xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision 39c23413b8df94a95f67b34cfd4a4dfc3fd0b48d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  * 	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  * 	3. Determine the uberblock for the pool.
41  *
42  * 	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  * 	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transacation groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  * 	1. For each vdev, update 'L1' to the new label
82  * 	2. Update the uberblock
83  * 	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  * 	version		ZFS on-disk version
122  * 	name		Pool name
123  * 	state		Pool state
124  * 	txg		Transaction group in which this label was written
125  * 	pool_guid	Unique identifier for this pool
126  * 	vdev_tree	An nvlist describing vdev tree.
127  *
128  * Each leaf device label also contains the following:
129  *
130  * 	top_guid	Unique ID for top-level vdev in which this is contained
131  * 	guid		Unique ID for the leaf vdev
132  *
133  * The 'vs' configuration follows the format described in 'spa_config.c'.
134  */
135 
136 #include <sys/zfs_context.h>
137 #include <sys/spa.h>
138 #include <sys/spa_impl.h>
139 #include <sys/dmu.h>
140 #include <sys/zap.h>
141 #include <sys/vdev.h>
142 #include <sys/vdev_impl.h>
143 #include <sys/uberblock_impl.h>
144 #include <sys/metaslab.h>
145 #include <sys/zio.h>
146 #include <sys/fs/zfs.h>
147 
148 /*
149  * Basic routines to read and write from a vdev label.
150  * Used throughout the rest of this file.
151  */
152 uint64_t
153 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154 {
155 	ASSERT(offset < sizeof (vdev_label_t));
156 
157 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
158 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
159 }
160 
161 static void
162 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
163 	uint64_t size, zio_done_func_t *done, void *private)
164 {
165 	ASSERT(vd->vdev_children == 0);
166 
167 	zio_nowait(zio_read_phys(zio, vd,
168 	    vdev_label_offset(vd->vdev_psize, l, offset),
169 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
170 	    ZIO_PRIORITY_SYNC_READ,
171 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
172 }
173 
174 static void
175 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
176 	uint64_t size, zio_done_func_t *done, void *private)
177 {
178 	ASSERT(vd->vdev_children == 0);
179 
180 	zio_nowait(zio_write_phys(zio, vd,
181 	    vdev_label_offset(vd->vdev_psize, l, offset),
182 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
183 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
184 }
185 
186 /*
187  * Generate the nvlist representing this vdev's config.
188  */
189 nvlist_t *
190 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
191     boolean_t isspare)
192 {
193 	nvlist_t *nv = NULL;
194 
195 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196 
197 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
198 	    vd->vdev_ops->vdev_op_type) == 0);
199 	if (!isspare)
200 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
201 		    == 0);
202 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
203 
204 	if (vd->vdev_path != NULL)
205 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
206 		    vd->vdev_path) == 0);
207 
208 	if (vd->vdev_devid != NULL)
209 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
210 		    vd->vdev_devid) == 0);
211 
212 	if (vd->vdev_nparity != 0) {
213 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
214 		    VDEV_TYPE_RAIDZ) == 0);
215 
216 		/*
217 		 * Make sure someone hasn't managed to sneak a fancy new vdev
218 		 * into a crufty old storage pool.
219 		 */
220 		ASSERT(vd->vdev_nparity == 1 ||
221 		    (vd->vdev_nparity == 2 &&
222 		    spa_version(spa) >= ZFS_VERSION_RAID6));
223 
224 		/*
225 		 * Note that we'll add the nparity tag even on storage pools
226 		 * that only support a single parity device -- older software
227 		 * will just ignore it.
228 		 */
229 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
230 		    vd->vdev_nparity) == 0);
231 	}
232 
233 	if (vd->vdev_wholedisk != -1ULL)
234 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
235 		    vd->vdev_wholedisk) == 0);
236 
237 	if (vd->vdev_not_present)
238 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
239 
240 	if (vd->vdev_isspare)
241 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
242 
243 	if (!isspare && vd == vd->vdev_top) {
244 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
245 		    vd->vdev_ms_array) == 0);
246 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
247 		    vd->vdev_ms_shift) == 0);
248 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
249 		    vd->vdev_ashift) == 0);
250 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
251 		    vd->vdev_asize) == 0);
252 	}
253 
254 	if (vd->vdev_dtl.smo_object != 0)
255 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
256 		    vd->vdev_dtl.smo_object) == 0);
257 
258 	if (getstats) {
259 		vdev_stat_t vs;
260 		vdev_get_stats(vd, &vs);
261 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
262 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
263 	}
264 
265 	if (!vd->vdev_ops->vdev_op_leaf) {
266 		nvlist_t **child;
267 		int c;
268 
269 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
270 		    KM_SLEEP);
271 
272 		for (c = 0; c < vd->vdev_children; c++)
273 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
274 			    getstats, isspare);
275 
276 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
277 		    child, vd->vdev_children) == 0);
278 
279 		for (c = 0; c < vd->vdev_children; c++)
280 			nvlist_free(child[c]);
281 
282 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
283 
284 	} else {
285 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
286 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
287 			    B_TRUE) == 0);
288 		else
289 			(void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE,
290 			    DATA_TYPE_UINT64);
291 	}
292 
293 	return (nv);
294 }
295 
296 nvlist_t *
297 vdev_label_read_config(vdev_t *vd)
298 {
299 	spa_t *spa = vd->vdev_spa;
300 	nvlist_t *config = NULL;
301 	vdev_phys_t *vp;
302 	zio_t *zio;
303 	int l;
304 
305 	ASSERT(spa_config_held(spa, RW_READER));
306 
307 	if (vdev_is_dead(vd))
308 		return (NULL);
309 
310 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
311 
312 	for (l = 0; l < VDEV_LABELS; l++) {
313 
314 		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
315 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
316 
317 		vdev_label_read(zio, vd, l, vp,
318 		    offsetof(vdev_label_t, vl_vdev_phys),
319 		    sizeof (vdev_phys_t), NULL, NULL);
320 
321 		if (zio_wait(zio) == 0 &&
322 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
323 		    &config, 0) == 0)
324 			break;
325 
326 		if (config != NULL) {
327 			nvlist_free(config);
328 			config = NULL;
329 		}
330 	}
331 
332 	zio_buf_free(vp, sizeof (vdev_phys_t));
333 
334 	return (config);
335 }
336 
337 /*
338  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
339  * in with the device guid if this spare is active elsewhere on the system.
340  */
341 static boolean_t
342 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
343     uint64_t *spare_guid)
344 {
345 	spa_t *spa = vd->vdev_spa;
346 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
347 	uint64_t vdtxg = 0;
348 	nvlist_t *label;
349 
350 	if (spare_guid)
351 		*spare_guid = 0ULL;
352 
353 	/*
354 	 * Read the label, if any, and perform some basic sanity checks.
355 	 */
356 	if ((label = vdev_label_read_config(vd)) == NULL)
357 		return (B_FALSE);
358 
359 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
360 	    &vdtxg);
361 
362 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
363 	    &state) != 0 ||
364 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
365 	    &device_guid) != 0) {
366 		nvlist_free(label);
367 		return (B_FALSE);
368 	}
369 
370 	if (state != POOL_STATE_SPARE &&
371 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
372 	    &pool_guid) != 0 ||
373 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
374 	    &txg) != 0)) {
375 		nvlist_free(label);
376 		return (B_FALSE);
377 	}
378 
379 	nvlist_free(label);
380 
381 	/*
382 	 * Check to see if this device indeed belongs to the pool it claims to
383 	 * be a part of.  The only way this is allowed is if the device is a hot
384 	 * spare (which we check for later on).
385 	 */
386 	if (state != POOL_STATE_SPARE &&
387 	    !spa_guid_exists(pool_guid, device_guid) &&
388 	    !spa_spare_exists(device_guid, NULL))
389 		return (B_FALSE);
390 
391 	/*
392 	 * If the transaction group is zero, then this an initialized (but
393 	 * unused) label.  This is only an error if the create transaction
394 	 * on-disk is the same as the one we're using now, in which case the
395 	 * user has attempted to add the same vdev multiple times in the same
396 	 * transaction.
397 	 */
398 	if (state != POOL_STATE_SPARE && txg == 0 && vdtxg == crtxg)
399 		return (B_TRUE);
400 
401 	/*
402 	 * Check to see if this is a spare device.  We do an explicit check for
403 	 * spa_has_spare() here because it may be on our pending list of spares
404 	 * to add.
405 	 */
406 	if (spa_spare_exists(device_guid, &spare_pool) ||
407 	    spa_has_spare(spa, device_guid)) {
408 		if (spare_guid)
409 			*spare_guid = device_guid;
410 
411 		switch (reason) {
412 		case VDEV_LABEL_CREATE:
413 			return (B_TRUE);
414 
415 		case VDEV_LABEL_REPLACE:
416 			return (!spa_has_spare(spa, device_guid) ||
417 			    spare_pool != 0ULL);
418 
419 		case VDEV_LABEL_SPARE:
420 			return (spa_has_spare(spa, device_guid));
421 		}
422 	}
423 
424 	/*
425 	 * If the device is marked ACTIVE, then this device is in use by another
426 	 * pool on the system.
427 	 */
428 	return (state == POOL_STATE_ACTIVE);
429 }
430 
431 /*
432  * Initialize a vdev label.  We check to make sure each leaf device is not in
433  * use, and writable.  We put down an initial label which we will later
434  * overwrite with a complete label.  Note that it's important to do this
435  * sequentially, not in parallel, so that we catch cases of multiple use of the
436  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
437  * itself.
438  */
439 int
440 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
441 {
442 	spa_t *spa = vd->vdev_spa;
443 	nvlist_t *label;
444 	vdev_phys_t *vp;
445 	vdev_boot_header_t *vb;
446 	uberblock_t *ub;
447 	zio_t *zio;
448 	int l, c, n;
449 	char *buf;
450 	size_t buflen;
451 	int error;
452 	uint64_t spare_guid;
453 
454 	ASSERT(spa_config_held(spa, RW_WRITER));
455 
456 	for (c = 0; c < vd->vdev_children; c++)
457 		if ((error = vdev_label_init(vd->vdev_child[c],
458 		    crtxg, reason)) != 0)
459 			return (error);
460 
461 	if (!vd->vdev_ops->vdev_op_leaf)
462 		return (0);
463 
464 	/*
465 	 * Dead vdevs cannot be initialized.
466 	 */
467 	if (vdev_is_dead(vd))
468 		return (EIO);
469 
470 	/*
471 	 * Determine if the vdev is in use.
472 	 */
473 	if (reason != VDEV_LABEL_REMOVE &&
474 	    vdev_inuse(vd, crtxg, reason, &spare_guid))
475 		return (EBUSY);
476 
477 	ASSERT(reason != VDEV_LABEL_REMOVE ||
478 	    vdev_inuse(vd, crtxg, reason, NULL));
479 
480 	/*
481 	 * If this is a request to add or replace a spare that is in use
482 	 * elsewhere on the system, then we must update the guid (which was
483 	 * initialized to a random value) to reflect the actual GUID (which is
484 	 * shared between multiple pools).
485 	 */
486 	if (reason != VDEV_LABEL_REMOVE && spare_guid != 0ULL) {
487 		vdev_t *pvd = vd->vdev_parent;
488 
489 		for (; pvd != NULL; pvd = pvd->vdev_parent) {
490 			pvd->vdev_guid_sum -= vd->vdev_guid;
491 			pvd->vdev_guid_sum += spare_guid;
492 		}
493 
494 		vd->vdev_guid = vd->vdev_guid_sum = spare_guid;
495 
496 		/*
497 		 * If this is a replacement, then we want to fallthrough to the
498 		 * rest of the code.  If we're adding a spare, then it's already
499 		 * labelled appropriately and we can just return.
500 		 */
501 		if (reason == VDEV_LABEL_SPARE)
502 			return (0);
503 		ASSERT(reason == VDEV_LABEL_REPLACE);
504 	}
505 
506 	/*
507 	 * Initialize its label.
508 	 */
509 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
510 	bzero(vp, sizeof (vdev_phys_t));
511 
512 	/*
513 	 * Generate a label describing the pool and our top-level vdev.
514 	 * We mark it as being from txg 0 to indicate that it's not
515 	 * really part of an active pool just yet.  The labels will
516 	 * be written again with a meaningful txg by spa_sync().
517 	 */
518 	if (reason == VDEV_LABEL_SPARE ||
519 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
520 		/*
521 		 * For inactive hot spares, we generate a special label that
522 		 * identifies as a mutually shared hot spare.  We write the
523 		 * label if we are adding a hot spare, or if we are removing an
524 		 * active hot spare (in which case we want to revert the
525 		 * labels).
526 		 */
527 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
528 
529 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
530 		    spa_version(spa)) == 0);
531 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
532 		    POOL_STATE_SPARE) == 0);
533 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
534 		    vd->vdev_guid) == 0);
535 	} else {
536 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
537 
538 		/*
539 		 * Add our creation time.  This allows us to detect multiple
540 		 * vdev uses as described above, and automatically expires if we
541 		 * fail.
542 		 */
543 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
544 		    crtxg) == 0);
545 	}
546 
547 	buf = vp->vp_nvlist;
548 	buflen = sizeof (vp->vp_nvlist);
549 
550 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) {
551 		nvlist_free(label);
552 		zio_buf_free(vp, sizeof (vdev_phys_t));
553 		return (EINVAL);
554 	}
555 
556 	/*
557 	 * Initialize boot block header.
558 	 */
559 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
560 	bzero(vb, sizeof (vdev_boot_header_t));
561 	vb->vb_magic = VDEV_BOOT_MAGIC;
562 	vb->vb_version = VDEV_BOOT_VERSION;
563 	vb->vb_offset = VDEV_BOOT_OFFSET;
564 	vb->vb_size = VDEV_BOOT_SIZE;
565 
566 	/*
567 	 * Initialize uberblock template.
568 	 */
569 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
570 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
571 	*ub = spa->spa_uberblock;
572 	ub->ub_txg = 0;
573 
574 	/*
575 	 * Write everything in parallel.
576 	 */
577 	zio = zio_root(spa, NULL, NULL,
578 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
579 
580 	for (l = 0; l < VDEV_LABELS; l++) {
581 
582 		vdev_label_write(zio, vd, l, vp,
583 		    offsetof(vdev_label_t, vl_vdev_phys),
584 		    sizeof (vdev_phys_t), NULL, NULL);
585 
586 		vdev_label_write(zio, vd, l, vb,
587 		    offsetof(vdev_label_t, vl_boot_header),
588 		    sizeof (vdev_boot_header_t), NULL, NULL);
589 
590 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
591 			vdev_label_write(zio, vd, l, ub,
592 			    VDEV_UBERBLOCK_OFFSET(vd, n),
593 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL);
594 		}
595 	}
596 
597 	error = zio_wait(zio);
598 
599 	nvlist_free(label);
600 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
601 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
602 	zio_buf_free(vp, sizeof (vdev_phys_t));
603 
604 	/*
605 	 * If this vdev hasn't been previously identified as a spare, then we
606 	 * mark it as such only if a) we are labelling it as a spare, or b) it
607 	 * exists as a spare elsewhere in the system.
608 	 */
609 	if (error == 0 && !vd->vdev_isspare &&
610 	    (reason == VDEV_LABEL_SPARE ||
611 	    spa_spare_exists(vd->vdev_guid, NULL)))
612 		spa_spare_add(vd);
613 
614 	return (error);
615 }
616 
617 /*
618  * ==========================================================================
619  * uberblock load/sync
620  * ==========================================================================
621  */
622 
623 /*
624  * Consider the following situation: txg is safely synced to disk.  We've
625  * written the first uberblock for txg + 1, and then we lose power.  When we
626  * come back up, we fail to see the uberblock for txg + 1 because, say,
627  * it was on a mirrored device and the replica to which we wrote txg + 1
628  * is now offline.  If we then make some changes and sync txg + 1, and then
629  * the missing replica comes back, then for a new seconds we'll have two
630  * conflicting uberblocks on disk with the same txg.  The solution is simple:
631  * among uberblocks with equal txg, choose the one with the latest timestamp.
632  */
633 static int
634 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
635 {
636 	if (ub1->ub_txg < ub2->ub_txg)
637 		return (-1);
638 	if (ub1->ub_txg > ub2->ub_txg)
639 		return (1);
640 
641 	if (ub1->ub_timestamp < ub2->ub_timestamp)
642 		return (-1);
643 	if (ub1->ub_timestamp > ub2->ub_timestamp)
644 		return (1);
645 
646 	return (0);
647 }
648 
649 static void
650 vdev_uberblock_load_done(zio_t *zio)
651 {
652 	uberblock_t *ub = zio->io_data;
653 	uberblock_t *ubbest = zio->io_private;
654 	spa_t *spa = zio->io_spa;
655 
656 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
657 
658 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
659 		mutex_enter(&spa->spa_uberblock_lock);
660 		if (vdev_uberblock_compare(ub, ubbest) > 0)
661 			*ubbest = *ub;
662 		mutex_exit(&spa->spa_uberblock_lock);
663 	}
664 
665 	zio_buf_free(zio->io_data, zio->io_size);
666 }
667 
668 void
669 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
670 {
671 	int l, c, n;
672 
673 	for (c = 0; c < vd->vdev_children; c++)
674 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
675 
676 	if (!vd->vdev_ops->vdev_op_leaf)
677 		return;
678 
679 	if (vdev_is_dead(vd))
680 		return;
681 
682 	for (l = 0; l < VDEV_LABELS; l++) {
683 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
684 			vdev_label_read(zio, vd, l,
685 			    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
686 			    VDEV_UBERBLOCK_OFFSET(vd, n),
687 			    VDEV_UBERBLOCK_SIZE(vd),
688 			    vdev_uberblock_load_done, ubbest);
689 		}
690 	}
691 }
692 
693 /*
694  * Write the uberblock to both labels of all leaves of the specified vdev.
695  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
696  */
697 static void
698 vdev_uberblock_sync_done(zio_t *zio)
699 {
700 	uint64_t *good_writes = zio->io_root->io_private;
701 
702 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
703 		atomic_add_64(good_writes, 1);
704 }
705 
706 static void
707 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg)
708 {
709 	int l, c, n;
710 
711 	for (c = 0; c < vd->vdev_children; c++)
712 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg);
713 
714 	if (!vd->vdev_ops->vdev_op_leaf)
715 		return;
716 
717 	if (vdev_is_dead(vd))
718 		return;
719 
720 	n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
721 
722 	ASSERT(ub->ub_txg == txg);
723 
724 	for (l = 0; l < VDEV_LABELS; l++)
725 		vdev_label_write(zio, vd, l, ub,
726 		    VDEV_UBERBLOCK_OFFSET(vd, n),
727 		    VDEV_UBERBLOCK_SIZE(vd),
728 		    vdev_uberblock_sync_done, NULL);
729 
730 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
731 }
732 
733 static int
734 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg)
735 {
736 	uberblock_t *ubbuf;
737 	size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE;
738 	uint64_t *good_writes;
739 	zio_t *zio;
740 	int error;
741 
742 	ubbuf = zio_buf_alloc(size);
743 	bzero(ubbuf, size);
744 	*ubbuf = *ub;
745 
746 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
747 
748 	zio = zio_root(spa, NULL, good_writes,
749 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
750 
751 	vdev_uberblock_sync(zio, ubbuf, vd, txg);
752 
753 	error = zio_wait(zio);
754 
755 	if (error && *good_writes != 0) {
756 		dprintf("partial success: good_writes = %llu\n", *good_writes);
757 		error = 0;
758 	}
759 
760 	/*
761 	 * It's possible to have no good writes and no error if every vdev is in
762 	 * the CANT_OPEN state.
763 	 */
764 	if (*good_writes == 0 && error == 0)
765 		error = EIO;
766 
767 	kmem_free(good_writes, sizeof (uint64_t));
768 	zio_buf_free(ubbuf, size);
769 
770 	return (error);
771 }
772 
773 /*
774  * Sync out an individual vdev.
775  */
776 static void
777 vdev_sync_label_done(zio_t *zio)
778 {
779 	uint64_t *good_writes = zio->io_root->io_private;
780 
781 	if (zio->io_error == 0)
782 		atomic_add_64(good_writes, 1);
783 }
784 
785 static void
786 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
787 {
788 	nvlist_t *label;
789 	vdev_phys_t *vp;
790 	char *buf;
791 	size_t buflen;
792 	int c;
793 
794 	for (c = 0; c < vd->vdev_children; c++)
795 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
796 
797 	if (!vd->vdev_ops->vdev_op_leaf)
798 		return;
799 
800 	if (vdev_is_dead(vd))
801 		return;
802 
803 	/*
804 	 * Generate a label describing the top-level config to which we belong.
805 	 */
806 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
807 
808 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
809 	bzero(vp, sizeof (vdev_phys_t));
810 
811 	buf = vp->vp_nvlist;
812 	buflen = sizeof (vp->vp_nvlist);
813 
814 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
815 		vdev_label_write(zio, vd, l, vp,
816 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
817 		    vdev_sync_label_done, NULL);
818 
819 	zio_buf_free(vp, sizeof (vdev_phys_t));
820 	nvlist_free(label);
821 
822 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
823 }
824 
825 static int
826 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
827 {
828 	uint64_t *good_writes;
829 	zio_t *zio;
830 	int error;
831 
832 	ASSERT(vd == vd->vdev_top);
833 
834 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
835 
836 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
837 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
838 
839 	/*
840 	 * Recursively kick off writes to all labels.
841 	 */
842 	vdev_sync_label(zio, vd, l, txg);
843 
844 	error = zio_wait(zio);
845 
846 	if (error && *good_writes != 0) {
847 		dprintf("partial success: good_writes = %llu\n", *good_writes);
848 		error = 0;
849 	}
850 
851 	if (*good_writes == 0 && error == 0)
852 		error = ENODEV;
853 
854 	kmem_free(good_writes, sizeof (uint64_t));
855 
856 	return (error);
857 }
858 
859 /*
860  * Sync the entire vdev configuration.
861  *
862  * The order of operations is carefully crafted to ensure that
863  * if the system panics or loses power at any time, the state on disk
864  * is still transactionally consistent.  The in-line comments below
865  * describe the failure semantics at each stage.
866  *
867  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
868  * at any time, you can just call it again, and it will resume its work.
869  */
870 int
871 vdev_config_sync(vdev_t *uvd, uint64_t txg)
872 {
873 	spa_t *spa = uvd->vdev_spa;
874 	uberblock_t *ub = &spa->spa_uberblock;
875 	vdev_t *rvd = spa->spa_root_vdev;
876 	vdev_t *vd;
877 	zio_t *zio;
878 	int l, error;
879 
880 	ASSERT(ub->ub_txg <= txg);
881 
882 	/*
883 	 * If this isn't a resync due to I/O errors, and nothing changed
884 	 * in this transaction group, and the vdev configuration hasn't changed,
885 	 * then there's nothing to do.
886 	 */
887 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
888 	    list_is_empty(&spa->spa_dirty_list)) {
889 		dprintf("nothing to sync in %s in txg %llu\n",
890 		    spa_name(spa), txg);
891 		return (0);
892 	}
893 
894 	if (txg > spa_freeze_txg(spa))
895 		return (0);
896 
897 	ASSERT(txg <= spa->spa_final_txg);
898 
899 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
900 
901 	/*
902 	 * Flush the write cache of every disk that's been written to
903 	 * in this transaction group.  This ensures that all blocks
904 	 * written in this txg will be committed to stable storage
905 	 * before any uberblock that references them.
906 	 */
907 	zio = zio_root(spa, NULL, NULL,
908 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
909 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
910 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
911 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
912 		    NULL, NULL, ZIO_PRIORITY_NOW,
913 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
914 	}
915 	(void) zio_wait(zio);
916 
917 	/*
918 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
919 	 * system dies in the middle of this process, that's OK: all of the
920 	 * even labels that made it to disk will be newer than any uberblock,
921 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
922 	 * which have not yet been touched, will still be valid.
923 	 */
924 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
925 	    vd = list_next(&spa->spa_dirty_list, vd)) {
926 		for (l = 0; l < VDEV_LABELS; l++) {
927 			if (l & 1)
928 				continue;
929 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
930 				return (error);
931 		}
932 	}
933 
934 	/*
935 	 * Flush the new labels to disk.  This ensures that all even-label
936 	 * updates are committed to stable storage before the uberblock update.
937 	 */
938 	zio = zio_root(spa, NULL, NULL,
939 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
940 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
941 	    vd = list_next(&spa->spa_dirty_list, vd)) {
942 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
943 		    NULL, NULL, ZIO_PRIORITY_NOW,
944 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
945 	}
946 	(void) zio_wait(zio);
947 
948 	/*
949 	 * Sync the uberblocks to all vdevs in the tree specified by uvd.
950 	 * If the system dies in the middle of this step, there are two cases
951 	 * to consider, and the on-disk state is consistent either way:
952 	 *
953 	 * (1)	If none of the new uberblocks made it to disk, then the
954 	 *	previous uberblock will be the newest, and the odd labels
955 	 *	(which had not yet been touched) will be valid with respect
956 	 *	to that uberblock.
957 	 *
958 	 * (2)	If one or more new uberblocks made it to disk, then they
959 	 *	will be the newest, and the even labels (which had all
960 	 *	been successfully committed) will be valid with respect
961 	 *	to the new uberblocks.
962 	 */
963 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
964 		return (error);
965 
966 	/*
967 	 * Flush the uberblocks to disk.  This ensures that the odd labels
968 	 * are no longer needed (because the new uberblocks and the even
969 	 * labels are safely on disk), so it is safe to overwrite them.
970 	 */
971 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
972 	    NULL, NULL, ZIO_PRIORITY_NOW,
973 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
974 
975 	/*
976 	 * Sync out odd labels for every dirty vdev.  If the system dies
977 	 * in the middle of this process, the even labels and the new
978 	 * uberblocks will suffice to open the pool.  The next time
979 	 * the pool is opened, the first thing we'll do -- before any
980 	 * user data is modified -- is mark every vdev dirty so that
981 	 * all labels will be brought up to date.
982 	 */
983 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
984 	    vd = list_next(&spa->spa_dirty_list, vd)) {
985 		for (l = 0; l < VDEV_LABELS; l++) {
986 			if ((l & 1) == 0)
987 				continue;
988 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
989 				return (error);
990 		}
991 	}
992 
993 	/*
994 	 * Flush the new labels to disk.  This ensures that all odd-label
995 	 * updates are committed to stable storage before the next
996 	 * transaction group begins.
997 	 */
998 	zio = zio_root(spa, NULL, NULL,
999 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
1000 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
1001 	    vd = list_next(&spa->spa_dirty_list, vd)) {
1002 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
1003 		    NULL, NULL, ZIO_PRIORITY_NOW,
1004 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
1005 	}
1006 	(void) zio_wait(zio);
1007 
1008 	return (0);
1009 }
1010