xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision 39c23413b8df94a95f67b34cfd4a4dfc3fd0b48d)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5441d80aaSlling  * Common Development and Distribution License (the "License").
6441d80aaSlling  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
21fa9e4066Sahrens /*
22*39c23413Seschrock  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23fa9e4066Sahrens  * Use is subject to license terms.
24fa9e4066Sahrens  */
25fa9e4066Sahrens 
26fa9e4066Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
27fa9e4066Sahrens 
28fa9e4066Sahrens /*
29fa9e4066Sahrens  * Virtual Device Labels
30fa9e4066Sahrens  * ---------------------
31fa9e4066Sahrens  *
32fa9e4066Sahrens  * The vdev label serves several distinct purposes:
33fa9e4066Sahrens  *
34fa9e4066Sahrens  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35fa9e4066Sahrens  *	   identity within the pool.
36fa9e4066Sahrens  *
37fa9e4066Sahrens  * 	2. Verify that all the devices given in a configuration are present
38fa9e4066Sahrens  *         within the pool.
39fa9e4066Sahrens  *
40fa9e4066Sahrens  * 	3. Determine the uberblock for the pool.
41fa9e4066Sahrens  *
42fa9e4066Sahrens  * 	4. In case of an import operation, determine the configuration of the
43fa9e4066Sahrens  *         toplevel vdev of which it is a part.
44fa9e4066Sahrens  *
45fa9e4066Sahrens  * 	5. If an import operation cannot find all the devices in the pool,
46fa9e4066Sahrens  *         provide enough information to the administrator to determine which
47fa9e4066Sahrens  *         devices are missing.
48fa9e4066Sahrens  *
49fa9e4066Sahrens  * It is important to note that while the kernel is responsible for writing the
50fa9e4066Sahrens  * label, it only consumes the information in the first three cases.  The
51fa9e4066Sahrens  * latter information is only consumed in userland when determining the
52fa9e4066Sahrens  * configuration to import a pool.
53fa9e4066Sahrens  *
54fa9e4066Sahrens  *
55fa9e4066Sahrens  * Label Organization
56fa9e4066Sahrens  * ------------------
57fa9e4066Sahrens  *
58fa9e4066Sahrens  * Before describing the contents of the label, it's important to understand how
59fa9e4066Sahrens  * the labels are written and updated with respect to the uberblock.
60fa9e4066Sahrens  *
61fa9e4066Sahrens  * When the pool configuration is altered, either because it was newly created
62fa9e4066Sahrens  * or a device was added, we want to update all the labels such that we can deal
63fa9e4066Sahrens  * with fatal failure at any point.  To this end, each disk has two labels which
64fa9e4066Sahrens  * are updated before and after the uberblock is synced.  Assuming we have
65fa9e4066Sahrens  * labels and an uberblock with the following transacation groups:
66fa9e4066Sahrens  *
67fa9e4066Sahrens  *              L1          UB          L2
68fa9e4066Sahrens  *           +------+    +------+    +------+
69fa9e4066Sahrens  *           |      |    |      |    |      |
70fa9e4066Sahrens  *           | t10  |    | t10  |    | t10  |
71fa9e4066Sahrens  *           |      |    |      |    |      |
72fa9e4066Sahrens  *           +------+    +------+    +------+
73fa9e4066Sahrens  *
74fa9e4066Sahrens  * In this stable state, the labels and the uberblock were all updated within
75fa9e4066Sahrens  * the same transaction group (10).  Each label is mirrored and checksummed, so
76fa9e4066Sahrens  * that we can detect when we fail partway through writing the label.
77fa9e4066Sahrens  *
78fa9e4066Sahrens  * In order to identify which labels are valid, the labels are written in the
79fa9e4066Sahrens  * following manner:
80fa9e4066Sahrens  *
81fa9e4066Sahrens  * 	1. For each vdev, update 'L1' to the new label
82fa9e4066Sahrens  * 	2. Update the uberblock
83fa9e4066Sahrens  * 	3. For each vdev, update 'L2' to the new label
84fa9e4066Sahrens  *
85fa9e4066Sahrens  * Given arbitrary failure, we can determine the correct label to use based on
86fa9e4066Sahrens  * the transaction group.  If we fail after updating L1 but before updating the
87fa9e4066Sahrens  * UB, we will notice that L1's transaction group is greater than the uberblock,
88fa9e4066Sahrens  * so L2 must be valid.  If we fail after writing the uberblock but before
89fa9e4066Sahrens  * writing L2, we will notice that L2's transaction group is less than L1, and
90fa9e4066Sahrens  * therefore L1 is valid.
91fa9e4066Sahrens  *
92fa9e4066Sahrens  * Another added complexity is that not every label is updated when the config
93fa9e4066Sahrens  * is synced.  If we add a single device, we do not want to have to re-write
94fa9e4066Sahrens  * every label for every device in the pool.  This means that both L1 and L2 may
95fa9e4066Sahrens  * be older than the pool uberblock, because the necessary information is stored
96fa9e4066Sahrens  * on another vdev.
97fa9e4066Sahrens  *
98fa9e4066Sahrens  *
99fa9e4066Sahrens  * On-disk Format
100fa9e4066Sahrens  * --------------
101fa9e4066Sahrens  *
102fa9e4066Sahrens  * The vdev label consists of two distinct parts, and is wrapped within the
103fa9e4066Sahrens  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104fa9e4066Sahrens  * VTOC disk labels, but is otherwise ignored.
105fa9e4066Sahrens  *
106fa9e4066Sahrens  * The first half of the label is a packed nvlist which contains pool wide
107fa9e4066Sahrens  * properties, per-vdev properties, and configuration information.  It is
108fa9e4066Sahrens  * described in more detail below.
109fa9e4066Sahrens  *
110fa9e4066Sahrens  * The latter half of the label consists of a redundant array of uberblocks.
111fa9e4066Sahrens  * These uberblocks are updated whenever a transaction group is committed,
112fa9e4066Sahrens  * or when the configuration is updated.  When a pool is loaded, we scan each
113fa9e4066Sahrens  * vdev for the 'best' uberblock.
114fa9e4066Sahrens  *
115fa9e4066Sahrens  *
116fa9e4066Sahrens  * Configuration Information
117fa9e4066Sahrens  * -------------------------
118fa9e4066Sahrens  *
119fa9e4066Sahrens  * The nvlist describing the pool and vdev contains the following elements:
120fa9e4066Sahrens  *
121fa9e4066Sahrens  * 	version		ZFS on-disk version
122fa9e4066Sahrens  * 	name		Pool name
123fa9e4066Sahrens  * 	state		Pool state
124fa9e4066Sahrens  * 	txg		Transaction group in which this label was written
125fa9e4066Sahrens  * 	pool_guid	Unique identifier for this pool
126fa9e4066Sahrens  * 	vdev_tree	An nvlist describing vdev tree.
127fa9e4066Sahrens  *
128fa9e4066Sahrens  * Each leaf device label also contains the following:
129fa9e4066Sahrens  *
130fa9e4066Sahrens  * 	top_guid	Unique ID for top-level vdev in which this is contained
131fa9e4066Sahrens  * 	guid		Unique ID for the leaf vdev
132fa9e4066Sahrens  *
133fa9e4066Sahrens  * The 'vs' configuration follows the format described in 'spa_config.c'.
134fa9e4066Sahrens  */
135fa9e4066Sahrens 
136fa9e4066Sahrens #include <sys/zfs_context.h>
137fa9e4066Sahrens #include <sys/spa.h>
138fa9e4066Sahrens #include <sys/spa_impl.h>
139fa9e4066Sahrens #include <sys/dmu.h>
140fa9e4066Sahrens #include <sys/zap.h>
141fa9e4066Sahrens #include <sys/vdev.h>
142fa9e4066Sahrens #include <sys/vdev_impl.h>
143fa9e4066Sahrens #include <sys/uberblock_impl.h>
144fa9e4066Sahrens #include <sys/metaslab.h>
145fa9e4066Sahrens #include <sys/zio.h>
146fa9e4066Sahrens #include <sys/fs/zfs.h>
147fa9e4066Sahrens 
148fa9e4066Sahrens /*
149fa9e4066Sahrens  * Basic routines to read and write from a vdev label.
150fa9e4066Sahrens  * Used throughout the rest of this file.
151fa9e4066Sahrens  */
152fa9e4066Sahrens uint64_t
153fa9e4066Sahrens vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154fa9e4066Sahrens {
155ecc2d604Sbonwick 	ASSERT(offset < sizeof (vdev_label_t));
156ecc2d604Sbonwick 
157fa9e4066Sahrens 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
158fa9e4066Sahrens 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
159fa9e4066Sahrens }
160fa9e4066Sahrens 
161fa9e4066Sahrens static void
162fa9e4066Sahrens vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
163fa9e4066Sahrens 	uint64_t size, zio_done_func_t *done, void *private)
164fa9e4066Sahrens {
165fa9e4066Sahrens 	ASSERT(vd->vdev_children == 0);
166fa9e4066Sahrens 
167fa9e4066Sahrens 	zio_nowait(zio_read_phys(zio, vd,
168fa9e4066Sahrens 	    vdev_label_offset(vd->vdev_psize, l, offset),
169fa9e4066Sahrens 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
170ea8dc4b6Seschrock 	    ZIO_PRIORITY_SYNC_READ,
171ea8dc4b6Seschrock 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
172fa9e4066Sahrens }
173fa9e4066Sahrens 
174fa9e4066Sahrens static void
175fa9e4066Sahrens vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
176fa9e4066Sahrens 	uint64_t size, zio_done_func_t *done, void *private)
177fa9e4066Sahrens {
178fa9e4066Sahrens 	ASSERT(vd->vdev_children == 0);
179fa9e4066Sahrens 
180fa9e4066Sahrens 	zio_nowait(zio_write_phys(zio, vd,
181fa9e4066Sahrens 	    vdev_label_offset(vd->vdev_psize, l, offset),
182fa9e4066Sahrens 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
183ea8dc4b6Seschrock 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
184fa9e4066Sahrens }
185fa9e4066Sahrens 
186fa9e4066Sahrens /*
187fa9e4066Sahrens  * Generate the nvlist representing this vdev's config.
188fa9e4066Sahrens  */
189fa9e4066Sahrens nvlist_t *
19099653d4eSeschrock vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
19199653d4eSeschrock     boolean_t isspare)
192fa9e4066Sahrens {
193fa9e4066Sahrens 	nvlist_t *nv = NULL;
194fa9e4066Sahrens 
195ea8dc4b6Seschrock 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196fa9e4066Sahrens 
197fa9e4066Sahrens 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
198fa9e4066Sahrens 	    vd->vdev_ops->vdev_op_type) == 0);
19999653d4eSeschrock 	if (!isspare)
20099653d4eSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
20199653d4eSeschrock 		    == 0);
202fa9e4066Sahrens 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
203fa9e4066Sahrens 
204fa9e4066Sahrens 	if (vd->vdev_path != NULL)
205fa9e4066Sahrens 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
206fa9e4066Sahrens 		    vd->vdev_path) == 0);
207fa9e4066Sahrens 
208fa9e4066Sahrens 	if (vd->vdev_devid != NULL)
209fa9e4066Sahrens 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
210fa9e4066Sahrens 		    vd->vdev_devid) == 0);
211fa9e4066Sahrens 
21299653d4eSeschrock 	if (vd->vdev_nparity != 0) {
21399653d4eSeschrock 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
21499653d4eSeschrock 		    VDEV_TYPE_RAIDZ) == 0);
21599653d4eSeschrock 
21699653d4eSeschrock 		/*
21799653d4eSeschrock 		 * Make sure someone hasn't managed to sneak a fancy new vdev
21899653d4eSeschrock 		 * into a crufty old storage pool.
21999653d4eSeschrock 		 */
22099653d4eSeschrock 		ASSERT(vd->vdev_nparity == 1 ||
22199653d4eSeschrock 		    (vd->vdev_nparity == 2 &&
22299653d4eSeschrock 		    spa_version(spa) >= ZFS_VERSION_RAID6));
22399653d4eSeschrock 
22499653d4eSeschrock 		/*
22599653d4eSeschrock 		 * Note that we'll add the nparity tag even on storage pools
22699653d4eSeschrock 		 * that only support a single parity device -- older software
22799653d4eSeschrock 		 * will just ignore it.
22899653d4eSeschrock 		 */
22999653d4eSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
23099653d4eSeschrock 		    vd->vdev_nparity) == 0);
23199653d4eSeschrock 	}
23299653d4eSeschrock 
233afefbcddSeschrock 	if (vd->vdev_wholedisk != -1ULL)
234afefbcddSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
235afefbcddSeschrock 		    vd->vdev_wholedisk) == 0);
236afefbcddSeschrock 
237ea8dc4b6Seschrock 	if (vd->vdev_not_present)
238ea8dc4b6Seschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
239ea8dc4b6Seschrock 
24099653d4eSeschrock 	if (vd->vdev_isspare)
24199653d4eSeschrock 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
24299653d4eSeschrock 
24399653d4eSeschrock 	if (!isspare && vd == vd->vdev_top) {
244fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
245fa9e4066Sahrens 		    vd->vdev_ms_array) == 0);
246fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
247fa9e4066Sahrens 		    vd->vdev_ms_shift) == 0);
248fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
249fa9e4066Sahrens 		    vd->vdev_ashift) == 0);
250fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
251fa9e4066Sahrens 		    vd->vdev_asize) == 0);
252fa9e4066Sahrens 	}
253fa9e4066Sahrens 
254fa9e4066Sahrens 	if (vd->vdev_dtl.smo_object != 0)
255fa9e4066Sahrens 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
256fa9e4066Sahrens 		    vd->vdev_dtl.smo_object) == 0);
257fa9e4066Sahrens 
258fa9e4066Sahrens 	if (getstats) {
259fa9e4066Sahrens 		vdev_stat_t vs;
260fa9e4066Sahrens 		vdev_get_stats(vd, &vs);
261fa9e4066Sahrens 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
262fa9e4066Sahrens 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
263fa9e4066Sahrens 	}
264fa9e4066Sahrens 
265fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf) {
266fa9e4066Sahrens 		nvlist_t **child;
267fa9e4066Sahrens 		int c;
268fa9e4066Sahrens 
269fa9e4066Sahrens 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
270fa9e4066Sahrens 		    KM_SLEEP);
271fa9e4066Sahrens 
272fa9e4066Sahrens 		for (c = 0; c < vd->vdev_children; c++)
27399653d4eSeschrock 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
27499653d4eSeschrock 			    getstats, isspare);
275fa9e4066Sahrens 
276fa9e4066Sahrens 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
277fa9e4066Sahrens 		    child, vd->vdev_children) == 0);
278fa9e4066Sahrens 
279fa9e4066Sahrens 		for (c = 0; c < vd->vdev_children; c++)
280fa9e4066Sahrens 			nvlist_free(child[c]);
281fa9e4066Sahrens 
282fa9e4066Sahrens 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
283441d80aaSlling 
284441d80aaSlling 	} else {
285ecc2d604Sbonwick 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
286441d80aaSlling 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
287ecc2d604Sbonwick 			    B_TRUE) == 0);
288ecc2d604Sbonwick 		else
289441d80aaSlling 			(void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE,
290ecc2d604Sbonwick 			    DATA_TYPE_UINT64);
291fa9e4066Sahrens 	}
292fa9e4066Sahrens 
293fa9e4066Sahrens 	return (nv);
294fa9e4066Sahrens }
295fa9e4066Sahrens 
296fa9e4066Sahrens nvlist_t *
297fa9e4066Sahrens vdev_label_read_config(vdev_t *vd)
298fa9e4066Sahrens {
2990373e76bSbonwick 	spa_t *spa = vd->vdev_spa;
300fa9e4066Sahrens 	nvlist_t *config = NULL;
301fa9e4066Sahrens 	vdev_phys_t *vp;
302fa9e4066Sahrens 	zio_t *zio;
303fa9e4066Sahrens 	int l;
304fa9e4066Sahrens 
3050373e76bSbonwick 	ASSERT(spa_config_held(spa, RW_READER));
3060373e76bSbonwick 
307fa9e4066Sahrens 	if (vdev_is_dead(vd))
308fa9e4066Sahrens 		return (NULL);
309fa9e4066Sahrens 
310fa9e4066Sahrens 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
311fa9e4066Sahrens 
312fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++) {
313fa9e4066Sahrens 
3140373e76bSbonwick 		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
315ea8dc4b6Seschrock 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
316fa9e4066Sahrens 
317fa9e4066Sahrens 		vdev_label_read(zio, vd, l, vp,
318fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_vdev_phys),
319fa9e4066Sahrens 		    sizeof (vdev_phys_t), NULL, NULL);
320fa9e4066Sahrens 
321fa9e4066Sahrens 		if (zio_wait(zio) == 0 &&
322fa9e4066Sahrens 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
323ea8dc4b6Seschrock 		    &config, 0) == 0)
324fa9e4066Sahrens 			break;
325fa9e4066Sahrens 
326fa9e4066Sahrens 		if (config != NULL) {
327fa9e4066Sahrens 			nvlist_free(config);
328fa9e4066Sahrens 			config = NULL;
329fa9e4066Sahrens 		}
330fa9e4066Sahrens 	}
331fa9e4066Sahrens 
332fa9e4066Sahrens 	zio_buf_free(vp, sizeof (vdev_phys_t));
333fa9e4066Sahrens 
334fa9e4066Sahrens 	return (config);
335fa9e4066Sahrens }
336fa9e4066Sahrens 
337*39c23413Seschrock /*
338*39c23413Seschrock  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
339*39c23413Seschrock  * in with the device guid if this spare is active elsewhere on the system.
340*39c23413Seschrock  */
341*39c23413Seschrock static boolean_t
342*39c23413Seschrock vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
343*39c23413Seschrock     uint64_t *spare_guid)
344*39c23413Seschrock {
345*39c23413Seschrock 	spa_t *spa = vd->vdev_spa;
346*39c23413Seschrock 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
347*39c23413Seschrock 	uint64_t vdtxg = 0;
348*39c23413Seschrock 	nvlist_t *label;
349*39c23413Seschrock 
350*39c23413Seschrock 	if (spare_guid)
351*39c23413Seschrock 		*spare_guid = 0ULL;
352*39c23413Seschrock 
353*39c23413Seschrock 	/*
354*39c23413Seschrock 	 * Read the label, if any, and perform some basic sanity checks.
355*39c23413Seschrock 	 */
356*39c23413Seschrock 	if ((label = vdev_label_read_config(vd)) == NULL)
357*39c23413Seschrock 		return (B_FALSE);
358*39c23413Seschrock 
359*39c23413Seschrock 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
360*39c23413Seschrock 	    &vdtxg);
361*39c23413Seschrock 
362*39c23413Seschrock 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
363*39c23413Seschrock 	    &state) != 0 ||
364*39c23413Seschrock 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
365*39c23413Seschrock 	    &device_guid) != 0) {
366*39c23413Seschrock 		nvlist_free(label);
367*39c23413Seschrock 		return (B_FALSE);
368*39c23413Seschrock 	}
369*39c23413Seschrock 
370*39c23413Seschrock 	if (state != POOL_STATE_SPARE &&
371*39c23413Seschrock 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
372*39c23413Seschrock 	    &pool_guid) != 0 ||
373*39c23413Seschrock 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
374*39c23413Seschrock 	    &txg) != 0)) {
375*39c23413Seschrock 		nvlist_free(label);
376*39c23413Seschrock 		return (B_FALSE);
377*39c23413Seschrock 	}
378*39c23413Seschrock 
379*39c23413Seschrock 	nvlist_free(label);
380*39c23413Seschrock 
381*39c23413Seschrock 	/*
382*39c23413Seschrock 	 * Check to see if this device indeed belongs to the pool it claims to
383*39c23413Seschrock 	 * be a part of.  The only way this is allowed is if the device is a hot
384*39c23413Seschrock 	 * spare (which we check for later on).
385*39c23413Seschrock 	 */
386*39c23413Seschrock 	if (state != POOL_STATE_SPARE &&
387*39c23413Seschrock 	    !spa_guid_exists(pool_guid, device_guid) &&
388*39c23413Seschrock 	    !spa_spare_exists(device_guid, NULL))
389*39c23413Seschrock 		return (B_FALSE);
390*39c23413Seschrock 
391*39c23413Seschrock 	/*
392*39c23413Seschrock 	 * If the transaction group is zero, then this an initialized (but
393*39c23413Seschrock 	 * unused) label.  This is only an error if the create transaction
394*39c23413Seschrock 	 * on-disk is the same as the one we're using now, in which case the
395*39c23413Seschrock 	 * user has attempted to add the same vdev multiple times in the same
396*39c23413Seschrock 	 * transaction.
397*39c23413Seschrock 	 */
398*39c23413Seschrock 	if (state != POOL_STATE_SPARE && txg == 0 && vdtxg == crtxg)
399*39c23413Seschrock 		return (B_TRUE);
400*39c23413Seschrock 
401*39c23413Seschrock 	/*
402*39c23413Seschrock 	 * Check to see if this is a spare device.  We do an explicit check for
403*39c23413Seschrock 	 * spa_has_spare() here because it may be on our pending list of spares
404*39c23413Seschrock 	 * to add.
405*39c23413Seschrock 	 */
406*39c23413Seschrock 	if (spa_spare_exists(device_guid, &spare_pool) ||
407*39c23413Seschrock 	    spa_has_spare(spa, device_guid)) {
408*39c23413Seschrock 		if (spare_guid)
409*39c23413Seschrock 			*spare_guid = device_guid;
410*39c23413Seschrock 
411*39c23413Seschrock 		switch (reason) {
412*39c23413Seschrock 		case VDEV_LABEL_CREATE:
413*39c23413Seschrock 			return (B_TRUE);
414*39c23413Seschrock 
415*39c23413Seschrock 		case VDEV_LABEL_REPLACE:
416*39c23413Seschrock 			return (!spa_has_spare(spa, device_guid) ||
417*39c23413Seschrock 			    spare_pool != 0ULL);
418*39c23413Seschrock 
419*39c23413Seschrock 		case VDEV_LABEL_SPARE:
420*39c23413Seschrock 			return (spa_has_spare(spa, device_guid));
421*39c23413Seschrock 		}
422*39c23413Seschrock 	}
423*39c23413Seschrock 
424*39c23413Seschrock 	/*
425*39c23413Seschrock 	 * If the device is marked ACTIVE, then this device is in use by another
426*39c23413Seschrock 	 * pool on the system.
427*39c23413Seschrock 	 */
428*39c23413Seschrock 	return (state == POOL_STATE_ACTIVE);
429*39c23413Seschrock }
430*39c23413Seschrock 
431*39c23413Seschrock /*
432*39c23413Seschrock  * Initialize a vdev label.  We check to make sure each leaf device is not in
433*39c23413Seschrock  * use, and writable.  We put down an initial label which we will later
434*39c23413Seschrock  * overwrite with a complete label.  Note that it's important to do this
435*39c23413Seschrock  * sequentially, not in parallel, so that we catch cases of multiple use of the
436*39c23413Seschrock  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
437*39c23413Seschrock  * itself.
438*39c23413Seschrock  */
439*39c23413Seschrock int
440*39c23413Seschrock vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
441fa9e4066Sahrens {
442fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
443fa9e4066Sahrens 	nvlist_t *label;
444fa9e4066Sahrens 	vdev_phys_t *vp;
445fa9e4066Sahrens 	vdev_boot_header_t *vb;
446ecc2d604Sbonwick 	uberblock_t *ub;
447fa9e4066Sahrens 	zio_t *zio;
448fa9e4066Sahrens 	int l, c, n;
449fa9e4066Sahrens 	char *buf;
450fa9e4066Sahrens 	size_t buflen;
451fa9e4066Sahrens 	int error;
452*39c23413Seschrock 	uint64_t spare_guid;
453fa9e4066Sahrens 
4540373e76bSbonwick 	ASSERT(spa_config_held(spa, RW_WRITER));
4550373e76bSbonwick 
456fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
457*39c23413Seschrock 		if ((error = vdev_label_init(vd->vdev_child[c],
458*39c23413Seschrock 		    crtxg, reason)) != 0)
459fa9e4066Sahrens 			return (error);
460fa9e4066Sahrens 
461fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
462fa9e4066Sahrens 		return (0);
463fa9e4066Sahrens 
464fa9e4066Sahrens 	/*
465*39c23413Seschrock 	 * Dead vdevs cannot be initialized.
466fa9e4066Sahrens 	 */
467fa9e4066Sahrens 	if (vdev_is_dead(vd))
468fa9e4066Sahrens 		return (EIO);
469fa9e4066Sahrens 
470fa9e4066Sahrens 	/*
471*39c23413Seschrock 	 * Determine if the vdev is in use.
472fa9e4066Sahrens 	 */
473*39c23413Seschrock 	if (reason != VDEV_LABEL_REMOVE &&
474*39c23413Seschrock 	    vdev_inuse(vd, crtxg, reason, &spare_guid))
475*39c23413Seschrock 		return (EBUSY);
476*39c23413Seschrock 
477*39c23413Seschrock 	ASSERT(reason != VDEV_LABEL_REMOVE ||
478*39c23413Seschrock 	    vdev_inuse(vd, crtxg, reason, NULL));
479*39c23413Seschrock 
480*39c23413Seschrock 	/*
481*39c23413Seschrock 	 * If this is a request to add or replace a spare that is in use
482*39c23413Seschrock 	 * elsewhere on the system, then we must update the guid (which was
483*39c23413Seschrock 	 * initialized to a random value) to reflect the actual GUID (which is
484*39c23413Seschrock 	 * shared between multiple pools).
485*39c23413Seschrock 	 */
486*39c23413Seschrock 	if (reason != VDEV_LABEL_REMOVE && spare_guid != 0ULL) {
487*39c23413Seschrock 		vdev_t *pvd = vd->vdev_parent;
488*39c23413Seschrock 
489*39c23413Seschrock 		for (; pvd != NULL; pvd = pvd->vdev_parent) {
490*39c23413Seschrock 			pvd->vdev_guid_sum -= vd->vdev_guid;
491*39c23413Seschrock 			pvd->vdev_guid_sum += spare_guid;
492fa9e4066Sahrens 		}
49399653d4eSeschrock 
494*39c23413Seschrock 		vd->vdev_guid = vd->vdev_guid_sum = spare_guid;
495*39c23413Seschrock 
49699653d4eSeschrock 		/*
497*39c23413Seschrock 		 * If this is a replacement, then we want to fallthrough to the
498*39c23413Seschrock 		 * rest of the code.  If we're adding a spare, then it's already
499*39c23413Seschrock 		 * labelled appropriately and we can just return.
50099653d4eSeschrock 		 */
501*39c23413Seschrock 		if (reason == VDEV_LABEL_SPARE)
502*39c23413Seschrock 			return (0);
503*39c23413Seschrock 		ASSERT(reason == VDEV_LABEL_REPLACE);
504fa9e4066Sahrens 	}
505fa9e4066Sahrens 
506fa9e4066Sahrens 	/*
507*39c23413Seschrock 	 * Initialize its label.
508fa9e4066Sahrens 	 */
509fa9e4066Sahrens 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
510fa9e4066Sahrens 	bzero(vp, sizeof (vdev_phys_t));
511fa9e4066Sahrens 
512fa9e4066Sahrens 	/*
513fa9e4066Sahrens 	 * Generate a label describing the pool and our top-level vdev.
514fa9e4066Sahrens 	 * We mark it as being from txg 0 to indicate that it's not
515fa9e4066Sahrens 	 * really part of an active pool just yet.  The labels will
516fa9e4066Sahrens 	 * be written again with a meaningful txg by spa_sync().
517fa9e4066Sahrens 	 */
518*39c23413Seschrock 	if (reason == VDEV_LABEL_SPARE ||
519*39c23413Seschrock 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
520*39c23413Seschrock 		/*
521*39c23413Seschrock 		 * For inactive hot spares, we generate a special label that
522*39c23413Seschrock 		 * identifies as a mutually shared hot spare.  We write the
523*39c23413Seschrock 		 * label if we are adding a hot spare, or if we are removing an
524*39c23413Seschrock 		 * active hot spare (in which case we want to revert the
525*39c23413Seschrock 		 * labels).
526*39c23413Seschrock 		 */
52799653d4eSeschrock 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
52899653d4eSeschrock 
52999653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
53099653d4eSeschrock 		    spa_version(spa)) == 0);
53199653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
53299653d4eSeschrock 		    POOL_STATE_SPARE) == 0);
53399653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
53499653d4eSeschrock 		    vd->vdev_guid) == 0);
53599653d4eSeschrock 	} else {
53699653d4eSeschrock 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
53799653d4eSeschrock 
53899653d4eSeschrock 		/*
53999653d4eSeschrock 		 * Add our creation time.  This allows us to detect multiple
54099653d4eSeschrock 		 * vdev uses as described above, and automatically expires if we
54199653d4eSeschrock 		 * fail.
54299653d4eSeschrock 		 */
54399653d4eSeschrock 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
54499653d4eSeschrock 		    crtxg) == 0);
54599653d4eSeschrock 	}
546fa9e4066Sahrens 
547fa9e4066Sahrens 	buf = vp->vp_nvlist;
548fa9e4066Sahrens 	buflen = sizeof (vp->vp_nvlist);
549fa9e4066Sahrens 
550ea8dc4b6Seschrock 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) {
551fa9e4066Sahrens 		nvlist_free(label);
552fa9e4066Sahrens 		zio_buf_free(vp, sizeof (vdev_phys_t));
553fa9e4066Sahrens 		return (EINVAL);
554fa9e4066Sahrens 	}
555fa9e4066Sahrens 
556fa9e4066Sahrens 	/*
557fa9e4066Sahrens 	 * Initialize boot block header.
558fa9e4066Sahrens 	 */
559fa9e4066Sahrens 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
560fa9e4066Sahrens 	bzero(vb, sizeof (vdev_boot_header_t));
561fa9e4066Sahrens 	vb->vb_magic = VDEV_BOOT_MAGIC;
562fa9e4066Sahrens 	vb->vb_version = VDEV_BOOT_VERSION;
563fa9e4066Sahrens 	vb->vb_offset = VDEV_BOOT_OFFSET;
564fa9e4066Sahrens 	vb->vb_size = VDEV_BOOT_SIZE;
565fa9e4066Sahrens 
566fa9e4066Sahrens 	/*
567fa9e4066Sahrens 	 * Initialize uberblock template.
568fa9e4066Sahrens 	 */
569ecc2d604Sbonwick 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
570ecc2d604Sbonwick 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
571ecc2d604Sbonwick 	*ub = spa->spa_uberblock;
572ecc2d604Sbonwick 	ub->ub_txg = 0;
573fa9e4066Sahrens 
574fa9e4066Sahrens 	/*
575fa9e4066Sahrens 	 * Write everything in parallel.
576fa9e4066Sahrens 	 */
577fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
578fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
579fa9e4066Sahrens 
580fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++) {
581fa9e4066Sahrens 
582fa9e4066Sahrens 		vdev_label_write(zio, vd, l, vp,
583fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_vdev_phys),
584fa9e4066Sahrens 		    sizeof (vdev_phys_t), NULL, NULL);
585fa9e4066Sahrens 
586fa9e4066Sahrens 		vdev_label_write(zio, vd, l, vb,
587fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_boot_header),
588fa9e4066Sahrens 		    sizeof (vdev_boot_header_t), NULL, NULL);
589fa9e4066Sahrens 
590ecc2d604Sbonwick 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
591ecc2d604Sbonwick 			vdev_label_write(zio, vd, l, ub,
592ecc2d604Sbonwick 			    VDEV_UBERBLOCK_OFFSET(vd, n),
593ecc2d604Sbonwick 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL);
594fa9e4066Sahrens 		}
595fa9e4066Sahrens 	}
596fa9e4066Sahrens 
597fa9e4066Sahrens 	error = zio_wait(zio);
598fa9e4066Sahrens 
599fa9e4066Sahrens 	nvlist_free(label);
600ecc2d604Sbonwick 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
601fa9e4066Sahrens 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
602fa9e4066Sahrens 	zio_buf_free(vp, sizeof (vdev_phys_t));
603fa9e4066Sahrens 
604*39c23413Seschrock 	/*
605*39c23413Seschrock 	 * If this vdev hasn't been previously identified as a spare, then we
606*39c23413Seschrock 	 * mark it as such only if a) we are labelling it as a spare, or b) it
607*39c23413Seschrock 	 * exists as a spare elsewhere in the system.
608*39c23413Seschrock 	 */
609*39c23413Seschrock 	if (error == 0 && !vd->vdev_isspare &&
610*39c23413Seschrock 	    (reason == VDEV_LABEL_SPARE ||
611*39c23413Seschrock 	    spa_spare_exists(vd->vdev_guid, NULL)))
612*39c23413Seschrock 		spa_spare_add(vd);
61399653d4eSeschrock 
614*39c23413Seschrock 	return (error);
61599653d4eSeschrock }
61699653d4eSeschrock 
617fa9e4066Sahrens /*
618fa9e4066Sahrens  * ==========================================================================
619fa9e4066Sahrens  * uberblock load/sync
620fa9e4066Sahrens  * ==========================================================================
621fa9e4066Sahrens  */
622fa9e4066Sahrens 
623fa9e4066Sahrens /*
624fa9e4066Sahrens  * Consider the following situation: txg is safely synced to disk.  We've
625fa9e4066Sahrens  * written the first uberblock for txg + 1, and then we lose power.  When we
626fa9e4066Sahrens  * come back up, we fail to see the uberblock for txg + 1 because, say,
627fa9e4066Sahrens  * it was on a mirrored device and the replica to which we wrote txg + 1
628fa9e4066Sahrens  * is now offline.  If we then make some changes and sync txg + 1, and then
629fa9e4066Sahrens  * the missing replica comes back, then for a new seconds we'll have two
630fa9e4066Sahrens  * conflicting uberblocks on disk with the same txg.  The solution is simple:
631fa9e4066Sahrens  * among uberblocks with equal txg, choose the one with the latest timestamp.
632fa9e4066Sahrens  */
633fa9e4066Sahrens static int
634fa9e4066Sahrens vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
635fa9e4066Sahrens {
636fa9e4066Sahrens 	if (ub1->ub_txg < ub2->ub_txg)
637fa9e4066Sahrens 		return (-1);
638fa9e4066Sahrens 	if (ub1->ub_txg > ub2->ub_txg)
639fa9e4066Sahrens 		return (1);
640fa9e4066Sahrens 
641fa9e4066Sahrens 	if (ub1->ub_timestamp < ub2->ub_timestamp)
642fa9e4066Sahrens 		return (-1);
643fa9e4066Sahrens 	if (ub1->ub_timestamp > ub2->ub_timestamp)
644fa9e4066Sahrens 		return (1);
645fa9e4066Sahrens 
646fa9e4066Sahrens 	return (0);
647fa9e4066Sahrens }
648fa9e4066Sahrens 
649fa9e4066Sahrens static void
650fa9e4066Sahrens vdev_uberblock_load_done(zio_t *zio)
651fa9e4066Sahrens {
652ecc2d604Sbonwick 	uberblock_t *ub = zio->io_data;
653fa9e4066Sahrens 	uberblock_t *ubbest = zio->io_private;
654fa9e4066Sahrens 	spa_t *spa = zio->io_spa;
655fa9e4066Sahrens 
656ecc2d604Sbonwick 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
657fa9e4066Sahrens 
658ea8dc4b6Seschrock 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
659fa9e4066Sahrens 		mutex_enter(&spa->spa_uberblock_lock);
660fa9e4066Sahrens 		if (vdev_uberblock_compare(ub, ubbest) > 0)
661fa9e4066Sahrens 			*ubbest = *ub;
662fa9e4066Sahrens 		mutex_exit(&spa->spa_uberblock_lock);
663fa9e4066Sahrens 	}
664fa9e4066Sahrens 
665fa9e4066Sahrens 	zio_buf_free(zio->io_data, zio->io_size);
666fa9e4066Sahrens }
667fa9e4066Sahrens 
668fa9e4066Sahrens void
669fa9e4066Sahrens vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
670fa9e4066Sahrens {
671fa9e4066Sahrens 	int l, c, n;
672fa9e4066Sahrens 
673fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
674fa9e4066Sahrens 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
675fa9e4066Sahrens 
676fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
677fa9e4066Sahrens 		return;
678fa9e4066Sahrens 
679fa9e4066Sahrens 	if (vdev_is_dead(vd))
680fa9e4066Sahrens 		return;
681fa9e4066Sahrens 
682fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++) {
683ecc2d604Sbonwick 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
684fa9e4066Sahrens 			vdev_label_read(zio, vd, l,
685ecc2d604Sbonwick 			    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
686ecc2d604Sbonwick 			    VDEV_UBERBLOCK_OFFSET(vd, n),
687ecc2d604Sbonwick 			    VDEV_UBERBLOCK_SIZE(vd),
688fa9e4066Sahrens 			    vdev_uberblock_load_done, ubbest);
689fa9e4066Sahrens 		}
690fa9e4066Sahrens 	}
691fa9e4066Sahrens }
692fa9e4066Sahrens 
693fa9e4066Sahrens /*
694fa9e4066Sahrens  * Write the uberblock to both labels of all leaves of the specified vdev.
6950373e76bSbonwick  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
696fa9e4066Sahrens  */
697fa9e4066Sahrens static void
698fa9e4066Sahrens vdev_uberblock_sync_done(zio_t *zio)
699fa9e4066Sahrens {
700fa9e4066Sahrens 	uint64_t *good_writes = zio->io_root->io_private;
701fa9e4066Sahrens 
7020373e76bSbonwick 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
703fa9e4066Sahrens 		atomic_add_64(good_writes, 1);
704fa9e4066Sahrens }
705fa9e4066Sahrens 
706fa9e4066Sahrens static void
707ecc2d604Sbonwick vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg)
708fa9e4066Sahrens {
709fa9e4066Sahrens 	int l, c, n;
710fa9e4066Sahrens 
711fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
712ecc2d604Sbonwick 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg);
713fa9e4066Sahrens 
714fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
715fa9e4066Sahrens 		return;
716fa9e4066Sahrens 
717fa9e4066Sahrens 	if (vdev_is_dead(vd))
718fa9e4066Sahrens 		return;
719fa9e4066Sahrens 
720ecc2d604Sbonwick 	n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
721fa9e4066Sahrens 
722ecc2d604Sbonwick 	ASSERT(ub->ub_txg == txg);
723fa9e4066Sahrens 
724fa9e4066Sahrens 	for (l = 0; l < VDEV_LABELS; l++)
725ecc2d604Sbonwick 		vdev_label_write(zio, vd, l, ub,
726ecc2d604Sbonwick 		    VDEV_UBERBLOCK_OFFSET(vd, n),
727ecc2d604Sbonwick 		    VDEV_UBERBLOCK_SIZE(vd),
728ecc2d604Sbonwick 		    vdev_uberblock_sync_done, NULL);
729fa9e4066Sahrens 
730fa9e4066Sahrens 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
731fa9e4066Sahrens }
732fa9e4066Sahrens 
733fa9e4066Sahrens static int
734ecc2d604Sbonwick vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg)
735fa9e4066Sahrens {
736ecc2d604Sbonwick 	uberblock_t *ubbuf;
737ecc2d604Sbonwick 	size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE;
738fa9e4066Sahrens 	uint64_t *good_writes;
739fa9e4066Sahrens 	zio_t *zio;
740fa9e4066Sahrens 	int error;
741fa9e4066Sahrens 
742ecc2d604Sbonwick 	ubbuf = zio_buf_alloc(size);
743ecc2d604Sbonwick 	bzero(ubbuf, size);
744ecc2d604Sbonwick 	*ubbuf = *ub;
745fa9e4066Sahrens 
746fa9e4066Sahrens 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
747fa9e4066Sahrens 
748fa9e4066Sahrens 	zio = zio_root(spa, NULL, good_writes,
749fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
750fa9e4066Sahrens 
751ecc2d604Sbonwick 	vdev_uberblock_sync(zio, ubbuf, vd, txg);
752fa9e4066Sahrens 
753fa9e4066Sahrens 	error = zio_wait(zio);
754fa9e4066Sahrens 
755fa9e4066Sahrens 	if (error && *good_writes != 0) {
756fa9e4066Sahrens 		dprintf("partial success: good_writes = %llu\n", *good_writes);
757fa9e4066Sahrens 		error = 0;
758fa9e4066Sahrens 	}
759fa9e4066Sahrens 
760fa9e4066Sahrens 	/*
761fa9e4066Sahrens 	 * It's possible to have no good writes and no error if every vdev is in
762fa9e4066Sahrens 	 * the CANT_OPEN state.
763fa9e4066Sahrens 	 */
764fa9e4066Sahrens 	if (*good_writes == 0 && error == 0)
765fa9e4066Sahrens 		error = EIO;
766fa9e4066Sahrens 
767fa9e4066Sahrens 	kmem_free(good_writes, sizeof (uint64_t));
768ecc2d604Sbonwick 	zio_buf_free(ubbuf, size);
769fa9e4066Sahrens 
770fa9e4066Sahrens 	return (error);
771fa9e4066Sahrens }
772fa9e4066Sahrens 
773fa9e4066Sahrens /*
774fa9e4066Sahrens  * Sync out an individual vdev.
775fa9e4066Sahrens  */
776fa9e4066Sahrens static void
777fa9e4066Sahrens vdev_sync_label_done(zio_t *zio)
778fa9e4066Sahrens {
779fa9e4066Sahrens 	uint64_t *good_writes = zio->io_root->io_private;
780fa9e4066Sahrens 
781fa9e4066Sahrens 	if (zio->io_error == 0)
782fa9e4066Sahrens 		atomic_add_64(good_writes, 1);
783fa9e4066Sahrens }
784fa9e4066Sahrens 
785fa9e4066Sahrens static void
786fa9e4066Sahrens vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
787fa9e4066Sahrens {
788fa9e4066Sahrens 	nvlist_t *label;
789fa9e4066Sahrens 	vdev_phys_t *vp;
790fa9e4066Sahrens 	char *buf;
791fa9e4066Sahrens 	size_t buflen;
792fa9e4066Sahrens 	int c;
793fa9e4066Sahrens 
794fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
795fa9e4066Sahrens 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
796fa9e4066Sahrens 
797fa9e4066Sahrens 	if (!vd->vdev_ops->vdev_op_leaf)
798fa9e4066Sahrens 		return;
799fa9e4066Sahrens 
800fa9e4066Sahrens 	if (vdev_is_dead(vd))
801fa9e4066Sahrens 		return;
802fa9e4066Sahrens 
803fa9e4066Sahrens 	/*
804fa9e4066Sahrens 	 * Generate a label describing the top-level config to which we belong.
805fa9e4066Sahrens 	 */
8060373e76bSbonwick 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
807fa9e4066Sahrens 
808fa9e4066Sahrens 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
809fa9e4066Sahrens 	bzero(vp, sizeof (vdev_phys_t));
810fa9e4066Sahrens 
811fa9e4066Sahrens 	buf = vp->vp_nvlist;
812fa9e4066Sahrens 	buflen = sizeof (vp->vp_nvlist);
813fa9e4066Sahrens 
814ea8dc4b6Seschrock 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
815fa9e4066Sahrens 		vdev_label_write(zio, vd, l, vp,
816fa9e4066Sahrens 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
817fa9e4066Sahrens 		    vdev_sync_label_done, NULL);
818fa9e4066Sahrens 
819fa9e4066Sahrens 	zio_buf_free(vp, sizeof (vdev_phys_t));
820fa9e4066Sahrens 	nvlist_free(label);
821fa9e4066Sahrens 
822fa9e4066Sahrens 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
823fa9e4066Sahrens }
824fa9e4066Sahrens 
825fa9e4066Sahrens static int
826fa9e4066Sahrens vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
827fa9e4066Sahrens {
828fa9e4066Sahrens 	uint64_t *good_writes;
829fa9e4066Sahrens 	zio_t *zio;
830fa9e4066Sahrens 	int error;
831fa9e4066Sahrens 
832fa9e4066Sahrens 	ASSERT(vd == vd->vdev_top);
833fa9e4066Sahrens 
834fa9e4066Sahrens 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
835fa9e4066Sahrens 
836fa9e4066Sahrens 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
837fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
838fa9e4066Sahrens 
839fa9e4066Sahrens 	/*
840fa9e4066Sahrens 	 * Recursively kick off writes to all labels.
841fa9e4066Sahrens 	 */
842fa9e4066Sahrens 	vdev_sync_label(zio, vd, l, txg);
843fa9e4066Sahrens 
844fa9e4066Sahrens 	error = zio_wait(zio);
845fa9e4066Sahrens 
846fa9e4066Sahrens 	if (error && *good_writes != 0) {
847fa9e4066Sahrens 		dprintf("partial success: good_writes = %llu\n", *good_writes);
848fa9e4066Sahrens 		error = 0;
849fa9e4066Sahrens 	}
850fa9e4066Sahrens 
851fa9e4066Sahrens 	if (*good_writes == 0 && error == 0)
852fa9e4066Sahrens 		error = ENODEV;
853fa9e4066Sahrens 
854fa9e4066Sahrens 	kmem_free(good_writes, sizeof (uint64_t));
855fa9e4066Sahrens 
856fa9e4066Sahrens 	return (error);
857fa9e4066Sahrens }
858fa9e4066Sahrens 
859fa9e4066Sahrens /*
860fa9e4066Sahrens  * Sync the entire vdev configuration.
861fa9e4066Sahrens  *
862fa9e4066Sahrens  * The order of operations is carefully crafted to ensure that
863fa9e4066Sahrens  * if the system panics or loses power at any time, the state on disk
864fa9e4066Sahrens  * is still transactionally consistent.  The in-line comments below
865fa9e4066Sahrens  * describe the failure semantics at each stage.
866fa9e4066Sahrens  *
867fa9e4066Sahrens  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
868fa9e4066Sahrens  * at any time, you can just call it again, and it will resume its work.
869fa9e4066Sahrens  */
870fa9e4066Sahrens int
8710373e76bSbonwick vdev_config_sync(vdev_t *uvd, uint64_t txg)
872fa9e4066Sahrens {
8730373e76bSbonwick 	spa_t *spa = uvd->vdev_spa;
874fa9e4066Sahrens 	uberblock_t *ub = &spa->spa_uberblock;
875fa9e4066Sahrens 	vdev_t *rvd = spa->spa_root_vdev;
8760373e76bSbonwick 	vdev_t *vd;
877fa9e4066Sahrens 	zio_t *zio;
878f65ea9b9Sbonwick 	int l, error;
879fa9e4066Sahrens 
880fa9e4066Sahrens 	ASSERT(ub->ub_txg <= txg);
881fa9e4066Sahrens 
882fa9e4066Sahrens 	/*
883fa9e4066Sahrens 	 * If this isn't a resync due to I/O errors, and nothing changed
884fa9e4066Sahrens 	 * in this transaction group, and the vdev configuration hasn't changed,
8850373e76bSbonwick 	 * then there's nothing to do.
886fa9e4066Sahrens 	 */
887fa9e4066Sahrens 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
888fa9e4066Sahrens 	    list_is_empty(&spa->spa_dirty_list)) {
889fa9e4066Sahrens 		dprintf("nothing to sync in %s in txg %llu\n",
890fa9e4066Sahrens 		    spa_name(spa), txg);
891fa9e4066Sahrens 		return (0);
892fa9e4066Sahrens 	}
893fa9e4066Sahrens 
894fa9e4066Sahrens 	if (txg > spa_freeze_txg(spa))
895fa9e4066Sahrens 		return (0);
896fa9e4066Sahrens 
8970373e76bSbonwick 	ASSERT(txg <= spa->spa_final_txg);
8980373e76bSbonwick 
899fa9e4066Sahrens 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
900fa9e4066Sahrens 
901fa9e4066Sahrens 	/*
902fa9e4066Sahrens 	 * Flush the write cache of every disk that's been written to
903fa9e4066Sahrens 	 * in this transaction group.  This ensures that all blocks
904fa9e4066Sahrens 	 * written in this txg will be committed to stable storage
905fa9e4066Sahrens 	 * before any uberblock that references them.
906fa9e4066Sahrens 	 */
907fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
908fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
909fa9e4066Sahrens 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
910fa9e4066Sahrens 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
911fa9e4066Sahrens 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
912fa9e4066Sahrens 		    NULL, NULL, ZIO_PRIORITY_NOW,
913fa9e4066Sahrens 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
914fa9e4066Sahrens 	}
915fa9e4066Sahrens 	(void) zio_wait(zio);
916fa9e4066Sahrens 
917fa9e4066Sahrens 	/*
918fa9e4066Sahrens 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
919fa9e4066Sahrens 	 * system dies in the middle of this process, that's OK: all of the
920fa9e4066Sahrens 	 * even labels that made it to disk will be newer than any uberblock,
921fa9e4066Sahrens 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
922fa9e4066Sahrens 	 * which have not yet been touched, will still be valid.
923fa9e4066Sahrens 	 */
924fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
925fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
926fa9e4066Sahrens 		for (l = 0; l < VDEV_LABELS; l++) {
927fa9e4066Sahrens 			if (l & 1)
928fa9e4066Sahrens 				continue;
929fa9e4066Sahrens 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
930fa9e4066Sahrens 				return (error);
931fa9e4066Sahrens 		}
932fa9e4066Sahrens 	}
933fa9e4066Sahrens 
934fa9e4066Sahrens 	/*
935fa9e4066Sahrens 	 * Flush the new labels to disk.  This ensures that all even-label
936fa9e4066Sahrens 	 * updates are committed to stable storage before the uberblock update.
937fa9e4066Sahrens 	 */
938fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
939fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
940fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
941fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
942fa9e4066Sahrens 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
943fa9e4066Sahrens 		    NULL, NULL, ZIO_PRIORITY_NOW,
944fa9e4066Sahrens 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
945fa9e4066Sahrens 	}
946fa9e4066Sahrens 	(void) zio_wait(zio);
947fa9e4066Sahrens 
948fa9e4066Sahrens 	/*
9490373e76bSbonwick 	 * Sync the uberblocks to all vdevs in the tree specified by uvd.
9500373e76bSbonwick 	 * If the system dies in the middle of this step, there are two cases
9510373e76bSbonwick 	 * to consider, and the on-disk state is consistent either way:
952fa9e4066Sahrens 	 *
953fa9e4066Sahrens 	 * (1)	If none of the new uberblocks made it to disk, then the
954fa9e4066Sahrens 	 *	previous uberblock will be the newest, and the odd labels
955fa9e4066Sahrens 	 *	(which had not yet been touched) will be valid with respect
956fa9e4066Sahrens 	 *	to that uberblock.
957fa9e4066Sahrens 	 *
958fa9e4066Sahrens 	 * (2)	If one or more new uberblocks made it to disk, then they
959fa9e4066Sahrens 	 *	will be the newest, and the even labels (which had all
960fa9e4066Sahrens 	 *	been successfully committed) will be valid with respect
961fa9e4066Sahrens 	 *	to the new uberblocks.
962fa9e4066Sahrens 	 */
963fa9e4066Sahrens 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
964fa9e4066Sahrens 		return (error);
965fa9e4066Sahrens 
966fa9e4066Sahrens 	/*
967fa9e4066Sahrens 	 * Flush the uberblocks to disk.  This ensures that the odd labels
968fa9e4066Sahrens 	 * are no longer needed (because the new uberblocks and the even
969fa9e4066Sahrens 	 * labels are safely on disk), so it is safe to overwrite them.
970fa9e4066Sahrens 	 */
971fa9e4066Sahrens 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
972fa9e4066Sahrens 	    NULL, NULL, ZIO_PRIORITY_NOW,
973fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
974fa9e4066Sahrens 
975fa9e4066Sahrens 	/*
976fa9e4066Sahrens 	 * Sync out odd labels for every dirty vdev.  If the system dies
977fa9e4066Sahrens 	 * in the middle of this process, the even labels and the new
978fa9e4066Sahrens 	 * uberblocks will suffice to open the pool.  The next time
979fa9e4066Sahrens 	 * the pool is opened, the first thing we'll do -- before any
980fa9e4066Sahrens 	 * user data is modified -- is mark every vdev dirty so that
981fa9e4066Sahrens 	 * all labels will be brought up to date.
982fa9e4066Sahrens 	 */
983fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
984fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
985fa9e4066Sahrens 		for (l = 0; l < VDEV_LABELS; l++) {
986fa9e4066Sahrens 			if ((l & 1) == 0)
987fa9e4066Sahrens 				continue;
988fa9e4066Sahrens 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
989fa9e4066Sahrens 				return (error);
990fa9e4066Sahrens 		}
991fa9e4066Sahrens 	}
992fa9e4066Sahrens 
993fa9e4066Sahrens 	/*
994fa9e4066Sahrens 	 * Flush the new labels to disk.  This ensures that all odd-label
995fa9e4066Sahrens 	 * updates are committed to stable storage before the next
996fa9e4066Sahrens 	 * transaction group begins.
997fa9e4066Sahrens 	 */
998fa9e4066Sahrens 	zio = zio_root(spa, NULL, NULL,
999fa9e4066Sahrens 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
1000fa9e4066Sahrens 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
1001fa9e4066Sahrens 	    vd = list_next(&spa->spa_dirty_list, vd)) {
1002fa9e4066Sahrens 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
1003fa9e4066Sahrens 		    NULL, NULL, ZIO_PRIORITY_NOW,
1004fa9e4066Sahrens 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
1005fa9e4066Sahrens 	}
1006fa9e4066Sahrens 	(void) zio_wait(zio);
1007fa9e4066Sahrens 
1008fa9e4066Sahrens 	return (0);
1009fa9e4066Sahrens }
1010