xref: /illumos-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision c1379625401dfbe1c39b79136dd384a571d47fde)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zio.h>
27 #include <sys/spa.h>
28 #include <sys/dmu.h>
29 #include <sys/zfs_context.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/zap_impl.h>
33 #include <sys/zap_leaf.h>
34 #include <sys/avl.h>
35 #include <sys/arc.h>
36 #include <sys/dmu_objset.h>
37 
38 #ifdef _KERNEL
39 #include <sys/sunddi.h>
40 #endif
41 
42 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
43 
44 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
45 
46 uint64_t
47 zap_getflags(zap_t *zap)
48 {
49 	if (zap->zap_ismicro)
50 		return (0);
51 	return (zap_f_phys(zap)->zap_flags);
52 }
53 
54 int
55 zap_hashbits(zap_t *zap)
56 {
57 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
58 		return (48);
59 	else
60 		return (28);
61 }
62 
63 uint32_t
64 zap_maxcd(zap_t *zap)
65 {
66 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
67 		return ((1<<16)-1);
68 	else
69 		return (-1U);
70 }
71 
72 static uint64_t
73 zap_hash(zap_name_t *zn)
74 {
75 	zap_t *zap = zn->zn_zap;
76 	uint64_t h = 0;
77 
78 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
79 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
80 		h = *(uint64_t *)zn->zn_key_orig;
81 	} else {
82 		h = zap->zap_salt;
83 		ASSERT(h != 0);
84 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
85 
86 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
87 			int i;
88 			const uint64_t *wp = zn->zn_key_norm;
89 
90 			ASSERT(zn->zn_key_intlen == 8);
91 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
92 				int j;
93 				uint64_t word = *wp;
94 
95 				for (j = 0; j < zn->zn_key_intlen; j++) {
96 					h = (h >> 8) ^
97 					    zfs_crc64_table[(h ^ word) & 0xFF];
98 					word >>= NBBY;
99 				}
100 			}
101 		} else {
102 			int i, len;
103 			const uint8_t *cp = zn->zn_key_norm;
104 
105 			/*
106 			 * We previously stored the terminating null on
107 			 * disk, but didn't hash it, so we need to
108 			 * continue to not hash it.  (The
109 			 * zn_key_*_numints includes the terminating
110 			 * null for non-binary keys.)
111 			 */
112 			len = zn->zn_key_norm_numints - 1;
113 
114 			ASSERT(zn->zn_key_intlen == 1);
115 			for (i = 0; i < len; cp++, i++) {
116 				h = (h >> 8) ^
117 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
118 			}
119 		}
120 	}
121 	/*
122 	 * Don't use all 64 bits, since we need some in the cookie for
123 	 * the collision differentiator.  We MUST use the high bits,
124 	 * since those are the ones that we first pay attention to when
125 	 * chosing the bucket.
126 	 */
127 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
128 
129 	return (h);
130 }
131 
132 static int
133 zap_normalize(zap_t *zap, const char *name, char *namenorm)
134 {
135 	size_t inlen, outlen;
136 	int err;
137 
138 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
139 
140 	inlen = strlen(name) + 1;
141 	outlen = ZAP_MAXNAMELEN;
142 
143 	err = 0;
144 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
145 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
146 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
147 
148 	return (err);
149 }
150 
151 boolean_t
152 zap_match(zap_name_t *zn, const char *matchname)
153 {
154 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
155 
156 	if (zn->zn_matchtype == MT_FIRST) {
157 		char norm[ZAP_MAXNAMELEN];
158 
159 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
160 			return (B_FALSE);
161 
162 		return (strcmp(zn->zn_key_norm, norm) == 0);
163 	} else {
164 		/* MT_BEST or MT_EXACT */
165 		return (strcmp(zn->zn_key_orig, matchname) == 0);
166 	}
167 }
168 
169 void
170 zap_name_free(zap_name_t *zn)
171 {
172 	kmem_free(zn, sizeof (zap_name_t));
173 }
174 
175 zap_name_t *
176 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
177 {
178 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
179 
180 	zn->zn_zap = zap;
181 	zn->zn_key_intlen = sizeof (*key);
182 	zn->zn_key_orig = key;
183 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
184 	zn->zn_matchtype = mt;
185 	if (zap->zap_normflags) {
186 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
187 			zap_name_free(zn);
188 			return (NULL);
189 		}
190 		zn->zn_key_norm = zn->zn_normbuf;
191 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
192 	} else {
193 		if (mt != MT_EXACT) {
194 			zap_name_free(zn);
195 			return (NULL);
196 		}
197 		zn->zn_key_norm = zn->zn_key_orig;
198 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
199 	}
200 
201 	zn->zn_hash = zap_hash(zn);
202 	return (zn);
203 }
204 
205 zap_name_t *
206 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
207 {
208 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
209 
210 	ASSERT(zap->zap_normflags == 0);
211 	zn->zn_zap = zap;
212 	zn->zn_key_intlen = sizeof (*key);
213 	zn->zn_key_orig = zn->zn_key_norm = key;
214 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
215 	zn->zn_matchtype = MT_EXACT;
216 
217 	zn->zn_hash = zap_hash(zn);
218 	return (zn);
219 }
220 
221 static void
222 mzap_byteswap(mzap_phys_t *buf, size_t size)
223 {
224 	int i, max;
225 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
226 	buf->mz_salt = BSWAP_64(buf->mz_salt);
227 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
228 	max = (size / MZAP_ENT_LEN) - 1;
229 	for (i = 0; i < max; i++) {
230 		buf->mz_chunk[i].mze_value =
231 		    BSWAP_64(buf->mz_chunk[i].mze_value);
232 		buf->mz_chunk[i].mze_cd =
233 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
234 	}
235 }
236 
237 void
238 zap_byteswap(void *buf, size_t size)
239 {
240 	uint64_t block_type;
241 
242 	block_type = *(uint64_t *)buf;
243 
244 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
245 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
246 		mzap_byteswap(buf, size);
247 	} else {
248 		fzap_byteswap(buf, size);
249 	}
250 }
251 
252 static int
253 mze_compare(const void *arg1, const void *arg2)
254 {
255 	const mzap_ent_t *mze1 = arg1;
256 	const mzap_ent_t *mze2 = arg2;
257 
258 	if (mze1->mze_hash > mze2->mze_hash)
259 		return (+1);
260 	if (mze1->mze_hash < mze2->mze_hash)
261 		return (-1);
262 	if (mze1->mze_cd > mze2->mze_cd)
263 		return (+1);
264 	if (mze1->mze_cd < mze2->mze_cd)
265 		return (-1);
266 	return (0);
267 }
268 
269 static void
270 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
271 {
272 	mzap_ent_t *mze;
273 
274 	ASSERT(zap->zap_ismicro);
275 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
276 
277 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
278 	mze->mze_chunkid = chunkid;
279 	mze->mze_hash = hash;
280 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
281 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
282 	avl_add(&zap->zap_m.zap_avl, mze);
283 }
284 
285 static mzap_ent_t *
286 mze_find(zap_name_t *zn)
287 {
288 	mzap_ent_t mze_tofind;
289 	mzap_ent_t *mze;
290 	avl_index_t idx;
291 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
292 
293 	ASSERT(zn->zn_zap->zap_ismicro);
294 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
295 
296 	mze_tofind.mze_hash = zn->zn_hash;
297 	mze_tofind.mze_cd = 0;
298 
299 again:
300 	mze = avl_find(avl, &mze_tofind, &idx);
301 	if (mze == NULL)
302 		mze = avl_nearest(avl, idx, AVL_AFTER);
303 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
304 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
305 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
306 			return (mze);
307 	}
308 	if (zn->zn_matchtype == MT_BEST) {
309 		zn->zn_matchtype = MT_FIRST;
310 		goto again;
311 	}
312 	return (NULL);
313 }
314 
315 static uint32_t
316 mze_find_unused_cd(zap_t *zap, uint64_t hash)
317 {
318 	mzap_ent_t mze_tofind;
319 	mzap_ent_t *mze;
320 	avl_index_t idx;
321 	avl_tree_t *avl = &zap->zap_m.zap_avl;
322 	uint32_t cd;
323 
324 	ASSERT(zap->zap_ismicro);
325 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
326 
327 	mze_tofind.mze_hash = hash;
328 	mze_tofind.mze_cd = 0;
329 
330 	cd = 0;
331 	for (mze = avl_find(avl, &mze_tofind, &idx);
332 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
333 		if (mze->mze_cd != cd)
334 			break;
335 		cd++;
336 	}
337 
338 	return (cd);
339 }
340 
341 static void
342 mze_remove(zap_t *zap, mzap_ent_t *mze)
343 {
344 	ASSERT(zap->zap_ismicro);
345 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
346 
347 	avl_remove(&zap->zap_m.zap_avl, mze);
348 	kmem_free(mze, sizeof (mzap_ent_t));
349 }
350 
351 static void
352 mze_destroy(zap_t *zap)
353 {
354 	mzap_ent_t *mze;
355 	void *avlcookie = NULL;
356 
357 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
358 		kmem_free(mze, sizeof (mzap_ent_t));
359 	avl_destroy(&zap->zap_m.zap_avl);
360 }
361 
362 static zap_t *
363 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
364 {
365 	zap_t *winner;
366 	zap_t *zap;
367 	int i;
368 
369 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
370 
371 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
372 	rw_init(&zap->zap_rwlock, 0, 0, 0);
373 	rw_enter(&zap->zap_rwlock, RW_WRITER);
374 	zap->zap_objset = os;
375 	zap->zap_object = obj;
376 	zap->zap_dbuf = db;
377 
378 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
379 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
380 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
381 	} else {
382 		zap->zap_ismicro = TRUE;
383 	}
384 
385 	/*
386 	 * Make sure that zap_ismicro is set before we let others see
387 	 * it, because zap_lockdir() checks zap_ismicro without the lock
388 	 * held.
389 	 */
390 	winner = dmu_buf_set_user(db, zap, zap_evict);
391 
392 	if (winner != NULL) {
393 		rw_exit(&zap->zap_rwlock);
394 		rw_destroy(&zap->zap_rwlock);
395 		if (!zap->zap_ismicro)
396 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
397 		kmem_free(zap, sizeof (zap_t));
398 		return (winner);
399 	}
400 
401 	if (zap->zap_ismicro) {
402 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
403 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
404 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
405 		avl_create(&zap->zap_m.zap_avl, mze_compare,
406 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
407 
408 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
409 			mzap_ent_phys_t *mze =
410 			    &zap_m_phys(zap)->mz_chunk[i];
411 			if (mze->mze_name[0]) {
412 				zap_name_t *zn;
413 
414 				zap->zap_m.zap_num_entries++;
415 				zn = zap_name_alloc(zap, mze->mze_name,
416 				    MT_EXACT);
417 				mze_insert(zap, i, zn->zn_hash);
418 				zap_name_free(zn);
419 			}
420 		}
421 	} else {
422 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
423 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
424 
425 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
426 		    2*ZAP_LEAF_CHUNKSIZE);
427 
428 		/*
429 		 * The embedded pointer table should not overlap the
430 		 * other members.
431 		 */
432 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
433 		    &zap_f_phys(zap)->zap_salt);
434 
435 		/*
436 		 * The embedded pointer table should end at the end of
437 		 * the block
438 		 */
439 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
440 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
441 		    (uintptr_t)zap_f_phys(zap), ==,
442 		    zap->zap_dbuf->db_size);
443 	}
444 	rw_exit(&zap->zap_rwlock);
445 	return (zap);
446 }
447 
448 int
449 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
450     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
451 {
452 	zap_t *zap;
453 	dmu_buf_t *db;
454 	krw_t lt;
455 	int err;
456 
457 	*zapp = NULL;
458 
459 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
460 	if (err)
461 		return (err);
462 
463 #ifdef ZFS_DEBUG
464 	{
465 		dmu_object_info_t doi;
466 		dmu_object_info_from_db(db, &doi);
467 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
468 	}
469 #endif
470 
471 	zap = dmu_buf_get_user(db);
472 	if (zap == NULL)
473 		zap = mzap_open(os, obj, db);
474 
475 	/*
476 	 * We're checking zap_ismicro without the lock held, in order to
477 	 * tell what type of lock we want.  Once we have some sort of
478 	 * lock, see if it really is the right type.  In practice this
479 	 * can only be different if it was upgraded from micro to fat,
480 	 * and micro wanted WRITER but fat only needs READER.
481 	 */
482 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
483 	rw_enter(&zap->zap_rwlock, lt);
484 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
485 		/* it was upgraded, now we only need reader */
486 		ASSERT(lt == RW_WRITER);
487 		ASSERT(RW_READER ==
488 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
489 		rw_downgrade(&zap->zap_rwlock);
490 		lt = RW_READER;
491 	}
492 
493 	zap->zap_objset = os;
494 
495 	if (lt == RW_WRITER)
496 		dmu_buf_will_dirty(db, tx);
497 
498 	ASSERT3P(zap->zap_dbuf, ==, db);
499 
500 	ASSERT(!zap->zap_ismicro ||
501 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
502 	if (zap->zap_ismicro && tx && adding &&
503 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
504 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
505 		if (newsz > MZAP_MAX_BLKSZ) {
506 			dprintf("upgrading obj %llu: num_entries=%u\n",
507 			    obj, zap->zap_m.zap_num_entries);
508 			*zapp = zap;
509 			return (mzap_upgrade(zapp, tx, 0));
510 		}
511 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
512 		ASSERT0(err);
513 		zap->zap_m.zap_num_chunks =
514 		    db->db_size / MZAP_ENT_LEN - 1;
515 	}
516 
517 	*zapp = zap;
518 	return (0);
519 }
520 
521 void
522 zap_unlockdir(zap_t *zap)
523 {
524 	rw_exit(&zap->zap_rwlock);
525 	dmu_buf_rele(zap->zap_dbuf, NULL);
526 }
527 
528 static int
529 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
530 {
531 	mzap_phys_t *mzp;
532 	int i, sz, nchunks;
533 	int err = 0;
534 	zap_t *zap = *zapp;
535 
536 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
537 
538 	sz = zap->zap_dbuf->db_size;
539 	mzp = kmem_alloc(sz, KM_SLEEP);
540 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
541 	nchunks = zap->zap_m.zap_num_chunks;
542 
543 	if (!flags) {
544 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
545 		    1ULL << fzap_default_block_shift, 0, tx);
546 		if (err) {
547 			kmem_free(mzp, sz);
548 			return (err);
549 		}
550 	}
551 
552 	dprintf("upgrading obj=%llu with %u chunks\n",
553 	    zap->zap_object, nchunks);
554 	/* XXX destroy the avl later, so we can use the stored hash value */
555 	mze_destroy(zap);
556 
557 	fzap_upgrade(zap, tx, flags);
558 
559 	for (i = 0; i < nchunks; i++) {
560 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
561 		zap_name_t *zn;
562 		if (mze->mze_name[0] == 0)
563 			continue;
564 		dprintf("adding %s=%llu\n",
565 		    mze->mze_name, mze->mze_value);
566 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
567 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
568 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
569 		zap_name_free(zn);
570 		if (err)
571 			break;
572 	}
573 	kmem_free(mzp, sz);
574 	*zapp = zap;
575 	return (err);
576 }
577 
578 void
579 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
580     dmu_tx_t *tx)
581 {
582 	dmu_buf_t *db;
583 	mzap_phys_t *zp;
584 
585 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
586 
587 #ifdef ZFS_DEBUG
588 	{
589 		dmu_object_info_t doi;
590 		dmu_object_info_from_db(db, &doi);
591 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
592 	}
593 #endif
594 
595 	dmu_buf_will_dirty(db, tx);
596 	zp = db->db_data;
597 	zp->mz_block_type = ZBT_MICRO;
598 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
599 	zp->mz_normflags = normflags;
600 	dmu_buf_rele(db, FTAG);
601 
602 	if (flags != 0) {
603 		zap_t *zap;
604 		/* Only fat zap supports flags; upgrade immediately. */
605 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
606 		    B_FALSE, B_FALSE, &zap));
607 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
608 		zap_unlockdir(zap);
609 	}
610 }
611 
612 int
613 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
614     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
615 {
616 	return (zap_create_claim_norm(os, obj,
617 	    0, ot, bonustype, bonuslen, tx));
618 }
619 
620 int
621 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
622     dmu_object_type_t ot,
623     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
624 {
625 	int err;
626 
627 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
628 	if (err != 0)
629 		return (err);
630 	mzap_create_impl(os, obj, normflags, 0, tx);
631 	return (0);
632 }
633 
634 uint64_t
635 zap_create(objset_t *os, dmu_object_type_t ot,
636     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
637 {
638 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
639 }
640 
641 uint64_t
642 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
643     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
644 {
645 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
646 
647 	mzap_create_impl(os, obj, normflags, 0, tx);
648 	return (obj);
649 }
650 
651 uint64_t
652 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
653     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
654     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
655 {
656 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
657 
658 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
659 	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
660 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
661 	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
662 
663 	VERIFY(dmu_object_set_blocksize(os, obj,
664 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
665 
666 	mzap_create_impl(os, obj, normflags, flags, tx);
667 	return (obj);
668 }
669 
670 int
671 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
672 {
673 	/*
674 	 * dmu_object_free will free the object number and free the
675 	 * data.  Freeing the data will cause our pageout function to be
676 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
677 	 */
678 
679 	return (dmu_object_free(os, zapobj, tx));
680 }
681 
682 _NOTE(ARGSUSED(0))
683 void
684 zap_evict(dmu_buf_t *db, void *vzap)
685 {
686 	zap_t *zap = vzap;
687 
688 	rw_destroy(&zap->zap_rwlock);
689 
690 	if (zap->zap_ismicro)
691 		mze_destroy(zap);
692 	else
693 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
694 
695 	kmem_free(zap, sizeof (zap_t));
696 }
697 
698 int
699 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
700 {
701 	zap_t *zap;
702 	int err;
703 
704 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
705 	if (err)
706 		return (err);
707 	if (!zap->zap_ismicro) {
708 		err = fzap_count(zap, count);
709 	} else {
710 		*count = zap->zap_m.zap_num_entries;
711 	}
712 	zap_unlockdir(zap);
713 	return (err);
714 }
715 
716 /*
717  * zn may be NULL; if not specified, it will be computed if needed.
718  * See also the comment above zap_entry_normalization_conflict().
719  */
720 static boolean_t
721 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
722 {
723 	mzap_ent_t *other;
724 	int direction = AVL_BEFORE;
725 	boolean_t allocdzn = B_FALSE;
726 
727 	if (zap->zap_normflags == 0)
728 		return (B_FALSE);
729 
730 again:
731 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
732 	    other && other->mze_hash == mze->mze_hash;
733 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
734 
735 		if (zn == NULL) {
736 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
737 			    MT_FIRST);
738 			allocdzn = B_TRUE;
739 		}
740 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
741 			if (allocdzn)
742 				zap_name_free(zn);
743 			return (B_TRUE);
744 		}
745 	}
746 
747 	if (direction == AVL_BEFORE) {
748 		direction = AVL_AFTER;
749 		goto again;
750 	}
751 
752 	if (allocdzn)
753 		zap_name_free(zn);
754 	return (B_FALSE);
755 }
756 
757 /*
758  * Routines for manipulating attributes.
759  */
760 
761 int
762 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
763     uint64_t integer_size, uint64_t num_integers, void *buf)
764 {
765 	return (zap_lookup_norm(os, zapobj, name, integer_size,
766 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
767 }
768 
769 int
770 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
771     uint64_t integer_size, uint64_t num_integers, void *buf,
772     matchtype_t mt, char *realname, int rn_len,
773     boolean_t *ncp)
774 {
775 	zap_t *zap;
776 	int err;
777 	mzap_ent_t *mze;
778 	zap_name_t *zn;
779 
780 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
781 	if (err)
782 		return (err);
783 	zn = zap_name_alloc(zap, name, mt);
784 	if (zn == NULL) {
785 		zap_unlockdir(zap);
786 		return (SET_ERROR(ENOTSUP));
787 	}
788 
789 	if (!zap->zap_ismicro) {
790 		err = fzap_lookup(zn, integer_size, num_integers, buf,
791 		    realname, rn_len, ncp);
792 	} else {
793 		mze = mze_find(zn);
794 		if (mze == NULL) {
795 			err = SET_ERROR(ENOENT);
796 		} else {
797 			if (num_integers < 1) {
798 				err = SET_ERROR(EOVERFLOW);
799 			} else if (integer_size != 8) {
800 				err = SET_ERROR(EINVAL);
801 			} else {
802 				*(uint64_t *)buf =
803 				    MZE_PHYS(zap, mze)->mze_value;
804 				(void) strlcpy(realname,
805 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
806 				if (ncp) {
807 					*ncp = mzap_normalization_conflict(zap,
808 					    zn, mze);
809 				}
810 			}
811 		}
812 	}
813 	zap_name_free(zn);
814 	zap_unlockdir(zap);
815 	return (err);
816 }
817 
818 int
819 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
820     int key_numints)
821 {
822 	zap_t *zap;
823 	int err;
824 	zap_name_t *zn;
825 
826 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
827 	if (err)
828 		return (err);
829 	zn = zap_name_alloc_uint64(zap, key, key_numints);
830 	if (zn == NULL) {
831 		zap_unlockdir(zap);
832 		return (SET_ERROR(ENOTSUP));
833 	}
834 
835 	fzap_prefetch(zn);
836 	zap_name_free(zn);
837 	zap_unlockdir(zap);
838 	return (err);
839 }
840 
841 int
842 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
843     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
844 {
845 	zap_t *zap;
846 	int err;
847 	zap_name_t *zn;
848 
849 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
850 	if (err)
851 		return (err);
852 	zn = zap_name_alloc_uint64(zap, key, key_numints);
853 	if (zn == NULL) {
854 		zap_unlockdir(zap);
855 		return (SET_ERROR(ENOTSUP));
856 	}
857 
858 	err = fzap_lookup(zn, integer_size, num_integers, buf,
859 	    NULL, 0, NULL);
860 	zap_name_free(zn);
861 	zap_unlockdir(zap);
862 	return (err);
863 }
864 
865 int
866 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
867 {
868 	int err = zap_lookup_norm(os, zapobj, name, 0,
869 	    0, NULL, MT_EXACT, NULL, 0, NULL);
870 	if (err == EOVERFLOW || err == EINVAL)
871 		err = 0; /* found, but skipped reading the value */
872 	return (err);
873 }
874 
875 int
876 zap_length(objset_t *os, uint64_t zapobj, const char *name,
877     uint64_t *integer_size, uint64_t *num_integers)
878 {
879 	zap_t *zap;
880 	int err;
881 	mzap_ent_t *mze;
882 	zap_name_t *zn;
883 
884 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
885 	if (err)
886 		return (err);
887 	zn = zap_name_alloc(zap, name, MT_EXACT);
888 	if (zn == NULL) {
889 		zap_unlockdir(zap);
890 		return (SET_ERROR(ENOTSUP));
891 	}
892 	if (!zap->zap_ismicro) {
893 		err = fzap_length(zn, integer_size, num_integers);
894 	} else {
895 		mze = mze_find(zn);
896 		if (mze == NULL) {
897 			err = SET_ERROR(ENOENT);
898 		} else {
899 			if (integer_size)
900 				*integer_size = 8;
901 			if (num_integers)
902 				*num_integers = 1;
903 		}
904 	}
905 	zap_name_free(zn);
906 	zap_unlockdir(zap);
907 	return (err);
908 }
909 
910 int
911 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
912     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
913 {
914 	zap_t *zap;
915 	int err;
916 	zap_name_t *zn;
917 
918 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
919 	if (err)
920 		return (err);
921 	zn = zap_name_alloc_uint64(zap, key, key_numints);
922 	if (zn == NULL) {
923 		zap_unlockdir(zap);
924 		return (SET_ERROR(ENOTSUP));
925 	}
926 	err = fzap_length(zn, integer_size, num_integers);
927 	zap_name_free(zn);
928 	zap_unlockdir(zap);
929 	return (err);
930 }
931 
932 static void
933 mzap_addent(zap_name_t *zn, uint64_t value)
934 {
935 	int i;
936 	zap_t *zap = zn->zn_zap;
937 	int start = zap->zap_m.zap_alloc_next;
938 	uint32_t cd;
939 
940 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
941 
942 #ifdef ZFS_DEBUG
943 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
944 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
945 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
946 	}
947 #endif
948 
949 	cd = mze_find_unused_cd(zap, zn->zn_hash);
950 	/* given the limited size of the microzap, this can't happen */
951 	ASSERT(cd < zap_maxcd(zap));
952 
953 again:
954 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
955 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
956 		if (mze->mze_name[0] == 0) {
957 			mze->mze_value = value;
958 			mze->mze_cd = cd;
959 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
960 			zap->zap_m.zap_num_entries++;
961 			zap->zap_m.zap_alloc_next = i+1;
962 			if (zap->zap_m.zap_alloc_next ==
963 			    zap->zap_m.zap_num_chunks)
964 				zap->zap_m.zap_alloc_next = 0;
965 			mze_insert(zap, i, zn->zn_hash);
966 			return;
967 		}
968 	}
969 	if (start != 0) {
970 		start = 0;
971 		goto again;
972 	}
973 	ASSERT(!"out of entries!");
974 }
975 
976 int
977 zap_add(objset_t *os, uint64_t zapobj, const char *key,
978     int integer_size, uint64_t num_integers,
979     const void *val, dmu_tx_t *tx)
980 {
981 	zap_t *zap;
982 	int err;
983 	mzap_ent_t *mze;
984 	const uint64_t *intval = val;
985 	zap_name_t *zn;
986 
987 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
988 	if (err)
989 		return (err);
990 	zn = zap_name_alloc(zap, key, MT_EXACT);
991 	if (zn == NULL) {
992 		zap_unlockdir(zap);
993 		return (SET_ERROR(ENOTSUP));
994 	}
995 	if (!zap->zap_ismicro) {
996 		err = fzap_add(zn, integer_size, num_integers, val, tx);
997 		zap = zn->zn_zap;	/* fzap_add() may change zap */
998 	} else if (integer_size != 8 || num_integers != 1 ||
999 	    strlen(key) >= MZAP_NAME_LEN) {
1000 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1001 		if (err == 0)
1002 			err = fzap_add(zn, integer_size, num_integers, val, tx);
1003 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1004 	} else {
1005 		mze = mze_find(zn);
1006 		if (mze != NULL) {
1007 			err = SET_ERROR(EEXIST);
1008 		} else {
1009 			mzap_addent(zn, *intval);
1010 		}
1011 	}
1012 	ASSERT(zap == zn->zn_zap);
1013 	zap_name_free(zn);
1014 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1015 		zap_unlockdir(zap);
1016 	return (err);
1017 }
1018 
1019 int
1020 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1021     int key_numints, int integer_size, uint64_t num_integers,
1022     const void *val, dmu_tx_t *tx)
1023 {
1024 	zap_t *zap;
1025 	int err;
1026 	zap_name_t *zn;
1027 
1028 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1029 	if (err)
1030 		return (err);
1031 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1032 	if (zn == NULL) {
1033 		zap_unlockdir(zap);
1034 		return (SET_ERROR(ENOTSUP));
1035 	}
1036 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1037 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1038 	zap_name_free(zn);
1039 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1040 		zap_unlockdir(zap);
1041 	return (err);
1042 }
1043 
1044 int
1045 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1046     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1047 {
1048 	zap_t *zap;
1049 	mzap_ent_t *mze;
1050 	uint64_t oldval;
1051 	const uint64_t *intval = val;
1052 	zap_name_t *zn;
1053 	int err;
1054 
1055 #ifdef ZFS_DEBUG
1056 	/*
1057 	 * If there is an old value, it shouldn't change across the
1058 	 * lockdir (eg, due to bprewrite's xlation).
1059 	 */
1060 	if (integer_size == 8 && num_integers == 1)
1061 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1062 #endif
1063 
1064 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1065 	if (err)
1066 		return (err);
1067 	zn = zap_name_alloc(zap, name, MT_EXACT);
1068 	if (zn == NULL) {
1069 		zap_unlockdir(zap);
1070 		return (SET_ERROR(ENOTSUP));
1071 	}
1072 	if (!zap->zap_ismicro) {
1073 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1074 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1075 	} else if (integer_size != 8 || num_integers != 1 ||
1076 	    strlen(name) >= MZAP_NAME_LEN) {
1077 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1078 		    zapobj, integer_size, num_integers, name);
1079 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1080 		if (err == 0)
1081 			err = fzap_update(zn, integer_size, num_integers,
1082 			    val, tx);
1083 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1084 	} else {
1085 		mze = mze_find(zn);
1086 		if (mze != NULL) {
1087 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1088 			MZE_PHYS(zap, mze)->mze_value = *intval;
1089 		} else {
1090 			mzap_addent(zn, *intval);
1091 		}
1092 	}
1093 	ASSERT(zap == zn->zn_zap);
1094 	zap_name_free(zn);
1095 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1096 		zap_unlockdir(zap);
1097 	return (err);
1098 }
1099 
1100 int
1101 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1102     int key_numints,
1103     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1104 {
1105 	zap_t *zap;
1106 	zap_name_t *zn;
1107 	int err;
1108 
1109 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1110 	if (err)
1111 		return (err);
1112 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1113 	if (zn == NULL) {
1114 		zap_unlockdir(zap);
1115 		return (SET_ERROR(ENOTSUP));
1116 	}
1117 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1118 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1119 	zap_name_free(zn);
1120 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1121 		zap_unlockdir(zap);
1122 	return (err);
1123 }
1124 
1125 int
1126 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1127 {
1128 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1129 }
1130 
1131 int
1132 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1133     matchtype_t mt, dmu_tx_t *tx)
1134 {
1135 	zap_t *zap;
1136 	int err;
1137 	mzap_ent_t *mze;
1138 	zap_name_t *zn;
1139 
1140 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1141 	if (err)
1142 		return (err);
1143 	zn = zap_name_alloc(zap, name, mt);
1144 	if (zn == NULL) {
1145 		zap_unlockdir(zap);
1146 		return (SET_ERROR(ENOTSUP));
1147 	}
1148 	if (!zap->zap_ismicro) {
1149 		err = fzap_remove(zn, tx);
1150 	} else {
1151 		mze = mze_find(zn);
1152 		if (mze == NULL) {
1153 			err = SET_ERROR(ENOENT);
1154 		} else {
1155 			zap->zap_m.zap_num_entries--;
1156 			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1157 			    sizeof (mzap_ent_phys_t));
1158 			mze_remove(zap, mze);
1159 		}
1160 	}
1161 	zap_name_free(zn);
1162 	zap_unlockdir(zap);
1163 	return (err);
1164 }
1165 
1166 int
1167 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1168     int key_numints, dmu_tx_t *tx)
1169 {
1170 	zap_t *zap;
1171 	int err;
1172 	zap_name_t *zn;
1173 
1174 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1175 	if (err)
1176 		return (err);
1177 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1178 	if (zn == NULL) {
1179 		zap_unlockdir(zap);
1180 		return (SET_ERROR(ENOTSUP));
1181 	}
1182 	err = fzap_remove(zn, tx);
1183 	zap_name_free(zn);
1184 	zap_unlockdir(zap);
1185 	return (err);
1186 }
1187 
1188 /*
1189  * Routines for iterating over the attributes.
1190  */
1191 
1192 void
1193 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1194     uint64_t serialized)
1195 {
1196 	zc->zc_objset = os;
1197 	zc->zc_zap = NULL;
1198 	zc->zc_leaf = NULL;
1199 	zc->zc_zapobj = zapobj;
1200 	zc->zc_serialized = serialized;
1201 	zc->zc_hash = 0;
1202 	zc->zc_cd = 0;
1203 }
1204 
1205 void
1206 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1207 {
1208 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1209 }
1210 
1211 void
1212 zap_cursor_fini(zap_cursor_t *zc)
1213 {
1214 	if (zc->zc_zap) {
1215 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1216 		zap_unlockdir(zc->zc_zap);
1217 		zc->zc_zap = NULL;
1218 	}
1219 	if (zc->zc_leaf) {
1220 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1221 		zap_put_leaf(zc->zc_leaf);
1222 		zc->zc_leaf = NULL;
1223 	}
1224 	zc->zc_objset = NULL;
1225 }
1226 
1227 uint64_t
1228 zap_cursor_serialize(zap_cursor_t *zc)
1229 {
1230 	if (zc->zc_hash == -1ULL)
1231 		return (-1ULL);
1232 	if (zc->zc_zap == NULL)
1233 		return (zc->zc_serialized);
1234 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1235 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1236 
1237 	/*
1238 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1239 	 * that 32-bit programs can access this.  So usually use a small
1240 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1241 	 * of the cursor.
1242 	 *
1243 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1244 	 */
1245 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1246 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1247 }
1248 
1249 int
1250 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1251 {
1252 	int err;
1253 	avl_index_t idx;
1254 	mzap_ent_t mze_tofind;
1255 	mzap_ent_t *mze;
1256 
1257 	if (zc->zc_hash == -1ULL)
1258 		return (SET_ERROR(ENOENT));
1259 
1260 	if (zc->zc_zap == NULL) {
1261 		int hb;
1262 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1263 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1264 		if (err)
1265 			return (err);
1266 
1267 		/*
1268 		 * To support zap_cursor_init_serialized, advance, retrieve,
1269 		 * we must add to the existing zc_cd, which may already
1270 		 * be 1 due to the zap_cursor_advance.
1271 		 */
1272 		ASSERT(zc->zc_hash == 0);
1273 		hb = zap_hashbits(zc->zc_zap);
1274 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1275 		zc->zc_cd += zc->zc_serialized >> hb;
1276 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1277 			zc->zc_cd = 0;
1278 	} else {
1279 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1280 	}
1281 	if (!zc->zc_zap->zap_ismicro) {
1282 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1283 	} else {
1284 		mze_tofind.mze_hash = zc->zc_hash;
1285 		mze_tofind.mze_cd = zc->zc_cd;
1286 
1287 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1288 		if (mze == NULL) {
1289 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1290 			    idx, AVL_AFTER);
1291 		}
1292 		if (mze) {
1293 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1294 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1295 			za->za_normalization_conflict =
1296 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1297 			za->za_integer_length = 8;
1298 			za->za_num_integers = 1;
1299 			za->za_first_integer = mzep->mze_value;
1300 			(void) strcpy(za->za_name, mzep->mze_name);
1301 			zc->zc_hash = mze->mze_hash;
1302 			zc->zc_cd = mze->mze_cd;
1303 			err = 0;
1304 		} else {
1305 			zc->zc_hash = -1ULL;
1306 			err = SET_ERROR(ENOENT);
1307 		}
1308 	}
1309 	rw_exit(&zc->zc_zap->zap_rwlock);
1310 	return (err);
1311 }
1312 
1313 void
1314 zap_cursor_advance(zap_cursor_t *zc)
1315 {
1316 	if (zc->zc_hash == -1ULL)
1317 		return;
1318 	zc->zc_cd++;
1319 }
1320 
1321 int
1322 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1323 {
1324 	int err;
1325 	zap_t *zap;
1326 
1327 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1328 	if (err)
1329 		return (err);
1330 
1331 	bzero(zs, sizeof (zap_stats_t));
1332 
1333 	if (zap->zap_ismicro) {
1334 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1335 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1336 		zs->zs_num_blocks = 1;
1337 	} else {
1338 		fzap_get_stats(zap, zs);
1339 	}
1340 	zap_unlockdir(zap);
1341 	return (0);
1342 }
1343 
1344 int
1345 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1346     uint64_t *towrite, uint64_t *tooverwrite)
1347 {
1348 	zap_t *zap;
1349 	int err = 0;
1350 
1351 	/*
1352 	 * Since, we don't have a name, we cannot figure out which blocks will
1353 	 * be affected in this operation. So, account for the worst case :
1354 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1355 	 * - 4 new blocks written if adding:
1356 	 * 	- 2 blocks for possibly split leaves,
1357 	 * 	- 2 grown ptrtbl blocks
1358 	 *
1359 	 * This also accomodates the case where an add operation to a fairly
1360 	 * large microzap results in a promotion to fatzap.
1361 	 */
1362 	if (name == NULL) {
1363 		*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1364 		return (err);
1365 	}
1366 
1367 	/*
1368 	 * We lock the zap with adding == FALSE. Because, if we pass
1369 	 * the actual value of add, it could trigger a mzap_upgrade().
1370 	 * At present we are just evaluating the possibility of this operation
1371 	 * and hence we donot want to trigger an upgrade.
1372 	 */
1373 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1374 	if (err)
1375 		return (err);
1376 
1377 	if (!zap->zap_ismicro) {
1378 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1379 		if (zn) {
1380 			err = fzap_count_write(zn, add, towrite,
1381 			    tooverwrite);
1382 			zap_name_free(zn);
1383 		} else {
1384 			/*
1385 			 * We treat this case as similar to (name == NULL)
1386 			 */
1387 			*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1388 		}
1389 	} else {
1390 		/*
1391 		 * We are here if (name != NULL) and this is a micro-zap.
1392 		 * We account for the header block depending on whether it
1393 		 * is freeable.
1394 		 *
1395 		 * Incase of an add-operation it is hard to find out
1396 		 * if this add will promote this microzap to fatzap.
1397 		 * Hence, we consider the worst case and account for the
1398 		 * blocks assuming this microzap would be promoted to a
1399 		 * fatzap.
1400 		 *
1401 		 * 1 block overwritten  : header block
1402 		 * 4 new blocks written : 2 new split leaf, 2 grown
1403 		 *			ptrtbl blocks
1404 		 */
1405 		if (dmu_buf_freeable(zap->zap_dbuf))
1406 			*tooverwrite += MZAP_MAX_BLKSZ;
1407 		else
1408 			*towrite += MZAP_MAX_BLKSZ;
1409 
1410 		if (add) {
1411 			*towrite += 4 * MZAP_MAX_BLKSZ;
1412 		}
1413 	}
1414 
1415 	zap_unlockdir(zap);
1416 	return (err);
1417 }
1418