xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision 99653d4e)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5441d80aaSlling  * Common Development and Distribution License (the "License").
6441d80aaSlling  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
21fa9e4066Sahrens /*
22441d80aaSlling  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23fa9e4066Sahrens  * Use is subject to license terms.
24fa9e4066Sahrens  */
25fa9e4066Sahrens 
26fa9e4066Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
27fa9e4066Sahrens 
28fa9e4066Sahrens /*
29fa9e4066Sahrens  * Virtual Device Labels
30fa9e4066Sahrens  * ---------------------
31fa9e4066Sahrens  *
32fa9e4066Sahrens  * The vdev label serves several distinct purposes:
33fa9e4066Sahrens  *
34fa9e4066Sahrens  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35fa9e4066Sahrens  *	   identity within the pool.
36fa9e4066Sahrens  *
37fa9e4066Sahrens  * 	2. Verify that all the devices given in a configuration are present
38fa9e4066Sahrens  *         within the pool.
39fa9e4066Sahrens  *
40fa9e4066Sahrens  * 	3. Determine the uberblock for the pool.
41fa9e4066Sahrens  *
42fa9e4066Sahrens  * 	4. In case of an import operation, determine the configuration of the
43fa9e4066Sahrens  *         toplevel vdev of which it is a part.
44fa9e4066Sahrens  *
45fa9e4066Sahrens  * 	5. If an import operation cannot find all the devices in the pool,
46fa9e4066Sahrens  *         provide enough information to the administrator to determine which
47fa9e4066Sahrens  *         devices are missing.
48fa9e4066Sahrens  *
49fa9e4066Sahrens  * It is important to note that while the kernel is responsible for writing the
50fa9e4066Sahrens  * label, it only consumes the information in the first three cases.  The
51fa9e4066Sahrens  * latter information is only consumed in userland when determining the
52fa9e4066Sahrens  * configuration to import a pool.
53fa9e4066Sahrens  *
54fa9e4066Sahrens  *
55fa9e4066Sahrens  * Label Organization
56fa9e4066Sahrens  * ------------------
57fa9e4066Sahrens  *
58fa9e4066Sahrens  * Before describing the contents of the label, it's important to understand how
59fa9e4066Sahrens  * the labels are written and updated with respect to the uberblock.
60fa9e4066Sahrens  *
61fa9e4066Sahrens  * When the pool configuration is altered, either because it was newly created
62fa9e4066Sahrens  * or a device was added, we want to update all the labels such that we can deal
63fa9e4066Sahrens  * with fatal failure at any point.  To this end, each disk has two labels which
64fa9e4066Sahrens  * are updated before and after the uberblock is synced.  Assuming we have
65fa9e4066Sahrens  * labels and an uberblock with the following transacation groups:
66fa9e4066Sahrens  *
67fa9e4066Sahrens  *              L1          UB          L2
68fa9e4066Sahrens  *           +------+    +------+    +------+
69fa9e4066Sahrens  *           |      |    |      |    |      |
70fa9e4066Sahrens  *           | t10  |    | t10  |    | t10  |
71fa9e4066Sahrens  *           |      |    |      |    |      |
72fa9e4066Sahrens  *           +------+    +------+    +------+
73fa9e4066Sahrens  *
74fa9e4066Sahrens  * In this stable state, the labels and the uberblock were all updated within
75fa9e4066Sahrens  * the same transaction group (10).  Each label is mirrored and checksummed, so
76fa9e4066Sahrens  * that we can detect when we fail partway through writing the label.
77fa9e4066Sahrens  *
78fa9e4066Sahrens  * In order to identify which labels are valid, the labels are written in the
79fa9e4066Sahrens  * following manner:
80fa9e4066Sahrens  *
81fa9e4066Sahrens  * 	1. For each vdev, update 'L1' to the new label
82fa9e4066Sahrens  * 	2. Update the uberblock
83fa9e4066Sahrens  * 	3. For each vdev, update 'L2' to the new label
84fa9e4066Sahrens  *
85fa9e4066Sahrens  * Given arbitrary failure, we can determine the correct label to use based on
86fa9e4066Sahrens  * the transaction group.  If we fail after updating L1 but before updating the
87fa9e4066Sahrens  * UB, we will notice that L1's transaction group is greater than the uberblock,
88fa9e4066Sahrens  * so L2 must be valid.  If we fail after writing the uberblock but before
89fa9e4066Sahrens  * writing L2, we will notice that L2's transaction group is less than L1, and
90fa9e4066Sahrens  * therefore L1 is valid.
91fa9e4066Sahrens  *
92fa9e4066Sahrens  * Another added complexity is that not every label is updated when the config
93fa9e4066Sahrens  * is synced.  If we add a single device, we do not want to have to re-write
94fa9e4066Sahrens  * every label for every device in the pool.  This means that both L1 and L2 may
95fa9e4066Sahrens  * be older than the pool uberblock, because the necessary information is stored
96fa9e4066Sahrens  * on another vdev.
97fa9e4066Sahrens  *
98fa9e4066Sahrens  *
99fa9e4066Sahrens  * On-disk Format
100fa9e4066Sahrens  * --------------
101fa9e4066Sahrens  *
102fa9e4066Sahrens  * The vdev label consists of two distinct parts, and is wrapped within the
103fa9e4066Sahrens  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104fa9e4066Sahrens  * VTOC disk labels, but is otherwise ignored.
105fa9e4066Sahrens  *
106fa9e4066Sahrens  * The first half of the label is a packed nvlist which contains pool wide
107fa9e4066Sahrens  * properties, per-vdev properties, and configuration information.  It is
108fa9e4066Sahrens  * described in more detail below.
109fa9e4066Sahrens  *
110fa9e4066Sahrens  * The latter half of the label consists of a redundant array of uberblocks.
111fa9e4066Sahrens  * These uberblocks are updated whenever a transaction group is committed,
112fa9e4066Sahrens  * or when the configuration is updated.  When a pool is loaded, we scan each
113fa9e4066Sahrens  * vdev for the 'best' uberblock.
114fa9e4066Sahrens  *
115fa9e4066Sahrens  *
116fa9e4066Sahrens  * Configuration Information
117fa9e4066Sahrens  * -------------------------
118fa9e4066Sahrens  *
119fa9e4066Sahrens  * The nvlist describing the pool and vdev contains the following elements:
120fa9e4066Sahrens  *
121fa9e4066Sahrens  * 	version		ZFS on-disk version
122fa9e4066Sahrens  * 	name		Pool name
123fa9e4066Sahrens  * 	state		Pool state
124fa9e4066Sahrens  * 	txg		Transaction group in which this label was written
125fa9e4066Sahrens  * 	pool_guid	Unique identifier for this pool
126fa9e4066Sahrens  * 	vdev_tree	An nvlist describing vdev tree.
127fa9e4066Sahrens  *
128fa9e4066Sahrens  * Each leaf device label also contains the following:
129fa9e4066Sahrens  *
130fa9e4066Sahrens  * 	top_guid	Unique ID for top-level vdev in which this is contained
131fa9e4066Sahrens  * 	guid		Unique ID for the leaf vdev
132fa9e4066Sahrens  *
133fa9e4066Sahrens  * The 'vs' configuration follows the format described in 'spa_config.c'.
134fa9e4066Sahrens  */
135fa9e4066Sahrens 
136fa9e4066Sahrens #include <sys/zfs_context.h>
137fa9e4066Sahrens #include <sys/spa.h>
138fa9e4066Sahrens #include <sys/spa_impl.h>
139fa9e4066Sahrens #include <sys/dmu.h>
140fa9e4066Sahrens #include <sys/zap.h>
141fa9e4066Sahrens #include <sys/vdev.h>
142fa9e4066Sahrens #include <sys/vdev_impl.h>
143fa9e4066Sahrens #include <sys/uberblock_impl.h>
144fa9e4066Sahrens #include <sys/metaslab.h>
145fa9e4066Sahrens #include <sys/zio.h>
146fa9e4066Sahrens #include <sys/fs/zfs.h>
147fa9e4066Sahrens 
148fa9e4066Sahrens /*
149fa9e4066Sahrens  * Basic routines to read and write from a vdev label.
150fa9e4066Sahrens  * Used throughout the rest of this file.
151fa9e4066Sahrens  */
152fa9e4066Sahrens uint64_t
153fa9e4066Sahrens vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154fa9e4066Sahrens {
155ecc2d604Sbonwick 	ASSERT(offset < sizeof (vdev_label_t));
156ecc2d604Sbonwick 
157fa9e4066Sahrens 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
158fa9e4066Sahrens 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
159fa9e4066Sahrens }
160fa9e4066Sahrens 
161fa9e4066Sahrens static void
162fa9e4066Sahrens vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
163fa9e4066Sahrens 	uint64_t size, zio_done_func_t *done, void *private)
164fa9e4066Sahrens {
165fa9e4066Sahrens 	ASSERT(vd->vdev_children == 0);
166fa9e4066Sahrens 
167fa9e4066Sahrens 	zio_nowait(zio_read_phys(zio, vd,
168fa9e4066Sahrens 	    vdev_label_offset(vd->vdev_psize, l, offset),
169fa9e4066Sahrens 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
170ea8dc4b6Seschrock 	    ZIO_PRIORITY_SYNC_READ,
171ea8dc4b6Seschrock 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
172fa9e4066Sahrens }
173fa9e4066Sahrens 
174fa9e4066Sahrens static void
175fa9e4066Sahrens vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
176fa9e4066Sahrens 	uint64_t size, zio_done_func_t *done, void *private)
177fa9e4066Sahrens {
178fa9e4066Sahrens 	ASSERT(vd->vdev_children == 0);
179fa9e4066Sahrens 
180fa9e4066Sahrens 	zio_nowait(zio_write_phys(zio, vd,
181fa9e4066Sahrens 	    vdev_label_offset(vd->vdev_psize, l, offset),
182fa9e4066Sahrens 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
183ea8dc4b6Seschrock 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
184fa9e4066Sahrens }
185fa9e4066Sahrens 
186fa9e4066Sahrens /*
187fa9e4066Sahrens  * Generate the nvlist representing this vdev's config.
188fa9e4066Sahrens  */
189fa9e4066Sahrens nvlist_t *
190*99653d4eSeschrock vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
191*99653d4eSeschrock     boolean_t isspare)
192fa9e4066Sahrens {
193fa9e4066Sahrens 	nvlist_t *nv = NULL;
194fa9e4066Sahrens 
195ea8dc4b6Seschrock 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196fa9e4066Sahrens 
197fa9e4066Sahrens 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
198fa9e4066Sahrens 	    vd->vdev_ops->vdev_op_type) == 0);
199*99653d4eSeschrock 	if (!isspare)
200*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
201*99653d4eSeschrock 		    == 0);
202fa9e4066Sahrens 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
203fa9e4066Sahrens 
204fa9e4066Sahrens 	if (vd->vdev_path != NULL)
205fa9e4066Sahrens 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
206fa9e4066Sahrens 		    vd->vdev_path) == 0);
207fa9e4066Sahrens 
208fa9e4066Sahrens 	if (vd->vdev_devid != NULL)
209fa9e4066Sahrens 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
210fa9e4066Sahrens 		    vd->vdev_devid) == 0);
211fa9e4066Sahrens 
212*99653d4eSeschrock 	if (vd->vdev_nparity != 0) {
213*99653d4eSeschrock 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
214*99653d4eSeschrock 		    VDEV_TYPE_RAIDZ) == 0);
215*99653d4eSeschrock 
216*99653d4eSeschrock 		/*
217*99653d4eSeschrock 		 * Make sure someone hasn't managed to sneak a fancy new vdev
218*99653d4eSeschrock 		 * into a crufty old storage pool.
219*99653d4eSeschrock 		 */
220*99653d4eSeschrock 		ASSERT(vd->vdev_nparity == 1 ||
221*99653d4eSeschrock 		    (vd->vdev_nparity == 2 &&
222*99653d4eSeschrock 		    spa_version(spa) >= ZFS_VERSION_RAID6));
223*99653d4eSeschrock 
224*99653d4eSeschrock 		/*
225*99653d4eSeschrock 		 * Note that we'll add the nparity tag even on storage pools
226*99653d4eSeschrock 		 * that only support a single parity device -- older software
227*99653d4eSeschrock 		 * will just ignore it.
228*99653d4eSeschrock 		 */
229*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
230*99653d4eSeschrock 		    vd->vdev_nparity) == 0);
231*99653d4eSeschrock 	}
232*99653d4eSeschrock 
233afefbcddSeschrock 	if (vd->vdev_wholedisk != -1ULL)
234afefbcddSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
235afefbcddSeschrock 		    vd->vdev_wholedisk) == 0);
236afefbcddSeschrock 
237ea8dc4b6Seschrock 	if (vd->vdev_not_present)
238ea8dc4b6Seschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
239ea8dc4b6Seschrock 
240*99653d4eSeschrock 	if (vd->vdev_isspare)
241*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
242*99653d4eSeschrock 
243*99653d4eSeschrock 	if (!isspare && vd == vd->vdev_top) {
244fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
245fa9e4066Sahrens 		    vd->vdev_ms_array) == 0);
246fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
247fa9e4066Sahrens 		    vd->vdev_ms_shift) == 0);
248fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
249fa9e4066Sahrens 		    vd->vdev_ashift) == 0);
250fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
251fa9e4066Sahrens 		    vd->vdev_asize) == 0);
252fa9e4066Sahrens 	}
253fa9e4066Sahrens 
254fa9e4066Sahrens 	if (vd->vdev_dtl.smo_object != 0)
255fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
256fa9e4066Sahrens 		    vd->vdev_dtl.smo_object) == 0);
257fa9e4066Sahrens 
258fa9e4066Sahrens 	if (getstats) {
259fa9e4066Sahrens 		vdev_stat_t vs;
260fa9e4066Sahrens 		vdev_get_stats(vd, &vs);
261fa9e4066Sahrens 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
262fa9e4066Sahrens 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
263fa9e4066Sahrens 	}
264fa9e4066Sahrens 
265fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf) {
266fa9e4066Sahrens 		nvlist_t **child;
267fa9e4066Sahrens 		int c;
268fa9e4066Sahrens 
269fa9e4066Sahrens 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
270fa9e4066Sahrens 		    KM_SLEEP);
271fa9e4066Sahrens 
272fa9e4066Sahrens 		for (c = 0; c < vd->vdev_children; c++)
273*99653d4eSeschrock 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
274*99653d4eSeschrock 			    getstats, isspare);
275fa9e4066Sahrens 
276fa9e4066Sahrens 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
277fa9e4066Sahrens 		    child, vd->vdev_children) == 0);
278fa9e4066Sahrens 
279fa9e4066Sahrens 		for (c = 0; c < vd->vdev_children; c++)
280fa9e4066Sahrens 			nvlist_free(child[c]);
281fa9e4066Sahrens 
282fa9e4066Sahrens 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
283441d80aaSlling 
284441d80aaSlling 	} else {
285ecc2d604Sbonwick 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
286441d80aaSlling 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
287ecc2d604Sbonwick 			    B_TRUE) == 0);
288ecc2d604Sbonwick 		else
289441d80aaSlling 			(void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE,
290ecc2d604Sbonwick 			    DATA_TYPE_UINT64);
291fa9e4066Sahrens 	}
292fa9e4066Sahrens 
293fa9e4066Sahrens 	return (nv);
294fa9e4066Sahrens }
295fa9e4066Sahrens 
296fa9e4066Sahrens nvlist_t *
297fa9e4066Sahrens vdev_label_read_config(vdev_t *vd)
298fa9e4066Sahrens {
2990373e76bSbonwick 	spa_t *spa = vd->vdev_spa;
300fa9e4066Sahrens 	nvlist_t *config = NULL;
301fa9e4066Sahrens 	vdev_phys_t *vp;
302fa9e4066Sahrens 	zio_t *zio;
303fa9e4066Sahrens 	int l;
304fa9e4066Sahrens 
3050373e76bSbonwick 	ASSERT(spa_config_held(spa, RW_READER));
3060373e76bSbonwick 
307fa9e4066Sahrens 	if (vdev_is_dead(vd))
308fa9e4066Sahrens 		return (NULL);
309fa9e4066Sahrens 
310fa9e4066Sahrens 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
311fa9e4066Sahrens 
312fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++) {
313fa9e4066Sahrens 
3140373e76bSbonwick 		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
315ea8dc4b6Seschrock 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
316fa9e4066Sahrens 
317fa9e4066Sahrens 		vdev_label_read(zio, vd, l, vp,
318fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_vdev_phys),
319fa9e4066Sahrens 		    sizeof (vdev_phys_t), NULL, NULL);
320fa9e4066Sahrens 
321fa9e4066Sahrens 		if (zio_wait(zio) == 0 &&
322fa9e4066Sahrens 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
323ea8dc4b6Seschrock 		    &config, 0) == 0)
324fa9e4066Sahrens 			break;
325fa9e4066Sahrens 
326fa9e4066Sahrens 		if (config != NULL) {
327fa9e4066Sahrens 			nvlist_free(config);
328fa9e4066Sahrens 			config = NULL;
329fa9e4066Sahrens 		}
330fa9e4066Sahrens 	}
331fa9e4066Sahrens 
332fa9e4066Sahrens 	zio_buf_free(vp, sizeof (vdev_phys_t));
333fa9e4066Sahrens 
334fa9e4066Sahrens 	return (config);
335fa9e4066Sahrens }
336fa9e4066Sahrens 
337*99653d4eSeschrock static int
338*99653d4eSeschrock vdev_label_common(vdev_t *vd, uint64_t crtxg, boolean_t isspare,
339*99653d4eSeschrock     boolean_t isreplacing)
340fa9e4066Sahrens {
341fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
342fa9e4066Sahrens 	nvlist_t *label;
343fa9e4066Sahrens 	vdev_phys_t *vp;
344fa9e4066Sahrens 	vdev_boot_header_t *vb;
345ecc2d604Sbonwick 	uberblock_t *ub;
346fa9e4066Sahrens 	zio_t *zio;
347fa9e4066Sahrens 	int l, c, n;
348fa9e4066Sahrens 	char *buf;
349fa9e4066Sahrens 	size_t buflen;
350fa9e4066Sahrens 	int error;
351fa9e4066Sahrens 
3520373e76bSbonwick 	ASSERT(spa_config_held(spa, RW_WRITER));
3530373e76bSbonwick 
354fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
355*99653d4eSeschrock 		if ((error = vdev_label_common(vd->vdev_child[c],
356*99653d4eSeschrock 		    crtxg, isspare, isreplacing)) != 0)
357fa9e4066Sahrens 			return (error);
358fa9e4066Sahrens 
359fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
360fa9e4066Sahrens 		return (0);
361fa9e4066Sahrens 
362fa9e4066Sahrens 	/*
363fa9e4066Sahrens 	 * Make sure each leaf device is writable, and zero its initial content.
364fa9e4066Sahrens 	 * Along the way, also make sure that no leaf is already in use.
365fa9e4066Sahrens 	 * Note that it's important to do this sequentially, not in parallel,
366fa9e4066Sahrens 	 * so that we catch cases of multiple use of the same leaf vdev in
367fa9e4066Sahrens 	 * the vdev we're creating -- e.g. mirroring a disk with itself.
368fa9e4066Sahrens 	 */
369fa9e4066Sahrens 	if (vdev_is_dead(vd))
370fa9e4066Sahrens 		return (EIO);
371fa9e4066Sahrens 
372fa9e4066Sahrens 	/*
373fa9e4066Sahrens 	 * Check whether this device is already in use.
374fa9e4066Sahrens 	 * Ignore the check if crtxg == 0, which we use for device removal.
375fa9e4066Sahrens 	 */
376ea8dc4b6Seschrock 	if (crtxg != 0 &&
377ea8dc4b6Seschrock 	    (label = vdev_label_read_config(vd)) != NULL) {
378*99653d4eSeschrock 		uint64_t state, pool_guid, device_guid, txg, spare;
379fa9e4066Sahrens 		uint64_t mycrtxg = 0;
380fa9e4066Sahrens 
381fa9e4066Sahrens 		(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
382fa9e4066Sahrens 		    &mycrtxg);
383fa9e4066Sahrens 
384ea8dc4b6Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
385fa9e4066Sahrens 		    &state) == 0 && state == POOL_STATE_ACTIVE &&
386fa9e4066Sahrens 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
387fa9e4066Sahrens 		    &pool_guid) == 0 &&
388fa9e4066Sahrens 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
389fa9e4066Sahrens 		    &device_guid) == 0 &&
390fa9e4066Sahrens 		    spa_guid_exists(pool_guid, device_guid) &&
391fa9e4066Sahrens 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
392fa9e4066Sahrens 		    &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) {
393*99653d4eSeschrock 			if (isspare && pool_guid != spa_guid(spa) &&
394*99653d4eSeschrock 			    nvlist_lookup_uint64(label,
395*99653d4eSeschrock 			    ZPOOL_CONFIG_IS_SPARE, &spare) == 0 &&
396*99653d4eSeschrock 			    !spa_has_spare(spa, device_guid)) {
397*99653d4eSeschrock 				/*
398*99653d4eSeschrock 				 * If this is a request to add a spare that
399*99653d4eSeschrock 				 * is actively in use in another pool, simply
400*99653d4eSeschrock 				 * return success, after updating the guid.
401*99653d4eSeschrock 				 */
402*99653d4eSeschrock 				vdev_t *pvd = vd->vdev_parent;
403*99653d4eSeschrock 
404*99653d4eSeschrock 				for (; pvd != NULL; pvd = pvd->vdev_parent) {
405*99653d4eSeschrock 					pvd->vdev_guid_sum -= vd->vdev_guid;
406*99653d4eSeschrock 					pvd->vdev_guid_sum += device_guid;
407*99653d4eSeschrock 				}
408*99653d4eSeschrock 
409*99653d4eSeschrock 				vd->vdev_guid = vd->vdev_guid_sum = device_guid;
410*99653d4eSeschrock 				nvlist_free(label);
411*99653d4eSeschrock 				return (0);
412*99653d4eSeschrock 			}
413fa9e4066Sahrens 			nvlist_free(label);
414fa9e4066Sahrens 			return (EBUSY);
415fa9e4066Sahrens 		}
416*99653d4eSeschrock 
417*99653d4eSeschrock 		/*
418*99653d4eSeschrock 		 * If this device is reserved as a hot spare for this pool,
419*99653d4eSeschrock 		 * adopt its GUID, and mark it as such.  This way we preserve
420*99653d4eSeschrock 		 * the fact that it is a hot spare even as it is added and
421*99653d4eSeschrock 		 * removed from the pool.
422*99653d4eSeschrock 		 */
423*99653d4eSeschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
424*99653d4eSeschrock 		    &state) == 0 && state == POOL_STATE_SPARE &&
425*99653d4eSeschrock 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
426*99653d4eSeschrock 		    &device_guid) == 0) {
427*99653d4eSeschrock 			vdev_t *pvd = vd->vdev_parent;
428*99653d4eSeschrock 
429*99653d4eSeschrock 			if ((isspare || !isreplacing) &&
430*99653d4eSeschrock 			    spa_has_spare(spa, device_guid)) {
431*99653d4eSeschrock 				nvlist_free(label);
432*99653d4eSeschrock 				return (EBUSY);
433*99653d4eSeschrock 			}
434*99653d4eSeschrock 
435*99653d4eSeschrock 			for (; pvd != NULL; pvd = pvd->vdev_parent) {
436*99653d4eSeschrock 				pvd->vdev_guid_sum -= vd->vdev_guid;
437*99653d4eSeschrock 				pvd->vdev_guid_sum += device_guid;
438*99653d4eSeschrock 			}
439*99653d4eSeschrock 
440*99653d4eSeschrock 			vd->vdev_guid = vd->vdev_guid_sum = device_guid;
441*99653d4eSeschrock 
442*99653d4eSeschrock 			if (!isspare) {
443*99653d4eSeschrock 				vd->vdev_isspare = B_TRUE;
444*99653d4eSeschrock 				spa_spare_add(vd->vdev_guid);
445*99653d4eSeschrock 			}
446*99653d4eSeschrock 		}
447*99653d4eSeschrock 
448fa9e4066Sahrens 		nvlist_free(label);
449fa9e4066Sahrens 	}
450fa9e4066Sahrens 
451fa9e4066Sahrens 	/*
452fa9e4066Sahrens 	 * The device isn't in use, so initialize its label.
453fa9e4066Sahrens 	 */
454fa9e4066Sahrens 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
455fa9e4066Sahrens 	bzero(vp, sizeof (vdev_phys_t));
456fa9e4066Sahrens 
457fa9e4066Sahrens 	/*
458fa9e4066Sahrens 	 * Generate a label describing the pool and our top-level vdev.
459fa9e4066Sahrens 	 * We mark it as being from txg 0 to indicate that it's not
460fa9e4066Sahrens 	 * really part of an active pool just yet.  The labels will
461fa9e4066Sahrens 	 * be written again with a meaningful txg by spa_sync().
462*99653d4eSeschrock 	 *
463*99653d4eSeschrock 	 * For hot spares, we generate a special label that identifies as a
464*99653d4eSeschrock 	 * mutually shared hot spare.  If this is being added as a hot spare,
465*99653d4eSeschrock 	 * always write out the spare label.  If this was a hot spare, then
466*99653d4eSeschrock 	 * always label it as such.  If we are adding the vdev, it will remain
467*99653d4eSeschrock 	 * labelled in this state until it's really added to the config.  If we
468*99653d4eSeschrock 	 * are removing the vdev or destroying the pool, then it goes back to
469*99653d4eSeschrock 	 * its original hot spare state.
470fa9e4066Sahrens 	 */
471*99653d4eSeschrock 	if (isspare || vd->vdev_isspare) {
472*99653d4eSeschrock 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
473*99653d4eSeschrock 
474*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
475*99653d4eSeschrock 		    spa_version(spa)) == 0);
476*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
477*99653d4eSeschrock 		    POOL_STATE_SPARE) == 0);
478*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
479*99653d4eSeschrock 		    vd->vdev_guid) == 0);
480*99653d4eSeschrock 	} else {
481*99653d4eSeschrock 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
482*99653d4eSeschrock 
483*99653d4eSeschrock 		/*
484*99653d4eSeschrock 		 * Add our creation time.  This allows us to detect multiple
485*99653d4eSeschrock 		 * vdev uses as described above, and automatically expires if we
486*99653d4eSeschrock 		 * fail.
487*99653d4eSeschrock 		 */
488*99653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
489*99653d4eSeschrock 		    crtxg) == 0);
490*99653d4eSeschrock 	}
491fa9e4066Sahrens 
492fa9e4066Sahrens 	buf = vp->vp_nvlist;
493fa9e4066Sahrens 	buflen = sizeof (vp->vp_nvlist);
494fa9e4066Sahrens 
495ea8dc4b6Seschrock 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) {
496fa9e4066Sahrens 		nvlist_free(label);
497fa9e4066Sahrens 		zio_buf_free(vp, sizeof (vdev_phys_t));
498fa9e4066Sahrens 		return (EINVAL);
499fa9e4066Sahrens 	}
500fa9e4066Sahrens 
501fa9e4066Sahrens 	/*
502fa9e4066Sahrens 	 * Initialize boot block header.
503fa9e4066Sahrens 	 */
504fa9e4066Sahrens 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
505fa9e4066Sahrens 	bzero(vb, sizeof (vdev_boot_header_t));
506fa9e4066Sahrens 	vb->vb_magic = VDEV_BOOT_MAGIC;
507fa9e4066Sahrens 	vb->vb_version = VDEV_BOOT_VERSION;
508fa9e4066Sahrens 	vb->vb_offset = VDEV_BOOT_OFFSET;
509fa9e4066Sahrens 	vb->vb_size = VDEV_BOOT_SIZE;
510fa9e4066Sahrens 
511fa9e4066Sahrens 	/*
512fa9e4066Sahrens 	 * Initialize uberblock template.
513fa9e4066Sahrens 	 */
514ecc2d604Sbonwick 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
515ecc2d604Sbonwick 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
516ecc2d604Sbonwick 	*ub = spa->spa_uberblock;
517ecc2d604Sbonwick 	ub->ub_txg = 0;
518fa9e4066Sahrens 
519fa9e4066Sahrens 	/*
520fa9e4066Sahrens 	 * Write everything in parallel.
521fa9e4066Sahrens 	 */
522fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
523fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
524fa9e4066Sahrens 
525fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++) {
526fa9e4066Sahrens 
527fa9e4066Sahrens 		vdev_label_write(zio, vd, l, vp,
528fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_vdev_phys),
529fa9e4066Sahrens 		    sizeof (vdev_phys_t), NULL, NULL);
530fa9e4066Sahrens 
531fa9e4066Sahrens 		vdev_label_write(zio, vd, l, vb,
532fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_boot_header),
533fa9e4066Sahrens 		    sizeof (vdev_boot_header_t), NULL, NULL);
534fa9e4066Sahrens 
535ecc2d604Sbonwick 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
536ecc2d604Sbonwick 			vdev_label_write(zio, vd, l, ub,
537ecc2d604Sbonwick 			    VDEV_UBERBLOCK_OFFSET(vd, n),
538ecc2d604Sbonwick 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL);
539fa9e4066Sahrens 		}
540fa9e4066Sahrens 	}
541fa9e4066Sahrens 
542fa9e4066Sahrens 	error = zio_wait(zio);
543fa9e4066Sahrens 
544fa9e4066Sahrens 	nvlist_free(label);
545ecc2d604Sbonwick 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
546fa9e4066Sahrens 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
547fa9e4066Sahrens 	zio_buf_free(vp, sizeof (vdev_phys_t));
548fa9e4066Sahrens 
549fa9e4066Sahrens 	return (error);
550fa9e4066Sahrens }
551fa9e4066Sahrens 
552*99653d4eSeschrock int
553*99653d4eSeschrock vdev_label_init(vdev_t *vd, uint64_t crtxg, boolean_t isreplacing)
554*99653d4eSeschrock {
555*99653d4eSeschrock 	return (vdev_label_common(vd, crtxg, B_FALSE, isreplacing));
556*99653d4eSeschrock }
557*99653d4eSeschrock 
558*99653d4eSeschrock /*
559*99653d4eSeschrock  * Label a disk as a hot spare.  A hot spare label is a special label with only
560*99653d4eSeschrock  * the following members: version, pool_state, and guid.
561*99653d4eSeschrock  */
562*99653d4eSeschrock int
563*99653d4eSeschrock vdev_label_spare(vdev_t *vd, uint64_t crtxg)
564*99653d4eSeschrock {
565*99653d4eSeschrock 	return (vdev_label_common(vd, crtxg, B_TRUE, B_FALSE));
566*99653d4eSeschrock }
567*99653d4eSeschrock 
568fa9e4066Sahrens /*
569fa9e4066Sahrens  * ==========================================================================
570fa9e4066Sahrens  * uberblock load/sync
571fa9e4066Sahrens  * ==========================================================================
572fa9e4066Sahrens  */
573fa9e4066Sahrens 
574fa9e4066Sahrens /*
575fa9e4066Sahrens  * Consider the following situation: txg is safely synced to disk.  We've
576fa9e4066Sahrens  * written the first uberblock for txg + 1, and then we lose power.  When we
577fa9e4066Sahrens  * come back up, we fail to see the uberblock for txg + 1 because, say,
578fa9e4066Sahrens  * it was on a mirrored device and the replica to which we wrote txg + 1
579fa9e4066Sahrens  * is now offline.  If we then make some changes and sync txg + 1, and then
580fa9e4066Sahrens  * the missing replica comes back, then for a new seconds we'll have two
581fa9e4066Sahrens  * conflicting uberblocks on disk with the same txg.  The solution is simple:
582fa9e4066Sahrens  * among uberblocks with equal txg, choose the one with the latest timestamp.
583fa9e4066Sahrens  */
584fa9e4066Sahrens static int
585fa9e4066Sahrens vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
586fa9e4066Sahrens {
587fa9e4066Sahrens 	if (ub1->ub_txg < ub2->ub_txg)
588fa9e4066Sahrens 		return (-1);
589fa9e4066Sahrens 	if (ub1->ub_txg > ub2->ub_txg)
590fa9e4066Sahrens 		return (1);
591fa9e4066Sahrens 
592fa9e4066Sahrens 	if (ub1->ub_timestamp < ub2->ub_timestamp)
593fa9e4066Sahrens 		return (-1);
594fa9e4066Sahrens 	if (ub1->ub_timestamp > ub2->ub_timestamp)
595fa9e4066Sahrens 		return (1);
596fa9e4066Sahrens 
597fa9e4066Sahrens 	return (0);
598fa9e4066Sahrens }
599fa9e4066Sahrens 
600fa9e4066Sahrens static void
601fa9e4066Sahrens vdev_uberblock_load_done(zio_t *zio)
602fa9e4066Sahrens {
603ecc2d604Sbonwick 	uberblock_t *ub = zio->io_data;
604fa9e4066Sahrens 	uberblock_t *ubbest = zio->io_private;
605fa9e4066Sahrens 	spa_t *spa = zio->io_spa;
606fa9e4066Sahrens 
607ecc2d604Sbonwick 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
608fa9e4066Sahrens 
609ea8dc4b6Seschrock 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
610fa9e4066Sahrens 		mutex_enter(&spa->spa_uberblock_lock);
611fa9e4066Sahrens 		if (vdev_uberblock_compare(ub, ubbest) > 0)
612fa9e4066Sahrens 			*ubbest = *ub;
613fa9e4066Sahrens 		mutex_exit(&spa->spa_uberblock_lock);
614fa9e4066Sahrens 	}
615fa9e4066Sahrens 
616fa9e4066Sahrens 	zio_buf_free(zio->io_data, zio->io_size);
617fa9e4066Sahrens }
618fa9e4066Sahrens 
619fa9e4066Sahrens void
620fa9e4066Sahrens vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
621fa9e4066Sahrens {
622fa9e4066Sahrens 	int l, c, n;
623fa9e4066Sahrens 
624fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
625fa9e4066Sahrens 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
626fa9e4066Sahrens 
627fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
628fa9e4066Sahrens 		return;
629fa9e4066Sahrens 
630fa9e4066Sahrens 	if (vdev_is_dead(vd))
631fa9e4066Sahrens 		return;
632fa9e4066Sahrens 
633fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++) {
634ecc2d604Sbonwick 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
635fa9e4066Sahrens 			vdev_label_read(zio, vd, l,
636ecc2d604Sbonwick 			    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
637ecc2d604Sbonwick 			    VDEV_UBERBLOCK_OFFSET(vd, n),
638ecc2d604Sbonwick 			    VDEV_UBERBLOCK_SIZE(vd),
639fa9e4066Sahrens 			    vdev_uberblock_load_done, ubbest);
640fa9e4066Sahrens 		}
641fa9e4066Sahrens 	}
642fa9e4066Sahrens }
643fa9e4066Sahrens 
644fa9e4066Sahrens /*
645fa9e4066Sahrens  * Write the uberblock to both labels of all leaves of the specified vdev.
6460373e76bSbonwick  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
647fa9e4066Sahrens  */
648fa9e4066Sahrens static void
649fa9e4066Sahrens vdev_uberblock_sync_done(zio_t *zio)
650fa9e4066Sahrens {
651fa9e4066Sahrens 	uint64_t *good_writes = zio->io_root->io_private;
652fa9e4066Sahrens 
6530373e76bSbonwick 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
654fa9e4066Sahrens 		atomic_add_64(good_writes, 1);
655fa9e4066Sahrens }
656fa9e4066Sahrens 
657fa9e4066Sahrens static void
658ecc2d604Sbonwick vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg)
659fa9e4066Sahrens {
660fa9e4066Sahrens 	int l, c, n;
661fa9e4066Sahrens 
662fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
663ecc2d604Sbonwick 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg);
664fa9e4066Sahrens 
665fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
666fa9e4066Sahrens 		return;
667fa9e4066Sahrens 
668fa9e4066Sahrens 	if (vdev_is_dead(vd))
669fa9e4066Sahrens 		return;
670fa9e4066Sahrens 
671ecc2d604Sbonwick 	n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
672fa9e4066Sahrens 
673ecc2d604Sbonwick 	ASSERT(ub->ub_txg == txg);
674fa9e4066Sahrens 
675fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++)
676ecc2d604Sbonwick 		vdev_label_write(zio, vd, l, ub,
677ecc2d604Sbonwick 		    VDEV_UBERBLOCK_OFFSET(vd, n),
678ecc2d604Sbonwick 		    VDEV_UBERBLOCK_SIZE(vd),
679ecc2d604Sbonwick 		    vdev_uberblock_sync_done, NULL);
680fa9e4066Sahrens 
681fa9e4066Sahrens 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
682fa9e4066Sahrens }
683fa9e4066Sahrens 
684fa9e4066Sahrens static int
685ecc2d604Sbonwick vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg)
686fa9e4066Sahrens {
687ecc2d604Sbonwick 	uberblock_t *ubbuf;
688ecc2d604Sbonwick 	size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE;
689fa9e4066Sahrens 	uint64_t *good_writes;
690fa9e4066Sahrens 	zio_t *zio;
691fa9e4066Sahrens 	int error;
692fa9e4066Sahrens 
693ecc2d604Sbonwick 	ubbuf = zio_buf_alloc(size);
694ecc2d604Sbonwick 	bzero(ubbuf, size);
695ecc2d604Sbonwick 	*ubbuf = *ub;
696fa9e4066Sahrens 
697fa9e4066Sahrens 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
698fa9e4066Sahrens 
699fa9e4066Sahrens 	zio = zio_root(spa, NULL, good_writes,
700fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
701fa9e4066Sahrens 
702ecc2d604Sbonwick 	vdev_uberblock_sync(zio, ubbuf, vd, txg);
703fa9e4066Sahrens 
704fa9e4066Sahrens 	error = zio_wait(zio);
705fa9e4066Sahrens 
706fa9e4066Sahrens 	if (error && *good_writes != 0) {
707fa9e4066Sahrens 		dprintf("partial success: good_writes = %llu\n", *good_writes);
708fa9e4066Sahrens 		error = 0;
709fa9e4066Sahrens 	}
710fa9e4066Sahrens 
711fa9e4066Sahrens 	/*
712fa9e4066Sahrens 	 * It's possible to have no good writes and no error if every vdev is in
713fa9e4066Sahrens 	 * the CANT_OPEN state.
714fa9e4066Sahrens 	 */
715fa9e4066Sahrens 	if (*good_writes == 0 && error == 0)
716fa9e4066Sahrens 		error = EIO;
717fa9e4066Sahrens 
718fa9e4066Sahrens 	kmem_free(good_writes, sizeof (uint64_t));
719ecc2d604Sbonwick 	zio_buf_free(ubbuf, size);
720fa9e4066Sahrens 
721fa9e4066Sahrens 	return (error);
722fa9e4066Sahrens }
723fa9e4066Sahrens 
724fa9e4066Sahrens /*
725fa9e4066Sahrens  * Sync out an individual vdev.
726fa9e4066Sahrens  */
727fa9e4066Sahrens static void
728fa9e4066Sahrens vdev_sync_label_done(zio_t *zio)
729fa9e4066Sahrens {
730fa9e4066Sahrens 	uint64_t *good_writes = zio->io_root->io_private;
731fa9e4066Sahrens 
732fa9e4066Sahrens 	if (zio->io_error == 0)
733fa9e4066Sahrens 		atomic_add_64(good_writes, 1);
734fa9e4066Sahrens }
735fa9e4066Sahrens 
736fa9e4066Sahrens static void
737fa9e4066Sahrens vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
738fa9e4066Sahrens {
739fa9e4066Sahrens 	nvlist_t *label;
740fa9e4066Sahrens 	vdev_phys_t *vp;
741fa9e4066Sahrens 	char *buf;
742fa9e4066Sahrens 	size_t buflen;
743fa9e4066Sahrens 	int c;
744fa9e4066Sahrens 
745fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
746fa9e4066Sahrens 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
747fa9e4066Sahrens 
748fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
749fa9e4066Sahrens 		return;
750fa9e4066Sahrens 
751fa9e4066Sahrens 	if (vdev_is_dead(vd))
752fa9e4066Sahrens 		return;
753fa9e4066Sahrens 
754fa9e4066Sahrens 	/*
755fa9e4066Sahrens 	 * Generate a label describing the top-level config to which we belong.
756fa9e4066Sahrens 	 */
7570373e76bSbonwick 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
758fa9e4066Sahrens 
759fa9e4066Sahrens 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
760fa9e4066Sahrens 	bzero(vp, sizeof (vdev_phys_t));
761fa9e4066Sahrens 
762fa9e4066Sahrens 	buf = vp->vp_nvlist;
763fa9e4066Sahrens 	buflen = sizeof (vp->vp_nvlist);
764fa9e4066Sahrens 
765ea8dc4b6Seschrock 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
766fa9e4066Sahrens 		vdev_label_write(zio, vd, l, vp,
767fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
768fa9e4066Sahrens 		    vdev_sync_label_done, NULL);
769fa9e4066Sahrens 
770fa9e4066Sahrens 	zio_buf_free(vp, sizeof (vdev_phys_t));
771fa9e4066Sahrens 	nvlist_free(label);
772fa9e4066Sahrens 
773fa9e4066Sahrens 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
774fa9e4066Sahrens }
775fa9e4066Sahrens 
776fa9e4066Sahrens static int
777fa9e4066Sahrens vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
778fa9e4066Sahrens {
779fa9e4066Sahrens 	uint64_t *good_writes;
780fa9e4066Sahrens 	zio_t *zio;
781fa9e4066Sahrens 	int error;
782fa9e4066Sahrens 
783fa9e4066Sahrens 	ASSERT(vd == vd->vdev_top);
784fa9e4066Sahrens 
785fa9e4066Sahrens 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
786fa9e4066Sahrens 
787fa9e4066Sahrens 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
788fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
789fa9e4066Sahrens 
790fa9e4066Sahrens 	/*
791fa9e4066Sahrens 	 * Recursively kick off writes to all labels.
792fa9e4066Sahrens 	 */
793fa9e4066Sahrens 	vdev_sync_label(zio, vd, l, txg);
794fa9e4066Sahrens 
795fa9e4066Sahrens 	error = zio_wait(zio);
796fa9e4066Sahrens 
797fa9e4066Sahrens 	if (error && *good_writes != 0) {
798fa9e4066Sahrens 		dprintf("partial success: good_writes = %llu\n", *good_writes);
799fa9e4066Sahrens 		error = 0;
800fa9e4066Sahrens 	}
801fa9e4066Sahrens 
802fa9e4066Sahrens 	if (*good_writes == 0 && error == 0)
803fa9e4066Sahrens 		error = ENODEV;
804fa9e4066Sahrens 
805fa9e4066Sahrens 	kmem_free(good_writes, sizeof (uint64_t));
806fa9e4066Sahrens 
807fa9e4066Sahrens 	return (error);
808fa9e4066Sahrens }
809fa9e4066Sahrens 
810fa9e4066Sahrens /*
811fa9e4066Sahrens  * Sync the entire vdev configuration.
812fa9e4066Sahrens  *
813fa9e4066Sahrens  * The order of operations is carefully crafted to ensure that
814fa9e4066Sahrens  * if the system panics or loses power at any time, the state on disk
815fa9e4066Sahrens  * is still transactionally consistent.  The in-line comments below
816fa9e4066Sahrens  * describe the failure semantics at each stage.
817fa9e4066Sahrens  *
818fa9e4066Sahrens  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
819fa9e4066Sahrens  * at any time, you can just call it again, and it will resume its work.
820fa9e4066Sahrens  */
821fa9e4066Sahrens int
8220373e76bSbonwick vdev_config_sync(vdev_t *uvd, uint64_t txg)
823fa9e4066Sahrens {
8240373e76bSbonwick 	spa_t *spa = uvd->vdev_spa;
825fa9e4066Sahrens 	uberblock_t *ub = &spa->spa_uberblock;
826fa9e4066Sahrens 	vdev_t *rvd = spa->spa_root_vdev;
8270373e76bSbonwick 	vdev_t *vd;
828fa9e4066Sahrens 	zio_t *zio;
829f65ea9b9Sbonwick 	int l, error;
830fa9e4066Sahrens 
831fa9e4066Sahrens 	ASSERT(ub->ub_txg <= txg);
832fa9e4066Sahrens 
833fa9e4066Sahrens 	/*
834fa9e4066Sahrens 	 * If this isn't a resync due to I/O errors, and nothing changed
835fa9e4066Sahrens 	 * in this transaction group, and the vdev configuration hasn't changed,
8360373e76bSbonwick 	 * then there's nothing to do.
837fa9e4066Sahrens 	 */
838fa9e4066Sahrens 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
839fa9e4066Sahrens 	    list_is_empty(&spa->spa_dirty_list)) {
840fa9e4066Sahrens 		dprintf("nothing to sync in %s in txg %llu\n",
841fa9e4066Sahrens 		    spa_name(spa), txg);
842fa9e4066Sahrens 		return (0);
843fa9e4066Sahrens 	}
844fa9e4066Sahrens 
845fa9e4066Sahrens 	if (txg > spa_freeze_txg(spa))
846fa9e4066Sahrens 		return (0);
847fa9e4066Sahrens 
8480373e76bSbonwick 	ASSERT(txg <= spa->spa_final_txg);
8490373e76bSbonwick 
850fa9e4066Sahrens 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
851fa9e4066Sahrens 
852fa9e4066Sahrens 	/*
853fa9e4066Sahrens 	 * Flush the write cache of every disk that's been written to
854fa9e4066Sahrens 	 * in this transaction group.  This ensures that all blocks
855fa9e4066Sahrens 	 * written in this txg will be committed to stable storage
856fa9e4066Sahrens 	 * before any uberblock that references them.
857fa9e4066Sahrens 	 */
858fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
859fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
860fa9e4066Sahrens 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
861fa9e4066Sahrens 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
862fa9e4066Sahrens 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
863fa9e4066Sahrens 		    NULL, NULL, ZIO_PRIORITY_NOW,
864fa9e4066Sahrens 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
865fa9e4066Sahrens 	}
866fa9e4066Sahrens 	(void) zio_wait(zio);
867fa9e4066Sahrens 
868fa9e4066Sahrens 	/*
869fa9e4066Sahrens 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
870fa9e4066Sahrens 	 * system dies in the middle of this process, that's OK: all of the
871fa9e4066Sahrens 	 * even labels that made it to disk will be newer than any uberblock,
872fa9e4066Sahrens 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
873fa9e4066Sahrens 	 * which have not yet been touched, will still be valid.
874fa9e4066Sahrens 	 */
875fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
876fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
877fa9e4066Sahrens 		for (l = 0; l < VDEV_LABELS; l++) {
878fa9e4066Sahrens 			if (l & 1)
879fa9e4066Sahrens 				continue;
880fa9e4066Sahrens 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
881fa9e4066Sahrens 				return (error);
882fa9e4066Sahrens 		}
883fa9e4066Sahrens 	}
884fa9e4066Sahrens 
885fa9e4066Sahrens 	/*
886fa9e4066Sahrens 	 * Flush the new labels to disk.  This ensures that all even-label
887fa9e4066Sahrens 	 * updates are committed to stable storage before the uberblock update.
888fa9e4066Sahrens 	 */
889fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
890fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
891fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
892fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
893fa9e4066Sahrens 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
894fa9e4066Sahrens 		    NULL, NULL, ZIO_PRIORITY_NOW,
895fa9e4066Sahrens 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
896fa9e4066Sahrens 	}
897fa9e4066Sahrens 	(void) zio_wait(zio);
898fa9e4066Sahrens 
899fa9e4066Sahrens 	/*
9000373e76bSbonwick 	 * Sync the uberblocks to all vdevs in the tree specified by uvd.
9010373e76bSbonwick 	 * If the system dies in the middle of this step, there are two cases
9020373e76bSbonwick 	 * to consider, and the on-disk state is consistent either way:
903fa9e4066Sahrens 	 *
904fa9e4066Sahrens 	 * (1)	If none of the new uberblocks made it to disk, then the
905fa9e4066Sahrens 	 *	previous uberblock will be the newest, and the odd labels
906fa9e4066Sahrens 	 *	(which had not yet been touched) will be valid with respect
907fa9e4066Sahrens 	 *	to that uberblock.
908fa9e4066Sahrens 	 *
909fa9e4066Sahrens 	 * (2)	If one or more new uberblocks made it to disk, then they
910fa9e4066Sahrens 	 *	will be the newest, and the even labels (which had all
911fa9e4066Sahrens 	 *	been successfully committed) will be valid with respect
912fa9e4066Sahrens 	 *	to the new uberblocks.
913fa9e4066Sahrens 	 */
914fa9e4066Sahrens 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
915fa9e4066Sahrens 		return (error);
916fa9e4066Sahrens 
917fa9e4066Sahrens 	/*
918fa9e4066Sahrens 	 * Flush the uberblocks to disk.  This ensures that the odd labels
919fa9e4066Sahrens 	 * are no longer needed (because the new uberblocks and the even
920fa9e4066Sahrens 	 * labels are safely on disk), so it is safe to overwrite them.
921fa9e4066Sahrens 	 */
922fa9e4066Sahrens 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
923fa9e4066Sahrens 	    NULL, NULL, ZIO_PRIORITY_NOW,
924fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
925fa9e4066Sahrens 
926fa9e4066Sahrens 	/*
927fa9e4066Sahrens 	 * Sync out odd labels for every dirty vdev.  If the system dies
928fa9e4066Sahrens 	 * in the middle of this process, the even labels and the new
929fa9e4066Sahrens 	 * uberblocks will suffice to open the pool.  The next time
930fa9e4066Sahrens 	 * the pool is opened, the first thing we'll do -- before any
931fa9e4066Sahrens 	 * user data is modified -- is mark every vdev dirty so that
932fa9e4066Sahrens 	 * all labels will be brought up to date.
933fa9e4066Sahrens 	 */
934fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
935fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
936fa9e4066Sahrens 		for (l = 0; l < VDEV_LABELS; l++) {
937fa9e4066Sahrens 			if ((l & 1) == 0)
938fa9e4066Sahrens 				continue;
939fa9e4066Sahrens 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
940fa9e4066Sahrens 				return (error);
941fa9e4066Sahrens 		}
942fa9e4066Sahrens 	}
943fa9e4066Sahrens 
944fa9e4066Sahrens 	/*
945fa9e4066Sahrens 	 * Flush the new labels to disk.  This ensures that all odd-label
946fa9e4066Sahrens 	 * updates are committed to stable storage before the next
947fa9e4066Sahrens 	 * transaction group begins.
948fa9e4066Sahrens 	 */
949fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
950fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
951fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
952fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
953fa9e4066Sahrens 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
954fa9e4066Sahrens 		    NULL, NULL, ZIO_PRIORITY_NOW,
955fa9e4066Sahrens 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
956fa9e4066Sahrens 	}
957fa9e4066Sahrens 	(void) zio_wait(zio);
958fa9e4066Sahrens 
959fa9e4066Sahrens 	return (0);
960fa9e4066Sahrens }
961