xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_cache.c (revision 660946868929e02041af7b5b1c3e14f547c53f11)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 #include <sys/kstat.h>
34 #include <sys/abd.h>
35 
36 /*
37  * Virtual device read-ahead caching.
38  *
39  * This file implements a simple LRU read-ahead cache.  When the DMU reads
40  * a given block, it will often want other, nearby blocks soon thereafter.
41  * We take advantage of this by reading a larger disk region and caching
42  * the result.  In the best case, this can turn 128 back-to-back 512-byte
43  * reads into a single 64k read followed by 127 cache hits; this reduces
44  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
45  * read into a 64k read, which doesn't affect latency all that much but is
46  * terribly wasteful of bandwidth.  A more intelligent version of the cache
47  * could keep track of access patterns and not do read-ahead unless it sees
48  * at least two temporally close I/Os to the same region.  Currently, only
49  * metadata I/O is inflated.  A futher enhancement could take advantage of
50  * more semantic information about the I/O.  And it could use something
51  * faster than an AVL tree; that was chosen solely for convenience.
52  *
53  * There are five cache operations: allocate, fill, read, write, evict.
54  *
55  * (1) Allocate.  This reserves a cache entry for the specified region.
56  *     We separate the allocate and fill operations so that multiple threads
57  *     don't generate I/O for the same cache miss.
58  *
59  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
60  *     places the data in the previously allocated cache entry.
61  *
62  * (3) Read.  Read data from the cache.
63  *
64  * (4) Write.  Update cache contents after write completion.
65  *
66  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
67  *     if the total cache size exceeds zfs_vdev_cache_size.
68  */
69 
70 /*
71  * These tunables are for performance analysis.
72  */
73 /*
74  * All i/os smaller than zfs_vdev_cache_max will be turned into
75  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
76  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
77  * vdev's vdev_cache.
78  *
79  * TODO: Note that with the current ZFS code, it turns out that the
80  * vdev cache is not helpful, and in some cases actually harmful.  It
81  * is better if we disable this.  Once some time has passed, we should
82  * actually remove this to simplify the code.  For now we just disable
83  * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
84  * has made these same changes.
85  */
86 int zfs_vdev_cache_max = 1<<14;			/* 16KB */
87 int zfs_vdev_cache_size = 0;
88 int zfs_vdev_cache_bshift = 16;
89 
90 #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
91 
92 kstat_t	*vdc_ksp = NULL;
93 
94 typedef struct vdc_stats {
95 	kstat_named_t vdc_stat_delegations;
96 	kstat_named_t vdc_stat_hits;
97 	kstat_named_t vdc_stat_misses;
98 } vdc_stats_t;
99 
100 static vdc_stats_t vdc_stats = {
101 	{ "delegations",	KSTAT_DATA_UINT64 },
102 	{ "hits",		KSTAT_DATA_UINT64 },
103 	{ "misses",		KSTAT_DATA_UINT64 }
104 };
105 
106 #define	VDCSTAT_BUMP(stat)	atomic_inc_64(&vdc_stats.stat.value.ui64);
107 
108 static int
109 vdev_cache_offset_compare(const void *a1, const void *a2)
110 {
111 	const vdev_cache_entry_t *ve1 = a1;
112 	const vdev_cache_entry_t *ve2 = a2;
113 
114 	if (ve1->ve_offset < ve2->ve_offset)
115 		return (-1);
116 	if (ve1->ve_offset > ve2->ve_offset)
117 		return (1);
118 	return (0);
119 }
120 
121 static int
122 vdev_cache_lastused_compare(const void *a1, const void *a2)
123 {
124 	const vdev_cache_entry_t *ve1 = a1;
125 	const vdev_cache_entry_t *ve2 = a2;
126 
127 	if (ve1->ve_lastused < ve2->ve_lastused)
128 		return (-1);
129 	if (ve1->ve_lastused > ve2->ve_lastused)
130 		return (1);
131 
132 	/*
133 	 * Among equally old entries, sort by offset to ensure uniqueness.
134 	 */
135 	return (vdev_cache_offset_compare(a1, a2));
136 }
137 
138 /*
139  * Evict the specified entry from the cache.
140  */
141 static void
142 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
143 {
144 	ASSERT(MUTEX_HELD(&vc->vc_lock));
145 	ASSERT3P(ve->ve_fill_io, ==, NULL);
146 	ASSERT3P(ve->ve_abd, !=, NULL);
147 
148 	avl_remove(&vc->vc_lastused_tree, ve);
149 	avl_remove(&vc->vc_offset_tree, ve);
150 	abd_free(ve->ve_abd);
151 	kmem_free(ve, sizeof (vdev_cache_entry_t));
152 }
153 
154 /*
155  * Allocate an entry in the cache.  At the point we don't have the data,
156  * we're just creating a placeholder so that multiple threads don't all
157  * go off and read the same blocks.
158  */
159 static vdev_cache_entry_t *
160 vdev_cache_allocate(zio_t *zio)
161 {
162 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
163 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
164 	vdev_cache_entry_t *ve;
165 
166 	ASSERT(MUTEX_HELD(&vc->vc_lock));
167 
168 	if (zfs_vdev_cache_size == 0)
169 		return (NULL);
170 
171 	/*
172 	 * If adding a new entry would exceed the cache size,
173 	 * evict the oldest entry (LRU).
174 	 */
175 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
176 	    zfs_vdev_cache_size) {
177 		ve = avl_first(&vc->vc_lastused_tree);
178 		if (ve->ve_fill_io != NULL)
179 			return (NULL);
180 		ASSERT3U(ve->ve_hits, !=, 0);
181 		vdev_cache_evict(vc, ve);
182 	}
183 
184 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
185 	ve->ve_offset = offset;
186 	ve->ve_lastused = ddi_get_lbolt();
187 	ve->ve_abd = abd_alloc_for_io(VCBS, B_TRUE);
188 
189 	avl_add(&vc->vc_offset_tree, ve);
190 	avl_add(&vc->vc_lastused_tree, ve);
191 
192 	return (ve);
193 }
194 
195 static void
196 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
197 {
198 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
199 
200 	ASSERT(MUTEX_HELD(&vc->vc_lock));
201 	ASSERT3P(ve->ve_fill_io, ==, NULL);
202 
203 	if (ve->ve_lastused != ddi_get_lbolt()) {
204 		avl_remove(&vc->vc_lastused_tree, ve);
205 		ve->ve_lastused = ddi_get_lbolt();
206 		avl_add(&vc->vc_lastused_tree, ve);
207 	}
208 
209 	ve->ve_hits++;
210 	abd_copy_off(zio->io_abd, ve->ve_abd, 0, cache_phase, zio->io_size);
211 }
212 
213 /*
214  * Fill a previously allocated cache entry with data.
215  */
216 static void
217 vdev_cache_fill(zio_t *fio)
218 {
219 	vdev_t *vd = fio->io_vd;
220 	vdev_cache_t *vc = &vd->vdev_cache;
221 	vdev_cache_entry_t *ve = fio->io_private;
222 	zio_t *pio;
223 
224 	ASSERT3U(fio->io_size, ==, VCBS);
225 
226 	/*
227 	 * Add data to the cache.
228 	 */
229 	mutex_enter(&vc->vc_lock);
230 
231 	ASSERT3P(ve->ve_fill_io, ==, fio);
232 	ASSERT3U(ve->ve_offset, ==, fio->io_offset);
233 	ASSERT3P(ve->ve_abd, ==, fio->io_abd);
234 
235 	ve->ve_fill_io = NULL;
236 
237 	/*
238 	 * Even if this cache line was invalidated by a missed write update,
239 	 * any reads that were queued up before the missed update are still
240 	 * valid, so we can satisfy them from this line before we evict it.
241 	 */
242 	zio_link_t *zl = NULL;
243 	while ((pio = zio_walk_parents(fio, &zl)) != NULL)
244 		vdev_cache_hit(vc, ve, pio);
245 
246 	if (fio->io_error || ve->ve_missed_update)
247 		vdev_cache_evict(vc, ve);
248 
249 	mutex_exit(&vc->vc_lock);
250 }
251 
252 /*
253  * Read data from the cache.  Returns B_TRUE cache hit, B_FALSE on miss.
254  */
255 boolean_t
256 vdev_cache_read(zio_t *zio)
257 {
258 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
259 	vdev_cache_entry_t *ve, ve_search;
260 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
261 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
262 	zio_t *fio;
263 
264 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
265 
266 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
267 		return (B_FALSE);
268 
269 	if (zio->io_size > zfs_vdev_cache_max)
270 		return (B_FALSE);
271 
272 	/*
273 	 * If the I/O straddles two or more cache blocks, don't cache it.
274 	 */
275 	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
276 		return (B_FALSE);
277 
278 	ASSERT3U(cache_phase + zio->io_size, <=, VCBS);
279 
280 	mutex_enter(&vc->vc_lock);
281 
282 	ve_search.ve_offset = cache_offset;
283 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
284 
285 	if (ve != NULL) {
286 		if (ve->ve_missed_update) {
287 			mutex_exit(&vc->vc_lock);
288 			return (B_FALSE);
289 		}
290 
291 		if ((fio = ve->ve_fill_io) != NULL) {
292 			zio_vdev_io_bypass(zio);
293 			zio_add_child(zio, fio);
294 			mutex_exit(&vc->vc_lock);
295 			VDCSTAT_BUMP(vdc_stat_delegations);
296 			return (B_TRUE);
297 		}
298 
299 		vdev_cache_hit(vc, ve, zio);
300 		zio_vdev_io_bypass(zio);
301 
302 		mutex_exit(&vc->vc_lock);
303 		VDCSTAT_BUMP(vdc_stat_hits);
304 		return (B_TRUE);
305 	}
306 
307 	ve = vdev_cache_allocate(zio);
308 
309 	if (ve == NULL) {
310 		mutex_exit(&vc->vc_lock);
311 		return (B_FALSE);
312 	}
313 
314 	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
315 	    ve->ve_abd, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
316 	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
317 
318 	ve->ve_fill_io = fio;
319 	zio_vdev_io_bypass(zio);
320 	zio_add_child(zio, fio);
321 
322 	mutex_exit(&vc->vc_lock);
323 	zio_nowait(fio);
324 	VDCSTAT_BUMP(vdc_stat_misses);
325 
326 	return (B_TRUE);
327 }
328 
329 /*
330  * Update cache contents upon write completion.
331  */
332 void
333 vdev_cache_write(zio_t *zio)
334 {
335 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
336 	vdev_cache_entry_t *ve, ve_search;
337 	uint64_t io_start = zio->io_offset;
338 	uint64_t io_end = io_start + zio->io_size;
339 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
340 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
341 	avl_index_t where;
342 
343 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
344 
345 	mutex_enter(&vc->vc_lock);
346 
347 	ve_search.ve_offset = min_offset;
348 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
349 
350 	if (ve == NULL)
351 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
352 
353 	while (ve != NULL && ve->ve_offset < max_offset) {
354 		uint64_t start = MAX(ve->ve_offset, io_start);
355 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
356 
357 		if (ve->ve_fill_io != NULL) {
358 			ve->ve_missed_update = 1;
359 		} else {
360 			abd_copy_off(ve->ve_abd, zio->io_abd,
361 			    start - ve->ve_offset, start - io_start,
362 			    end - start);
363 		}
364 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
365 	}
366 	mutex_exit(&vc->vc_lock);
367 }
368 
369 void
370 vdev_cache_purge(vdev_t *vd)
371 {
372 	vdev_cache_t *vc = &vd->vdev_cache;
373 	vdev_cache_entry_t *ve;
374 
375 	mutex_enter(&vc->vc_lock);
376 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
377 		vdev_cache_evict(vc, ve);
378 	mutex_exit(&vc->vc_lock);
379 }
380 
381 void
382 vdev_cache_init(vdev_t *vd)
383 {
384 	vdev_cache_t *vc = &vd->vdev_cache;
385 
386 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
387 
388 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
389 	    sizeof (vdev_cache_entry_t),
390 	    offsetof(struct vdev_cache_entry, ve_offset_node));
391 
392 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
393 	    sizeof (vdev_cache_entry_t),
394 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
395 }
396 
397 void
398 vdev_cache_fini(vdev_t *vd)
399 {
400 	vdev_cache_t *vc = &vd->vdev_cache;
401 
402 	vdev_cache_purge(vd);
403 
404 	avl_destroy(&vc->vc_offset_tree);
405 	avl_destroy(&vc->vc_lastused_tree);
406 
407 	mutex_destroy(&vc->vc_lock);
408 }
409 
410 void
411 vdev_cache_stat_init(void)
412 {
413 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
414 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
415 	    KSTAT_FLAG_VIRTUAL);
416 	if (vdc_ksp != NULL) {
417 		vdc_ksp->ks_data = &vdc_stats;
418 		kstat_install(vdc_ksp);
419 	}
420 }
421 
422 void
423 vdev_cache_stat_fini(void)
424 {
425 	if (vdc_ksp != NULL) {
426 		kstat_delete(vdc_ksp);
427 		vdc_ksp = NULL;
428 	}
429 }
430