xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_cache.c (revision e14bb3258d05c1b1077e2db7cf77088924e56919)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5ea8dc4b6Seschrock  * Common Development and Distribution License (the "License").
6ea8dc4b6Seschrock  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
21fa9e4066Sahrens /*
2287db74c1Sek  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23fa9e4066Sahrens  * Use is subject to license terms.
24fa9e4066Sahrens  */
25fa9e4066Sahrens 
26fa9e4066Sahrens #include <sys/zfs_context.h>
27fa9e4066Sahrens #include <sys/spa.h>
28fa9e4066Sahrens #include <sys/vdev_impl.h>
29fa9e4066Sahrens #include <sys/zio.h>
3087db74c1Sek #include <sys/kstat.h>
31fa9e4066Sahrens 
32fa9e4066Sahrens /*
33fa9e4066Sahrens  * Virtual device read-ahead caching.
34fa9e4066Sahrens  *
35fa9e4066Sahrens  * This file implements a simple LRU read-ahead cache.  When the DMU reads
36fa9e4066Sahrens  * a given block, it will often want other, nearby blocks soon thereafter.
37fa9e4066Sahrens  * We take advantage of this by reading a larger disk region and caching
3887db74c1Sek  * the result.  In the best case, this can turn 128 back-to-back 512-byte
3987db74c1Sek  * reads into a single 64k read followed by 127 cache hits; this reduces
40fa9e4066Sahrens  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
4187db74c1Sek  * read into a 64k read, which doesn't affect latency all that much but is
42fa9e4066Sahrens  * terribly wasteful of bandwidth.  A more intelligent version of the cache
43fa9e4066Sahrens  * could keep track of access patterns and not do read-ahead unless it sees
44fdb2e906Sek  * at least two temporally close I/Os to the same region.  Currently, only
45fdb2e906Sek  * metadata I/O is inflated.  A futher enhancement could take advantage of
46fdb2e906Sek  * more semantic information about the I/O.  And it could use something
47fdb2e906Sek  * faster than an AVL tree; that was chosen solely for convenience.
48fa9e4066Sahrens  *
49fa9e4066Sahrens  * There are five cache operations: allocate, fill, read, write, evict.
50fa9e4066Sahrens  *
51fa9e4066Sahrens  * (1) Allocate.  This reserves a cache entry for the specified region.
52fa9e4066Sahrens  *     We separate the allocate and fill operations so that multiple threads
53fa9e4066Sahrens  *     don't generate I/O for the same cache miss.
54fa9e4066Sahrens  *
55fa9e4066Sahrens  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
56fa9e4066Sahrens  *     places the data in the previously allocated cache entry.
57fa9e4066Sahrens  *
58fa9e4066Sahrens  * (3) Read.  Read data from the cache.
59fa9e4066Sahrens  *
60fa9e4066Sahrens  * (4) Write.  Update cache contents after write completion.
61fa9e4066Sahrens  *
62fa9e4066Sahrens  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
63614409b5Sahrens  *     if the total cache size exceeds zfs_vdev_cache_size.
64fa9e4066Sahrens  */
65fa9e4066Sahrens 
66614409b5Sahrens /*
67614409b5Sahrens  * These tunables are for performance analysis.
68614409b5Sahrens  */
69614409b5Sahrens /*
70614409b5Sahrens  * All i/os smaller than zfs_vdev_cache_max will be turned into
71614409b5Sahrens  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
7287db74c1Sek  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
73614409b5Sahrens  * vdev's vdev_cache.
74614409b5Sahrens  */
7587db74c1Sek int zfs_vdev_cache_max = 1<<14;			/* 16KB */
7687db74c1Sek int zfs_vdev_cache_size = 10ULL << 20;		/* 10MB */
77614409b5Sahrens int zfs_vdev_cache_bshift = 16;
78614409b5Sahrens 
7987db74c1Sek #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
8087db74c1Sek 
8187db74c1Sek kstat_t	*vdc_ksp = NULL;
8287db74c1Sek 
8387db74c1Sek typedef struct vdc_stats {
8487db74c1Sek 	kstat_named_t vdc_stat_delegations;
8587db74c1Sek 	kstat_named_t vdc_stat_hits;
8687db74c1Sek 	kstat_named_t vdc_stat_misses;
8787db74c1Sek } vdc_stats_t;
8887db74c1Sek 
8987db74c1Sek static vdc_stats_t vdc_stats = {
9087db74c1Sek 	{ "delegations",	KSTAT_DATA_UINT64 },
9187db74c1Sek 	{ "hits",		KSTAT_DATA_UINT64 },
9287db74c1Sek 	{ "misses",		KSTAT_DATA_UINT64 }
9387db74c1Sek };
9487db74c1Sek 
9587db74c1Sek #define	VDCSTAT_BUMP(stat)	atomic_add_64(&vdc_stats.stat.value.ui64, 1);
96614409b5Sahrens 
97fa9e4066Sahrens static int
98fa9e4066Sahrens vdev_cache_offset_compare(const void *a1, const void *a2)
99fa9e4066Sahrens {
100fa9e4066Sahrens 	const vdev_cache_entry_t *ve1 = a1;
101fa9e4066Sahrens 	const vdev_cache_entry_t *ve2 = a2;
102fa9e4066Sahrens 
103fa9e4066Sahrens 	if (ve1->ve_offset < ve2->ve_offset)
104fa9e4066Sahrens 		return (-1);
105fa9e4066Sahrens 	if (ve1->ve_offset > ve2->ve_offset)
106fa9e4066Sahrens 		return (1);
107fa9e4066Sahrens 	return (0);
108fa9e4066Sahrens }
109fa9e4066Sahrens 
110fa9e4066Sahrens static int
111fa9e4066Sahrens vdev_cache_lastused_compare(const void *a1, const void *a2)
112fa9e4066Sahrens {
113fa9e4066Sahrens 	const vdev_cache_entry_t *ve1 = a1;
114fa9e4066Sahrens 	const vdev_cache_entry_t *ve2 = a2;
115fa9e4066Sahrens 
116fa9e4066Sahrens 	if (ve1->ve_lastused < ve2->ve_lastused)
117fa9e4066Sahrens 		return (-1);
118fa9e4066Sahrens 	if (ve1->ve_lastused > ve2->ve_lastused)
119fa9e4066Sahrens 		return (1);
120fa9e4066Sahrens 
121fa9e4066Sahrens 	/*
122fa9e4066Sahrens 	 * Among equally old entries, sort by offset to ensure uniqueness.
123fa9e4066Sahrens 	 */
124fa9e4066Sahrens 	return (vdev_cache_offset_compare(a1, a2));
125fa9e4066Sahrens }
126fa9e4066Sahrens 
127fa9e4066Sahrens /*
128fa9e4066Sahrens  * Evict the specified entry from the cache.
129fa9e4066Sahrens  */
130fa9e4066Sahrens static void
131fa9e4066Sahrens vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
132fa9e4066Sahrens {
133fa9e4066Sahrens 	ASSERT(MUTEX_HELD(&vc->vc_lock));
134fa9e4066Sahrens 	ASSERT(ve->ve_fill_io == NULL);
135fa9e4066Sahrens 	ASSERT(ve->ve_data != NULL);
136fa9e4066Sahrens 
137fa9e4066Sahrens 	avl_remove(&vc->vc_lastused_tree, ve);
138fa9e4066Sahrens 	avl_remove(&vc->vc_offset_tree, ve);
139614409b5Sahrens 	zio_buf_free(ve->ve_data, VCBS);
140fa9e4066Sahrens 	kmem_free(ve, sizeof (vdev_cache_entry_t));
141fa9e4066Sahrens }
142fa9e4066Sahrens 
143fa9e4066Sahrens /*
144fa9e4066Sahrens  * Allocate an entry in the cache.  At the point we don't have the data,
145fa9e4066Sahrens  * we're just creating a placeholder so that multiple threads don't all
146fa9e4066Sahrens  * go off and read the same blocks.
147fa9e4066Sahrens  */
148fa9e4066Sahrens static vdev_cache_entry_t *
149fa9e4066Sahrens vdev_cache_allocate(zio_t *zio)
150fa9e4066Sahrens {
151fa9e4066Sahrens 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
152614409b5Sahrens 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
153fa9e4066Sahrens 	vdev_cache_entry_t *ve;
154fa9e4066Sahrens 
155fa9e4066Sahrens 	ASSERT(MUTEX_HELD(&vc->vc_lock));
156fa9e4066Sahrens 
157614409b5Sahrens 	if (zfs_vdev_cache_size == 0)
158fa9e4066Sahrens 		return (NULL);
159fa9e4066Sahrens 
160fa9e4066Sahrens 	/*
161fa9e4066Sahrens 	 * If adding a new entry would exceed the cache size,
162fa9e4066Sahrens 	 * evict the oldest entry (LRU).
163fa9e4066Sahrens 	 */
164614409b5Sahrens 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
165614409b5Sahrens 	    zfs_vdev_cache_size) {
166fa9e4066Sahrens 		ve = avl_first(&vc->vc_lastused_tree);
167*e14bb325SJeff Bonwick 		if (ve->ve_fill_io != NULL)
168fa9e4066Sahrens 			return (NULL);
169fa9e4066Sahrens 		ASSERT(ve->ve_hits != 0);
170fa9e4066Sahrens 		vdev_cache_evict(vc, ve);
171fa9e4066Sahrens 	}
172fa9e4066Sahrens 
173fa9e4066Sahrens 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
174fa9e4066Sahrens 	ve->ve_offset = offset;
175fa9e4066Sahrens 	ve->ve_lastused = lbolt;
176614409b5Sahrens 	ve->ve_data = zio_buf_alloc(VCBS);
177fa9e4066Sahrens 
178fa9e4066Sahrens 	avl_add(&vc->vc_offset_tree, ve);
179fa9e4066Sahrens 	avl_add(&vc->vc_lastused_tree, ve);
180fa9e4066Sahrens 
181fa9e4066Sahrens 	return (ve);
182fa9e4066Sahrens }
183fa9e4066Sahrens 
184fa9e4066Sahrens static void
185fa9e4066Sahrens vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
186fa9e4066Sahrens {
187614409b5Sahrens 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
188fa9e4066Sahrens 
189fa9e4066Sahrens 	ASSERT(MUTEX_HELD(&vc->vc_lock));
190fa9e4066Sahrens 	ASSERT(ve->ve_fill_io == NULL);
191fa9e4066Sahrens 
192fa9e4066Sahrens 	if (ve->ve_lastused != lbolt) {
193fa9e4066Sahrens 		avl_remove(&vc->vc_lastused_tree, ve);
194fa9e4066Sahrens 		ve->ve_lastused = lbolt;
195fa9e4066Sahrens 		avl_add(&vc->vc_lastused_tree, ve);
196fa9e4066Sahrens 	}
197fa9e4066Sahrens 
198fa9e4066Sahrens 	ve->ve_hits++;
199fa9e4066Sahrens 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
200fa9e4066Sahrens }
201fa9e4066Sahrens 
202fa9e4066Sahrens /*
203fa9e4066Sahrens  * Fill a previously allocated cache entry with data.
204fa9e4066Sahrens  */
205fa9e4066Sahrens static void
206fa9e4066Sahrens vdev_cache_fill(zio_t *zio)
207fa9e4066Sahrens {
208fa9e4066Sahrens 	vdev_t *vd = zio->io_vd;
209fa9e4066Sahrens 	vdev_cache_t *vc = &vd->vdev_cache;
210fa9e4066Sahrens 	vdev_cache_entry_t *ve = zio->io_private;
211fa9e4066Sahrens 	zio_t *dio;
212fa9e4066Sahrens 
213614409b5Sahrens 	ASSERT(zio->io_size == VCBS);
214fa9e4066Sahrens 
215fa9e4066Sahrens 	/*
216fa9e4066Sahrens 	 * Add data to the cache.
217fa9e4066Sahrens 	 */
218fa9e4066Sahrens 	mutex_enter(&vc->vc_lock);
219fa9e4066Sahrens 
220fa9e4066Sahrens 	ASSERT(ve->ve_fill_io == zio);
221fa9e4066Sahrens 	ASSERT(ve->ve_offset == zio->io_offset);
222fa9e4066Sahrens 	ASSERT(ve->ve_data == zio->io_data);
223fa9e4066Sahrens 
224fa9e4066Sahrens 	ve->ve_fill_io = NULL;
225fa9e4066Sahrens 
226fa9e4066Sahrens 	/*
227fa9e4066Sahrens 	 * Even if this cache line was invalidated by a missed write update,
228fa9e4066Sahrens 	 * any reads that were queued up before the missed update are still
229fa9e4066Sahrens 	 * valid, so we can satisfy them from this line before we evict it.
230fa9e4066Sahrens 	 */
231fa9e4066Sahrens 	for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
232fa9e4066Sahrens 		vdev_cache_hit(vc, ve, dio);
233fa9e4066Sahrens 
234fa9e4066Sahrens 	if (zio->io_error || ve->ve_missed_update)
235fa9e4066Sahrens 		vdev_cache_evict(vc, ve);
236fa9e4066Sahrens 
237fa9e4066Sahrens 	mutex_exit(&vc->vc_lock);
238fa9e4066Sahrens 
239fa9e4066Sahrens 	while ((dio = zio->io_delegate_list) != NULL) {
240fa9e4066Sahrens 		zio->io_delegate_list = dio->io_delegate_next;
241fa9e4066Sahrens 		dio->io_delegate_next = NULL;
242fa9e4066Sahrens 		dio->io_error = zio->io_error;
243e05725b1Sbonwick 		zio_execute(dio);
244fa9e4066Sahrens 	}
245fa9e4066Sahrens }
246fa9e4066Sahrens 
247fa9e4066Sahrens /*
248fa9e4066Sahrens  * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
249fa9e4066Sahrens  */
250fa9e4066Sahrens int
251fa9e4066Sahrens vdev_cache_read(zio_t *zio)
252fa9e4066Sahrens {
253fa9e4066Sahrens 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
254fa9e4066Sahrens 	vdev_cache_entry_t *ve, ve_search;
255614409b5Sahrens 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
256614409b5Sahrens 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
257fa9e4066Sahrens 	zio_t *fio;
258fa9e4066Sahrens 
259fa9e4066Sahrens 	ASSERT(zio->io_type == ZIO_TYPE_READ);
260fa9e4066Sahrens 
261fa9e4066Sahrens 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
262fa9e4066Sahrens 		return (EINVAL);
263fa9e4066Sahrens 
264614409b5Sahrens 	if (zio->io_size > zfs_vdev_cache_max)
265fa9e4066Sahrens 		return (EOVERFLOW);
266fa9e4066Sahrens 
267fa9e4066Sahrens 	/*
268fa9e4066Sahrens 	 * If the I/O straddles two or more cache blocks, don't cache it.
269fa9e4066Sahrens 	 */
270614409b5Sahrens 	if (P2CROSS(zio->io_offset, zio->io_offset + zio->io_size - 1, VCBS))
271fa9e4066Sahrens 		return (EXDEV);
272fa9e4066Sahrens 
273614409b5Sahrens 	ASSERT(cache_phase + zio->io_size <= VCBS);
274fa9e4066Sahrens 
275fa9e4066Sahrens 	mutex_enter(&vc->vc_lock);
276fa9e4066Sahrens 
277fa9e4066Sahrens 	ve_search.ve_offset = cache_offset;
278fa9e4066Sahrens 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
279fa9e4066Sahrens 
280fa9e4066Sahrens 	if (ve != NULL) {
281fa9e4066Sahrens 		if (ve->ve_missed_update) {
282fa9e4066Sahrens 			mutex_exit(&vc->vc_lock);
283fa9e4066Sahrens 			return (ESTALE);
284fa9e4066Sahrens 		}
285fa9e4066Sahrens 
286fa9e4066Sahrens 		if ((fio = ve->ve_fill_io) != NULL) {
287fa9e4066Sahrens 			zio->io_delegate_next = fio->io_delegate_list;
288fa9e4066Sahrens 			fio->io_delegate_list = zio;
289fa9e4066Sahrens 			zio_vdev_io_bypass(zio);
290fa9e4066Sahrens 			mutex_exit(&vc->vc_lock);
29187db74c1Sek 			VDCSTAT_BUMP(vdc_stat_delegations);
292fa9e4066Sahrens 			return (0);
293fa9e4066Sahrens 		}
294fa9e4066Sahrens 
295fa9e4066Sahrens 		vdev_cache_hit(vc, ve, zio);
296fa9e4066Sahrens 		zio_vdev_io_bypass(zio);
297fa9e4066Sahrens 
298fa9e4066Sahrens 		mutex_exit(&vc->vc_lock);
299e05725b1Sbonwick 		zio_execute(zio);
30087db74c1Sek 		VDCSTAT_BUMP(vdc_stat_hits);
301fa9e4066Sahrens 		return (0);
302fa9e4066Sahrens 	}
303fa9e4066Sahrens 
304fa9e4066Sahrens 	ve = vdev_cache_allocate(zio);
305fa9e4066Sahrens 
306fa9e4066Sahrens 	if (ve == NULL) {
307fa9e4066Sahrens 		mutex_exit(&vc->vc_lock);
308fa9e4066Sahrens 		return (ENOMEM);
309fa9e4066Sahrens 	}
310fa9e4066Sahrens 
311*e14bb325SJeff Bonwick 	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
312614409b5Sahrens 	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
313*e14bb325SJeff Bonwick 	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
314fa9e4066Sahrens 
315fa9e4066Sahrens 	ve->ve_fill_io = fio;
316fa9e4066Sahrens 	fio->io_delegate_list = zio;
317fa9e4066Sahrens 	zio_vdev_io_bypass(zio);
318fa9e4066Sahrens 
319fa9e4066Sahrens 	mutex_exit(&vc->vc_lock);
320fa9e4066Sahrens 	zio_nowait(fio);
32187db74c1Sek 	VDCSTAT_BUMP(vdc_stat_misses);
322fa9e4066Sahrens 
323fa9e4066Sahrens 	return (0);
324fa9e4066Sahrens }
325fa9e4066Sahrens 
326fa9e4066Sahrens /*
327fa9e4066Sahrens  * Update cache contents upon write completion.
328fa9e4066Sahrens  */
329fa9e4066Sahrens void
330fa9e4066Sahrens vdev_cache_write(zio_t *zio)
331fa9e4066Sahrens {
332fa9e4066Sahrens 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
333fa9e4066Sahrens 	vdev_cache_entry_t *ve, ve_search;
334fa9e4066Sahrens 	uint64_t io_start = zio->io_offset;
335fa9e4066Sahrens 	uint64_t io_end = io_start + zio->io_size;
336614409b5Sahrens 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
337614409b5Sahrens 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
338fa9e4066Sahrens 	avl_index_t where;
339fa9e4066Sahrens 
340fa9e4066Sahrens 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
341fa9e4066Sahrens 
342fa9e4066Sahrens 	mutex_enter(&vc->vc_lock);
343fa9e4066Sahrens 
344fa9e4066Sahrens 	ve_search.ve_offset = min_offset;
345fa9e4066Sahrens 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
346fa9e4066Sahrens 
347fa9e4066Sahrens 	if (ve == NULL)
348fa9e4066Sahrens 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
349fa9e4066Sahrens 
350fa9e4066Sahrens 	while (ve != NULL && ve->ve_offset < max_offset) {
351fa9e4066Sahrens 		uint64_t start = MAX(ve->ve_offset, io_start);
352614409b5Sahrens 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
353fa9e4066Sahrens 
354fa9e4066Sahrens 		if (ve->ve_fill_io != NULL) {
355fa9e4066Sahrens 			ve->ve_missed_update = 1;
356fa9e4066Sahrens 		} else {
357fa9e4066Sahrens 			bcopy((char *)zio->io_data + start - io_start,
358fa9e4066Sahrens 			    ve->ve_data + start - ve->ve_offset, end - start);
359fa9e4066Sahrens 		}
360fa9e4066Sahrens 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
361fa9e4066Sahrens 	}
362fa9e4066Sahrens 	mutex_exit(&vc->vc_lock);
363fa9e4066Sahrens }
364fa9e4066Sahrens 
3653d7072f8Seschrock void
3663d7072f8Seschrock vdev_cache_purge(vdev_t *vd)
3673d7072f8Seschrock {
3683d7072f8Seschrock 	vdev_cache_t *vc = &vd->vdev_cache;
3693d7072f8Seschrock 	vdev_cache_entry_t *ve;
3703d7072f8Seschrock 
3713d7072f8Seschrock 	mutex_enter(&vc->vc_lock);
3723d7072f8Seschrock 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
3733d7072f8Seschrock 		vdev_cache_evict(vc, ve);
3743d7072f8Seschrock 	mutex_exit(&vc->vc_lock);
3753d7072f8Seschrock }
3763d7072f8Seschrock 
377fa9e4066Sahrens void
378fa9e4066Sahrens vdev_cache_init(vdev_t *vd)
379fa9e4066Sahrens {
380fa9e4066Sahrens 	vdev_cache_t *vc = &vd->vdev_cache;
381fa9e4066Sahrens 
382fa9e4066Sahrens 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
383fa9e4066Sahrens 
384fa9e4066Sahrens 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
385fa9e4066Sahrens 	    sizeof (vdev_cache_entry_t),
386fa9e4066Sahrens 	    offsetof(struct vdev_cache_entry, ve_offset_node));
387fa9e4066Sahrens 
388fa9e4066Sahrens 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
389fa9e4066Sahrens 	    sizeof (vdev_cache_entry_t),
390fa9e4066Sahrens 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
391fa9e4066Sahrens }
392fa9e4066Sahrens 
393fa9e4066Sahrens void
394fa9e4066Sahrens vdev_cache_fini(vdev_t *vd)
395fa9e4066Sahrens {
396fa9e4066Sahrens 	vdev_cache_t *vc = &vd->vdev_cache;
397fa9e4066Sahrens 
3983d7072f8Seschrock 	vdev_cache_purge(vd);
399fa9e4066Sahrens 
400fa9e4066Sahrens 	avl_destroy(&vc->vc_offset_tree);
401fa9e4066Sahrens 	avl_destroy(&vc->vc_lastused_tree);
402fa9e4066Sahrens 
403fa9e4066Sahrens 	mutex_destroy(&vc->vc_lock);
404fa9e4066Sahrens }
40587db74c1Sek 
40687db74c1Sek void
40787db74c1Sek vdev_cache_stat_init(void)
40887db74c1Sek {
40987db74c1Sek 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
41087db74c1Sek 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
41187db74c1Sek 	    KSTAT_FLAG_VIRTUAL);
41287db74c1Sek 	if (vdc_ksp != NULL) {
41387db74c1Sek 		vdc_ksp->ks_data = &vdc_stats;
41487db74c1Sek 		kstat_install(vdc_ksp);
41587db74c1Sek 	}
41687db74c1Sek }
41787db74c1Sek 
41887db74c1Sek void
41987db74c1Sek vdev_cache_stat_fini(void)
42087db74c1Sek {
42187db74c1Sek 	if (vdc_ksp != NULL) {
42287db74c1Sek 		kstat_delete(vdc_ksp);
42387db74c1Sek 		vdc_ksp = NULL;
42487db74c1Sek 	}
42587db74c1Sek }
426