xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 90f2c094b3822f4825f21cef2c2faf7d03b55139)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/kmem.h>
35 #include <sys/pathname.h>
36 #include <sys/vnode.h>
37 #include <sys/vfs.h>
38 #include <sys/vfs_opreg.h>
39 #include <sys/mntent.h>
40 #include <sys/mount.h>
41 #include <sys/cmn_err.h>
42 #include "fs/fs_subr.h"
43 #include <sys/zfs_znode.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zil.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_dataset.h>
50 #include <sys/dsl_deleg.h>
51 #include <sys/spa.h>
52 #include <sys/zap.h>
53 #include <sys/sa.h>
54 #include <sys/sa_impl.h>
55 #include <sys/varargs.h>
56 #include <sys/policy.h>
57 #include <sys/atomic.h>
58 #include <sys/mkdev.h>
59 #include <sys/modctl.h>
60 #include <sys/refstr.h>
61 #include <sys/zfs_ioctl.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/bootconf.h>
65 #include <sys/sunddi.h>
66 #include <sys/dnlc.h>
67 #include <sys/dmu_objset.h>
68 #include <sys/spa_boot.h>
69 #include "zfs_comutil.h"
70 
71 int zfsfstype;
72 vfsops_t *zfs_vfsops = NULL;
73 static major_t zfs_major;
74 static minor_t zfs_minor;
75 static kmutex_t	zfs_dev_mtx;
76 
77 extern int sys_shutdown;
78 
79 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
80 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
81 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
82 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
83 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
84 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
85 static void zfs_freevfs(vfs_t *vfsp);
86 
87 static const fs_operation_def_t zfs_vfsops_template[] = {
88 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
89 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
90 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
91 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
92 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
93 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
94 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
95 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
96 	NULL,			NULL
97 };
98 
99 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
100 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
101 	NULL,			NULL
102 };
103 
104 /*
105  * We need to keep a count of active fs's.
106  * This is necessary to prevent our module
107  * from being unloaded after a umount -f
108  */
109 static uint32_t	zfs_active_fs_count = 0;
110 
111 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
112 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
113 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
114 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
115 
116 /*
117  * MO_DEFAULT is not used since the default value is determined
118  * by the equivalent property.
119  */
120 static mntopt_t mntopts[] = {
121 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
122 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
123 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
124 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
125 };
126 
127 static mntopts_t zfs_mntopts = {
128 	sizeof (mntopts) / sizeof (mntopt_t),
129 	mntopts
130 };
131 
132 /*ARGSUSED*/
133 int
134 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
135 {
136 	/*
137 	 * Data integrity is job one.  We don't want a compromised kernel
138 	 * writing to the storage pool, so we never sync during panic.
139 	 */
140 	if (panicstr)
141 		return (0);
142 
143 	/*
144 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
145 	 * to sync metadata, which they would otherwise cache indefinitely.
146 	 * Semantically, the only requirement is that the sync be initiated.
147 	 * The DMU syncs out txgs frequently, so there's nothing to do.
148 	 */
149 	if (flag & SYNC_ATTR)
150 		return (0);
151 
152 	if (vfsp != NULL) {
153 		/*
154 		 * Sync a specific filesystem.
155 		 */
156 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
157 		dsl_pool_t *dp;
158 
159 		ZFS_ENTER(zfsvfs);
160 		dp = dmu_objset_pool(zfsvfs->z_os);
161 
162 		/*
163 		 * If the system is shutting down, then skip any
164 		 * filesystems which may exist on a suspended pool.
165 		 */
166 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
167 			ZFS_EXIT(zfsvfs);
168 			return (0);
169 		}
170 
171 		if (zfsvfs->z_log != NULL)
172 			zil_commit(zfsvfs->z_log, 0);
173 
174 		ZFS_EXIT(zfsvfs);
175 	} else {
176 		/*
177 		 * Sync all ZFS filesystems.  This is what happens when you
178 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
179 		 * request by waiting for all pools to commit all dirty data.
180 		 */
181 		spa_sync_allpools();
182 	}
183 
184 	return (0);
185 }
186 
187 static int
188 zfs_create_unique_device(dev_t *dev)
189 {
190 	major_t new_major;
191 
192 	do {
193 		ASSERT3U(zfs_minor, <=, MAXMIN32);
194 		minor_t start = zfs_minor;
195 		do {
196 			mutex_enter(&zfs_dev_mtx);
197 			if (zfs_minor >= MAXMIN32) {
198 				/*
199 				 * If we're still using the real major
200 				 * keep out of /dev/zfs and /dev/zvol minor
201 				 * number space.  If we're using a getudev()'ed
202 				 * major number, we can use all of its minors.
203 				 */
204 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
205 					zfs_minor = ZFS_MIN_MINOR;
206 				else
207 					zfs_minor = 0;
208 			} else {
209 				zfs_minor++;
210 			}
211 			*dev = makedevice(zfs_major, zfs_minor);
212 			mutex_exit(&zfs_dev_mtx);
213 		} while (vfs_devismounted(*dev) && zfs_minor != start);
214 		if (zfs_minor == start) {
215 			/*
216 			 * We are using all ~262,000 minor numbers for the
217 			 * current major number.  Create a new major number.
218 			 */
219 			if ((new_major = getudev()) == (major_t)-1) {
220 				cmn_err(CE_WARN,
221 				    "zfs_mount: Can't get unique major "
222 				    "device number.");
223 				return (-1);
224 			}
225 			mutex_enter(&zfs_dev_mtx);
226 			zfs_major = new_major;
227 			zfs_minor = 0;
228 
229 			mutex_exit(&zfs_dev_mtx);
230 		} else {
231 			break;
232 		}
233 		/* CONSTANTCONDITION */
234 	} while (1);
235 
236 	return (0);
237 }
238 
239 static void
240 atime_changed_cb(void *arg, uint64_t newval)
241 {
242 	zfsvfs_t *zfsvfs = arg;
243 
244 	if (newval == TRUE) {
245 		zfsvfs->z_atime = TRUE;
246 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
247 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
248 	} else {
249 		zfsvfs->z_atime = FALSE;
250 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
251 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
252 	}
253 }
254 
255 static void
256 xattr_changed_cb(void *arg, uint64_t newval)
257 {
258 	zfsvfs_t *zfsvfs = arg;
259 
260 	if (newval == TRUE) {
261 		/* XXX locking on vfs_flag? */
262 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
263 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
264 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
265 	} else {
266 		/* XXX locking on vfs_flag? */
267 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
268 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
269 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
270 	}
271 }
272 
273 static void
274 blksz_changed_cb(void *arg, uint64_t newval)
275 {
276 	zfsvfs_t *zfsvfs = arg;
277 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
278 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
279 	ASSERT(ISP2(newval));
280 
281 	zfsvfs->z_max_blksz = newval;
282 	zfsvfs->z_vfs->vfs_bsize = newval;
283 }
284 
285 static void
286 readonly_changed_cb(void *arg, uint64_t newval)
287 {
288 	zfsvfs_t *zfsvfs = arg;
289 
290 	if (newval) {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
295 	} else {
296 		/* XXX locking on vfs_flag? */
297 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
298 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
299 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
300 	}
301 }
302 
303 static void
304 devices_changed_cb(void *arg, uint64_t newval)
305 {
306 	zfsvfs_t *zfsvfs = arg;
307 
308 	if (newval == FALSE) {
309 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
310 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
311 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
312 	} else {
313 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
314 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
315 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
316 	}
317 }
318 
319 static void
320 setuid_changed_cb(void *arg, uint64_t newval)
321 {
322 	zfsvfs_t *zfsvfs = arg;
323 
324 	if (newval == FALSE) {
325 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
326 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
327 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
328 	} else {
329 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
330 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
331 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
332 	}
333 }
334 
335 static void
336 exec_changed_cb(void *arg, uint64_t newval)
337 {
338 	zfsvfs_t *zfsvfs = arg;
339 
340 	if (newval == FALSE) {
341 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
342 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
343 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
344 	} else {
345 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
346 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
347 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
348 	}
349 }
350 
351 /*
352  * The nbmand mount option can be changed at mount time.
353  * We can't allow it to be toggled on live file systems or incorrect
354  * behavior may be seen from cifs clients
355  *
356  * This property isn't registered via dsl_prop_register(), but this callback
357  * will be called when a file system is first mounted
358  */
359 static void
360 nbmand_changed_cb(void *arg, uint64_t newval)
361 {
362 	zfsvfs_t *zfsvfs = arg;
363 	if (newval == FALSE) {
364 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
365 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
366 	} else {
367 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
368 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
369 	}
370 }
371 
372 static void
373 snapdir_changed_cb(void *arg, uint64_t newval)
374 {
375 	zfsvfs_t *zfsvfs = arg;
376 
377 	zfsvfs->z_show_ctldir = newval;
378 }
379 
380 static void
381 vscan_changed_cb(void *arg, uint64_t newval)
382 {
383 	zfsvfs_t *zfsvfs = arg;
384 
385 	zfsvfs->z_vscan = newval;
386 }
387 
388 static void
389 acl_mode_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 
393 	zfsvfs->z_acl_mode = newval;
394 }
395 
396 static void
397 acl_inherit_changed_cb(void *arg, uint64_t newval)
398 {
399 	zfsvfs_t *zfsvfs = arg;
400 
401 	zfsvfs->z_acl_inherit = newval;
402 }
403 
404 static int
405 zfs_register_callbacks(vfs_t *vfsp)
406 {
407 	struct dsl_dataset *ds = NULL;
408 	objset_t *os = NULL;
409 	zfsvfs_t *zfsvfs = NULL;
410 	uint64_t nbmand;
411 	boolean_t readonly = B_FALSE;
412 	boolean_t do_readonly = B_FALSE;
413 	boolean_t setuid = B_FALSE;
414 	boolean_t do_setuid = B_FALSE;
415 	boolean_t exec = B_FALSE;
416 	boolean_t do_exec = B_FALSE;
417 	boolean_t devices = B_FALSE;
418 	boolean_t do_devices = B_FALSE;
419 	boolean_t xattr = B_FALSE;
420 	boolean_t do_xattr = B_FALSE;
421 	boolean_t atime = B_FALSE;
422 	boolean_t do_atime = B_FALSE;
423 	int error = 0;
424 
425 	ASSERT(vfsp);
426 	zfsvfs = vfsp->vfs_data;
427 	ASSERT(zfsvfs);
428 	os = zfsvfs->z_os;
429 
430 	/*
431 	 * The act of registering our callbacks will destroy any mount
432 	 * options we may have.  In order to enable temporary overrides
433 	 * of mount options, we stash away the current values and
434 	 * restore them after we register the callbacks.
435 	 */
436 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
437 	    !spa_writeable(dmu_objset_spa(os))) {
438 		readonly = B_TRUE;
439 		do_readonly = B_TRUE;
440 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
441 		readonly = B_FALSE;
442 		do_readonly = B_TRUE;
443 	}
444 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
445 		devices = B_FALSE;
446 		setuid = B_FALSE;
447 		do_devices = B_TRUE;
448 		do_setuid = B_TRUE;
449 	} else {
450 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
451 			devices = B_FALSE;
452 			do_devices = B_TRUE;
453 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
454 			devices = B_TRUE;
455 			do_devices = B_TRUE;
456 		}
457 
458 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
459 			setuid = B_FALSE;
460 			do_setuid = B_TRUE;
461 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
462 			setuid = B_TRUE;
463 			do_setuid = B_TRUE;
464 		}
465 	}
466 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
467 		exec = B_FALSE;
468 		do_exec = B_TRUE;
469 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
470 		exec = B_TRUE;
471 		do_exec = B_TRUE;
472 	}
473 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
474 		xattr = B_FALSE;
475 		do_xattr = B_TRUE;
476 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
477 		xattr = B_TRUE;
478 		do_xattr = B_TRUE;
479 	}
480 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
481 		atime = B_FALSE;
482 		do_atime = B_TRUE;
483 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
484 		atime = B_TRUE;
485 		do_atime = B_TRUE;
486 	}
487 
488 	/*
489 	 * nbmand is a special property.  It can only be changed at
490 	 * mount time.
491 	 *
492 	 * This is weird, but it is documented to only be changeable
493 	 * at mount time.
494 	 */
495 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
496 		nbmand = B_FALSE;
497 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
498 		nbmand = B_TRUE;
499 	} else {
500 		char osname[ZFS_MAX_DATASET_NAME_LEN];
501 
502 		dmu_objset_name(os, osname);
503 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
504 		    NULL)) {
505 			return (error);
506 		}
507 	}
508 
509 	/*
510 	 * Register property callbacks.
511 	 *
512 	 * It would probably be fine to just check for i/o error from
513 	 * the first prop_register(), but I guess I like to go
514 	 * overboard...
515 	 */
516 	ds = dmu_objset_ds(os);
517 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
518 	error = dsl_prop_register(ds,
519 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
526 	error = error ? error : dsl_prop_register(ds,
527 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
528 	error = error ? error : dsl_prop_register(ds,
529 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
530 	error = error ? error : dsl_prop_register(ds,
531 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
532 	error = error ? error : dsl_prop_register(ds,
533 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
534 	error = error ? error : dsl_prop_register(ds,
535 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
536 	error = error ? error : dsl_prop_register(ds,
537 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
538 	    zfsvfs);
539 	error = error ? error : dsl_prop_register(ds,
540 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
541 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
542 	if (error)
543 		goto unregister;
544 
545 	/*
546 	 * Invoke our callbacks to restore temporary mount options.
547 	 */
548 	if (do_readonly)
549 		readonly_changed_cb(zfsvfs, readonly);
550 	if (do_setuid)
551 		setuid_changed_cb(zfsvfs, setuid);
552 	if (do_exec)
553 		exec_changed_cb(zfsvfs, exec);
554 	if (do_devices)
555 		devices_changed_cb(zfsvfs, devices);
556 	if (do_xattr)
557 		xattr_changed_cb(zfsvfs, xattr);
558 	if (do_atime)
559 		atime_changed_cb(zfsvfs, atime);
560 
561 	nbmand_changed_cb(zfsvfs, nbmand);
562 
563 	return (0);
564 
565 unregister:
566 	dsl_prop_unregister_all(ds, zfsvfs);
567 	return (error);
568 }
569 
570 static int
571 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
572     uint64_t *userp, uint64_t *groupp)
573 {
574 	/*
575 	 * Is it a valid type of object to track?
576 	 */
577 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
578 		return (SET_ERROR(ENOENT));
579 
580 	/*
581 	 * If we have a NULL data pointer
582 	 * then assume the id's aren't changing and
583 	 * return EEXIST to the dmu to let it know to
584 	 * use the same ids
585 	 */
586 	if (data == NULL)
587 		return (SET_ERROR(EEXIST));
588 
589 	if (bonustype == DMU_OT_ZNODE) {
590 		znode_phys_t *znp = data;
591 		*userp = znp->zp_uid;
592 		*groupp = znp->zp_gid;
593 	} else {
594 		int hdrsize;
595 		sa_hdr_phys_t *sap = data;
596 		sa_hdr_phys_t sa = *sap;
597 		boolean_t swap = B_FALSE;
598 
599 		ASSERT(bonustype == DMU_OT_SA);
600 
601 		if (sa.sa_magic == 0) {
602 			/*
603 			 * This should only happen for newly created
604 			 * files that haven't had the znode data filled
605 			 * in yet.
606 			 */
607 			*userp = 0;
608 			*groupp = 0;
609 			return (0);
610 		}
611 		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
612 			sa.sa_magic = SA_MAGIC;
613 			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
614 			swap = B_TRUE;
615 		} else {
616 			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
617 		}
618 
619 		hdrsize = sa_hdrsize(&sa);
620 		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
621 		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
622 		    SA_UID_OFFSET));
623 		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
624 		    SA_GID_OFFSET));
625 		if (swap) {
626 			*userp = BSWAP_64(*userp);
627 			*groupp = BSWAP_64(*groupp);
628 		}
629 	}
630 	return (0);
631 }
632 
633 static void
634 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
635     char *domainbuf, int buflen, uid_t *ridp)
636 {
637 	uint64_t fuid;
638 	const char *domain;
639 
640 	fuid = strtonum(fuidstr, NULL);
641 
642 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
643 	if (domain)
644 		(void) strlcpy(domainbuf, domain, buflen);
645 	else
646 		domainbuf[0] = '\0';
647 	*ridp = FUID_RID(fuid);
648 }
649 
650 static uint64_t
651 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
652 {
653 	switch (type) {
654 	case ZFS_PROP_USERUSED:
655 		return (DMU_USERUSED_OBJECT);
656 	case ZFS_PROP_GROUPUSED:
657 		return (DMU_GROUPUSED_OBJECT);
658 	case ZFS_PROP_USERQUOTA:
659 		return (zfsvfs->z_userquota_obj);
660 	case ZFS_PROP_GROUPQUOTA:
661 		return (zfsvfs->z_groupquota_obj);
662 	}
663 	return (0);
664 }
665 
666 int
667 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
668     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
669 {
670 	int error;
671 	zap_cursor_t zc;
672 	zap_attribute_t za;
673 	zfs_useracct_t *buf = vbuf;
674 	uint64_t obj;
675 
676 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
677 		return (SET_ERROR(ENOTSUP));
678 
679 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
680 	if (obj == 0) {
681 		*bufsizep = 0;
682 		return (0);
683 	}
684 
685 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
686 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
687 	    zap_cursor_advance(&zc)) {
688 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
689 		    *bufsizep)
690 			break;
691 
692 		fuidstr_to_sid(zfsvfs, za.za_name,
693 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
694 
695 		buf->zu_space = za.za_first_integer;
696 		buf++;
697 	}
698 	if (error == ENOENT)
699 		error = 0;
700 
701 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
702 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
703 	*cookiep = zap_cursor_serialize(&zc);
704 	zap_cursor_fini(&zc);
705 	return (error);
706 }
707 
708 /*
709  * buf must be big enough (eg, 32 bytes)
710  */
711 static int
712 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
713     char *buf, boolean_t addok)
714 {
715 	uint64_t fuid;
716 	int domainid = 0;
717 
718 	if (domain && domain[0]) {
719 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
720 		if (domainid == -1)
721 			return (SET_ERROR(ENOENT));
722 	}
723 	fuid = FUID_ENCODE(domainid, rid);
724 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
725 	return (0);
726 }
727 
728 int
729 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
730     const char *domain, uint64_t rid, uint64_t *valp)
731 {
732 	char buf[32];
733 	int err;
734 	uint64_t obj;
735 
736 	*valp = 0;
737 
738 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
739 		return (SET_ERROR(ENOTSUP));
740 
741 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
742 	if (obj == 0)
743 		return (0);
744 
745 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
746 	if (err)
747 		return (err);
748 
749 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
750 	if (err == ENOENT)
751 		err = 0;
752 	return (err);
753 }
754 
755 int
756 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
757     const char *domain, uint64_t rid, uint64_t quota)
758 {
759 	char buf[32];
760 	int err;
761 	dmu_tx_t *tx;
762 	uint64_t *objp;
763 	boolean_t fuid_dirtied;
764 
765 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
766 		return (SET_ERROR(EINVAL));
767 
768 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
769 		return (SET_ERROR(ENOTSUP));
770 
771 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
772 	    &zfsvfs->z_groupquota_obj;
773 
774 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
775 	if (err)
776 		return (err);
777 	fuid_dirtied = zfsvfs->z_fuid_dirty;
778 
779 	tx = dmu_tx_create(zfsvfs->z_os);
780 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
781 	if (*objp == 0) {
782 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
783 		    zfs_userquota_prop_prefixes[type]);
784 	}
785 	if (fuid_dirtied)
786 		zfs_fuid_txhold(zfsvfs, tx);
787 	err = dmu_tx_assign(tx, TXG_WAIT);
788 	if (err) {
789 		dmu_tx_abort(tx);
790 		return (err);
791 	}
792 
793 	mutex_enter(&zfsvfs->z_lock);
794 	if (*objp == 0) {
795 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
796 		    DMU_OT_NONE, 0, tx);
797 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
798 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
799 	}
800 	mutex_exit(&zfsvfs->z_lock);
801 
802 	if (quota == 0) {
803 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
804 		if (err == ENOENT)
805 			err = 0;
806 	} else {
807 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
808 	}
809 	ASSERT(err == 0);
810 	if (fuid_dirtied)
811 		zfs_fuid_sync(zfsvfs, tx);
812 	dmu_tx_commit(tx);
813 	return (err);
814 }
815 
816 boolean_t
817 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
818 {
819 	char buf[32];
820 	uint64_t used, quota, usedobj, quotaobj;
821 	int err;
822 
823 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
824 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
825 
826 	if (quotaobj == 0 || zfsvfs->z_replay)
827 		return (B_FALSE);
828 
829 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
830 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
831 	if (err != 0)
832 		return (B_FALSE);
833 
834 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
835 	if (err != 0)
836 		return (B_FALSE);
837 	return (used >= quota);
838 }
839 
840 boolean_t
841 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
842 {
843 	uint64_t fuid;
844 	uint64_t quotaobj;
845 
846 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
847 
848 	fuid = isgroup ? zp->z_gid : zp->z_uid;
849 
850 	if (quotaobj == 0 || zfsvfs->z_replay)
851 		return (B_FALSE);
852 
853 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
854 }
855 
856 /*
857  * Associate this zfsvfs with the given objset, which must be owned.
858  * This will cache a bunch of on-disk state from the objset in the
859  * zfsvfs.
860  */
861 static int
862 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
863 {
864 	int error;
865 	uint64_t val;
866 
867 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
868 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
869 	zfsvfs->z_os = os;
870 
871 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
872 	if (error != 0)
873 		return (error);
874 	if (zfsvfs->z_version >
875 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
876 		(void) printf("Can't mount a version %lld file system "
877 		    "on a version %lld pool\n. Pool must be upgraded to mount "
878 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
879 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
880 		return (SET_ERROR(ENOTSUP));
881 	}
882 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
883 	if (error != 0)
884 		return (error);
885 	zfsvfs->z_norm = (int)val;
886 
887 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
888 	if (error != 0)
889 		return (error);
890 	zfsvfs->z_utf8 = (val != 0);
891 
892 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
893 	if (error != 0)
894 		return (error);
895 	zfsvfs->z_case = (uint_t)val;
896 
897 	/*
898 	 * Fold case on file systems that are always or sometimes case
899 	 * insensitive.
900 	 */
901 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
902 	    zfsvfs->z_case == ZFS_CASE_MIXED)
903 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
904 
905 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
906 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
907 
908 	uint64_t sa_obj = 0;
909 	if (zfsvfs->z_use_sa) {
910 		/* should either have both of these objects or none */
911 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
912 		    &sa_obj);
913 		if (error != 0)
914 			return (error);
915 	}
916 
917 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
918 	    &zfsvfs->z_attr_table);
919 	if (error != 0)
920 		return (error);
921 
922 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
923 		sa_register_update_callback(os, zfs_sa_upgrade);
924 
925 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
926 	    &zfsvfs->z_root);
927 	if (error != 0)
928 		return (error);
929 	ASSERT(zfsvfs->z_root != 0);
930 
931 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
932 	    &zfsvfs->z_unlinkedobj);
933 	if (error != 0)
934 		return (error);
935 
936 	error = zap_lookup(os, MASTER_NODE_OBJ,
937 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
938 	    8, 1, &zfsvfs->z_userquota_obj);
939 	if (error == ENOENT)
940 		zfsvfs->z_userquota_obj = 0;
941 	else if (error != 0)
942 		return (error);
943 
944 	error = zap_lookup(os, MASTER_NODE_OBJ,
945 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
946 	    8, 1, &zfsvfs->z_groupquota_obj);
947 	if (error == ENOENT)
948 		zfsvfs->z_groupquota_obj = 0;
949 	else if (error != 0)
950 		return (error);
951 
952 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
953 	    &zfsvfs->z_fuid_obj);
954 	if (error == ENOENT)
955 		zfsvfs->z_fuid_obj = 0;
956 	else if (error != 0)
957 		return (error);
958 
959 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
960 	    &zfsvfs->z_shares_dir);
961 	if (error == ENOENT)
962 		zfsvfs->z_shares_dir = 0;
963 	else if (error != 0)
964 		return (error);
965 
966 	return (0);
967 }
968 
969 int
970 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
971 {
972 	objset_t *os;
973 	zfsvfs_t *zfsvfs;
974 	int error;
975 
976 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
977 
978 	/*
979 	 * We claim to always be readonly so we can open snapshots;
980 	 * other ZPL code will prevent us from writing to snapshots.
981 	 */
982 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
983 	if (error) {
984 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
985 		return (error);
986 	}
987 
988 	zfsvfs->z_vfs = NULL;
989 	zfsvfs->z_parent = zfsvfs;
990 
991 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
992 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
993 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
994 	    offsetof(znode_t, z_link_node));
995 	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
996 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
997 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
998 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
999 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1000 
1001 	error = zfsvfs_init(zfsvfs, os);
1002 	if (error != 0) {
1003 		dmu_objset_disown(os, zfsvfs);
1004 		*zfvp = NULL;
1005 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1006 		return (error);
1007 	}
1008 
1009 	*zfvp = zfsvfs;
1010 	return (0);
1011 }
1012 
1013 static int
1014 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1015 {
1016 	int error;
1017 
1018 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1019 	if (error)
1020 		return (error);
1021 
1022 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1023 
1024 	/*
1025 	 * If we are not mounting (ie: online recv), then we don't
1026 	 * have to worry about replaying the log as we blocked all
1027 	 * operations out since we closed the ZIL.
1028 	 */
1029 	if (mounting) {
1030 		boolean_t readonly;
1031 
1032 		/*
1033 		 * During replay we remove the read only flag to
1034 		 * allow replays to succeed.
1035 		 */
1036 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1037 		if (readonly != 0)
1038 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1039 		else
1040 			zfs_unlinked_drain(zfsvfs);
1041 
1042 		/*
1043 		 * Parse and replay the intent log.
1044 		 *
1045 		 * Because of ziltest, this must be done after
1046 		 * zfs_unlinked_drain().  (Further note: ziltest
1047 		 * doesn't use readonly mounts, where
1048 		 * zfs_unlinked_drain() isn't called.)  This is because
1049 		 * ziltest causes spa_sync() to think it's committed,
1050 		 * but actually it is not, so the intent log contains
1051 		 * many txg's worth of changes.
1052 		 *
1053 		 * In particular, if object N is in the unlinked set in
1054 		 * the last txg to actually sync, then it could be
1055 		 * actually freed in a later txg and then reallocated
1056 		 * in a yet later txg.  This would write a "create
1057 		 * object N" record to the intent log.  Normally, this
1058 		 * would be fine because the spa_sync() would have
1059 		 * written out the fact that object N is free, before
1060 		 * we could write the "create object N" intent log
1061 		 * record.
1062 		 *
1063 		 * But when we are in ziltest mode, we advance the "open
1064 		 * txg" without actually spa_sync()-ing the changes to
1065 		 * disk.  So we would see that object N is still
1066 		 * allocated and in the unlinked set, and there is an
1067 		 * intent log record saying to allocate it.
1068 		 */
1069 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1070 			if (zil_replay_disable) {
1071 				zil_destroy(zfsvfs->z_log, B_FALSE);
1072 			} else {
1073 				zfsvfs->z_replay = B_TRUE;
1074 				zil_replay(zfsvfs->z_os, zfsvfs,
1075 				    zfs_replay_vector);
1076 				zfsvfs->z_replay = B_FALSE;
1077 			}
1078 		}
1079 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1080 	}
1081 
1082 	/*
1083 	 * Set the objset user_ptr to track its zfsvfs.
1084 	 */
1085 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1086 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1087 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1088 
1089 	return (0);
1090 }
1091 
1092 void
1093 zfsvfs_free(zfsvfs_t *zfsvfs)
1094 {
1095 	int i;
1096 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1097 
1098 	/*
1099 	 * This is a barrier to prevent the filesystem from going away in
1100 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1101 	 * not unmounted. We consider the filesystem valid before the barrier
1102 	 * and invalid after the barrier.
1103 	 */
1104 	rw_enter(&zfsvfs_lock, RW_READER);
1105 	rw_exit(&zfsvfs_lock);
1106 
1107 	zfs_fuid_destroy(zfsvfs);
1108 
1109 	mutex_destroy(&zfsvfs->z_znodes_lock);
1110 	mutex_destroy(&zfsvfs->z_lock);
1111 	list_destroy(&zfsvfs->z_all_znodes);
1112 	rrm_destroy(&zfsvfs->z_teardown_lock);
1113 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1114 	rw_destroy(&zfsvfs->z_fuid_lock);
1115 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1116 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1117 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1118 }
1119 
1120 static void
1121 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1122 {
1123 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1124 	if (zfsvfs->z_vfs) {
1125 		if (zfsvfs->z_use_fuids) {
1126 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1127 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1128 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1129 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1130 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1131 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1132 		} else {
1133 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1134 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1135 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1136 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1137 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1138 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1139 		}
1140 	}
1141 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1142 }
1143 
1144 static int
1145 zfs_domount(vfs_t *vfsp, char *osname)
1146 {
1147 	dev_t mount_dev;
1148 	uint64_t recordsize, fsid_guid;
1149 	int error = 0;
1150 	zfsvfs_t *zfsvfs;
1151 
1152 	ASSERT(vfsp);
1153 	ASSERT(osname);
1154 
1155 	error = zfsvfs_create(osname, &zfsvfs);
1156 	if (error)
1157 		return (error);
1158 	zfsvfs->z_vfs = vfsp;
1159 
1160 	/* Initialize the generic filesystem structure. */
1161 	vfsp->vfs_bcount = 0;
1162 	vfsp->vfs_data = NULL;
1163 
1164 	if (zfs_create_unique_device(&mount_dev) == -1) {
1165 		error = SET_ERROR(ENODEV);
1166 		goto out;
1167 	}
1168 	ASSERT(vfs_devismounted(mount_dev) == 0);
1169 
1170 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1171 	    NULL))
1172 		goto out;
1173 
1174 	vfsp->vfs_dev = mount_dev;
1175 	vfsp->vfs_fstype = zfsfstype;
1176 	vfsp->vfs_bsize = recordsize;
1177 	vfsp->vfs_flag |= VFS_NOTRUNC;
1178 	vfsp->vfs_data = zfsvfs;
1179 
1180 	/*
1181 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1182 	 * separates our fsid from any other filesystem types, and a
1183 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1184 	 * all objsets open on this system, provided by unique_create().
1185 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1186 	 * because that's where other Solaris filesystems put it.
1187 	 */
1188 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1189 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1190 	vfsp->vfs_fsid.val[0] = fsid_guid;
1191 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1192 	    zfsfstype & 0xFF;
1193 
1194 	/*
1195 	 * Set features for file system.
1196 	 */
1197 	zfs_set_fuid_feature(zfsvfs);
1198 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1199 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1200 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1201 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1202 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1203 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1204 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1205 	}
1206 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1207 
1208 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1209 		uint64_t pval;
1210 
1211 		atime_changed_cb(zfsvfs, B_FALSE);
1212 		readonly_changed_cb(zfsvfs, B_TRUE);
1213 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1214 			goto out;
1215 		xattr_changed_cb(zfsvfs, pval);
1216 		zfsvfs->z_issnap = B_TRUE;
1217 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1218 
1219 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1220 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1221 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1222 	} else {
1223 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1224 	}
1225 
1226 	if (!zfsvfs->z_issnap)
1227 		zfsctl_create(zfsvfs);
1228 out:
1229 	if (error) {
1230 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1231 		zfsvfs_free(zfsvfs);
1232 	} else {
1233 		atomic_inc_32(&zfs_active_fs_count);
1234 	}
1235 
1236 	return (error);
1237 }
1238 
1239 void
1240 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1241 {
1242 	objset_t *os = zfsvfs->z_os;
1243 
1244 	if (!dmu_objset_is_snapshot(os))
1245 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1246 }
1247 
1248 /*
1249  * Convert a decimal digit string to a uint64_t integer.
1250  */
1251 static int
1252 str_to_uint64(char *str, uint64_t *objnum)
1253 {
1254 	uint64_t num = 0;
1255 
1256 	while (*str) {
1257 		if (*str < '0' || *str > '9')
1258 			return (SET_ERROR(EINVAL));
1259 
1260 		num = num*10 + *str++ - '0';
1261 	}
1262 
1263 	*objnum = num;
1264 	return (0);
1265 }
1266 
1267 /*
1268  * The boot path passed from the boot loader is in the form of
1269  * "rootpool-name/root-filesystem-object-number'. Convert this
1270  * string to a dataset name: "rootpool-name/root-filesystem-name".
1271  */
1272 static int
1273 zfs_parse_bootfs(char *bpath, char *outpath)
1274 {
1275 	char *slashp;
1276 	uint64_t objnum;
1277 	int error;
1278 
1279 	if (*bpath == 0 || *bpath == '/')
1280 		return (SET_ERROR(EINVAL));
1281 
1282 	(void) strcpy(outpath, bpath);
1283 
1284 	slashp = strchr(bpath, '/');
1285 
1286 	/* if no '/', just return the pool name */
1287 	if (slashp == NULL) {
1288 		return (0);
1289 	}
1290 
1291 	/* if not a number, just return the root dataset name */
1292 	if (str_to_uint64(slashp+1, &objnum)) {
1293 		return (0);
1294 	}
1295 
1296 	*slashp = '\0';
1297 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1298 	*slashp = '/';
1299 
1300 	return (error);
1301 }
1302 
1303 /*
1304  * Check that the hex label string is appropriate for the dataset being
1305  * mounted into the global_zone proper.
1306  *
1307  * Return an error if the hex label string is not default or
1308  * admin_low/admin_high.  For admin_low labels, the corresponding
1309  * dataset must be readonly.
1310  */
1311 int
1312 zfs_check_global_label(const char *dsname, const char *hexsl)
1313 {
1314 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1315 		return (0);
1316 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1317 		return (0);
1318 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1319 		/* must be readonly */
1320 		uint64_t rdonly;
1321 
1322 		if (dsl_prop_get_integer(dsname,
1323 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1324 			return (SET_ERROR(EACCES));
1325 		return (rdonly ? 0 : EACCES);
1326 	}
1327 	return (SET_ERROR(EACCES));
1328 }
1329 
1330 /*
1331  * Determine whether the mount is allowed according to MAC check.
1332  * by comparing (where appropriate) label of the dataset against
1333  * the label of the zone being mounted into.  If the dataset has
1334  * no label, create one.
1335  *
1336  * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1337  */
1338 static int
1339 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1340 {
1341 	int		error, retv;
1342 	zone_t		*mntzone = NULL;
1343 	ts_label_t	*mnt_tsl;
1344 	bslabel_t	*mnt_sl;
1345 	bslabel_t	ds_sl;
1346 	char		ds_hexsl[MAXNAMELEN];
1347 
1348 	retv = EACCES;				/* assume the worst */
1349 
1350 	/*
1351 	 * Start by getting the dataset label if it exists.
1352 	 */
1353 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1354 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1355 	if (error)
1356 		return (SET_ERROR(EACCES));
1357 
1358 	/*
1359 	 * If labeling is NOT enabled, then disallow the mount of datasets
1360 	 * which have a non-default label already.  No other label checks
1361 	 * are needed.
1362 	 */
1363 	if (!is_system_labeled()) {
1364 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1365 			return (0);
1366 		return (SET_ERROR(EACCES));
1367 	}
1368 
1369 	/*
1370 	 * Get the label of the mountpoint.  If mounting into the global
1371 	 * zone (i.e. mountpoint is not within an active zone and the
1372 	 * zoned property is off), the label must be default or
1373 	 * admin_low/admin_high only; no other checks are needed.
1374 	 */
1375 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1376 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1377 		uint64_t zoned;
1378 
1379 		zone_rele(mntzone);
1380 
1381 		if (dsl_prop_get_integer(osname,
1382 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1383 			return (SET_ERROR(EACCES));
1384 		if (!zoned)
1385 			return (zfs_check_global_label(osname, ds_hexsl));
1386 		else
1387 			/*
1388 			 * This is the case of a zone dataset being mounted
1389 			 * initially, before the zone has been fully created;
1390 			 * allow this mount into global zone.
1391 			 */
1392 			return (0);
1393 	}
1394 
1395 	mnt_tsl = mntzone->zone_slabel;
1396 	ASSERT(mnt_tsl != NULL);
1397 	label_hold(mnt_tsl);
1398 	mnt_sl = label2bslabel(mnt_tsl);
1399 
1400 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1401 		/*
1402 		 * The dataset doesn't have a real label, so fabricate one.
1403 		 */
1404 		char *str = NULL;
1405 
1406 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1407 		    dsl_prop_set_string(osname,
1408 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1409 		    ZPROP_SRC_LOCAL, str) == 0)
1410 			retv = 0;
1411 		if (str != NULL)
1412 			kmem_free(str, strlen(str) + 1);
1413 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1414 		/*
1415 		 * Now compare labels to complete the MAC check.  If the
1416 		 * labels are equal then allow access.  If the mountpoint
1417 		 * label dominates the dataset label, allow readonly access.
1418 		 * Otherwise, access is denied.
1419 		 */
1420 		if (blequal(mnt_sl, &ds_sl))
1421 			retv = 0;
1422 		else if (bldominates(mnt_sl, &ds_sl)) {
1423 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1424 			retv = 0;
1425 		}
1426 	}
1427 
1428 	label_rele(mnt_tsl);
1429 	zone_rele(mntzone);
1430 	return (retv);
1431 }
1432 
1433 static int
1434 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1435 {
1436 	int error = 0;
1437 	static int zfsrootdone = 0;
1438 	zfsvfs_t *zfsvfs = NULL;
1439 	znode_t *zp = NULL;
1440 	vnode_t *vp = NULL;
1441 	char *zfs_bootfs;
1442 	char *zfs_devid;
1443 
1444 	ASSERT(vfsp);
1445 
1446 	/*
1447 	 * The filesystem that we mount as root is defined in the
1448 	 * boot property "zfs-bootfs" with a format of
1449 	 * "poolname/root-dataset-objnum".
1450 	 */
1451 	if (why == ROOT_INIT) {
1452 		if (zfsrootdone++)
1453 			return (SET_ERROR(EBUSY));
1454 		/*
1455 		 * the process of doing a spa_load will require the
1456 		 * clock to be set before we could (for example) do
1457 		 * something better by looking at the timestamp on
1458 		 * an uberblock, so just set it to -1.
1459 		 */
1460 		clkset(-1);
1461 
1462 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1463 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1464 			    "bootfs name");
1465 			return (SET_ERROR(EINVAL));
1466 		}
1467 		zfs_devid = spa_get_bootprop("diskdevid");
1468 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1469 		if (zfs_devid)
1470 			spa_free_bootprop(zfs_devid);
1471 		if (error) {
1472 			spa_free_bootprop(zfs_bootfs);
1473 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1474 			    error);
1475 			return (error);
1476 		}
1477 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1478 			spa_free_bootprop(zfs_bootfs);
1479 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1480 			    error);
1481 			return (error);
1482 		}
1483 
1484 		spa_free_bootprop(zfs_bootfs);
1485 
1486 		if (error = vfs_lock(vfsp))
1487 			return (error);
1488 
1489 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1490 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1491 			goto out;
1492 		}
1493 
1494 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1495 		ASSERT(zfsvfs);
1496 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1497 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1498 			goto out;
1499 		}
1500 
1501 		vp = ZTOV(zp);
1502 		mutex_enter(&vp->v_lock);
1503 		vp->v_flag |= VROOT;
1504 		mutex_exit(&vp->v_lock);
1505 		rootvp = vp;
1506 
1507 		/*
1508 		 * Leave rootvp held.  The root file system is never unmounted.
1509 		 */
1510 
1511 		vfs_add((struct vnode *)0, vfsp,
1512 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1513 out:
1514 		vfs_unlock(vfsp);
1515 		return (error);
1516 	} else if (why == ROOT_REMOUNT) {
1517 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1518 		vfsp->vfs_flag |= VFS_REMOUNT;
1519 
1520 		/* refresh mount options */
1521 		zfs_unregister_callbacks(vfsp->vfs_data);
1522 		return (zfs_register_callbacks(vfsp));
1523 
1524 	} else if (why == ROOT_UNMOUNT) {
1525 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1526 		(void) zfs_sync(vfsp, 0, 0);
1527 		return (0);
1528 	}
1529 
1530 	/*
1531 	 * if "why" is equal to anything else other than ROOT_INIT,
1532 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1533 	 */
1534 	return (SET_ERROR(ENOTSUP));
1535 }
1536 
1537 /*ARGSUSED*/
1538 static int
1539 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1540 {
1541 	char		*osname;
1542 	pathname_t	spn;
1543 	int		error = 0;
1544 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1545 	    UIO_SYSSPACE : UIO_USERSPACE;
1546 	int		canwrite;
1547 
1548 	if (mvp->v_type != VDIR)
1549 		return (SET_ERROR(ENOTDIR));
1550 
1551 	mutex_enter(&mvp->v_lock);
1552 	if ((uap->flags & MS_REMOUNT) == 0 &&
1553 	    (uap->flags & MS_OVERLAY) == 0 &&
1554 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1555 		mutex_exit(&mvp->v_lock);
1556 		return (SET_ERROR(EBUSY));
1557 	}
1558 	mutex_exit(&mvp->v_lock);
1559 
1560 	/*
1561 	 * ZFS does not support passing unparsed data in via MS_DATA.
1562 	 * Users should use the MS_OPTIONSTR interface; this means
1563 	 * that all option parsing is already done and the options struct
1564 	 * can be interrogated.
1565 	 */
1566 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1567 		return (SET_ERROR(EINVAL));
1568 
1569 	/*
1570 	 * Get the objset name (the "special" mount argument).
1571 	 */
1572 	if (error = pn_get(uap->spec, fromspace, &spn))
1573 		return (error);
1574 
1575 	osname = spn.pn_path;
1576 
1577 	/*
1578 	 * Check for mount privilege?
1579 	 *
1580 	 * If we don't have privilege then see if
1581 	 * we have local permission to allow it
1582 	 */
1583 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1584 	if (error) {
1585 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1586 			vattr_t		vattr;
1587 
1588 			/*
1589 			 * Make sure user is the owner of the mount point
1590 			 * or has sufficient privileges.
1591 			 */
1592 
1593 			vattr.va_mask = AT_UID;
1594 
1595 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1596 				goto out;
1597 			}
1598 
1599 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1600 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1601 				goto out;
1602 			}
1603 			secpolicy_fs_mount_clearopts(cr, vfsp);
1604 		} else {
1605 			goto out;
1606 		}
1607 	}
1608 
1609 	/*
1610 	 * Refuse to mount a filesystem if we are in a local zone and the
1611 	 * dataset is not visible.
1612 	 */
1613 	if (!INGLOBALZONE(curproc) &&
1614 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1615 		error = SET_ERROR(EPERM);
1616 		goto out;
1617 	}
1618 
1619 	error = zfs_mount_label_policy(vfsp, osname);
1620 	if (error)
1621 		goto out;
1622 
1623 	/*
1624 	 * When doing a remount, we simply refresh our temporary properties
1625 	 * according to those options set in the current VFS options.
1626 	 */
1627 	if (uap->flags & MS_REMOUNT) {
1628 		/* refresh mount options */
1629 		zfs_unregister_callbacks(vfsp->vfs_data);
1630 		error = zfs_register_callbacks(vfsp);
1631 		goto out;
1632 	}
1633 
1634 	error = zfs_domount(vfsp, osname);
1635 
1636 	/*
1637 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1638 	 * disappear due to a forced unmount.
1639 	 */
1640 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1641 		VFS_HOLD(mvp->v_vfsp);
1642 
1643 out:
1644 	pn_free(&spn);
1645 	return (error);
1646 }
1647 
1648 static int
1649 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1650 {
1651 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1652 	dev32_t d32;
1653 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1654 
1655 	ZFS_ENTER(zfsvfs);
1656 
1657 	dmu_objset_space(zfsvfs->z_os,
1658 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1659 
1660 	/*
1661 	 * The underlying storage pool actually uses multiple block sizes.
1662 	 * We report the fragsize as the smallest block size we support,
1663 	 * and we report our blocksize as the filesystem's maximum blocksize.
1664 	 */
1665 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1666 	statp->f_bsize = zfsvfs->z_max_blksz;
1667 
1668 	/*
1669 	 * The following report "total" blocks of various kinds in the
1670 	 * file system, but reported in terms of f_frsize - the
1671 	 * "fragment" size.
1672 	 */
1673 
1674 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1675 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1676 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1677 
1678 	/*
1679 	 * statvfs() should really be called statufs(), because it assumes
1680 	 * static metadata.  ZFS doesn't preallocate files, so the best
1681 	 * we can do is report the max that could possibly fit in f_files,
1682 	 * and that minus the number actually used in f_ffree.
1683 	 * For f_ffree, report the smaller of the number of object available
1684 	 * and the number of blocks (each object will take at least a block).
1685 	 */
1686 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1687 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1688 	statp->f_files = statp->f_ffree + usedobjs;
1689 
1690 	(void) cmpldev(&d32, vfsp->vfs_dev);
1691 	statp->f_fsid = d32;
1692 
1693 	/*
1694 	 * We're a zfs filesystem.
1695 	 */
1696 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1697 
1698 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1699 
1700 	statp->f_namemax = MAXNAMELEN - 1;
1701 
1702 	/*
1703 	 * We have all of 32 characters to stuff a string here.
1704 	 * Is there anything useful we could/should provide?
1705 	 */
1706 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1707 
1708 	ZFS_EXIT(zfsvfs);
1709 	return (0);
1710 }
1711 
1712 static int
1713 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1714 {
1715 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1716 	znode_t *rootzp;
1717 	int error;
1718 
1719 	ZFS_ENTER(zfsvfs);
1720 
1721 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1722 	if (error == 0)
1723 		*vpp = ZTOV(rootzp);
1724 
1725 	ZFS_EXIT(zfsvfs);
1726 	return (error);
1727 }
1728 
1729 /*
1730  * Teardown the zfsvfs::z_os.
1731  *
1732  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1733  * and 'z_teardown_inactive_lock' held.
1734  */
1735 static int
1736 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1737 {
1738 	znode_t	*zp;
1739 
1740 	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1741 
1742 	if (!unmounting) {
1743 		/*
1744 		 * We purge the parent filesystem's vfsp as the parent
1745 		 * filesystem and all of its snapshots have their vnode's
1746 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1747 		 * 'z_parent' is self referential for non-snapshots.
1748 		 */
1749 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1750 	}
1751 
1752 	/*
1753 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1754 	 * threads are blocked as zil_close can call zfs_inactive.
1755 	 */
1756 	if (zfsvfs->z_log) {
1757 		zil_close(zfsvfs->z_log);
1758 		zfsvfs->z_log = NULL;
1759 	}
1760 
1761 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1762 
1763 	/*
1764 	 * If we are not unmounting (ie: online recv) and someone already
1765 	 * unmounted this file system while we were doing the switcheroo,
1766 	 * or a reopen of z_os failed then just bail out now.
1767 	 */
1768 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1769 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1770 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1771 		return (SET_ERROR(EIO));
1772 	}
1773 
1774 	/*
1775 	 * At this point there are no vops active, and any new vops will
1776 	 * fail with EIO since we have z_teardown_lock for writer (only
1777 	 * relavent for forced unmount).
1778 	 *
1779 	 * Release all holds on dbufs.
1780 	 */
1781 	mutex_enter(&zfsvfs->z_znodes_lock);
1782 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1783 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1784 		if (zp->z_sa_hdl) {
1785 			ASSERT(ZTOV(zp)->v_count > 0);
1786 			zfs_znode_dmu_fini(zp);
1787 		}
1788 	mutex_exit(&zfsvfs->z_znodes_lock);
1789 
1790 	/*
1791 	 * If we are unmounting, set the unmounted flag and let new vops
1792 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1793 	 * other vops will fail with EIO.
1794 	 */
1795 	if (unmounting) {
1796 		zfsvfs->z_unmounted = B_TRUE;
1797 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1798 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1799 	}
1800 
1801 	/*
1802 	 * z_os will be NULL if there was an error in attempting to reopen
1803 	 * zfsvfs, so just return as the properties had already been
1804 	 * unregistered and cached data had been evicted before.
1805 	 */
1806 	if (zfsvfs->z_os == NULL)
1807 		return (0);
1808 
1809 	/*
1810 	 * Unregister properties.
1811 	 */
1812 	zfs_unregister_callbacks(zfsvfs);
1813 
1814 	/*
1815 	 * Evict cached data
1816 	 */
1817 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1818 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1819 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1820 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1821 
1822 	return (0);
1823 }
1824 
1825 /*ARGSUSED*/
1826 static int
1827 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1828 {
1829 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1830 	objset_t *os;
1831 	int ret;
1832 
1833 	ret = secpolicy_fs_unmount(cr, vfsp);
1834 	if (ret) {
1835 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1836 		    ZFS_DELEG_PERM_MOUNT, cr))
1837 			return (ret);
1838 	}
1839 
1840 	/*
1841 	 * We purge the parent filesystem's vfsp as the parent filesystem
1842 	 * and all of its snapshots have their vnode's v_vfsp set to the
1843 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1844 	 * referential for non-snapshots.
1845 	 */
1846 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1847 
1848 	/*
1849 	 * Unmount any snapshots mounted under .zfs before unmounting the
1850 	 * dataset itself.
1851 	 */
1852 	if (zfsvfs->z_ctldir != NULL &&
1853 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1854 		return (ret);
1855 	}
1856 
1857 	if (!(fflag & MS_FORCE)) {
1858 		/*
1859 		 * Check the number of active vnodes in the file system.
1860 		 * Our count is maintained in the vfs structure, but the
1861 		 * number is off by 1 to indicate a hold on the vfs
1862 		 * structure itself.
1863 		 *
1864 		 * The '.zfs' directory maintains a reference of its
1865 		 * own, and any active references underneath are
1866 		 * reflected in the vnode count.
1867 		 */
1868 		if (zfsvfs->z_ctldir == NULL) {
1869 			if (vfsp->vfs_count > 1)
1870 				return (SET_ERROR(EBUSY));
1871 		} else {
1872 			if (vfsp->vfs_count > 2 ||
1873 			    zfsvfs->z_ctldir->v_count > 1)
1874 				return (SET_ERROR(EBUSY));
1875 		}
1876 	}
1877 
1878 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1879 
1880 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1881 	os = zfsvfs->z_os;
1882 
1883 	/*
1884 	 * z_os will be NULL if there was an error in
1885 	 * attempting to reopen zfsvfs.
1886 	 */
1887 	if (os != NULL) {
1888 		/*
1889 		 * Unset the objset user_ptr.
1890 		 */
1891 		mutex_enter(&os->os_user_ptr_lock);
1892 		dmu_objset_set_user(os, NULL);
1893 		mutex_exit(&os->os_user_ptr_lock);
1894 
1895 		/*
1896 		 * Finally release the objset
1897 		 */
1898 		dmu_objset_disown(os, zfsvfs);
1899 	}
1900 
1901 	/*
1902 	 * We can now safely destroy the '.zfs' directory node.
1903 	 */
1904 	if (zfsvfs->z_ctldir != NULL)
1905 		zfsctl_destroy(zfsvfs);
1906 
1907 	return (0);
1908 }
1909 
1910 static int
1911 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1912 {
1913 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1914 	znode_t		*zp;
1915 	uint64_t	object = 0;
1916 	uint64_t	fid_gen = 0;
1917 	uint64_t	gen_mask;
1918 	uint64_t	zp_gen;
1919 	int 		i, err;
1920 
1921 	*vpp = NULL;
1922 
1923 	ZFS_ENTER(zfsvfs);
1924 
1925 	if (fidp->fid_len == LONG_FID_LEN) {
1926 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1927 		uint64_t	objsetid = 0;
1928 		uint64_t	setgen = 0;
1929 
1930 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1931 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1932 
1933 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1934 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1935 
1936 		ZFS_EXIT(zfsvfs);
1937 
1938 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1939 		if (err)
1940 			return (SET_ERROR(EINVAL));
1941 		ZFS_ENTER(zfsvfs);
1942 	}
1943 
1944 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1945 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1946 
1947 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1948 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1949 
1950 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1951 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1952 	} else {
1953 		ZFS_EXIT(zfsvfs);
1954 		return (SET_ERROR(EINVAL));
1955 	}
1956 
1957 	/* A zero fid_gen means we are in the .zfs control directories */
1958 	if (fid_gen == 0 &&
1959 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1960 		*vpp = zfsvfs->z_ctldir;
1961 		ASSERT(*vpp != NULL);
1962 		if (object == ZFSCTL_INO_SNAPDIR) {
1963 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1964 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1965 		} else {
1966 			VN_HOLD(*vpp);
1967 		}
1968 		ZFS_EXIT(zfsvfs);
1969 		return (0);
1970 	}
1971 
1972 	gen_mask = -1ULL >> (64 - 8 * i);
1973 
1974 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1975 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1976 		ZFS_EXIT(zfsvfs);
1977 		return (err);
1978 	}
1979 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1980 	    sizeof (uint64_t));
1981 	zp_gen = zp_gen & gen_mask;
1982 	if (zp_gen == 0)
1983 		zp_gen = 1;
1984 	if (zp->z_unlinked || zp_gen != fid_gen) {
1985 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1986 		VN_RELE(ZTOV(zp));
1987 		ZFS_EXIT(zfsvfs);
1988 		return (SET_ERROR(EINVAL));
1989 	}
1990 
1991 	*vpp = ZTOV(zp);
1992 	ZFS_EXIT(zfsvfs);
1993 	return (0);
1994 }
1995 
1996 /*
1997  * Block out VOPs and close zfsvfs_t::z_os
1998  *
1999  * Note, if successful, then we return with the 'z_teardown_lock' and
2000  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2001  * dataset and objset intact so that they can be atomically handed off during
2002  * a subsequent rollback or recv operation and the resume thereafter.
2003  */
2004 int
2005 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2006 {
2007 	int error;
2008 
2009 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2010 		return (error);
2011 
2012 	return (0);
2013 }
2014 
2015 /*
2016  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2017  * is an invariant across any of the operations that can be performed while the
2018  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2019  * are the same: the relevant objset and associated dataset are owned by
2020  * zfsvfs, held, and long held on entry.
2021  */
2022 int
2023 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2024 {
2025 	int err;
2026 	znode_t *zp;
2027 
2028 	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2029 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2030 
2031 	/*
2032 	 * We already own this, so just update the objset_t, as the one we
2033 	 * had before may have been evicted.
2034 	 */
2035 	objset_t *os;
2036 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
2037 	VERIFY(dsl_dataset_long_held(ds));
2038 	VERIFY0(dmu_objset_from_ds(ds, &os));
2039 
2040 	err = zfsvfs_init(zfsvfs, os);
2041 	if (err != 0)
2042 		goto bail;
2043 
2044 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2045 
2046 	zfs_set_fuid_feature(zfsvfs);
2047 
2048 	/*
2049 	 * Attempt to re-establish all the active znodes with
2050 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2051 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2052 	 * when they try to use their znode.
2053 	 */
2054 	mutex_enter(&zfsvfs->z_znodes_lock);
2055 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2056 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2057 		(void) zfs_rezget(zp);
2058 	}
2059 	mutex_exit(&zfsvfs->z_znodes_lock);
2060 
2061 bail:
2062 	/* release the VOPs */
2063 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2064 	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2065 
2066 	if (err) {
2067 		/*
2068 		 * Since we couldn't setup the sa framework, try to force
2069 		 * unmount this file system.
2070 		 */
2071 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2072 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2073 	}
2074 	return (err);
2075 }
2076 
2077 static void
2078 zfs_freevfs(vfs_t *vfsp)
2079 {
2080 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2081 
2082 	/*
2083 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2084 	 * from zfs_mount().  Release it here.  If we came through
2085 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2086 	 * skip the VFS_RELE for rootvfs.
2087 	 */
2088 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2089 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2090 
2091 	zfsvfs_free(zfsvfs);
2092 
2093 	atomic_dec_32(&zfs_active_fs_count);
2094 }
2095 
2096 /*
2097  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2098  * so we can't safely do any non-idempotent initialization here.
2099  * Leave that to zfs_init() and zfs_fini(), which are called
2100  * from the module's _init() and _fini() entry points.
2101  */
2102 /*ARGSUSED*/
2103 static int
2104 zfs_vfsinit(int fstype, char *name)
2105 {
2106 	int error;
2107 
2108 	zfsfstype = fstype;
2109 
2110 	/*
2111 	 * Setup vfsops and vnodeops tables.
2112 	 */
2113 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2114 	if (error != 0) {
2115 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2116 	}
2117 
2118 	error = zfs_create_op_tables();
2119 	if (error) {
2120 		zfs_remove_op_tables();
2121 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2122 		(void) vfs_freevfsops_by_type(zfsfstype);
2123 		return (error);
2124 	}
2125 
2126 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2127 
2128 	/*
2129 	 * Unique major number for all zfs mounts.
2130 	 * If we run out of 32-bit minors, we'll getudev() another major.
2131 	 */
2132 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2133 	zfs_minor = ZFS_MIN_MINOR;
2134 
2135 	return (0);
2136 }
2137 
2138 void
2139 zfs_init(void)
2140 {
2141 	/*
2142 	 * Initialize .zfs directory structures
2143 	 */
2144 	zfsctl_init();
2145 
2146 	/*
2147 	 * Initialize znode cache, vnode ops, etc...
2148 	 */
2149 	zfs_znode_init();
2150 
2151 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2152 }
2153 
2154 void
2155 zfs_fini(void)
2156 {
2157 	zfsctl_fini();
2158 	zfs_znode_fini();
2159 }
2160 
2161 int
2162 zfs_busy(void)
2163 {
2164 	return (zfs_active_fs_count != 0);
2165 }
2166 
2167 int
2168 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2169 {
2170 	int error;
2171 	objset_t *os = zfsvfs->z_os;
2172 	dmu_tx_t *tx;
2173 
2174 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2175 		return (SET_ERROR(EINVAL));
2176 
2177 	if (newvers < zfsvfs->z_version)
2178 		return (SET_ERROR(EINVAL));
2179 
2180 	if (zfs_spa_version_map(newvers) >
2181 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2182 		return (SET_ERROR(ENOTSUP));
2183 
2184 	tx = dmu_tx_create(os);
2185 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2186 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2187 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2188 		    ZFS_SA_ATTRS);
2189 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2190 	}
2191 	error = dmu_tx_assign(tx, TXG_WAIT);
2192 	if (error) {
2193 		dmu_tx_abort(tx);
2194 		return (error);
2195 	}
2196 
2197 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2198 	    8, 1, &newvers, tx);
2199 
2200 	if (error) {
2201 		dmu_tx_commit(tx);
2202 		return (error);
2203 	}
2204 
2205 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2206 		uint64_t sa_obj;
2207 
2208 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2209 		    SPA_VERSION_SA);
2210 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2211 		    DMU_OT_NONE, 0, tx);
2212 
2213 		error = zap_add(os, MASTER_NODE_OBJ,
2214 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2215 		ASSERT0(error);
2216 
2217 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2218 		sa_register_update_callback(os, zfs_sa_upgrade);
2219 	}
2220 
2221 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2222 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2223 
2224 	dmu_tx_commit(tx);
2225 
2226 	zfsvfs->z_version = newvers;
2227 
2228 	zfs_set_fuid_feature(zfsvfs);
2229 
2230 	return (0);
2231 }
2232 
2233 /*
2234  * Read a property stored within the master node.
2235  */
2236 int
2237 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2238 {
2239 	const char *pname;
2240 	int error = ENOENT;
2241 
2242 	/*
2243 	 * Look up the file system's value for the property.  For the
2244 	 * version property, we look up a slightly different string.
2245 	 */
2246 	if (prop == ZFS_PROP_VERSION)
2247 		pname = ZPL_VERSION_STR;
2248 	else
2249 		pname = zfs_prop_to_name(prop);
2250 
2251 	if (os != NULL)
2252 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2253 
2254 	if (error == ENOENT) {
2255 		/* No value set, use the default value */
2256 		switch (prop) {
2257 		case ZFS_PROP_VERSION:
2258 			*value = ZPL_VERSION;
2259 			break;
2260 		case ZFS_PROP_NORMALIZE:
2261 		case ZFS_PROP_UTF8ONLY:
2262 			*value = 0;
2263 			break;
2264 		case ZFS_PROP_CASE:
2265 			*value = ZFS_CASE_SENSITIVE;
2266 			break;
2267 		default:
2268 			return (error);
2269 		}
2270 		error = 0;
2271 	}
2272 	return (error);
2273 }
2274 
2275 /*
2276  * Return true if the coresponding vfs's unmounted flag is set.
2277  * Otherwise return false.
2278  * If this function returns true we know VFS unmount has been initiated.
2279  */
2280 boolean_t
2281 zfs_get_vfs_flag_unmounted(objset_t *os)
2282 {
2283 	zfsvfs_t *zfvp;
2284 	boolean_t unmounted = B_FALSE;
2285 
2286 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2287 
2288 	mutex_enter(&os->os_user_ptr_lock);
2289 	zfvp = dmu_objset_get_user(os);
2290 	if (zfvp != NULL && zfvp->z_vfs != NULL &&
2291 	    (zfvp->z_vfs->vfs_flag & VFS_UNMOUNTED))
2292 		unmounted = B_TRUE;
2293 	mutex_exit(&os->os_user_ptr_lock);
2294 
2295 	return (unmounted);
2296 }
2297 
2298 static vfsdef_t vfw = {
2299 	VFSDEF_VERSION,
2300 	MNTTYPE_ZFS,
2301 	zfs_vfsinit,
2302 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2303 	    VSW_XID|VSW_ZMOUNT,
2304 	&zfs_mntopts
2305 };
2306 
2307 struct modlfs zfs_modlfs = {
2308 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2309 };
2310