xref: /illumos-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision c3d26abc9ee97b4f60233556aadeb57e0bd30bb9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zio.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zfs_context.h>
32 #include <sys/zap.h>
33 #include <sys/refcount.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/avl.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39 
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43 
44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
45 
46 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
47 
48 uint64_t
49 zap_getflags(zap_t *zap)
50 {
51 	if (zap->zap_ismicro)
52 		return (0);
53 	return (zap_f_phys(zap)->zap_flags);
54 }
55 
56 int
57 zap_hashbits(zap_t *zap)
58 {
59 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
60 		return (48);
61 	else
62 		return (28);
63 }
64 
65 uint32_t
66 zap_maxcd(zap_t *zap)
67 {
68 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
69 		return ((1<<16)-1);
70 	else
71 		return (-1U);
72 }
73 
74 static uint64_t
75 zap_hash(zap_name_t *zn)
76 {
77 	zap_t *zap = zn->zn_zap;
78 	uint64_t h = 0;
79 
80 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
81 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
82 		h = *(uint64_t *)zn->zn_key_orig;
83 	} else {
84 		h = zap->zap_salt;
85 		ASSERT(h != 0);
86 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
87 
88 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
89 			int i;
90 			const uint64_t *wp = zn->zn_key_norm;
91 
92 			ASSERT(zn->zn_key_intlen == 8);
93 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
94 				int j;
95 				uint64_t word = *wp;
96 
97 				for (j = 0; j < zn->zn_key_intlen; j++) {
98 					h = (h >> 8) ^
99 					    zfs_crc64_table[(h ^ word) & 0xFF];
100 					word >>= NBBY;
101 				}
102 			}
103 		} else {
104 			int i, len;
105 			const uint8_t *cp = zn->zn_key_norm;
106 
107 			/*
108 			 * We previously stored the terminating null on
109 			 * disk, but didn't hash it, so we need to
110 			 * continue to not hash it.  (The
111 			 * zn_key_*_numints includes the terminating
112 			 * null for non-binary keys.)
113 			 */
114 			len = zn->zn_key_norm_numints - 1;
115 
116 			ASSERT(zn->zn_key_intlen == 1);
117 			for (i = 0; i < len; cp++, i++) {
118 				h = (h >> 8) ^
119 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
120 			}
121 		}
122 	}
123 	/*
124 	 * Don't use all 64 bits, since we need some in the cookie for
125 	 * the collision differentiator.  We MUST use the high bits,
126 	 * since those are the ones that we first pay attention to when
127 	 * chosing the bucket.
128 	 */
129 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
130 
131 	return (h);
132 }
133 
134 static int
135 zap_normalize(zap_t *zap, const char *name, char *namenorm)
136 {
137 	size_t inlen, outlen;
138 	int err;
139 
140 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
141 
142 	inlen = strlen(name) + 1;
143 	outlen = ZAP_MAXNAMELEN;
144 
145 	err = 0;
146 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
147 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
148 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
149 
150 	return (err);
151 }
152 
153 boolean_t
154 zap_match(zap_name_t *zn, const char *matchname)
155 {
156 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
157 
158 	if (zn->zn_matchtype == MT_FIRST) {
159 		char norm[ZAP_MAXNAMELEN];
160 
161 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
162 			return (B_FALSE);
163 
164 		return (strcmp(zn->zn_key_norm, norm) == 0);
165 	} else {
166 		/* MT_BEST or MT_EXACT */
167 		return (strcmp(zn->zn_key_orig, matchname) == 0);
168 	}
169 }
170 
171 void
172 zap_name_free(zap_name_t *zn)
173 {
174 	kmem_free(zn, sizeof (zap_name_t));
175 }
176 
177 zap_name_t *
178 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
179 {
180 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
181 
182 	zn->zn_zap = zap;
183 	zn->zn_key_intlen = sizeof (*key);
184 	zn->zn_key_orig = key;
185 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
186 	zn->zn_matchtype = mt;
187 	if (zap->zap_normflags) {
188 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
189 			zap_name_free(zn);
190 			return (NULL);
191 		}
192 		zn->zn_key_norm = zn->zn_normbuf;
193 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
194 	} else {
195 		if (mt != MT_EXACT) {
196 			zap_name_free(zn);
197 			return (NULL);
198 		}
199 		zn->zn_key_norm = zn->zn_key_orig;
200 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
201 	}
202 
203 	zn->zn_hash = zap_hash(zn);
204 	return (zn);
205 }
206 
207 zap_name_t *
208 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
209 {
210 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
211 
212 	ASSERT(zap->zap_normflags == 0);
213 	zn->zn_zap = zap;
214 	zn->zn_key_intlen = sizeof (*key);
215 	zn->zn_key_orig = zn->zn_key_norm = key;
216 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
217 	zn->zn_matchtype = MT_EXACT;
218 
219 	zn->zn_hash = zap_hash(zn);
220 	return (zn);
221 }
222 
223 static void
224 mzap_byteswap(mzap_phys_t *buf, size_t size)
225 {
226 	int i, max;
227 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
228 	buf->mz_salt = BSWAP_64(buf->mz_salt);
229 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
230 	max = (size / MZAP_ENT_LEN) - 1;
231 	for (i = 0; i < max; i++) {
232 		buf->mz_chunk[i].mze_value =
233 		    BSWAP_64(buf->mz_chunk[i].mze_value);
234 		buf->mz_chunk[i].mze_cd =
235 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
236 	}
237 }
238 
239 void
240 zap_byteswap(void *buf, size_t size)
241 {
242 	uint64_t block_type;
243 
244 	block_type = *(uint64_t *)buf;
245 
246 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
247 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
248 		mzap_byteswap(buf, size);
249 	} else {
250 		fzap_byteswap(buf, size);
251 	}
252 }
253 
254 static int
255 mze_compare(const void *arg1, const void *arg2)
256 {
257 	const mzap_ent_t *mze1 = arg1;
258 	const mzap_ent_t *mze2 = arg2;
259 
260 	if (mze1->mze_hash > mze2->mze_hash)
261 		return (+1);
262 	if (mze1->mze_hash < mze2->mze_hash)
263 		return (-1);
264 	if (mze1->mze_cd > mze2->mze_cd)
265 		return (+1);
266 	if (mze1->mze_cd < mze2->mze_cd)
267 		return (-1);
268 	return (0);
269 }
270 
271 static void
272 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
273 {
274 	mzap_ent_t *mze;
275 
276 	ASSERT(zap->zap_ismicro);
277 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
278 
279 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
280 	mze->mze_chunkid = chunkid;
281 	mze->mze_hash = hash;
282 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
283 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
284 	avl_add(&zap->zap_m.zap_avl, mze);
285 }
286 
287 static mzap_ent_t *
288 mze_find(zap_name_t *zn)
289 {
290 	mzap_ent_t mze_tofind;
291 	mzap_ent_t *mze;
292 	avl_index_t idx;
293 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
294 
295 	ASSERT(zn->zn_zap->zap_ismicro);
296 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
297 
298 	mze_tofind.mze_hash = zn->zn_hash;
299 	mze_tofind.mze_cd = 0;
300 
301 again:
302 	mze = avl_find(avl, &mze_tofind, &idx);
303 	if (mze == NULL)
304 		mze = avl_nearest(avl, idx, AVL_AFTER);
305 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
306 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
307 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
308 			return (mze);
309 	}
310 	if (zn->zn_matchtype == MT_BEST) {
311 		zn->zn_matchtype = MT_FIRST;
312 		goto again;
313 	}
314 	return (NULL);
315 }
316 
317 static uint32_t
318 mze_find_unused_cd(zap_t *zap, uint64_t hash)
319 {
320 	mzap_ent_t mze_tofind;
321 	mzap_ent_t *mze;
322 	avl_index_t idx;
323 	avl_tree_t *avl = &zap->zap_m.zap_avl;
324 	uint32_t cd;
325 
326 	ASSERT(zap->zap_ismicro);
327 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
328 
329 	mze_tofind.mze_hash = hash;
330 	mze_tofind.mze_cd = 0;
331 
332 	cd = 0;
333 	for (mze = avl_find(avl, &mze_tofind, &idx);
334 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
335 		if (mze->mze_cd != cd)
336 			break;
337 		cd++;
338 	}
339 
340 	return (cd);
341 }
342 
343 static void
344 mze_remove(zap_t *zap, mzap_ent_t *mze)
345 {
346 	ASSERT(zap->zap_ismicro);
347 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
348 
349 	avl_remove(&zap->zap_m.zap_avl, mze);
350 	kmem_free(mze, sizeof (mzap_ent_t));
351 }
352 
353 static void
354 mze_destroy(zap_t *zap)
355 {
356 	mzap_ent_t *mze;
357 	void *avlcookie = NULL;
358 
359 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
360 		kmem_free(mze, sizeof (mzap_ent_t));
361 	avl_destroy(&zap->zap_m.zap_avl);
362 }
363 
364 static zap_t *
365 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
366 {
367 	zap_t *winner;
368 	zap_t *zap;
369 	int i;
370 
371 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
372 
373 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
374 	rw_init(&zap->zap_rwlock, 0, 0, 0);
375 	rw_enter(&zap->zap_rwlock, RW_WRITER);
376 	zap->zap_objset = os;
377 	zap->zap_object = obj;
378 	zap->zap_dbuf = db;
379 
380 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
381 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
382 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
383 	} else {
384 		zap->zap_ismicro = TRUE;
385 	}
386 
387 	/*
388 	 * Make sure that zap_ismicro is set before we let others see
389 	 * it, because zap_lockdir() checks zap_ismicro without the lock
390 	 * held.
391 	 */
392 	dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
393 	winner = dmu_buf_set_user(db, &zap->zap_dbu);
394 
395 	if (winner != NULL) {
396 		rw_exit(&zap->zap_rwlock);
397 		rw_destroy(&zap->zap_rwlock);
398 		if (!zap->zap_ismicro)
399 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
400 		kmem_free(zap, sizeof (zap_t));
401 		return (winner);
402 	}
403 
404 	if (zap->zap_ismicro) {
405 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
406 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
407 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
408 		avl_create(&zap->zap_m.zap_avl, mze_compare,
409 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
410 
411 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
412 			mzap_ent_phys_t *mze =
413 			    &zap_m_phys(zap)->mz_chunk[i];
414 			if (mze->mze_name[0]) {
415 				zap_name_t *zn;
416 
417 				zap->zap_m.zap_num_entries++;
418 				zn = zap_name_alloc(zap, mze->mze_name,
419 				    MT_EXACT);
420 				mze_insert(zap, i, zn->zn_hash);
421 				zap_name_free(zn);
422 			}
423 		}
424 	} else {
425 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
426 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
427 
428 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
429 		    2*ZAP_LEAF_CHUNKSIZE);
430 
431 		/*
432 		 * The embedded pointer table should not overlap the
433 		 * other members.
434 		 */
435 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
436 		    &zap_f_phys(zap)->zap_salt);
437 
438 		/*
439 		 * The embedded pointer table should end at the end of
440 		 * the block
441 		 */
442 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
443 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
444 		    (uintptr_t)zap_f_phys(zap), ==,
445 		    zap->zap_dbuf->db_size);
446 	}
447 	rw_exit(&zap->zap_rwlock);
448 	return (zap);
449 }
450 
451 int
452 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
453     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
454 {
455 	zap_t *zap;
456 	dmu_buf_t *db;
457 	krw_t lt;
458 	int err;
459 
460 	*zapp = NULL;
461 
462 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
463 	if (err)
464 		return (err);
465 
466 #ifdef ZFS_DEBUG
467 	{
468 		dmu_object_info_t doi;
469 		dmu_object_info_from_db(db, &doi);
470 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
471 	}
472 #endif
473 
474 	zap = dmu_buf_get_user(db);
475 	if (zap == NULL)
476 		zap = mzap_open(os, obj, db);
477 
478 	/*
479 	 * We're checking zap_ismicro without the lock held, in order to
480 	 * tell what type of lock we want.  Once we have some sort of
481 	 * lock, see if it really is the right type.  In practice this
482 	 * can only be different if it was upgraded from micro to fat,
483 	 * and micro wanted WRITER but fat only needs READER.
484 	 */
485 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
486 	rw_enter(&zap->zap_rwlock, lt);
487 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
488 		/* it was upgraded, now we only need reader */
489 		ASSERT(lt == RW_WRITER);
490 		ASSERT(RW_READER ==
491 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
492 		rw_downgrade(&zap->zap_rwlock);
493 		lt = RW_READER;
494 	}
495 
496 	zap->zap_objset = os;
497 
498 	if (lt == RW_WRITER)
499 		dmu_buf_will_dirty(db, tx);
500 
501 	ASSERT3P(zap->zap_dbuf, ==, db);
502 
503 	ASSERT(!zap->zap_ismicro ||
504 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
505 	if (zap->zap_ismicro && tx && adding &&
506 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
507 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
508 		if (newsz > MZAP_MAX_BLKSZ) {
509 			dprintf("upgrading obj %llu: num_entries=%u\n",
510 			    obj, zap->zap_m.zap_num_entries);
511 			*zapp = zap;
512 			return (mzap_upgrade(zapp, tx, 0));
513 		}
514 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
515 		ASSERT0(err);
516 		zap->zap_m.zap_num_chunks =
517 		    db->db_size / MZAP_ENT_LEN - 1;
518 	}
519 
520 	*zapp = zap;
521 	return (0);
522 }
523 
524 void
525 zap_unlockdir(zap_t *zap)
526 {
527 	rw_exit(&zap->zap_rwlock);
528 	dmu_buf_rele(zap->zap_dbuf, NULL);
529 }
530 
531 static int
532 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
533 {
534 	mzap_phys_t *mzp;
535 	int i, sz, nchunks;
536 	int err = 0;
537 	zap_t *zap = *zapp;
538 
539 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
540 
541 	sz = zap->zap_dbuf->db_size;
542 	mzp = zio_buf_alloc(sz);
543 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
544 	nchunks = zap->zap_m.zap_num_chunks;
545 
546 	if (!flags) {
547 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
548 		    1ULL << fzap_default_block_shift, 0, tx);
549 		if (err) {
550 			zio_buf_free(mzp, sz);
551 			return (err);
552 		}
553 	}
554 
555 	dprintf("upgrading obj=%llu with %u chunks\n",
556 	    zap->zap_object, nchunks);
557 	/* XXX destroy the avl later, so we can use the stored hash value */
558 	mze_destroy(zap);
559 
560 	fzap_upgrade(zap, tx, flags);
561 
562 	for (i = 0; i < nchunks; i++) {
563 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
564 		zap_name_t *zn;
565 		if (mze->mze_name[0] == 0)
566 			continue;
567 		dprintf("adding %s=%llu\n",
568 		    mze->mze_name, mze->mze_value);
569 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
570 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
571 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
572 		zap_name_free(zn);
573 		if (err)
574 			break;
575 	}
576 	zio_buf_free(mzp, sz);
577 	*zapp = zap;
578 	return (err);
579 }
580 
581 void
582 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
583     dmu_tx_t *tx)
584 {
585 	dmu_buf_t *db;
586 	mzap_phys_t *zp;
587 
588 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
589 
590 #ifdef ZFS_DEBUG
591 	{
592 		dmu_object_info_t doi;
593 		dmu_object_info_from_db(db, &doi);
594 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
595 	}
596 #endif
597 
598 	dmu_buf_will_dirty(db, tx);
599 	zp = db->db_data;
600 	zp->mz_block_type = ZBT_MICRO;
601 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
602 	zp->mz_normflags = normflags;
603 	dmu_buf_rele(db, FTAG);
604 
605 	if (flags != 0) {
606 		zap_t *zap;
607 		/* Only fat zap supports flags; upgrade immediately. */
608 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
609 		    B_FALSE, B_FALSE, &zap));
610 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
611 		zap_unlockdir(zap);
612 	}
613 }
614 
615 int
616 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
617     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
618 {
619 	return (zap_create_claim_norm(os, obj,
620 	    0, ot, bonustype, bonuslen, tx));
621 }
622 
623 int
624 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
625     dmu_object_type_t ot,
626     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
627 {
628 	int err;
629 
630 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
631 	if (err != 0)
632 		return (err);
633 	mzap_create_impl(os, obj, normflags, 0, tx);
634 	return (0);
635 }
636 
637 uint64_t
638 zap_create(objset_t *os, dmu_object_type_t ot,
639     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
640 {
641 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
642 }
643 
644 uint64_t
645 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
646     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
647 {
648 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
649 
650 	mzap_create_impl(os, obj, normflags, 0, tx);
651 	return (obj);
652 }
653 
654 uint64_t
655 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
656     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
657     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
658 {
659 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
660 
661 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
662 	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
663 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
664 	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
665 
666 	VERIFY(dmu_object_set_blocksize(os, obj,
667 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
668 
669 	mzap_create_impl(os, obj, normflags, flags, tx);
670 	return (obj);
671 }
672 
673 int
674 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
675 {
676 	/*
677 	 * dmu_object_free will free the object number and free the
678 	 * data.  Freeing the data will cause our pageout function to be
679 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
680 	 */
681 
682 	return (dmu_object_free(os, zapobj, tx));
683 }
684 
685 void
686 zap_evict(void *dbu)
687 {
688 	zap_t *zap = dbu;
689 
690 	rw_destroy(&zap->zap_rwlock);
691 
692 	if (zap->zap_ismicro)
693 		mze_destroy(zap);
694 	else
695 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
696 
697 	kmem_free(zap, sizeof (zap_t));
698 }
699 
700 int
701 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
702 {
703 	zap_t *zap;
704 	int err;
705 
706 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
707 	if (err)
708 		return (err);
709 	if (!zap->zap_ismicro) {
710 		err = fzap_count(zap, count);
711 	} else {
712 		*count = zap->zap_m.zap_num_entries;
713 	}
714 	zap_unlockdir(zap);
715 	return (err);
716 }
717 
718 /*
719  * zn may be NULL; if not specified, it will be computed if needed.
720  * See also the comment above zap_entry_normalization_conflict().
721  */
722 static boolean_t
723 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
724 {
725 	mzap_ent_t *other;
726 	int direction = AVL_BEFORE;
727 	boolean_t allocdzn = B_FALSE;
728 
729 	if (zap->zap_normflags == 0)
730 		return (B_FALSE);
731 
732 again:
733 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
734 	    other && other->mze_hash == mze->mze_hash;
735 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
736 
737 		if (zn == NULL) {
738 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
739 			    MT_FIRST);
740 			allocdzn = B_TRUE;
741 		}
742 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
743 			if (allocdzn)
744 				zap_name_free(zn);
745 			return (B_TRUE);
746 		}
747 	}
748 
749 	if (direction == AVL_BEFORE) {
750 		direction = AVL_AFTER;
751 		goto again;
752 	}
753 
754 	if (allocdzn)
755 		zap_name_free(zn);
756 	return (B_FALSE);
757 }
758 
759 /*
760  * Routines for manipulating attributes.
761  */
762 
763 int
764 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
765     uint64_t integer_size, uint64_t num_integers, void *buf)
766 {
767 	return (zap_lookup_norm(os, zapobj, name, integer_size,
768 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
769 }
770 
771 int
772 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
773     uint64_t integer_size, uint64_t num_integers, void *buf,
774     matchtype_t mt, char *realname, int rn_len,
775     boolean_t *ncp)
776 {
777 	zap_t *zap;
778 	int err;
779 	mzap_ent_t *mze;
780 	zap_name_t *zn;
781 
782 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
783 	if (err)
784 		return (err);
785 	zn = zap_name_alloc(zap, name, mt);
786 	if (zn == NULL) {
787 		zap_unlockdir(zap);
788 		return (SET_ERROR(ENOTSUP));
789 	}
790 
791 	if (!zap->zap_ismicro) {
792 		err = fzap_lookup(zn, integer_size, num_integers, buf,
793 		    realname, rn_len, ncp);
794 	} else {
795 		mze = mze_find(zn);
796 		if (mze == NULL) {
797 			err = SET_ERROR(ENOENT);
798 		} else {
799 			if (num_integers < 1) {
800 				err = SET_ERROR(EOVERFLOW);
801 			} else if (integer_size != 8) {
802 				err = SET_ERROR(EINVAL);
803 			} else {
804 				*(uint64_t *)buf =
805 				    MZE_PHYS(zap, mze)->mze_value;
806 				(void) strlcpy(realname,
807 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
808 				if (ncp) {
809 					*ncp = mzap_normalization_conflict(zap,
810 					    zn, mze);
811 				}
812 			}
813 		}
814 	}
815 	zap_name_free(zn);
816 	zap_unlockdir(zap);
817 	return (err);
818 }
819 
820 int
821 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
822     int key_numints)
823 {
824 	zap_t *zap;
825 	int err;
826 	zap_name_t *zn;
827 
828 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
829 	if (err)
830 		return (err);
831 	zn = zap_name_alloc_uint64(zap, key, key_numints);
832 	if (zn == NULL) {
833 		zap_unlockdir(zap);
834 		return (SET_ERROR(ENOTSUP));
835 	}
836 
837 	fzap_prefetch(zn);
838 	zap_name_free(zn);
839 	zap_unlockdir(zap);
840 	return (err);
841 }
842 
843 int
844 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
845     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
846 {
847 	zap_t *zap;
848 	int err;
849 	zap_name_t *zn;
850 
851 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
852 	if (err)
853 		return (err);
854 	zn = zap_name_alloc_uint64(zap, key, key_numints);
855 	if (zn == NULL) {
856 		zap_unlockdir(zap);
857 		return (SET_ERROR(ENOTSUP));
858 	}
859 
860 	err = fzap_lookup(zn, integer_size, num_integers, buf,
861 	    NULL, 0, NULL);
862 	zap_name_free(zn);
863 	zap_unlockdir(zap);
864 	return (err);
865 }
866 
867 int
868 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
869 {
870 	int err = zap_lookup_norm(os, zapobj, name, 0,
871 	    0, NULL, MT_EXACT, NULL, 0, NULL);
872 	if (err == EOVERFLOW || err == EINVAL)
873 		err = 0; /* found, but skipped reading the value */
874 	return (err);
875 }
876 
877 int
878 zap_length(objset_t *os, uint64_t zapobj, const char *name,
879     uint64_t *integer_size, uint64_t *num_integers)
880 {
881 	zap_t *zap;
882 	int err;
883 	mzap_ent_t *mze;
884 	zap_name_t *zn;
885 
886 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
887 	if (err)
888 		return (err);
889 	zn = zap_name_alloc(zap, name, MT_EXACT);
890 	if (zn == NULL) {
891 		zap_unlockdir(zap);
892 		return (SET_ERROR(ENOTSUP));
893 	}
894 	if (!zap->zap_ismicro) {
895 		err = fzap_length(zn, integer_size, num_integers);
896 	} else {
897 		mze = mze_find(zn);
898 		if (mze == NULL) {
899 			err = SET_ERROR(ENOENT);
900 		} else {
901 			if (integer_size)
902 				*integer_size = 8;
903 			if (num_integers)
904 				*num_integers = 1;
905 		}
906 	}
907 	zap_name_free(zn);
908 	zap_unlockdir(zap);
909 	return (err);
910 }
911 
912 int
913 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
914     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
915 {
916 	zap_t *zap;
917 	int err;
918 	zap_name_t *zn;
919 
920 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
921 	if (err)
922 		return (err);
923 	zn = zap_name_alloc_uint64(zap, key, key_numints);
924 	if (zn == NULL) {
925 		zap_unlockdir(zap);
926 		return (SET_ERROR(ENOTSUP));
927 	}
928 	err = fzap_length(zn, integer_size, num_integers);
929 	zap_name_free(zn);
930 	zap_unlockdir(zap);
931 	return (err);
932 }
933 
934 static void
935 mzap_addent(zap_name_t *zn, uint64_t value)
936 {
937 	int i;
938 	zap_t *zap = zn->zn_zap;
939 	int start = zap->zap_m.zap_alloc_next;
940 	uint32_t cd;
941 
942 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
943 
944 #ifdef ZFS_DEBUG
945 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
946 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
947 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
948 	}
949 #endif
950 
951 	cd = mze_find_unused_cd(zap, zn->zn_hash);
952 	/* given the limited size of the microzap, this can't happen */
953 	ASSERT(cd < zap_maxcd(zap));
954 
955 again:
956 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
957 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
958 		if (mze->mze_name[0] == 0) {
959 			mze->mze_value = value;
960 			mze->mze_cd = cd;
961 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
962 			zap->zap_m.zap_num_entries++;
963 			zap->zap_m.zap_alloc_next = i+1;
964 			if (zap->zap_m.zap_alloc_next ==
965 			    zap->zap_m.zap_num_chunks)
966 				zap->zap_m.zap_alloc_next = 0;
967 			mze_insert(zap, i, zn->zn_hash);
968 			return;
969 		}
970 	}
971 	if (start != 0) {
972 		start = 0;
973 		goto again;
974 	}
975 	ASSERT(!"out of entries!");
976 }
977 
978 int
979 zap_add(objset_t *os, uint64_t zapobj, const char *key,
980     int integer_size, uint64_t num_integers,
981     const void *val, dmu_tx_t *tx)
982 {
983 	zap_t *zap;
984 	int err;
985 	mzap_ent_t *mze;
986 	const uint64_t *intval = val;
987 	zap_name_t *zn;
988 
989 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
990 	if (err)
991 		return (err);
992 	zn = zap_name_alloc(zap, key, MT_EXACT);
993 	if (zn == NULL) {
994 		zap_unlockdir(zap);
995 		return (SET_ERROR(ENOTSUP));
996 	}
997 	if (!zap->zap_ismicro) {
998 		err = fzap_add(zn, integer_size, num_integers, val, tx);
999 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1000 	} else if (integer_size != 8 || num_integers != 1 ||
1001 	    strlen(key) >= MZAP_NAME_LEN) {
1002 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1003 		if (err == 0)
1004 			err = fzap_add(zn, integer_size, num_integers, val, tx);
1005 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1006 	} else {
1007 		mze = mze_find(zn);
1008 		if (mze != NULL) {
1009 			err = SET_ERROR(EEXIST);
1010 		} else {
1011 			mzap_addent(zn, *intval);
1012 		}
1013 	}
1014 	ASSERT(zap == zn->zn_zap);
1015 	zap_name_free(zn);
1016 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1017 		zap_unlockdir(zap);
1018 	return (err);
1019 }
1020 
1021 int
1022 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1023     int key_numints, int integer_size, uint64_t num_integers,
1024     const void *val, dmu_tx_t *tx)
1025 {
1026 	zap_t *zap;
1027 	int err;
1028 	zap_name_t *zn;
1029 
1030 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1031 	if (err)
1032 		return (err);
1033 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1034 	if (zn == NULL) {
1035 		zap_unlockdir(zap);
1036 		return (SET_ERROR(ENOTSUP));
1037 	}
1038 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1039 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1040 	zap_name_free(zn);
1041 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1042 		zap_unlockdir(zap);
1043 	return (err);
1044 }
1045 
1046 int
1047 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1048     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1049 {
1050 	zap_t *zap;
1051 	mzap_ent_t *mze;
1052 	uint64_t oldval;
1053 	const uint64_t *intval = val;
1054 	zap_name_t *zn;
1055 	int err;
1056 
1057 #ifdef ZFS_DEBUG
1058 	/*
1059 	 * If there is an old value, it shouldn't change across the
1060 	 * lockdir (eg, due to bprewrite's xlation).
1061 	 */
1062 	if (integer_size == 8 && num_integers == 1)
1063 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1064 #endif
1065 
1066 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1067 	if (err)
1068 		return (err);
1069 	zn = zap_name_alloc(zap, name, MT_EXACT);
1070 	if (zn == NULL) {
1071 		zap_unlockdir(zap);
1072 		return (SET_ERROR(ENOTSUP));
1073 	}
1074 	if (!zap->zap_ismicro) {
1075 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1076 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1077 	} else if (integer_size != 8 || num_integers != 1 ||
1078 	    strlen(name) >= MZAP_NAME_LEN) {
1079 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1080 		    zapobj, integer_size, num_integers, name);
1081 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1082 		if (err == 0)
1083 			err = fzap_update(zn, integer_size, num_integers,
1084 			    val, tx);
1085 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1086 	} else {
1087 		mze = mze_find(zn);
1088 		if (mze != NULL) {
1089 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1090 			MZE_PHYS(zap, mze)->mze_value = *intval;
1091 		} else {
1092 			mzap_addent(zn, *intval);
1093 		}
1094 	}
1095 	ASSERT(zap == zn->zn_zap);
1096 	zap_name_free(zn);
1097 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1098 		zap_unlockdir(zap);
1099 	return (err);
1100 }
1101 
1102 int
1103 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1104     int key_numints,
1105     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1106 {
1107 	zap_t *zap;
1108 	zap_name_t *zn;
1109 	int err;
1110 
1111 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1112 	if (err)
1113 		return (err);
1114 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1115 	if (zn == NULL) {
1116 		zap_unlockdir(zap);
1117 		return (SET_ERROR(ENOTSUP));
1118 	}
1119 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1120 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1121 	zap_name_free(zn);
1122 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1123 		zap_unlockdir(zap);
1124 	return (err);
1125 }
1126 
1127 int
1128 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1129 {
1130 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1131 }
1132 
1133 int
1134 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1135     matchtype_t mt, dmu_tx_t *tx)
1136 {
1137 	zap_t *zap;
1138 	int err;
1139 	mzap_ent_t *mze;
1140 	zap_name_t *zn;
1141 
1142 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1143 	if (err)
1144 		return (err);
1145 	zn = zap_name_alloc(zap, name, mt);
1146 	if (zn == NULL) {
1147 		zap_unlockdir(zap);
1148 		return (SET_ERROR(ENOTSUP));
1149 	}
1150 	if (!zap->zap_ismicro) {
1151 		err = fzap_remove(zn, tx);
1152 	} else {
1153 		mze = mze_find(zn);
1154 		if (mze == NULL) {
1155 			err = SET_ERROR(ENOENT);
1156 		} else {
1157 			zap->zap_m.zap_num_entries--;
1158 			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1159 			    sizeof (mzap_ent_phys_t));
1160 			mze_remove(zap, mze);
1161 		}
1162 	}
1163 	zap_name_free(zn);
1164 	zap_unlockdir(zap);
1165 	return (err);
1166 }
1167 
1168 int
1169 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1170     int key_numints, dmu_tx_t *tx)
1171 {
1172 	zap_t *zap;
1173 	int err;
1174 	zap_name_t *zn;
1175 
1176 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1177 	if (err)
1178 		return (err);
1179 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1180 	if (zn == NULL) {
1181 		zap_unlockdir(zap);
1182 		return (SET_ERROR(ENOTSUP));
1183 	}
1184 	err = fzap_remove(zn, tx);
1185 	zap_name_free(zn);
1186 	zap_unlockdir(zap);
1187 	return (err);
1188 }
1189 
1190 /*
1191  * Routines for iterating over the attributes.
1192  */
1193 
1194 void
1195 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1196     uint64_t serialized)
1197 {
1198 	zc->zc_objset = os;
1199 	zc->zc_zap = NULL;
1200 	zc->zc_leaf = NULL;
1201 	zc->zc_zapobj = zapobj;
1202 	zc->zc_serialized = serialized;
1203 	zc->zc_hash = 0;
1204 	zc->zc_cd = 0;
1205 }
1206 
1207 void
1208 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1209 {
1210 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1211 }
1212 
1213 void
1214 zap_cursor_fini(zap_cursor_t *zc)
1215 {
1216 	if (zc->zc_zap) {
1217 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1218 		zap_unlockdir(zc->zc_zap);
1219 		zc->zc_zap = NULL;
1220 	}
1221 	if (zc->zc_leaf) {
1222 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1223 		zap_put_leaf(zc->zc_leaf);
1224 		zc->zc_leaf = NULL;
1225 	}
1226 	zc->zc_objset = NULL;
1227 }
1228 
1229 uint64_t
1230 zap_cursor_serialize(zap_cursor_t *zc)
1231 {
1232 	if (zc->zc_hash == -1ULL)
1233 		return (-1ULL);
1234 	if (zc->zc_zap == NULL)
1235 		return (zc->zc_serialized);
1236 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1237 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1238 
1239 	/*
1240 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1241 	 * that 32-bit programs can access this.  So usually use a small
1242 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1243 	 * of the cursor.
1244 	 *
1245 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1246 	 */
1247 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1248 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1249 }
1250 
1251 int
1252 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1253 {
1254 	int err;
1255 	avl_index_t idx;
1256 	mzap_ent_t mze_tofind;
1257 	mzap_ent_t *mze;
1258 
1259 	if (zc->zc_hash == -1ULL)
1260 		return (SET_ERROR(ENOENT));
1261 
1262 	if (zc->zc_zap == NULL) {
1263 		int hb;
1264 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1265 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1266 		if (err)
1267 			return (err);
1268 
1269 		/*
1270 		 * To support zap_cursor_init_serialized, advance, retrieve,
1271 		 * we must add to the existing zc_cd, which may already
1272 		 * be 1 due to the zap_cursor_advance.
1273 		 */
1274 		ASSERT(zc->zc_hash == 0);
1275 		hb = zap_hashbits(zc->zc_zap);
1276 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1277 		zc->zc_cd += zc->zc_serialized >> hb;
1278 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1279 			zc->zc_cd = 0;
1280 	} else {
1281 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1282 	}
1283 	if (!zc->zc_zap->zap_ismicro) {
1284 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1285 	} else {
1286 		mze_tofind.mze_hash = zc->zc_hash;
1287 		mze_tofind.mze_cd = zc->zc_cd;
1288 
1289 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1290 		if (mze == NULL) {
1291 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1292 			    idx, AVL_AFTER);
1293 		}
1294 		if (mze) {
1295 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1296 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1297 			za->za_normalization_conflict =
1298 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1299 			za->za_integer_length = 8;
1300 			za->za_num_integers = 1;
1301 			za->za_first_integer = mzep->mze_value;
1302 			(void) strcpy(za->za_name, mzep->mze_name);
1303 			zc->zc_hash = mze->mze_hash;
1304 			zc->zc_cd = mze->mze_cd;
1305 			err = 0;
1306 		} else {
1307 			zc->zc_hash = -1ULL;
1308 			err = SET_ERROR(ENOENT);
1309 		}
1310 	}
1311 	rw_exit(&zc->zc_zap->zap_rwlock);
1312 	return (err);
1313 }
1314 
1315 void
1316 zap_cursor_advance(zap_cursor_t *zc)
1317 {
1318 	if (zc->zc_hash == -1ULL)
1319 		return;
1320 	zc->zc_cd++;
1321 }
1322 
1323 int
1324 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1325 {
1326 	int err;
1327 	zap_t *zap;
1328 
1329 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1330 	if (err)
1331 		return (err);
1332 
1333 	bzero(zs, sizeof (zap_stats_t));
1334 
1335 	if (zap->zap_ismicro) {
1336 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1337 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1338 		zs->zs_num_blocks = 1;
1339 	} else {
1340 		fzap_get_stats(zap, zs);
1341 	}
1342 	zap_unlockdir(zap);
1343 	return (0);
1344 }
1345 
1346 int
1347 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1348     uint64_t *towrite, uint64_t *tooverwrite)
1349 {
1350 	zap_t *zap;
1351 	int err = 0;
1352 
1353 	/*
1354 	 * Since, we don't have a name, we cannot figure out which blocks will
1355 	 * be affected in this operation. So, account for the worst case :
1356 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1357 	 * - 4 new blocks written if adding:
1358 	 * 	- 2 blocks for possibly split leaves,
1359 	 * 	- 2 grown ptrtbl blocks
1360 	 *
1361 	 * This also accomodates the case where an add operation to a fairly
1362 	 * large microzap results in a promotion to fatzap.
1363 	 */
1364 	if (name == NULL) {
1365 		*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1366 		return (err);
1367 	}
1368 
1369 	/*
1370 	 * We lock the zap with adding == FALSE. Because, if we pass
1371 	 * the actual value of add, it could trigger a mzap_upgrade().
1372 	 * At present we are just evaluating the possibility of this operation
1373 	 * and hence we donot want to trigger an upgrade.
1374 	 */
1375 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1376 	if (err)
1377 		return (err);
1378 
1379 	if (!zap->zap_ismicro) {
1380 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1381 		if (zn) {
1382 			err = fzap_count_write(zn, add, towrite,
1383 			    tooverwrite);
1384 			zap_name_free(zn);
1385 		} else {
1386 			/*
1387 			 * We treat this case as similar to (name == NULL)
1388 			 */
1389 			*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1390 		}
1391 	} else {
1392 		/*
1393 		 * We are here if (name != NULL) and this is a micro-zap.
1394 		 * We account for the header block depending on whether it
1395 		 * is freeable.
1396 		 *
1397 		 * Incase of an add-operation it is hard to find out
1398 		 * if this add will promote this microzap to fatzap.
1399 		 * Hence, we consider the worst case and account for the
1400 		 * blocks assuming this microzap would be promoted to a
1401 		 * fatzap.
1402 		 *
1403 		 * 1 block overwritten  : header block
1404 		 * 4 new blocks written : 2 new split leaf, 2 grown
1405 		 *			ptrtbl blocks
1406 		 */
1407 		if (dmu_buf_freeable(zap->zap_dbuf))
1408 			*tooverwrite += MZAP_MAX_BLKSZ;
1409 		else
1410 			*towrite += MZAP_MAX_BLKSZ;
1411 
1412 		if (add) {
1413 			*towrite += 4 * MZAP_MAX_BLKSZ;
1414 		}
1415 	}
1416 
1417 	zap_unlockdir(zap);
1418 	return (err);
1419 }
1420