xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_fm.c (revision 468c413a79615e77179e8d98f22a7e513a8135bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/vdev.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/fm/protocol.h>
35 #include <sys/fm/util.h>
36 #include <sys/sysevent.h>
37 
38 /*
39  * This general routine is responsible for generating all the different ZFS
40  * ereports.  The payload is dependent on the class, and which arguments are
41  * supplied to the function:
42  *
43  * 	EREPORT			POOL	VDEV	IO
44  * 	block			X	X	X
45  * 	data			X		X
46  * 	device			X	X
47  * 	pool			X
48  *
49  * If we are in a loading state, all errors are chained together by the same
50  * SPA-wide ENA (Error Numeric Association).
51  *
52  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
53  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
54  * to chain together all ereports associated with a logical piece of data.  For
55  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
56  * layered diagram:
57  *
58  *      +---------------+
59  * 	| Aggregate I/O |	No associated logical data or device
60  * 	+---------------+
61  *              |
62  *              V
63  * 	+---------------+	Reads associated with a piece of logical data.
64  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
65  * 	+---------------+       mirrors, gang blocks, retries, etc.
66  *              |
67  *              V
68  * 	+---------------+	Reads associated with a particular device, but
69  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
70  * 	+---------------+	and I/O aggregation.
71  *
72  * Note that 'physical I/O' here is not the same terminology as used in the rest
73  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
74  * blockpointer.  But I/O with no associated block pointer can still be related
75  * to a logical piece of data (i.e. RAID-Z requests).
76  *
77  * Purely physical I/O always have unique ENAs.  They are not related to a
78  * particular piece of logical data, and therefore cannot be chained together.
79  * We still generate an ereport, but the DE doesn't correlate it with any
80  * logical piece of data.  When such an I/O fails, the delegated I/O requests
81  * will issue a retry, which will trigger the 'real' ereport with the correct
82  * ENA.
83  *
84  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
85  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
86  * then inherit this pointer, so that when it is first set subsequent failures
87  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
88  * this pointer is set to NULL, and no ereport will be generated (since it
89  * doesn't actually correspond to any particular device or piece of data,
90  * and the caller will always retry without caching or queueing anyway).
91  *
92  * For checksum errors, we want to include more information about the actual
93  * error which occurs.  Accordingly, we build an ereport when the error is
94  * noticed, but instead of sending it in immediately, we hang it off of the
95  * io_cksum_report field of the logical IO.  When the logical IO completes
96  * (successfully or not), zfs_ereport_finish_checksum() is called with the
97  * good and bad versions of the buffer (if available), and we annotate the
98  * ereport with information about the differences.
99  */
100 #ifdef _KERNEL
101 static void
102 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
103     const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
104     uint64_t stateoroffset, uint64_t size)
105 {
106 	nvlist_t *ereport, *detector;
107 
108 	uint64_t ena;
109 	char class[64];
110 
111 	/*
112 	 * If we are doing a spa_tryimport() or in recovery mode,
113 	 * ignore errors.
114 	 */
115 	if (spa->spa_load_state == SPA_LOAD_TRYIMPORT ||
116 	    spa->spa_load_state == SPA_LOAD_RECOVER)
117 		return;
118 
119 	/*
120 	 * If we are in the middle of opening a pool, and the previous attempt
121 	 * failed, don't bother logging any new ereports - we're just going to
122 	 * get the same diagnosis anyway.
123 	 */
124 	if (spa->spa_load_state != SPA_LOAD_NONE &&
125 	    spa->spa_last_open_failed)
126 		return;
127 
128 	if (zio != NULL) {
129 		/*
130 		 * If this is not a read or write zio, ignore the error.  This
131 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
132 		 */
133 		if (zio->io_type != ZIO_TYPE_READ &&
134 		    zio->io_type != ZIO_TYPE_WRITE)
135 			return;
136 
137 		/*
138 		 * Ignore any errors from speculative I/Os, as failure is an
139 		 * expected result.
140 		 */
141 		if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
142 			return;
143 
144 		/*
145 		 * If this I/O is not a retry I/O, don't post an ereport.
146 		 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
147 		 * I/Os.
148 		 */
149 		if (zio->io_error == EIO &&
150 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
151 			return;
152 
153 		if (vd != NULL) {
154 			/*
155 			 * If the vdev has already been marked as failing due
156 			 * to a failed probe, then ignore any subsequent I/O
157 			 * errors, as the DE will automatically fault the vdev
158 			 * on the first such failure.  This also catches cases
159 			 * where vdev_remove_wanted is set and the device has
160 			 * not yet been asynchronously placed into the REMOVED
161 			 * state.
162 			 */
163 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
164 				return;
165 
166 			/*
167 			 * Ignore checksum errors for reads from DTL regions of
168 			 * leaf vdevs.
169 			 */
170 			if (zio->io_type == ZIO_TYPE_READ &&
171 			    zio->io_error == ECKSUM &&
172 			    vd->vdev_ops->vdev_op_leaf &&
173 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
174 				return;
175 		}
176 	}
177 
178 	/*
179 	 * For probe failure, we want to avoid posting ereports if we've
180 	 * already removed the device in the meantime.
181 	 */
182 	if (vd != NULL &&
183 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
184 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
185 		return;
186 
187 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
188 		return;
189 
190 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
191 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
192 		return;
193 	}
194 
195 	/*
196 	 * Serialize ereport generation
197 	 */
198 	mutex_enter(&spa->spa_errlist_lock);
199 
200 	/*
201 	 * Determine the ENA to use for this event.  If we are in a loading
202 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
203 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
204 	 */
205 	if (spa->spa_load_state != SPA_LOAD_NONE) {
206 		if (spa->spa_ena == 0)
207 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
208 		ena = spa->spa_ena;
209 	} else if (zio != NULL && zio->io_logical != NULL) {
210 		if (zio->io_logical->io_ena == 0)
211 			zio->io_logical->io_ena =
212 			    fm_ena_generate(0, FM_ENA_FMT1);
213 		ena = zio->io_logical->io_ena;
214 	} else {
215 		ena = fm_ena_generate(0, FM_ENA_FMT1);
216 	}
217 
218 	/*
219 	 * Construct the full class, detector, and other standard FMA fields.
220 	 */
221 	(void) snprintf(class, sizeof (class), "%s.%s",
222 	    ZFS_ERROR_CLASS, subclass);
223 
224 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
225 	    vd != NULL ? vd->vdev_guid : 0);
226 
227 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
228 
229 	/*
230 	 * Construct the per-ereport payload, depending on which parameters are
231 	 * passed in.
232 	 */
233 
234 	/*
235 	 * Generic payload members common to all ereports.
236 	 */
237 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
238 	    DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
239 	    DATA_TYPE_UINT64, spa_guid(spa),
240 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
241 	    spa->spa_load_state, NULL);
242 
243 	if (spa != NULL) {
244 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
245 		    DATA_TYPE_STRING,
246 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
247 		    FM_EREPORT_FAILMODE_WAIT :
248 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
249 		    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
250 		    NULL);
251 	}
252 
253 	if (vd != NULL) {
254 		vdev_t *pvd = vd->vdev_parent;
255 
256 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
257 		    DATA_TYPE_UINT64, vd->vdev_guid,
258 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
259 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
260 		if (vd->vdev_path != NULL)
261 			fm_payload_set(ereport,
262 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
263 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
264 		if (vd->vdev_devid != NULL)
265 			fm_payload_set(ereport,
266 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
267 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
268 		if (vd->vdev_fru != NULL)
269 			fm_payload_set(ereport,
270 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
271 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
272 
273 		if (pvd != NULL) {
274 			fm_payload_set(ereport,
275 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
276 			    DATA_TYPE_UINT64, pvd->vdev_guid,
277 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
278 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
279 			    NULL);
280 			if (pvd->vdev_path)
281 				fm_payload_set(ereport,
282 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
283 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
284 			if (pvd->vdev_devid)
285 				fm_payload_set(ereport,
286 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
287 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
288 		}
289 	}
290 
291 	if (zio != NULL) {
292 		/*
293 		 * Payload common to all I/Os.
294 		 */
295 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
296 		    DATA_TYPE_INT32, zio->io_error, NULL);
297 
298 		/*
299 		 * If the 'size' parameter is non-zero, it indicates this is a
300 		 * RAID-Z or other I/O where the physical offset and length are
301 		 * provided for us, instead of within the zio_t.
302 		 */
303 		if (vd != NULL) {
304 			if (size)
305 				fm_payload_set(ereport,
306 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
307 				    DATA_TYPE_UINT64, stateoroffset,
308 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
309 				    DATA_TYPE_UINT64, size, NULL);
310 			else
311 				fm_payload_set(ereport,
312 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
313 				    DATA_TYPE_UINT64, zio->io_offset,
314 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
315 				    DATA_TYPE_UINT64, zio->io_size, NULL);
316 		}
317 
318 		/*
319 		 * Payload for I/Os with corresponding logical information.
320 		 */
321 		if (zio->io_logical != NULL)
322 			fm_payload_set(ereport,
323 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
324 			    DATA_TYPE_UINT64,
325 			    zio->io_logical->io_bookmark.zb_objset,
326 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
327 			    DATA_TYPE_UINT64,
328 			    zio->io_logical->io_bookmark.zb_object,
329 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
330 			    DATA_TYPE_INT64,
331 			    zio->io_logical->io_bookmark.zb_level,
332 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
333 			    DATA_TYPE_UINT64,
334 			    zio->io_logical->io_bookmark.zb_blkid, NULL);
335 	} else if (vd != NULL) {
336 		/*
337 		 * If we have a vdev but no zio, this is a device fault, and the
338 		 * 'stateoroffset' parameter indicates the previous state of the
339 		 * vdev.
340 		 */
341 		fm_payload_set(ereport,
342 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
343 		    DATA_TYPE_UINT64, stateoroffset, NULL);
344 	}
345 
346 	mutex_exit(&spa->spa_errlist_lock);
347 
348 	*ereport_out = ereport;
349 	*detector_out = detector;
350 }
351 
352 /* if it's <= 128 bytes, save the corruption directly */
353 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
354 
355 #define	MAX_RANGES		16
356 
357 typedef struct zfs_ecksum_info {
358 	/* histograms of set and cleared bits by bit number in a 64-bit word */
359 	uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
360 	uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
361 
362 	/* inline arrays of bits set and cleared. */
363 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
364 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
365 
366 	/*
367 	 * for each range, the number of bits set and cleared.  The Hamming
368 	 * distance between the good and bad buffers is the sum of them all.
369 	 */
370 	uint32_t zei_range_sets[MAX_RANGES];
371 	uint32_t zei_range_clears[MAX_RANGES];
372 
373 	struct zei_ranges {
374 		uint32_t	zr_start;
375 		uint32_t	zr_end;
376 	} zei_ranges[MAX_RANGES];
377 
378 	size_t	zei_range_count;
379 	uint32_t zei_mingap;
380 	uint32_t zei_allowed_mingap;
381 
382 } zfs_ecksum_info_t;
383 
384 static void
385 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
386 {
387 	size_t i;
388 	size_t bits = 0;
389 	uint64_t value = BE_64(value_arg);
390 
391 	/* We store the bits in big-endian (largest-first) order */
392 	for (i = 0; i < 64; i++) {
393 		if (value & (1ull << i)) {
394 			hist[63 - i]++;
395 			++bits;
396 		}
397 	}
398 	/* update the count of bits changed */
399 	*count += bits;
400 }
401 
402 /*
403  * We've now filled up the range array, and need to increase "mingap" and
404  * shrink the range list accordingly.  zei_mingap is always the smallest
405  * distance between array entries, so we set the new_allowed_gap to be
406  * one greater than that.  We then go through the list, joining together
407  * any ranges which are closer than the new_allowed_gap.
408  *
409  * By construction, there will be at least one.  We also update zei_mingap
410  * to the new smallest gap, to prepare for our next invocation.
411  */
412 static void
413 shrink_ranges(zfs_ecksum_info_t *eip)
414 {
415 	uint32_t mingap = UINT32_MAX;
416 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
417 
418 	size_t idx, output;
419 	size_t max = eip->zei_range_count;
420 
421 	struct zei_ranges *r = eip->zei_ranges;
422 
423 	ASSERT3U(eip->zei_range_count, >, 0);
424 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
425 
426 	output = idx = 0;
427 	while (idx < max - 1) {
428 		uint32_t start = r[idx].zr_start;
429 		uint32_t end = r[idx].zr_end;
430 
431 		while (idx < max - 1) {
432 			idx++;
433 
434 			uint32_t nstart = r[idx].zr_start;
435 			uint32_t nend = r[idx].zr_end;
436 
437 			uint32_t gap = nstart - end;
438 			if (gap < new_allowed_gap) {
439 				end = nend;
440 				continue;
441 			}
442 			if (gap < mingap)
443 				mingap = gap;
444 			break;
445 		}
446 		r[output].zr_start = start;
447 		r[output].zr_end = end;
448 		output++;
449 	}
450 	ASSERT3U(output, <, eip->zei_range_count);
451 	eip->zei_range_count = output;
452 	eip->zei_mingap = mingap;
453 	eip->zei_allowed_mingap = new_allowed_gap;
454 }
455 
456 static void
457 add_range(zfs_ecksum_info_t *eip, int start, int end)
458 {
459 	struct zei_ranges *r = eip->zei_ranges;
460 	size_t count = eip->zei_range_count;
461 
462 	if (count >= MAX_RANGES) {
463 		shrink_ranges(eip);
464 		count = eip->zei_range_count;
465 	}
466 	if (count == 0) {
467 		eip->zei_mingap = UINT32_MAX;
468 		eip->zei_allowed_mingap = 1;
469 	} else {
470 		int gap = start - r[count - 1].zr_end;
471 
472 		if (gap < eip->zei_allowed_mingap) {
473 			r[count - 1].zr_end = end;
474 			return;
475 		}
476 		if (gap < eip->zei_mingap)
477 			eip->zei_mingap = gap;
478 	}
479 	r[count].zr_start = start;
480 	r[count].zr_end = end;
481 	eip->zei_range_count++;
482 }
483 
484 static size_t
485 range_total_size(zfs_ecksum_info_t *eip)
486 {
487 	struct zei_ranges *r = eip->zei_ranges;
488 	size_t count = eip->zei_range_count;
489 	size_t result = 0;
490 	size_t idx;
491 
492 	for (idx = 0; idx < count; idx++)
493 		result += (r[idx].zr_end - r[idx].zr_start);
494 
495 	return (result);
496 }
497 
498 static zfs_ecksum_info_t *
499 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
500     const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
501     boolean_t drop_if_identical)
502 {
503 	const uint64_t *good = (const uint64_t *)goodbuf;
504 	const uint64_t *bad = (const uint64_t *)badbuf;
505 
506 	uint64_t allset = 0;
507 	uint64_t allcleared = 0;
508 
509 	size_t nui64s = size / sizeof (uint64_t);
510 
511 	size_t inline_size;
512 	int no_inline = 0;
513 	size_t idx;
514 	size_t range;
515 
516 	size_t offset = 0;
517 	ssize_t start = -1;
518 
519 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
520 
521 	/* don't do any annotation for injected checksum errors */
522 	if (info != NULL && info->zbc_injected)
523 		return (eip);
524 
525 	if (info != NULL && info->zbc_has_cksum) {
526 		fm_payload_set(ereport,
527 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
528 		    DATA_TYPE_UINT64_ARRAY,
529 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
530 		    (uint64_t *)&info->zbc_expected,
531 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
532 		    DATA_TYPE_UINT64_ARRAY,
533 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
534 		    (uint64_t *)&info->zbc_actual,
535 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
536 		    DATA_TYPE_STRING,
537 		    info->zbc_checksum_name,
538 		    NULL);
539 
540 		if (info->zbc_byteswapped) {
541 			fm_payload_set(ereport,
542 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
543 			    DATA_TYPE_BOOLEAN, 1,
544 			    NULL);
545 		}
546 	}
547 
548 	if (badbuf == NULL || goodbuf == NULL)
549 		return (eip);
550 
551 	ASSERT3U(nui64s, <=, UINT16_MAX);
552 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
553 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
554 	ASSERT3U(size, <=, UINT32_MAX);
555 
556 	/* build up the range list by comparing the two buffers. */
557 	for (idx = 0; idx < nui64s; idx++) {
558 		if (good[idx] == bad[idx]) {
559 			if (start == -1)
560 				continue;
561 
562 			add_range(eip, start, idx);
563 			start = -1;
564 		} else {
565 			if (start != -1)
566 				continue;
567 
568 			start = idx;
569 		}
570 	}
571 	if (start != -1)
572 		add_range(eip, start, idx);
573 
574 	/* See if it will fit in our inline buffers */
575 	inline_size = range_total_size(eip);
576 	if (inline_size > ZFM_MAX_INLINE)
577 		no_inline = 1;
578 
579 	/*
580 	 * If there is no change and we want to drop if the buffers are
581 	 * identical, do so.
582 	 */
583 	if (inline_size == 0 && drop_if_identical) {
584 		kmem_free(eip, sizeof (*eip));
585 		return (NULL);
586 	}
587 
588 	/*
589 	 * Now walk through the ranges, filling in the details of the
590 	 * differences.  Also convert our uint64_t-array offsets to byte
591 	 * offsets.
592 	 */
593 	for (range = 0; range < eip->zei_range_count; range++) {
594 		size_t start = eip->zei_ranges[range].zr_start;
595 		size_t end = eip->zei_ranges[range].zr_end;
596 
597 		for (idx = start; idx < end; idx++) {
598 			uint64_t set, cleared;
599 
600 			// bits set in bad, but not in good
601 			set = ((~good[idx]) & bad[idx]);
602 			// bits set in good, but not in bad
603 			cleared = (good[idx] & (~bad[idx]));
604 
605 			allset |= set;
606 			allcleared |= cleared;
607 
608 			if (!no_inline) {
609 				ASSERT3U(offset, <, inline_size);
610 				eip->zei_bits_set[offset] = set;
611 				eip->zei_bits_cleared[offset] = cleared;
612 				offset++;
613 			}
614 
615 			update_histogram(set, eip->zei_histogram_set,
616 			    &eip->zei_range_sets[range]);
617 			update_histogram(cleared, eip->zei_histogram_cleared,
618 			    &eip->zei_range_clears[range]);
619 		}
620 
621 		/* convert to byte offsets */
622 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
623 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
624 	}
625 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
626 	inline_size		*= sizeof (uint64_t);
627 
628 	/* fill in ereport */
629 	fm_payload_set(ereport,
630 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
631 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
632 	    (uint32_t *)eip->zei_ranges,
633 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
634 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
635 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
636 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
637 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
638 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
639 	    NULL);
640 
641 	if (!no_inline) {
642 		fm_payload_set(ereport,
643 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
644 		    DATA_TYPE_UINT8_ARRAY,
645 		    inline_size, (uint8_t *)eip->zei_bits_set,
646 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
647 		    DATA_TYPE_UINT8_ARRAY,
648 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
649 		    NULL);
650 	} else {
651 		fm_payload_set(ereport,
652 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
653 		    DATA_TYPE_UINT16_ARRAY,
654 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
655 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
656 		    DATA_TYPE_UINT16_ARRAY,
657 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
658 		    NULL);
659 	}
660 	return (eip);
661 }
662 #endif
663 
664 void
665 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
666     uint64_t stateoroffset, uint64_t size)
667 {
668 #ifdef _KERNEL
669 	nvlist_t *ereport = NULL;
670 	nvlist_t *detector = NULL;
671 
672 	zfs_ereport_start(&ereport, &detector,
673 	    subclass, spa, vd, zio, stateoroffset, size);
674 
675 	if (ereport == NULL)
676 		return;
677 
678 	fm_ereport_post(ereport, EVCH_SLEEP);
679 
680 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
681 	fm_nvlist_destroy(detector, FM_NVA_FREE);
682 #endif
683 }
684 
685 void
686 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
687     struct zio *zio, uint64_t offset, uint64_t length, void *arg,
688     zio_bad_cksum_t *info)
689 {
690 	zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
691 
692 	if (zio->io_vsd != NULL)
693 		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
694 	else
695 		zio_vsd_default_cksum_report(zio, report, arg);
696 
697 	/* copy the checksum failure information if it was provided */
698 	if (info != NULL) {
699 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
700 		bcopy(info, report->zcr_ckinfo, sizeof (*info));
701 	}
702 
703 	report->zcr_length = length;
704 
705 #ifdef _KERNEL
706 	zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
707 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
708 
709 	if (report->zcr_ereport == NULL) {
710 		report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
711 		kmem_free(report, sizeof (*report));
712 		return;
713 	}
714 #endif
715 
716 	mutex_enter(&spa->spa_errlist_lock);
717 	report->zcr_next = zio->io_logical->io_cksum_report;
718 	zio->io_logical->io_cksum_report = report;
719 	mutex_exit(&spa->spa_errlist_lock);
720 }
721 
722 void
723 zfs_ereport_finish_checksum(zio_cksum_report_t *report,
724     const void *good_data, const void *bad_data, boolean_t drop_if_identical)
725 {
726 #ifdef _KERNEL
727 	zfs_ecksum_info_t *info = NULL;
728 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
729 	    good_data, bad_data, report->zcr_length, drop_if_identical);
730 
731 	if (info != NULL)
732 		fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
733 
734 	fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
735 	fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
736 	report->zcr_ereport = report->zcr_detector = NULL;
737 
738 	if (info != NULL)
739 		kmem_free(info, sizeof (*info));
740 #endif
741 }
742 
743 void
744 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
745 {
746 #ifdef _KERNEL
747 	if (rpt->zcr_ereport != NULL) {
748 		fm_nvlist_destroy(rpt->zcr_ereport,
749 		    FM_NVA_FREE);
750 		fm_nvlist_destroy(rpt->zcr_detector,
751 		    FM_NVA_FREE);
752 	}
753 #endif
754 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
755 
756 	if (rpt->zcr_ckinfo != NULL)
757 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
758 
759 	kmem_free(rpt, sizeof (*rpt));
760 }
761 
762 void
763 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
764 {
765 #ifdef _KERNEL
766 	fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
767 #endif
768 }
769 
770 void
771 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
772     struct zio *zio, uint64_t offset, uint64_t length,
773     const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
774 {
775 #ifdef _KERNEL
776 	nvlist_t *ereport = NULL;
777 	nvlist_t *detector = NULL;
778 	zfs_ecksum_info_t *info;
779 
780 	zfs_ereport_start(&ereport, &detector,
781 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
782 
783 	if (ereport == NULL)
784 		return;
785 
786 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
787 	    B_FALSE);
788 
789 	if (info != NULL)
790 		fm_ereport_post(ereport, EVCH_SLEEP);
791 
792 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
793 	fm_nvlist_destroy(detector, FM_NVA_FREE);
794 
795 	if (info != NULL)
796 		kmem_free(info, sizeof (*info));
797 #endif
798 }
799 
800 static void
801 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
802 {
803 #ifdef _KERNEL
804 	nvlist_t *resource;
805 	char class[64];
806 
807 	if (spa->spa_load_state == SPA_LOAD_TRYIMPORT)
808 		return;
809 
810 	if ((resource = fm_nvlist_create(NULL)) == NULL)
811 		return;
812 
813 	(void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
814 	    ZFS_ERROR_CLASS, name);
815 	VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
816 	VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
817 	VERIFY(nvlist_add_uint64(resource,
818 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
819 	if (vd)
820 		VERIFY(nvlist_add_uint64(resource,
821 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
822 
823 	fm_ereport_post(resource, EVCH_SLEEP);
824 
825 	fm_nvlist_destroy(resource, FM_NVA_FREE);
826 #endif
827 }
828 
829 /*
830  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
831  * has been removed from the system.  This will cause the DE to ignore any
832  * recent I/O errors, inferring that they are due to the asynchronous device
833  * removal.
834  */
835 void
836 zfs_post_remove(spa_t *spa, vdev_t *vd)
837 {
838 	zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
839 }
840 
841 /*
842  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
843  * has the 'autoreplace' property set, and therefore any broken vdevs will be
844  * handled by higher level logic, and no vdev fault should be generated.
845  */
846 void
847 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
848 {
849 	zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
850 }
851 
852 /*
853  * The 'resource.fs.zfs.statechange' event is an internal signal that the
854  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
855  * cause the retire agent to repair any outstanding fault management cases
856  * open because the device was not found (fault.fs.zfs.device).
857  */
858 void
859 zfs_post_state_change(spa_t *spa, vdev_t *vd)
860 {
861 	zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
862 }
863