xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 4981797ae67e4f2ead1ba1baf282c02105113459)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/acl.h>
35 #include <sys/vnode.h>
36 #include <sys/vfs.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/varargs.h>
49 #include <sys/policy.h>
50 #include <sys/atomic.h>
51 #include <sys/mkdev.h>
52 #include <sys/modctl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/bootconf.h>
56 #include <sys/sunddi.h>
57 #include <sys/dnlc.h>
58 
59 int zfsfstype;
60 vfsops_t *zfs_vfsops = NULL;
61 static major_t zfs_major;
62 static minor_t zfs_minor;
63 static kmutex_t	zfs_dev_mtx;
64 
65 extern char zfs_bootpath[BO_MAXOBJNAME];
66 
67 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
68 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
69 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
70 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
71 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
72 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
73 static void zfs_freevfs(vfs_t *vfsp);
74 static void zfs_objset_close(zfsvfs_t *zfsvfs);
75 
76 static const fs_operation_def_t zfs_vfsops_template[] = {
77 	VFSNAME_MOUNT, zfs_mount,
78 	VFSNAME_MOUNTROOT, zfs_mountroot,
79 	VFSNAME_UNMOUNT, zfs_umount,
80 	VFSNAME_ROOT, zfs_root,
81 	VFSNAME_STATVFS, zfs_statvfs,
82 	VFSNAME_SYNC, (fs_generic_func_p) zfs_sync,
83 	VFSNAME_VGET, zfs_vget,
84 	VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs,
85 	NULL, NULL
86 };
87 
88 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
89 	VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs,
90 	NULL, NULL
91 };
92 
93 /*
94  * We need to keep a count of active fs's.
95  * This is necessary to prevent our module
96  * from being unloaded after a umount -f
97  */
98 static uint32_t	zfs_active_fs_count = 0;
99 
100 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
101 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
102 
103 static mntopt_t mntopts[] = {
104 	{ MNTOPT_XATTR, NULL, NULL, MO_NODISPLAY|MO_DEFAULT, NULL },
105 	{ MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL },
106 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
107 };
108 
109 static mntopts_t zfs_mntopts = {
110 	sizeof (mntopts) / sizeof (mntopt_t),
111 	mntopts
112 };
113 
114 /*ARGSUSED*/
115 int
116 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
117 {
118 	/*
119 	 * Data integrity is job one.  We don't want a compromised kernel
120 	 * writing to the storage pool, so we never sync during panic.
121 	 */
122 	if (panicstr)
123 		return (0);
124 
125 	/*
126 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
127 	 * to sync metadata, which they would otherwise cache indefinitely.
128 	 * Semantically, the only requirement is that the sync be initiated.
129 	 * The DMU syncs out txgs frequently, so there's nothing to do.
130 	 */
131 	if (flag & SYNC_ATTR)
132 		return (0);
133 
134 	if (vfsp != NULL) {
135 		/*
136 		 * Sync a specific filesystem.
137 		 */
138 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
139 
140 		ZFS_ENTER(zfsvfs);
141 		if (zfsvfs->z_log != NULL)
142 			zil_commit(zfsvfs->z_log, UINT64_MAX, FSYNC);
143 		else
144 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
145 		ZFS_EXIT(zfsvfs);
146 	} else {
147 		/*
148 		 * Sync all ZFS filesystems.  This is what happens when you
149 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
150 		 * request by waiting for all pools to commit all dirty data.
151 		 */
152 		spa_sync_allpools();
153 	}
154 
155 	return (0);
156 }
157 
158 static int
159 zfs_create_unique_device(dev_t *dev)
160 {
161 	major_t new_major;
162 
163 	do {
164 		ASSERT3U(zfs_minor, <=, MAXMIN32);
165 		minor_t start = zfs_minor;
166 		do {
167 			mutex_enter(&zfs_dev_mtx);
168 			if (zfs_minor >= MAXMIN32) {
169 				/*
170 				 * If we're still using the real major
171 				 * keep out of /dev/zfs and /dev/zvol minor
172 				 * number space.  If we're using a getudev()'ed
173 				 * major number, we can use all of its minors.
174 				 */
175 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
176 					zfs_minor = ZFS_MIN_MINOR;
177 				else
178 					zfs_minor = 0;
179 			} else {
180 				zfs_minor++;
181 			}
182 			*dev = makedevice(zfs_major, zfs_minor);
183 			mutex_exit(&zfs_dev_mtx);
184 		} while (vfs_devismounted(*dev) && zfs_minor != start);
185 		if (zfs_minor == start) {
186 			/*
187 			 * We are using all ~262,000 minor numbers for the
188 			 * current major number.  Create a new major number.
189 			 */
190 			if ((new_major = getudev()) == (major_t)-1) {
191 				cmn_err(CE_WARN,
192 				    "zfs_mount: Can't get unique major "
193 				    "device number.");
194 				return (-1);
195 			}
196 			mutex_enter(&zfs_dev_mtx);
197 			zfs_major = new_major;
198 			zfs_minor = 0;
199 
200 			mutex_exit(&zfs_dev_mtx);
201 		} else {
202 			break;
203 		}
204 		/* CONSTANTCONDITION */
205 	} while (1);
206 
207 	return (0);
208 }
209 
210 static void
211 atime_changed_cb(void *arg, uint64_t newval)
212 {
213 	zfsvfs_t *zfsvfs = arg;
214 
215 	if (newval == TRUE) {
216 		zfsvfs->z_atime = TRUE;
217 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
218 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
219 	} else {
220 		zfsvfs->z_atime = FALSE;
221 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
222 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
223 	}
224 }
225 
226 static void
227 blksz_changed_cb(void *arg, uint64_t newval)
228 {
229 	zfsvfs_t *zfsvfs = arg;
230 
231 	if (newval < SPA_MINBLOCKSIZE ||
232 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
233 		newval = SPA_MAXBLOCKSIZE;
234 
235 	zfsvfs->z_max_blksz = newval;
236 	zfsvfs->z_vfs->vfs_bsize = newval;
237 }
238 
239 static void
240 readonly_changed_cb(void *arg, uint64_t newval)
241 {
242 	zfsvfs_t *zfsvfs = arg;
243 
244 	if (newval) {
245 		/* XXX locking on vfs_flag? */
246 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
247 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
248 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
249 		(void) zfs_delete_thread_target(zfsvfs, 0);
250 	} else {
251 		/* XXX locking on vfs_flag? */
252 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
253 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
254 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
255 		(void) zfs_delete_thread_target(zfsvfs, 1);
256 	}
257 }
258 
259 static void
260 devices_changed_cb(void *arg, uint64_t newval)
261 {
262 	zfsvfs_t *zfsvfs = arg;
263 
264 	if (newval == FALSE) {
265 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
268 	} else {
269 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
270 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
271 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
272 	}
273 }
274 
275 static void
276 setuid_changed_cb(void *arg, uint64_t newval)
277 {
278 	zfsvfs_t *zfsvfs = arg;
279 
280 	if (newval == FALSE) {
281 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
282 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
283 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
284 	} else {
285 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
286 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
287 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
288 	}
289 }
290 
291 static void
292 exec_changed_cb(void *arg, uint64_t newval)
293 {
294 	zfsvfs_t *zfsvfs = arg;
295 
296 	if (newval == FALSE) {
297 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
298 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
299 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
300 	} else {
301 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
302 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
303 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
304 	}
305 }
306 
307 static void
308 snapdir_changed_cb(void *arg, uint64_t newval)
309 {
310 	zfsvfs_t *zfsvfs = arg;
311 
312 	zfsvfs->z_show_ctldir = newval;
313 }
314 
315 static void
316 acl_mode_changed_cb(void *arg, uint64_t newval)
317 {
318 	zfsvfs_t *zfsvfs = arg;
319 
320 	zfsvfs->z_acl_mode = newval;
321 }
322 
323 static void
324 acl_inherit_changed_cb(void *arg, uint64_t newval)
325 {
326 	zfsvfs_t *zfsvfs = arg;
327 
328 	zfsvfs->z_acl_inherit = newval;
329 }
330 
331 static int
332 zfs_refresh_properties(vfs_t *vfsp)
333 {
334 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
335 
336 	/*
337 	 * Remount operations default to "rw" unless "ro" is explicitly
338 	 * specified.
339 	 */
340 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
341 		readonly_changed_cb(zfsvfs, B_TRUE);
342 	} else {
343 		if (!dmu_objset_is_snapshot(zfsvfs->z_os))
344 			readonly_changed_cb(zfsvfs, B_FALSE);
345 		else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
346 			    return (EROFS);
347 	}
348 
349 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
350 		devices_changed_cb(zfsvfs, B_FALSE);
351 		setuid_changed_cb(zfsvfs, B_FALSE);
352 	} else {
353 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
354 			devices_changed_cb(zfsvfs, B_FALSE);
355 		else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
356 			devices_changed_cb(zfsvfs, B_TRUE);
357 
358 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
359 			setuid_changed_cb(zfsvfs, B_FALSE);
360 		else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
361 			setuid_changed_cb(zfsvfs, B_TRUE);
362 	}
363 
364 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
365 		exec_changed_cb(zfsvfs, B_FALSE);
366 	else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
367 		exec_changed_cb(zfsvfs, B_TRUE);
368 
369 	return (0);
370 }
371 
372 static int
373 zfs_register_callbacks(vfs_t *vfsp)
374 {
375 	struct dsl_dataset *ds = NULL;
376 	objset_t *os = NULL;
377 	zfsvfs_t *zfsvfs = NULL;
378 	int do_readonly = FALSE, readonly;
379 	int do_setuid = FALSE, setuid;
380 	int do_exec = FALSE, exec;
381 	int do_devices = FALSE, devices;
382 	int error = 0;
383 
384 	ASSERT(vfsp);
385 	zfsvfs = vfsp->vfs_data;
386 	ASSERT(zfsvfs);
387 	os = zfsvfs->z_os;
388 
389 	/*
390 	 * The act of registering our callbacks will destroy any mount
391 	 * options we may have.  In order to enable temporary overrides
392 	 * of mount options, we stash away the current values and restore
393 	 * restore them after we register the callbacks.
394 	 */
395 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
396 		readonly = B_TRUE;
397 		do_readonly = B_TRUE;
398 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
399 		readonly = B_FALSE;
400 		do_readonly = B_TRUE;
401 	}
402 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
403 		devices = B_FALSE;
404 		setuid = B_FALSE;
405 		do_devices = B_TRUE;
406 		do_setuid = B_TRUE;
407 	} else {
408 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
409 			devices = B_FALSE;
410 			do_devices = B_TRUE;
411 		} else if (vfs_optionisset(vfsp,
412 			    MNTOPT_DEVICES, NULL)) {
413 			devices = B_TRUE;
414 			do_devices = B_TRUE;
415 		}
416 
417 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
418 			setuid = B_FALSE;
419 			do_setuid = B_TRUE;
420 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
421 			setuid = B_TRUE;
422 			do_setuid = B_TRUE;
423 		}
424 	}
425 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
426 		exec = B_FALSE;
427 		do_exec = B_TRUE;
428 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
429 		exec = B_TRUE;
430 		do_exec = B_TRUE;
431 	}
432 
433 	/*
434 	 * Register property callbacks.
435 	 *
436 	 * It would probably be fine to just check for i/o error from
437 	 * the first prop_register(), but I guess I like to go
438 	 * overboard...
439 	 */
440 	ds = dmu_objset_ds(os);
441 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
442 	error = error ? error : dsl_prop_register(ds,
443 	    "recordsize", blksz_changed_cb, zfsvfs);
444 	error = error ? error : dsl_prop_register(ds,
445 	    "readonly", readonly_changed_cb, zfsvfs);
446 	error = error ? error : dsl_prop_register(ds,
447 	    "devices", devices_changed_cb, zfsvfs);
448 	error = error ? error : dsl_prop_register(ds,
449 	    "setuid", setuid_changed_cb, zfsvfs);
450 	error = error ? error : dsl_prop_register(ds,
451 	    "exec", exec_changed_cb, zfsvfs);
452 	error = error ? error : dsl_prop_register(ds,
453 	    "snapdir", snapdir_changed_cb, zfsvfs);
454 	error = error ? error : dsl_prop_register(ds,
455 	    "aclmode", acl_mode_changed_cb, zfsvfs);
456 	error = error ? error : dsl_prop_register(ds,
457 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
458 	if (error)
459 		goto unregister;
460 
461 	/*
462 	 * Invoke our callbacks to restore temporary mount options.
463 	 */
464 	if (do_readonly)
465 		readonly_changed_cb(zfsvfs, readonly);
466 	if (do_setuid)
467 		setuid_changed_cb(zfsvfs, setuid);
468 	if (do_exec)
469 		exec_changed_cb(zfsvfs, exec);
470 	if (do_devices)
471 		devices_changed_cb(zfsvfs, devices);
472 
473 	return (0);
474 
475 unregister:
476 	/*
477 	 * We may attempt to unregister some callbacks that are not
478 	 * registered, but this is OK; it will simply return ENOMSG,
479 	 * which we will ignore.
480 	 */
481 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
482 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
483 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
484 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
485 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
486 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
487 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
488 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
489 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
490 	    zfsvfs);
491 	return (error);
492 
493 }
494 
495 static int
496 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr)
497 {
498 	dev_t mount_dev;
499 	uint64_t recordsize, readonly;
500 	int error = 0;
501 	int mode;
502 	zfsvfs_t *zfsvfs;
503 	znode_t *zp = NULL;
504 
505 	ASSERT(vfsp);
506 	ASSERT(osname);
507 
508 	/*
509 	 * Initialize the zfs-specific filesystem structure.
510 	 * Should probably make this a kmem cache, shuffle fields,
511 	 * and just bzero up to z_hold_mtx[].
512 	 */
513 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
514 	zfsvfs->z_vfs = vfsp;
515 	zfsvfs->z_parent = zfsvfs;
516 	zfsvfs->z_assign = TXG_NOWAIT;
517 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
518 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
519 
520 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
521 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
522 	    offsetof(znode_t, z_link_node));
523 	rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL);
524 
525 	/* Initialize the generic filesystem structure. */
526 	vfsp->vfs_bcount = 0;
527 	vfsp->vfs_data = NULL;
528 
529 	if (zfs_create_unique_device(&mount_dev) == -1) {
530 		error = ENODEV;
531 		goto out;
532 	}
533 	ASSERT(vfs_devismounted(mount_dev) == 0);
534 
535 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
536 	    NULL))
537 		goto out;
538 
539 	vfsp->vfs_dev = mount_dev;
540 	vfsp->vfs_fstype = zfsfstype;
541 	vfsp->vfs_bsize = recordsize;
542 	vfsp->vfs_flag |= VFS_NOTRUNC;
543 	vfsp->vfs_data = zfsvfs;
544 
545 	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
546 		goto out;
547 
548 	if (readonly)
549 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
550 	else
551 		mode = DS_MODE_PRIMARY;
552 
553 	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
554 	if (error == EROFS) {
555 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
556 		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
557 		    &zfsvfs->z_os);
558 	}
559 
560 	if (error)
561 		goto out;
562 
563 	if (error = zfs_init_fs(zfsvfs, &zp, cr))
564 		goto out;
565 
566 	/* The call to zfs_init_fs leaves the vnode held, release it here. */
567 	VN_RELE(ZTOV(zp));
568 
569 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
570 		ASSERT(mode & DS_MODE_READONLY);
571 		atime_changed_cb(zfsvfs, B_FALSE);
572 		readonly_changed_cb(zfsvfs, B_TRUE);
573 		zfsvfs->z_issnap = B_TRUE;
574 	} else {
575 		error = zfs_register_callbacks(vfsp);
576 		if (error)
577 			goto out;
578 
579 		/*
580 		 * Start a delete thread running.
581 		 */
582 		(void) zfs_delete_thread_target(zfsvfs, 1);
583 
584 		/*
585 		 * Parse and replay the intent log.
586 		 */
587 		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
588 		    zfs_replay_vector, (void (*)(void *))zfs_delete_wait_empty);
589 
590 		if (!zil_disable)
591 			zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
592 	}
593 
594 	if (!zfsvfs->z_issnap)
595 		zfsctl_create(zfsvfs);
596 out:
597 	if (error) {
598 		if (zfsvfs->z_os)
599 			dmu_objset_close(zfsvfs->z_os);
600 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
601 	} else {
602 		atomic_add_32(&zfs_active_fs_count, 1);
603 	}
604 
605 	return (error);
606 
607 }
608 
609 void
610 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
611 {
612 	objset_t *os = zfsvfs->z_os;
613 	struct dsl_dataset *ds;
614 
615 	/*
616 	 * Unregister properties.
617 	 */
618 	if (!dmu_objset_is_snapshot(os)) {
619 		ds = dmu_objset_ds(os);
620 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
621 		    zfsvfs) == 0);
622 
623 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
624 		    zfsvfs) == 0);
625 
626 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
627 		    zfsvfs) == 0);
628 
629 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
630 		    zfsvfs) == 0);
631 
632 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
633 		    zfsvfs) == 0);
634 
635 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
636 		    zfsvfs) == 0);
637 
638 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
639 		    zfsvfs) == 0);
640 
641 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
642 		    zfsvfs) == 0);
643 
644 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
645 		    acl_inherit_changed_cb, zfsvfs) == 0);
646 	}
647 }
648 
649 static int
650 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
651 {
652 	int error = 0;
653 	int ret = 0;
654 	static int zfsrootdone = 0;
655 	zfsvfs_t *zfsvfs = NULL;
656 	znode_t *zp = NULL;
657 	vnode_t *vp = NULL;
658 
659 	ASSERT(vfsp);
660 
661 	/*
662 	 * The filesystem that we mount as root is defined in
663 	 * /etc/system using the zfsroot variable.  The value defined
664 	 * there is copied early in startup code to zfs_bootpath
665 	 * (defined in modsysfile.c).
666 	 */
667 	if (why == ROOT_INIT) {
668 		if (zfsrootdone++)
669 			return (EBUSY);
670 
671 		/*
672 		 * This needs to be done here, so that when we return from
673 		 * mountroot, the vfs resource name will be set correctly.
674 		 */
675 		if (snprintf(rootfs.bo_name, BO_MAXOBJNAME, "%s", zfs_bootpath)
676 		    >= BO_MAXOBJNAME)
677 			return (ENAMETOOLONG);
678 
679 		if (error = vfs_lock(vfsp))
680 			return (error);
681 
682 		if (error = zfs_domount(vfsp, zfs_bootpath, CRED()))
683 			goto out;
684 
685 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
686 		ASSERT(zfsvfs);
687 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp))
688 			goto out;
689 
690 		vp = ZTOV(zp);
691 		mutex_enter(&vp->v_lock);
692 		vp->v_flag |= VROOT;
693 		mutex_exit(&vp->v_lock);
694 		rootvp = vp;
695 
696 		/*
697 		 * The zfs_zget call above returns with a hold on vp, we release
698 		 * it here.
699 		 */
700 		VN_RELE(vp);
701 
702 		/*
703 		 * Mount root as readonly initially, it will be remouted
704 		 * read/write by /lib/svc/method/fs-usr.
705 		 */
706 		readonly_changed_cb(vfsp->vfs_data, B_TRUE);
707 		vfs_add((struct vnode *)0, vfsp,
708 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
709 out:
710 		vfs_unlock(vfsp);
711 		ret = (error) ? error : 0;
712 		return (ret);
713 
714 	} else if (why == ROOT_REMOUNT) {
715 
716 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
717 		vfsp->vfs_flag |= VFS_REMOUNT;
718 		return (zfs_refresh_properties(vfsp));
719 
720 	} else if (why == ROOT_UNMOUNT) {
721 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
722 		(void) zfs_sync(vfsp, 0, 0);
723 		return (0);
724 	}
725 
726 	/*
727 	 * if "why" is equal to anything else other than ROOT_INIT,
728 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
729 	 */
730 	return (ENOTSUP);
731 }
732 
733 /*ARGSUSED*/
734 static int
735 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
736 {
737 	char		*osname;
738 	pathname_t	spn;
739 	int		error = 0;
740 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
741 				UIO_SYSSPACE : UIO_USERSPACE;
742 	int		canwrite;
743 
744 	if (mvp->v_type != VDIR)
745 		return (ENOTDIR);
746 
747 	mutex_enter(&mvp->v_lock);
748 	if ((uap->flags & MS_REMOUNT) == 0 &&
749 	    (uap->flags & MS_OVERLAY) == 0 &&
750 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
751 		mutex_exit(&mvp->v_lock);
752 		return (EBUSY);
753 	}
754 	mutex_exit(&mvp->v_lock);
755 
756 	/*
757 	 * ZFS does not support passing unparsed data in via MS_DATA.
758 	 * Users should use the MS_OPTIONSTR interface; this means
759 	 * that all option parsing is already done and the options struct
760 	 * can be interrogated.
761 	 */
762 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
763 		return (EINVAL);
764 
765 	/*
766 	 * When doing a remount, we simply refresh our temporary properties
767 	 * according to those options set in the current VFS options.
768 	 */
769 	if (uap->flags & MS_REMOUNT) {
770 		return (zfs_refresh_properties(vfsp));
771 	}
772 
773 	/*
774 	 * Get the objset name (the "special" mount argument).
775 	 */
776 	if (error = pn_get(uap->spec, fromspace, &spn))
777 		return (error);
778 
779 	osname = spn.pn_path;
780 
781 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
782 		goto out;
783 
784 	/*
785 	 * Refuse to mount a filesystem if we are in a local zone and the
786 	 * dataset is not visible.
787 	 */
788 	if (!INGLOBALZONE(curproc) &&
789 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
790 		error = EPERM;
791 		goto out;
792 	}
793 
794 	error = zfs_domount(vfsp, osname, cr);
795 
796 out:
797 	pn_free(&spn);
798 	return (error);
799 }
800 
801 static int
802 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
803 {
804 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
805 	dmu_objset_stats_t dstats;
806 	dev32_t d32;
807 
808 	ZFS_ENTER(zfsvfs);
809 
810 	dmu_objset_stats(zfsvfs->z_os, &dstats);
811 
812 	/*
813 	 * The underlying storage pool actually uses multiple block sizes.
814 	 * We report the fragsize as the smallest block size we support,
815 	 * and we report our blocksize as the filesystem's maximum blocksize.
816 	 */
817 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
818 	statp->f_bsize = zfsvfs->z_max_blksz;
819 
820 	/*
821 	 * The following report "total" blocks of various kinds in the
822 	 * file system, but reported in terms of f_frsize - the
823 	 * "fragment" size.
824 	 */
825 
826 	statp->f_blocks =
827 	    (dstats.dds_space_refd + dstats.dds_available) >> SPA_MINBLOCKSHIFT;
828 	statp->f_bfree = dstats.dds_available >> SPA_MINBLOCKSHIFT;
829 	statp->f_bavail = statp->f_bfree; /* no root reservation */
830 
831 	/*
832 	 * statvfs() should really be called statufs(), because it assumes
833 	 * static metadata.  ZFS doesn't preallocate files, so the best
834 	 * we can do is report the max that could possibly fit in f_files,
835 	 * and that minus the number actually used in f_ffree.
836 	 * For f_ffree, report the smaller of the number of object available
837 	 * and the number of blocks (each object will take at least a block).
838 	 */
839 	statp->f_ffree = MIN(dstats.dds_objects_avail, statp->f_bfree);
840 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
841 	statp->f_files = statp->f_ffree + dstats.dds_objects_used;
842 
843 	(void) cmpldev(&d32, vfsp->vfs_dev);
844 	statp->f_fsid = d32;
845 
846 	/*
847 	 * We're a zfs filesystem.
848 	 */
849 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
850 
851 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
852 
853 	statp->f_namemax = ZFS_MAXNAMELEN;
854 
855 	/*
856 	 * We have all of 32 characters to stuff a string here.
857 	 * Is there anything useful we could/should provide?
858 	 */
859 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
860 
861 	ZFS_EXIT(zfsvfs);
862 	return (0);
863 }
864 
865 static int
866 zfs_root(vfs_t *vfsp, vnode_t **vpp)
867 {
868 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
869 	znode_t *rootzp;
870 	int error;
871 
872 	ZFS_ENTER(zfsvfs);
873 
874 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
875 	if (error == 0)
876 		*vpp = ZTOV(rootzp);
877 
878 	ZFS_EXIT(zfsvfs);
879 	return (error);
880 }
881 
882 /*ARGSUSED*/
883 static int
884 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
885 {
886 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
887 	int ret;
888 
889 	if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0)
890 		return (ret);
891 
892 
893 	(void) dnlc_purge_vfsp(vfsp, 0);
894 
895 	/*
896 	 * Unmount any snapshots mounted under .zfs before unmounting the
897 	 * dataset itself.
898 	 */
899 	if (zfsvfs->z_ctldir != NULL &&
900 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
901 		return (ret);
902 
903 	if (fflag & MS_FORCE) {
904 		vfsp->vfs_flag |= VFS_UNMOUNTED;
905 		zfsvfs->z_unmounted1 = B_TRUE;
906 
907 		/*
908 		 * Wait for all zfs threads to leave zfs.
909 		 * Grabbing a rwlock as reader in all vops and
910 		 * as writer here doesn't work because it too easy to get
911 		 * multiple reader enters as zfs can re-enter itself.
912 		 * This can lead to deadlock if there is an intervening
913 		 * rw_enter as writer.
914 		 * So a file system threads ref count (z_op_cnt) is used.
915 		 * A polling loop on z_op_cnt may seem inefficient, but
916 		 * - this saves all threads on exit from having to grab a
917 		 *   mutex in order to cv_signal
918 		 * - only occurs on forced unmount in the rare case when
919 		 *   there are outstanding threads within the file system.
920 		 */
921 		while (zfsvfs->z_op_cnt) {
922 			delay(1);
923 		}
924 
925 		zfs_objset_close(zfsvfs);
926 
927 		return (0);
928 	}
929 	/*
930 	 * Stop all delete threads.
931 	 */
932 	(void) zfs_delete_thread_target(zfsvfs, 0);
933 
934 	/*
935 	 * Check the number of active vnodes in the file system.
936 	 * Our count is maintained in the vfs structure, but the number
937 	 * is off by 1 to indicate a hold on the vfs structure itself.
938 	 *
939 	 * The '.zfs' directory maintains a reference of its own, and any active
940 	 * references underneath are reflected in the vnode count.
941 	 */
942 	if (zfsvfs->z_ctldir == NULL) {
943 		if (vfsp->vfs_count > 1) {
944 			if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0)
945 				(void) zfs_delete_thread_target(zfsvfs, 1);
946 			return (EBUSY);
947 		}
948 	} else {
949 		if (vfsp->vfs_count > 2 ||
950 		    (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) {
951 			if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0)
952 				(void) zfs_delete_thread_target(zfsvfs, 1);
953 			return (EBUSY);
954 		}
955 	}
956 
957 	vfsp->vfs_flag |= VFS_UNMOUNTED;
958 	zfs_objset_close(zfsvfs);
959 
960 	return (0);
961 }
962 
963 static int
964 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
965 {
966 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
967 	znode_t		*zp;
968 	uint64_t	object = 0;
969 	uint64_t	fid_gen = 0;
970 	uint64_t	gen_mask;
971 	uint64_t	zp_gen;
972 	int 		i, err;
973 
974 	*vpp = NULL;
975 
976 	ZFS_ENTER(zfsvfs);
977 
978 	if (fidp->fid_len == LONG_FID_LEN) {
979 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
980 		uint64_t	objsetid = 0;
981 		uint64_t	setgen = 0;
982 
983 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
984 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
985 
986 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
987 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
988 
989 		ZFS_EXIT(zfsvfs);
990 
991 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
992 		if (err)
993 			return (EINVAL);
994 		ZFS_ENTER(zfsvfs);
995 	}
996 
997 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
998 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
999 
1000 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1001 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1002 
1003 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1004 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1005 	} else {
1006 		ZFS_EXIT(zfsvfs);
1007 		return (EINVAL);
1008 	}
1009 
1010 	/* A zero fid_gen means we are in the .zfs control directories */
1011 	if (fid_gen == 0 &&
1012 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1013 		*vpp = zfsvfs->z_ctldir;
1014 		ASSERT(*vpp != NULL);
1015 		if (object == ZFSCTL_INO_SNAPDIR) {
1016 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1017 			    0, NULL, NULL) == 0);
1018 		} else {
1019 			VN_HOLD(*vpp);
1020 		}
1021 		ZFS_EXIT(zfsvfs);
1022 		return (0);
1023 	}
1024 
1025 	gen_mask = -1ULL >> (64 - 8 * i);
1026 
1027 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1028 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1029 		ZFS_EXIT(zfsvfs);
1030 		return (err);
1031 	}
1032 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1033 	if (zp_gen == 0)
1034 		zp_gen = 1;
1035 	if (zp->z_reap || zp_gen != fid_gen) {
1036 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1037 		VN_RELE(ZTOV(zp));
1038 		ZFS_EXIT(zfsvfs);
1039 		return (EINVAL);
1040 	}
1041 
1042 	*vpp = ZTOV(zp);
1043 	ZFS_EXIT(zfsvfs);
1044 	return (0);
1045 }
1046 
1047 static void
1048 zfs_objset_close(zfsvfs_t *zfsvfs)
1049 {
1050 	zfs_delete_t	*zd = &zfsvfs->z_delete_head;
1051 	znode_t		*zp, *nextzp;
1052 	objset_t	*os = zfsvfs->z_os;
1053 
1054 	/*
1055 	 * Stop all delete threads.
1056 	 */
1057 	(void) zfs_delete_thread_target(zfsvfs, 0);
1058 
1059 	/*
1060 	 * For forced unmount, at this point all vops except zfs_inactive
1061 	 * are erroring EIO. We need to now suspend zfs_inactive threads
1062 	 * while we are freeing dbufs before switching zfs_inactive
1063 	 * to use behaviour without a objset.
1064 	 */
1065 	rw_enter(&zfsvfs->z_um_lock, RW_WRITER);
1066 
1067 	/*
1068 	 * Release all delete in progress znodes
1069 	 * They will be processed when the file system remounts.
1070 	 */
1071 	mutex_enter(&zd->z_mutex);
1072 	while (zp = list_head(&zd->z_znodes)) {
1073 		list_remove(&zd->z_znodes, zp);
1074 		zp->z_dbuf_held = 0;
1075 		dmu_buf_rele(zp->z_dbuf, NULL);
1076 	}
1077 	mutex_exit(&zd->z_mutex);
1078 
1079 	/*
1080 	 * Release all holds on dbufs
1081 	 * Note, although we have stopped all other vop threads and
1082 	 * zfs_inactive(), the dmu can callback via znode_pageout_func()
1083 	 * which can zfs_znode_free() the znode.
1084 	 * So we lock z_all_znodes; search the list for a held
1085 	 * dbuf; drop the lock (we know zp can't disappear if we hold
1086 	 * a dbuf lock; then regrab the lock and restart.
1087 	 */
1088 	mutex_enter(&zfsvfs->z_znodes_lock);
1089 	for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) {
1090 		nextzp = list_next(&zfsvfs->z_all_znodes, zp);
1091 		if (zp->z_dbuf_held) {
1092 			/* dbufs should only be held when force unmounting */
1093 			zp->z_dbuf_held = 0;
1094 			mutex_exit(&zfsvfs->z_znodes_lock);
1095 			dmu_buf_rele(zp->z_dbuf, NULL);
1096 			/* Start again */
1097 			mutex_enter(&zfsvfs->z_znodes_lock);
1098 			nextzp = list_head(&zfsvfs->z_all_znodes);
1099 		}
1100 	}
1101 	mutex_exit(&zfsvfs->z_znodes_lock);
1102 
1103 	/*
1104 	 * Unregister properties.
1105 	 */
1106 	if (!dmu_objset_is_snapshot(os))
1107 		zfs_unregister_callbacks(zfsvfs);
1108 
1109 	/*
1110 	 * Switch zfs_inactive to behaviour without an objset.
1111 	 * It just tosses cached pages and frees the znode & vnode.
1112 	 * Then re-enable zfs_inactive threads in that new behaviour.
1113 	 */
1114 	zfsvfs->z_unmounted2 = B_TRUE;
1115 	rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */
1116 
1117 	/*
1118 	 * Close the zil. Can't close the zil while zfs_inactive
1119 	 * threads are blocked as zil_close can call zfs_inactive.
1120 	 */
1121 	if (zfsvfs->z_log) {
1122 		zil_close(zfsvfs->z_log);
1123 		zfsvfs->z_log = NULL;
1124 	}
1125 
1126 	/*
1127 	 * Evict all dbufs so that cached znodes will be freed
1128 	 */
1129 	if (dmu_objset_evict_dbufs(os, 1)) {
1130 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1131 		(void) dmu_objset_evict_dbufs(os, 0);
1132 	}
1133 
1134 	/*
1135 	 * Finally close the objset
1136 	 */
1137 	dmu_objset_close(os);
1138 
1139 	/*
1140 	 * We can now safely destroy the '.zfs' directory node.
1141 	 */
1142 	if (zfsvfs->z_ctldir != NULL)
1143 		zfsctl_destroy(zfsvfs);
1144 
1145 }
1146 
1147 static void
1148 zfs_freevfs(vfs_t *vfsp)
1149 {
1150 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1151 
1152 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1153 
1154 	atomic_add_32(&zfs_active_fs_count, -1);
1155 }
1156 
1157 /*
1158  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1159  * so we can't safely do any non-idempotent initialization here.
1160  * Leave that to zfs_init() and zfs_fini(), which are called
1161  * from the module's _init() and _fini() entry points.
1162  */
1163 /*ARGSUSED*/
1164 static int
1165 zfs_vfsinit(int fstype, char *name)
1166 {
1167 	int error;
1168 
1169 	zfsfstype = fstype;
1170 
1171 	/*
1172 	 * Setup vfsops and vnodeops tables.
1173 	 */
1174 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1175 	if (error != 0) {
1176 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1177 	}
1178 
1179 	error = zfs_create_op_tables();
1180 	if (error) {
1181 		zfs_remove_op_tables();
1182 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1183 		(void) vfs_freevfsops_by_type(zfsfstype);
1184 		return (error);
1185 	}
1186 
1187 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1188 
1189 	/*
1190 	 * Unique major number for all zfs mounts.
1191 	 * If we run out of 32-bit minors, we'll getudev() another major.
1192 	 */
1193 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1194 	zfs_minor = ZFS_MIN_MINOR;
1195 
1196 	return (0);
1197 }
1198 
1199 void
1200 zfs_init(void)
1201 {
1202 	/*
1203 	 * Initialize .zfs directory structures
1204 	 */
1205 	zfsctl_init();
1206 
1207 	/*
1208 	 * Initialize znode cache, vnode ops, etc...
1209 	 */
1210 	zfs_znode_init();
1211 }
1212 
1213 void
1214 zfs_fini(void)
1215 {
1216 	zfsctl_fini();
1217 	zfs_znode_fini();
1218 }
1219 
1220 int
1221 zfs_busy(void)
1222 {
1223 	return (zfs_active_fs_count != 0);
1224 }
1225 
1226 static vfsdef_t vfw = {
1227 	VFSDEF_VERSION,
1228 	MNTTYPE_ZFS,
1229 	zfs_vfsinit,
1230 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS,
1231 	&zfs_mntopts
1232 };
1233 
1234 struct modlfs zfs_modlfs = {
1235 	&mod_fsops, "ZFS filesystem version 1", &vfw
1236 };
1237