xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision f94275ce205810a201404c5f35f4cc96057022b1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	NULL
58 };
59 
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
62 
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69 	vdev_ops_t *ops, **opspp;
70 
71 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 		if (strcmp(ops->vdev_op_type, type) == 0)
73 			break;
74 
75 	return (ops);
76 }
77 
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 	uint64_t csize;
87 
88 	for (int c = 0; c < vd->vdev_children; c++) {
89 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 		asize = MAX(asize, csize);
91 	}
92 
93 	return (asize);
94 }
95 
96 /*
97  * Get the minimum allocatable size. We define the allocatable size as
98  * the vdev's asize rounded to the nearest metaslab. This allows us to
99  * replace or attach devices which don't have the same physical size but
100  * can still satisfy the same number of allocations.
101  */
102 uint64_t
103 vdev_get_min_asize(vdev_t *vd)
104 {
105 	vdev_t *pvd = vd->vdev_parent;
106 
107 	/*
108 	 * The our parent is NULL (inactive spare or cache) or is the root,
109 	 * just return our own asize.
110 	 */
111 	if (pvd == NULL)
112 		return (vd->vdev_asize);
113 
114 	/*
115 	 * The top-level vdev just returns the allocatable size rounded
116 	 * to the nearest metaslab.
117 	 */
118 	if (vd == vd->vdev_top)
119 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
120 
121 	/*
122 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123 	 * so each child must provide at least 1/Nth of its asize.
124 	 */
125 	if (pvd->vdev_ops == &vdev_raidz_ops)
126 		return (pvd->vdev_min_asize / pvd->vdev_children);
127 
128 	return (pvd->vdev_min_asize);
129 }
130 
131 void
132 vdev_set_min_asize(vdev_t *vd)
133 {
134 	vd->vdev_min_asize = vdev_get_min_asize(vd);
135 
136 	for (int c = 0; c < vd->vdev_children; c++)
137 		vdev_set_min_asize(vd->vdev_child[c]);
138 }
139 
140 vdev_t *
141 vdev_lookup_top(spa_t *spa, uint64_t vdev)
142 {
143 	vdev_t *rvd = spa->spa_root_vdev;
144 
145 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
146 
147 	if (vdev < rvd->vdev_children) {
148 		ASSERT(rvd->vdev_child[vdev] != NULL);
149 		return (rvd->vdev_child[vdev]);
150 	}
151 
152 	return (NULL);
153 }
154 
155 vdev_t *
156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157 {
158 	vdev_t *mvd;
159 
160 	if (vd->vdev_guid == guid)
161 		return (vd);
162 
163 	for (int c = 0; c < vd->vdev_children; c++)
164 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165 		    NULL)
166 			return (mvd);
167 
168 	return (NULL);
169 }
170 
171 void
172 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
173 {
174 	size_t oldsize, newsize;
175 	uint64_t id = cvd->vdev_id;
176 	vdev_t **newchild;
177 
178 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
179 	ASSERT(cvd->vdev_parent == NULL);
180 
181 	cvd->vdev_parent = pvd;
182 
183 	if (pvd == NULL)
184 		return;
185 
186 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187 
188 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
189 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190 	newsize = pvd->vdev_children * sizeof (vdev_t *);
191 
192 	newchild = kmem_zalloc(newsize, KM_SLEEP);
193 	if (pvd->vdev_child != NULL) {
194 		bcopy(pvd->vdev_child, newchild, oldsize);
195 		kmem_free(pvd->vdev_child, oldsize);
196 	}
197 
198 	pvd->vdev_child = newchild;
199 	pvd->vdev_child[id] = cvd;
200 
201 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203 
204 	/*
205 	 * Walk up all ancestors to update guid sum.
206 	 */
207 	for (; pvd != NULL; pvd = pvd->vdev_parent)
208 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209 
210 	if (cvd->vdev_ops->vdev_op_leaf)
211 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212 }
213 
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217 	int c;
218 	uint_t id = cvd->vdev_id;
219 
220 	ASSERT(cvd->vdev_parent == pvd);
221 
222 	if (pvd == NULL)
223 		return;
224 
225 	ASSERT(id < pvd->vdev_children);
226 	ASSERT(pvd->vdev_child[id] == cvd);
227 
228 	pvd->vdev_child[id] = NULL;
229 	cvd->vdev_parent = NULL;
230 
231 	for (c = 0; c < pvd->vdev_children; c++)
232 		if (pvd->vdev_child[c])
233 			break;
234 
235 	if (c == pvd->vdev_children) {
236 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 		pvd->vdev_child = NULL;
238 		pvd->vdev_children = 0;
239 	}
240 
241 	/*
242 	 * Walk up all ancestors to update guid sum.
243 	 */
244 	for (; pvd != NULL; pvd = pvd->vdev_parent)
245 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 
247 	if (cvd->vdev_ops->vdev_op_leaf)
248 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249 }
250 
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257 	vdev_t **newchild, *cvd;
258 	int oldc = pvd->vdev_children;
259 	int newc;
260 
261 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262 
263 	for (int c = newc = 0; c < oldc; c++)
264 		if (pvd->vdev_child[c])
265 			newc++;
266 
267 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268 
269 	for (int c = newc = 0; c < oldc; c++) {
270 		if ((cvd = pvd->vdev_child[c]) != NULL) {
271 			newchild[newc] = cvd;
272 			cvd->vdev_id = newc++;
273 		}
274 	}
275 
276 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277 	pvd->vdev_child = newchild;
278 	pvd->vdev_children = newc;
279 }
280 
281 /*
282  * Allocate and minimally initialize a vdev_t.
283  */
284 static vdev_t *
285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286 {
287 	vdev_t *vd;
288 
289 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290 
291 	if (spa->spa_root_vdev == NULL) {
292 		ASSERT(ops == &vdev_root_ops);
293 		spa->spa_root_vdev = vd;
294 	}
295 
296 	if (guid == 0) {
297 		if (spa->spa_root_vdev == vd) {
298 			/*
299 			 * The root vdev's guid will also be the pool guid,
300 			 * which must be unique among all pools.
301 			 */
302 			while (guid == 0 || spa_guid_exists(guid, 0))
303 				guid = spa_get_random(-1ULL);
304 		} else {
305 			/*
306 			 * Any other vdev's guid must be unique within the pool.
307 			 */
308 			while (guid == 0 ||
309 			    spa_guid_exists(spa_guid(spa), guid))
310 				guid = spa_get_random(-1ULL);
311 		}
312 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313 	}
314 
315 	vd->vdev_spa = spa;
316 	vd->vdev_id = id;
317 	vd->vdev_guid = guid;
318 	vd->vdev_guid_sum = guid;
319 	vd->vdev_ops = ops;
320 	vd->vdev_state = VDEV_STATE_CLOSED;
321 
322 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325 	for (int t = 0; t < DTL_TYPES; t++) {
326 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327 		    &vd->vdev_dtl_lock);
328 	}
329 	txg_list_create(&vd->vdev_ms_list,
330 	    offsetof(struct metaslab, ms_txg_node));
331 	txg_list_create(&vd->vdev_dtl_list,
332 	    offsetof(struct vdev, vdev_dtl_node));
333 	vd->vdev_stat.vs_timestamp = gethrtime();
334 	vdev_queue_init(vd);
335 	vdev_cache_init(vd);
336 
337 	return (vd);
338 }
339 
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349 	vdev_ops_t *ops;
350 	char *type;
351 	uint64_t guid = 0, islog, nparity;
352 	vdev_t *vd;
353 
354 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355 
356 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357 		return (EINVAL);
358 
359 	if ((ops = vdev_getops(type)) == NULL)
360 		return (EINVAL);
361 
362 	/*
363 	 * If this is a load, get the vdev guid from the nvlist.
364 	 * Otherwise, vdev_alloc_common() will generate one for us.
365 	 */
366 	if (alloctype == VDEV_ALLOC_LOAD) {
367 		uint64_t label_id;
368 
369 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370 		    label_id != id)
371 			return (EINVAL);
372 
373 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 			return (EINVAL);
375 	} else if (alloctype == VDEV_ALLOC_SPARE) {
376 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 			return (EINVAL);
378 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
379 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 			return (EINVAL);
381 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 			return (EINVAL);
384 	}
385 
386 	/*
387 	 * The first allocated vdev must be of type 'root'.
388 	 */
389 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390 		return (EINVAL);
391 
392 	/*
393 	 * Determine whether we're a log vdev.
394 	 */
395 	islog = 0;
396 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398 		return (ENOTSUP);
399 
400 	/*
401 	 * Set the nparity property for RAID-Z vdevs.
402 	 */
403 	nparity = -1ULL;
404 	if (ops == &vdev_raidz_ops) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406 		    &nparity) == 0) {
407 			/*
408 			 * Currently, we can only support 3 parity devices.
409 			 */
410 			if (nparity == 0 || nparity > 3)
411 				return (EINVAL);
412 			/*
413 			 * Previous versions could only support 1 or 2 parity
414 			 * device.
415 			 */
416 			if (nparity > 1 &&
417 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
418 				return (ENOTSUP);
419 			if (nparity > 2 &&
420 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
421 				return (ENOTSUP);
422 		} else {
423 			/*
424 			 * We require the parity to be specified for SPAs that
425 			 * support multiple parity levels.
426 			 */
427 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
428 				return (EINVAL);
429 			/*
430 			 * Otherwise, we default to 1 parity device for RAID-Z.
431 			 */
432 			nparity = 1;
433 		}
434 	} else {
435 		nparity = 0;
436 	}
437 	ASSERT(nparity != -1ULL);
438 
439 	vd = vdev_alloc_common(spa, id, guid, ops);
440 
441 	vd->vdev_islog = islog;
442 	vd->vdev_nparity = nparity;
443 
444 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445 		vd->vdev_path = spa_strdup(vd->vdev_path);
446 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
448 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449 	    &vd->vdev_physpath) == 0)
450 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
451 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
453 
454 	/*
455 	 * Set the whole_disk property.  If it's not specified, leave the value
456 	 * as -1.
457 	 */
458 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459 	    &vd->vdev_wholedisk) != 0)
460 		vd->vdev_wholedisk = -1ULL;
461 
462 	/*
463 	 * Look for the 'not present' flag.  This will only be set if the device
464 	 * was not present at the time of import.
465 	 */
466 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467 	    &vd->vdev_not_present);
468 
469 	/*
470 	 * Get the alignment requirement.
471 	 */
472 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473 
474 	/*
475 	 * If we're a top-level vdev, try to load the allocation parameters.
476 	 */
477 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
478 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479 		    &vd->vdev_ms_array);
480 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481 		    &vd->vdev_ms_shift);
482 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483 		    &vd->vdev_asize);
484 	}
485 
486 	/*
487 	 * If we're a leaf vdev, try to load the DTL object and other state.
488 	 */
489 	if (vd->vdev_ops->vdev_op_leaf &&
490 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
491 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
492 		if (alloctype == VDEV_ALLOC_LOAD) {
493 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
494 			    &vd->vdev_dtl_smo.smo_object);
495 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
496 			    &vd->vdev_unspare);
497 		}
498 
499 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
500 			uint64_t spare = 0;
501 
502 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
503 			    &spare) == 0 && spare)
504 				spa_spare_add(vd);
505 		}
506 
507 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
508 		    &vd->vdev_offline);
509 
510 		/*
511 		 * When importing a pool, we want to ignore the persistent fault
512 		 * state, as the diagnosis made on another system may not be
513 		 * valid in the current context.
514 		 */
515 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
516 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
517 			    &vd->vdev_faulted);
518 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
519 			    &vd->vdev_degraded);
520 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
521 			    &vd->vdev_removed);
522 		}
523 	}
524 
525 	/*
526 	 * Add ourselves to the parent's list of children.
527 	 */
528 	vdev_add_child(parent, vd);
529 
530 	*vdp = vd;
531 
532 	return (0);
533 }
534 
535 void
536 vdev_free(vdev_t *vd)
537 {
538 	spa_t *spa = vd->vdev_spa;
539 
540 	/*
541 	 * vdev_free() implies closing the vdev first.  This is simpler than
542 	 * trying to ensure complicated semantics for all callers.
543 	 */
544 	vdev_close(vd);
545 
546 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
547 
548 	/*
549 	 * Free all children.
550 	 */
551 	for (int c = 0; c < vd->vdev_children; c++)
552 		vdev_free(vd->vdev_child[c]);
553 
554 	ASSERT(vd->vdev_child == NULL);
555 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
556 
557 	/*
558 	 * Discard allocation state.
559 	 */
560 	if (vd == vd->vdev_top)
561 		vdev_metaslab_fini(vd);
562 
563 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
564 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
565 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
566 
567 	/*
568 	 * Remove this vdev from its parent's child list.
569 	 */
570 	vdev_remove_child(vd->vdev_parent, vd);
571 
572 	ASSERT(vd->vdev_parent == NULL);
573 
574 	/*
575 	 * Clean up vdev structure.
576 	 */
577 	vdev_queue_fini(vd);
578 	vdev_cache_fini(vd);
579 
580 	if (vd->vdev_path)
581 		spa_strfree(vd->vdev_path);
582 	if (vd->vdev_devid)
583 		spa_strfree(vd->vdev_devid);
584 	if (vd->vdev_physpath)
585 		spa_strfree(vd->vdev_physpath);
586 	if (vd->vdev_fru)
587 		spa_strfree(vd->vdev_fru);
588 
589 	if (vd->vdev_isspare)
590 		spa_spare_remove(vd);
591 	if (vd->vdev_isl2cache)
592 		spa_l2cache_remove(vd);
593 
594 	txg_list_destroy(&vd->vdev_ms_list);
595 	txg_list_destroy(&vd->vdev_dtl_list);
596 
597 	mutex_enter(&vd->vdev_dtl_lock);
598 	for (int t = 0; t < DTL_TYPES; t++) {
599 		space_map_unload(&vd->vdev_dtl[t]);
600 		space_map_destroy(&vd->vdev_dtl[t]);
601 	}
602 	mutex_exit(&vd->vdev_dtl_lock);
603 
604 	mutex_destroy(&vd->vdev_dtl_lock);
605 	mutex_destroy(&vd->vdev_stat_lock);
606 	mutex_destroy(&vd->vdev_probe_lock);
607 
608 	if (vd == spa->spa_root_vdev)
609 		spa->spa_root_vdev = NULL;
610 
611 	kmem_free(vd, sizeof (vdev_t));
612 }
613 
614 /*
615  * Transfer top-level vdev state from svd to tvd.
616  */
617 static void
618 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
619 {
620 	spa_t *spa = svd->vdev_spa;
621 	metaslab_t *msp;
622 	vdev_t *vd;
623 	int t;
624 
625 	ASSERT(tvd == tvd->vdev_top);
626 
627 	tvd->vdev_ms_array = svd->vdev_ms_array;
628 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
629 	tvd->vdev_ms_count = svd->vdev_ms_count;
630 
631 	svd->vdev_ms_array = 0;
632 	svd->vdev_ms_shift = 0;
633 	svd->vdev_ms_count = 0;
634 
635 	tvd->vdev_mg = svd->vdev_mg;
636 	tvd->vdev_ms = svd->vdev_ms;
637 
638 	svd->vdev_mg = NULL;
639 	svd->vdev_ms = NULL;
640 
641 	if (tvd->vdev_mg != NULL)
642 		tvd->vdev_mg->mg_vd = tvd;
643 
644 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
645 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
646 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
647 
648 	svd->vdev_stat.vs_alloc = 0;
649 	svd->vdev_stat.vs_space = 0;
650 	svd->vdev_stat.vs_dspace = 0;
651 
652 	for (t = 0; t < TXG_SIZE; t++) {
653 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
654 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
655 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
656 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
657 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
658 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
659 	}
660 
661 	if (list_link_active(&svd->vdev_config_dirty_node)) {
662 		vdev_config_clean(svd);
663 		vdev_config_dirty(tvd);
664 	}
665 
666 	if (list_link_active(&svd->vdev_state_dirty_node)) {
667 		vdev_state_clean(svd);
668 		vdev_state_dirty(tvd);
669 	}
670 
671 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
672 	svd->vdev_deflate_ratio = 0;
673 
674 	tvd->vdev_islog = svd->vdev_islog;
675 	svd->vdev_islog = 0;
676 }
677 
678 static void
679 vdev_top_update(vdev_t *tvd, vdev_t *vd)
680 {
681 	if (vd == NULL)
682 		return;
683 
684 	vd->vdev_top = tvd;
685 
686 	for (int c = 0; c < vd->vdev_children; c++)
687 		vdev_top_update(tvd, vd->vdev_child[c]);
688 }
689 
690 /*
691  * Add a mirror/replacing vdev above an existing vdev.
692  */
693 vdev_t *
694 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
695 {
696 	spa_t *spa = cvd->vdev_spa;
697 	vdev_t *pvd = cvd->vdev_parent;
698 	vdev_t *mvd;
699 
700 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
701 
702 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
703 
704 	mvd->vdev_asize = cvd->vdev_asize;
705 	mvd->vdev_min_asize = cvd->vdev_min_asize;
706 	mvd->vdev_ashift = cvd->vdev_ashift;
707 	mvd->vdev_state = cvd->vdev_state;
708 
709 	vdev_remove_child(pvd, cvd);
710 	vdev_add_child(pvd, mvd);
711 	cvd->vdev_id = mvd->vdev_children;
712 	vdev_add_child(mvd, cvd);
713 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
714 
715 	if (mvd == mvd->vdev_top)
716 		vdev_top_transfer(cvd, mvd);
717 
718 	return (mvd);
719 }
720 
721 /*
722  * Remove a 1-way mirror/replacing vdev from the tree.
723  */
724 void
725 vdev_remove_parent(vdev_t *cvd)
726 {
727 	vdev_t *mvd = cvd->vdev_parent;
728 	vdev_t *pvd = mvd->vdev_parent;
729 
730 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
731 
732 	ASSERT(mvd->vdev_children == 1);
733 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
734 	    mvd->vdev_ops == &vdev_replacing_ops ||
735 	    mvd->vdev_ops == &vdev_spare_ops);
736 	cvd->vdev_ashift = mvd->vdev_ashift;
737 
738 	vdev_remove_child(mvd, cvd);
739 	vdev_remove_child(pvd, mvd);
740 
741 	/*
742 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
743 	 * Otherwise, we could have detached an offline device, and when we
744 	 * go to import the pool we'll think we have two top-level vdevs,
745 	 * instead of a different version of the same top-level vdev.
746 	 */
747 	if (mvd->vdev_top == mvd) {
748 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
749 		cvd->vdev_guid += guid_delta;
750 		cvd->vdev_guid_sum += guid_delta;
751 	}
752 	cvd->vdev_id = mvd->vdev_id;
753 	vdev_add_child(pvd, cvd);
754 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755 
756 	if (cvd == cvd->vdev_top)
757 		vdev_top_transfer(mvd, cvd);
758 
759 	ASSERT(mvd->vdev_children == 0);
760 	vdev_free(mvd);
761 }
762 
763 int
764 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
765 {
766 	spa_t *spa = vd->vdev_spa;
767 	objset_t *mos = spa->spa_meta_objset;
768 	metaslab_class_t *mc;
769 	uint64_t m;
770 	uint64_t oldc = vd->vdev_ms_count;
771 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
772 	metaslab_t **mspp;
773 	int error;
774 
775 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
776 		return (0);
777 
778 	/*
779 	 * Compute the raidz-deflation ratio.  Note, we hard-code
780 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
781 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
782 	 * or we will inconsistently account for existing bp's.
783 	 */
784 	vd->vdev_deflate_ratio = (1 << 17) /
785 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
786 
787 	ASSERT(oldc <= newc);
788 
789 	if (vd->vdev_islog)
790 		mc = spa->spa_log_class;
791 	else
792 		mc = spa->spa_normal_class;
793 
794 	if (vd->vdev_mg == NULL)
795 		vd->vdev_mg = metaslab_group_create(mc, vd);
796 
797 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
798 
799 	if (oldc != 0) {
800 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
801 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
802 	}
803 
804 	vd->vdev_ms = mspp;
805 	vd->vdev_ms_count = newc;
806 
807 	for (m = oldc; m < newc; m++) {
808 		space_map_obj_t smo = { 0, 0, 0 };
809 		if (txg == 0) {
810 			uint64_t object = 0;
811 			error = dmu_read(mos, vd->vdev_ms_array,
812 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
813 			    DMU_READ_PREFETCH);
814 			if (error)
815 				return (error);
816 			if (object != 0) {
817 				dmu_buf_t *db;
818 				error = dmu_bonus_hold(mos, object, FTAG, &db);
819 				if (error)
820 					return (error);
821 				ASSERT3U(db->db_size, >=, sizeof (smo));
822 				bcopy(db->db_data, &smo, sizeof (smo));
823 				ASSERT3U(smo.smo_object, ==, object);
824 				dmu_buf_rele(db, FTAG);
825 			}
826 		}
827 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
828 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
829 	}
830 
831 	return (0);
832 }
833 
834 void
835 vdev_metaslab_fini(vdev_t *vd)
836 {
837 	uint64_t m;
838 	uint64_t count = vd->vdev_ms_count;
839 
840 	if (vd->vdev_ms != NULL) {
841 		for (m = 0; m < count; m++)
842 			if (vd->vdev_ms[m] != NULL)
843 				metaslab_fini(vd->vdev_ms[m]);
844 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
845 		vd->vdev_ms = NULL;
846 	}
847 }
848 
849 typedef struct vdev_probe_stats {
850 	boolean_t	vps_readable;
851 	boolean_t	vps_writeable;
852 	int		vps_flags;
853 } vdev_probe_stats_t;
854 
855 static void
856 vdev_probe_done(zio_t *zio)
857 {
858 	spa_t *spa = zio->io_spa;
859 	vdev_t *vd = zio->io_vd;
860 	vdev_probe_stats_t *vps = zio->io_private;
861 
862 	ASSERT(vd->vdev_probe_zio != NULL);
863 
864 	if (zio->io_type == ZIO_TYPE_READ) {
865 		if (zio->io_error == 0)
866 			vps->vps_readable = 1;
867 		if (zio->io_error == 0 && spa_writeable(spa)) {
868 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
869 			    zio->io_offset, zio->io_size, zio->io_data,
870 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
871 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
872 		} else {
873 			zio_buf_free(zio->io_data, zio->io_size);
874 		}
875 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
876 		if (zio->io_error == 0)
877 			vps->vps_writeable = 1;
878 		zio_buf_free(zio->io_data, zio->io_size);
879 	} else if (zio->io_type == ZIO_TYPE_NULL) {
880 		zio_t *pio;
881 
882 		vd->vdev_cant_read |= !vps->vps_readable;
883 		vd->vdev_cant_write |= !vps->vps_writeable;
884 
885 		if (vdev_readable(vd) &&
886 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
887 			zio->io_error = 0;
888 		} else {
889 			ASSERT(zio->io_error != 0);
890 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
891 			    spa, vd, NULL, 0, 0);
892 			zio->io_error = ENXIO;
893 		}
894 
895 		mutex_enter(&vd->vdev_probe_lock);
896 		ASSERT(vd->vdev_probe_zio == zio);
897 		vd->vdev_probe_zio = NULL;
898 		mutex_exit(&vd->vdev_probe_lock);
899 
900 		while ((pio = zio_walk_parents(zio)) != NULL)
901 			if (!vdev_accessible(vd, pio))
902 				pio->io_error = ENXIO;
903 
904 		kmem_free(vps, sizeof (*vps));
905 	}
906 }
907 
908 /*
909  * Determine whether this device is accessible by reading and writing
910  * to several known locations: the pad regions of each vdev label
911  * but the first (which we leave alone in case it contains a VTOC).
912  */
913 zio_t *
914 vdev_probe(vdev_t *vd, zio_t *zio)
915 {
916 	spa_t *spa = vd->vdev_spa;
917 	vdev_probe_stats_t *vps = NULL;
918 	zio_t *pio;
919 
920 	ASSERT(vd->vdev_ops->vdev_op_leaf);
921 
922 	/*
923 	 * Don't probe the probe.
924 	 */
925 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
926 		return (NULL);
927 
928 	/*
929 	 * To prevent 'probe storms' when a device fails, we create
930 	 * just one probe i/o at a time.  All zios that want to probe
931 	 * this vdev will become parents of the probe io.
932 	 */
933 	mutex_enter(&vd->vdev_probe_lock);
934 
935 	if ((pio = vd->vdev_probe_zio) == NULL) {
936 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
937 
938 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
939 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
940 		    ZIO_FLAG_TRYHARD;
941 
942 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
943 			/*
944 			 * vdev_cant_read and vdev_cant_write can only
945 			 * transition from TRUE to FALSE when we have the
946 			 * SCL_ZIO lock as writer; otherwise they can only
947 			 * transition from FALSE to TRUE.  This ensures that
948 			 * any zio looking at these values can assume that
949 			 * failures persist for the life of the I/O.  That's
950 			 * important because when a device has intermittent
951 			 * connectivity problems, we want to ensure that
952 			 * they're ascribed to the device (ENXIO) and not
953 			 * the zio (EIO).
954 			 *
955 			 * Since we hold SCL_ZIO as writer here, clear both
956 			 * values so the probe can reevaluate from first
957 			 * principles.
958 			 */
959 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
960 			vd->vdev_cant_read = B_FALSE;
961 			vd->vdev_cant_write = B_FALSE;
962 		}
963 
964 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
965 		    vdev_probe_done, vps,
966 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
967 
968 		if (zio != NULL) {
969 			vd->vdev_probe_wanted = B_TRUE;
970 			spa_async_request(spa, SPA_ASYNC_PROBE);
971 		}
972 	}
973 
974 	if (zio != NULL)
975 		zio_add_child(zio, pio);
976 
977 	mutex_exit(&vd->vdev_probe_lock);
978 
979 	if (vps == NULL) {
980 		ASSERT(zio != NULL);
981 		return (NULL);
982 	}
983 
984 	for (int l = 1; l < VDEV_LABELS; l++) {
985 		zio_nowait(zio_read_phys(pio, vd,
986 		    vdev_label_offset(vd->vdev_psize, l,
987 		    offsetof(vdev_label_t, vl_pad2)),
988 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
989 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
990 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
991 	}
992 
993 	if (zio == NULL)
994 		return (pio);
995 
996 	zio_nowait(pio);
997 	return (NULL);
998 }
999 
1000 static void
1001 vdev_open_child(void *arg)
1002 {
1003 	vdev_t *vd = arg;
1004 
1005 	vd->vdev_open_thread = curthread;
1006 	vd->vdev_open_error = vdev_open(vd);
1007 	vd->vdev_open_thread = NULL;
1008 }
1009 
1010 void
1011 vdev_open_children(vdev_t *vd)
1012 {
1013 	taskq_t *tq;
1014 	int children = vd->vdev_children;
1015 
1016 	tq = taskq_create("vdev_open", children, minclsyspri,
1017 	    children, children, TASKQ_PREPOPULATE);
1018 
1019 	for (int c = 0; c < children; c++)
1020 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1021 		    TQ_SLEEP) != NULL);
1022 
1023 	taskq_destroy(tq);
1024 }
1025 
1026 /*
1027  * Prepare a virtual device for access.
1028  */
1029 int
1030 vdev_open(vdev_t *vd)
1031 {
1032 	spa_t *spa = vd->vdev_spa;
1033 	int error;
1034 	uint64_t osize = 0;
1035 	uint64_t asize, psize;
1036 	uint64_t ashift = 0;
1037 
1038 	ASSERT(vd->vdev_open_thread == curthread ||
1039 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1040 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1041 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1042 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1043 
1044 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1045 	vd->vdev_cant_read = B_FALSE;
1046 	vd->vdev_cant_write = B_FALSE;
1047 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1048 
1049 	if (!vd->vdev_removed && vd->vdev_faulted) {
1050 		ASSERT(vd->vdev_children == 0);
1051 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1052 		    VDEV_AUX_ERR_EXCEEDED);
1053 		return (ENXIO);
1054 	} else if (vd->vdev_offline) {
1055 		ASSERT(vd->vdev_children == 0);
1056 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1057 		return (ENXIO);
1058 	}
1059 
1060 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1061 
1062 	if (zio_injection_enabled && error == 0)
1063 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1064 
1065 	if (error) {
1066 		if (vd->vdev_removed &&
1067 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1068 			vd->vdev_removed = B_FALSE;
1069 
1070 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1071 		    vd->vdev_stat.vs_aux);
1072 		return (error);
1073 	}
1074 
1075 	vd->vdev_removed = B_FALSE;
1076 
1077 	if (vd->vdev_degraded) {
1078 		ASSERT(vd->vdev_children == 0);
1079 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1080 		    VDEV_AUX_ERR_EXCEEDED);
1081 	} else {
1082 		vd->vdev_state = VDEV_STATE_HEALTHY;
1083 	}
1084 
1085 	for (int c = 0; c < vd->vdev_children; c++) {
1086 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1087 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1088 			    VDEV_AUX_NONE);
1089 			break;
1090 		}
1091 	}
1092 
1093 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1094 
1095 	if (vd->vdev_children == 0) {
1096 		if (osize < SPA_MINDEVSIZE) {
1097 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1098 			    VDEV_AUX_TOO_SMALL);
1099 			return (EOVERFLOW);
1100 		}
1101 		psize = osize;
1102 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1103 	} else {
1104 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1105 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1106 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1107 			    VDEV_AUX_TOO_SMALL);
1108 			return (EOVERFLOW);
1109 		}
1110 		psize = 0;
1111 		asize = osize;
1112 	}
1113 
1114 	vd->vdev_psize = psize;
1115 
1116 	/*
1117 	 * Make sure the allocatable size hasn't shrunk.
1118 	 */
1119 	if (asize < vd->vdev_min_asize) {
1120 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1121 		    VDEV_AUX_BAD_LABEL);
1122 		return (EINVAL);
1123 	}
1124 
1125 	if (vd->vdev_asize == 0) {
1126 		/*
1127 		 * This is the first-ever open, so use the computed values.
1128 		 * For testing purposes, a higher ashift can be requested.
1129 		 */
1130 		vd->vdev_asize = asize;
1131 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1132 	} else {
1133 		/*
1134 		 * Make sure the alignment requirement hasn't increased.
1135 		 */
1136 		if (ashift > vd->vdev_top->vdev_ashift) {
1137 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1138 			    VDEV_AUX_BAD_LABEL);
1139 			return (EINVAL);
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * If all children are healthy and the asize has increased,
1145 	 * then we've experienced dynamic LUN growth.  If automatic
1146 	 * expansion is enabled then use the additional space.
1147 	 */
1148 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1149 	    (vd->vdev_expanding || spa->spa_autoexpand))
1150 		vd->vdev_asize = asize;
1151 
1152 	vdev_set_min_asize(vd);
1153 
1154 	/*
1155 	 * Ensure we can issue some IO before declaring the
1156 	 * vdev open for business.
1157 	 */
1158 	if (vd->vdev_ops->vdev_op_leaf &&
1159 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1160 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1161 		    VDEV_AUX_IO_FAILURE);
1162 		return (error);
1163 	}
1164 
1165 	/*
1166 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1167 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1168 	 * since this would just restart the scrub we are already doing.
1169 	 */
1170 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1171 	    vdev_resilver_needed(vd, NULL, NULL))
1172 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Called once the vdevs are all opened, this routine validates the label
1179  * contents.  This needs to be done before vdev_load() so that we don't
1180  * inadvertently do repair I/Os to the wrong device.
1181  *
1182  * This function will only return failure if one of the vdevs indicates that it
1183  * has since been destroyed or exported.  This is only possible if
1184  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1185  * will be updated but the function will return 0.
1186  */
1187 int
1188 vdev_validate(vdev_t *vd)
1189 {
1190 	spa_t *spa = vd->vdev_spa;
1191 	nvlist_t *label;
1192 	uint64_t guid, top_guid;
1193 	uint64_t state;
1194 
1195 	for (int c = 0; c < vd->vdev_children; c++)
1196 		if (vdev_validate(vd->vdev_child[c]) != 0)
1197 			return (EBADF);
1198 
1199 	/*
1200 	 * If the device has already failed, or was marked offline, don't do
1201 	 * any further validation.  Otherwise, label I/O will fail and we will
1202 	 * overwrite the previous state.
1203 	 */
1204 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1205 
1206 		if ((label = vdev_label_read_config(vd)) == NULL) {
1207 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208 			    VDEV_AUX_BAD_LABEL);
1209 			return (0);
1210 		}
1211 
1212 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1213 		    &guid) != 0 || guid != spa_guid(spa)) {
1214 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1215 			    VDEV_AUX_CORRUPT_DATA);
1216 			nvlist_free(label);
1217 			return (0);
1218 		}
1219 
1220 		/*
1221 		 * If this vdev just became a top-level vdev because its
1222 		 * sibling was detached, it will have adopted the parent's
1223 		 * vdev guid -- but the label may or may not be on disk yet.
1224 		 * Fortunately, either version of the label will have the
1225 		 * same top guid, so if we're a top-level vdev, we can
1226 		 * safely compare to that instead.
1227 		 */
1228 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1229 		    &guid) != 0 ||
1230 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1231 		    &top_guid) != 0 ||
1232 		    (vd->vdev_guid != guid &&
1233 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1234 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1235 			    VDEV_AUX_CORRUPT_DATA);
1236 			nvlist_free(label);
1237 			return (0);
1238 		}
1239 
1240 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1241 		    &state) != 0) {
1242 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1243 			    VDEV_AUX_CORRUPT_DATA);
1244 			nvlist_free(label);
1245 			return (0);
1246 		}
1247 
1248 		nvlist_free(label);
1249 
1250 		/*
1251 		 * If spa->spa_load_verbatim is true, no need to check the
1252 		 * state of the pool.
1253 		 */
1254 		if (!spa->spa_load_verbatim &&
1255 		    spa->spa_load_state == SPA_LOAD_OPEN &&
1256 		    state != POOL_STATE_ACTIVE)
1257 			return (EBADF);
1258 
1259 		/*
1260 		 * If we were able to open and validate a vdev that was
1261 		 * previously marked permanently unavailable, clear that state
1262 		 * now.
1263 		 */
1264 		if (vd->vdev_not_present)
1265 			vd->vdev_not_present = 0;
1266 	}
1267 
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Close a virtual device.
1273  */
1274 void
1275 vdev_close(vdev_t *vd)
1276 {
1277 	spa_t *spa = vd->vdev_spa;
1278 
1279 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1280 
1281 	vd->vdev_ops->vdev_op_close(vd);
1282 
1283 	vdev_cache_purge(vd);
1284 
1285 	/*
1286 	 * We record the previous state before we close it, so that if we are
1287 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1288 	 * it's still faulted.
1289 	 */
1290 	vd->vdev_prevstate = vd->vdev_state;
1291 
1292 	if (vd->vdev_offline)
1293 		vd->vdev_state = VDEV_STATE_OFFLINE;
1294 	else
1295 		vd->vdev_state = VDEV_STATE_CLOSED;
1296 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1297 }
1298 
1299 void
1300 vdev_reopen(vdev_t *vd)
1301 {
1302 	spa_t *spa = vd->vdev_spa;
1303 
1304 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1305 
1306 	vdev_close(vd);
1307 	(void) vdev_open(vd);
1308 
1309 	/*
1310 	 * Call vdev_validate() here to make sure we have the same device.
1311 	 * Otherwise, a device with an invalid label could be successfully
1312 	 * opened in response to vdev_reopen().
1313 	 */
1314 	if (vd->vdev_aux) {
1315 		(void) vdev_validate_aux(vd);
1316 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1317 		    vd->vdev_aux == &spa->spa_l2cache &&
1318 		    !l2arc_vdev_present(vd))
1319 			l2arc_add_vdev(spa, vd);
1320 	} else {
1321 		(void) vdev_validate(vd);
1322 	}
1323 
1324 	/*
1325 	 * Reassess parent vdev's health.
1326 	 */
1327 	vdev_propagate_state(vd);
1328 }
1329 
1330 int
1331 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1332 {
1333 	int error;
1334 
1335 	/*
1336 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1337 	 * For a create, however, we want to fail the request if
1338 	 * there are any components we can't open.
1339 	 */
1340 	error = vdev_open(vd);
1341 
1342 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1343 		vdev_close(vd);
1344 		return (error ? error : ENXIO);
1345 	}
1346 
1347 	/*
1348 	 * Recursively initialize all labels.
1349 	 */
1350 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1351 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1352 		vdev_close(vd);
1353 		return (error);
1354 	}
1355 
1356 	return (0);
1357 }
1358 
1359 void
1360 vdev_metaslab_set_size(vdev_t *vd)
1361 {
1362 	/*
1363 	 * Aim for roughly 200 metaslabs per vdev.
1364 	 */
1365 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1366 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1367 }
1368 
1369 void
1370 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1371 {
1372 	ASSERT(vd == vd->vdev_top);
1373 	ASSERT(ISP2(flags));
1374 
1375 	if (flags & VDD_METASLAB)
1376 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1377 
1378 	if (flags & VDD_DTL)
1379 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1380 
1381 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1382 }
1383 
1384 /*
1385  * DTLs.
1386  *
1387  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1388  * the vdev has less than perfect replication.  There are three kinds of DTL:
1389  *
1390  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1391  *
1392  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1393  *
1394  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1395  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1396  *	txgs that was scrubbed.
1397  *
1398  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1399  *	persistent errors or just some device being offline.
1400  *	Unlike the other three, the DTL_OUTAGE map is not generally
1401  *	maintained; it's only computed when needed, typically to
1402  *	determine whether a device can be detached.
1403  *
1404  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1405  * either has the data or it doesn't.
1406  *
1407  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1408  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1409  * if any child is less than fully replicated, then so is its parent.
1410  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1411  * comprising only those txgs which appear in 'maxfaults' or more children;
1412  * those are the txgs we don't have enough replication to read.  For example,
1413  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1414  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1415  * two child DTL_MISSING maps.
1416  *
1417  * It should be clear from the above that to compute the DTLs and outage maps
1418  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1419  * Therefore, that is all we keep on disk.  When loading the pool, or after
1420  * a configuration change, we generate all other DTLs from first principles.
1421  */
1422 void
1423 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1424 {
1425 	space_map_t *sm = &vd->vdev_dtl[t];
1426 
1427 	ASSERT(t < DTL_TYPES);
1428 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1429 
1430 	mutex_enter(sm->sm_lock);
1431 	if (!space_map_contains(sm, txg, size))
1432 		space_map_add(sm, txg, size);
1433 	mutex_exit(sm->sm_lock);
1434 }
1435 
1436 boolean_t
1437 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1438 {
1439 	space_map_t *sm = &vd->vdev_dtl[t];
1440 	boolean_t dirty = B_FALSE;
1441 
1442 	ASSERT(t < DTL_TYPES);
1443 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1444 
1445 	mutex_enter(sm->sm_lock);
1446 	if (sm->sm_space != 0)
1447 		dirty = space_map_contains(sm, txg, size);
1448 	mutex_exit(sm->sm_lock);
1449 
1450 	return (dirty);
1451 }
1452 
1453 boolean_t
1454 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1455 {
1456 	space_map_t *sm = &vd->vdev_dtl[t];
1457 	boolean_t empty;
1458 
1459 	mutex_enter(sm->sm_lock);
1460 	empty = (sm->sm_space == 0);
1461 	mutex_exit(sm->sm_lock);
1462 
1463 	return (empty);
1464 }
1465 
1466 /*
1467  * Reassess DTLs after a config change or scrub completion.
1468  */
1469 void
1470 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1471 {
1472 	spa_t *spa = vd->vdev_spa;
1473 	avl_tree_t reftree;
1474 	int minref;
1475 
1476 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1477 
1478 	for (int c = 0; c < vd->vdev_children; c++)
1479 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1480 		    scrub_txg, scrub_done);
1481 
1482 	if (vd == spa->spa_root_vdev)
1483 		return;
1484 
1485 	if (vd->vdev_ops->vdev_op_leaf) {
1486 		mutex_enter(&vd->vdev_dtl_lock);
1487 		if (scrub_txg != 0 &&
1488 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1489 			/* XXX should check scrub_done? */
1490 			/*
1491 			 * We completed a scrub up to scrub_txg.  If we
1492 			 * did it without rebooting, then the scrub dtl
1493 			 * will be valid, so excise the old region and
1494 			 * fold in the scrub dtl.  Otherwise, leave the
1495 			 * dtl as-is if there was an error.
1496 			 *
1497 			 * There's little trick here: to excise the beginning
1498 			 * of the DTL_MISSING map, we put it into a reference
1499 			 * tree and then add a segment with refcnt -1 that
1500 			 * covers the range [0, scrub_txg).  This means
1501 			 * that each txg in that range has refcnt -1 or 0.
1502 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1503 			 * entries in the range [0, scrub_txg) will have a
1504 			 * positive refcnt -- either 1 or 2.  We then convert
1505 			 * the reference tree into the new DTL_MISSING map.
1506 			 */
1507 			space_map_ref_create(&reftree);
1508 			space_map_ref_add_map(&reftree,
1509 			    &vd->vdev_dtl[DTL_MISSING], 1);
1510 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1511 			space_map_ref_add_map(&reftree,
1512 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1513 			space_map_ref_generate_map(&reftree,
1514 			    &vd->vdev_dtl[DTL_MISSING], 1);
1515 			space_map_ref_destroy(&reftree);
1516 		}
1517 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1518 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1519 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1520 		if (scrub_done)
1521 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1522 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1523 		if (!vdev_readable(vd))
1524 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1525 		else
1526 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1527 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1528 		mutex_exit(&vd->vdev_dtl_lock);
1529 
1530 		if (txg != 0)
1531 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1532 		return;
1533 	}
1534 
1535 	mutex_enter(&vd->vdev_dtl_lock);
1536 	for (int t = 0; t < DTL_TYPES; t++) {
1537 		if (t == DTL_SCRUB)
1538 			continue;			/* leaf vdevs only */
1539 		if (t == DTL_PARTIAL)
1540 			minref = 1;			/* i.e. non-zero */
1541 		else if (vd->vdev_nparity != 0)
1542 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1543 		else
1544 			minref = vd->vdev_children;	/* any kind of mirror */
1545 		space_map_ref_create(&reftree);
1546 		for (int c = 0; c < vd->vdev_children; c++) {
1547 			vdev_t *cvd = vd->vdev_child[c];
1548 			mutex_enter(&cvd->vdev_dtl_lock);
1549 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1550 			mutex_exit(&cvd->vdev_dtl_lock);
1551 		}
1552 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1553 		space_map_ref_destroy(&reftree);
1554 	}
1555 	mutex_exit(&vd->vdev_dtl_lock);
1556 }
1557 
1558 static int
1559 vdev_dtl_load(vdev_t *vd)
1560 {
1561 	spa_t *spa = vd->vdev_spa;
1562 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1563 	objset_t *mos = spa->spa_meta_objset;
1564 	dmu_buf_t *db;
1565 	int error;
1566 
1567 	ASSERT(vd->vdev_children == 0);
1568 
1569 	if (smo->smo_object == 0)
1570 		return (0);
1571 
1572 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1573 		return (error);
1574 
1575 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1576 	bcopy(db->db_data, smo, sizeof (*smo));
1577 	dmu_buf_rele(db, FTAG);
1578 
1579 	mutex_enter(&vd->vdev_dtl_lock);
1580 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1581 	    NULL, SM_ALLOC, smo, mos);
1582 	mutex_exit(&vd->vdev_dtl_lock);
1583 
1584 	return (error);
1585 }
1586 
1587 void
1588 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1589 {
1590 	spa_t *spa = vd->vdev_spa;
1591 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1592 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1593 	objset_t *mos = spa->spa_meta_objset;
1594 	space_map_t smsync;
1595 	kmutex_t smlock;
1596 	dmu_buf_t *db;
1597 	dmu_tx_t *tx;
1598 
1599 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1600 
1601 	if (vd->vdev_detached) {
1602 		if (smo->smo_object != 0) {
1603 			int err = dmu_object_free(mos, smo->smo_object, tx);
1604 			ASSERT3U(err, ==, 0);
1605 			smo->smo_object = 0;
1606 		}
1607 		dmu_tx_commit(tx);
1608 		return;
1609 	}
1610 
1611 	if (smo->smo_object == 0) {
1612 		ASSERT(smo->smo_objsize == 0);
1613 		ASSERT(smo->smo_alloc == 0);
1614 		smo->smo_object = dmu_object_alloc(mos,
1615 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1616 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1617 		ASSERT(smo->smo_object != 0);
1618 		vdev_config_dirty(vd->vdev_top);
1619 	}
1620 
1621 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1622 
1623 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1624 	    &smlock);
1625 
1626 	mutex_enter(&smlock);
1627 
1628 	mutex_enter(&vd->vdev_dtl_lock);
1629 	space_map_walk(sm, space_map_add, &smsync);
1630 	mutex_exit(&vd->vdev_dtl_lock);
1631 
1632 	space_map_truncate(smo, mos, tx);
1633 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1634 
1635 	space_map_destroy(&smsync);
1636 
1637 	mutex_exit(&smlock);
1638 	mutex_destroy(&smlock);
1639 
1640 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1641 	dmu_buf_will_dirty(db, tx);
1642 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1643 	bcopy(smo, db->db_data, sizeof (*smo));
1644 	dmu_buf_rele(db, FTAG);
1645 
1646 	dmu_tx_commit(tx);
1647 }
1648 
1649 /*
1650  * Determine whether the specified vdev can be offlined/detached/removed
1651  * without losing data.
1652  */
1653 boolean_t
1654 vdev_dtl_required(vdev_t *vd)
1655 {
1656 	spa_t *spa = vd->vdev_spa;
1657 	vdev_t *tvd = vd->vdev_top;
1658 	uint8_t cant_read = vd->vdev_cant_read;
1659 	boolean_t required;
1660 
1661 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1662 
1663 	if (vd == spa->spa_root_vdev || vd == tvd)
1664 		return (B_TRUE);
1665 
1666 	/*
1667 	 * Temporarily mark the device as unreadable, and then determine
1668 	 * whether this results in any DTL outages in the top-level vdev.
1669 	 * If not, we can safely offline/detach/remove the device.
1670 	 */
1671 	vd->vdev_cant_read = B_TRUE;
1672 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1673 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1674 	vd->vdev_cant_read = cant_read;
1675 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1676 
1677 	return (required);
1678 }
1679 
1680 /*
1681  * Determine if resilver is needed, and if so the txg range.
1682  */
1683 boolean_t
1684 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1685 {
1686 	boolean_t needed = B_FALSE;
1687 	uint64_t thismin = UINT64_MAX;
1688 	uint64_t thismax = 0;
1689 
1690 	if (vd->vdev_children == 0) {
1691 		mutex_enter(&vd->vdev_dtl_lock);
1692 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1693 		    vdev_writeable(vd)) {
1694 			space_seg_t *ss;
1695 
1696 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1697 			thismin = ss->ss_start - 1;
1698 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1699 			thismax = ss->ss_end;
1700 			needed = B_TRUE;
1701 		}
1702 		mutex_exit(&vd->vdev_dtl_lock);
1703 	} else {
1704 		for (int c = 0; c < vd->vdev_children; c++) {
1705 			vdev_t *cvd = vd->vdev_child[c];
1706 			uint64_t cmin, cmax;
1707 
1708 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1709 				thismin = MIN(thismin, cmin);
1710 				thismax = MAX(thismax, cmax);
1711 				needed = B_TRUE;
1712 			}
1713 		}
1714 	}
1715 
1716 	if (needed && minp) {
1717 		*minp = thismin;
1718 		*maxp = thismax;
1719 	}
1720 	return (needed);
1721 }
1722 
1723 void
1724 vdev_load(vdev_t *vd)
1725 {
1726 	/*
1727 	 * Recursively load all children.
1728 	 */
1729 	for (int c = 0; c < vd->vdev_children; c++)
1730 		vdev_load(vd->vdev_child[c]);
1731 
1732 	/*
1733 	 * If this is a top-level vdev, initialize its metaslabs.
1734 	 */
1735 	if (vd == vd->vdev_top &&
1736 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1737 	    vdev_metaslab_init(vd, 0) != 0))
1738 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1739 		    VDEV_AUX_CORRUPT_DATA);
1740 
1741 	/*
1742 	 * If this is a leaf vdev, load its DTL.
1743 	 */
1744 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1745 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1746 		    VDEV_AUX_CORRUPT_DATA);
1747 }
1748 
1749 /*
1750  * The special vdev case is used for hot spares and l2cache devices.  Its
1751  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1752  * we make sure that we can open the underlying device, then try to read the
1753  * label, and make sure that the label is sane and that it hasn't been
1754  * repurposed to another pool.
1755  */
1756 int
1757 vdev_validate_aux(vdev_t *vd)
1758 {
1759 	nvlist_t *label;
1760 	uint64_t guid, version;
1761 	uint64_t state;
1762 
1763 	if (!vdev_readable(vd))
1764 		return (0);
1765 
1766 	if ((label = vdev_label_read_config(vd)) == NULL) {
1767 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1768 		    VDEV_AUX_CORRUPT_DATA);
1769 		return (-1);
1770 	}
1771 
1772 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1773 	    version > SPA_VERSION ||
1774 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1775 	    guid != vd->vdev_guid ||
1776 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1777 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1778 		    VDEV_AUX_CORRUPT_DATA);
1779 		nvlist_free(label);
1780 		return (-1);
1781 	}
1782 
1783 	/*
1784 	 * We don't actually check the pool state here.  If it's in fact in
1785 	 * use by another pool, we update this fact on the fly when requested.
1786 	 */
1787 	nvlist_free(label);
1788 	return (0);
1789 }
1790 
1791 void
1792 vdev_sync_done(vdev_t *vd, uint64_t txg)
1793 {
1794 	metaslab_t *msp;
1795 
1796 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1797 		metaslab_sync_done(msp, txg);
1798 }
1799 
1800 void
1801 vdev_sync(vdev_t *vd, uint64_t txg)
1802 {
1803 	spa_t *spa = vd->vdev_spa;
1804 	vdev_t *lvd;
1805 	metaslab_t *msp;
1806 	dmu_tx_t *tx;
1807 
1808 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1809 		ASSERT(vd == vd->vdev_top);
1810 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1811 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1812 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1813 		ASSERT(vd->vdev_ms_array != 0);
1814 		vdev_config_dirty(vd);
1815 		dmu_tx_commit(tx);
1816 	}
1817 
1818 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1819 		metaslab_sync(msp, txg);
1820 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1821 	}
1822 
1823 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1824 		vdev_dtl_sync(lvd, txg);
1825 
1826 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1827 }
1828 
1829 uint64_t
1830 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1831 {
1832 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1833 }
1834 
1835 /*
1836  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1837  * not be opened, and no I/O is attempted.
1838  */
1839 int
1840 vdev_fault(spa_t *spa, uint64_t guid)
1841 {
1842 	vdev_t *vd;
1843 
1844 	spa_vdev_state_enter(spa);
1845 
1846 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1847 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1848 
1849 	if (!vd->vdev_ops->vdev_op_leaf)
1850 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1851 
1852 	/*
1853 	 * Faulted state takes precedence over degraded.
1854 	 */
1855 	vd->vdev_faulted = 1ULL;
1856 	vd->vdev_degraded = 0ULL;
1857 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1858 
1859 	/*
1860 	 * If marking the vdev as faulted cause the top-level vdev to become
1861 	 * unavailable, then back off and simply mark the vdev as degraded
1862 	 * instead.
1863 	 */
1864 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1865 		vd->vdev_degraded = 1ULL;
1866 		vd->vdev_faulted = 0ULL;
1867 
1868 		/*
1869 		 * If we reopen the device and it's not dead, only then do we
1870 		 * mark it degraded.
1871 		 */
1872 		vdev_reopen(vd);
1873 
1874 		if (vdev_readable(vd)) {
1875 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1876 			    VDEV_AUX_ERR_EXCEEDED);
1877 		}
1878 	}
1879 
1880 	return (spa_vdev_state_exit(spa, vd, 0));
1881 }
1882 
1883 /*
1884  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1885  * user that something is wrong.  The vdev continues to operate as normal as far
1886  * as I/O is concerned.
1887  */
1888 int
1889 vdev_degrade(spa_t *spa, uint64_t guid)
1890 {
1891 	vdev_t *vd;
1892 
1893 	spa_vdev_state_enter(spa);
1894 
1895 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1896 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1897 
1898 	if (!vd->vdev_ops->vdev_op_leaf)
1899 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1900 
1901 	/*
1902 	 * If the vdev is already faulted, then don't do anything.
1903 	 */
1904 	if (vd->vdev_faulted || vd->vdev_degraded)
1905 		return (spa_vdev_state_exit(spa, NULL, 0));
1906 
1907 	vd->vdev_degraded = 1ULL;
1908 	if (!vdev_is_dead(vd))
1909 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1910 		    VDEV_AUX_ERR_EXCEEDED);
1911 
1912 	return (spa_vdev_state_exit(spa, vd, 0));
1913 }
1914 
1915 /*
1916  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1917  * any attached spare device should be detached when the device finishes
1918  * resilvering.  Second, the online should be treated like a 'test' online case,
1919  * so no FMA events are generated if the device fails to open.
1920  */
1921 int
1922 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1923 {
1924 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
1925 
1926 	spa_vdev_state_enter(spa);
1927 
1928 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1929 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1930 
1931 	if (!vd->vdev_ops->vdev_op_leaf)
1932 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1933 
1934 	tvd = vd->vdev_top;
1935 	vd->vdev_offline = B_FALSE;
1936 	vd->vdev_tmpoffline = B_FALSE;
1937 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1938 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1939 
1940 	/* XXX - L2ARC 1.0 does not support expansion */
1941 	if (!vd->vdev_aux) {
1942 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1943 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
1944 	}
1945 
1946 	vdev_reopen(tvd);
1947 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1948 
1949 	if (!vd->vdev_aux) {
1950 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1951 			pvd->vdev_expanding = B_FALSE;
1952 	}
1953 
1954 	if (newstate)
1955 		*newstate = vd->vdev_state;
1956 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1957 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1958 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1959 	    vd->vdev_parent->vdev_child[0] == vd)
1960 		vd->vdev_unspare = B_TRUE;
1961 
1962 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
1963 
1964 		/* XXX - L2ARC 1.0 does not support expansion */
1965 		if (vd->vdev_aux)
1966 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
1967 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1968 	}
1969 	return (spa_vdev_state_exit(spa, vd, 0));
1970 }
1971 
1972 int
1973 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1974 {
1975 	vdev_t *vd, *tvd;
1976 	int error;
1977 
1978 	spa_vdev_state_enter(spa);
1979 
1980 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1981 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1982 
1983 	if (!vd->vdev_ops->vdev_op_leaf)
1984 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1985 
1986 	tvd = vd->vdev_top;
1987 
1988 	/*
1989 	 * If the device isn't already offline, try to offline it.
1990 	 */
1991 	if (!vd->vdev_offline) {
1992 		/*
1993 		 * If this device has the only valid copy of some data,
1994 		 * don't allow it to be offlined. Log devices are always
1995 		 * expendable.
1996 		 */
1997 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1998 		    vdev_dtl_required(vd))
1999 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2000 
2001 		/*
2002 		 * Offline this device and reopen its top-level vdev.
2003 		 * If the top-level vdev is a log device then just offline
2004 		 * it. Otherwise, if this action results in the top-level
2005 		 * vdev becoming unusable, undo it and fail the request.
2006 		 */
2007 		vd->vdev_offline = B_TRUE;
2008 		vdev_reopen(tvd);
2009 
2010 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2011 		    vdev_is_dead(tvd)) {
2012 			vd->vdev_offline = B_FALSE;
2013 			vdev_reopen(tvd);
2014 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2015 		}
2016 	}
2017 
2018 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2019 
2020 	if (!tvd->vdev_islog || !vdev_is_dead(tvd))
2021 		return (spa_vdev_state_exit(spa, vd, 0));
2022 
2023 	(void) spa_vdev_state_exit(spa, vd, 0);
2024 
2025 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
2026 	    NULL, DS_FIND_CHILDREN);
2027 	if (error) {
2028 		(void) vdev_online(spa, guid, 0, NULL);
2029 		return (error);
2030 	}
2031 	/*
2032 	 * If we successfully offlined the log device then we need to
2033 	 * sync out the current txg so that the "stubby" block can be
2034 	 * removed by zil_sync().
2035 	 */
2036 	txg_wait_synced(spa->spa_dsl_pool, 0);
2037 	return (0);
2038 }
2039 
2040 /*
2041  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2042  * vdev_offline(), we assume the spa config is locked.  We also clear all
2043  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2044  */
2045 void
2046 vdev_clear(spa_t *spa, vdev_t *vd)
2047 {
2048 	vdev_t *rvd = spa->spa_root_vdev;
2049 
2050 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2051 
2052 	if (vd == NULL)
2053 		vd = rvd;
2054 
2055 	vd->vdev_stat.vs_read_errors = 0;
2056 	vd->vdev_stat.vs_write_errors = 0;
2057 	vd->vdev_stat.vs_checksum_errors = 0;
2058 
2059 	for (int c = 0; c < vd->vdev_children; c++)
2060 		vdev_clear(spa, vd->vdev_child[c]);
2061 
2062 	/*
2063 	 * If we're in the FAULTED state or have experienced failed I/O, then
2064 	 * clear the persistent state and attempt to reopen the device.  We
2065 	 * also mark the vdev config dirty, so that the new faulted state is
2066 	 * written out to disk.
2067 	 */
2068 	if (vd->vdev_faulted || vd->vdev_degraded ||
2069 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2070 
2071 		vd->vdev_faulted = vd->vdev_degraded = 0;
2072 		vd->vdev_cant_read = B_FALSE;
2073 		vd->vdev_cant_write = B_FALSE;
2074 
2075 		vdev_reopen(vd);
2076 
2077 		if (vd != rvd)
2078 			vdev_state_dirty(vd->vdev_top);
2079 
2080 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2081 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2082 
2083 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2084 	}
2085 }
2086 
2087 boolean_t
2088 vdev_is_dead(vdev_t *vd)
2089 {
2090 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
2091 }
2092 
2093 boolean_t
2094 vdev_readable(vdev_t *vd)
2095 {
2096 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2097 }
2098 
2099 boolean_t
2100 vdev_writeable(vdev_t *vd)
2101 {
2102 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2103 }
2104 
2105 boolean_t
2106 vdev_allocatable(vdev_t *vd)
2107 {
2108 	uint64_t state = vd->vdev_state;
2109 
2110 	/*
2111 	 * We currently allow allocations from vdevs which may be in the
2112 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2113 	 * fails to reopen then we'll catch it later when we're holding
2114 	 * the proper locks.  Note that we have to get the vdev state
2115 	 * in a local variable because although it changes atomically,
2116 	 * we're asking two separate questions about it.
2117 	 */
2118 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2119 	    !vd->vdev_cant_write);
2120 }
2121 
2122 boolean_t
2123 vdev_accessible(vdev_t *vd, zio_t *zio)
2124 {
2125 	ASSERT(zio->io_vd == vd);
2126 
2127 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2128 		return (B_FALSE);
2129 
2130 	if (zio->io_type == ZIO_TYPE_READ)
2131 		return (!vd->vdev_cant_read);
2132 
2133 	if (zio->io_type == ZIO_TYPE_WRITE)
2134 		return (!vd->vdev_cant_write);
2135 
2136 	return (B_TRUE);
2137 }
2138 
2139 /*
2140  * Get statistics for the given vdev.
2141  */
2142 void
2143 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2144 {
2145 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2146 
2147 	mutex_enter(&vd->vdev_stat_lock);
2148 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2149 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2150 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2151 	vs->vs_state = vd->vdev_state;
2152 	vs->vs_rsize = vdev_get_min_asize(vd);
2153 	if (vd->vdev_ops->vdev_op_leaf)
2154 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2155 	mutex_exit(&vd->vdev_stat_lock);
2156 
2157 	/*
2158 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2159 	 * over all top-level vdevs (i.e. the direct children of the root).
2160 	 */
2161 	if (vd == rvd) {
2162 		for (int c = 0; c < rvd->vdev_children; c++) {
2163 			vdev_t *cvd = rvd->vdev_child[c];
2164 			vdev_stat_t *cvs = &cvd->vdev_stat;
2165 
2166 			mutex_enter(&vd->vdev_stat_lock);
2167 			for (int t = 0; t < ZIO_TYPES; t++) {
2168 				vs->vs_ops[t] += cvs->vs_ops[t];
2169 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2170 			}
2171 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2172 			mutex_exit(&vd->vdev_stat_lock);
2173 		}
2174 	}
2175 }
2176 
2177 void
2178 vdev_clear_stats(vdev_t *vd)
2179 {
2180 	mutex_enter(&vd->vdev_stat_lock);
2181 	vd->vdev_stat.vs_space = 0;
2182 	vd->vdev_stat.vs_dspace = 0;
2183 	vd->vdev_stat.vs_alloc = 0;
2184 	mutex_exit(&vd->vdev_stat_lock);
2185 }
2186 
2187 void
2188 vdev_stat_update(zio_t *zio, uint64_t psize)
2189 {
2190 	spa_t *spa = zio->io_spa;
2191 	vdev_t *rvd = spa->spa_root_vdev;
2192 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2193 	vdev_t *pvd;
2194 	uint64_t txg = zio->io_txg;
2195 	vdev_stat_t *vs = &vd->vdev_stat;
2196 	zio_type_t type = zio->io_type;
2197 	int flags = zio->io_flags;
2198 
2199 	/*
2200 	 * If this i/o is a gang leader, it didn't do any actual work.
2201 	 */
2202 	if (zio->io_gang_tree)
2203 		return;
2204 
2205 	if (zio->io_error == 0) {
2206 		/*
2207 		 * If this is a root i/o, don't count it -- we've already
2208 		 * counted the top-level vdevs, and vdev_get_stats() will
2209 		 * aggregate them when asked.  This reduces contention on
2210 		 * the root vdev_stat_lock and implicitly handles blocks
2211 		 * that compress away to holes, for which there is no i/o.
2212 		 * (Holes never create vdev children, so all the counters
2213 		 * remain zero, which is what we want.)
2214 		 *
2215 		 * Note: this only applies to successful i/o (io_error == 0)
2216 		 * because unlike i/o counts, errors are not additive.
2217 		 * When reading a ditto block, for example, failure of
2218 		 * one top-level vdev does not imply a root-level error.
2219 		 */
2220 		if (vd == rvd)
2221 			return;
2222 
2223 		ASSERT(vd == zio->io_vd);
2224 
2225 		if (flags & ZIO_FLAG_IO_BYPASS)
2226 			return;
2227 
2228 		mutex_enter(&vd->vdev_stat_lock);
2229 
2230 		if (flags & ZIO_FLAG_IO_REPAIR) {
2231 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2232 				vs->vs_scrub_repaired += psize;
2233 			if (flags & ZIO_FLAG_SELF_HEAL)
2234 				vs->vs_self_healed += psize;
2235 		}
2236 
2237 		vs->vs_ops[type]++;
2238 		vs->vs_bytes[type] += psize;
2239 
2240 		mutex_exit(&vd->vdev_stat_lock);
2241 		return;
2242 	}
2243 
2244 	if (flags & ZIO_FLAG_SPECULATIVE)
2245 		return;
2246 
2247 	/*
2248 	 * If this is an I/O error that is going to be retried, then ignore the
2249 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2250 	 * hard errors, when in reality they can happen for any number of
2251 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2252 	 */
2253 	if (zio->io_error == EIO &&
2254 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2255 		return;
2256 
2257 	mutex_enter(&vd->vdev_stat_lock);
2258 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2259 		if (zio->io_error == ECKSUM)
2260 			vs->vs_checksum_errors++;
2261 		else
2262 			vs->vs_read_errors++;
2263 	}
2264 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2265 		vs->vs_write_errors++;
2266 	mutex_exit(&vd->vdev_stat_lock);
2267 
2268 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2269 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2270 	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2271 		/*
2272 		 * This is either a normal write (not a repair), or it's a
2273 		 * repair induced by the scrub thread.  In the normal case,
2274 		 * we commit the DTL change in the same txg as the block
2275 		 * was born.  In the scrub-induced repair case, we know that
2276 		 * scrubs run in first-pass syncing context, so we commit
2277 		 * the DTL change in spa->spa_syncing_txg.
2278 		 *
2279 		 * We currently do not make DTL entries for failed spontaneous
2280 		 * self-healing writes triggered by normal (non-scrubbing)
2281 		 * reads, because we have no transactional context in which to
2282 		 * do so -- and it's not clear that it'd be desirable anyway.
2283 		 */
2284 		if (vd->vdev_ops->vdev_op_leaf) {
2285 			uint64_t commit_txg = txg;
2286 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2287 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2288 				ASSERT(spa_sync_pass(spa) == 1);
2289 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2290 				commit_txg = spa->spa_syncing_txg;
2291 			}
2292 			ASSERT(commit_txg >= spa->spa_syncing_txg);
2293 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2294 				return;
2295 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2296 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2297 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2298 		}
2299 		if (vd != rvd)
2300 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2301 	}
2302 }
2303 
2304 void
2305 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2306 {
2307 	vdev_stat_t *vs = &vd->vdev_stat;
2308 
2309 	for (int c = 0; c < vd->vdev_children; c++)
2310 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2311 
2312 	mutex_enter(&vd->vdev_stat_lock);
2313 
2314 	if (type == POOL_SCRUB_NONE) {
2315 		/*
2316 		 * Update completion and end time.  Leave everything else alone
2317 		 * so we can report what happened during the previous scrub.
2318 		 */
2319 		vs->vs_scrub_complete = complete;
2320 		vs->vs_scrub_end = gethrestime_sec();
2321 	} else {
2322 		vs->vs_scrub_type = type;
2323 		vs->vs_scrub_complete = 0;
2324 		vs->vs_scrub_examined = 0;
2325 		vs->vs_scrub_repaired = 0;
2326 		vs->vs_scrub_start = gethrestime_sec();
2327 		vs->vs_scrub_end = 0;
2328 	}
2329 
2330 	mutex_exit(&vd->vdev_stat_lock);
2331 }
2332 
2333 /*
2334  * Update the in-core space usage stats for this vdev and the root vdev.
2335  */
2336 void
2337 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2338     boolean_t update_root)
2339 {
2340 	int64_t dspace_delta = space_delta;
2341 	spa_t *spa = vd->vdev_spa;
2342 	vdev_t *rvd = spa->spa_root_vdev;
2343 
2344 	ASSERT(vd == vd->vdev_top);
2345 
2346 	/*
2347 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2348 	 * factor.  We must calculate this here and not at the root vdev
2349 	 * because the root vdev's psize-to-asize is simply the max of its
2350 	 * childrens', thus not accurate enough for us.
2351 	 */
2352 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2353 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2354 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2355 	    vd->vdev_deflate_ratio;
2356 
2357 	mutex_enter(&vd->vdev_stat_lock);
2358 	vd->vdev_stat.vs_space += space_delta;
2359 	vd->vdev_stat.vs_alloc += alloc_delta;
2360 	vd->vdev_stat.vs_dspace += dspace_delta;
2361 	mutex_exit(&vd->vdev_stat_lock);
2362 
2363 	if (update_root) {
2364 		ASSERT(rvd == vd->vdev_parent);
2365 		ASSERT(vd->vdev_ms_count != 0);
2366 
2367 		/*
2368 		 * Don't count non-normal (e.g. intent log) space as part of
2369 		 * the pool's capacity.
2370 		 */
2371 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2372 			return;
2373 
2374 		mutex_enter(&rvd->vdev_stat_lock);
2375 		rvd->vdev_stat.vs_space += space_delta;
2376 		rvd->vdev_stat.vs_alloc += alloc_delta;
2377 		rvd->vdev_stat.vs_dspace += dspace_delta;
2378 		mutex_exit(&rvd->vdev_stat_lock);
2379 	}
2380 }
2381 
2382 /*
2383  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2384  * so that it will be written out next time the vdev configuration is synced.
2385  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2386  */
2387 void
2388 vdev_config_dirty(vdev_t *vd)
2389 {
2390 	spa_t *spa = vd->vdev_spa;
2391 	vdev_t *rvd = spa->spa_root_vdev;
2392 	int c;
2393 
2394 	/*
2395 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2396 	 * update the vdev config manually and set the sync flag.
2397 	 */
2398 	if (vd->vdev_aux != NULL) {
2399 		spa_aux_vdev_t *sav = vd->vdev_aux;
2400 		nvlist_t **aux;
2401 		uint_t naux;
2402 
2403 		for (c = 0; c < sav->sav_count; c++) {
2404 			if (sav->sav_vdevs[c] == vd)
2405 				break;
2406 		}
2407 
2408 		if (c == sav->sav_count) {
2409 			/*
2410 			 * We're being removed.  There's nothing more to do.
2411 			 */
2412 			ASSERT(sav->sav_sync == B_TRUE);
2413 			return;
2414 		}
2415 
2416 		sav->sav_sync = B_TRUE;
2417 
2418 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2419 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2420 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2421 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2422 		}
2423 
2424 		ASSERT(c < naux);
2425 
2426 		/*
2427 		 * Setting the nvlist in the middle if the array is a little
2428 		 * sketchy, but it will work.
2429 		 */
2430 		nvlist_free(aux[c]);
2431 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2432 
2433 		return;
2434 	}
2435 
2436 	/*
2437 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2438 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2439 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2440 	 * so this is sufficient to ensure mutual exclusion.
2441 	 */
2442 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2443 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2444 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2445 
2446 	if (vd == rvd) {
2447 		for (c = 0; c < rvd->vdev_children; c++)
2448 			vdev_config_dirty(rvd->vdev_child[c]);
2449 	} else {
2450 		ASSERT(vd == vd->vdev_top);
2451 
2452 		if (!list_link_active(&vd->vdev_config_dirty_node))
2453 			list_insert_head(&spa->spa_config_dirty_list, vd);
2454 	}
2455 }
2456 
2457 void
2458 vdev_config_clean(vdev_t *vd)
2459 {
2460 	spa_t *spa = vd->vdev_spa;
2461 
2462 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2463 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2464 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2465 
2466 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2467 	list_remove(&spa->spa_config_dirty_list, vd);
2468 }
2469 
2470 /*
2471  * Mark a top-level vdev's state as dirty, so that the next pass of
2472  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2473  * the state changes from larger config changes because they require
2474  * much less locking, and are often needed for administrative actions.
2475  */
2476 void
2477 vdev_state_dirty(vdev_t *vd)
2478 {
2479 	spa_t *spa = vd->vdev_spa;
2480 
2481 	ASSERT(vd == vd->vdev_top);
2482 
2483 	/*
2484 	 * The state list is protected by the SCL_STATE lock.  The caller
2485 	 * must either hold SCL_STATE as writer, or must be the sync thread
2486 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2487 	 * so this is sufficient to ensure mutual exclusion.
2488 	 */
2489 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2490 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2491 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2492 
2493 	if (!list_link_active(&vd->vdev_state_dirty_node))
2494 		list_insert_head(&spa->spa_state_dirty_list, vd);
2495 }
2496 
2497 void
2498 vdev_state_clean(vdev_t *vd)
2499 {
2500 	spa_t *spa = vd->vdev_spa;
2501 
2502 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2503 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2504 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2505 
2506 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2507 	list_remove(&spa->spa_state_dirty_list, vd);
2508 }
2509 
2510 /*
2511  * Propagate vdev state up from children to parent.
2512  */
2513 void
2514 vdev_propagate_state(vdev_t *vd)
2515 {
2516 	spa_t *spa = vd->vdev_spa;
2517 	vdev_t *rvd = spa->spa_root_vdev;
2518 	int degraded = 0, faulted = 0;
2519 	int corrupted = 0;
2520 	vdev_t *child;
2521 
2522 	if (vd->vdev_children > 0) {
2523 		for (int c = 0; c < vd->vdev_children; c++) {
2524 			child = vd->vdev_child[c];
2525 
2526 			if (!vdev_readable(child) ||
2527 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2528 				/*
2529 				 * Root special: if there is a top-level log
2530 				 * device, treat the root vdev as if it were
2531 				 * degraded.
2532 				 */
2533 				if (child->vdev_islog && vd == rvd)
2534 					degraded++;
2535 				else
2536 					faulted++;
2537 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2538 				degraded++;
2539 			}
2540 
2541 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2542 				corrupted++;
2543 		}
2544 
2545 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2546 
2547 		/*
2548 		 * Root special: if there is a top-level vdev that cannot be
2549 		 * opened due to corrupted metadata, then propagate the root
2550 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2551 		 * replicas'.
2552 		 */
2553 		if (corrupted && vd == rvd &&
2554 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2555 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2556 			    VDEV_AUX_CORRUPT_DATA);
2557 	}
2558 
2559 	if (vd->vdev_parent)
2560 		vdev_propagate_state(vd->vdev_parent);
2561 }
2562 
2563 /*
2564  * Set a vdev's state.  If this is during an open, we don't update the parent
2565  * state, because we're in the process of opening children depth-first.
2566  * Otherwise, we propagate the change to the parent.
2567  *
2568  * If this routine places a device in a faulted state, an appropriate ereport is
2569  * generated.
2570  */
2571 void
2572 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2573 {
2574 	uint64_t save_state;
2575 	spa_t *spa = vd->vdev_spa;
2576 
2577 	if (state == vd->vdev_state) {
2578 		vd->vdev_stat.vs_aux = aux;
2579 		return;
2580 	}
2581 
2582 	save_state = vd->vdev_state;
2583 
2584 	vd->vdev_state = state;
2585 	vd->vdev_stat.vs_aux = aux;
2586 
2587 	/*
2588 	 * If we are setting the vdev state to anything but an open state, then
2589 	 * always close the underlying device.  Otherwise, we keep accessible
2590 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2591 	 * because that implies some extra checks (offline, etc) that we don't
2592 	 * want here.  This is limited to leaf devices, because otherwise
2593 	 * closing the device will affect other children.
2594 	 */
2595 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2596 		vd->vdev_ops->vdev_op_close(vd);
2597 
2598 	if (vd->vdev_removed &&
2599 	    state == VDEV_STATE_CANT_OPEN &&
2600 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2601 		/*
2602 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2603 		 * device was previously marked removed and someone attempted to
2604 		 * reopen it.  If this failed due to a nonexistent device, then
2605 		 * keep the device in the REMOVED state.  We also let this be if
2606 		 * it is one of our special test online cases, which is only
2607 		 * attempting to online the device and shouldn't generate an FMA
2608 		 * fault.
2609 		 */
2610 		vd->vdev_state = VDEV_STATE_REMOVED;
2611 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2612 	} else if (state == VDEV_STATE_REMOVED) {
2613 		/*
2614 		 * Indicate to the ZFS DE that this device has been removed, and
2615 		 * any recent errors should be ignored.
2616 		 */
2617 		zfs_post_remove(spa, vd);
2618 		vd->vdev_removed = B_TRUE;
2619 	} else if (state == VDEV_STATE_CANT_OPEN) {
2620 		/*
2621 		 * If we fail to open a vdev during an import, we mark it as
2622 		 * "not available", which signifies that it was never there to
2623 		 * begin with.  Failure to open such a device is not considered
2624 		 * an error.
2625 		 */
2626 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2627 		    vd->vdev_ops->vdev_op_leaf)
2628 			vd->vdev_not_present = 1;
2629 
2630 		/*
2631 		 * Post the appropriate ereport.  If the 'prevstate' field is
2632 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2633 		 * that this is part of a vdev_reopen().  In this case, we don't
2634 		 * want to post the ereport if the device was already in the
2635 		 * CANT_OPEN state beforehand.
2636 		 *
2637 		 * If the 'checkremove' flag is set, then this is an attempt to
2638 		 * online the device in response to an insertion event.  If we
2639 		 * hit this case, then we have detected an insertion event for a
2640 		 * faulted or offline device that wasn't in the removed state.
2641 		 * In this scenario, we don't post an ereport because we are
2642 		 * about to replace the device, or attempt an online with
2643 		 * vdev_forcefault, which will generate the fault for us.
2644 		 */
2645 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2646 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2647 		    vd != spa->spa_root_vdev) {
2648 			const char *class;
2649 
2650 			switch (aux) {
2651 			case VDEV_AUX_OPEN_FAILED:
2652 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2653 				break;
2654 			case VDEV_AUX_CORRUPT_DATA:
2655 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2656 				break;
2657 			case VDEV_AUX_NO_REPLICAS:
2658 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2659 				break;
2660 			case VDEV_AUX_BAD_GUID_SUM:
2661 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2662 				break;
2663 			case VDEV_AUX_TOO_SMALL:
2664 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2665 				break;
2666 			case VDEV_AUX_BAD_LABEL:
2667 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2668 				break;
2669 			case VDEV_AUX_IO_FAILURE:
2670 				class = FM_EREPORT_ZFS_IO_FAILURE;
2671 				break;
2672 			default:
2673 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2674 			}
2675 
2676 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2677 		}
2678 
2679 		/* Erase any notion of persistent removed state */
2680 		vd->vdev_removed = B_FALSE;
2681 	} else {
2682 		vd->vdev_removed = B_FALSE;
2683 	}
2684 
2685 	if (!isopen && vd->vdev_parent)
2686 		vdev_propagate_state(vd->vdev_parent);
2687 }
2688 
2689 /*
2690  * Check the vdev configuration to ensure that it's capable of supporting
2691  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2692  * In addition, only a single top-level vdev is allowed and none of the leaves
2693  * can be wholedisks.
2694  */
2695 boolean_t
2696 vdev_is_bootable(vdev_t *vd)
2697 {
2698 	if (!vd->vdev_ops->vdev_op_leaf) {
2699 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2700 
2701 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2702 		    vd->vdev_children > 1) {
2703 			return (B_FALSE);
2704 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2705 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2706 			return (B_FALSE);
2707 		}
2708 	} else if (vd->vdev_wholedisk == 1) {
2709 		return (B_FALSE);
2710 	}
2711 
2712 	for (int c = 0; c < vd->vdev_children; c++) {
2713 		if (!vdev_is_bootable(vd->vdev_child[c]))
2714 			return (B_FALSE);
2715 	}
2716 	return (B_TRUE);
2717 }
2718 
2719 void
2720 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2721 {
2722 	uint_t children;
2723 	nvlist_t **child;
2724 	uint64_t val;
2725 	spa_t *spa = vd->vdev_spa;
2726 
2727 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2728 	    &child, &children) == 0) {
2729 		for (int c = 0; c < children; c++)
2730 			vdev_load_log_state(vd->vdev_child[c], child[c]);
2731 	}
2732 
2733 	if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2734 	    ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2735 
2736 		/*
2737 		 * It would be nice to call vdev_offline()
2738 		 * directly but the pool isn't fully loaded and
2739 		 * the txg threads have not been started yet.
2740 		 */
2741 		spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2742 		vd->vdev_offline = val;
2743 		vdev_reopen(vd->vdev_top);
2744 		spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2745 	}
2746 }
2747 
2748 /*
2749  * Expand a vdev if possible.
2750  */
2751 void
2752 vdev_expand(vdev_t *vd, uint64_t txg)
2753 {
2754 	ASSERT(vd->vdev_top == vd);
2755 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2756 
2757 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
2758 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
2759 		vdev_config_dirty(vd);
2760 	}
2761 }
2762