xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 503ad85c168c7992ccc310af845a581cff3c72b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include "fs/fs_subr.h"
39 #include <sys/zfs_znode.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/mkdev.h>
53 #include <sys/modctl.h>
54 #include <sys/refstr.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/bootconf.h>
59 #include <sys/sunddi.h>
60 #include <sys/dnlc.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa_boot.h>
63 
64 int zfsfstype;
65 vfsops_t *zfs_vfsops = NULL;
66 static major_t zfs_major;
67 static minor_t zfs_minor;
68 static kmutex_t	zfs_dev_mtx;
69 
70 extern int sys_shutdown;
71 
72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
78 static void zfs_freevfs(vfs_t *vfsp);
79 
80 static const fs_operation_def_t zfs_vfsops_template[] = {
81 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
82 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
83 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
84 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
85 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
86 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
87 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
88 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
89 	NULL,			NULL
90 };
91 
92 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 /*
98  * We need to keep a count of active fs's.
99  * This is necessary to prevent our module
100  * from being unloaded after a umount -f
101  */
102 static uint32_t	zfs_active_fs_count = 0;
103 
104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
108 
109 /*
110  * MO_DEFAULT is not used since the default value is determined
111  * by the equivalent property.
112  */
113 static mntopt_t mntopts[] = {
114 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
115 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
116 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
117 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
118 };
119 
120 static mntopts_t zfs_mntopts = {
121 	sizeof (mntopts) / sizeof (mntopt_t),
122 	mntopts
123 };
124 
125 /*ARGSUSED*/
126 int
127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
128 {
129 	/*
130 	 * Data integrity is job one.  We don't want a compromised kernel
131 	 * writing to the storage pool, so we never sync during panic.
132 	 */
133 	if (panicstr)
134 		return (0);
135 
136 	/*
137 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
138 	 * to sync metadata, which they would otherwise cache indefinitely.
139 	 * Semantically, the only requirement is that the sync be initiated.
140 	 * The DMU syncs out txgs frequently, so there's nothing to do.
141 	 */
142 	if (flag & SYNC_ATTR)
143 		return (0);
144 
145 	if (vfsp != NULL) {
146 		/*
147 		 * Sync a specific filesystem.
148 		 */
149 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
150 		dsl_pool_t *dp;
151 
152 		ZFS_ENTER(zfsvfs);
153 		dp = dmu_objset_pool(zfsvfs->z_os);
154 
155 		/*
156 		 * If the system is shutting down, then skip any
157 		 * filesystems which may exist on a suspended pool.
158 		 */
159 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
160 			ZFS_EXIT(zfsvfs);
161 			return (0);
162 		}
163 
164 		if (zfsvfs->z_log != NULL)
165 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
166 		else
167 			txg_wait_synced(dp, 0);
168 		ZFS_EXIT(zfsvfs);
169 	} else {
170 		/*
171 		 * Sync all ZFS filesystems.  This is what happens when you
172 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
173 		 * request by waiting for all pools to commit all dirty data.
174 		 */
175 		spa_sync_allpools();
176 	}
177 
178 	return (0);
179 }
180 
181 static int
182 zfs_create_unique_device(dev_t *dev)
183 {
184 	major_t new_major;
185 
186 	do {
187 		ASSERT3U(zfs_minor, <=, MAXMIN32);
188 		minor_t start = zfs_minor;
189 		do {
190 			mutex_enter(&zfs_dev_mtx);
191 			if (zfs_minor >= MAXMIN32) {
192 				/*
193 				 * If we're still using the real major
194 				 * keep out of /dev/zfs and /dev/zvol minor
195 				 * number space.  If we're using a getudev()'ed
196 				 * major number, we can use all of its minors.
197 				 */
198 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
199 					zfs_minor = ZFS_MIN_MINOR;
200 				else
201 					zfs_minor = 0;
202 			} else {
203 				zfs_minor++;
204 			}
205 			*dev = makedevice(zfs_major, zfs_minor);
206 			mutex_exit(&zfs_dev_mtx);
207 		} while (vfs_devismounted(*dev) && zfs_minor != start);
208 		if (zfs_minor == start) {
209 			/*
210 			 * We are using all ~262,000 minor numbers for the
211 			 * current major number.  Create a new major number.
212 			 */
213 			if ((new_major = getudev()) == (major_t)-1) {
214 				cmn_err(CE_WARN,
215 				    "zfs_mount: Can't get unique major "
216 				    "device number.");
217 				return (-1);
218 			}
219 			mutex_enter(&zfs_dev_mtx);
220 			zfs_major = new_major;
221 			zfs_minor = 0;
222 
223 			mutex_exit(&zfs_dev_mtx);
224 		} else {
225 			break;
226 		}
227 		/* CONSTANTCONDITION */
228 	} while (1);
229 
230 	return (0);
231 }
232 
233 static void
234 atime_changed_cb(void *arg, uint64_t newval)
235 {
236 	zfsvfs_t *zfsvfs = arg;
237 
238 	if (newval == TRUE) {
239 		zfsvfs->z_atime = TRUE;
240 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
241 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
242 	} else {
243 		zfsvfs->z_atime = FALSE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
246 	}
247 }
248 
249 static void
250 xattr_changed_cb(void *arg, uint64_t newval)
251 {
252 	zfsvfs_t *zfsvfs = arg;
253 
254 	if (newval == TRUE) {
255 		/* XXX locking on vfs_flag? */
256 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259 	} else {
260 		/* XXX locking on vfs_flag? */
261 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
264 	}
265 }
266 
267 static void
268 blksz_changed_cb(void *arg, uint64_t newval)
269 {
270 	zfsvfs_t *zfsvfs = arg;
271 
272 	if (newval < SPA_MINBLOCKSIZE ||
273 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
274 		newval = SPA_MAXBLOCKSIZE;
275 
276 	zfsvfs->z_max_blksz = newval;
277 	zfsvfs->z_vfs->vfs_bsize = newval;
278 }
279 
280 static void
281 readonly_changed_cb(void *arg, uint64_t newval)
282 {
283 	zfsvfs_t *zfsvfs = arg;
284 
285 	if (newval) {
286 		/* XXX locking on vfs_flag? */
287 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
288 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
289 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
290 	} else {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
295 	}
296 }
297 
298 static void
299 devices_changed_cb(void *arg, uint64_t newval)
300 {
301 	zfsvfs_t *zfsvfs = arg;
302 
303 	if (newval == FALSE) {
304 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
305 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
306 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
307 	} else {
308 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
311 	}
312 }
313 
314 static void
315 setuid_changed_cb(void *arg, uint64_t newval)
316 {
317 	zfsvfs_t *zfsvfs = arg;
318 
319 	if (newval == FALSE) {
320 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
321 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
322 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
323 	} else {
324 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
327 	}
328 }
329 
330 static void
331 exec_changed_cb(void *arg, uint64_t newval)
332 {
333 	zfsvfs_t *zfsvfs = arg;
334 
335 	if (newval == FALSE) {
336 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
337 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
338 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
339 	} else {
340 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
343 	}
344 }
345 
346 /*
347  * The nbmand mount option can be changed at mount time.
348  * We can't allow it to be toggled on live file systems or incorrect
349  * behavior may be seen from cifs clients
350  *
351  * This property isn't registered via dsl_prop_register(), but this callback
352  * will be called when a file system is first mounted
353  */
354 static void
355 nbmand_changed_cb(void *arg, uint64_t newval)
356 {
357 	zfsvfs_t *zfsvfs = arg;
358 	if (newval == FALSE) {
359 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
360 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
361 	} else {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
364 	}
365 }
366 
367 static void
368 snapdir_changed_cb(void *arg, uint64_t newval)
369 {
370 	zfsvfs_t *zfsvfs = arg;
371 
372 	zfsvfs->z_show_ctldir = newval;
373 }
374 
375 static void
376 vscan_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 
380 	zfsvfs->z_vscan = newval;
381 }
382 
383 static void
384 acl_mode_changed_cb(void *arg, uint64_t newval)
385 {
386 	zfsvfs_t *zfsvfs = arg;
387 
388 	zfsvfs->z_acl_mode = newval;
389 }
390 
391 static void
392 acl_inherit_changed_cb(void *arg, uint64_t newval)
393 {
394 	zfsvfs_t *zfsvfs = arg;
395 
396 	zfsvfs->z_acl_inherit = newval;
397 }
398 
399 static int
400 zfs_register_callbacks(vfs_t *vfsp)
401 {
402 	struct dsl_dataset *ds = NULL;
403 	objset_t *os = NULL;
404 	zfsvfs_t *zfsvfs = NULL;
405 	uint64_t nbmand;
406 	int readonly, do_readonly = B_FALSE;
407 	int setuid, do_setuid = B_FALSE;
408 	int exec, do_exec = B_FALSE;
409 	int devices, do_devices = B_FALSE;
410 	int xattr, do_xattr = B_FALSE;
411 	int atime, do_atime = B_FALSE;
412 	int error = 0;
413 
414 	ASSERT(vfsp);
415 	zfsvfs = vfsp->vfs_data;
416 	ASSERT(zfsvfs);
417 	os = zfsvfs->z_os;
418 
419 	/*
420 	 * The act of registering our callbacks will destroy any mount
421 	 * options we may have.  In order to enable temporary overrides
422 	 * of mount options, we stash away the current values and
423 	 * restore them after we register the callbacks.
424 	 */
425 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
426 		readonly = B_TRUE;
427 		do_readonly = B_TRUE;
428 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
429 		readonly = B_FALSE;
430 		do_readonly = B_TRUE;
431 	}
432 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
433 		devices = B_FALSE;
434 		setuid = B_FALSE;
435 		do_devices = B_TRUE;
436 		do_setuid = B_TRUE;
437 	} else {
438 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
439 			devices = B_FALSE;
440 			do_devices = B_TRUE;
441 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
442 			devices = B_TRUE;
443 			do_devices = B_TRUE;
444 		}
445 
446 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447 			setuid = B_FALSE;
448 			do_setuid = B_TRUE;
449 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450 			setuid = B_TRUE;
451 			do_setuid = B_TRUE;
452 		}
453 	}
454 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455 		exec = B_FALSE;
456 		do_exec = B_TRUE;
457 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458 		exec = B_TRUE;
459 		do_exec = B_TRUE;
460 	}
461 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462 		xattr = B_FALSE;
463 		do_xattr = B_TRUE;
464 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465 		xattr = B_TRUE;
466 		do_xattr = B_TRUE;
467 	}
468 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469 		atime = B_FALSE;
470 		do_atime = B_TRUE;
471 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472 		atime = B_TRUE;
473 		do_atime = B_TRUE;
474 	}
475 
476 	/*
477 	 * nbmand is a special property.  It can only be changed at
478 	 * mount time.
479 	 *
480 	 * This is weird, but it is documented to only be changeable
481 	 * at mount time.
482 	 */
483 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
484 		nbmand = B_FALSE;
485 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
486 		nbmand = B_TRUE;
487 	} else {
488 		char osname[MAXNAMELEN];
489 
490 		dmu_objset_name(os, osname);
491 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
492 		    NULL)) {
493 			return (error);
494 		}
495 	}
496 
497 	/*
498 	 * Register property callbacks.
499 	 *
500 	 * It would probably be fine to just check for i/o error from
501 	 * the first prop_register(), but I guess I like to go
502 	 * overboard...
503 	 */
504 	ds = dmu_objset_ds(os);
505 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    "xattr", xattr_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "recordsize", blksz_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "readonly", readonly_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    "devices", devices_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    "setuid", setuid_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    "exec", exec_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    "snapdir", snapdir_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    "aclmode", acl_mode_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    "vscan", vscan_changed_cb, zfsvfs);
526 	if (error)
527 		goto unregister;
528 
529 	/*
530 	 * Invoke our callbacks to restore temporary mount options.
531 	 */
532 	if (do_readonly)
533 		readonly_changed_cb(zfsvfs, readonly);
534 	if (do_setuid)
535 		setuid_changed_cb(zfsvfs, setuid);
536 	if (do_exec)
537 		exec_changed_cb(zfsvfs, exec);
538 	if (do_devices)
539 		devices_changed_cb(zfsvfs, devices);
540 	if (do_xattr)
541 		xattr_changed_cb(zfsvfs, xattr);
542 	if (do_atime)
543 		atime_changed_cb(zfsvfs, atime);
544 
545 	nbmand_changed_cb(zfsvfs, nbmand);
546 
547 	return (0);
548 
549 unregister:
550 	/*
551 	 * We may attempt to unregister some callbacks that are not
552 	 * registered, but this is OK; it will simply return ENOMSG,
553 	 * which we will ignore.
554 	 */
555 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
557 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
558 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
559 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
560 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
561 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
562 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
563 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
564 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
565 	    zfsvfs);
566 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
567 	return (error);
568 
569 }
570 
571 static void
572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
573     int64_t delta, dmu_tx_t *tx)
574 {
575 	uint64_t used = 0;
576 	char buf[32];
577 	int err;
578 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
579 
580 	if (delta == 0)
581 		return;
582 
583 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
584 	err = zap_lookup(os, obj, buf, 8, 1, &used);
585 	ASSERT(err == 0 || err == ENOENT);
586 	/* no underflow/overflow */
587 	ASSERT(delta > 0 || used >= -delta);
588 	ASSERT(delta < 0 || used + delta > used);
589 	used += delta;
590 	if (used == 0)
591 		err = zap_remove(os, obj, buf, tx);
592 	else
593 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
594 	ASSERT(err == 0);
595 }
596 
597 static void
598 zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype,
599     void *oldbonus, void *newbonus,
600     uint64_t oldused, uint64_t newused, dmu_tx_t *tx)
601 {
602 	znode_phys_t *oldznp = oldbonus;
603 	znode_phys_t *newznp = newbonus;
604 
605 	if (bonustype != DMU_OT_ZNODE)
606 		return;
607 
608 	/* We charge 512 for the dnode (if it's allocated). */
609 	if (oldznp->zp_gen != 0)
610 		oldused += DNODE_SIZE;
611 	if (newznp->zp_gen != 0)
612 		newused += DNODE_SIZE;
613 
614 	if (oldznp->zp_uid == newznp->zp_uid) {
615 		uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx);
616 	} else {
617 		uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx);
618 		uidacct(os, B_FALSE, newznp->zp_uid, newused, tx);
619 	}
620 
621 	if (oldznp->zp_gid == newznp->zp_gid) {
622 		uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx);
623 	} else {
624 		uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx);
625 		uidacct(os, B_TRUE, newznp->zp_gid, newused, tx);
626 	}
627 }
628 
629 static void
630 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
631     char *domainbuf, int buflen, uid_t *ridp)
632 {
633 	extern uint64_t strtonum(const char *str, char **nptr);
634 	uint64_t fuid;
635 	const char *domain;
636 
637 	fuid = strtonum(fuidstr, NULL);
638 
639 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
640 	if (domain)
641 		(void) strlcpy(domainbuf, domain, buflen);
642 	else
643 		domainbuf[0] = '\0';
644 	*ridp = FUID_RID(fuid);
645 }
646 
647 static uint64_t
648 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
649 {
650 	switch (type) {
651 	case ZFS_PROP_USERUSED:
652 		return (DMU_USERUSED_OBJECT);
653 	case ZFS_PROP_GROUPUSED:
654 		return (DMU_GROUPUSED_OBJECT);
655 	case ZFS_PROP_USERQUOTA:
656 		return (zfsvfs->z_userquota_obj);
657 	case ZFS_PROP_GROUPQUOTA:
658 		return (zfsvfs->z_groupquota_obj);
659 	}
660 	return (0);
661 }
662 
663 int
664 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
665     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
666 {
667 	int error;
668 	zap_cursor_t zc;
669 	zap_attribute_t za;
670 	zfs_useracct_t *buf = vbuf;
671 	uint64_t obj;
672 
673 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
674 		return (ENOTSUP);
675 
676 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
677 	if (obj == 0) {
678 		*bufsizep = 0;
679 		return (0);
680 	}
681 
682 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
683 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
684 	    zap_cursor_advance(&zc)) {
685 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
686 		    *bufsizep)
687 			break;
688 
689 		fuidstr_to_sid(zfsvfs, za.za_name,
690 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
691 
692 		buf->zu_space = za.za_first_integer;
693 		buf++;
694 	}
695 	if (error == ENOENT)
696 		error = 0;
697 
698 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
699 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
700 	*cookiep = zap_cursor_serialize(&zc);
701 	zap_cursor_fini(&zc);
702 	return (error);
703 }
704 
705 /*
706  * buf must be big enough (eg, 32 bytes)
707  */
708 static int
709 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
710     char *buf, boolean_t addok)
711 {
712 	uint64_t fuid;
713 	int domainid = 0;
714 
715 	if (domain && domain[0]) {
716 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
717 		if (domainid == -1)
718 			return (ENOENT);
719 	}
720 	fuid = FUID_ENCODE(domainid, rid);
721 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
722 	return (0);
723 }
724 
725 int
726 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
727     const char *domain, uint64_t rid, uint64_t *valp)
728 {
729 	char buf[32];
730 	int err;
731 	uint64_t obj;
732 
733 	*valp = 0;
734 
735 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
736 		return (ENOTSUP);
737 
738 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
739 	if (obj == 0)
740 		return (0);
741 
742 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
743 	if (err)
744 		return (err);
745 
746 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
747 	if (err == ENOENT)
748 		err = 0;
749 	return (err);
750 }
751 
752 int
753 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
754     const char *domain, uint64_t rid, uint64_t quota)
755 {
756 	char buf[32];
757 	int err;
758 	dmu_tx_t *tx;
759 	uint64_t *objp;
760 	boolean_t fuid_dirtied;
761 
762 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
763 		return (EINVAL);
764 
765 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
766 		return (ENOTSUP);
767 
768 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
769 	    &zfsvfs->z_groupquota_obj;
770 
771 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
772 	if (err)
773 		return (err);
774 	fuid_dirtied = zfsvfs->z_fuid_dirty;
775 
776 	tx = dmu_tx_create(zfsvfs->z_os);
777 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
778 	if (*objp == 0) {
779 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
780 		    zfs_userquota_prop_prefixes[type]);
781 	}
782 	if (fuid_dirtied)
783 		zfs_fuid_txhold(zfsvfs, tx);
784 	err = dmu_tx_assign(tx, TXG_WAIT);
785 	if (err) {
786 		dmu_tx_abort(tx);
787 		return (err);
788 	}
789 
790 	mutex_enter(&zfsvfs->z_lock);
791 	if (*objp == 0) {
792 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
793 		    DMU_OT_NONE, 0, tx);
794 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
795 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
796 	}
797 	mutex_exit(&zfsvfs->z_lock);
798 
799 	if (quota == 0) {
800 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
801 		if (err == ENOENT)
802 			err = 0;
803 	} else {
804 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
805 	}
806 	ASSERT(err == 0);
807 	if (fuid_dirtied)
808 		zfs_fuid_sync(zfsvfs, tx);
809 	dmu_tx_commit(tx);
810 	return (err);
811 }
812 
813 boolean_t
814 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
815 {
816 	char buf[32];
817 	uint64_t used, quota, usedobj, quotaobj;
818 	int err;
819 
820 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
821 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
822 
823 	if (quotaobj == 0 || zfsvfs->z_replay)
824 		return (B_FALSE);
825 
826 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
827 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
828 	if (err != 0)
829 		return (B_FALSE);
830 
831 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
832 	if (err != 0)
833 		return (B_FALSE);
834 	return (used >= quota);
835 }
836 
837 int
838 zfsvfs_create(const char *osname, zfsvfs_t **zvp)
839 {
840 	objset_t *os;
841 	zfsvfs_t *zfsvfs;
842 	uint64_t zval;
843 	int i, error;
844 
845 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
846 
847 	/*
848 	 * We claim to always be readonly so we can open snapshots;
849 	 * other ZPL code will prevent us from writing to snapshots.
850 	 */
851 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
852 	if (error) {
853 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
854 		return (error);
855 	}
856 
857 	/*
858 	 * Initialize the zfs-specific filesystem structure.
859 	 * Should probably make this a kmem cache, shuffle fields,
860 	 * and just bzero up to z_hold_mtx[].
861 	 */
862 	zfsvfs->z_vfs = NULL;
863 	zfsvfs->z_parent = zfsvfs;
864 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
865 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
866 	zfsvfs->z_os = os;
867 
868 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
869 	if (error) {
870 		goto out;
871 	} else if (zfsvfs->z_version > ZPL_VERSION) {
872 		(void) printf("Mismatched versions:  File system "
873 		    "is version %llu on-disk format, which is "
874 		    "incompatible with this software version %lld!",
875 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
876 		error = ENOTSUP;
877 		goto out;
878 	}
879 
880 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
881 		goto out;
882 	zfsvfs->z_norm = (int)zval;
883 
884 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
885 		goto out;
886 	zfsvfs->z_utf8 = (zval != 0);
887 
888 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
889 		goto out;
890 	zfsvfs->z_case = (uint_t)zval;
891 
892 	/*
893 	 * Fold case on file systems that are always or sometimes case
894 	 * insensitive.
895 	 */
896 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
897 	    zfsvfs->z_case == ZFS_CASE_MIXED)
898 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
899 
900 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
901 
902 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
903 	    &zfsvfs->z_root);
904 	if (error)
905 		goto out;
906 	ASSERT(zfsvfs->z_root != 0);
907 
908 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
909 	    &zfsvfs->z_unlinkedobj);
910 	if (error)
911 		goto out;
912 
913 	error = zap_lookup(os, MASTER_NODE_OBJ,
914 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
915 	    8, 1, &zfsvfs->z_userquota_obj);
916 	if (error && error != ENOENT)
917 		goto out;
918 
919 	error = zap_lookup(os, MASTER_NODE_OBJ,
920 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
921 	    8, 1, &zfsvfs->z_groupquota_obj);
922 	if (error && error != ENOENT)
923 		goto out;
924 
925 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
926 	    &zfsvfs->z_fuid_obj);
927 	if (error && error != ENOENT)
928 		goto out;
929 
930 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
931 	    &zfsvfs->z_shares_dir);
932 	if (error && error != ENOENT)
933 		goto out;
934 
935 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
936 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
937 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
938 	    offsetof(znode_t, z_link_node));
939 	rrw_init(&zfsvfs->z_teardown_lock);
940 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
941 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
942 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
943 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
944 
945 	*zvp = zfsvfs;
946 	return (0);
947 
948 out:
949 	dmu_objset_disown(os, zfsvfs);
950 	*zvp = NULL;
951 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
952 	return (error);
953 }
954 
955 static int
956 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
957 {
958 	int error;
959 
960 	error = zfs_register_callbacks(zfsvfs->z_vfs);
961 	if (error)
962 		return (error);
963 
964 	/*
965 	 * Set the objset user_ptr to track its zfsvfs.
966 	 */
967 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
968 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
969 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
970 
971 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
972 	if (zil_disable) {
973 		zil_destroy(zfsvfs->z_log, 0);
974 		zfsvfs->z_log = NULL;
975 	}
976 
977 	/*
978 	 * If we are not mounting (ie: online recv), then we don't
979 	 * have to worry about replaying the log as we blocked all
980 	 * operations out since we closed the ZIL.
981 	 */
982 	if (mounting) {
983 		boolean_t readonly;
984 
985 		/*
986 		 * During replay we remove the read only flag to
987 		 * allow replays to succeed.
988 		 */
989 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
990 		if (readonly != 0)
991 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
992 		else
993 			zfs_unlinked_drain(zfsvfs);
994 
995 		if (zfsvfs->z_log) {
996 			/*
997 			 * Parse and replay the intent log.
998 			 *
999 			 * Because of ziltest, this must be done after
1000 			 * zfs_unlinked_drain().  (Further note: ziltest
1001 			 * doesn't use readonly mounts, where
1002 			 * zfs_unlinked_drain() isn't called.)  This is because
1003 			 * ziltest causes spa_sync() to think it's committed,
1004 			 * but actually it is not, so the intent log contains
1005 			 * many txg's worth of changes.
1006 			 *
1007 			 * In particular, if object N is in the unlinked set in
1008 			 * the last txg to actually sync, then it could be
1009 			 * actually freed in a later txg and then reallocated
1010 			 * in a yet later txg.  This would write a "create
1011 			 * object N" record to the intent log.  Normally, this
1012 			 * would be fine because the spa_sync() would have
1013 			 * written out the fact that object N is free, before
1014 			 * we could write the "create object N" intent log
1015 			 * record.
1016 			 *
1017 			 * But when we are in ziltest mode, we advance the "open
1018 			 * txg" without actually spa_sync()-ing the changes to
1019 			 * disk.  So we would see that object N is still
1020 			 * allocated and in the unlinked set, and there is an
1021 			 * intent log record saying to allocate it.
1022 			 */
1023 			zfsvfs->z_replay = B_TRUE;
1024 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1025 			zfsvfs->z_replay = B_FALSE;
1026 		}
1027 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1028 	}
1029 
1030 	return (0);
1031 }
1032 
1033 void
1034 zfsvfs_free(zfsvfs_t *zfsvfs)
1035 {
1036 	int i;
1037 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1038 
1039 	/*
1040 	 * This is a barrier to prevent the filesystem from going away in
1041 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1042 	 * not unmounted. We consider the filesystem valid before the barrier
1043 	 * and invalid after the barrier.
1044 	 */
1045 	rw_enter(&zfsvfs_lock, RW_READER);
1046 	rw_exit(&zfsvfs_lock);
1047 
1048 	zfs_fuid_destroy(zfsvfs);
1049 
1050 	mutex_destroy(&zfsvfs->z_znodes_lock);
1051 	mutex_destroy(&zfsvfs->z_lock);
1052 	list_destroy(&zfsvfs->z_all_znodes);
1053 	rrw_destroy(&zfsvfs->z_teardown_lock);
1054 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1055 	rw_destroy(&zfsvfs->z_fuid_lock);
1056 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1057 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1058 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1059 }
1060 
1061 static void
1062 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1063 {
1064 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1065 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1066 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1067 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1068 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1069 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1070 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1071 	}
1072 }
1073 
1074 static int
1075 zfs_domount(vfs_t *vfsp, char *osname)
1076 {
1077 	dev_t mount_dev;
1078 	uint64_t recordsize, fsid_guid;
1079 	int error = 0;
1080 	zfsvfs_t *zfsvfs;
1081 
1082 	ASSERT(vfsp);
1083 	ASSERT(osname);
1084 
1085 	error = zfsvfs_create(osname, &zfsvfs);
1086 	if (error)
1087 		return (error);
1088 	zfsvfs->z_vfs = vfsp;
1089 
1090 	/* Initialize the generic filesystem structure. */
1091 	vfsp->vfs_bcount = 0;
1092 	vfsp->vfs_data = NULL;
1093 
1094 	if (zfs_create_unique_device(&mount_dev) == -1) {
1095 		error = ENODEV;
1096 		goto out;
1097 	}
1098 	ASSERT(vfs_devismounted(mount_dev) == 0);
1099 
1100 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1101 	    NULL))
1102 		goto out;
1103 
1104 	vfsp->vfs_dev = mount_dev;
1105 	vfsp->vfs_fstype = zfsfstype;
1106 	vfsp->vfs_bsize = recordsize;
1107 	vfsp->vfs_flag |= VFS_NOTRUNC;
1108 	vfsp->vfs_data = zfsvfs;
1109 
1110 	/*
1111 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1112 	 * separates our fsid from any other filesystem types, and a
1113 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1114 	 * all objsets open on this system, provided by unique_create().
1115 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1116 	 * because that's where other Solaris filesystems put it.
1117 	 */
1118 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1119 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1120 	vfsp->vfs_fsid.val[0] = fsid_guid;
1121 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1122 	    zfsfstype & 0xFF;
1123 
1124 	/*
1125 	 * Set features for file system.
1126 	 */
1127 	zfs_set_fuid_feature(zfsvfs);
1128 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1129 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1130 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1131 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1132 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1133 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1134 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1135 	}
1136 
1137 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1138 		uint64_t pval;
1139 
1140 		atime_changed_cb(zfsvfs, B_FALSE);
1141 		readonly_changed_cb(zfsvfs, B_TRUE);
1142 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1143 			goto out;
1144 		xattr_changed_cb(zfsvfs, pval);
1145 		zfsvfs->z_issnap = B_TRUE;
1146 
1147 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1148 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1149 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1150 	} else {
1151 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1152 	}
1153 
1154 	if (!zfsvfs->z_issnap)
1155 		zfsctl_create(zfsvfs);
1156 out:
1157 	if (error) {
1158 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1159 		zfsvfs_free(zfsvfs);
1160 	} else {
1161 		atomic_add_32(&zfs_active_fs_count, 1);
1162 	}
1163 
1164 	return (error);
1165 }
1166 
1167 void
1168 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1169 {
1170 	objset_t *os = zfsvfs->z_os;
1171 	struct dsl_dataset *ds;
1172 
1173 	/*
1174 	 * Unregister properties.
1175 	 */
1176 	if (!dmu_objset_is_snapshot(os)) {
1177 		ds = dmu_objset_ds(os);
1178 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1179 		    zfsvfs) == 0);
1180 
1181 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1182 		    zfsvfs) == 0);
1183 
1184 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1185 		    zfsvfs) == 0);
1186 
1187 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1188 		    zfsvfs) == 0);
1189 
1190 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1191 		    zfsvfs) == 0);
1192 
1193 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1194 		    zfsvfs) == 0);
1195 
1196 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1197 		    zfsvfs) == 0);
1198 
1199 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1200 		    zfsvfs) == 0);
1201 
1202 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1203 		    zfsvfs) == 0);
1204 
1205 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1206 		    acl_inherit_changed_cb, zfsvfs) == 0);
1207 
1208 		VERIFY(dsl_prop_unregister(ds, "vscan",
1209 		    vscan_changed_cb, zfsvfs) == 0);
1210 	}
1211 }
1212 
1213 /*
1214  * Convert a decimal digit string to a uint64_t integer.
1215  */
1216 static int
1217 str_to_uint64(char *str, uint64_t *objnum)
1218 {
1219 	uint64_t num = 0;
1220 
1221 	while (*str) {
1222 		if (*str < '0' || *str > '9')
1223 			return (EINVAL);
1224 
1225 		num = num*10 + *str++ - '0';
1226 	}
1227 
1228 	*objnum = num;
1229 	return (0);
1230 }
1231 
1232 /*
1233  * The boot path passed from the boot loader is in the form of
1234  * "rootpool-name/root-filesystem-object-number'. Convert this
1235  * string to a dataset name: "rootpool-name/root-filesystem-name".
1236  */
1237 static int
1238 zfs_parse_bootfs(char *bpath, char *outpath)
1239 {
1240 	char *slashp;
1241 	uint64_t objnum;
1242 	int error;
1243 
1244 	if (*bpath == 0 || *bpath == '/')
1245 		return (EINVAL);
1246 
1247 	(void) strcpy(outpath, bpath);
1248 
1249 	slashp = strchr(bpath, '/');
1250 
1251 	/* if no '/', just return the pool name */
1252 	if (slashp == NULL) {
1253 		return (0);
1254 	}
1255 
1256 	/* if not a number, just return the root dataset name */
1257 	if (str_to_uint64(slashp+1, &objnum)) {
1258 		return (0);
1259 	}
1260 
1261 	*slashp = '\0';
1262 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1263 	*slashp = '/';
1264 
1265 	return (error);
1266 }
1267 
1268 static int
1269 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1270 {
1271 	int error = 0;
1272 	static int zfsrootdone = 0;
1273 	zfsvfs_t *zfsvfs = NULL;
1274 	znode_t *zp = NULL;
1275 	vnode_t *vp = NULL;
1276 	char *zfs_bootfs;
1277 	char *zfs_devid;
1278 
1279 	ASSERT(vfsp);
1280 
1281 	/*
1282 	 * The filesystem that we mount as root is defined in the
1283 	 * boot property "zfs-bootfs" with a format of
1284 	 * "poolname/root-dataset-objnum".
1285 	 */
1286 	if (why == ROOT_INIT) {
1287 		if (zfsrootdone++)
1288 			return (EBUSY);
1289 		/*
1290 		 * the process of doing a spa_load will require the
1291 		 * clock to be set before we could (for example) do
1292 		 * something better by looking at the timestamp on
1293 		 * an uberblock, so just set it to -1.
1294 		 */
1295 		clkset(-1);
1296 
1297 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1298 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1299 			    "bootfs name");
1300 			return (EINVAL);
1301 		}
1302 		zfs_devid = spa_get_bootprop("diskdevid");
1303 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1304 		if (zfs_devid)
1305 			spa_free_bootprop(zfs_devid);
1306 		if (error) {
1307 			spa_free_bootprop(zfs_bootfs);
1308 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1309 			    error);
1310 			return (error);
1311 		}
1312 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1313 			spa_free_bootprop(zfs_bootfs);
1314 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1315 			    error);
1316 			return (error);
1317 		}
1318 
1319 		spa_free_bootprop(zfs_bootfs);
1320 
1321 		if (error = vfs_lock(vfsp))
1322 			return (error);
1323 
1324 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1325 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1326 			goto out;
1327 		}
1328 
1329 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1330 		ASSERT(zfsvfs);
1331 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1332 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1333 			goto out;
1334 		}
1335 
1336 		vp = ZTOV(zp);
1337 		mutex_enter(&vp->v_lock);
1338 		vp->v_flag |= VROOT;
1339 		mutex_exit(&vp->v_lock);
1340 		rootvp = vp;
1341 
1342 		/*
1343 		 * Leave rootvp held.  The root file system is never unmounted.
1344 		 */
1345 
1346 		vfs_add((struct vnode *)0, vfsp,
1347 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1348 out:
1349 		vfs_unlock(vfsp);
1350 		return (error);
1351 	} else if (why == ROOT_REMOUNT) {
1352 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1353 		vfsp->vfs_flag |= VFS_REMOUNT;
1354 
1355 		/* refresh mount options */
1356 		zfs_unregister_callbacks(vfsp->vfs_data);
1357 		return (zfs_register_callbacks(vfsp));
1358 
1359 	} else if (why == ROOT_UNMOUNT) {
1360 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1361 		(void) zfs_sync(vfsp, 0, 0);
1362 		return (0);
1363 	}
1364 
1365 	/*
1366 	 * if "why" is equal to anything else other than ROOT_INIT,
1367 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1368 	 */
1369 	return (ENOTSUP);
1370 }
1371 
1372 /*ARGSUSED*/
1373 static int
1374 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1375 {
1376 	char		*osname;
1377 	pathname_t	spn;
1378 	int		error = 0;
1379 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1380 	    UIO_SYSSPACE : UIO_USERSPACE;
1381 	int		canwrite;
1382 
1383 	if (mvp->v_type != VDIR)
1384 		return (ENOTDIR);
1385 
1386 	mutex_enter(&mvp->v_lock);
1387 	if ((uap->flags & MS_REMOUNT) == 0 &&
1388 	    (uap->flags & MS_OVERLAY) == 0 &&
1389 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1390 		mutex_exit(&mvp->v_lock);
1391 		return (EBUSY);
1392 	}
1393 	mutex_exit(&mvp->v_lock);
1394 
1395 	/*
1396 	 * ZFS does not support passing unparsed data in via MS_DATA.
1397 	 * Users should use the MS_OPTIONSTR interface; this means
1398 	 * that all option parsing is already done and the options struct
1399 	 * can be interrogated.
1400 	 */
1401 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1402 		return (EINVAL);
1403 
1404 	/*
1405 	 * Get the objset name (the "special" mount argument).
1406 	 */
1407 	if (error = pn_get(uap->spec, fromspace, &spn))
1408 		return (error);
1409 
1410 	osname = spn.pn_path;
1411 
1412 	/*
1413 	 * Check for mount privilege?
1414 	 *
1415 	 * If we don't have privilege then see if
1416 	 * we have local permission to allow it
1417 	 */
1418 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1419 	if (error) {
1420 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1421 		if (error == 0) {
1422 			vattr_t		vattr;
1423 
1424 			/*
1425 			 * Make sure user is the owner of the mount point
1426 			 * or has sufficient privileges.
1427 			 */
1428 
1429 			vattr.va_mask = AT_UID;
1430 
1431 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1432 				goto out;
1433 			}
1434 
1435 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1436 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1437 				error = EPERM;
1438 				goto out;
1439 			}
1440 
1441 			secpolicy_fs_mount_clearopts(cr, vfsp);
1442 		} else {
1443 			goto out;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Refuse to mount a filesystem if we are in a local zone and the
1449 	 * dataset is not visible.
1450 	 */
1451 	if (!INGLOBALZONE(curproc) &&
1452 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1453 		error = EPERM;
1454 		goto out;
1455 	}
1456 
1457 	/*
1458 	 * When doing a remount, we simply refresh our temporary properties
1459 	 * according to those options set in the current VFS options.
1460 	 */
1461 	if (uap->flags & MS_REMOUNT) {
1462 		/* refresh mount options */
1463 		zfs_unregister_callbacks(vfsp->vfs_data);
1464 		error = zfs_register_callbacks(vfsp);
1465 		goto out;
1466 	}
1467 
1468 	error = zfs_domount(vfsp, osname);
1469 
1470 	/*
1471 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1472 	 * disappear due to a forced unmount.
1473 	 */
1474 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1475 		VFS_HOLD(mvp->v_vfsp);
1476 
1477 out:
1478 	pn_free(&spn);
1479 	return (error);
1480 }
1481 
1482 static int
1483 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1484 {
1485 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1486 	dev32_t d32;
1487 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1488 
1489 	ZFS_ENTER(zfsvfs);
1490 
1491 	dmu_objset_space(zfsvfs->z_os,
1492 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1493 
1494 	/*
1495 	 * The underlying storage pool actually uses multiple block sizes.
1496 	 * We report the fragsize as the smallest block size we support,
1497 	 * and we report our blocksize as the filesystem's maximum blocksize.
1498 	 */
1499 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1500 	statp->f_bsize = zfsvfs->z_max_blksz;
1501 
1502 	/*
1503 	 * The following report "total" blocks of various kinds in the
1504 	 * file system, but reported in terms of f_frsize - the
1505 	 * "fragment" size.
1506 	 */
1507 
1508 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1509 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1510 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1511 
1512 	/*
1513 	 * statvfs() should really be called statufs(), because it assumes
1514 	 * static metadata.  ZFS doesn't preallocate files, so the best
1515 	 * we can do is report the max that could possibly fit in f_files,
1516 	 * and that minus the number actually used in f_ffree.
1517 	 * For f_ffree, report the smaller of the number of object available
1518 	 * and the number of blocks (each object will take at least a block).
1519 	 */
1520 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1521 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1522 	statp->f_files = statp->f_ffree + usedobjs;
1523 
1524 	(void) cmpldev(&d32, vfsp->vfs_dev);
1525 	statp->f_fsid = d32;
1526 
1527 	/*
1528 	 * We're a zfs filesystem.
1529 	 */
1530 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1531 
1532 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1533 
1534 	statp->f_namemax = ZFS_MAXNAMELEN;
1535 
1536 	/*
1537 	 * We have all of 32 characters to stuff a string here.
1538 	 * Is there anything useful we could/should provide?
1539 	 */
1540 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1541 
1542 	ZFS_EXIT(zfsvfs);
1543 	return (0);
1544 }
1545 
1546 static int
1547 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1548 {
1549 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1550 	znode_t *rootzp;
1551 	int error;
1552 
1553 	ZFS_ENTER(zfsvfs);
1554 
1555 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1556 	if (error == 0)
1557 		*vpp = ZTOV(rootzp);
1558 
1559 	ZFS_EXIT(zfsvfs);
1560 	return (error);
1561 }
1562 
1563 /*
1564  * Teardown the zfsvfs::z_os.
1565  *
1566  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1567  * and 'z_teardown_inactive_lock' held.
1568  */
1569 static int
1570 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1571 {
1572 	znode_t	*zp;
1573 
1574 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1575 
1576 	if (!unmounting) {
1577 		/*
1578 		 * We purge the parent filesystem's vfsp as the parent
1579 		 * filesystem and all of its snapshots have their vnode's
1580 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1581 		 * 'z_parent' is self referential for non-snapshots.
1582 		 */
1583 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1584 	}
1585 
1586 	/*
1587 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1588 	 * threads are blocked as zil_close can call zfs_inactive.
1589 	 */
1590 	if (zfsvfs->z_log) {
1591 		zil_close(zfsvfs->z_log);
1592 		zfsvfs->z_log = NULL;
1593 	}
1594 
1595 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1596 
1597 	/*
1598 	 * If we are not unmounting (ie: online recv) and someone already
1599 	 * unmounted this file system while we were doing the switcheroo,
1600 	 * or a reopen of z_os failed then just bail out now.
1601 	 */
1602 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1603 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1604 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1605 		return (EIO);
1606 	}
1607 
1608 	/*
1609 	 * At this point there are no vops active, and any new vops will
1610 	 * fail with EIO since we have z_teardown_lock for writer (only
1611 	 * relavent for forced unmount).
1612 	 *
1613 	 * Release all holds on dbufs.
1614 	 */
1615 	mutex_enter(&zfsvfs->z_znodes_lock);
1616 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1617 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1618 		if (zp->z_dbuf) {
1619 			ASSERT(ZTOV(zp)->v_count > 0);
1620 			zfs_znode_dmu_fini(zp);
1621 		}
1622 	mutex_exit(&zfsvfs->z_znodes_lock);
1623 
1624 	/*
1625 	 * If we are unmounting, set the unmounted flag and let new vops
1626 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1627 	 * other vops will fail with EIO.
1628 	 */
1629 	if (unmounting) {
1630 		zfsvfs->z_unmounted = B_TRUE;
1631 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1632 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1633 	}
1634 
1635 	/*
1636 	 * z_os will be NULL if there was an error in attempting to reopen
1637 	 * zfsvfs, so just return as the properties had already been
1638 	 * unregistered and cached data had been evicted before.
1639 	 */
1640 	if (zfsvfs->z_os == NULL)
1641 		return (0);
1642 
1643 	/*
1644 	 * Unregister properties.
1645 	 */
1646 	zfs_unregister_callbacks(zfsvfs);
1647 
1648 	/*
1649 	 * Evict cached data
1650 	 */
1651 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1652 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1653 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1654 	}
1655 
1656 	return (0);
1657 }
1658 
1659 /*ARGSUSED*/
1660 static int
1661 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1662 {
1663 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1664 	objset_t *os;
1665 	int ret;
1666 
1667 	ret = secpolicy_fs_unmount(cr, vfsp);
1668 	if (ret) {
1669 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1670 		    ZFS_DELEG_PERM_MOUNT, cr);
1671 		if (ret)
1672 			return (ret);
1673 	}
1674 
1675 	/*
1676 	 * We purge the parent filesystem's vfsp as the parent filesystem
1677 	 * and all of its snapshots have their vnode's v_vfsp set to the
1678 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1679 	 * referential for non-snapshots.
1680 	 */
1681 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1682 
1683 	/*
1684 	 * Unmount any snapshots mounted under .zfs before unmounting the
1685 	 * dataset itself.
1686 	 */
1687 	if (zfsvfs->z_ctldir != NULL &&
1688 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1689 		return (ret);
1690 	}
1691 
1692 	if (!(fflag & MS_FORCE)) {
1693 		/*
1694 		 * Check the number of active vnodes in the file system.
1695 		 * Our count is maintained in the vfs structure, but the
1696 		 * number is off by 1 to indicate a hold on the vfs
1697 		 * structure itself.
1698 		 *
1699 		 * The '.zfs' directory maintains a reference of its
1700 		 * own, and any active references underneath are
1701 		 * reflected in the vnode count.
1702 		 */
1703 		if (zfsvfs->z_ctldir == NULL) {
1704 			if (vfsp->vfs_count > 1)
1705 				return (EBUSY);
1706 		} else {
1707 			if (vfsp->vfs_count > 2 ||
1708 			    zfsvfs->z_ctldir->v_count > 1)
1709 				return (EBUSY);
1710 		}
1711 	}
1712 
1713 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1714 
1715 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1716 	os = zfsvfs->z_os;
1717 
1718 	/*
1719 	 * z_os will be NULL if there was an error in
1720 	 * attempting to reopen zfsvfs.
1721 	 */
1722 	if (os != NULL) {
1723 		/*
1724 		 * Unset the objset user_ptr.
1725 		 */
1726 		mutex_enter(&os->os_user_ptr_lock);
1727 		dmu_objset_set_user(os, NULL);
1728 		mutex_exit(&os->os_user_ptr_lock);
1729 
1730 		/*
1731 		 * Finally release the objset
1732 		 */
1733 		dmu_objset_disown(os, zfsvfs);
1734 	}
1735 
1736 	/*
1737 	 * We can now safely destroy the '.zfs' directory node.
1738 	 */
1739 	if (zfsvfs->z_ctldir != NULL)
1740 		zfsctl_destroy(zfsvfs);
1741 
1742 	return (0);
1743 }
1744 
1745 static int
1746 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1747 {
1748 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1749 	znode_t		*zp;
1750 	uint64_t	object = 0;
1751 	uint64_t	fid_gen = 0;
1752 	uint64_t	gen_mask;
1753 	uint64_t	zp_gen;
1754 	int 		i, err;
1755 
1756 	*vpp = NULL;
1757 
1758 	ZFS_ENTER(zfsvfs);
1759 
1760 	if (fidp->fid_len == LONG_FID_LEN) {
1761 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1762 		uint64_t	objsetid = 0;
1763 		uint64_t	setgen = 0;
1764 
1765 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1766 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1767 
1768 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1769 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1770 
1771 		ZFS_EXIT(zfsvfs);
1772 
1773 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1774 		if (err)
1775 			return (EINVAL);
1776 		ZFS_ENTER(zfsvfs);
1777 	}
1778 
1779 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1780 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1781 
1782 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1783 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1784 
1785 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1786 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1787 	} else {
1788 		ZFS_EXIT(zfsvfs);
1789 		return (EINVAL);
1790 	}
1791 
1792 	/* A zero fid_gen means we are in the .zfs control directories */
1793 	if (fid_gen == 0 &&
1794 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1795 		*vpp = zfsvfs->z_ctldir;
1796 		ASSERT(*vpp != NULL);
1797 		if (object == ZFSCTL_INO_SNAPDIR) {
1798 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1799 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1800 		} else {
1801 			VN_HOLD(*vpp);
1802 		}
1803 		ZFS_EXIT(zfsvfs);
1804 		return (0);
1805 	}
1806 
1807 	gen_mask = -1ULL >> (64 - 8 * i);
1808 
1809 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1810 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1811 		ZFS_EXIT(zfsvfs);
1812 		return (err);
1813 	}
1814 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1815 	if (zp_gen == 0)
1816 		zp_gen = 1;
1817 	if (zp->z_unlinked || zp_gen != fid_gen) {
1818 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1819 		VN_RELE(ZTOV(zp));
1820 		ZFS_EXIT(zfsvfs);
1821 		return (EINVAL);
1822 	}
1823 
1824 	*vpp = ZTOV(zp);
1825 	ZFS_EXIT(zfsvfs);
1826 	return (0);
1827 }
1828 
1829 /*
1830  * Block out VOPs and close zfsvfs_t::z_os
1831  *
1832  * Note, if successful, then we return with the 'z_teardown_lock' and
1833  * 'z_teardown_inactive_lock' write held.
1834  */
1835 int
1836 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1837 {
1838 	int error;
1839 
1840 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1841 		return (error);
1842 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1843 
1844 	return (0);
1845 }
1846 
1847 /*
1848  * Reopen zfsvfs_t::z_os and release VOPs.
1849  */
1850 int
1851 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
1852 {
1853 	int err;
1854 
1855 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1856 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1857 
1858 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
1859 	    &zfsvfs->z_os);
1860 	if (err) {
1861 		zfsvfs->z_os = NULL;
1862 	} else {
1863 		znode_t *zp;
1864 
1865 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1866 
1867 		/*
1868 		 * Attempt to re-establish all the active znodes with
1869 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1870 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1871 		 * when they try to use their znode.
1872 		 */
1873 		mutex_enter(&zfsvfs->z_znodes_lock);
1874 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1875 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1876 			(void) zfs_rezget(zp);
1877 		}
1878 		mutex_exit(&zfsvfs->z_znodes_lock);
1879 
1880 	}
1881 
1882 	/* release the VOPs */
1883 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1884 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1885 
1886 	if (err) {
1887 		/*
1888 		 * Since we couldn't reopen zfsvfs::z_os, force
1889 		 * unmount this file system.
1890 		 */
1891 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1892 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
1893 	}
1894 	return (err);
1895 }
1896 
1897 static void
1898 zfs_freevfs(vfs_t *vfsp)
1899 {
1900 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1901 
1902 	/*
1903 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
1904 	 * from zfs_mount().  Release it here.
1905 	 */
1906 	if (zfsvfs->z_issnap)
1907 		VFS_RELE(zfsvfs->z_parent->z_vfs);
1908 
1909 	zfsvfs_free(zfsvfs);
1910 
1911 	atomic_add_32(&zfs_active_fs_count, -1);
1912 }
1913 
1914 /*
1915  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1916  * so we can't safely do any non-idempotent initialization here.
1917  * Leave that to zfs_init() and zfs_fini(), which are called
1918  * from the module's _init() and _fini() entry points.
1919  */
1920 /*ARGSUSED*/
1921 static int
1922 zfs_vfsinit(int fstype, char *name)
1923 {
1924 	int error;
1925 
1926 	zfsfstype = fstype;
1927 
1928 	/*
1929 	 * Setup vfsops and vnodeops tables.
1930 	 */
1931 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1932 	if (error != 0) {
1933 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1934 	}
1935 
1936 	error = zfs_create_op_tables();
1937 	if (error) {
1938 		zfs_remove_op_tables();
1939 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1940 		(void) vfs_freevfsops_by_type(zfsfstype);
1941 		return (error);
1942 	}
1943 
1944 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1945 
1946 	/*
1947 	 * Unique major number for all zfs mounts.
1948 	 * If we run out of 32-bit minors, we'll getudev() another major.
1949 	 */
1950 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1951 	zfs_minor = ZFS_MIN_MINOR;
1952 
1953 	return (0);
1954 }
1955 
1956 void
1957 zfs_init(void)
1958 {
1959 	/*
1960 	 * Initialize .zfs directory structures
1961 	 */
1962 	zfsctl_init();
1963 
1964 	/*
1965 	 * Initialize znode cache, vnode ops, etc...
1966 	 */
1967 	zfs_znode_init();
1968 
1969 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1970 }
1971 
1972 void
1973 zfs_fini(void)
1974 {
1975 	zfsctl_fini();
1976 	zfs_znode_fini();
1977 }
1978 
1979 int
1980 zfs_busy(void)
1981 {
1982 	return (zfs_active_fs_count != 0);
1983 }
1984 
1985 int
1986 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1987 {
1988 	int error;
1989 	objset_t *os = zfsvfs->z_os;
1990 	dmu_tx_t *tx;
1991 
1992 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1993 		return (EINVAL);
1994 
1995 	if (newvers < zfsvfs->z_version)
1996 		return (EINVAL);
1997 
1998 	tx = dmu_tx_create(os);
1999 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2000 	error = dmu_tx_assign(tx, TXG_WAIT);
2001 	if (error) {
2002 		dmu_tx_abort(tx);
2003 		return (error);
2004 	}
2005 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2006 	    8, 1, &newvers, tx);
2007 
2008 	if (error) {
2009 		dmu_tx_commit(tx);
2010 		return (error);
2011 	}
2012 
2013 	spa_history_internal_log(LOG_DS_UPGRADE,
2014 	    dmu_objset_spa(os), tx, CRED(),
2015 	    "oldver=%llu newver=%llu dataset = %llu",
2016 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2017 
2018 	dmu_tx_commit(tx);
2019 
2020 	zfsvfs->z_version = newvers;
2021 
2022 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2023 		zfs_set_fuid_feature(zfsvfs);
2024 
2025 	return (0);
2026 }
2027 
2028 /*
2029  * Read a property stored within the master node.
2030  */
2031 int
2032 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2033 {
2034 	const char *pname;
2035 	int error = ENOENT;
2036 
2037 	/*
2038 	 * Look up the file system's value for the property.  For the
2039 	 * version property, we look up a slightly different string.
2040 	 */
2041 	if (prop == ZFS_PROP_VERSION)
2042 		pname = ZPL_VERSION_STR;
2043 	else
2044 		pname = zfs_prop_to_name(prop);
2045 
2046 	if (os != NULL)
2047 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2048 
2049 	if (error == ENOENT) {
2050 		/* No value set, use the default value */
2051 		switch (prop) {
2052 		case ZFS_PROP_VERSION:
2053 			*value = ZPL_VERSION;
2054 			break;
2055 		case ZFS_PROP_NORMALIZE:
2056 		case ZFS_PROP_UTF8ONLY:
2057 			*value = 0;
2058 			break;
2059 		case ZFS_PROP_CASE:
2060 			*value = ZFS_CASE_SENSITIVE;
2061 			break;
2062 		default:
2063 			return (error);
2064 		}
2065 		error = 0;
2066 	}
2067 	return (error);
2068 }
2069 
2070 static vfsdef_t vfw = {
2071 	VFSDEF_VERSION,
2072 	MNTTYPE_ZFS,
2073 	zfs_vfsinit,
2074 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2075 	    VSW_XID,
2076 	&zfs_mntopts
2077 };
2078 
2079 struct modlfs zfs_modlfs = {
2080 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2081 };
2082