xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision 73527f441cbbd953fa42cc5a30a413bad75f24a9)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5ea8dc4b6Seschrock  * Common Development and Distribution License (the "License").
6ea8dc4b6Seschrock  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
21fa9e4066Sahrens /*
22a3f829aeSBill Moore  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23fa9e4066Sahrens  * Use is subject to license terms.
24fa9e4066Sahrens  */
25fa9e4066Sahrens 
26283b8460SGeorge.Wilson /*
27*73527f44SAlex Reece  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28283b8460SGeorge.Wilson  */
29283b8460SGeorge.Wilson 
30fa9e4066Sahrens #include <sys/zfs_context.h>
31fa9e4066Sahrens #include <sys/vdev_impl.h>
32c3a66015SMatthew Ahrens #include <sys/spa_impl.h>
33fa9e4066Sahrens #include <sys/zio.h>
34fa9e4066Sahrens #include <sys/avl.h>
3569962b56SMatthew Ahrens #include <sys/dsl_pool.h>
36fa9e4066Sahrens 
37614409b5Sahrens /*
3869962b56SMatthew Ahrens  * ZFS I/O Scheduler
3969962b56SMatthew Ahrens  * ---------------
4069962b56SMatthew Ahrens  *
4169962b56SMatthew Ahrens  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
4269962b56SMatthew Ahrens  * I/O scheduler determines when and in what order those operations are
4369962b56SMatthew Ahrens  * issued.  The I/O scheduler divides operations into five I/O classes
4469962b56SMatthew Ahrens  * prioritized in the following order: sync read, sync write, async read,
4569962b56SMatthew Ahrens  * async write, and scrub/resilver.  Each queue defines the minimum and
4669962b56SMatthew Ahrens  * maximum number of concurrent operations that may be issued to the device.
4769962b56SMatthew Ahrens  * In addition, the device has an aggregate maximum. Note that the sum of the
4869962b56SMatthew Ahrens  * per-queue minimums must not exceed the aggregate maximum, and if the
4969962b56SMatthew Ahrens  * aggregate maximum is equal to or greater than the sum of the per-queue
5069962b56SMatthew Ahrens  * maximums, the per-queue minimum has no effect.
5169962b56SMatthew Ahrens  *
5269962b56SMatthew Ahrens  * For many physical devices, throughput increases with the number of
5369962b56SMatthew Ahrens  * concurrent operations, but latency typically suffers. Further, physical
5469962b56SMatthew Ahrens  * devices typically have a limit at which more concurrent operations have no
5569962b56SMatthew Ahrens  * effect on throughput or can actually cause it to decrease.
5669962b56SMatthew Ahrens  *
5769962b56SMatthew Ahrens  * The scheduler selects the next operation to issue by first looking for an
5869962b56SMatthew Ahrens  * I/O class whose minimum has not been satisfied. Once all are satisfied and
5969962b56SMatthew Ahrens  * the aggregate maximum has not been hit, the scheduler looks for classes
6069962b56SMatthew Ahrens  * whose maximum has not been satisfied. Iteration through the I/O classes is
6169962b56SMatthew Ahrens  * done in the order specified above. No further operations are issued if the
6269962b56SMatthew Ahrens  * aggregate maximum number of concurrent operations has been hit or if there
6369962b56SMatthew Ahrens  * are no operations queued for an I/O class that has not hit its maximum.
6469962b56SMatthew Ahrens  * Every time an i/o is queued or an operation completes, the I/O scheduler
6569962b56SMatthew Ahrens  * looks for new operations to issue.
6669962b56SMatthew Ahrens  *
6769962b56SMatthew Ahrens  * All I/O classes have a fixed maximum number of outstanding operations
6869962b56SMatthew Ahrens  * except for the async write class. Asynchronous writes represent the data
6969962b56SMatthew Ahrens  * that is committed to stable storage during the syncing stage for
7069962b56SMatthew Ahrens  * transaction groups (see txg.c). Transaction groups enter the syncing state
7169962b56SMatthew Ahrens  * periodically so the number of queued async writes will quickly burst up and
7269962b56SMatthew Ahrens  * then bleed down to zero. Rather than servicing them as quickly as possible,
7369962b56SMatthew Ahrens  * the I/O scheduler changes the maximum number of active async write i/os
7469962b56SMatthew Ahrens  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
7569962b56SMatthew Ahrens  * both throughput and latency typically increase with the number of
7669962b56SMatthew Ahrens  * concurrent operations issued to physical devices, reducing the burstiness
7769962b56SMatthew Ahrens  * in the number of concurrent operations also stabilizes the response time of
7869962b56SMatthew Ahrens  * operations from other -- and in particular synchronous -- queues. In broad
7969962b56SMatthew Ahrens  * strokes, the I/O scheduler will issue more concurrent operations from the
8069962b56SMatthew Ahrens  * async write queue as there's more dirty data in the pool.
8169962b56SMatthew Ahrens  *
8269962b56SMatthew Ahrens  * Async Writes
8369962b56SMatthew Ahrens  *
8469962b56SMatthew Ahrens  * The number of concurrent operations issued for the async write I/O class
8569962b56SMatthew Ahrens  * follows a piece-wise linear function defined by a few adjustable points.
8669962b56SMatthew Ahrens  *
8769962b56SMatthew Ahrens  *        |                   o---------| <-- zfs_vdev_async_write_max_active
8869962b56SMatthew Ahrens  *   ^    |                  /^         |
8969962b56SMatthew Ahrens  *   |    |                 / |         |
9069962b56SMatthew Ahrens  * active |                /  |         |
9169962b56SMatthew Ahrens  *  I/O   |               /   |         |
9269962b56SMatthew Ahrens  * count  |              /    |         |
9369962b56SMatthew Ahrens  *        |             /     |         |
9469962b56SMatthew Ahrens  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
9569962b56SMatthew Ahrens  *       0|____________^______|_________|
9669962b56SMatthew Ahrens  *        0%           |      |       100% of zfs_dirty_data_max
9769962b56SMatthew Ahrens  *                     |      |
9869962b56SMatthew Ahrens  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
9969962b56SMatthew Ahrens  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
10069962b56SMatthew Ahrens  *
10169962b56SMatthew Ahrens  * Until the amount of dirty data exceeds a minimum percentage of the dirty
10269962b56SMatthew Ahrens  * data allowed in the pool, the I/O scheduler will limit the number of
10369962b56SMatthew Ahrens  * concurrent operations to the minimum. As that threshold is crossed, the
10469962b56SMatthew Ahrens  * number of concurrent operations issued increases linearly to the maximum at
10569962b56SMatthew Ahrens  * the specified maximum percentage of the dirty data allowed in the pool.
10669962b56SMatthew Ahrens  *
10769962b56SMatthew Ahrens  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
10869962b56SMatthew Ahrens  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
10969962b56SMatthew Ahrens  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
11069962b56SMatthew Ahrens  * maximum percentage, this indicates that the rate of incoming data is
11169962b56SMatthew Ahrens  * greater than the rate that the backend storage can handle. In this case, we
11269962b56SMatthew Ahrens  * must further throttle incoming writes (see dmu_tx_delay() for details).
113614409b5Sahrens  */
114f7170741SWill Andrews 
115614409b5Sahrens /*
11669962b56SMatthew Ahrens  * The maximum number of i/os active to each device.  Ideally, this will be >=
11769962b56SMatthew Ahrens  * the sum of each queue's max_active.  It must be at least the sum of each
11869962b56SMatthew Ahrens  * queue's min_active.
119614409b5Sahrens  */
12069962b56SMatthew Ahrens uint32_t zfs_vdev_max_active = 1000;
121614409b5Sahrens 
122c55e05cbSMatthew Ahrens /*
12369962b56SMatthew Ahrens  * Per-queue limits on the number of i/os active to each device.  If the
12469962b56SMatthew Ahrens  * sum of the queue's max_active is < zfs_vdev_max_active, then the
12569962b56SMatthew Ahrens  * min_active comes into play.  We will send min_active from each queue,
12669962b56SMatthew Ahrens  * and then select from queues in the order defined by zio_priority_t.
12769962b56SMatthew Ahrens  *
12869962b56SMatthew Ahrens  * In general, smaller max_active's will lead to lower latency of synchronous
12969962b56SMatthew Ahrens  * operations.  Larger max_active's may lead to higher overall throughput,
13069962b56SMatthew Ahrens  * depending on underlying storage.
13169962b56SMatthew Ahrens  *
13269962b56SMatthew Ahrens  * The ratio of the queues' max_actives determines the balance of performance
13369962b56SMatthew Ahrens  * between reads, writes, and scrubs.  E.g., increasing
13469962b56SMatthew Ahrens  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
13569962b56SMatthew Ahrens  * more quickly, but reads and writes to have higher latency and lower
13669962b56SMatthew Ahrens  * throughput.
137c55e05cbSMatthew Ahrens  */
13869962b56SMatthew Ahrens uint32_t zfs_vdev_sync_read_min_active = 10;
13969962b56SMatthew Ahrens uint32_t zfs_vdev_sync_read_max_active = 10;
14069962b56SMatthew Ahrens uint32_t zfs_vdev_sync_write_min_active = 10;
14169962b56SMatthew Ahrens uint32_t zfs_vdev_sync_write_max_active = 10;
14269962b56SMatthew Ahrens uint32_t zfs_vdev_async_read_min_active = 1;
14369962b56SMatthew Ahrens uint32_t zfs_vdev_async_read_max_active = 3;
14469962b56SMatthew Ahrens uint32_t zfs_vdev_async_write_min_active = 1;
14569962b56SMatthew Ahrens uint32_t zfs_vdev_async_write_max_active = 10;
14669962b56SMatthew Ahrens uint32_t zfs_vdev_scrub_min_active = 1;
14769962b56SMatthew Ahrens uint32_t zfs_vdev_scrub_max_active = 2;
148614409b5Sahrens 
14969962b56SMatthew Ahrens /*
15069962b56SMatthew Ahrens  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
15169962b56SMatthew Ahrens  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
15269962b56SMatthew Ahrens  * zfs_vdev_async_write_active_max_dirty_percent, use
15369962b56SMatthew Ahrens  * zfs_vdev_async_write_max_active. The value is linearly interpolated
15469962b56SMatthew Ahrens  * between min and max.
15569962b56SMatthew Ahrens  */
15669962b56SMatthew Ahrens int zfs_vdev_async_write_active_min_dirty_percent = 30;
15769962b56SMatthew Ahrens int zfs_vdev_async_write_active_max_dirty_percent = 60;
158614409b5Sahrens 
159614409b5Sahrens /*
160f94275ceSAdam Leventhal  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
161f94275ceSAdam Leventhal  * For read I/Os, we also aggregate across small adjacency gaps; for writes
162f94275ceSAdam Leventhal  * we include spans of optional I/Os to aid aggregation at the disk even when
163f94275ceSAdam Leventhal  * they aren't able to help us aggregate at this level.
164614409b5Sahrens  */
165614409b5Sahrens int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
1666f708f7cSJeff Bonwick int zfs_vdev_read_gap_limit = 32 << 10;
167f94275ceSAdam Leventhal int zfs_vdev_write_gap_limit = 4 << 10;
168614409b5Sahrens 
169fa9e4066Sahrens int
17069962b56SMatthew Ahrens vdev_queue_offset_compare(const void *x1, const void *x2)
171fa9e4066Sahrens {
172fa9e4066Sahrens 	const zio_t *z1 = x1;
173fa9e4066Sahrens 	const zio_t *z2 = x2;
174fa9e4066Sahrens 
175fa9e4066Sahrens 	if (z1->io_offset < z2->io_offset)
176fa9e4066Sahrens 		return (-1);
177fa9e4066Sahrens 	if (z1->io_offset > z2->io_offset)
178fa9e4066Sahrens 		return (1);
179fa9e4066Sahrens 
180fa9e4066Sahrens 	if (z1 < z2)
181fa9e4066Sahrens 		return (-1);
182fa9e4066Sahrens 	if (z1 > z2)
183fa9e4066Sahrens 		return (1);
184fa9e4066Sahrens 
185fa9e4066Sahrens 	return (0);
186fa9e4066Sahrens }
187fa9e4066Sahrens 
188fa9e4066Sahrens int
18969962b56SMatthew Ahrens vdev_queue_timestamp_compare(const void *x1, const void *x2)
190fa9e4066Sahrens {
191fa9e4066Sahrens 	const zio_t *z1 = x1;
192fa9e4066Sahrens 	const zio_t *z2 = x2;
193fa9e4066Sahrens 
19469962b56SMatthew Ahrens 	if (z1->io_timestamp < z2->io_timestamp)
195fa9e4066Sahrens 		return (-1);
19669962b56SMatthew Ahrens 	if (z1->io_timestamp > z2->io_timestamp)
197fa9e4066Sahrens 		return (1);
198fa9e4066Sahrens 
199fa9e4066Sahrens 	if (z1 < z2)
200fa9e4066Sahrens 		return (-1);
201fa9e4066Sahrens 	if (z1 > z2)
202fa9e4066Sahrens 		return (1);
203fa9e4066Sahrens 
204fa9e4066Sahrens 	return (0);
205fa9e4066Sahrens }
206fa9e4066Sahrens 
207fa9e4066Sahrens void
208fa9e4066Sahrens vdev_queue_init(vdev_t *vd)
209fa9e4066Sahrens {
210fa9e4066Sahrens 	vdev_queue_t *vq = &vd->vdev_queue;
211fa9e4066Sahrens 
212fa9e4066Sahrens 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
21369962b56SMatthew Ahrens 	vq->vq_vdev = vd;
214fa9e4066Sahrens 
21569962b56SMatthew Ahrens 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
21669962b56SMatthew Ahrens 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
217fa9e4066Sahrens 
21869962b56SMatthew Ahrens 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
21969962b56SMatthew Ahrens 		/*
22069962b56SMatthew Ahrens 		 * The synchronous i/o queues are FIFO rather than LBA ordered.
22169962b56SMatthew Ahrens 		 * This provides more consistent latency for these i/os, and
22269962b56SMatthew Ahrens 		 * they tend to not be tightly clustered anyway so there is
22369962b56SMatthew Ahrens 		 * little to no throughput loss.
22469962b56SMatthew Ahrens 		 */
22569962b56SMatthew Ahrens 		boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
22669962b56SMatthew Ahrens 		    p == ZIO_PRIORITY_SYNC_WRITE);
22769962b56SMatthew Ahrens 		avl_create(&vq->vq_class[p].vqc_queued_tree,
22869962b56SMatthew Ahrens 		    fifo ? vdev_queue_timestamp_compare :
22969962b56SMatthew Ahrens 		    vdev_queue_offset_compare,
23069962b56SMatthew Ahrens 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
23169962b56SMatthew Ahrens 	}
232fa9e4066Sahrens }
233fa9e4066Sahrens 
234fa9e4066Sahrens void
235fa9e4066Sahrens vdev_queue_fini(vdev_t *vd)
236fa9e4066Sahrens {
237fa9e4066Sahrens 	vdev_queue_t *vq = &vd->vdev_queue;
238fa9e4066Sahrens 
23969962b56SMatthew Ahrens 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
24069962b56SMatthew Ahrens 		avl_destroy(&vq->vq_class[p].vqc_queued_tree);
24169962b56SMatthew Ahrens 	avl_destroy(&vq->vq_active_tree);
242fa9e4066Sahrens 
243fa9e4066Sahrens 	mutex_destroy(&vq->vq_lock);
244fa9e4066Sahrens }
245fa9e4066Sahrens 
246ea8dc4b6Seschrock static void
247ea8dc4b6Seschrock vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
248ea8dc4b6Seschrock {
249c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
25069962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
25169962b56SMatthew Ahrens 	avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
252c3a66015SMatthew Ahrens 
25369962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
25469962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
25569962b56SMatthew Ahrens 	if (spa->spa_iokstat != NULL)
256c3a66015SMatthew Ahrens 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
25769962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
258ea8dc4b6Seschrock }
259ea8dc4b6Seschrock 
260ea8dc4b6Seschrock static void
261ea8dc4b6Seschrock vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
262ea8dc4b6Seschrock {
263c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
26469962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
26569962b56SMatthew Ahrens 	avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
266c3a66015SMatthew Ahrens 
26769962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
26869962b56SMatthew Ahrens 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
26969962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
27069962b56SMatthew Ahrens 	if (spa->spa_iokstat != NULL)
271c3a66015SMatthew Ahrens 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
27269962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
273c3a66015SMatthew Ahrens }
274c3a66015SMatthew Ahrens 
275c3a66015SMatthew Ahrens static void
276c3a66015SMatthew Ahrens vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
277c3a66015SMatthew Ahrens {
278c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
27969962b56SMatthew Ahrens 	ASSERT(MUTEX_HELD(&vq->vq_lock));
28069962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
28169962b56SMatthew Ahrens 	vq->vq_class[zio->io_priority].vqc_active++;
28269962b56SMatthew Ahrens 	avl_add(&vq->vq_active_tree, zio);
28369962b56SMatthew Ahrens 
28469962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
28569962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_active++;
28669962b56SMatthew Ahrens 	if (spa->spa_iokstat != NULL)
287c3a66015SMatthew Ahrens 		kstat_runq_enter(spa->spa_iokstat->ks_data);
28869962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
289c3a66015SMatthew Ahrens }
290c3a66015SMatthew Ahrens 
291c3a66015SMatthew Ahrens static void
292c3a66015SMatthew Ahrens vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
293c3a66015SMatthew Ahrens {
294c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
29569962b56SMatthew Ahrens 	ASSERT(MUTEX_HELD(&vq->vq_lock));
29669962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
29769962b56SMatthew Ahrens 	vq->vq_class[zio->io_priority].vqc_active--;
29869962b56SMatthew Ahrens 	avl_remove(&vq->vq_active_tree, zio);
29969962b56SMatthew Ahrens 
30069962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
30169962b56SMatthew Ahrens 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
30269962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_active--;
303c3a66015SMatthew Ahrens 	if (spa->spa_iokstat != NULL) {
304c3a66015SMatthew Ahrens 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
305c3a66015SMatthew Ahrens 
306c3a66015SMatthew Ahrens 		kstat_runq_exit(spa->spa_iokstat->ks_data);
307c3a66015SMatthew Ahrens 		if (zio->io_type == ZIO_TYPE_READ) {
308c3a66015SMatthew Ahrens 			ksio->reads++;
309c3a66015SMatthew Ahrens 			ksio->nread += zio->io_size;
310c3a66015SMatthew Ahrens 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
311c3a66015SMatthew Ahrens 			ksio->writes++;
312c3a66015SMatthew Ahrens 			ksio->nwritten += zio->io_size;
313c3a66015SMatthew Ahrens 		}
314c3a66015SMatthew Ahrens 	}
31569962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
316ea8dc4b6Seschrock }
317ea8dc4b6Seschrock 
318fa9e4066Sahrens static void
319fa9e4066Sahrens vdev_queue_agg_io_done(zio_t *aio)
320fa9e4066Sahrens {
32169962b56SMatthew Ahrens 	if (aio->io_type == ZIO_TYPE_READ) {
32269962b56SMatthew Ahrens 		zio_t *pio;
32369962b56SMatthew Ahrens 		while ((pio = zio_walk_parents(aio)) != NULL) {
324a3f829aeSBill Moore 			bcopy((char *)aio->io_data + (pio->io_offset -
325a3f829aeSBill Moore 			    aio->io_offset), pio->io_data, pio->io_size);
32669962b56SMatthew Ahrens 		}
32769962b56SMatthew Ahrens 	}
328fa9e4066Sahrens 
329fa9e4066Sahrens 	zio_buf_free(aio->io_data, aio->io_size);
330fa9e4066Sahrens }
331fa9e4066Sahrens 
33269962b56SMatthew Ahrens static int
33369962b56SMatthew Ahrens vdev_queue_class_min_active(zio_priority_t p)
33469962b56SMatthew Ahrens {
33569962b56SMatthew Ahrens 	switch (p) {
33669962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_READ:
33769962b56SMatthew Ahrens 		return (zfs_vdev_sync_read_min_active);
33869962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_WRITE:
33969962b56SMatthew Ahrens 		return (zfs_vdev_sync_write_min_active);
34069962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_READ:
34169962b56SMatthew Ahrens 		return (zfs_vdev_async_read_min_active);
34269962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_WRITE:
34369962b56SMatthew Ahrens 		return (zfs_vdev_async_write_min_active);
34469962b56SMatthew Ahrens 	case ZIO_PRIORITY_SCRUB:
34569962b56SMatthew Ahrens 		return (zfs_vdev_scrub_min_active);
34669962b56SMatthew Ahrens 	default:
34769962b56SMatthew Ahrens 		panic("invalid priority %u", p);
34869962b56SMatthew Ahrens 		return (0);
34969962b56SMatthew Ahrens 	}
35069962b56SMatthew Ahrens }
35169962b56SMatthew Ahrens 
35269962b56SMatthew Ahrens static int
353*73527f44SAlex Reece vdev_queue_max_async_writes(spa_t *spa)
35469962b56SMatthew Ahrens {
35569962b56SMatthew Ahrens 	int writes;
356*73527f44SAlex Reece 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
35769962b56SMatthew Ahrens 	uint64_t min_bytes = zfs_dirty_data_max *
35869962b56SMatthew Ahrens 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
35969962b56SMatthew Ahrens 	uint64_t max_bytes = zfs_dirty_data_max *
36069962b56SMatthew Ahrens 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
36169962b56SMatthew Ahrens 
362*73527f44SAlex Reece 	/*
363*73527f44SAlex Reece 	 * Sync tasks correspond to interactive user actions. To reduce the
364*73527f44SAlex Reece 	 * execution time of those actions we push data out as fast as possible.
365*73527f44SAlex Reece 	 */
366*73527f44SAlex Reece 	if (spa_has_pending_synctask(spa)) {
367*73527f44SAlex Reece 		return (zfs_vdev_async_write_max_active);
368*73527f44SAlex Reece 	}
369*73527f44SAlex Reece 
37069962b56SMatthew Ahrens 	if (dirty < min_bytes)
37169962b56SMatthew Ahrens 		return (zfs_vdev_async_write_min_active);
37269962b56SMatthew Ahrens 	if (dirty > max_bytes)
37369962b56SMatthew Ahrens 		return (zfs_vdev_async_write_max_active);
37469962b56SMatthew Ahrens 
37569962b56SMatthew Ahrens 	/*
37669962b56SMatthew Ahrens 	 * linear interpolation:
37769962b56SMatthew Ahrens 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
37869962b56SMatthew Ahrens 	 * move right by min_bytes
37969962b56SMatthew Ahrens 	 * move up by min_writes
38069962b56SMatthew Ahrens 	 */
38169962b56SMatthew Ahrens 	writes = (dirty - min_bytes) *
38269962b56SMatthew Ahrens 	    (zfs_vdev_async_write_max_active -
38369962b56SMatthew Ahrens 	    zfs_vdev_async_write_min_active) /
38469962b56SMatthew Ahrens 	    (max_bytes - min_bytes) +
38569962b56SMatthew Ahrens 	    zfs_vdev_async_write_min_active;
38669962b56SMatthew Ahrens 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
38769962b56SMatthew Ahrens 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
38869962b56SMatthew Ahrens 	return (writes);
38969962b56SMatthew Ahrens }
39069962b56SMatthew Ahrens 
39169962b56SMatthew Ahrens static int
39269962b56SMatthew Ahrens vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
39369962b56SMatthew Ahrens {
39469962b56SMatthew Ahrens 	switch (p) {
39569962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_READ:
39669962b56SMatthew Ahrens 		return (zfs_vdev_sync_read_max_active);
39769962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_WRITE:
39869962b56SMatthew Ahrens 		return (zfs_vdev_sync_write_max_active);
39969962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_READ:
40069962b56SMatthew Ahrens 		return (zfs_vdev_async_read_max_active);
40169962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_WRITE:
402*73527f44SAlex Reece 		return (vdev_queue_max_async_writes(spa));
40369962b56SMatthew Ahrens 	case ZIO_PRIORITY_SCRUB:
40469962b56SMatthew Ahrens 		return (zfs_vdev_scrub_max_active);
40569962b56SMatthew Ahrens 	default:
40669962b56SMatthew Ahrens 		panic("invalid priority %u", p);
40769962b56SMatthew Ahrens 		return (0);
40869962b56SMatthew Ahrens 	}
40969962b56SMatthew Ahrens }
41069962b56SMatthew Ahrens 
41169962b56SMatthew Ahrens /*
41269962b56SMatthew Ahrens  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
41369962b56SMatthew Ahrens  * there is no eligible class.
41469962b56SMatthew Ahrens  */
41569962b56SMatthew Ahrens static zio_priority_t
41669962b56SMatthew Ahrens vdev_queue_class_to_issue(vdev_queue_t *vq)
41769962b56SMatthew Ahrens {
41869962b56SMatthew Ahrens 	spa_t *spa = vq->vq_vdev->vdev_spa;
41969962b56SMatthew Ahrens 	zio_priority_t p;
42069962b56SMatthew Ahrens 
42169962b56SMatthew Ahrens 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
42269962b56SMatthew Ahrens 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
42369962b56SMatthew Ahrens 
42469962b56SMatthew Ahrens 	/* find a queue that has not reached its minimum # outstanding i/os */
42569962b56SMatthew Ahrens 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
42669962b56SMatthew Ahrens 		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
42769962b56SMatthew Ahrens 		    vq->vq_class[p].vqc_active <
42869962b56SMatthew Ahrens 		    vdev_queue_class_min_active(p))
42969962b56SMatthew Ahrens 			return (p);
43069962b56SMatthew Ahrens 	}
43169962b56SMatthew Ahrens 
43269962b56SMatthew Ahrens 	/*
43369962b56SMatthew Ahrens 	 * If we haven't found a queue, look for one that hasn't reached its
43469962b56SMatthew Ahrens 	 * maximum # outstanding i/os.
43569962b56SMatthew Ahrens 	 */
43669962b56SMatthew Ahrens 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
43769962b56SMatthew Ahrens 		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
43869962b56SMatthew Ahrens 		    vq->vq_class[p].vqc_active <
43969962b56SMatthew Ahrens 		    vdev_queue_class_max_active(spa, p))
44069962b56SMatthew Ahrens 			return (p);
44169962b56SMatthew Ahrens 	}
44269962b56SMatthew Ahrens 
44369962b56SMatthew Ahrens 	/* No eligible queued i/os */
44469962b56SMatthew Ahrens 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
44569962b56SMatthew Ahrens }
44669962b56SMatthew Ahrens 
4476f708f7cSJeff Bonwick /*
4486f708f7cSJeff Bonwick  * Compute the range spanned by two i/os, which is the endpoint of the last
4496f708f7cSJeff Bonwick  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
4506f708f7cSJeff Bonwick  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
4516f708f7cSJeff Bonwick  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
4526f708f7cSJeff Bonwick  */
4536f708f7cSJeff Bonwick #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
4546f708f7cSJeff Bonwick #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
455fa9e4066Sahrens 
456fa9e4066Sahrens static zio_t *
45769962b56SMatthew Ahrens vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
458fa9e4066Sahrens {
45969962b56SMatthew Ahrens 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
46069962b56SMatthew Ahrens 	uint64_t maxgap = 0;
46169962b56SMatthew Ahrens 	uint64_t size;
46269962b56SMatthew Ahrens 	boolean_t stretch = B_FALSE;
46369962b56SMatthew Ahrens 	vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
46469962b56SMatthew Ahrens 	avl_tree_t *t = &vqc->vqc_queued_tree;
46569962b56SMatthew Ahrens 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
46669962b56SMatthew Ahrens 
46769962b56SMatthew Ahrens 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
46869962b56SMatthew Ahrens 		return (NULL);
469fa9e4066Sahrens 
47069962b56SMatthew Ahrens 	/*
47169962b56SMatthew Ahrens 	 * The synchronous i/o queues are not sorted by LBA, so we can't
47269962b56SMatthew Ahrens 	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
47369962b56SMatthew Ahrens 	 * or too large to aggregate, so this has little impact on performance.
47469962b56SMatthew Ahrens 	 */
47569962b56SMatthew Ahrens 	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
47669962b56SMatthew Ahrens 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
477fa9e4066Sahrens 		return (NULL);
478fa9e4066Sahrens 
47969962b56SMatthew Ahrens 	first = last = zio;
480fa9e4066Sahrens 
48169962b56SMatthew Ahrens 	if (zio->io_type == ZIO_TYPE_READ)
48269962b56SMatthew Ahrens 		maxgap = zfs_vdev_read_gap_limit;
4838ad4d6ddSJeff Bonwick 
48469962b56SMatthew Ahrens 	/*
48569962b56SMatthew Ahrens 	 * We can aggregate I/Os that are sufficiently adjacent and of
48669962b56SMatthew Ahrens 	 * the same flavor, as expressed by the AGG_INHERIT flags.
48769962b56SMatthew Ahrens 	 * The latter requirement is necessary so that certain
48869962b56SMatthew Ahrens 	 * attributes of the I/O, such as whether it's a normal I/O
48969962b56SMatthew Ahrens 	 * or a scrub/resilver, can be preserved in the aggregate.
49069962b56SMatthew Ahrens 	 * We can include optional I/Os, but don't allow them
49169962b56SMatthew Ahrens 	 * to begin a range as they add no benefit in that situation.
49269962b56SMatthew Ahrens 	 */
493f94275ceSAdam Leventhal 
49469962b56SMatthew Ahrens 	/*
49569962b56SMatthew Ahrens 	 * We keep track of the last non-optional I/O.
49669962b56SMatthew Ahrens 	 */
49769962b56SMatthew Ahrens 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
498f94275ceSAdam Leventhal 
49969962b56SMatthew Ahrens 	/*
50069962b56SMatthew Ahrens 	 * Walk backwards through sufficiently contiguous I/Os
50169962b56SMatthew Ahrens 	 * recording the last non-option I/O.
50269962b56SMatthew Ahrens 	 */
50369962b56SMatthew Ahrens 	while ((dio = AVL_PREV(t, first)) != NULL &&
50469962b56SMatthew Ahrens 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
50569962b56SMatthew Ahrens 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
50669962b56SMatthew Ahrens 	    IO_GAP(dio, first) <= maxgap) {
50769962b56SMatthew Ahrens 		first = dio;
50869962b56SMatthew Ahrens 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
50969962b56SMatthew Ahrens 			mandatory = first;
51069962b56SMatthew Ahrens 	}
511f94275ceSAdam Leventhal 
51269962b56SMatthew Ahrens 	/*
51369962b56SMatthew Ahrens 	 * Skip any initial optional I/Os.
51469962b56SMatthew Ahrens 	 */
51569962b56SMatthew Ahrens 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
51669962b56SMatthew Ahrens 		first = AVL_NEXT(t, first);
51769962b56SMatthew Ahrens 		ASSERT(first != NULL);
51869962b56SMatthew Ahrens 	}
5196f708f7cSJeff Bonwick 
52069962b56SMatthew Ahrens 	/*
52169962b56SMatthew Ahrens 	 * Walk forward through sufficiently contiguous I/Os.
52269962b56SMatthew Ahrens 	 */
52369962b56SMatthew Ahrens 	while ((dio = AVL_NEXT(t, last)) != NULL &&
52469962b56SMatthew Ahrens 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
52569962b56SMatthew Ahrens 	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
52669962b56SMatthew Ahrens 	    IO_GAP(last, dio) <= maxgap) {
52769962b56SMatthew Ahrens 		last = dio;
52869962b56SMatthew Ahrens 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
52969962b56SMatthew Ahrens 			mandatory = last;
53069962b56SMatthew Ahrens 	}
531f94275ceSAdam Leventhal 
53269962b56SMatthew Ahrens 	/*
53369962b56SMatthew Ahrens 	 * Now that we've established the range of the I/O aggregation
53469962b56SMatthew Ahrens 	 * we must decide what to do with trailing optional I/Os.
53569962b56SMatthew Ahrens 	 * For reads, there's nothing to do. While we are unable to
53669962b56SMatthew Ahrens 	 * aggregate further, it's possible that a trailing optional
53769962b56SMatthew Ahrens 	 * I/O would allow the underlying device to aggregate with
53869962b56SMatthew Ahrens 	 * subsequent I/Os. We must therefore determine if the next
53969962b56SMatthew Ahrens 	 * non-optional I/O is close enough to make aggregation
54069962b56SMatthew Ahrens 	 * worthwhile.
54169962b56SMatthew Ahrens 	 */
54269962b56SMatthew Ahrens 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
54369962b56SMatthew Ahrens 		zio_t *nio = last;
54469962b56SMatthew Ahrens 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
54569962b56SMatthew Ahrens 		    IO_GAP(nio, dio) == 0 &&
54669962b56SMatthew Ahrens 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
54769962b56SMatthew Ahrens 			nio = dio;
54869962b56SMatthew Ahrens 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
54969962b56SMatthew Ahrens 				stretch = B_TRUE;
55069962b56SMatthew Ahrens 				break;
551f94275ceSAdam Leventhal 			}
552f94275ceSAdam Leventhal 		}
55369962b56SMatthew Ahrens 	}
554f94275ceSAdam Leventhal 
55569962b56SMatthew Ahrens 	if (stretch) {
55669962b56SMatthew Ahrens 		/* This may be a no-op. */
55769962b56SMatthew Ahrens 		dio = AVL_NEXT(t, last);
55869962b56SMatthew Ahrens 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
55969962b56SMatthew Ahrens 	} else {
56069962b56SMatthew Ahrens 		while (last != mandatory && last != first) {
56169962b56SMatthew Ahrens 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
56269962b56SMatthew Ahrens 			last = AVL_PREV(t, last);
56369962b56SMatthew Ahrens 			ASSERT(last != NULL);
564f94275ceSAdam Leventhal 		}
565fa9e4066Sahrens 	}
566fa9e4066Sahrens 
56769962b56SMatthew Ahrens 	if (first == last)
56869962b56SMatthew Ahrens 		return (NULL);
56969962b56SMatthew Ahrens 
57069962b56SMatthew Ahrens 	size = IO_SPAN(first, last);
57169962b56SMatthew Ahrens 	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
57269962b56SMatthew Ahrens 
57369962b56SMatthew Ahrens 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
57469962b56SMatthew Ahrens 	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
57569962b56SMatthew Ahrens 	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
57669962b56SMatthew Ahrens 	    vdev_queue_agg_io_done, NULL);
57769962b56SMatthew Ahrens 	aio->io_timestamp = first->io_timestamp;
57869962b56SMatthew Ahrens 
57969962b56SMatthew Ahrens 	nio = first;
58069962b56SMatthew Ahrens 	do {
58169962b56SMatthew Ahrens 		dio = nio;
58269962b56SMatthew Ahrens 		nio = AVL_NEXT(t, dio);
58369962b56SMatthew Ahrens 		ASSERT3U(dio->io_type, ==, aio->io_type);
58469962b56SMatthew Ahrens 
58569962b56SMatthew Ahrens 		if (dio->io_flags & ZIO_FLAG_NODATA) {
58669962b56SMatthew Ahrens 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
58769962b56SMatthew Ahrens 			bzero((char *)aio->io_data + (dio->io_offset -
58869962b56SMatthew Ahrens 			    aio->io_offset), dio->io_size);
58969962b56SMatthew Ahrens 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
59069962b56SMatthew Ahrens 			bcopy(dio->io_data, (char *)aio->io_data +
59169962b56SMatthew Ahrens 			    (dio->io_offset - aio->io_offset),
59269962b56SMatthew Ahrens 			    dio->io_size);
59369962b56SMatthew Ahrens 		}
594a3f829aeSBill Moore 
59569962b56SMatthew Ahrens 		zio_add_child(dio, aio);
59669962b56SMatthew Ahrens 		vdev_queue_io_remove(vq, dio);
59769962b56SMatthew Ahrens 		zio_vdev_io_bypass(dio);
59869962b56SMatthew Ahrens 		zio_execute(dio);
59969962b56SMatthew Ahrens 	} while (dio != last);
60069962b56SMatthew Ahrens 
60169962b56SMatthew Ahrens 	return (aio);
60269962b56SMatthew Ahrens }
60369962b56SMatthew Ahrens 
60469962b56SMatthew Ahrens static zio_t *
60569962b56SMatthew Ahrens vdev_queue_io_to_issue(vdev_queue_t *vq)
60669962b56SMatthew Ahrens {
60769962b56SMatthew Ahrens 	zio_t *zio, *aio;
60869962b56SMatthew Ahrens 	zio_priority_t p;
60969962b56SMatthew Ahrens 	avl_index_t idx;
61069962b56SMatthew Ahrens 	vdev_queue_class_t *vqc;
61169962b56SMatthew Ahrens 	zio_t search;
61269962b56SMatthew Ahrens 
61369962b56SMatthew Ahrens again:
61469962b56SMatthew Ahrens 	ASSERT(MUTEX_HELD(&vq->vq_lock));
615fa9e4066Sahrens 
61669962b56SMatthew Ahrens 	p = vdev_queue_class_to_issue(vq);
617fa9e4066Sahrens 
61869962b56SMatthew Ahrens 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
61969962b56SMatthew Ahrens 		/* No eligible queued i/os */
62069962b56SMatthew Ahrens 		return (NULL);
621fa9e4066Sahrens 	}
622fa9e4066Sahrens 
62369962b56SMatthew Ahrens 	/*
62469962b56SMatthew Ahrens 	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
62569962b56SMatthew Ahrens 	 * the most recently issued i/o in LBA (offset) order.
62669962b56SMatthew Ahrens 	 *
62769962b56SMatthew Ahrens 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
62869962b56SMatthew Ahrens 	 */
62969962b56SMatthew Ahrens 	vqc = &vq->vq_class[p];
63069962b56SMatthew Ahrens 	search.io_timestamp = 0;
63169962b56SMatthew Ahrens 	search.io_offset = vq->vq_last_offset + 1;
63269962b56SMatthew Ahrens 	VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
63369962b56SMatthew Ahrens 	zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
63469962b56SMatthew Ahrens 	if (zio == NULL)
63569962b56SMatthew Ahrens 		zio = avl_first(&vqc->vqc_queued_tree);
63669962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, ==, p);
63769962b56SMatthew Ahrens 
63869962b56SMatthew Ahrens 	aio = vdev_queue_aggregate(vq, zio);
63969962b56SMatthew Ahrens 	if (aio != NULL)
64069962b56SMatthew Ahrens 		zio = aio;
64169962b56SMatthew Ahrens 	else
64269962b56SMatthew Ahrens 		vdev_queue_io_remove(vq, zio);
643fa9e4066Sahrens 
644f94275ceSAdam Leventhal 	/*
645f94275ceSAdam Leventhal 	 * If the I/O is or was optional and therefore has no data, we need to
646f94275ceSAdam Leventhal 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
647f94275ceSAdam Leventhal 	 * deadlock that we could encounter since this I/O will complete
648f94275ceSAdam Leventhal 	 * immediately.
649f94275ceSAdam Leventhal 	 */
65069962b56SMatthew Ahrens 	if (zio->io_flags & ZIO_FLAG_NODATA) {
651f94275ceSAdam Leventhal 		mutex_exit(&vq->vq_lock);
65269962b56SMatthew Ahrens 		zio_vdev_io_bypass(zio);
65369962b56SMatthew Ahrens 		zio_execute(zio);
654f94275ceSAdam Leventhal 		mutex_enter(&vq->vq_lock);
655f94275ceSAdam Leventhal 		goto again;
656f94275ceSAdam Leventhal 	}
657f94275ceSAdam Leventhal 
65869962b56SMatthew Ahrens 	vdev_queue_pending_add(vq, zio);
65969962b56SMatthew Ahrens 	vq->vq_last_offset = zio->io_offset;
660fa9e4066Sahrens 
66169962b56SMatthew Ahrens 	return (zio);
662fa9e4066Sahrens }
663fa9e4066Sahrens 
664fa9e4066Sahrens zio_t *
665fa9e4066Sahrens vdev_queue_io(zio_t *zio)
666fa9e4066Sahrens {
667fa9e4066Sahrens 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
668fa9e4066Sahrens 	zio_t *nio;
669fa9e4066Sahrens 
670fa9e4066Sahrens 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
671fa9e4066Sahrens 		return (zio);
672fa9e4066Sahrens 
67369962b56SMatthew Ahrens 	/*
67469962b56SMatthew Ahrens 	 * Children i/os inherent their parent's priority, which might
67569962b56SMatthew Ahrens 	 * not match the child's i/o type.  Fix it up here.
67669962b56SMatthew Ahrens 	 */
67769962b56SMatthew Ahrens 	if (zio->io_type == ZIO_TYPE_READ) {
67869962b56SMatthew Ahrens 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
67969962b56SMatthew Ahrens 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
68069962b56SMatthew Ahrens 		    zio->io_priority != ZIO_PRIORITY_SCRUB)
68169962b56SMatthew Ahrens 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
68269962b56SMatthew Ahrens 	} else {
68369962b56SMatthew Ahrens 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
68469962b56SMatthew Ahrens 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
68569962b56SMatthew Ahrens 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
68669962b56SMatthew Ahrens 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
68769962b56SMatthew Ahrens 	}
688fa9e4066Sahrens 
68969962b56SMatthew Ahrens 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
690fa9e4066Sahrens 
691fa9e4066Sahrens 	mutex_enter(&vq->vq_lock);
692c55e05cbSMatthew Ahrens 	zio->io_timestamp = gethrtime();
693ea8dc4b6Seschrock 	vdev_queue_io_add(vq, zio);
69469962b56SMatthew Ahrens 	nio = vdev_queue_io_to_issue(vq);
695fa9e4066Sahrens 	mutex_exit(&vq->vq_lock);
696fa9e4066Sahrens 
697e05725b1Sbonwick 	if (nio == NULL)
698e05725b1Sbonwick 		return (NULL);
699e05725b1Sbonwick 
700e05725b1Sbonwick 	if (nio->io_done == vdev_queue_agg_io_done) {
701e05725b1Sbonwick 		zio_nowait(nio);
702e05725b1Sbonwick 		return (NULL);
703e05725b1Sbonwick 	}
704fa9e4066Sahrens 
705e05725b1Sbonwick 	return (nio);
706fa9e4066Sahrens }
707fa9e4066Sahrens 
708fa9e4066Sahrens void
709fa9e4066Sahrens vdev_queue_io_done(zio_t *zio)
710fa9e4066Sahrens {
711fa9e4066Sahrens 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
71269962b56SMatthew Ahrens 	zio_t *nio;
713fa9e4066Sahrens 
714283b8460SGeorge.Wilson 	if (zio_injection_enabled)
715283b8460SGeorge.Wilson 		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
716283b8460SGeorge.Wilson 
717fa9e4066Sahrens 	mutex_enter(&vq->vq_lock);
718fa9e4066Sahrens 
719c3a66015SMatthew Ahrens 	vdev_queue_pending_remove(vq, zio);
720fa9e4066Sahrens 
721c55e05cbSMatthew Ahrens 	vq->vq_io_complete_ts = gethrtime();
722283b8460SGeorge.Wilson 
72369962b56SMatthew Ahrens 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
724fa9e4066Sahrens 		mutex_exit(&vq->vq_lock);
725e05725b1Sbonwick 		if (nio->io_done == vdev_queue_agg_io_done) {
726e05725b1Sbonwick 			zio_nowait(nio);
727e05725b1Sbonwick 		} else {
728fa9e4066Sahrens 			zio_vdev_io_reissue(nio);
729e05725b1Sbonwick 			zio_execute(nio);
730e05725b1Sbonwick 		}
731fa9e4066Sahrens 		mutex_enter(&vq->vq_lock);
732fa9e4066Sahrens 	}
733fa9e4066Sahrens 
734fa9e4066Sahrens 	mutex_exit(&vq->vq_lock);
735fa9e4066Sahrens }
736