 	zfs_vfsinit,
2279 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2280 	    VSW_XID|VSW_ZMOUNT,
2281 	&zfs_mntopts
2282 };
2283 
2284 struct modlfs zfs_modlfs = {
2285 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2286 };
2287