xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_cache.c (revision fdb2e90695550660e500ed27553dfc73b1f3f902)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5ea8dc4b6Seschrock  * Common Development and Distribution License (the "License").
6ea8dc4b6Seschrock  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
21fa9e4066Sahrens /*
223d7072f8Seschrock  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23fa9e4066Sahrens  * Use is subject to license terms.
24fa9e4066Sahrens  */
25fa9e4066Sahrens 
26fa9e4066Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
27fa9e4066Sahrens 
28fa9e4066Sahrens #include <sys/zfs_context.h>
29fa9e4066Sahrens #include <sys/spa.h>
30fa9e4066Sahrens #include <sys/vdev_impl.h>
31fa9e4066Sahrens #include <sys/zio.h>
32fa9e4066Sahrens 
33fa9e4066Sahrens /*
34fa9e4066Sahrens  * Virtual device read-ahead caching.
35fa9e4066Sahrens  *
36fa9e4066Sahrens  * This file implements a simple LRU read-ahead cache.  When the DMU reads
37fa9e4066Sahrens  * a given block, it will often want other, nearby blocks soon thereafter.
38fa9e4066Sahrens  * We take advantage of this by reading a larger disk region and caching
39fa9e4066Sahrens  * the result.  In the best case, this can turn 256 back-to-back 512-byte
40fa9e4066Sahrens  * reads into a single 128k read followed by 255 cache hits; this reduces
41fa9e4066Sahrens  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
42fa9e4066Sahrens  * read into a 128k read, which doesn't affect latency all that much but is
43fa9e4066Sahrens  * terribly wasteful of bandwidth.  A more intelligent version of the cache
44fa9e4066Sahrens  * could keep track of access patterns and not do read-ahead unless it sees
45*fdb2e906Sek  * at least two temporally close I/Os to the same region.  Currently, only
46*fdb2e906Sek  * metadata I/O is inflated.  A futher enhancement could take advantage of
47*fdb2e906Sek  * more semantic information about the I/O.  And it could use something
48*fdb2e906Sek  * faster than an AVL tree; that was chosen solely for convenience.
49fa9e4066Sahrens  *
50fa9e4066Sahrens  * There are five cache operations: allocate, fill, read, write, evict.
51fa9e4066Sahrens  *
52fa9e4066Sahrens  * (1) Allocate.  This reserves a cache entry for the specified region.
53fa9e4066Sahrens  *     We separate the allocate and fill operations so that multiple threads
54fa9e4066Sahrens  *     don't generate I/O for the same cache miss.
55fa9e4066Sahrens  *
56fa9e4066Sahrens  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
57fa9e4066Sahrens  *     places the data in the previously allocated cache entry.
58fa9e4066Sahrens  *
59fa9e4066Sahrens  * (3) Read.  Read data from the cache.
60fa9e4066Sahrens  *
61fa9e4066Sahrens  * (4) Write.  Update cache contents after write completion.
62fa9e4066Sahrens  *
63fa9e4066Sahrens  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
64614409b5Sahrens  *     if the total cache size exceeds zfs_vdev_cache_size.
65fa9e4066Sahrens  */
66fa9e4066Sahrens 
67614409b5Sahrens /*
68614409b5Sahrens  * These tunables are for performance analysis.
69614409b5Sahrens  */
70614409b5Sahrens /*
71614409b5Sahrens  * All i/os smaller than zfs_vdev_cache_max will be turned into
72614409b5Sahrens  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
73614409b5Sahrens  * track buffer.  At most zfs_vdev_cache_size bytes will be kept in each
74614409b5Sahrens  * vdev's vdev_cache.
75614409b5Sahrens  */
76614409b5Sahrens int zfs_vdev_cache_max = 1<<14;
77614409b5Sahrens int zfs_vdev_cache_size = 10ULL << 20;
78614409b5Sahrens int zfs_vdev_cache_bshift = 16;
79614409b5Sahrens 
80614409b5Sahrens #define	VCBS (1 << zfs_vdev_cache_bshift)
81614409b5Sahrens 
82fa9e4066Sahrens static int
83fa9e4066Sahrens vdev_cache_offset_compare(const void *a1, const void *a2)
84fa9e4066Sahrens {
85fa9e4066Sahrens 	const vdev_cache_entry_t *ve1 = a1;
86fa9e4066Sahrens 	const vdev_cache_entry_t *ve2 = a2;
87fa9e4066Sahrens 
88fa9e4066Sahrens 	if (ve1->ve_offset < ve2->ve_offset)
89fa9e4066Sahrens 		return (-1);
90fa9e4066Sahrens 	if (ve1->ve_offset > ve2->ve_offset)
91fa9e4066Sahrens 		return (1);
92fa9e4066Sahrens 	return (0);
93fa9e4066Sahrens }
94fa9e4066Sahrens 
95fa9e4066Sahrens static int
96fa9e4066Sahrens vdev_cache_lastused_compare(const void *a1, const void *a2)
97fa9e4066Sahrens {
98fa9e4066Sahrens 	const vdev_cache_entry_t *ve1 = a1;
99fa9e4066Sahrens 	const vdev_cache_entry_t *ve2 = a2;
100fa9e4066Sahrens 
101fa9e4066Sahrens 	if (ve1->ve_lastused < ve2->ve_lastused)
102fa9e4066Sahrens 		return (-1);
103fa9e4066Sahrens 	if (ve1->ve_lastused > ve2->ve_lastused)
104fa9e4066Sahrens 		return (1);
105fa9e4066Sahrens 
106fa9e4066Sahrens 	/*
107fa9e4066Sahrens 	 * Among equally old entries, sort by offset to ensure uniqueness.
108fa9e4066Sahrens 	 */
109fa9e4066Sahrens 	return (vdev_cache_offset_compare(a1, a2));
110fa9e4066Sahrens }
111fa9e4066Sahrens 
112fa9e4066Sahrens /*
113fa9e4066Sahrens  * Evict the specified entry from the cache.
114fa9e4066Sahrens  */
115fa9e4066Sahrens static void
116fa9e4066Sahrens vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
117fa9e4066Sahrens {
118fa9e4066Sahrens 	ASSERT(MUTEX_HELD(&vc->vc_lock));
119fa9e4066Sahrens 	ASSERT(ve->ve_fill_io == NULL);
120fa9e4066Sahrens 	ASSERT(ve->ve_data != NULL);
121fa9e4066Sahrens 
122fa9e4066Sahrens 	dprintf("evicting %p, off %llx, LRU %llu, age %lu, hits %u, stale %u\n",
123fa9e4066Sahrens 	    vc, ve->ve_offset, ve->ve_lastused, lbolt - ve->ve_lastused,
124fa9e4066Sahrens 	    ve->ve_hits, ve->ve_missed_update);
125fa9e4066Sahrens 
126fa9e4066Sahrens 	avl_remove(&vc->vc_lastused_tree, ve);
127fa9e4066Sahrens 	avl_remove(&vc->vc_offset_tree, ve);
128614409b5Sahrens 	zio_buf_free(ve->ve_data, VCBS);
129fa9e4066Sahrens 	kmem_free(ve, sizeof (vdev_cache_entry_t));
130fa9e4066Sahrens }
131fa9e4066Sahrens 
132fa9e4066Sahrens /*
133fa9e4066Sahrens  * Allocate an entry in the cache.  At the point we don't have the data,
134fa9e4066Sahrens  * we're just creating a placeholder so that multiple threads don't all
135fa9e4066Sahrens  * go off and read the same blocks.
136fa9e4066Sahrens  */
137fa9e4066Sahrens static vdev_cache_entry_t *
138fa9e4066Sahrens vdev_cache_allocate(zio_t *zio)
139fa9e4066Sahrens {
140fa9e4066Sahrens 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
141614409b5Sahrens 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
142fa9e4066Sahrens 	vdev_cache_entry_t *ve;
143fa9e4066Sahrens 
144fa9e4066Sahrens 	ASSERT(MUTEX_HELD(&vc->vc_lock));
145fa9e4066Sahrens 
146614409b5Sahrens 	if (zfs_vdev_cache_size == 0)
147fa9e4066Sahrens 		return (NULL);
148fa9e4066Sahrens 
149fa9e4066Sahrens 	/*
150fa9e4066Sahrens 	 * If adding a new entry would exceed the cache size,
151fa9e4066Sahrens 	 * evict the oldest entry (LRU).
152fa9e4066Sahrens 	 */
153614409b5Sahrens 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
154614409b5Sahrens 	    zfs_vdev_cache_size) {
155fa9e4066Sahrens 		ve = avl_first(&vc->vc_lastused_tree);
156fa9e4066Sahrens 		if (ve->ve_fill_io != NULL) {
157fa9e4066Sahrens 			dprintf("can't evict in %p, still filling\n", vc);
158fa9e4066Sahrens 			return (NULL);
159fa9e4066Sahrens 		}
160fa9e4066Sahrens 		ASSERT(ve->ve_hits != 0);
161fa9e4066Sahrens 		vdev_cache_evict(vc, ve);
162fa9e4066Sahrens 	}
163fa9e4066Sahrens 
164fa9e4066Sahrens 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
165fa9e4066Sahrens 	ve->ve_offset = offset;
166fa9e4066Sahrens 	ve->ve_lastused = lbolt;
167614409b5Sahrens 	ve->ve_data = zio_buf_alloc(VCBS);
168fa9e4066Sahrens 
169fa9e4066Sahrens 	avl_add(&vc->vc_offset_tree, ve);
170fa9e4066Sahrens 	avl_add(&vc->vc_lastused_tree, ve);
171fa9e4066Sahrens 
172fa9e4066Sahrens 	return (ve);
173fa9e4066Sahrens }
174fa9e4066Sahrens 
175fa9e4066Sahrens static void
176fa9e4066Sahrens vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
177fa9e4066Sahrens {
178614409b5Sahrens 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
179fa9e4066Sahrens 
180fa9e4066Sahrens 	ASSERT(MUTEX_HELD(&vc->vc_lock));
181fa9e4066Sahrens 	ASSERT(ve->ve_fill_io == NULL);
182fa9e4066Sahrens 
183fa9e4066Sahrens 	if (ve->ve_lastused != lbolt) {
184fa9e4066Sahrens 		avl_remove(&vc->vc_lastused_tree, ve);
185fa9e4066Sahrens 		ve->ve_lastused = lbolt;
186fa9e4066Sahrens 		avl_add(&vc->vc_lastused_tree, ve);
187fa9e4066Sahrens 	}
188fa9e4066Sahrens 
189fa9e4066Sahrens 	ve->ve_hits++;
190fa9e4066Sahrens 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
191fa9e4066Sahrens }
192fa9e4066Sahrens 
193fa9e4066Sahrens /*
194fa9e4066Sahrens  * Fill a previously allocated cache entry with data.
195fa9e4066Sahrens  */
196fa9e4066Sahrens static void
197fa9e4066Sahrens vdev_cache_fill(zio_t *zio)
198fa9e4066Sahrens {
199fa9e4066Sahrens 	vdev_t *vd = zio->io_vd;
200fa9e4066Sahrens 	vdev_cache_t *vc = &vd->vdev_cache;
201fa9e4066Sahrens 	vdev_cache_entry_t *ve = zio->io_private;
202fa9e4066Sahrens 	zio_t *dio;
203fa9e4066Sahrens 
204614409b5Sahrens 	ASSERT(zio->io_size == VCBS);
205fa9e4066Sahrens 
206fa9e4066Sahrens 	/*
207fa9e4066Sahrens 	 * Add data to the cache.
208fa9e4066Sahrens 	 */
209fa9e4066Sahrens 	mutex_enter(&vc->vc_lock);
210fa9e4066Sahrens 
211fa9e4066Sahrens 	ASSERT(ve->ve_fill_io == zio);
212fa9e4066Sahrens 	ASSERT(ve->ve_offset == zio->io_offset);
213fa9e4066Sahrens 	ASSERT(ve->ve_data == zio->io_data);
214fa9e4066Sahrens 
215fa9e4066Sahrens 	ve->ve_fill_io = NULL;
216fa9e4066Sahrens 
217fa9e4066Sahrens 	/*
218fa9e4066Sahrens 	 * Even if this cache line was invalidated by a missed write update,
219fa9e4066Sahrens 	 * any reads that were queued up before the missed update are still
220fa9e4066Sahrens 	 * valid, so we can satisfy them from this line before we evict it.
221fa9e4066Sahrens 	 */
222fa9e4066Sahrens 	for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
223fa9e4066Sahrens 		vdev_cache_hit(vc, ve, dio);
224fa9e4066Sahrens 
225fa9e4066Sahrens 	if (zio->io_error || ve->ve_missed_update)
226fa9e4066Sahrens 		vdev_cache_evict(vc, ve);
227fa9e4066Sahrens 
228fa9e4066Sahrens 	mutex_exit(&vc->vc_lock);
229fa9e4066Sahrens 
230fa9e4066Sahrens 	while ((dio = zio->io_delegate_list) != NULL) {
231fa9e4066Sahrens 		zio->io_delegate_list = dio->io_delegate_next;
232fa9e4066Sahrens 		dio->io_delegate_next = NULL;
233fa9e4066Sahrens 		dio->io_error = zio->io_error;
234fa9e4066Sahrens 		zio_next_stage(dio);
235fa9e4066Sahrens 	}
236fa9e4066Sahrens }
237fa9e4066Sahrens 
238fa9e4066Sahrens /*
239fa9e4066Sahrens  * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
240fa9e4066Sahrens  */
241fa9e4066Sahrens int
242fa9e4066Sahrens vdev_cache_read(zio_t *zio)
243fa9e4066Sahrens {
244fa9e4066Sahrens 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
245fa9e4066Sahrens 	vdev_cache_entry_t *ve, ve_search;
246614409b5Sahrens 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
247614409b5Sahrens 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
248fa9e4066Sahrens 	zio_t *fio;
249fa9e4066Sahrens 
250fa9e4066Sahrens 	ASSERT(zio->io_type == ZIO_TYPE_READ);
251fa9e4066Sahrens 
252fa9e4066Sahrens 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
253fa9e4066Sahrens 		return (EINVAL);
254fa9e4066Sahrens 
255614409b5Sahrens 	if (zio->io_size > zfs_vdev_cache_max)
256fa9e4066Sahrens 		return (EOVERFLOW);
257fa9e4066Sahrens 
258fa9e4066Sahrens 	/*
259fa9e4066Sahrens 	 * If the I/O straddles two or more cache blocks, don't cache it.
260fa9e4066Sahrens 	 */
261614409b5Sahrens 	if (P2CROSS(zio->io_offset, zio->io_offset + zio->io_size - 1, VCBS))
262fa9e4066Sahrens 		return (EXDEV);
263fa9e4066Sahrens 
264614409b5Sahrens 	ASSERT(cache_phase + zio->io_size <= VCBS);
265fa9e4066Sahrens 
266fa9e4066Sahrens 	mutex_enter(&vc->vc_lock);
267fa9e4066Sahrens 
268fa9e4066Sahrens 	ve_search.ve_offset = cache_offset;
269fa9e4066Sahrens 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
270fa9e4066Sahrens 
271fa9e4066Sahrens 	if (ve != NULL) {
272fa9e4066Sahrens 		if (ve->ve_missed_update) {
273fa9e4066Sahrens 			mutex_exit(&vc->vc_lock);
274fa9e4066Sahrens 			return (ESTALE);
275fa9e4066Sahrens 		}
276fa9e4066Sahrens 
277fa9e4066Sahrens 		if ((fio = ve->ve_fill_io) != NULL) {
278fa9e4066Sahrens 			zio->io_delegate_next = fio->io_delegate_list;
279fa9e4066Sahrens 			fio->io_delegate_list = zio;
280fa9e4066Sahrens 			zio_vdev_io_bypass(zio);
281fa9e4066Sahrens 			mutex_exit(&vc->vc_lock);
282fa9e4066Sahrens 			return (0);
283fa9e4066Sahrens 		}
284fa9e4066Sahrens 
285fa9e4066Sahrens 		vdev_cache_hit(vc, ve, zio);
286fa9e4066Sahrens 		zio_vdev_io_bypass(zio);
287fa9e4066Sahrens 
288fa9e4066Sahrens 		mutex_exit(&vc->vc_lock);
289fa9e4066Sahrens 		zio_next_stage(zio);
290fa9e4066Sahrens 		return (0);
291fa9e4066Sahrens 	}
292fa9e4066Sahrens 
293*fdb2e906Sek 	if (!(zio->io_flags & ZIO_FLAG_METADATA)) {
294*fdb2e906Sek 		mutex_exit(&vc->vc_lock);
295*fdb2e906Sek 		return (EINVAL);
296*fdb2e906Sek 	}
297*fdb2e906Sek 
298fa9e4066Sahrens 	ve = vdev_cache_allocate(zio);
299fa9e4066Sahrens 
300fa9e4066Sahrens 	if (ve == NULL) {
301fa9e4066Sahrens 		mutex_exit(&vc->vc_lock);
302fa9e4066Sahrens 		return (ENOMEM);
303fa9e4066Sahrens 	}
304fa9e4066Sahrens 
305fa9e4066Sahrens 	fio = zio_vdev_child_io(zio, NULL, zio->io_vd, cache_offset,
306614409b5Sahrens 	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
307ea8dc4b6Seschrock 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
308ea8dc4b6Seschrock 	    ZIO_FLAG_DONT_RETRY | ZIO_FLAG_NOBOOKMARK,
309fa9e4066Sahrens 	    vdev_cache_fill, ve);
310fa9e4066Sahrens 
311fa9e4066Sahrens 	ve->ve_fill_io = fio;
312fa9e4066Sahrens 	fio->io_delegate_list = zio;
313fa9e4066Sahrens 	zio_vdev_io_bypass(zio);
314fa9e4066Sahrens 
315fa9e4066Sahrens 	mutex_exit(&vc->vc_lock);
316fa9e4066Sahrens 	zio_nowait(fio);
317fa9e4066Sahrens 
318fa9e4066Sahrens 	return (0);
319fa9e4066Sahrens }
320fa9e4066Sahrens 
321fa9e4066Sahrens /*
322fa9e4066Sahrens  * Update cache contents upon write completion.
323fa9e4066Sahrens  */
324fa9e4066Sahrens void
325fa9e4066Sahrens vdev_cache_write(zio_t *zio)
326fa9e4066Sahrens {
327fa9e4066Sahrens 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
328fa9e4066Sahrens 	vdev_cache_entry_t *ve, ve_search;
329fa9e4066Sahrens 	uint64_t io_start = zio->io_offset;
330fa9e4066Sahrens 	uint64_t io_end = io_start + zio->io_size;
331614409b5Sahrens 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
332614409b5Sahrens 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
333fa9e4066Sahrens 	avl_index_t where;
334fa9e4066Sahrens 
335fa9e4066Sahrens 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
336fa9e4066Sahrens 
337fa9e4066Sahrens 	mutex_enter(&vc->vc_lock);
338fa9e4066Sahrens 
339fa9e4066Sahrens 	ve_search.ve_offset = min_offset;
340fa9e4066Sahrens 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
341fa9e4066Sahrens 
342fa9e4066Sahrens 	if (ve == NULL)
343fa9e4066Sahrens 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
344fa9e4066Sahrens 
345fa9e4066Sahrens 	while (ve != NULL && ve->ve_offset < max_offset) {
346fa9e4066Sahrens 		uint64_t start = MAX(ve->ve_offset, io_start);
347614409b5Sahrens 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
348fa9e4066Sahrens 
349fa9e4066Sahrens 		if (ve->ve_fill_io != NULL) {
350fa9e4066Sahrens 			ve->ve_missed_update = 1;
351fa9e4066Sahrens 		} else {
352fa9e4066Sahrens 			bcopy((char *)zio->io_data + start - io_start,
353fa9e4066Sahrens 			    ve->ve_data + start - ve->ve_offset, end - start);
354fa9e4066Sahrens 		}
355fa9e4066Sahrens 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
356fa9e4066Sahrens 	}
357fa9e4066Sahrens 	mutex_exit(&vc->vc_lock);
358fa9e4066Sahrens }
359fa9e4066Sahrens 
3603d7072f8Seschrock void
3613d7072f8Seschrock vdev_cache_purge(vdev_t *vd)
3623d7072f8Seschrock {
3633d7072f8Seschrock 	vdev_cache_t *vc = &vd->vdev_cache;
3643d7072f8Seschrock 	vdev_cache_entry_t *ve;
3653d7072f8Seschrock 
3663d7072f8Seschrock 	mutex_enter(&vc->vc_lock);
3673d7072f8Seschrock 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
3683d7072f8Seschrock 		vdev_cache_evict(vc, ve);
3693d7072f8Seschrock 	mutex_exit(&vc->vc_lock);
3703d7072f8Seschrock }
3713d7072f8Seschrock 
372fa9e4066Sahrens void
373fa9e4066Sahrens vdev_cache_init(vdev_t *vd)
374fa9e4066Sahrens {
375fa9e4066Sahrens 	vdev_cache_t *vc = &vd->vdev_cache;
376fa9e4066Sahrens 
377fa9e4066Sahrens 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
378fa9e4066Sahrens 
379fa9e4066Sahrens 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
380fa9e4066Sahrens 	    sizeof (vdev_cache_entry_t),
381fa9e4066Sahrens 	    offsetof(struct vdev_cache_entry, ve_offset_node));
382fa9e4066Sahrens 
383fa9e4066Sahrens 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
384fa9e4066Sahrens 	    sizeof (vdev_cache_entry_t),
385fa9e4066Sahrens 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
386fa9e4066Sahrens }
387fa9e4066Sahrens 
388fa9e4066Sahrens void
389fa9e4066Sahrens vdev_cache_fini(vdev_t *vd)
390fa9e4066Sahrens {
391fa9e4066Sahrens 	vdev_cache_t *vc = &vd->vdev_cache;
392fa9e4066Sahrens 
3933d7072f8Seschrock 	vdev_cache_purge(vd);
394fa9e4066Sahrens 
395fa9e4066Sahrens 	avl_destroy(&vc->vc_offset_tree);
396fa9e4066Sahrens 	avl_destroy(&vc->vc_lastused_tree);
397fa9e4066Sahrens 
398fa9e4066Sahrens 	mutex_destroy(&vc->vc_lock);
399fa9e4066Sahrens }
400